Sample records for plant transpiration rate

  1. Transpiration rates of rice plants treated with Trichoderma spp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Anizan, I.; Che Radziah C. M., Z.; Yusoff, Wan Mohtar Wan

    2014-09-01

    Trichoderma spp. are considered as successful plant growth promoting fungi and have positive role in habitat engineering. In this study, the potential for Trichoderma spp. to regulate transpiration process in rice plant was assessed experimentally under greenhouse condition using a completely randomized design. The study revealed that Trichoderma spp. have potential to enhance growth of rice plant through transpirational processes. The results of the study add to the advancement of the understanding as to the role of Trichoderma spp. in improving rice physiological process.

  2. Hydraulic Limits on Maximum Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  3. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    PubMed

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  4. Aquaporins and plant transpiration.

    PubMed

    Maurel, Christophe; Verdoucq, Lionel; Rodrigues, Olivier

    2016-11-01

    Although transpiration and aquaporins have long been identified as two key components influencing plant water status, it is only recently that their relations have been investigated in detail. The present review first examines the various facets of aquaporin function in stomatal guard cells and shows that it involves transport of water but also of other molecules such as carbon dioxide and hydrogen peroxide. At the whole plant level, changes in tissue hydraulics mediated by root and shoot aquaporins can indirectly impact plant transpiration. Recent studies also point to a feedback effect of transpiration on aquaporin function. These mechanisms may contribute to the difference between isohydric and anisohydric stomatal regulation of leaf water status. The contribution of aquaporins to transpiration control goes far beyond the issue of water transport during stomatal movements and involves emerging cellular and long-distance signalling mechanisms which ultimately act on plant growth. © 2016 John Wiley & Sons Ltd.

  5. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.

    PubMed

    Macho-Rivero, Miguel Ángel; Camacho-Cristóbal, Juan José; Herrera-Rodríguez, María Begoña; Müller, Maren; Munné-Bosch, Sergi; González-Fontes, Agustín

    2017-05-01

    Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi-arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild-type plants upon B-toxicity treatment. The Arabidopsis ABA-deficient nced3-2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild-type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild-type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3-2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild-type and nced3-2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA. © 2016 Scandinavian Plant Physiology Society.

  6. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

    PubMed

    Masle, Josette; Gilmore, Scott R; Farquhar, Graham D

    2005-08-11

    Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.

  7. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  8. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  9. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  10. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    PubMed

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P < 0.001) and was relatively conserved among plant types (for a given plant size), while increasing across climates following the atmospheric evaporative demand. The fact that E(max) was roughly conserved across plant types and scales with the product of xylem saturated conductivity and water potential at 50% cavitation was used here to explain the safety-efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Transpiration rates of urban trees, Aesculus chinensis.

    PubMed

    Wang, Hua; Wang, Xiaoke; Zhao, Ping; Zheng, Hua; Ren, Yufen; Gao, Fuyuan; Ouyang, Zhiyun

    2012-01-01

    Transpiration patterns of Aesculus chinensis in relation to explanatory variables in the microclimatic, air quality, and biological phenomena categories were measured in Beijing, China using the thermal dissipation method. The highest transpiration rate measured as the sap flux density of the trees took place from 10:00 am to 13:00 pm in the summer and the lowest was found during nighttime in the winter. To sort out co-linearity, principal component analysis and variation and hierarchical partitioning methods were employed in data analyses. The evaporative demand index (EDI) consisting of air temperature, soil temperature, total radiation, vapor pressure deficit, and atmospheric ozone (O3), explained 68% and 80% of the hourly and daily variations of the tree transpiration, respectively. The independent and joint effects of EDI variables together with a three-variable joint effect exerted the greatest influences on the variance of transpiration rates. The independent effects of leaf area index and atmospheric O3 and their combined effect exhibited minor yet significant influences on tree transpiration rates.

  12. Characterizing photosynthesis and transpiration of plant communities in controlled environments

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1996-01-01

    CO2 and water vapor fluxes of hydroponically grown wheat and soybean canopies were measured continuously in several environments with an open gas exchange system. Canopy CO2 fluxes reflect the photosynthetic efficiency of a plant community, and provide a record of plant growth and health. There were significant diurnal fluctuations in root and shoot CO2 fluxes, and in shoot water vapor fluxes. Canopy stomatal conductance (Gc) to water vapor was calculated from simultaneous measurements of canopy temperature (Tcan) and transpiration rates (Tr). Tr in the dark was substantial, and there were large diurnal fluctuations in both Gc and Tr. Canopy net Photosynthesis (Pnet), Tr, and Gc increased with increasing net radiation. Gc increased with Tr, suggesting that the stomata of plants in controlled environments (CEs) behave differently from field-grown plants. A transpiration model based on measurements of Gc was developed for CEs. The model accurately predicted Tr from a soybean canopy.

  13. Global separation of plant transpiration from groundwater and streamflow

    Treesearch

    Jaivime Evaristo; Scott Jasechko; Jeffrey J. McDonnell

    2015-01-01

    Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the...

  14. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    PubMed

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Boron Toxicity Reduces Water Transport from Root to Shoot in Arabidopsis Plants. Evidence for a Reduced Transpiration Rate and Expression of Major PIP Aquaporin Genes.

    PubMed

    Macho-Rivero, Miguel A; Herrera-Rodríguez, M Begoña; Brejcha, Ramona; Schäffner, Anton R; Tanaka, Nobuhiro; Fujiwara, Toru; González-Fontes, Agustín; Camacho-Cristóbal, Juan J

    2018-04-01

    Toxic boron (B) concentrations cause impairments in several plant metabolic and physiological processes. Recently we reported that B toxicity led to a decrease in the transpiration rate of Arabidopsis plants in an ABA-dependent process within 24 h, which could indicate the occurrence of an adjustment of whole-plant water relations in response to this stress. Since plasma membrane intrinsic protein (PIP) aquaporins are key components influencing the water balance of plants because of their involvement in root water uptake and tissue hydraulic conductance, the aim of the present work was to study the effects of B toxicity on these important parameters affecting plant water status over a longer period of time. For this purpose, transpiration rate, water transport to the shoot and transcript levels of genes encoding four major PIP aquaporins were measured in Arabidopsis plants treated or not with a toxic B concentration. Our results indicate that, during the first 24 h of B toxicity, increased shoot ABA content would play a key role in reducing stomatal conductance, transpiration rate and, consequently, the water transport to the shoot. These physiological responses to B toxicity were maintained for up to 48 h of B toxicity despite shoot ABA content returning to control levels. In addition, B toxicity also caused the down-regulation of several genes encoding root and shoot aquaporins, which could reduce the cell to cell movement of water in plant tissues and, consequently, the water flux to shoot. All these changes in the water balance of plants under B toxicity could be a mechanism to prevent excess B accumulation in plant tissues.

  16. Drought, Abscisic Acid and Transpiration Rate Effects on the Regulation of PIP Aquaporin Gene Expression and Abundance in Phaseolus vulgaris Plants

    PubMed Central

    AROCA, RICARDO; FERRANTE, ANTONIO; VERNIERI, PAOLO; CHRISPEELS, MAARTEN J.

    2006-01-01

    • Background and Aims Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. • Methods Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. • Key Results None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. • Conclusions The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. PMID:17028296

  17. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    PubMed Central

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  18. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  19. A first look at the SAPFLUXNET database: global patterns in whole-plant transpiration and implications for ecohydrological research

    NASA Astrophysics Data System (ADS)

    Poyatos, R.; Granda, V.; Mencuccini, M.; Flo, V.; Oren, R.; Molowny-Horas, R.; Katul, G. G.; Mahecha, M. D.; Steppe, K.; Cabon, A.; De Cáceres, M.; Martínez-Vilalta, J.

    2017-12-01

    Plant transpiration is the fundamental process linking water and vegetation and it is therefore a central topic in ecohydrological research. Globally, plants display a huge variety of coordinated adjustments in their physiology and structure to regulate transpiration in response to fluctuations of water demand and supply at multiple temporal scales. Sap flow measured in plant stems reveals the temporal patterns of these responses but sap flow data have remained fragmentary and generally unavailable for syntheses of regional to global scope. Here we present the first global database of sap flow measurements from individual plants (SAPFLUXNET, http://sapfluxnet.creaf.cat/), which has been compiled from > 150 datasets contributed by researchers worldwide. Received datasets were harmonised and conveniently stored in custom-designed R objects holding sap flow and environmental data time series, together with several ancillary metadata, enabling data access for synthesis activities. SAPFLUXNET covers most vegetated biomes and holds data for > 1500 individual plants, mostly trees, belonging to >100 species and > 50 genera. We retrieved water use traits indicative of maximum transpiration rates and of transpiration sensitivity to vapour pressure deficit using quantile regression approaches and moving window analyses. Global patterns of these water use traits were then analysed as a function of climate, plant functional type and stand characteristics. For example, maximum transpiration rates at a given plant diameter or sapwood area tended to be higher for Angiosperms compared to Gymnosperms, but this relationships converged to a more similar scaling between transpiration and leaf area across these groups. SAPFLUXNET is also a valuable tool to evaluate water balance components in ecosystem models. We combined SAPFLUXNET data with the MEDFATE model (https://cran.r-project.org/web/packages/medfate/index.html) to validate an ecohydrological optimisation approach to retrieve

  20. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Treesearch

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  1. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    PubMed Central

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  2. Planting trials with transpiration retardants in California

    Treesearch

    H.A. Fowells; G.H. Schubert

    1955-01-01

    For at least 20 years foresters have been experimenting with methods designed to reduce transpiration from planted conifers. The object is to decrease the water requirement of the plants until the root systems become adjusted to their new environments and are able to supply enough water for the trees to survive. Despite the fact that relatively few clearcut instances...

  3. From experiments to simulations: tracing Na+ distribution around roots under different transpiration rates and salinity levels

    NASA Astrophysics Data System (ADS)

    Perelman, Adi; Jorda, Helena; Vanderborght, Jan; Pohlmeier, Andreas; Lazarovitch, Naftali

    2017-04-01

    When salinity increases beyond a certain threshold it will result in reduced crop yield at a fixed rate, according to Maas and Hoffman model (1976). Thus, there is a great importance of predicting salinization and its impact on crops. Current models do not consider the impact of environmental conditions on plants salt tolerance, even though these conditions are affecting plant water uptake and therefore salt accumulation around the roots. Different factors, such as transpiration rates, can influence the plant sensitivity to salinity by influencing salt concentrations around the roots. Better parametrization of a model can help improving predicting the real effects of salinity on crop growth and yield. The aim of this research is to study Na+ distribution around roots at different scales using different non-invasive methods, and study how this distribution is being affected by transpiration rate and plant water uptake. Results from tomato plants growing on Rhizoslides (capillary paper growth system), show that Na+ concentration is higher at the root- substrate interface, compared with the bulk. Also, Na+ accumulation around the roots decreased under low transpiration rate, which is supporting our hypothesis. Additionally, Rhizoslides enable to study roots' growth rate and architecture under different salinity levels. Root system architecture was retrieved from photos taken during the experiment and enabled us to incorporate real root systems into a simulation. To observe the correlation of root system architectures and Na+ distribution in three dimensions, we used magnetic resonance imaging (MRI). MRI provides fine resolution of Na+ accumulation around a single root without disturbing the root system. With time, Na+ was accumulating only where roots were found in the soil and later on around specific roots. These data are being used for model calibration, which is expected to predict root water uptake in saline soils for different climatic conditions and different

  4. A Laboratory Exercise to Assess Transpiration.

    ERIC Educational Resources Information Center

    Schrock, Gould F.

    1982-01-01

    Procedures are outlined for a laboratory exercise in which students use a gravimetric method to determine the rate of transpiration in sunflower seedlings. Discusses the data in terms of the effectiveness of stomatal openings, mechanisms for water movement in plants, and the role of transpiration in the environment. (DC)

  5. A Transpiration Experiment Requiring Critical Thinking Skills.

    ERIC Educational Resources Information Center

    Ford, Rosemary H.

    1998-01-01

    Details laboratory procedures that enable students to understand the concept of how differences in water potential drive the movement of water within a plant in response to transpiration. Students compare transpiration rates for upper and lower surfaces of leaves. (DDR)

  6. Silver and zinc inhibitors influence transpiration rate and aquaporin transcript levels in intact soybean plants

    USDA-ARS?s Scientific Manuscript database

    Some soybean (Glycine max (L.) Merr.) have been identified that expressed limited transpiration rate (TR) above a threshold vapor pressure deficit (VPD). Restriction of TR at high VPD conditions is considered a water conservation trait that allows water to be retained in the soil to benefit of crop...

  7. Sap flow measurements to determine the transpiration of facade greenings

    NASA Astrophysics Data System (ADS)

    Hölscher, Marie-Therese; Nehls, Thomas; Wessolek, Gerd

    2014-05-01

    Facade greening is expected to make a major contribution to the mitigation of the urban heat-island effect through transpiration cooling, thermal insulation and shading of vertical built structures. However, no studies are available on water demand and the transpiration of urban vertical green. Such knowledge is needed as the plants must be sufficiently watered, otherwise the posited positive effects of vertical green can turn into disadvantages when compared to a white wall. Within the framework of the German Research Group DFG FOR 1736 "Urban Climate and Heat Stress" this study aims to test the practicability of the sap flow technique for transpiration measurements of climbing plants and to obtain potential transpiration rates for the most commonly used species. Using sap flow measurements we determined the transpiration of Fallopia baldschuanica, Parthenocissus tricuspidata and Hedera helix in pot experiments (about 1 m high) during the hot summer period from August 17th to August 30th 2012 under indoor conditions. Sap flow measurements corresponded well to simultaneous weight measurement on a daily base (factor 1.19). Fallopia baldschuanica has the highest daily transpiration rate based on leaf area (1.6 mm d-1) and per base area (5.0 mm d-1). Parthenocissus tricuspidata and Hedera helix show transpiration rates of 3.5 and 0.4 mm d-1 (per base area). Through water shortage, transpiration strongly decreased and leaf temperature measured by infrared thermography increased by 1 K compared to a well watered plant. We transferred the technique to outdoor conditions and will present first results for facade greenings in the inner-city of Berlin for the hottest period in summer 2013.

  8. Assessment of actual transpiration rate in olive tree field combining sap-flow, leaf area index and scintillometer measurements

    NASA Astrophysics Data System (ADS)

    Agnese, C.; Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Provenzano, G.; Rallo, G.; de Bruin, H. A. R.

    2009-09-01

    Models to estimate the actual evapotranspiration (ET) in sparse vegetation area can be fundamental for agricultural water managements, especially when water availability is a limiting factor. Models validation must be carried out by considering in situ measurements referred to the field scale, which is the relevant scale of the modelled variables. Moreover, a particular relevance assumes to consider separately the components of plant transpiration (T) and soil evaporation (E), because only the first is actually related to the crop stress conditions. Objective of the paper was to assess a procedure aimed to estimate olive trees actual transpiration by combining sap flow measurements with the scintillometer technique at field scale. The study area, located in Western Sicily (Italy), is mainly cultivated with olive crop and is characterized by typical Mediterranean semi-arid climate. Measurements of sap flow and crop actual evapotranspiration rate were carried out during 2008 irrigation season. Crop transpiration fluxes, measured on some plants by means of sap flow sensors, were upscaled considering the leaf area index (LAI). The comparison between evapotranspiration values, derived by displaced-beam small-aperture scintillometer (DBSAS-SLS20, Scintec AG), with the transpiration fluxes obtained by the sap flow sensors, also allowed to evaluate the contribute of soil evaporation in an area characterized by low vegetation coverage.

  9. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare).

    PubMed

    Hebbern, Christopher A; Laursen, Kristian Holst; Ladegaard, Anne H; Schmidt, Sidsel B; Pedas, Pai; Bruhn, Dan; Schjoerring, Jan K; Wulfsohn, Dvoralai; Husted, Søren

    2009-03-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 microg Mn g(-1) dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by (13)C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.

  10. Transpiration and CO/sub 2/ fixation of selected desert shrubs as related to soil-water potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S.B.; Letey, J. Jr.; Lunt, O.R.

    1980-01-01

    In desert plants, transpiration rates decreased before photosynthetic rates when plants were entering a period of water stress. This may have adaptive consequences. A difference of -5 bars in the soil-moisture potential had considerable importance in reducing the rate of transpiration. In Helianthus annuus L. (sunflower) the photosynthetic rate decreased before the transpiration rate in contrast to Great Basin-Mojave Desert plants, and the changes occurred with a -1 bar difference in soil-moisture potential. Morphological changes in three desert plant species (Artemisia tridentata Nutt., Ambrosia dumosa (Gray) Payne, Larrea tridentata (Ses. Moc. ex DC) Cov.) as the soil-moisture potential decreased aremore » given. With a mesic species, H. annuus, 20% reduction in photosynthesis and transpiration was reached at higher soil-moisture potentials than with the desert plants. Loss of net photosynthesis occurred in A. dumosa (a summer deciduous shrub) as PSI soil reached -48 bars in the field, whereas L. tridentata (an evergreen shrub) at the same time was able to maintain a water potential difference between soil and plant of -10 to -15 bars and continue net CO/sub 2/ gain well into the summer months.« less

  11. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves.

    PubMed

    Lanoue, Jason; Leonardos, Evangelos D; Grodzinski, Bernard

    2018-01-01

    Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO 2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14 CO 2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths ( r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are

  12. [Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].

    PubMed

    Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu

    2005-11-01

    Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.

  13. Heart rate and heart rate variability response to the transpiration of vortex-water by Begonia Eliator plants to the air in an office during visual display terminal work.

    PubMed

    Johansson, Benny

    2008-10-01

    This study explores the effects of vortex-water transpired from indoor greenery to office air, in relation to heart rate and heart rate variability during exposure to an electromagnetic field (EMF) from a visual display terminal (VDT). The study followed a randomized prospective single group cross-over design. Fifty (50) healthy volunteers, seated in any ordinary working posture in front of a VDT. Electrocardiography was measured in five 10-minute sequential tests. The VDT was turned off during the first test and switched on for the subsequent four tests. During tests 3 and 4, one of two Begonia Eliator plants, irrigated with either tap water or vortex-rotated (active) tap water during growth, was placed adjacent to the VDT. Heart rate, heart rate variability (HRV) and power spectral density (PSD) were analyzed. The heart rate was unchanged at the start of EMF exposure. The time domain measurements indicated a significant decrease in heart rate and a significant increase in HRV, accompanied by higher vagal tone in the presence, and finally in the absence, of the active plant. PSD parameters revealed significantly higher total power, as well as an increase in low frequencies (LF) and high frequencies (HF) in the condition induced by the active plant as well as after its removal. Very low frequencies (VLF) increased at EMF exposure whereas normally HF power decreased, accompanied by a rise in LF power and LF/HF ratio. HF power was higher at exposure to the active compared to the control plant. Spectral power density diagrams revealed an intensified spectral power band at frequencies of around 0.1 Hz at the condition of both plants, indicating systemic autonomic stability. The findings suggest that the parasympathetic response was associated with reduced heart rate, implicating restoration and maintenance of metabolic energy resources mediated by an involuntary adaptation to active plant-related stimuli.

  14. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower

    PubMed Central

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs. PMID:29204153

  15. Biomass Allocation Patterns Are Linked to Genotypic Differences in Whole-Plant Transpiration Efficiency in Sunflower.

    PubMed

    Velázquez, Luciano; Alberdi, Ignacio; Paz, Cosme; Aguirrezábal, Luis; Pereyra Irujo, Gustavo

    2017-01-01

    Increased transpiration efficiency (the ratio of biomass to water transpired, TE) could lead to increased drought tolerance under some water deficit scenarios. Intrinsic (i.e., leaf-level) TE is usually considered as the primary source of variation in whole-plant TE, but empirical data usually contradict this assumption. Sunflower has a significant variability in TE, but a better knowledge of the effect of leaf and plant-level traits could be helpful to obtain more efficient genotypes for water use. The objective of this study was, therefore, to assess if genotypic variation in whole-plant TE is better related to leaf- or plant-level traits. Three experiments were conducted, aimed at verifying the existence of variability in whole-plant TE and whole-plant and leaf-level traits, and to assess their correlation. Sunflower public inbred lines and a segregating population of recombinant inbred lines were grown under controlled conditions and subjected to well-watered and water-deficit treatments. Significant genotypic variation was found for TE and related traits. These differences in whole-plant transpiration efficiency, both between genotypes and between plants within each genotype, showed no association to leaf-level traits, but were significantly and negatively correlated to biomass allocation to leaves and to the ratio of leaf area to total biomass. These associations are likely of a physiological origin, and not only a consequence of genetic linkage in the studied population. These results suggest that genotypic variation for biomass allocation could be potentially exploited as a source for increased transpiration efficiency in sunflower breeding programmes. It is also suggested that phenotyping for TE in this species should not be restricted to leaf-level measurements, but also include measurements of plant-level traits, especially those related to biomass allocation between photosynthetic and non-photosynthetic organs.

  16. Maize transpiration in response to meteorological conditions

    NASA Astrophysics Data System (ADS)

    Klimešová, Jana; Stŕedová, Hana; Stŕeda, Tomáš

    2013-09-01

    Differences in transpiration of maize (Zea mays L.) plants in four soil moisture regimes were quantified in a pot experiment. The transpiration was measured by the "Stem Heat Balance" method. The dependence of transpiration on air temperature, air humidity, global solar radiation, soil moisture, wind speed and leaf surface temperature were quantified. Significant relationships among transpiration, global radiation and air temperature (in the first vegetation period in the drought non-stressed variant, r = 0.881**, r = 0.934**) were found. Conclusive dependence of transpiration on leaf temperature (r = 0.820**) and wind speed (r = 0.710**) was found. Transpiration was significantly influenced by soil moisture (r = 0.395**, r = 0.528**) under moderate and severe drought stress. The dependence of transpiration on meteorological factors decreased with increasing deficiency of water. Correlation between transpiration and plant dry matter weight (r = 0.997**), plant height (r = 0.973**) and weight of corn cob (r = 0.987**) was found. The results of instrumental measuring of field crops transpiration under diverse moisture conditions at a concurrent monitoring of the meteorological elements spectra are rather unique. These results will be utilized in the effort to make calculations of the evapotranspiration in computing models more accurate.

  17. Forcing variables in simulation of transpiration of water stressed plants determined by principal component analysis

    NASA Astrophysics Data System (ADS)

    Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas

    2016-10-01

    To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.

  18. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves

    PubMed Central

    Lanoue, Jason; Leonardos, Evangelos D.; Grodzinski, Bernard

    2018-01-01

    Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65–83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90–0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are

  19. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves

  20. Uncertainty in sap flow-based transpiration due to xylem properties

    NASA Astrophysics Data System (ADS)

    Looker, N. T.; Hu, J.; Martin, J. T.; Jencso, K. G.

    2014-12-01

    Transpiration, the evaporative loss of water from plants through their stomata, is a key component of the terrestrial water balance, influencing streamflow as well as regional convective systems. From a plant physiological perspective, transpiration is both a means of avoiding destructive leaf temperatures through evaporative cooling and a consequence of water loss through stomatal uptake of carbon dioxide. Despite its hydrologic and ecological significance, transpiration remains a notoriously challenging process to measure in heterogeneous landscapes. Sap flow methods, which estimate transpiration by tracking the velocity of a heat pulse emitted into the tree sap stream, have proven effective for relating transpiration dynamics to climatic variables. To scale sap flow-based transpiration from the measured domain (often <5 cm of tree cross-sectional area) to the whole-tree level, researchers generally assume constancy of scale factors (e.g., wood thermal diffusivity (k), radial and azimuthal distributions of sap velocity, and conducting sapwood area (As)) through time, across space, and within species. For the widely used heat-ratio sap flow method (HRM), we assessed the sensitivity of transpiration estimates to uncertainty in k (a function of wood moisture content and density) and As. A sensitivity analysis informed by distributions of wood moisture content, wood density and As sampled across a gradient of water availability indicates that uncertainty in these variables can impart substantial error when scaling sap flow measurements to the whole tree. For species with variable wood properties, the application of the HRM assuming a spatially constant k or As may systematically over- or underestimate whole-tree transpiration rates, resulting in compounded error in ecosystem-scale estimates of transpiration.

  1. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm.

    PubMed

    Jackson, Phillip; Basnayake, Jaya; Inman-Bamber, Geoff; Lakshmanan, Prakash; Natarajan, Sijesh; Stokes, Chris

    2016-02-01

    Fifty-one genotypes of sugarcane (Saccharum spp.) or closely related germplasm were evaluated in a pot experiment to examine genetic variation in transpiration efficiency. Significant variation in whole plant transpiration efficiency was observed, with the difference between lowest and highest genotypes being about 40% of the mean. Leaf gas exchange measurements were made across a wide range of conditions. There was significant genetic variation in intrinsic transpiration efficiency at a leaf level as measured by leaf internal CO2 (Ci) levels. Significant genetic variation in Ci was also observed within subsets of data representing narrow ranges of stomatal conductance. Ci had a low broad sense heritability (Hb = 0.11) on the basis of single measurements made at particular dates, because of high error variation and genotype × date interaction, but broad sense heritability for mean Ci across all dates was high (Hb = 0.81) because of the large number of measurements taken at different dates. Ci levels among genotypes at mid-range levels of conductance had a strong genetic correlation (-0.92 ± 0.30) with whole plant transpiration efficiency but genetic correlations between Ci and whole plant transpiration efficiency were weaker or not significant at higher and lower levels of conductance. Reduced Ci levels at any given level of conductance may result in improved yields in water-limited environments without trade-offs in rates of water use and growth. Targeted selection and improvement of lowered Ci per unit conductance via breeding may provide longer-term benefits for water-limited environments but the challenge will be to identify a low-cost screening methodology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Effect of a transpiration retardant on survival of planted ponderosa pine.

    Treesearch

    Edwin L. Mowat

    1961-01-01

    Losses of newly planted coniferous seedlings from drought during the critical period when new roots are developing is a continuing problem in many parts of the West. One possible solution frequently suggested to forest managers is to coat the seedling tops with a transpiration inhibitor, usually a waxy substance applied in emulsion form. This research note gives the...

  3. AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration.

    PubMed

    Schreiber, Lukas; Elshatshat, Salem; Koch, Kerstin; Lin, Jinxing; Santrucek, Jiri

    2006-01-01

    Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO(3) at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s(-1)) of water, which is composed of the two quantities P (Lipid) and P (Pore), decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.

  4. Transpiration of urban forests in the Los Angeles metropolitan area.

    PubMed

    Pataki, Diane E; McCarthy, Heather R; Litvak, Elizaveta; Pincetl, Stephanie

    2011-04-01

    Despite its importance for urban planning, landscape management, and water management, there are very few in situ estimates of urban-forest transpiration. Because urban forests contain an unusual and diverse mix of species from many regions worldwide, we hypothesized that species composition would be a more important driver of spatial variability in urban-forest transpiration than meteorological variables in the Los Angeles (California, USA) region. We used constant-heat sap-flow sensors to monitor urban tree water use for 15 species at six locations throughout the Los Angeles metropolitan area. For many of these species no previous data on sap flux, water use, or water relations were available in the literature. To scale sap-flux measurements to whole trees we conducted a literature survey of radial trends in sap flux across multiple species and found consistent relationships for angiosperms vs. gymnosperms. We applied this relationship to our measurements and estimated whole-tree and plot-level transpiration at our sites. The results supported very large species differences in transpiration, with estimates ranging from 3.2 +/- 2.3 kg x tree(-1) x d(-1) in unirrigated Pinus canariensis (Canary Island pine) to 176.9 +/- 75.2 kg x tree(-1) x d(-1) in Platanus hybrida (London planetree) in the month of August. Other species with high daily transpiration rates included Ficus microcarpa (laurel fig), Gleditsia triacanthos (honeylocust), and Platanus racemosa (California sycamore). Despite irrigation and relatively large tree size, Brachychiton populneas (kurrajong), B. discolor (lacebark), Sequoia sempervirens (redwood), and Eucalyptus grandis (grand Eucalyptus) showed relatively low rates of transpiration, with values < 45 kg x tree(-1) x d(-1). When scaled to the plot level, transpiration rates were as high as 2 mm/d for sites that contained both species with high transpiration rates and high densities of planted trees. Because plot-level transpiration is highly

  5. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials

    PubMed Central

    Pallas, J. E.; Michel, B. E.; Harris, D. G.

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis

  6. Abscisic acid controlled sex before transpiration in vascular plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO 2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  7. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    PubMed Central

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  8. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    PubMed

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  9. Abscisic acid controlled sex before transpiration in vascular plants

    PubMed Central

    McAdam, Scott A. M.; Brodribb, Timothy J.; Hedrich, Rainer; Atallah, Nadia M.; Cai, Chao; Geringer, Michael A.; Lind, Christof; Nichols, David S.; Stachowski, Kye; Sussmilch, Frances C.

    2016-01-01

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA–SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant–atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA–SnRK2 signaling pathway in plant evolution and vegetation function. PMID:27791082

  10. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  11. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration.

    PubMed

    Barnes, Andrew D

    2002-07-01

    One-year-old loblolly pine (Pinus taeda L.) seedlings from four seed sources (Arkansas, Georgia, Texas and Virginia) grown in 1-m-deep sand-filled pits in two water regimes (well-watered and drought) were studied, to gain insight into the process of seedling establishment. Whole-plant transpiration was measured biweekly from July to December. Whole-plant harvests were conducted at 6-week intervals from April to December. Whole-plant transpiration and transpiration per unit leaf and root area were affected by treatment, seedlot and phenology. Seedlings of the Arkansas seedlot maintained significantly higher transpiration rates per unit leaf and root area during drought than seedlings of the Virginia, Georgia or Texas seedlots, but did not accumulate greater biomass. The high transpiration rates of the Arkansas seedlings were attributed to their deep root systems. Allometric relationships indicated that, relative to the whole plant, biomass allocation to needles of drought-treated seedlings was enhanced during the summer (allometric ratio 1.09), whereas allocation to roots was enhanced in the spring and fall (allometric ratios of 1.13 and 1.09, respectively). Relative to the whole plant, biomass allocation to needles of well-watered seedlings was enhanced throughout the experiment (allometric ratio of 1.16 declining to 1.05), whereas the allometric ratio of root to total biomass was 0.89 or less throughout. Allometric relationships also indicated variation in biomass partitioning to roots in three soil layers (0-30, 30-60 and 60-100 cm), which differed among harvests in each soil layer. Root growth in both well-watered and drought-treated seedlings was concentrated in the top soil layer in the spring, shifted to the middle and bottom soil layers in the summer, and then increased in the top soil layer in the fall. Compared with well-watered seedlings, drought-treated seedlings had higher rates of root growth in the bottom soil layer in the fall, a characteristic that

  12. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  13. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.

    PubMed

    Hu, Jia; Moore, David J P; Riveros-Iregui, Diego A; Burns, Sean P; Monson, Russell K

    2010-03-01

    *Understanding controls over plant-atmosphere CO(2) exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO(2) assimilation rate (A(Tree)) in a subalpine forest ecosystem. *We analysed the carbon isotope ratio (delta(13)C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate A(Tree). Estimates of A(Tree) for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. *A sensitivity analysis showed that estimates of A(Tree) were more sensitive to dynamics in E than delta(13)C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. *The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales.

  14. Comparison of corn transpiration, eddy covariance, and soil water loss

    USDA-ARS?s Scientific Manuscript database

    Stem flow gages are used to estimate plant transpiration, but only a few studies compare transpiration with other measures of soil water loss. The purpose of this study was to compare transpiration from stem flow measurements with soil water changes estimated by daily neutron probe readings. Monitor...

  15. Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.).

    USDA-ARS?s Scientific Manuscript database

    The instantaneous transpiration efficiency (ITE, the ratio of photosynthesis rate to transpiration) is an important variable for crops, because it ultimately affects dry mass production per unit of plant water lost to the atmosphere. The theory that stomata optimize carbon uptake per unit water used...

  16. Measurement of transpiration in Pinus taeda L. and Liquidambar styraciflua L. in an environmental chamber using tritiated water

    NASA Technical Reports Server (NTRS)

    Levy, G. F.; Sonenshine, D. E.; Czoch, J. K.

    1976-01-01

    Transpiration rates of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) were measured at two different atmospheric water vapor pressure deficits (V.P.D.) in a controlled environment growth chamber using tritiated water as a tracer. The trees were maintained in a sealed plant bed containing a hydroponic nutrient solution into which labeled water (spike) was introduced. Samples of leaves, chamber air, spiked nutrient solution and control water were assayed for ratio-activity using liquid scintillation techniques to determine transpiration rates. The transpiration rate of sweetgum in ml./hr./gm. (4.95) was found to be 5 times greater than that of loblolly pine (1.03) at 1.84 V.P.D. and 8 times greater at 6.74 V.P.D. (15.99 for sweetgum vs. 2.19 for pine). Transpiration (based on measurements of leaf radioactivity) in both species rose with increasing deficit; however sweetgum increased its output by 3 times while pine only doubled its rate. Cyclical changes in transpiration rates were noted in both species; the sweetgum cycle required a 6 hour interval whereas the pine cycle required a 9 hour interval.

  17. Genotype-dependent variation in the transpiration efficiency of plants and photosynthetic activity of flag leaves in spring barley under varied nutrition.

    PubMed

    Krzemińska, Anetta; Górny, Andrzej G

    2003-01-01

    In the study, spring barley genotypes of various origin and breeding history were found to show a broad genetic variation in the vegetative and generative measures of the whole-plant transpiration efficiency (TE), photosynthesis (A) and transpiration (E) rates of flag leaves, leaf efficiency of gas exchange (A/E) and stress tolerance (T) when grown till maturity in soil-pots under high and reduced NPK supplies. Broad-sense heritabilities for the characteristics ranged from 0.61 to 0.87. Significant genotype-nutrition interactions were noticed, constituting 19-23% of the total variance in TE measures. The results suggest that at least some 'exotic' accessions from Ethiopia, Syria, Morocco and/or Tibet may serve as attractive genetic sources of novel variations in TE, T and A for the breeding of barleys of improved adaptation to less favourable fertilisation.

  18. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    PubMed Central

    Ding, Lei; Li, Yingrui; Gao, Limin; Lu, Zhifeng; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2018-01-01

    The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM) and high-N (7 mM) concentrations in the hydroponic culture of four rice varieties: (1) Shanyou 63 (SY63), a hybrid variant of the indica species; (2) Yangdao 6 (YD6), a variant of indica species; (3) Zhendao 11 (ZD11), a hybrid variant of japonica species; and (4) Jiuyou 418 (JY418), another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs), and tonoplast membrane intrinsic protein (TIP) were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf) was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance. PMID:29337869

  19. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  20. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration

    PubMed Central

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species. PMID:26734024

  1. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes.

    PubMed

    Pang, Jiayin; Zhao, Hongxia; Bansal, Ruchi; Bohuon, Emilien; Lambers, Hans; Ryan, Megan H; Siddique, Kadambot H M

    2018-01-09

    Low availability of inorganic phosphorus (P) is considered a major constraint for crop productivity worldwide. A unique set of 266 chickpea (Cicer arietinum L.) genotypes, originating from 29 countries and with diverse genetic background, were used to study P-use efficiency. Plants were grown in pots containing sterilized river sand supplied with P at a rate of 10 μg P g -1 soil as FePO 4 , a poorly soluble form of P. The results showed large genotypic variation in plant growth, shoot P content, physiological P-use efficiency, and P-utilization efficiency in response to low P supply. Further investigation of a subset of 100 chickpea genotypes with contrasting growth performance showed significant differences in photosynthetic rate and photosynthetic P-use efficiency. A positive correlation was found between leaf P concentration and transpiration rate of the young fully expanded leaves. For the first time, our study has suggested a role of leaf transpiration in P acquisition, consistent with transpiration-driven mass flow in chickpea grown in low-P sandy soils. The identification of 6 genotypes with high plant growth, P-acquisition, and P-utilization efficiency suggests that the chickpea reference set can be used in breeding programmes to improve both P-acquisition and P-utilization efficiency under low-P conditions. © 2018 John Wiley & Sons Ltd.

  2. Steady state or non-steady state? Identifying driving mechanisms of oxygen isotope signatures of leaf transpiration in functionally distinct plant species

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Kübert, Angelika; Cuntz, Matthias; Werner, Christiane

    2015-04-01

    Isotope techniques are widely applied in ecosystem studies. For example, isoflux models are used to separate soil evaporation from transpiration in ecosystems. These models often assume that plant transpiration occurs at isotopic steady state, i.e. that the transpired water shows the same isotopic signature as the source water. Yet, several studies found that transpiration did not occur at isotopic steady state, under both controlled and field conditions. Here we focused on identifying the internal and external factors which drive the isotopic signature of leaf transpiration. Using cavity ring-down spectroscopy (CRDS), the effect of both environmental variables and leaf physiological traits on δ18OT was investigated under controlled conditions. Six plant species with distinct leaf physiological traits were exposed to step changes in relative air humidity (RH), their response in δ18OT and gas exchange parameters and their leaf physiological traits were assessed. Moreover, two functionally distinct plant types (tree, i.e. Quercus suber, and grassland) of a semi-arid Mediterranean oak-woodland where observed under natural conditions throughout an entire growth period in the field. The species differed substantially in their leaf physiological traits and their turn-over times of leaf water. They could be grouped in species with fast (<60 min.), intermediate (ca. 120 min.) and slow (>240 min.) turn-over times, mostly due to differences in stomatal conductance, leaf water content or a combination of both. Changes in RH caused an immediate response in δ18OT, which were similarly strong in all species, while leaf physiological traits affected the subsequent response in δ18OT. The turn-over time of leaf water determined the speed of return to the isotopic steady or a stable δ18OT value (Dubbert & Kübert et al., in prep.). Under natural conditions, changes in environmental conditions over the diurnal cycle had a huge impact on the diurnal development of δ18OT in both

  3. Terrestrial water fluxes dominated by transpiration.

    PubMed

    Jasechko, Scott; Sharp, Zachary D; Gibson, John J; Birks, S Jean; Yi, Yi; Fawcett, Peter J

    2013-04-18

    Renewable fresh water over continents has input from precipitation and losses to the atmosphere through evaporation and transpiration. Global-scale estimates of transpiration from climate models are poorly constrained owing to large uncertainties in stomatal conductance and the lack of catchment-scale measurements required for model calibration, resulting in a range of predictions spanning 20 to 65 per cent of total terrestrial evapotranspiration (14,000 to 41,000 km(3) per year) (refs 1, 2, 3, 4, 5). Here we use the distinct isotope effects of transpiration and evaporation to show that transpiration is by far the largest water flux from Earth's continents, representing 80 to 90 per cent of terrestrial evapotranspiration. On the basis of our analysis of a global data set of large lakes and rivers, we conclude that transpiration recycles 62,000 ± 8,000 km(3) of water per year to the atmosphere, using half of all solar energy absorbed by land surfaces in the process. We also calculate CO2 uptake by terrestrial vegetation by connecting transpiration losses to carbon assimilation using water-use efficiency ratios of plants, and show the global gross primary productivity to be 129 ± 32 gigatonnes of carbon per year, which agrees, within the uncertainty, with previous estimates. The dominance of transpiration water fluxes in continental evapotranspiration suggests that, from the point of view of water resource forecasting, climate model development should prioritize improvements in simulations of biological fluxes rather than physical (evaporation) fluxes.

  4. Environmental and biological controls of urban tree transpiration in the Upper Midwest

    NASA Astrophysics Data System (ADS)

    Peters, E. B.; McFadden, J.; Montgomery, R.

    2009-12-01

    Urban trees provide a variety of ecosystem services to urban and suburban areas, including carbon uptake, climate amelioration, energy reduction, and stormwater management. Tree transpiration, in particular, modifies urban water budgets by providing an alternative pathway for water after rain events. The relative importance of environmental and biological controls on transpiration are poorly understood in urban areas, yet these controls are important for quantifying and scaling up the ecosystem services that urban trees provide at landscape and regional scales and predicting how urban ecosystems will respond to climate changes. The objectives of our study were to quantify the annual cycle of tree transpiration in an urban ecosystem and to determine how different urban tree species and plant functional types respond to environmental drivers. We continuously measured whole-tree transpiration using thermal dissipation sap flow at four urban forest stands that were broadly representative of the species composition and tree sizes found in a suburban residential neighborhood of Minneapolis-Saint Paul, Minnesota. A total of 40 trees, representing different species, plant functional types, successional stages, and xylem anatomy, were sampled throughout the 2007 and 2008 growing seasons (April-November). At each site we monitored soil moisture, air temperature, and relative humidity continuously, and we measured leaf area index weekly. Urban tree transpiration was strongly correlated with diurnal changes in vapor pressure deficit and photosynthetically active radiation and with seasonal changes in leaf area index. We found that plant functional type better explained species differences in transpiration per canopy area than either successional stage or xylem anatomy, largely due to differences in canopy structure between conifer and broad-leaf deciduous trees. We also observed inter-annual differences in transpiration rates due to a mid-season drought and longer growing

  5. Compensating effect of sap velocity for stand density leads to uniform hillslope-scale forest transpiration across a steep valley cross-section

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel

    2016-04-01

    Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.

  6. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  7. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato.

    PubMed

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant

  8. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato

    PubMed Central

    Bitterlich, Michael; Sandmann, Martin; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae, and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8–4.2) and dry (pF 2.5–4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant

  9. Transpiration efficiency of three Mediterranean annual pasture species and wheat.

    PubMed

    Bolger, T P; Turner, N C

    1998-06-01

    Attempts to improve water use efficiency in regions with Mediterranean climates generally focus on increasing plant transpiration relative to evaporation from the soil and increasing transpiration efficiency. Our aim was to determine if transpiration efficiency differs among key species occurring in annual pastures in southern Australia. Two glasshouse experiments were conducted with three key pasture species, subterranean clover (Trifolium subterraneum L.), capeweed [Arctotheca calendula (L.) Levyns] and annual ryegrass (Lolium rigidum Gaudin), and wheat (Triticum aestivum L.). Transpiration efficiency was assessed at the levels of␣whole-plant biomass and water use (W), leaf gas exchange measurements of the ratio of CO 2 assimilation to leaf conductance to water vapour (A/g), and carbon isotope discrimination (Δ) in leaf tissue. In addition, Δ was measured on shoots of the three pasture species growing together in the field. In the glasshouse studies, annual ryegrass had a consistently higher transpiration efficiency than subterranean clover or capeweed by all methods of measurement. Subterranean clover and capeweed had similar transpiration efficiencies by all three methods of measurement. Wheat had W values similar to ryegrass but A/g and Δ values similar to subterranean clover or capeweed. The high W of annual ryegrass seems to be related to a conservative leaf gas exchange behaviour, with lower assimilation and conductance but higher A/g than for the other species. In contrast to the glasshouse results, the three pasture species had similar Δ values when growing together in mixed-species swards in the field. Reasons for these differing responses between glasshouse and field-grown plants are discussed in terms of the implications for improving the transpiration efficiency of mixed-species annual pasture communities in the field.

  10. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Éric; Christophe, Angélique; Doligez, Agnès; Cabrera-Bosquet, Llorenç; Péchier, Philippe; Hamard, Philippe; This, Patrice; Simonneau, Thierry

    2014-01-01

    In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified. This is of particular interest within species such as Vitis vinifera L. where continuous variation in the level of isohydry has been observed among cultivars. With this objective, a 2 year experiment was conducted on the pseudo-F1 progeny from a cross between the two widespread cultivars Syrah and Grenache using a phenotyping platform coupled to a controlled-environment chamber. Potted plants of all the progeny were analysed for ΨM, transpiration rate, and soil-to-leaf hydraulic conductance, under both well-watered and water deficit conditions. A high genetic variability was found for all the above traits. Four quantitative trait loci (QTLs) were detected for ΨM under water deficit conditions, and 28 other QTLs were detected for the different traits in either condition. Genetic variation in ΨM maintenance under water deficit weakly correlated with drought-induced reduction in transpiration rate in the progeny, and QTLs for both traits did not completely co-localize. This indicates that genetic variation in the control of ΨM under water deficit was not due simply to variation in transpiration sensitivity to soil drying. Possible origins of the diversity in (an)isohydric behaviours in grapevine are discussed on the basis of concurrent variations in soil-to-leaf hydraulic conductance and stomatal control of transpiration. PMID:25381432

  11. Effects of air current speed on gas exchange in plant leaves and plant canopies.

    PubMed

    Kitaya, Y; Tsuruyama, J; Shibuya, T; Yoshida, M; Kiyota, M

    2003-01-01

    To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  12. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    PubMed

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P < 0.01) in late June than in early August, with the daily average value being (43.11 +/- 1.26) micromol CO2 x m(-2) x s(-1) and (24.53 +/- 0.60) micromol CO2 x m(-2) x s(-1), respectively. The diurnal variation of canopy transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P < 0.01). The daily average value of canopy water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  13. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat

    PubMed Central

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J.; Carmo-Silva, Elizabete; Parry, Martin A. J.; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  14. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    PubMed

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (P<0.01), transpiration rate (P<0.05) and CID (P<0.01), while significantly and positively correlated with flag leaf area (FLA, P<0.01), A (P<0.05), WUEi (P<0.05), BYPP (P<0.01) and GYPP (P<0.01), with stronger correlations for TaER1 than TaER2 and at grain-filling stage than at heading stage. These combined results suggested that TaER involved in development of transpiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate

  15. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  16. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  17. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    PubMed

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  18. Transpiration cooling of hypersonic blunt bodies with finite rate surface reactions

    NASA Technical Reports Server (NTRS)

    Henline, William D.

    1989-01-01

    The convective heat flux blockage to blunt body and hypersonic vehicles by transpiration cooling are presented. The general problem of mass addition to laminar boundary layers is reviewed. Results of similarity analysis of the boundary layer problem are provided for surface heat flux with transpiration cooling. Detailed non-similar results are presented from the numerical program, BLIMPK. Comparisons are made with the similarity theory. The effects of surface catalysis are investigated.

  19. Transpiration and metabolisation of TCE by willow plants - a pot experiment.

    PubMed

    Schöftner, Philipp; Watzinger, Andrea; Holzknecht, Philipp; Wimmer, Bernhard; Reichenauer, Thomas G

    2016-01-01

    Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.

  20. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  1. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    PubMed

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  2. Ozone-induced reductions in photosynthesis and transpiration: Parameterizing the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Bonan, G. B.; Levis, S.; Sparks, J. P.

    2010-12-01

    Humans are indirectly increasing concentrations of surface ozone (O3) through industrial processes. Ozone is known to have negative impacts on plants, including reductions in crop yields, plant growth, and visible leaf injury. Research also suggests that O3 exposure differentially affects photosynthesis and transpiration because biochemical aspects of photosynthesis are damaged in addition to stomatal conductance, the common link that controls both processes. However, most models incorporate O3 damage as a decrease in photosynthesis, with stomatal conductance responding linearly through the coupling of photosynthesis and conductance calculations. The observed differential effects of O3 on photosynthesis and conductance are not explicitly expressed in most modeling efforts, potentially causing larger decreases in transpiration. We ran five independent simulations of the CLM that compare current methods of incorporating O3 as a decrease in photosynthesis to a new method of separating photosynthesis and transpiration responses to O3 by independently modifying each parameter. We also determine the magnitude of both direct decreases to photosynthesis and transpiration and decreases caused by feedbacks in each parameter. Results show that traditional methods of modeling O3 effects by decreasing photosynthesis cause linear decreases in predicted transpiration that are ~20% larger than observed decreases in transpiration. However, modeled decreases in photosynthesis and transpiration that are incorporated independently of one another predict observed decreases in photosynthesis and improve transpiration predictions by ~13%. Therefore, models best predict carbon and water fluxes when incorporating O3-induced decreases in photosynthesis and transpiration independently.

  3. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    PubMed

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  4. Numerical Analysis of Convection/Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  5. Fruit load governs transpiration of olive trees

    PubMed Central

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  6. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.

  7. Tamarix transpiration along a semiarid river has negligible impact on water resources

    NASA Astrophysics Data System (ADS)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  8. Salinity controls on plant transpiration and soil water balance

    NASA Astrophysics Data System (ADS)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  9. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  10. Photosynthesis, transpiration and water use efficiencies of a plant canopy and plant leaves under restricted air current conditions

    NASA Astrophysics Data System (ADS)

    Kitaya, Yoshiaki; Shibuya, Toshio; Tsuruyama, Joshin

    A fundamental study was conducted to obtain the knowledge for culturing plants and exchanging gases with plants under restricted air circulation conditions in space agriculture. The effects of air velocities less than 1.3 m s-1 on net photosynthetic rates (Pn), transpiration rates (Tr) and Pn/Tr, water use efficiencies (WUE), of a canopy of cucumber seedlings and of single leaves of cucumber, sweet potato and barley were assessed with assimilation chamber methods in ground based experiments. The cucumber seedling canopy, which had a LAI of 1.4 and height of 0.1 m, was set in a wind tunnel installed in a plant canopy assimilation chamber. Each of the attached single leaves was set in a leaf assimilation chamber. The Pn and Tr of the plant canopy increased to 1.2 and 2.8 times, respectively, and WUE decreased to 0.4 times with increasing the air velocity from 0.02 to 1.3 m s-1. The Pn and Tr of the single leaves of all the species increased by 1.3-1.7 and 1.9-2.2 times, respectively, and WUE decreased to 0.6-0.8 times as the air velocity increased from 0.05 to 0.8 m s-1. The effect of air velocity was more significant on Tr than on Pn and thus WUE decreased with increasing air velocity in both the plant canopy and the individual leaves. The leaf boundary layer resistance was approximately proportional to the minus 1/3 power of the air velocity. Stomatal resistance was almost constant during the experiment. The CO2 concentrations in the sub-stomatal cavity in leaves of cucumber, sweet potato and barley, respectively, were 43, 31 and 58 mmol mol-1 lower at the air velocity of 0.05 m s-1 than at the air velocity of 0.8 m s-1, while the water vapor pressure in the sub-stomatal cavity was constant. We concluded that the change in the CO2 concentration in the sub-stomatal cavity was a cause of the different effect of the air velocity on Pn and Tr, and thus on WUE. The phenomenon will be more remarkable under restricted air convection conditions at lower gravity in space.

  11. Biophysical control of whole tree transpiration under an urban environment in Northern China

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Li, Zhandong; Tang, Jianwu; Caldwell, Peter; Zhang, Wenjuan

    2011-05-01

    SummaryUrban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined the biophysical control of the transpiration pattern under different water conditions to understand how trees survive in an urban environment. Concurrent with microclimate and soil moisture measurements, transpiration from C edrus deodara(Roxb)Loud ., Zelkova schneideriana Hend.-Mazz., Euonymus bungeanus Maxim., and Metasequoia glyptostroboides Hu et cheng was measured over a 2-year period using thermal dissipation probe (TDP) techniques. The average monthly transpiration rates reached 12.78 ± 0.73 (S.E.) mm, 1.79 ± 0.16 mm, 10.18 ± 0.55 mm and 19.28 ± 2.24 mm for C. deodara, Z.schneideriana, E. bungeanus and M. glyptostroboides, respectively. Transpiration rates from M. glyptostroboides reported here may need further study as this species showed much higher sap flows and greater transpiration fluctuation under different environmental conditions than other species. Because of deep soil moisture supply, summer dry spells did not reduce transpiration rates even when tree transpiration exceeded rainfall. While vapor pressure deficit ( VPD) was the dominant environmental factor on transpiration, trees controlled canopy conductance effectively to limit transpiration in times of water stress. Our results provide evidence that urban trees could adopt strong physiological control over transpiration under high evaporative demands to avoid dehydration and can make use of water in deeper soil layers to survive summer dry spells. Moreover, urban trees have the ability to make the best use of precipitation when it is limited, and are sensitive to soil and air dryness.

  12. Fruit load governs transpiration of olive trees.

    PubMed

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.

    PubMed

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Reddy, D Srinivas; Lavanya, M; Vadez, Vincent; Serraj, R; Yamaguchi-Shinozaki, K; Sharma, Kiran K

    2007-12-01

    Water deficit is the major abiotic constraint affecting crop productivity in peanut (Arachis hypogaea L.). Water use efficiency under drought conditions is thought to be one of the most promising traits to improve and stabilize crop yields under intermittent water deficit. A transcription factor DREB1A from Arabidopsis thaliana, driven by the stress inducible promoter from the rd29A gene, was introduced in a drought-sensitive peanut cultivar JL 24 through Agrobacterium tumefaciens-mediated gene transfer. The stress inducible expression of DREB1A in these transgenic plants did not result in growth retardation or visible phenotypic alterations. T3 progeny of fourteen transgenic events were exposed to progressive soil drying in pot culture. The soil moisture threshold where their transpiration rate begins to decline relative to control well-watered (WW) plants and the number of days needed to deplete the soil water was used to rank the genotypes using the average linkage cluster analysis. Five diverse events were selected from the different clusters and further tested. All the selected transgenic events were able to maintain a transpiration rate equivalent to the WW control in soils dry enough to reduce transpiration rate in wild type JL 24. All transgenic events except one achieved higher transpiration efficiency (TE) under WW conditions and this appeared to be explained by a lower stomatal conductance. Under water limiting conditions, one of the selected transgenic events showed 40% higher TE than the untransformed control.

  14. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    PubMed

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    PubMed

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  16. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    PubMed

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  17. [Photosynthesis and transpiration characteristics of female and male Trichosanthes kirilowii Maxim individuals].

    PubMed

    Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying

    2011-03-01

    A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.

  18. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.

    PubMed

    Hasanuzzaman, Md; Davies, Noel W; Shabala, Lana; Zhou, Meixue; Brodribb, Tim J; Shabala, Sergey

    2017-06-19

    While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), β-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well

  19. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress.

    PubMed

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Vadez, Vincent; Sharma, Kiran K

    2009-07-15

    To counter the effects of environmental stresses, the plants must undergo detoxification that is crucial to avoid the accumulation of damaging free oxygen radicals (ROI). Here, we detail the oxidative damage, the antioxidant composition, and the osmoprotection achieved in transgenic plants of peanut overexpressing the AtDREB1A transgene, driven by a stress-inducible promoter (Atrd29A) when exposed to progressive water stress conditions. This study explored the biochemical mechanisms where (i) the antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), and glutathione reductase (GR) accumulated in the transgenic plants at comparably higher levels than their untransformed counterparts under dry soil conditions, (ii) a significant increase in the proline levels in the transgenic plants was observed in dry soils, and (iii) a dramatic increase in the lipid peroxidation in the untransformed controls in drier soils. Most of the biochemical parameters related to the antioxidative machinery in the tested peanut transgenics were triggered by the overexpression of AtDREB1A that appeared to differ from the untransformed controls. The antioxidants showed a negative correlation with the fraction of transpirable soil water (FTSW) thresholds, where the normalized transpiration rate (NTR) started decreasing in the tested plants. However, no significant relationship was observed between any of these biochemical indicators and the higher transpiration efficiency (TE) values found in the transgenic events. Our results show that changes in the antioxidative machinery in these transgenic peanut plants (overexpressing the AtDREB1A transcription factor) under water-limiting conditions played no causative role in improved TE.

  20. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza)1[W][OA

    PubMed Central

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.

    2013-01-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746

  1. Declining hydraulic efficiency as transpiring leaves desiccate: two types of response.

    PubMed

    Brodribb, Tim J; Holbrook, N Michele

    2006-12-01

    The conductance of transpiring leaves to liquid water (Kleaf) was measured across a range of steady-state leaf water potentials (Psileaf). Manipulating the transpiration rate in excised leaves enabled us to vary Psileaf in the range -0.1 MPa to less than -1.5 MPa while using a flowmeter to monitor the transpiration stream. Employing this technique to measure how desiccation affects Kleaf in 19 species, including lycophytes, ferns, gymnosperms and angiosperms, we found two characteristic responses. Three of the six angiosperm species sampled maintained a steady maximum Kleaf while Psileaf remained above -1.2 MPa, although desiccation of leaves beyond this point resulted in a rapid decline in Kleaf. In all other species measured, declining Psileaf led to a proportional decrease in Kleaf, such that midday Psileaf of unstressed plants in the field was sufficient to depress Kleaf by an average of 37%. It was found that maximum Kleaf was strongly correlated with maximum CO2 assimilation rate, while Kleaf = 0 occurred at a Psileaf slightly less negative than at leaf turgor loss. A strong linear correlation across species between Psileaf at turgor loss and Psileaf at Kleaf = 0 raises the possibility that declining Kleaf was related to declining cell turgor in the leaf prior to the onset of vein cavitation. The vulnerability of leaves rehydrating after desiccation was compared with vulnerability of leaves during steady-state evaporation, and differences between methods suggest that in many cases vein cavitation occurs only as Kleaf approaches zero.

  2. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra.

    PubMed

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier

    2013-01-01

    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  3. Stand, species, and individual traits impact transpiration in historically disturbed forests.

    NASA Astrophysics Data System (ADS)

    Blakely, B.; Rocha, A. V.; McLachlan, J. S.

    2017-12-01

    Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and

  4. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  5. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    NASA Astrophysics Data System (ADS)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  6. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    PubMed

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  7. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-06-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25 year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12 year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of two years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2 year old to 2.5 mm day-1 in a 12 year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Confronting sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2 year old stand and 53 % in the 12 year old stand, indicating variable and substantial additional sources of evaporation, e.g. from the soil, the ground vegetation and from trunk

  8. Interannual Variation in Stand Transpiration is Dependent Upon Tree Species

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.

    2003-12-01

    In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.

  9. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians

    Treesearch

    Chelcy R. Ford; Robert M. Hubbard; James M. Vose

    2010-01-01

    Recent studies have shown that planted pine stands exhibit higher evapotranspiration (ET) and are more sensitive to climatic conditions compared with hardwood stands. Whether this is due to management and stand effects, biological effects or their interaction is poorly understood. We estimated growing season canopy- and sap flux-scaled leaf-level transpiration (Ec and...

  10. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content.

    PubMed

    Nagakura, Junko; Shigenaga, Hidetoshi; Akama, Akio; Takahashi, Masamichi

    2004-11-01

    To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.

  11. Transpiration in an oil palm landscape: effects of palm age

    NASA Astrophysics Data System (ADS)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-10-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk

  12. Transpiration Rate for Chile Peppers Irrigated with Brackish Groundwater and ro Concentrate

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Baath, G.

    2016-12-01

    Fresh water availability is declining in most of the semi-arid and arid regions across the world including southwestern United States. Use of marginal quality groundwater has been increasing for sustaining agriculture in these arid regions. Reverse Osmosis (RO) can treat brackish groundwater but the possibility of using RO concentrate for irrigation needs further exploration. This greenhouse study evaluates the transpiration rate, water use, leaching fraction and yield responses of five selected chile pepper (Capsicum annuum) cultivars irrigated with natural brackish groundwater and RO concentrate. The four saline water treatments used for irrigation were tap water of EC 0.6 (control), ground water of EC 3 and 5 dS/m and RO concentrate of EC 8 dS/m. The transpiration of all chile peppers cultivars decreased and leaching fraction increased with increasing irrigation water salinity. Based on the water use efficiency (WUEY) of selected chile pepper cultivars, brackish water of EC ≤ 3 dS/m can be used for irrigation. The average yield of chile peppers was stable up to a saturated soil paste extract electrical conductivity (ECe) of about 2 dS/m, although further increases in ECe resulted in an exponential yield decline. This study showed that yield reductions in chile peppers irrigated with Ca rich brackish groundwater were less than those reported using NaCl dominant saline solution studies. Environmentally safe reuse of RO concentrate could stimulate implementation of inland desalination in water scarce areas and increase greenhouse chile pepper cultivation.

  13. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species.

    PubMed

    Greger, Maria; Wang, Yaodong; Neuschütz, Clara

    2005-03-01

    In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 microg L(-1) Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected.

  14. A high CO2 -driven decrease in plant transpiration leads to perturbations in the hydrological cycle and may link terrestrial and marine loss of biodiversity: deep-time evidence.

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Woodward, F. Ian; Surlyk, Finn; McElwain, Jennifer C.

    2013-04-01

    CO2 is obtained and water vapor simultaneously transpired through plant stomata, driving the water uptake of roots. Stomata are key elements of the Earth's hydrological cycle, since a large part of the evapotranspiration from the surface to the atmosphere takes place via stomatal pores. Plants exercise stomatal control, by adjusting stomatal size and/or density in order to preserve water while maintaining carbon uptake for photosynthesis. A global decrease in stomatal density and/or size causes a decrease in transpiration and has the potential to increase global runoff. Here we show, from 91 fossil leaf cuticle specimens from the Triassic/Jurassic boundary transition (Tr-J) of East Greenland, that both stomatal size and density decreased dramatically during the Tr-J, coinciding with mass extinctions, major environmental upheaval and a negative C-isotope excursion. We estimate that these developmental and structural changes in stomata resulted in a 50-60% drop in stomatal and canopy transpiration as calibrated using a stomatal model, based on empirical measurements and adjusted for fossil plants. We additionally present new field evidence indicating a change to increased erosion and bad-land formation at the Tr-J. We hypothesize that plant physiological responses to high carbon dioxide concentrations at the Tr-J may have increased runoff at the local and perhaps even regional scale. Increased runoff may result in increased flux of nutrients from land to oceans, leading to eutrophication, anoxia and ultimately loss of marine biodiversity. High-CO2 driven changes in stomatal and canopy transpiration therefore provide a possible mechanistic link between terrestrial ecological crisis and marine mass extinction at the Tr-J.

  15. Regional variation in canopy transpiration of Central European beech forests.

    PubMed

    Schipka, Florian; Heimann, Jutta; Leuschner, Christoph

    2005-03-01

    Forest hydrologists have hypothesised that canopy transpiration (E(c)) of European temperate forests occurs at rather similar rates in stands with different tree species and hydrologic regimes. We tested this hypothesis by synchronously measuring xylem sap flow in four mature stands of Fagus sylvatica along a precipitation gradient with the aim (1) of exploring the regional variability of annual canopy transpiration (E(c(t))) in this species, and (2) of analysing the relationship between precipitation (P) and E(c(t)). E(c(t)) rates of 216, 225, 272 and 303 mm year(-1) corresponded to precipitation averages of 520, 710, 801 and 1,040 mm year(-1) in the four stands. We explored the regional variability of E(c(t)) in Central European colline to sub-montane beech stands in two meta-analyses based on (1) existing sap flow data on beech (n=5 observations), or (2) all canopy transpiration data on beech obtained by different techniques (sap flow, micrometeorological or soil water budget approaches, n=25). With a coefficient of variation (CV) of 20%, the regional variability of E(c(t)) (213-421 mm year(-1)) was smaller than the variation in corresponding precipitation (550-1,480 mm year(-1)). The mean E(c(t)) for beech was 289 (+/-58) mm year(-1) (n=25). A humped-shaped relationship between E(c(t)) and P, with a broad transpiration maximum in the precipitation range from ca. 700 to 1,000 mm year(-1), was found which may indicate soil moisture limitation of transpiration for P transpiration by increased cloudiness or leaf wetness for P>1,000 mm year(-1). Thus, the precipitation level significantly influences canopy transpiration of humid temperate forests; however, the size of the P influence on E(c(t)) and, in part, the direction of its effect differ from forests in semi-arid or arid climates. European beech has the capacity to maintain high E(c) rates in both humid and partly dry summer climates (P<550 mm year(-1)).

  16. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.

    PubMed

    Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang

    2015-11-01

    Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67% decreased the shoot As concentration by 19∼56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae.

  17. Terrestrial water fluxes dominated by transpiration: Comment

    Treesearch

    Daniel R. Schlaepfer; Brent E. Ewers; Bryan N. Shuman; David G. Williams; John M. Frank; William J. Massman; William K. Lauenroth

    2014-01-01

    The fraction of evapotranspiration (ET) attributed to plant transpiration (T) is an important source of uncertainty in terrestrial water fluxes and land surface modeling (Lawrence et al. 2007, Miralles et al. 2011). Jasechko et al. (2013) used stable oxygen and hydrogen isotope ratios from 73 large lakes to investigate the relative roles of evaporation (E) and T in ET...

  18. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  19. Performance of a transpiration-regenerative cooled rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Valler, H. W.

    1979-01-01

    The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.

  20. Transpiration and Multiple Use Management of Thinned Emory Oak Coppice

    Treesearch

    D. Catlow Shipek; Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano

    2004-01-01

    The effects of thinning Emory oak (Quercus emoryi) coppice on transpiration have been estimated by the heat-pulse velocity (HPV) method. Rootstocks of trees harvested for fuelwood were thinned to one, two, or three dominant stump-sprouts or left as unthinned controls. Differences in transpiration rates of the thinned coppice were found for each...

  1. Transpiration of urban trees and its cooling effect in a high latitude city.

    PubMed

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m(-2) s(-1) (B. pendula) to over 3 mmol m(-2) s(-1) (Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68% of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20% of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m(-2), tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m(-2), a cooling effect of tree transpiration was not observed during the day.

  2. Transpiration of urban trees and its cooling effect in a high latitude city

    NASA Astrophysics Data System (ADS)

    Konarska, Janina; Uddling, Johan; Holmer, Björn; Lutz, Martina; Lindberg, Fredrik; Pleijel, Håkan; Thorsson, Sofia

    2016-01-01

    An important ecosystem service provided by urban trees is the cooling effect caused by their transpiration. The aim of this study was to quantify the magnitude of daytime and night-time transpiration of common urban tree species in a high latitude city (Gothenburg, Sweden), to analyse the influence of weather conditions and surface permeability on the tree transpiration, and to find out whether tree transpiration contributed to daytime or nocturnal cooling. Stomatal conductance and leaf transpiration at day and night were measured on mature street and park trees of seven common tree species in Gothenburg: Tilia europaea, Quercus robur, Betula pendula, Acer platanoides, Aesculus hippocastanum, Fagus sylvatica and Prunus serrulata. Transpiration increased with vapour pressure deficit and photosynthetically active radiation. Midday rates of sunlit leaves ranged from less than 1 mmol m-2 s-1 ( B. pendula) to over 3 mmol m-2 s-1 ( Q. robur). Daytime stomatal conductance was positively related to the fraction of permeable surfaces within the vertically projected crown area. A simple estimate of available rainwater, comprising of precipitation sum and fractional surface permeability within the crown area, was found to explain 68 % of variation in midday stomatal conductance. Night-time transpiration was observed in all studied species and amounted to 7 and 20 % of midday transpiration of sunlit and shaded leaves, respectively. With an estimated night-time latent heat flux of 24 W m-2, tree transpiration significantly increased the cooling rate around and shortly after sunset, but not later in the night. Despite a strong midday latent heat flux of 206 W m-2, a cooling effect of tree transpiration was not observed during the day.

  3. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  4. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE PAGES

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; ...

    2015-03-23

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). Formore » both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more

  5. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine ( Pinus edulis) and juniper ( Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). Formore » both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more

  6. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  7. Structural adjustments in resprouting trees drive differences in post-fire transpiration.

    PubMed

    Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

    2014-02-01

    Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have

  8. Rising CO2 widens the transpiration-photosynthesis optimality space

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  9. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments

    PubMed Central

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  10. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    PubMed

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  11. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments

    DOE PAGES

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.

    2017-03-21

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum’s long duration of vegetative growth increased water capture and biomass yield by ~30% compared to shortmore » season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by

  12. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truong, Sandra K.; McCormick, Ryan F.; Mullet, John E.

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum’s long duration of vegetative growth increased water capture and biomass yield by ~30% compared to shortmore » season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by

  13. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.

    PubMed

    Tausz-Posch, Sabine; Norton, Robert M; Seneweera, Saman; Fitzgerald, Glenn J; Tausz, Michael

    2013-06-01

    This study evaluates whether the target breeding trait of superior leaf level transpiration efficiency is still appropriate under increasing carbon dioxide levels of a future climate using a semi-arid cropping system as a model. Specifically, we investigated whether physiological traits governing leaf level transpiration efficiency, such as net assimilation rates (A(net)), stomatal conductance (g(s)) or stomatal sensitivity were affected differently between two Triticum aestivum L. cultivars differing in transpiration efficiency (cv. Drysdale, superior; cv. Hartog, low). Plants were grown under Free Air Carbon dioxide Enrichment (FACE, approximately 550 µmol mol⁻¹ or ambient CO₂ concentrations (approximately 390 µmol mol⁻¹). Mean A(net) (approximately 15% increase) and gs (approximately 25% decrease) were less affected by elevated [CO₂] than previously found in FACE-grown wheat (approximately 25% increase and approximately 32% decrease, respectively), potentially reflecting growth in a dry-land cropping system. In contrast to previous FACE studies, analyses of the Ball et al. model revealed an elevated [CO₂] effect on the slope of the linear regression by 12% indicating a decrease in stomatal sensitivity to the combination of [CO₂], photosynthesis rate and humidity. Differences between cultivars indicated greater transpiration efficiency for Drysdale with growth under elevated [CO₂] potentially increasing the response of this trait. This knowledge adds valuable information for crop germplasm improvement for future climates. Copyright © Physiologia Plantarum 2012.

  14. Water- and nitrogen-dependent alterations in the inheritance mode of transpiration efficiency in winter wheat at the leaf and whole-plant level.

    PubMed

    Ratajczak, Dominika; Górny, Andrzej G

    2012-11-01

    The effects of contrasting water and nitrogen (N) supply on the observed inheritance mode of transpiration efficiency (TE) at the flag-leaf and whole-season levels were examined in winter wheat. Major components of the photosynthetic capacity of leaves and the season-integrated efficiency of water use in vegetative and grain mass formation were evaluated in parental lines of various origins and their diallel F(2)-hybrids grown in a factorial experiment under different moisture and N status of the soil. A broad genetic variation was mainly found for the season-long TE measures. The variation range in the leaf photosynthetic indices was usually narrow, but tended to slightly enhance under water and N shortage. Genotype-treatment interaction effects were significant for most characters. No consistency between the leaf- and season-long TE measures was observed. Preponderance of additivity-dependent variance was mainly identified for the season-integrated TE and leaf CO(2) assimilation rate. Soil treatments exhibited considerable influence on the phenotypic expression of gene action for the residual leaf measures. The contribution of non-additive gene effects and degree of dominance tended to increase in water- and N-limited plants, especially for the leaf transpiration rate and stomatal conductance. The results indicate that promise exists to improve the season-integrated TE. However, selection for TE components should be prolonged for later hybrid generations to eliminate the masking of non-additive causes. Such evaluation among families grown under sub-optimal water and nitrogen supply seems to be the most promising strategy in winter wheat.

  15. Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis-transpiration based on stomatal behavior.

    PubMed

    Yu, Gui-Rui; Wang, Qiu-Feng; Zhuang, Jie

    2004-03-01

    Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation

  16. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    PubMed

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  17. Photosynthesis and Transpiration of Monterey Pine Seedlings as a Function of Soil Water Suction and Soil Temperature

    PubMed Central

    Babalola, O.; Boersma, L.; Youngberg, C. T.

    1968-01-01

    Rates of photosynthesis, respiration, and transpiration of Monterey pine (Pinus radiata D. Don) were measured under controlled conditions of soil water suction and soil temperature. Air temperature, relative humidity, light intensity, and air movement were maintained constant. Rates of net photosynthesis, respiration, and transpiration decreased with increasing soil water suction. The decrease in the rates of net photosynthesis and transpiration as a function of the soil temperature at low soil water suctions may be attributed to changes in the viscosity of water. At soil water suctions larger than 0.70 bars rates of transpiration and net photosynthesis may be affected in the same proportion by changes in stomatal apertures. Images PMID:16656800

  18. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-01-01

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)—that is, the biomass produced per unit of water transpired—has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En. Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE. PMID:27457942

  19. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees.

    Treesearch

    Frederick C. Meinzer; Shelley A. James; Guillermo Goldstein

    2004-01-01

    In large trees the daily onset of transpiration causes water to be withdrawn from internal storage compartments resulting in lags between changes in transpiration and sap flow at the base of the tree. We measured time courses of sap flow, hydraulic resistance, plant water potential and stomatal resistance in co-occuring tropical forest canopy trees with trunk diameters...

  20. Transpiring Cooling of a Scram-Jet Engine Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi

    1997-01-01

    The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.

  1. Estimating discharge of shallow groundwater by transpiration from greasewood in the Northern Great Basin

    USGS Publications Warehouse

    Nichols, William D.

    1993-01-01

    Evapotranspiration from bare soil and phreatophytes is a principal mechanism of groundwater discharge in arid and semiarid regions of the midwestern and western United States including the Great Basin. The imbalance between independent estimates of groundwater recharge from precipitation and of groundwater discharge based on estimates of groundwater evapotranspiration leads to large uncertainties in groundwater budgets. Few studies have addressed this problem. Energy budget micrometeorological field studies were conducted in a stand of sparse-canopy greasewood growing in an area of shallow groundwater in the western Great Basin during the summer of 1989. The data were used to calculate above-canopy fluxes of sensible and latent heat using the energy budget-Bowen ratio method. The calculated energy budget fluxes were used, with soil surface and plant canopy temperature measurements, to calibrate and apply a two-component, energy-combination model that partitions the energy and heat fluxes between bare soil and the canopy. This permitted the separation of evaporation from the soil and transpiration from greasewood. The calibrated model was used to estimate daily transpiration of groundwater by greasewood growing in an area with a depth to water of about 2 m. The daily rate of groundwater discharge by transpiration during July and August was estimated to be 2.4 mm. A period of 100 days for groundwater discharge at this rate was assumed to estimate an annual discharge of groundwater of 24 cm at the study site.

  2. Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem

    USGS Publications Warehouse

    Christensen, L.; Tague, C.L.; Baron, Jill S.

    2008-01-01

    Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to

  3. Transpiration characteristics of forests and shrubland under land cover change within the large caldera of Mt. Aso, Japan

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Inoue, A.; Maruyama, A.

    2013-12-01

    Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.

  4. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  5. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.

    PubMed

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek

    2017-07-01

    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All

  6. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  7. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Treesearch

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  8. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L.)

    USDA-ARS?s Scientific Manuscript database

    Optimizing water use efficiency (WUE) is a crucial goal. However, water savings must not be made at the expense of yield and fruit quality in order to secure economical sustainability for producers. The impact of different anti-transpirants (ATS) on WUE, water consumption (WC), net carbon assimilati...

  9. Comparing three models to estimate transpiration of desert shrubs

    NASA Astrophysics Data System (ADS)

    Xu, Shiqin; Yu, Zhongbo; Ji, Xibin; Sudicky, Edward A.

    2017-07-01

    The role of environmental variables in controlling transpiration (Ec) is an important, but not well-understood, aspect of transpiration modeling in arid desert regions. Taking three dominant desert shrubs, Haloxylon ammodendron, Nitraria tangutorum, and Calligonum mongolicum, as examples, we aim to evaluate the applicability of three transpiration models, i.e. the modified Jarvis-Stewart model (MJS), the simplified process-based model (BTA), and the artificial neural network model (ANN) at different temporal scales. The stem sap flow of each species was monitored using the stem heat balance approach over both the 2014 and 2015 main growing seasons. Concurrent environmental variables were also measured with an automatic weather station. The ANN model generally produced better simulations of Ec than the MJS and BTA models at both hourly and daily scales, indicating its advantage in solving complicated, nonlinear problems between transpiration rate and environmental driving forces. The solar radiation and vapor pressure deficit were crucial variables in modeling Ec for all three species. The performance of the MJS and ANN models was significantly improved by incorporating root-zone soil moisture. We also found that the difference between hourly and daily fitted parameter values was considerable for the MJS and BTA models. Therefore, these models need to be recalibrated when applied at different temporal scales. This study provides insights regarding the application and performance of current transpiration models in arid desert regions, and thus provides a deeper understanding of eco-hydrological processes and sustainable ecosystem management at the study site.

  10. Experimental studies of transpiration cooling with shock interaction in hypersonic flow, part B

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.

    1994-01-01

    This report describes the result of experimental studies conducted to examine the effects of the impingement of an oblique shock on the flowfield and surface characteristics of a transpiration-cooled wall in turbulent hypersonic flow. The principal objective of this work was to determine whether the interaction between the oblique shock and the low-momentum region of the transpiration-cooled boundary layer created a highly distorted flowfield and resulted in a significant reduction in the cooling effectiveness of the transpiration-cooled surface. As a part of this program, we also sought to determine the effectiveness of transpiration cooling with nitrogen and helium injectants for a wide range of blowing rates under constant-pressure conditions in the absence of shock interaction. This experimental program was conducted in the Calspan 48-Inch Shock Tunnel at nominal Mach numbers of 6 and 8, for a Reynolds number of 7.5 x 10(exp 6). For these test conditions, we obtained fully turbulent boundary layers upstream of the interaction regions over the transpiration-cooled segment of the flat plate. The experimental program was conducted in two phases. In the first phase, we examined the effects of mass-addition level and coolant properties on the cooling effectiveness of transpiration-cooled surfaces in the absence of shock interaction. In the second phase of the program, we examined the effects of oblique shock impingement on the flowfield and surface characteristics of a transpiration-cooled surface. The studies were conducted for a range of shock strengths with nitrogen and helium coolants to examine how the distribution of heat transfer and pressure and the characteristics of the flowfield in the interaction region varied with shock strength and the level of mass addition from the transpiration-cooled section of the model. The effects of the distribution of the blowing rate along the interaction regions were also examined for a range of blowing rates through the

  11. Transpiration and root development of urban trees in structural soil stormwater reservoirs.

    PubMed

    Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E

    2009-10-01

    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  12. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down.

    PubMed

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum.

  13. Real-Time Determination of Photosynthesis, Transpiration, Water-Use Efficiency and Gene Expression of Two Sorghum bicolor (Moench) Genotypes Subjected to Dry-Down

    PubMed Central

    Fracasso, Alessandra; Magnanini, Eugenio; Marocco, Adriano; Amaducci, Stefano

    2017-01-01

    Plant growth and productivity are strongly affected by limited water availability in drought prone environments. The current climate change scenario, characterized by long periods without precipitations followed by short but intense rainfall, forces plants to implement different strategies to cope with drought stress. Understanding how plants use water during periods of limited water availability is of primary importance to identify and select the best adapted genotypes to a certain environment. Two sorghum genotypes IS22330 and IS20351, previously characterized as drought tolerant and drought sensitive genotypes, were subjected to progressive drought stress through a dry-down experiment. A whole-canopy multi-chamber system was used to determine the in vivo water use efficiency (WUE). This system records whole-canopy net photosynthetic and transpiration rate of 12 chambers five times per hour allowing the calculation of whole-canopy instantaneous WUE daily trends. Daily net photosynthesis and transpiration rates were coupled with gene expression dynamics of five drought related genes. Under drought stress, the tolerant genotype increased expression level for all the genes analyzed, whilst the opposite trend was highlighted by the drought sensitive genotype. Correlation between gene expression dynamics and gas exchange measurements allowed to identify three genes as valuable candidate to assess drought tolerance in sorghum. PMID:28620409

  14. Community Level Offset of Rain Use- and Transpiration Efficiency for a Heavily Grazed Ecosystem in Inner Mongolia Grassland

    PubMed Central

    Gao, Ying Z.; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X.; Yang, Hai J.

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and “real” WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems. PMID:24058632

  15. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    PubMed

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  16. Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida.

    PubMed

    Garrish, Valerie; Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2010-08-01

    It is commonly assumed that the nitrogen to phosphorus (N:P) ratio of a terrestrial plant reflects the relative availability of N and P in the soil in which the plant grows. Here, this was assessed for a tropical pioneer tree, Ficus insipida. Seedlings were grown in sand and irrigated with nutrient solutions containing N:P ratios ranging from <1 to >100. The experimental design further allowed investigation of physiological responses to N and P availability. Homeostatic control over N:P ratios was stronger in leaves than in stems or roots, suggesting that N:P ratios of stems and roots are more sensitive indicators of the relative availability of N and P at a site than N:P ratios of leaves. The leaf N:P ratio at which the largest plant dry mass and highest photosynthetic rates were achieved was approximately 11, whereas the corresponding whole-plant N:P ratio was approximately 6. Plant P concentration varied as a function of transpiration rate at constant nutrient solution P concentration, possibly due to transpiration-induced variation in the mass flow of P to root surfaces. The transpiration rate varied in response to nutrient solution N concentration, but not to nutrient solution P concentration, demonstrating nutritional control over transpiration by N but not P. Water-use efficiency varied as a function of N availability, but not as a function of P availability.

  17. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.

    PubMed

    Tassi, Eliana; Pouget, Joël; Petruzzelli, Gianniantonio; Barbafieri, Meri

    2008-03-01

    The term "assisted phytoextraction" usually refers to the process of applying a chemical additive to contaminated soil in order to increase the metal uptake by crop plants. In this study three commercially available plant growth regulators (PGRs) based on cytokinins (CKs) were used to boost the assisted phytoextraction of Pb and Zn in contaminated soil collected from a former manufactured gas-plant site. The effects of EDTA treatment in soil and PGR treatment in leaves of Helianthus annuus were investigated in terms of dry weight biomass, Pb and Zn accumulation in the upper parts of the plants, Pb and Zn phytoextraction efficiency and transpiration rate. Metal solubility in soil and its subsequent accumulation in shoots were markedly enhanced by EDTA. The combined effects of EDTA and cytokine resulted in an increase in the Pb and Zn phytoextraction efficiency (up to 890% and 330%, respectively, compared to untreated plants) and up to a 50% increase in foliar transpiration. Our results indicate that exogenous PGRs based on CKs can positively assist the phytoextraction increasing the biomass production, the metal accumulation in shoots and the plant transpiration. The observed increase in biomass could be related to its action in stimulation of cell division and shoot initiation. On the other hand, the increase in metal accumulation in upper parts of plant could be related to both the role of PGRs in the enhancement of plant resistance to stress (as toxic metals) and the increase in transpiration rate, i.e. flux of water-soluble soil components and contaminants by the regulation of stomatal opening.

  18. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    PubMed

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The relationship between transpiration and nutrient uptake in wheat changes under elevated atmospheric CO2.

    PubMed

    Houshmandfar, Alireza; Fitzgerald, Glenn J; O'Leary, Garry; Tausz-Posch, Sabine; Fletcher, Andrew; Tausz, Michael

    2017-12-04

    The impact of elevated [CO 2 ] (e[CO 2 ]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration-driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free-air CO 2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m -2 ) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO 2 ], but that nutrient uptake per unit water transpired is higher under e[CO 2 ] than under ambient [CO 2 ] (a[CO 2 ]). This result suggests that transpiration-driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO 2 ], but cannot solely explain the overall decline. © 2017 Scandinavian Plant Physiology Society.

  20. Measuring and Modeling Tree Stand Level Transpiration

    Treesearch

    J.M. Vose; G.J. Harvey; K.J. Elliott; B.D. Clinton

    2003-01-01

    Transpiration is a key process in the application of phytoremediation to soil or groundwater pollutants. To be successful, vegetation must transpire enough water from the soil or groundwater to control or take up the contaminant. Transpiration is driven by a combination of abiotic (climate, soil water availability, and groundwater depth) and biotic (leaf area, stomatal...

  1. Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.

    PubMed

    Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie

    2017-09-01

    Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.

  2. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments

    PubMed Central

    Medina, Susan; Gupta, S. K.; Vadez, Vincent

    2017-01-01

    Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F1-hybrids, 18 F1-hybrids and then 40 F1-hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights: • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected rainfall

  3. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments.

    PubMed

    Medina, Susan; Gupta, S K; Vadez, Vincent

    2017-01-01

    Under conditions of high vapor pressure deficit (VPD) and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F 1 -hybrids, 18 F 1 -hybrids and then 40 F 1 -hybrids). In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use. Highlights : • Variation in transpiration response reflected breeding for agro-ecological zones • Different growth strategies depended on the environmental conditions • Different ideotypes reflected

  4. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    PubMed

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  5. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  7. Implications of Advanced Crew Escape Suit Transpiration for the Orion Program

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Kuznetz, Lawrence

    2009-01-01

    Human testing was conducted to more fully characterize the integrated performance of the Advanced Crew Escape Suit (ACES) with liquid cooling provide by an Individual Cooling Unit (ICU) across a broad range of environmental conditions and metabolic rates. Together with a correlation for the ACES Liquid Cooling Garment as a function of inlet temperature, metabolic rate, and crew size, a reasonably conservative correlation for core temperature was achieved for the human thermal model applied to the ACES with ICU cooling. A key observation for this correlation was accounting for transpiration of evaporated sweat through the Gortex(Registered TradeMark) liner of the ACES indicated by as much as 0.6 lbm of sweat evaporated over the course of the 1 hour test profile, most of which could not be attributed to respiration or head sweat evaporation of the crew. Historically it has been assumed that transpiration was not an important design feature of the ACES suit. The correlated human thermal model will show transpiration to be highly useful in hot survival situations for the Orion Program when adequate liquid cooling is not available.

  8. Effects of dew deposition on transpiration and carbon uptake in leaves

    NASA Astrophysics Data System (ADS)

    Gerlein-Safdi, C.; Koohafkan, M.; Chung, M.; Rockwell, F. E.; Thompson, S. E.; Caylor, K. K.

    2017-12-01

    Dew deposition occurs in ecosystems worldwide, even in the driest deserts and in times of drought. Although some species absorb dew water directly via foliar uptake, a ubiquitous effect of dew on plant water balance is the interference of dew droplets with the leaf energy balance, which increases leaf albedo and emissivity and decreases leaf temperature through dew evaporation. Dew deposition frequency and amount are expected to be affected by changing environmental conditions, with unknown consequences for plant water stress and ecosystem carbon, water and energy fluxes. Here we present a simple leaf energy balance that characterizes the effect of deposition and the evaporation of dew on leaf energy balance, transpiration, and carbon uptake. The model is driven by five common meteorological variables and shows very good agreement with leaf wetness sensor data from the Blue Oak Ranch Reserve in California. We explore the tradeoffs between energy, water, and carbon balances for leaves of different sizes across a range of relative humidity, wind speed, and air temperature conditions. Our results show significant water savings from transpiration suppression up to 30% for leaf characteristic lengths of 50 cm due to the decrease in leaf temperature. C. 25% of water savings from transpiration suppression in smaller leaves arise from the effect of dew droplets on leaf albedo. CO2 assimilation is decreased by up to 15% by the presence of dew, except for bigger leaves in windspeed conditions below 1 m/s when an increase in assimilation is expected.

  9. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina

    NASA Astrophysics Data System (ADS)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.

    2010-12-01

    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  11. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  12. Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth

    PubMed Central

    Kelly, Gilor; Sade, Nir; Attia, Ziv; Secchi, Francesca; Zwieniecki, Maciej; Holbrook, N. Michele; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Granot, David

    2014-01-01

    Increased expression of the aquaporin NtAQP1, which is known to function as a plasmalemma channel for CO2 and water, increases the rate of both photosynthesis and transpiration. In contrast, increased expression of Arabidopsis hexokinase1 (AtHXK1), a dual-function enzyme that mediates sugar sensing, decreases the expression of photosynthetic genes and the rate of transpiration and inhibits growth. Here, we show that AtHXK1 also decreases root and stem hydraulic conductivity and leaf mesophyll CO2 conductance (g m). Due to their opposite effects on plant development and physiology, we examined the relationship between NtAQP1 and AtHXK1 at the whole-plant level using transgenic tomato plants expressing both genes simultaneously. NtAQP1 significantly improved growth and increased the transpiration rates of AtHXK1-expressing plants. Reciprocal grafting experiments indicated that this complementation occurs when both genes are expressed simultaneously in the shoot. Yet, NtAQP1 had only a marginal effect on the hydraulic conductivity of the double-transgenic plants, suggesting that the complementary effect of NtAQP1 is unrelated to shoot water transport. Rather, NtAQP1 significantly increased leaf mesophyll CO2 conductance and enhanced the rate of photosynthesis, suggesting that NtAQP1 facilitated the growth of the double-transgenic plants by enhancing mesophyll conductance of CO2. PMID:24498392

  13. The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants

    PubMed Central

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.

    2013-01-01

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667

  14. PLANT CULTURAL SYSTEM FOR MONITORING EVAPOTRANSPIRATION AND PHYSIOLOGICAL RESPONSES UNDER FIELD CONDITIONS

    EPA Science Inventory

    A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...

  15. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed Central

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-01-01

    Background and Aims As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Methods Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9–13, 14–18, 19–23 and 24–28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lpr). Osmotic Lp of individual seminal and adventitious roots and osmotic Lpr of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lpr of the root system was derived from analyses of transpiring plants. Key Results Although osmotic and hydrostatic Lp and Lpr values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lpr of entire root systems and hydrostatic Lpr of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Conclusions Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative

  16. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-02-01

    As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9-13, 14-18, 19-23 and 24-28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lp(r)). Osmotic Lp of individual seminal and adventitious roots and osmotic Lp(r) of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lp(r) of the root system was derived from analyses of transpiring plants. Although osmotic and hydrostatic Lp and Lp(r) values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lp(r) of entire root systems and hydrostatic Lp(r) of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative development.

  17. HYDROLOGICAL IMPACTS OF WOODY PLANT ENCROACHMENT IN ARID AND SEMIARID GRASSLANDS

    EPA Science Inventory

    Woody plants may be able to access deeper groundwater for year-round transpiration and thus consume more water than grasses, affecting recharge, soil moisture and runoff. Amount of water available to plants from precipitation is determined in part by nfiltration rates into...

  18. Spatial Variability of Tree Transpiration Along a Soil Drainage Gradient of Boreal Black Spruce Forest

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2008-12-01

    results of Picea mariana differed between drainage conditions when expressed per unit xylem area with trees in poorly-drained soils experiencing higher rates than trees in well-drained areas (101.79 and 83.02 g cm-2 day-1 respectively). In contrast, when expressed as transpiration per tree, trees on well-drained soils had higher rates than those in poorly-drained locations (366.96 and 216.82 g tree-1 day-1 respectively). This indicates that tree size, reflected in sapwood area per ground area, which is constrained by anaerobic conditions across well- to poorly-drained areas, is driving differences in tree transpiration. Initial spatial analyses show that spatial autocorrelation decreases from 51.3 to 24.6 meters as D increases from 0.9 to 2.1 kPa. This phenomenon is explained by tree hydraulics and more patchy stomatal response as trees regulate water loss. Thus, regional scale bottom-up process models of boreal forest transpiration can be simplified with respect to soil drainage while retaining mechanistic rigor with respect to plant hydraulics.

  19. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency

    NASA Astrophysics Data System (ADS)

    Yebra, Marta; van Dijk, Albert

    2015-04-01

    Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically

  20. Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen.

    PubMed

    Tullus, Arvo; Kupper, Priit; Sellin, Arne; Parts, Leopold; Sõber, Jaak; Tullus, Tea; Lõhmus, Krista; Sõber, Anu; Tullus, Hardi

    2012-01-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008-2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect--inhibition of above-ground growth rate--was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO(3) (-) in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO(2) concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place.

  1. Climate Change at Northern Latitudes: Rising Atmospheric Humidity Decreases Transpiration, N-Uptake and Growth Rate of Hybrid Aspen

    PubMed Central

    Tullus, Arvo; Kupper, Priit; Sellin, Arne; Parts, Leopold; Sõber, Jaak; Tullus, Tea; Lõhmus, Krista; Sõber, Anu; Tullus, Hardi

    2012-01-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. We studied several growth and functional traits of hybrid aspen (Populus tremula L.×P. tremuloides Michx.) in response to elevated atmospheric humidity (on average 7% over the ambient level) in a free air experimental facility during three growing seasons (2008–2010) in Estonia, which represents northern temperate climate (boreo-nemoral zone). Data were collected from three humidified (H) and three control (C) plots, and analysed using nested linear models. Elevated air humidity significantly reduced height, stem diameter and stem volume increments and transpiration of the trees whereas these effects remained highly significant also after considering the side effects from soil-related confounders within the 2.7 ha study area. Tree leaves were smaller, lighter and had lower leaf mass per area (LMA) in H plots. The magnitude and significance of the humidity treatment effect – inhibition of above-ground growth rate – was more pronounced in larger trees. The lower growth rate in the humidified plots can be partly explained by a decrease in transpiration-driven mass flow of NO3 − in soil, resulting in a significant reduction in the measured uptake of N to foliage in the H plots. The results suggest that the potential growth improvement of fast-growing trees like aspens, due to increasing temperature and atmospheric CO2 concentration, might be smaller than expected at high latitudes if a rise in atmospheric humidity simultaneously takes place. PMID:22880067

  2. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Li, Xiankun; Zhang, Zhongfeng; He, Chengxin; Zhao, Ping; You, Yeming; Mo, Ling

    2011-05-01

    SummaryThe presence of forest on south China karst is presumed to increase perennial epikarst spring flow, partly because there is adequate storage in bedrock fractures underlying the shallow soil in the forest. If true, transpiration of the ecosystem would not be strongly reduced by temperate drought if trees develop deep roots to reach the perched epikarst water. Therefore, in karst ecosystem the epikarst-soil-plant-atmosphere continuum (ESPAC) would be different from the SPAC in non-karst system. We measured transpiration and canopy conductance from a Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hill slope in South China during 2006-2007 by using the Granier's sap-flow method. Annual stand transpiration (836 mm y -1) accounted for 48.7% of the rainfall during the experimental year. Per month, daily stand transpiration ( E c) maximums varied between 2.1 mm d -1 in January (cool season) to 5.1 mm d -1 in July (hot season). In the driest months, September and October, E c of C. glauca was still high with maximum E c 3.82 mm d -1 and 2.96 mm d -1 respectively. Solar radiation ( PAR), vapor pressure deficiency ( VPD), and air temperature were simple influences on transpiration of C. glauca, which contributed to a quadratic power model, while soil water content ( SWC) moisture influence on transpiration was complicated, which SWC influenced E c greatly under higher VPD, but did not influence E c under low VPD. High stomatal openness occurred in C. glauca in the early morning and declined throughout the day. The relation coefficient between canopy stomatal conductance ( G c) and E c was high when VPD was more than 1.0 kPa, moderate when 0.5 kPa < VPD < 1.0 kPa, and low with VPD of less than 0.5 kPa. Under high VPD, stomatal control of transpiration is high. The pattern of seasonal change of transpiration and canopy stomatal conductance of the plant in karst regions is different from that in non-karst regions, with the stand transpiration and canopy

  3. Variable coupling between sap-flow and transpiration in pine trees under drought conditions

    NASA Astrophysics Data System (ADS)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan

    2016-04-01

    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  4. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model

    PubMed Central

    Bridge, L. J.; Franklin, K. A.; Homer, M. E.

    2013-01-01

    Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538

  5. Cross-scale modelling of transpiration from stomata via the leaf boundary layer

    PubMed Central

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-01-01

    Background and Aims Leaf transpiration is a key parameter for understanding land surface–climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2–5 %). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. Methods An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10−5–10−1 m), which implies explicitly modelling individual stomata. Key Results BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100 %). Nevertheless, these conventional BLCs (CR of 100 %), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. Conclusions The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be

  6. Cross-scale modelling of transpiration from stomata via the leaf boundary layer.

    PubMed

    Defraeye, Thijs; Derome, Dominique; Verboven, Pieter; Carmeliet, Jan; Nicolai, Bart

    2014-09-01

    Leaf transpiration is a key parameter for understanding land surface-climate interactions, plant stress and plant structure–function relationships. Transpiration takes place at the microscale level, namely via stomata that are distributed discretely over the leaf surface with a very low surface coverage (approx. 0·2-5%). The present study aims to shed more light on the dependency of the leaf boundary-layer conductance (BLC) on stomatal surface coverage and air speed. An innovative three-dimensional cross-scale modelling approach was applied to investigate convective mass transport from leaves, using computational fluid dynamics. The gap between stomatal and leaf scale was bridged by including all these scales in the same computational model (10⁻⁵-10⁻¹ m), which implies explicitly modelling individual stomata. BLC was strongly dependent on stomatal surface coverage and air speed. Leaf BLC at low surface coverage ratios (CR), typical for stomata, was still relatively high, compared with BLC of a fully wet leaf (hypothetical CR of 100%). Nevertheless, these conventional BLCs (CR of 100%), as obtained from experiments or simulations on leaf models, were found to overpredict the convective exchange. In addition, small variations in stomatal CR were found to result in large variations in BLCs. Furthermore, stomata of a certain size exhibited a higher mass transfer rate at lower CRs. The proposed cross-scale modelling approach allows us to increase our understanding of transpiration at the sub-leaf level as well as the boundary-layer microclimate in a way currently not feasible experimentally. The influence of stomatal size, aperture and surface density, and also flow-field parameters can be studied using the model, and prospects for further improvement of the model are presented. An important conclusion of the study is that existing measures of conductances (e.g. from artificial leaves) can be significantly erroneous because they do not account for microscopic

  7. Simulation of thermal transpiration flow using a high-order moment method

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Tang, Gui-Hua; Gu, Xiao-Jun; Emerson, David R.; Zhang, Yong-Hao

    2014-04-01

    Nonequilibrium thermal transpiration flow is numerically analyzed by an extended thermodynamic approach, a high-order moment method. The captured velocity profiles of temperature-driven flow in a parallel microchannel and in a micro-chamber are compared with available kinetic data or direct simulation Monte Carlo (DSMC) results. The advantages of the high-order moment method are shown as a combination of more accuracy than the Navier-Stokes-Fourier (NSF) equations and less computation cost than the DSMC method. In addition, the high-order moment method is also employed to simulate the thermal transpiration flow in complex geometries in two types of Knudsen pumps. One is based on micro-mechanized channels, where the effect of different wall temperature distributions on thermal transpiration flow is studied. The other relies on porous structures, where the variation of flow rate with a changing porosity or pore surface area ratio is investigated. These simulations can help to optimize the design of a real Knudsen pump.

  8. The stem heat balance method to measure transpiration:Evaluation of a new sensor

    USDA-ARS?s Scientific Manuscript database

    The direct measurement of crop transpiration (Tcrop) under field conditions and throughout the growing season is difficult to obtain. An available method uses stem flow gauge sensors, based on the stem heat balance. The sensor consists of a small heater that is wrapped around the stem of the plant a...

  9. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer

    PubMed Central

    Seo, Minjeong; Park, Dong-Hoon; Lee, Chan Woo; Jaworski, Justyn; Kim, Jong-Man

    2016-01-01

    Much of atmospheric water originates from transpiration, the process by which plants release H2O from pores, known as stomata, that simultaneously intake CO2 for photosynthesis. Controlling stomatal aperture can regulate the extent of water transport in response to dynamic environmental factors including osmotic stress, temperature, light, and wind. While larger leaf regions are often examined, the extent of water vapor release from individual stomata remains unexplored. Using a “brush-on” sensing material, we can now assess transpiration using a water-responsive, polydiacetylene-based coating on the leaves surfaces. By eliciting a fluorometric signal to passing water vapor, we obtained information regarding the activity of individual stomata. In this demonstration, our results prove that this coating can identify the proportion of active stomata and the extent of transpirational diffusion of water in response to different conditions. PMID:27578430

  10. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon

    PubMed Central

    McNellis, Brandon; Howard, Ava R

    2015-01-01

    Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use. PMID:26380686

  11. Transpiration-Cooled Spacecraft-Insulation-Repair Fasteners

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Pettit, Donald R.; Glass, David; Scotti, Stephen J.; Vaughn, Wallace Lee; Rawal, Suraj

    2012-01-01

    Transpiration-cooled fasteners are proposed that operate like an open-loop heat pipe (self-tapping screws, bolts, and spikes) for use in on-orbit repair of thermal- insulation of a space shuttle or other spacecraft. By limiting the temperature rise of such a fastener and of the adjacent repair material and thermal protection system, the transpiration cooling would contribute to the ability of the repair to retain its strength and integrity in the high-heat-flux, oxidizing environment of reentry into the atmosphere of the Earth. A typical fastener according to the proposal would include a hollow refractory-metal, refractory-composite, or ceramic screw or bolt, the central cavity of which would be occupied by a porous refractory- metal or ceramic plug that would act as both a reservoir and a wick for a transpirant liquid. The plug dimensions, the plug material, and the sizes of the pores would be chosen in conjunction with the transpirant liquid so that (1) capillary pumping could be relied upon to transport the liquid to the heated surface, where the liquid would be vaporized, and (2) the amount of liquid would suffice for protecting against the anticipated heat flux and integrated heat load.

  12. Continuous Measurement of Macronutrient Ions in the Transpiration Stream of Intact Plants Using the Meadow Spittlebug Coupled with Ion Chromatography1

    PubMed Central

    Malone, Michael; Herron, Michelle; Morales, M.-Angeles

    2002-01-01

    A method is described for continuous, nondestructive analysis of xylem-borne mineral nutrients in intact transpiring plants. The method uses the xylem-feeding insect the meadow spittlebug (Philaenus spumarius L. [Homoptera: Cercopidae]). This insect will feed from a wide range of plant species and organs. Insect excreta can be collected at all times of the day and night, and its mineral ion content can be analyzed rapidly, and without purification, by ion chromatography. The excreta will have a mineral content virtually identical to that of xylem sap. Cages suitable for containing the insects and collecting excreta from any desired location on plants in both laboratory and greenhouse are described. Even in the greenhouse, evaporation had only a minor effect on the sample ion content. Example results are presented which illustrate dynamics, over several days, in the xylem concentrations of sodium (Na+), potassium (K+), NH4+, magnesium (Mg2+), calcium (Ca2+), chloride (Cl−), NO3−, PO43−, and SO42−. These data were collected from young plants growing in pots of compost in the laboratory and from fully mature pepper (Capsicum annuum L. cv Bellboy) plants growing in hydroponics (rockwool) in the greenhouse. This method should facilitate studies of macronutrient uptake and transport in a range of plants and environments. PMID:12428008

  13. Seasonal and interannual variability of canopy transpiration of a hedgerow in southern England.

    PubMed

    Herbst, Mathias; Roberts, John M; Rosier, Paul T W; Gowing, David J

    2007-03-01

    Transpiration from a hawthorn (Crataegus monogyna L.) dominated hedgerow in southern England was measured continuously over two growing seasons by the sap flow technique. Accompanying measurements of structural parameters, microclimate and leaf stomatal and boundary layer conductances were used to establish the driving factors of hedgerow transpiration. Observed transpiration rates, reaching peak values of around 8 mm day(-1) and a seasonal mean of about 3.5 mm day(-1), were higher than those reported for most other temperate deciduous woodlands, except short-rotation coppice and wet woodlands. The high rates were caused by the structural and physiological characteristics of hawthorn leaves, which exhibited much higher stomatal and boundary-layer conductances than those of the second-most abundant woody species in the hedgerow, field maple (Acer campestre L.). Only in the hot summer of 2003 did stomatal conductance, and thus transpiration, decrease substantially. The hedgerow canopy was always closely coupled to the atmosphere. Hedgerow transpiration equaled potential evaporation (calculated by the Priestley-Taylor formula) in 2003 and exceeded it in 2004, which meant that a substantial fraction of the energy (21% in 2003 and more than 37% in 2004) came from advection. Hedgerow canopy conductance (g(c)), as inferred from the sap flow data by inverting the Penman-Monteith equation, responded to solar radiation (R(G)) and vapor pressure deficit (D). Although the response to R(G) showed no systematic temporal variation, the response to D, described as g(c)(D) = g(cref) - mln(D), changed seasonally. The reference g(c) depended on leaf area index and the ratio of -m/g(cref) on long-term mean daytime D. A model is proposed based on these observations that predicts canopy conductance for the hawthorn hedge from standard weather data.

  14. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  15. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density.

    PubMed

    Barbour, M M; Hunt, J E; Walcroft, A S; Rogers, G N D; McSeveny, T M; Whitehead, D

    2005-02-01

    Here we develop and test a method to scale sap velocity measurements from individual trees to canopy transpiration (E(c)) in a low-productivity, old-growth rainforest dominated by the conifer Dacrydium cupressinum. Further, E(c) as a component of the ecosystem water balance is quantified in relation to forest floor evaporation rates and measurements of ecosystem evaporation using eddy covariance (E(eco)) in conditions when the canopy was dry and partly wet. Thermal dissipation probes were used to measure sap velocity of individual trees, and scaled to transpiration at the canopy level by dividing trees into classes based on sapwood density and canopy position (sheltered or exposed). When compared with ecosystem eddy covariance measurements, E(c) accounted for 51% of E(eco) on dry days, and 22% of E(eco) on wet days. Low transpiration rates, and significant contributions to E(eco) from wet canopy evaporation and understorey transpiration (35%) and forest floor evaporation (25%), were attributable to the unique characteristics of the forest: in particular, high rainfall, low leaf area index, low stomatal conductance and low productivity associated with severe nutrient limitation.

  16. Enhanced transpiration rate in the high pigment 1 tomato mutant and its physiological significance.

    PubMed

    Carvalho, R F; Aidar, S T; Azevedo, R A; Dodd, I C; Peres, L E P

    2011-05-01

    Tomato high pigment (hp) mutants represent an interesting horticultural resource due to their enhanced accumulation of carotenoids, flavonoids and vitamin C. Since hp mutants are known for their exaggerated light responses, the molecules accumulated are likely to be antioxidants, recruited to deal with light and others stresses. Further phenotypes displayed by hp mutations are reduced growth and an apparent disturbance in water loss. Here, we examined the impact of the hp1 mutation and its near isogenic line cv Micro-Tom (MT) on stomatal conductance (gs), transpiration (E), CO(2) assimilation (A) and water use efficiency (WUE). Detached hp1 leaves lost water more rapidly than control leaves, but this behaviour was reversed by exogenous abscisic acid (ABA), indicating the ability of hp1 to respond to this hormone. Although attached hp1 leaves had enhanced gs, E and A compared to control leaves, genotypic differences were lost when water was withheld. Both instantaneous leaf-level WUE and long-term whole plant WUE did not differ between hp1 and MT. Our results indicate a link between exaggerated light response and water loss in hp1, which has important implications for the use of this mutant in both basic and horticultural research. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2016-04-01

    Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.

  18. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    PubMed

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  19. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    USDA-ARS?s Scientific Manuscript database

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  20. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  1. EFFECT, UPTAKE AND DISPOSITION OF NITROBENZENE IN SEVERAL TERRESTRIAL PLANTS

    EPA Science Inventory

    Eight species of plants were exposed to nitrobenzene in a hydroponic solution. our species experienced no depression of either transpiration or photosynthetic rates, while one was rapidly killed and the other three were temporarily affected but recovered from the treatment. ptake...

  2. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    PubMed

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity. © 2016 by the Ecological Society of America.

  3. Studies of shock/shock interaction on smooth and transpiration-cooled hemispherical nosetips in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen M.

    1992-01-01

    A program of experimental research and analysis was conducted to examine the heat transfer and pressure distributions in regions of shock/shock interaction over smooth and transpiration-cooled hemispherical noseshapes. The objective of this investigation was to determine whether the large heat transfer generated in regions of shock/shock interaction can be reduced by transpiration cooling. The experimental program was conducted at Mach numbers of 12 to 16 in the Calspan 48-Inch Shock Tunnel. Type 3 and type 4 interaction regions were generated for a range of freestream unit Reynolds numbers to provide shear layer Reynolds numbers from 10 exp 4 to 10 exp 6 to enable laminar and turbulent interaction regions to be studied. Shock/shock interactions were investigated on a smooth hemispherical nosetip and a similar transpiration-cooled nosetip, with the latter configuration being examined for a range of surface blowing rates up to one-third of the freestream mass flux. While the heat transfer measurements on the smooth hemisphere without shock/shock interaction were in good agreement with Fay-Riddell predictions, those on the transpiration-cooled nosetip indicated that its intrinsic roughness caused heating-enhancement factors of over 1.5. In the shock/shock interaction studies on the smooth nosetip, detailed heat transfer and pressure measurements were obtained to map the variation of the distributions with shock-impingement position for a range of type 3 and type 4 interactions. Such sets of measurements were obtained for a range of unit Reynolds numbers and Mach numbers to obtain both laminar and turbulent interactions. The measurements indicated that shear layer transition has a significant influence on the heating rates for the type 4 interaction as well as the anticipated large effects on type 3 interaction heating. In the absence of blowing, the peak heating in the type 3 and type 4 interaction regions, over the transpiration-cooled model, did not appear to be

  4. Partitioning evaporation and transpiration in a maize field using heat pulse sensors for evaporation measurement

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is the sum of soil water evaporation (E) and plant transpiration (T). E and T occur simultaneously in many systems with varying levels of importance, yet it is often very challenging to distinguish these fluxes separately in the field. Few studies have measured all three term...

  5. Transpiration characteristics of a rubber plantation in central Cambodia.

    PubMed

    Kobayashi, Nakako; Kumagai, Tomo'omi; Miyazawa, Yoshiyuki; Matsumoto, Kazuho; Tateishi, Makiko; Lim, Tiva K; Mudd, Ryan G; Ziegler, Alan D; Giambelluca, Thomas W; Yin, Song

    2014-03-01

    The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the

  6. Biological and environmental controls on tree transpiration in a suburban landscape

    NASA Astrophysics Data System (ADS)

    Peters, Emily B.; McFadden, Joseph P.; Montgomery, Rebecca A.

    2010-12-01

    Tree transpiration provides a variety of ecosystem services in urban areas, including amelioration of urban heat island effects and storm water management. Tree species vary in the magnitude and seasonality of transpiration owing to differences in physiology, response to climate, and biophysical characteristics, thereby complicating efforts to manage evapotranspiration at city scales. We report sap flux measurements during the 2007 and 2008 growing seasons for dominant tree species in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. Evergreen needleleaf trees had significantly higher growing season means and annual transpiration per unit canopy area (1.90 kg H2O m-2 d-1 and 307 kg H2O m-2 yr-1, respectively) than deciduous broadleaf trees (1.11 kg H2O m-2 d-1 and 153 kg H2O m-2 yr-1, respectively) because of a smaller projected canopy area (31.1 and 73.6 m2, respectively), a higher leaf area index (8.8 and 5.5 m2 m-2, respectively), and a longer growth season (8 and 4 months, respectively). Measurements also showed patterns consistent with the species' differences in xylem anatomy (conifer, ring porous, and diffuse porous). As the growing season progressed, conifer and diffuse porous genera had increased stomatal regulation to high vapor pressure deficit, while ring porous genera maintained greater and more constant stomatal regulation. These results suggest that evaporative responses to climate change in urban ecosystems will depend in part on species composition. Overall, plant functional type differences in canopy structure and growing season length were most important in explaining species' differences in midsummer and annual transpiration, offering an approach to predicting the evapotranspiration component of urban water budgets.

  7. Combustion chamber struts can be effectively transpiration cooled

    NASA Technical Reports Server (NTRS)

    Palmer, G. H.

    1966-01-01

    Vapor-deposited sintering technique increases the feasible temperature range of transpiration-cooled structural members in combustion chambers. This technique produces a porous mass of refractory metal wires around a combustion chamber structural member. This mass acts as a transpiration-cooled surface for a thick-walled tube.

  8. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.

  9. Measurement of Effective Canopy Temperature: The Missing Link to Modeling Transpiration in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Monje, O. A.; McCormack, Ann; Bugbee, Bruce; Jones, Harry W., Jr. (Technical Monitor)

    1994-01-01

    The objectives were to apply energy balance principles to plant canopies, and to determine which parameters are essential for predicting plant canopy transpiration (E) in controlled environments. Transpiration was accurately measured in a gas-exchange system. Absorbed radiation (R(sub abs)) by the canopy was measured with a net radiometer and calculated from short and long-wave radiation components. Average canopy foliar temperature T(sub L) can be measured with an infrared radiometer, but since T(sub L) is seldom uniform, a weighed average measurement of T(sub L) must be made. The effective canopy temperature T(sub C) is that temperature that balances the energy flux between absorbed radiation and latent heat L(sub E) and sensible heat (H) fluxes. TC should exactly equal air temperature T(sub A) when L(sub E) equals R(sub abs). When unnecessary thermal radiation from the lighting system is removed by a water filter, the magnitude of L(sub E) from transpiration approaches Rabs and T(sub C) is close to T(sub A). Unlike field models, we included the energy used in photosynthesis and found that up to 10% of Rabs was used in photosynthesis. We calculated aerodynamic conductance for H from measurements of wind speed and canopy height using the wind profile equation. Canopy aerodynamic conductance ranged from.03 to.04 m/s for wind speeds from.6 to 1 m/s; thus a 0.1 C canopy to air temperature difference results in a sensible heat flux of about 4 W/sq m, which is only 1% of R(sub abs). We examined the ability of wide angle infrared transducers to accurately integrate T(sub L) from the top to the bottom of the canopy. We measured evaporation from the hydroponic media to be approximately 1 micro mol/sq m s or 10% of R(sub abs). This result indicates that separating evaporation from transpiration is more important than exact measurement of canopy temperature.

  10. Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem.

    PubMed

    Verón, Santiago R; Paruelo, José M; Oesterheld, Martín

    2011-02-01

    Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity.

  11. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    PubMed

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  12. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China

    NASA Astrophysics Data System (ADS)

    Zongxing, Li; Qi, Feng; Wang, Q. J.; Yanlong, Kong; Aifang, Cheng; Song, Yong; Yongge, Li; Jianguo, Li; Xiaoyan, Guo

    2016-11-01

    Moisture recycling by terrestrial evaporation and transpiration has recently been confirmed as an important source of precipitation, but little is known of this contribution in inland river basins of China. This study determines the fractions contributed by terrestrial evaporation and transpiration to precipitation in the Shiyang river basin, located in Gansu province of northwestern China. The basin has an area of 4.16 × 104 km2 and mean annual precipitation of 300 mm/yr. Hundreds of samples of precipitation, surface water, plant stem water and soil water were collected and analyzed for their isotopic compositions. The Craig-Gordon model and a three-end-member mixing model were used to partition precipitation into water sourced from evaporation, transpiration and advection. On average, evaporation, transpiration and advection were responsible for 9%, 14% and 77%, respectively, of precipitation, and the contribution from terrestrial evaporation and transpiration also increased with elavation; they also varied with season, being highest in August. The significant contribution from transpiration highlights the importance of vegetation conservation in this ecologically fragile basin.

  13. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  14. Exploring the importance of within-canopy spatial temperature variation on transpiration predictions

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.

    2009-01-01

    Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047

  15. Two-Site Comparison of Transpiration by Larrea Tridentata

    NASA Astrophysics Data System (ADS)

    Cavanaugh, M. L.; Kurc, S. A.; Scott, R. L.; Bryant, R. B.

    2008-12-01

    As a result of landscape changes within the desert southwestern U.S. such as increased grazing, reduced wildfire frequency, and changes in atmospheric conditions, the native creosotebush (Larrea tridentata) has encroached upon historically grass-dominated ecosystems, expanding in range and land cover density. To understand how creosotebush influences the water budget of ecosystems, heat balance sap flow sensors were employed on creosotebush stems at both the Santa Rita Experimental Range (SRER) and Walnut Gulch Experimental Watershed (WGEW). Additionally, both sites are equipped with eddy covariance towers, associated micrometeorological measurements, and profiles of water content reflectometers for soil moisture. The differences found between the two sites, including soil type and precipitation regime, are the basis of the following hypotheses. Firstly, we hypothesize that we will not see transpiration (T) responses following storms less than 5 mm at both sites. Secondly, we hypothesize that at both sites we will see a lagged response of T to large precipitation events, with evaporation being the dominate component in the partitioning of evapotranspiration (ET) for the first two days. Thirdly, we hypothesize that the ratio of plant transpiration to total evapotranspiration (T/ET) will be less at SRER due to the larger amount of bare soil exposed at this site. In this study, we show data from one summer at both sites and show how these relate to different precipitation events and soil moisture reservoirs.

  16. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    USDA-ARS?s Scientific Manuscript database

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  17. Evaluation of diel patterns of relative changes in cell turgor of tomato plants using leaf patch clamp pressure probes.

    PubMed

    Lee, Kang M; Driever, Steven M; Heuvelink, Ep; Rüger, Simon; Zimmermann, Ulrich; de Gelder, Arie; Marcelis, Leo F M

    2012-12-01

    Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained. Copyright © Physiologia Plantarum 2012.

  18. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration.

    PubMed

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-11-17

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  19. Contribution of black spruce (Picea mariana) transpiration to growing season evapotranspiration in a subarctic discontinuous permafrost peatland complex

    NASA Astrophysics Data System (ADS)

    Helbig, M.; Warren, R. K.; Pappas, C.; Sonnentag, O.; Berg, A. A.; Chasmer, L.; Baltzer, J. L.; Quinton, W. L.; Patankar, R.

    2016-12-01

    Partitioning the components of evapotranspiration (ET), evaporation and transpiration, has been increasingly important for the better understanding and modeling of carbon, water, and energy dynamics, and for reliable water resources quantification and management. However, disentangling its individual processes remains highly uncertain. Here, we quantify the contribution of black spruce transpiration, the dominant overstory, to ET of a boreal forest-wetland landscape in the southern Taiga Plains. In these ecosystems, thawing permafrost induces rapid landscape change, whereby permafrost-supported forested plateaus are transformed into bogs or fens (wetlands), resulting in tree mortality. Using historical and projected rates of forest-wetland changes, we assess how the contribution of black spruce transpiration to landscape ET might be altered with continued permafrost loss, and quantify the resulting water balance changes. We use two nested eddy covariance flux towers and a footprint model to quantify ET over the entire landscape. Sap flux density of black spruce is measured using the heat ratio method during the 2013 (n=22) and 2014 (n=3) growing seasons, and is used to estimate tree-level transpiration. Allometric relations between tree height, diameter at breast height and sapwood area are derived to upscale tree-level transpiration to overstory transpiration within the eddy covariance footprint. Black spruce transpiration accounts for <10% of total landscape ET. The largest daily contribution of overstory transpiration to landscape ET is observed shortly after the landscape becomes snow-free, continually decreasing throughout the progression of the growing season. Total transpiration is notably lower in 2014 (2.34 mm) than 2013 (2.83 mm) over the same 40-day period, corresponding to 3% of cumulative landscape ET in both years. This difference is likely due to the antecedent moisture conditions, where the 2014 growing season was proceeded by lower than average

  20. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  1. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  2. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

    PubMed

    Marchin, Renée M; Broadhead, Alice A; Bostic, Laura E; Dunn, Robert R; Hoffmann, William A

    2016-10-01

    Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption. © 2016 John Wiley & Sons Ltd.

  3. Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica.

    PubMed

    Ellsworth, Patrick Z; Ellsworth, Patrícia V; Cousins, Asaph B

    2017-06-15

    Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.

    2012-08-01

    Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  5. Modeled hydraulic redistribution by Helianthus annuus L. matches observed data only after model modification to include nighttime transpiration

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.

    2013-12-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.

  6. Adapting FAO-56 Spreadsheet Program to estimate olive orchard transpiration fluxes under soil water stress condition

    NASA Astrophysics Data System (ADS)

    Rallo, G.; Provenzano, G.; Manzano-Juárez, J.

    2012-04-01

    In the Mediterranean environment, where the period of crops growth does not coincide with the rainy season, the crop is subject to water stress periods that may be amplified with improper irrigation management. Agro-hydrological models can be considered an economic and simple tool to optimize irrigation water use, mainly when water represents a limiting factor for crop production. In the last two decades, agro-hydrological physically based models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere system (Feddes et al., 1978; Bastiaanssen et al., 2007). Unfortunately these models, although very reliable, as a consequence of the high number of required variables and the complex computational analysis, cannot often be used. Therefore, simplified agro-hydrological models may represent an useful and simple tool for practical irrigation scheduling. The main objective of the work is to assess, for an olive orchard, the suitability of FAO-56 spreadsheet agro-hydrological model to estimate a long time series of field transpiration, soil water content and crop water stress dynamic. A modification of the spreadsheet is suggested in order to adapt the simulations to a crop tolerant to water stress. In particular, by implementing a new crop water stress function, actual transpiration fluxes and an ecophysiological stress indicator, i. e. the relative transpiration, are computed in order to evaluate a plant-based irrigation scheduling parameter. Validation of the proposed amendment is carried out by means of measured sap fluxes, measured on different plants and up-scaled to plot level. Spatial and temporal variability of soil water contents in the plot was measured, at several depths, using the Diviner 2000 capacitance probe (Sentek Environmental Technologies, 2000) and TDR-100 (Campbell scientific, Inc.) system. The detailed measurements of soil water content, allowed to explore the high spatial variability of soil water content due

  7. [Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture].

    PubMed

    Chen, Jian; Zhang, Guang-Can; Zhang, Shu-Yong; Wang, Meng-Jun

    2008-06-01

    By using CIRAS-2 portable photosynthesis system, the light response processes of Aralia elata photosynthesis and transpiration under different soil moisture conditions were studied, aimed to understand the adaptability of A. elata to different light and soil moisture conditions. The results showed that the response processes of A. elata net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) to photon flux density (PFD) were different. With the increasing PFD in the range of 800-1800 micromol x m2(-2) x s(-1), Pn changed less, Tr decreased gradually, while WUE increased obviously. The light saturation point (LSP) and light compensation point (LCP) were about 800 and 30 micromol m(-2) x s(-1), respectively, and less affected by soil water content; while the apparent photosynthetic quantum yield (Phi) and dark respiratory rate (Rd) were more affected by the moisture content. The Pn and WUE had evident threshold responses to the variations of soil water content. When the soil relative water content (RWC) was in the range of 44%-79%, A. elata could have higher levels of Pn and WUE.

  8. Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions

    PubMed Central

    Greer, Dennis H.

    2012-01-01

    Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter

  9. Confronting a Process-based Model of Temperate Tree Transpiration with Data from Forests in Central Panama Exposed to Drought

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Bretfeld, M.; Millar, D.; Hall, J. S.; Beverly, D.; Hall, J. S.; Ogden, F. L.; Mackay, D. S.

    2016-12-01

    Process-based models of tree impacts on the hydrologic cycle must include not only plant hydraulic limitations but also photosynthetic controls because plants lose water to gain carbon. The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is one such model. TREES includes a Bayesian model-data fusion approach that provides rigorous tests of patterns in tree transpiration data against biophysical processes in the model. TREES has been extensively tested against many temperate tree data sets including those experiencing severe and lethal drought. We test TREES against data from sap flow-scaled transpiration in 76 tropical trees (representing 42 different species) in secondary forests of three different ages (8, 25, and 80+ years) located in the Panama Canal Watershed. These data were collected during the third driest El Niño-Southern Oscillation (ENSO) event on record in Panama during 2015/2016. Tree transpiration response to vapor pressure deficit and solar radiation was the same in the two older forests, but showed an additional response to limited soil moisture in the youngest forest. Volumetric water content at 30 and 50 cm depths was 8% lower in the 8 year old forest than in the 80+ year old forest. TREES could not simulate this difference in soil moisture without increasing simulated root area. TREES simulations were improved by including light response curves of leaf photosynthesis, root vulnerability to cavitation and canopy position impacts on light. TREES was able to simulate the anisohydric (loose stomatal regulation of leaf water potential) and isohydric (tight stomatal regulation) of the 73 trees species a priori indicating that species level information is not required. Analyses of posterior probability distributions indicates TREES model predictions of individual tree transpiration would likely be improved with more detailed root and soil moisture in all forest ages data with the most improvement likely in the 8 year old forest. Our results

  10. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.

    PubMed

    Nason, Mark A; Farrar, John; Bartlett, David

    2007-12-01

    The effects of five strobilurin (beta-methoxyacrylate) fungicides and one triazole fungicide on the physiological parameters of well-watered or water-stressed wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and soya (Glycine max Merr.) plants were compared. Water use efficiency (WUE) (the ratio of rate of transpiration, E, to net rate of photosynthesis, A(n)) of well-watered wheat plants was improved slightly by strobilurin fungicides, but was reduced in water-stressed plants, so there is limited scope for using strobilurins to improve the water status of crops grown under conditions of drought. The different strobilurin fungicides had similar effects on plant physiology but differed in persistence and potency. When applied to whole plants using a spray gun, they reduced the conductance of water through the epidermis (stomatal and cuticular transpiration), g(sw), of leaves. Concomitantly, leaves of treated plants had a lower rate of transpiration, E, a lower intercellular carbon dioxide concentration, c(i), and a lower net rate of photosynthesis, A(n), compared with leaves of control plants or plants treated with the triazole. The mechanism for the photosynthetic effects is not known, but it is hypothesised that they are caused either by strobilurin fungicides acting directly on ATP production in guard cell mitochondria or by stomata responding to strobilurin-induced changes in mesophyll photosynthesis. The latter may be important since, for leaves of soya plants, the chlorophyll fluorescence parameter F(v)/F(m) (an indication of the potential quantum efficiency of PSII photochemistry) was reduced by strobilurin fungicides. It is likely that the response of stomata to strobilurin fungicides is complex, and further research is required to elucidate the different biochemical pathways involved. Copyright (c) 2007 Society of Chemical Industry.

  11. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels.

    PubMed

    Zandalinas, Sara I; Rivero, Rosa M; Martínez, Vicente; Gómez-Cadenas, Aurelio; Arbona, Vicent

    2016-04-27

    In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in

  12. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  13. Microclimatological and Physiological Controls of Stomatal Conductance and Transpiration of Co-Occurring Seedlings with Varying Shade Tolerance

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Levia, D. F.

    2010-12-01

    Forest ecosystems provide a significant portion of fresh water to the hydrologic cycle through transpiration, the majority of which is supplied by saplings and mature trees. However, a smaller, yet measurable, proportion is also supplied by seedlings. The contribution of seedlings is dependent upon physiological characteristics of the species, whose range of habitat is ultimately controlled by microclimate. The objectives of this study were to (1) observe meteorological conditions of two forest microlimates and (2) assess the intra- and interspecific stomatal conductance and transpiration responses of naturally occurring seedlings of varying shade tolerance. Naturally established seedlings in a deciduous forest understory and an adjacent clearing were monitored throughout the 2008 growing season in southeastern Pennsylvania (39°49'N, 75°43'W). Clear spatial and temporal trends of stomatal conductance and transpiration were observed throughout this study. The understory microclimate conditions overall had a lower degree of variability and had consistently lower mean quantum flux density, air temperature, vapor pressure deficit, volumetric water content, and soil temperature than the clearing plot. Shade tolerant understory seedlings (Fagus grandifolia Ehrh. (American beech) and Prunus serotina L. (black cherry)) had significantly lower mean monthly rates of water loss (p = 0.05) than shade intolerant clearing seedlings (P. serotina and Liriodendron tulipifera L. (yellow poplar)). Additionally, water loss by shade grown P. serotina was significantly lower (p = 0.05) than by sun grown P. serotina. Significant intraspecific responses (p = 0.05) were also observed on a monthly basis, with the exception of L. tulipifera. These findings indicate that physiological differences, specifically shade tolerance, play an important role in determining rates of stomatal conductance and transpiration in tree seedlings. To a lesser degree, microclimate variability was also shown

  14. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat

    PubMed Central

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-01-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580

  15. Transpiration during life cycle in controlled wheat growth

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1990-01-01

    A previously developed model of wheat growth, designed for convenient incorporation into system level models of advanced space life support systems is described. The model is applied to data from an experiment that grew wheat under controlled conditions and measured fresh biomass and cumulated transpiration as a function of time. The adequacy of modeling the transpiration as proportional to the inedible biomass and an age factor that varies during the life cycle are discussed.

  16. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration

    PubMed Central

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G.; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-01-01

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12–23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51–98 vs. 7–8 mm yr−1). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake. PMID:26074373

  17. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    PubMed

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  18. Modelling orange tree root water uptake active area by minimally invasive ERT data and transpiration measurements

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2015-04-01

    The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture

  19. Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

    PubMed

    Forrester, David I

    2015-03-01

    Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    PubMed

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  1. Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L; Marshall, John D

    2007-01-01

    The response of whole-plant water-use efficiency, termed transpiration efficiency (TE), to variation in soil fertility was assessed in a tropical pioneer tree, Ficus insipida Willd. Measurements of stable isotope ratios (delta(13)C, delta(18)O, delta(15)N), elemental concentrations (C, N, P), plant growth, instantaneous leaf gas exchange, and whole-plant water use were used to analyse the mechanisms controlling TE. Plants were grown individually in 19 l pots with non-limiting soil moisture. Soil fertility was altered by mixing soil with varying proportions of rice husks, and applying a slow release fertilizer. A large variation was observed in leaf photosynthetic rate, mean relative growth rate (RGR), and TE in response to experimental treatments; these traits were well correlated with variation in leaf N concentration. Variation in TE showed a strong dependence on the ratio of intercellular to ambient CO(2) mole fractions (c(i)/c(a)); both for instantaneous measurements of c(i)/c(a) (R(2)=0.69, P <0.0001, n=30), and integrated estimates based on C isotope discrimination (R(2)=0.88, P <0.0001, n=30). On the other hand, variations in the leaf-to-air humidity gradient, unproductive water loss, and respiratory C use probably played only minor roles in modulating TE in the face of variable soil fertility. The pronounced variation in TE resulted from a combination of the strong response of c(i)/c(a) to leaf N, and inherently high values of c(i)/c(a) for this tropical tree species; these two factors conspired to cause a 4-fold variation among treatments in (1-c(i)/c(a)), the term that actually modifies TE. Results suggest that variation in plant N status could have important implications for the coupling between C and water exchange in tropical forest trees.

  2. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Treesearch

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick

    2016-01-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  3. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  4. Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.

    2001-12-01

    We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >http://webdata.soc.hawaii.edu/climate/Frags/Frags.html

  5. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  6. Physiological studies in young Eucalyptus stands in southern India and their use in estimating forest transpiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.M.; Rosier, P.T.W.; Murthy, K.V.

    1992-12-31

    Stomatal conductance, leaf water potential and leaf area index were measured in adjacent plantations of Eucalyptus camaldulensis and Eucalyptus tereticornis at Puradal, near Shimoga, Karnataka, southern India. The data were collected in a range of climatic conditions during a two year period immediately following plantation establishment. Physiological differences between the two species were small and confined largely to leaf area index. Stomatal conductance was highest in the post-monsoon period and declined to minimum values immediately prior to the onset of the monsoon, with the lowest conductances observed after the plantations had been established for more than one year. Stomatal conductance,more » leaf area index and above-canopy meteorological data were combined in a multi-layer transpiration model and used to calculate hourly values of transpiration from the two species. Rates of transpiration up to 6 mm d{sup {minus}1} were estimated for the post-monsoon period but fell to below 1 mm d{sup {minus}1} prior to the monsoon.« less

  7. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaoliang; Liu, Zhunqiao; An, Shuqing

    By utilizing continuous measurements of water fluxes and solar-induced chlorophyll fluorescence (SIF) over the entire growing season, we exploit the potential of broadband SIF in predicting plant transpiration (T) in a temperate forest. After reconstructing the full SIF spectrum from the selected absorption lines and simulations from the SCOPE (Soil Canopy Observation Photochemistry and Energy fluxes) model, linear regression (LR) and Gaussian processes regression (GPR) models are used to analyze the relation between T and combinations of different SIF bands. We find that SIF emissions in the near-infrared spectrum (at 720 nm, 740 nm and 760 nm) are more sensitivemore » to T than SIF emissions in the red spectrum (at 685 nm and 687 nm). While conditions such as light and heat stress decouple the relationship between single-band SIF and T, the combination of different SIF bands allows the retrieval of reliable T estimates even in these conditions. Overall, we find that the use of SIF as a proxy for T yields estimates that are at least as accurate as those from traditional transpiration models such as the Penman-Monteith equation, which are input demanding and complex to apply to in situ and satellite data. Specifically, we find that (1) the SIF-T relationship deteriorates when Photosynthetically Active Radiation (PAR), vapor pressure deficit and air temperature exceed biological optimal thresholds; (2) a high leaf area index exerts a negative impact on the SIF-T correlation due to increasing scattering and (re)absorption of the SIF signal; (3) the SIF-T relationship does not change depending on the observation time during the day; and (4) temporal aggregation to days further enhanced the SIF-T correlations. Altogether, our results provide the first ground-based evidence that SIF emission has potential to be a close predictor of plant transpiration, especially when a combination of different SIF bands is considered.« less

  8. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures.

    PubMed

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10(-5) m s(-1) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm(-2)) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. Published by Oxford University Press on behalf of the

  9. Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures

    PubMed Central

    Schuster, Ann-Christin; Burghardt, Markus; Alfarhan, Ahmed; Bueno, Amauri; Hedrich, Rainer; Leide, Jana; Thomas, Jacob; Riederer, Markus

    2016-01-01

    Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10−5 m s−1 at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15–50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm−2) is mainly composed of pentacyclic triterpenoids (85.2% of total wax) while long-chain aliphatics contribute only 3.4%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures. PMID:27154622

  10. Characterization of urania vaporization with transpiration coupled thermogravimetry

    DOE PAGES

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573more » and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.« less

  11. Characterization of Transpiration in a Deciduous Forest of the US Midwest

    NASA Astrophysics Data System (ADS)

    Dragoni, D.; Caylor, K. K.; Schmid, H.

    2006-12-01

    The exchange of water between atmosphere and biosphere is an important determinant of climate and the productivity of vegetation, as transpiration involves substantial amounts of energy. Knowing how transpiration changes over seasonal and diurnal cycles can help increase the understanding of how a forest reacts to changes in the biosphere and atmosphere on both short and long time scales. A study was conducted to characterize the daily and seasonal variation of transpiration in sugar maple (Acer Saccharum) at the Morgan-Monroe State Forest (MMSF) AmeriFlux site in Indiana (USA), were this species represent more than 25% of the forest basal area. Transpiration was estimated by up-scaling single point measurements of sap flow density obtained using the heat-pulse technique. To characterize the variability of sap flow density in the deep sapwood of sugar maples, 3 to 4 radial profiles were obtained for each sampled tree at different positions around the trunk. Different approaches were then tested to scale up to whole tree sap flow. Seventeen trees of different diameter were sampled by three roving sap flow systems, taking measurements from each tree for 5-7 contiguous days. Because of the small scale but complex topography in the area and the relatively shallow soil, particular attention was given to the effect of spatial and temporal variability of soil moisture content on transpiration; for this reason, sampled trees were selected along a topographic gradient and soil water content was measured in the proximity of each tree. Meteorological measurements taken at the nearby MMSF AmeriFlux tower were used to explain transpiration variability in terms of vapor pressure deficit, and solar radiation, while eddy- covariance measurements of latent heat flux were related to the up-scaled transpiration of sugar maples in the study area.

  12. Forest fire effects on transpiration: process modeling of sapwood area reduction

    NASA Astrophysics Data System (ADS)

    Michaletz, Sean; Johnson, Edward

    2010-05-01

    Transpiration is a hydrological process that is strongly affected by forest fires. In crown fires, canopy fine fuels (foliage, buds, and small branches) combust, which kills individual trees and stops transpiration of the entire stand. In surface fires (intensities ≤ 2500 kW m-1), however, effects on transpiration are less predictable becuase heat transfer from the passing fireline can injure or kill fine roots, leaves, and sapwood; post-fire transpiration of forest stands is thus governed by fire effects on individual tree water budgets. Here, we consider fire effects on cross-sectional sapwood area. A two-dimensional model of transient bole heating is used to estimate radial isotherms for a range of fireline intensities typical of surface fires. Isotherms are then used to drive three processes by which heat may reduce sapwood area: 1) necrosis of living cells in contact with xylem conduits, which prevents repair of natural embolism; 2) relaxation of viscoelastic conduit wall polymers (cellulose, hemicelloluse, and lignin), which reduces cross-sectional conduit area; and 3) boiling of metastable water under tension, which causes conduit embolism. Results show that these processes operate on different time scales, suggesting that fire effects on transpiration vary with time since fire. The model can be linked with a three-dimensional physical fire spread model to predict size-dependent effects on individual trees, which can be used to estimate scaling of individual tree and stand-level transpiration.

  13. Biophysical control of whole tree transpiration under an urban environment in Northern China

    Treesearch

    Lixin Chen; Zhiqiang Zhang; Zhandong Li; Jianwu Tang; Peter Caldwell; et al

    2011-01-01

    Urban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined...

  14. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat.

    PubMed

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-09-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea

    2017-04-01

    Developing new technologies to optimize the use of water in irrigated croplands is of increasing importance. Recent studies have drawn attention to the role of mucilage in shaping rhizosphere hydraulic properties and regulating root water uptake. During drying mucilage keeps the rhizosphere wet and conductive, but upon drying it turns hydrophobic limiting root water uptake. Here we introduced the concept of rhizoligands, defined as additives that 1) rewet the rhizosphere and 2) reduce mucilage swelling hereby reducing the rhizosphere conductivity. We then tested its effect on rhizosphere water dynamics and transpiration. The following experiments were carried out to test if selected surfactants behave as a rhizoligand. We used neutron radiography to monitor water redistribution in the rhizosphere of lupine and maize irrigated with water and rhizoligand solution. In a parallel experiment, we tested the effect of rhizoligand on the transpiration rate of lupine and maize subjected to repeated drying and wetting cycles. We also measured the effect of rhizoligand on the maximum swelling of mucilage and the saturated hydraulic conductivity of soil mixed with various mucilage concentrations. The results were then simulated using a root water uptake model. Rhizoligand treatment quickly and uniformly rewetted the rhizosphere of maize and lupine. Interestingly, rhizoligand also reduced transpiration during drying/wetting cycles. Evaporation from the bare soil was of minor importance. Our hypothesis is that the reduction in transpiration was triggered by the interaction between rhizoligand and mucilage exuded by roots. This hypothesis is supported by the fact that rhizoligand reduced the maximum swelling of mucilage, increased its viscosity, and decreased the hydraulic conductivity of soil-mucilage mixtures. The reduced conductivity of the rhizosphere induced a moderate stress to the plants reducing transpiration. Simulation with a reduced hydraulic conductivity of the

  16. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    NASA Astrophysics Data System (ADS)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  17. Modeling evapotranspiration based on plant hydraulic theory can predict spatial variability across an elevation gradient and link to biogeochemical fluxes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Frank, J.; Reed, D.; Whitehouse, F.; Ewers, B. E.; Pendall, E.; Massman, W. J.; Sperry, J. S.

    2012-04-01

    In woody plant systems transpiration is often the dominant component of total evapotranspiration, and so it is key to understanding water and energy cycles. Moreover, transpiration is tightly coupled to carbon and nutrient fluxes, and so it is also vital to understanding spatial variability of biogeochemical fluxes. However, the spatial variability of transpiration and its links to biogeochemical fluxes, within- and among-ecosystems, has been a challenge to constrain because of complex feedbacks between physical and biological controls. Plant hydraulics provides an emerging theory with the rigor needed to develop testable hypotheses and build useful models for scaling these coupled fluxes from individual plants to regional scales. This theory predicts that vegetative controls over water, energy, carbon, and nutrient fluxes can be determined from the limitation of plant water transport through the soil-xylem-stomata pathway. Limits to plant water transport can be predicted from measurable plant structure and function (e.g., vulnerability to cavitation). We present a next-generation coupled transpiration-biogeochemistry model based on this emerging theory. The model, TREEScav, is capable of predicting transpiration, along with carbon and nutrient flows, constrained by plant structure and function. The model incorporates tightly coupled mechanisms of the demand and supply of water through the soil-xylem-stomata system, with the feedbacks to photosynthesis and utilizable carbohydrates. The model is evaluated by testing it against transpiration and carbon flux data along an elevation gradient of woody plants comprising sagebrush steppe, mid-elevation lodgepole pine forests, and subalpine spruce/fir forests in the Rocky Mountains. The model accurately predicts transpiration and carbon fluxes as measured from gas exchange, sap flux, and eddy covariance towers. The results of this work demonstrate that credible spatial predictions of transpiration and related

  18. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    NASA Astrophysics Data System (ADS)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  19. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, T.; Cho, S.; Ryu, D.; Moon, M.; Kim, H. S.

    2015-12-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for three years. Forest thinning, which remove some fraction of trees from stand, alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related tree growth. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning, and Heavy-thinning). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites.The climatic conditions showed remarkable differences among three years. In 2012, total precipitation was highest but spring was dry. 2013 was normal year with frequent rain events. In contrast, 2014 was hot and extremely dry. Stand transpiration was initially decreased ca. 20% and 42% on light-thinning and heavy-thinning stand, respectively. In second year, it gradually recovered in both thinning intensities, and was 19% and 37% lower on light-thinning and heavy-thinning stand, respectively. However, the recovery trends were different between two thinning intensities. Transpiration of heavy-thinning stand was recovered slowly than that of light thinning stand. In 2014, heavy-thinning stand transpired ca. 5% more than control plot in early growing season, but severe drought had negative effects that caused reduction of stand transpiration in thinned stand on late growing season. The tree-level productivity was increased initially ca. 24% and 28% on light-thinning and heavy-thinning stand, respectively. During the following growing seasons, this thinning-induced enhancement of productivity was diminished in light-thinning stand (21% in 2013 and 20% in 2014), but was

  20. Biophysical controls on canopy transpiration in a black locust ( Robinia pseudoacacia ) plantation on the semi-arid Loess Plateau, China

    Treesearch

    Lei Jiao; Nan Lu; Ge Sun; Eric J. Ward; Bojie Fu

    2015-01-01

    In the semi-arid Loess Plateau of China, black locust (Robinia pseudoacacia) was widely planted for soil conservation and afforestation purposes during the past three decades. Investigating biophysical controls on canopy transpiration (Ec) of the plantations is essential to understanding the effects of afforestation on watershed hydrology and regional water resources....

  1. Effects of pruning intensity on jujube transpiration and soil moisture of plantation in the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Nie, Zhenyi; Wang, Xing; Wang, Youke; Ma, Jianpeng; Wei, Xinguang; Chen, Dianyu

    2017-01-01

    In order to ease soil desiccation and prevent ecological deterioration in the Loess Plateau, where jujube (Zizyphus jujube MIll) is widely cultivated as a drought tolerant plant, four pruning intensities (PI), from PI-1 (light) to PI-4 (heavy) were set up based on total length of secondary branches to study the effects of pruning on transpiration and soil moisture in jujube plantations. Furthermore, growth indexes were regularly monitored to estimate jujubes biomass. Sap flow, meteorological and soil moisture conditions were monitored using thermal dissipation probes (TDP), weather station (RR-9100) and the combination of time domain transmission (TDT) technology and neutron moisture gauges (CNC503B), respectively. The results showed that daily actual transpiration of jujube was positively correlated with leaf biomass. Compared with PI-1, jujube transpiration during growth period under PI-2, PI-3, and PI-4 dropped by 11.1%, 29.2%, and 47.9%, respectively. On the contrary, annual water storage under PI-2, PI-3, and PI-4 increased by 6.29 mm, 25.78 mm and 34.74 mm while water use efficiency increased by 5.1%, 15.7% and 24.2%, respectively. Overall, increase in pruning intensity could significantly reduce water consumption of jujube and improve soil moisture in jujube plantations.

  2. The Effect of Increased CO2 Mixing Ratio on Water Use Efficiency, Evapo-transpiration, Soil Moisture Content and Stem Flow in two Long-term Field Experiments

    NASA Astrophysics Data System (ADS)

    Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.

    2007-12-01

    Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.

  3. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest: Transpiration response to disturbance

    DOE PAGES

    Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; ...

    2014-12-04

    Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession.Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However,more » species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during post disturbance (62.5 and 132.2%, respectively), redmaple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porousanisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, andpaper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteithmodel for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufffcient to fully describe the effects of disturbance on transpiration.« less

  4. Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, D.J.; Ham, J.M.; Owensby, C.E.

    1996-07-01

    Increasing concentrations of atmospheric carbon dioxide (CO{sub 2}) may influence plant-water relations in natural and agricultural ecosystems. A tallgrass prairie near Manhattan, KS, was exposed to elevated atmospheric CO{sub 2} using open-top chambers (OTCs). Heat balance sap flow gauges were used to measure transpiration in ironweed [Vernonia baldwini var. interior (Small) Schub.], aC{sub 3}forb, and on individual grass culms of big bluestem (Andropogan geradii Vitman) and indiangrass [Sorghastrum nutans (L>) Nash], both C{sub 4} grasses, in each of three treatments: (1) CE (chamber enriched, 2x ambient CO{sub 2}); (2) CA (chamber ambient, no CO{sub 2} enrichment); and (3) NC (nomore » chamber, no CO{sub 2} enrichment). Sap flow data were coupled with measurements of stomatal conductance, plant/canopy resistance, and whole-chamber evapotranspiration (ET) to determine the effect of elevated CO{sub 2} on water use at different scales. Because of frequent rainfall during the study, all data were collected under well-watered conditions. Comparisons of CE and CA showed that sap flow was reduced by 33% in ironweed, 18% in big bluestem, and 22% in indiangrass under CO{sub 2} enrichment. Whole-chamber ET was reduced by 23 to 27% under CO{sub 2} enrichment. Comparisons of CA and NC showed that the environmental effect of the OTCs caused a 21 to 24% reduction in transpiration. Stomatal conductance decreased from 7.9 to 3.6 mm s{sup {minus}1} in big bluestem and from 5.3 to 3.2 mm s{sup {minus}1} in indiangrass under CO{sub 2} enrichment. Soil water was consistently highest under elevated CO{sub 2}, reflecting the large reductions in transpiration. During sap flow measurements, whole-plant stomatal resistance to water vapor flux in big bluestem increased from 103 to 194 s m{sup {minus}1} under elevated CO{sub 2}. 23 refs., 7 figs., 4 tabs.« less

  5. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  6. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Bolstad, Paul V.; Ewers, Brent E.; Desai, Ankur R.; Davis, Kenneth J.; Carey, Eileen V.

    2006-06-01

    Combining sap flux and eddy covariance measurements provides a means to study plant stomatal conductance and the relationship between transpiration and photosynthesis. We measured sap flux using Granier-type sensors in a northern hardwood-dominated old growth forest in Michigan, upscaled to canopy transpiration, and calculated canopy conductance. We also measured carbon and water fluxes with the eddy covariance method and derived daytime gross primary production (GPP). The diurnal patterns of sap flux and canopy transpiration were mainly controlled by vapor pressure deficit (D) and photosynthetically active radiation (PAR). Daily sums of sap flux and canopy transpiration had exponential relationships to D that saturated at higher D and had linear relationships to PAR. Sugar maple (Acer saccharum) and yellow birch (Betula alleghaniesis) had higher sap flux per unit of sapwood area than eastern hemlock (Tsuga canadensis), while sugar maple and hemlock had higher canopy transpiration per unit of leaf area than yellow birch. Sugar maple dominated canopy transpiration per ground area. Canopy transpiration averaged 1.57 mm d-1, accounting for 65% of total evapotranspiration in the growing season. Canopy conductance was controlled by both D and PAR, but the day-to-day variation in canopy conductance mainly followed a negatively logarithmic relationship with D. By removing the influences of PAR, half-hourly canopy conductance was also negatively logarithmically correlated with D. Water use efficiency (WUE) had a strong exponential relationship with D on a daily basis and approached a minimum of 4.4 mg g-1. WUE provides an alternative to estimate GPP from measurements of sap flux.

  7. An improved temporal formulation of pupal transpiration in Glossina.

    PubMed

    Childs, S J

    2015-04-01

    The temporal aspect of a model of pupal dehydration is improved upon. The observed dependence of pupal transpiration on time is attributed to an alternation between two, essential modes, for which the deposition of a thin, pupal skin inside the puparium and its subsequent demise are thought to be responsible. For each mode of transpiration, the results of the Bursell investigation into pupal dehydration are used as a rudimentary data set. These data are generalised to all temperatures and humidities by invoking the property of multiplicative separability. The problem, then, is that as the temperature varies with time, so does the metabolism and the developmental stages to which the model data pertain, must necessarily warp. The puparial-duration formula of Phelps and Burrows and Hargrove is exploited to facilitate a mapping between the constant-temperature time domain of the data and that of some, more general case at hand. The resulting, Glossina morsitans model is extrapolated to other species using their relative surface areas, their relative protected and unprotected transpiration rates and their different fourth instar excretions (drawing, to a lesser extent, from the data of Buxton and Lewis). In this way the problem of pupal dehydration is formulated as a series of integrals and the consequent survival can be predicted. The discovery of a distinct definition for hygrophilic species, within the formulation, prompts the investigation of the hypothetical effect of a two-day heat wave on pupae. This leads to the conclusion that the classification of species as hygrophilic, mesophilic and xerophilic is largely true only in so much as their third and fourth instars are and, possibly, the hours shortly before eclosion. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Toward an improved understanding of the role of transpiration in critical zone dynamics

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Papuga, S. A.

    2012-12-01

    Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir

  9. The role of plant physiology in hydrology: looking backwards and forwards

    NASA Astrophysics Data System (ADS)

    Roberts, J.

    2007-01-01

    The implementation of plant physiological studies at the Institute of Hydrology focussed both on examining and understanding the physiological controls of transpiration as well as evaluating the value of using physiological methods to measure transpiration. Transpiration measurement by physiological methods would be particularly valuable where this could not be achieved by micrometeorological and soil physics methods. The principal physiological measurements used were determinations of leaf stomatal conductance and leaf water relations to monitor plant water stress. In this paper the value of these approaches is illustrated by describing a few case studies in which plant physiological insight, provided both as new measurements and existing knowledge, would aid in the interpretation of the hydrological behaviour of important vegetation. Woody vegetation figured largely in these studies, conducted in the UK and overseas. Each of these case studies is formulated as a quest to answer a particular question. A collaborative comparison of conifer forest transpiration in Thetford forest using micrometeorological and soil physics techniques exhibited a substantially larger (~1 mm day-1) estimate from the micrometeorological approach. So the question - Why is there a disagreement in the estimates of forest transpiration made using micrometeorological and soil physics approaches? A range of physiological studies followed that suggested that there was no one simple answer but that the larger estimate from the micrometeorology technique might include contributions of water taken up by deep roots, from shallow-rooted vegetation and possibly also from water previously stored in trees. These sources of water were probably not included in the soil physics estimate of transpiration. The annual transpiration from woodlands in NW Europe shows a low magnitude and notable similarity between different sites raising the question - Why is transpiration from European forests low and

  10. Modelling the effect of low soil temperatures on transpiration by Scots pine

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Stähli, Manfred; Gustafsson, David; Bishop, Kevin

    2006-06-01

    For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring-early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70-year-old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high-latitude stands.

  11. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  12. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    PubMed

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.

  13. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    NASA Astrophysics Data System (ADS)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation

  14. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.

    PubMed

    Raschke, K; Zeevaart, J A

    1976-08-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  15. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    PubMed

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  16. Transpiration Driven Hydrologic Transport in vegetated shallow water environments: Implications on Diel and Seasonal Soil Biogeochemical Processes and System Management

    NASA Astrophysics Data System (ADS)

    Bachand, P.; Bachand, S. M.; Fleck, J.; Anderson, F.

    2011-12-01

    Hydrology arguably plays the most important role in biogeochemical cycling of mercury in wetlands and other shallow aquatic systems. CFSTR, PFR and non-ideal reactor models are oftentimes currently used to hydrologically assess these systems and to account for the fate, transport and cycling of constituents of concern (COC) with systems assumed to be non-leaky and with diffusion dominating soil transport. Yet a number of results in the literature imply transpiration drives soil transport: transpiration into the root zone is in the range of 50 - 75% of ET seasonally; gaseous emissions from aquatic systems show a diel pattern that tracks diel ET patterns; in long detention time aquatic systems ET is the largest sink for applied surface waters; and non-reactive tracers when applied to surface waters can find themselves in the root zone and within plants. All these findings strongly suggest transpiration driven infiltration into the root zone, is a significant hydrologic pathway for constituents and is an important transport mechanism. This paper examines the annual water budget for four shallow aquatic land uses in the Yolo Bypass, California: rice, wild rice, fallowed fields and wetlands. Results indicate that differences in hydrology between the fields, particularly the temporal nature of transpiration, play a significant role in mercury transformations and transport. During the irrigation period, fallowed fields discharged 6 cm of surface water (15% applied water), rice fields 31 - 43 cm (27 - 31% applied water), and wild rice fields 16 - 39 cm (15 - 31% applied water). Evapotranspiration rates were in the range of 120 - 130 cm/y for all land uses (i.e. rice, wild rice, fallowed fields and seasonal wetlands) except for the permanent wetland which was about 1/3 higher at about 170 cm/y. During the summer, approximately 50% of the applied surface water was drawn into the root zone to meet transpiration demands. Based upon results from our water budget and utilizing

  17. Transpiration in the Global Water Cycle

    NASA Astrophysics Data System (ADS)

    Schlesinger, W. H.; Jasechko, S.

    2014-12-01

    A compilation of 81 studies that have partitioned evapotranspiration (ET) into its components—transpiration (T) and evaporation (E)—at the ecosystem scale indicates that T accounts for 61% (±15% s.d.) of ET and returns approximately 39±10% of incident precipitation (P) to the atmosphere, creating a dominant force in the global water cycle. T as a proportion of ET is highest in tropical rainforests (70±14 %) and lowest in steppes, shrublands and deserts (51±15%), but there is no relationship of T/ET versus P across all available data (R2 = 0.01). Changes to transpiration due to increasing CO2 concentrations, land use changes, shifting ecozones and climate warming are expected to have significant impacts upon runoff and groundwater recharge, reflecting human impacts on the global biogeochemical cycle of water.

  18. Soil- and plant- water uptake in saline environments and their consequences to plant adaptation in fluctuating climates

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Albertson, J. D.; Katul, G. G.; Marani, M.

    2010-12-01

    Ecological processes determining plant colonization are quite peculiar and competition among different species is governed by a set of unique adaptations to stress conditions caused by drought, hypoxic or hyper-saline conditions. These adaptations and possible positive feedbacks often lead to the formation of patterns of vegetation colonization and spatial heterogeneity (zonation), and play a primary role in the stabilization of sediments. It is these issues that frame the scope of this study. The main objective of this work is to track one of the fundamental pathways between plant adaptation (quantified in terms of physiological and ecological attributes such as leaf area or root density profile) and feedbacks (quantified by plant-mediated alterations to water availability and salinity levels): root water uptake. Because root-water uptake is the main conduit connecting transpiring leaves to reservoirs of soil water, the means by which salinity modifies the processes governing its two end-points and any two-way interactions between them serves as a logical starting point. Salinity effects on leaf transpiration and photosynthesis are first explored via stomatal optimization principles that maximize carbon gain at a given water loss for autonomous leaves. Salinity directly affects leaf physiological attributes such as mesophyll conductance and photosynthetic parameters and hence over-all conductance to transpiration as well as different strategies to cope with the high salinity (e.g. through salt seclusion, compartmentation and osmotic adjustments). A coupled model of subsurface flow based on a modified Richards’ equation that accounts for the effects of increasing salinity, anaerobic conditions, water stress and compensation factors is developed. Plant water uptake is considered as a soil moisture sink term with a potential rate dictated by the carbon demands of the leaves, and an actual rate that accounts for both - hydraulic and salinity limitations. Using this

  19. Mechanical regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1984-01-01

    Soybean and eggplant grown and shaken in a greenhouse exhibited decreased internode length, internode diameter, leaf area, and fresh and dry weight of roots and shoots in much the same way as outdoor-exposed plants. Perhaps more important than decreased dimensions of plant parts resulting from periodic seismic treatment is the inhibition of photosynthetic productivity that accompanies this stress. Soybeam plants briefly shaken or rubbed twice daily experienced a decrease in relative as well as absolute growth rate compared to that of undisturbed controls. Growth dynamics analysis revealed that virtually all of the decline in relative growth rate (RGR) was due to a decline in net assimilation rate (NAR), but not in leaf area ratio (LAR). Lower NAR suggests that the stress-induced decrease in dry weight gain is due to a decline in photosynthetic efficiency. Possible effects on stomatal aperture was investigated by measuring rates of whole plant transpiration as a function of seismo-stress, and a transitory decrease followed by a gradual, partial recovery was detected.

  20. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model.

    PubMed

    Perämäki, M; Nikinmaa, E; Sevanto, S; Ilvesniemi, H; Siivola, E; Hari, P; Vesala, T

    2001-08-01

    A dynamic model for simulating water flow in a Scots pine (Pinus sylvestris L.) tree was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration, together with the elasticity of wood tissue, causes variations in the diameter of a tree stem and branches. The change in xylem diameter can be linked to water tension in accordance with Hookeâ s law. The model was tested against field measurements of the diurnal xylem diameter change at different heights in a 37-year-old Scots pine at Hyytiälä, southern Finland (61 degrees 51' N, 24 degrees 17' E, 181 m a.s.l.). Shoot transpiration and soil water potential were input data for the model. The biomechanical and hydraulic properties of wood and fine root hydraulic conductance were estimated from simulated and measured stem diameter changes during the course of 1 day. The estimated parameters attained values similar to literature values. The ratios of estimated parameters to literature values ranged from 0.5 to 0.9. The model predictions (stem diameters at several heights) were in close agreement with the measurements for a period of 6 days. The time lag between changes in transpiration rate and in sap flow rate at the base of the tree was about half an hour. The analysis showed that 40% of the resistance between the soil and the top of the tree was located in the rhizosphere. Modeling the water tension gradient and consequent woody diameter changes offer a convenient means of studying the link between wood hydraulic conductivity and control of transpiration.

  1. Modeled hydraulic redistribution in tree-grass, CAM-grass, and tree-CAM associations: the implications of crassulacean acid metabolism (CAM).

    PubMed

    Yu, Kailiang; Foster, Adrianna

    2016-04-01

    Past studies have largely focused on hydraulic redistribution (HR) in trees, shrubs, and grasses, and recognized its role in interspecies interactions. HR in plants that conduct crassulacean acid metabolism (CAM), however, remains poorly investigated, as does the effect of HR on transpiration in different vegetation associations (i.e., tree-grass, CAM-grass, and tree-CAM associations). We have developed a mechanistic model to investigate the net direction and magnitude of HR at the patch scale for tree-grass, CAM-grass, and tree-CAM associations at the growing season to yearly timescale. The modeling results show that deep-rooted CAM plants in CAM-grass associations could perform hydraulic lift at a higher rate than trees in tree-grass associations in a relatively wet environment, as explained by a significant increase in grass transpiration rate in the shallow soil layer, balancing a lower transpiration rate by CAM plants. By comparison, trees in tree-CAM associations may perform hydraulic descent at a higher rate than those in tree-grass associations in a dry environment. Model simulations also show that hydraulic lift increases the transpiration of shallow-rooted plants, while hydraulic descent increases that of deep-rooted plants. CAM plants transpire during the night and thus perform HR during the day. Based on these model simulations, we suggest that the ability of CAM plants to perform HR at a higher rate may have different effects on the surrounding plant community than those of plants with C3 or C4 photosynthetic pathways (i.e., diurnal transpiration).

  2. Evaluating Uncertainties in Sap Flux Scaled Estimates of Forest Transpiration, Canopy Conductance and Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.

    2009-12-01

    Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.

  3. Soil moisture and wild olive tree transpiration relationship in a water-limited Mediterranean ecosystem.

    NASA Astrophysics Data System (ADS)

    Curreli, M.; Montaldo, N.; Oren, R.

    2016-12-01

    Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots

  4. Leaf transpiration efficiency of sweet corn varieties from three eras of breeding

    USDA-ARS?s Scientific Manuscript database

    When measured under midday field conditions, modern varieties of corn often have sub-stomatal concentrations of carbon dioxide in excess of those required to saturate photosynthesis. This results in lower leaf transpiration efficiency, the ratio of photosynthesis to transpiration, than potentially ...

  5. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  6. Cell wall composition contributes to the control of transpiration efficiency in Arabidopsis thaliana.

    PubMed

    Liang, Yun-Kuan; Xie, Xiaodong; Lindsay, Shona E; Wang, Yi Bing; Masle, Josette; Williamson, Lisa; Leyser, Ottoline; Hetherington, Alistair M

    2010-11-01

    To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  7. Clouds homogenize shoot temperatures, transpiration, and photosynthesis within crowns of Abies fraseri (Pursh.) Poiret.

    PubMed

    Hernandez-Moreno, J Melissa; Bayeur, Nicole M; Coley, Harold D; Hughes, Nicole M

    2017-03-01

    Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5-10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.

  8. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency.

    PubMed

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.

  9. Genetic Variation of Morphological Traits and Transpiration in an Apple Core Collection under Well-Watered Conditions: Towards the Identification of Morphotypes with High Water Use Efficiency

    PubMed Central

    Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne

    2015-01-01

    Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water. PMID:26717192

  10. Active management of plant canopy temperature as a tool for modifying plant metabolic activity

    USDA-ARS?s Scientific Manuscript database

    The relationship between a plant and its thermal environment is a major determiner of its growth and development. Since plants grow and develop within continuously variable thermal environments, they are subjected to continuous thermal variation over their life cycle. Transpiration serves to uncoupl...

  11. Transpiration Dominates Ecosystem Water-Use Efficiency in Response to Warming in an Alpine Meadow

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Zhang, Fangyue; Tian, Dashuan; Zhou, Qingping; Wang, Lixin; Niu, Shuli

    2018-02-01

    As a key linkage of C and water cycles, water-use efficiency (WUE) quantifies how much water an ecosystem uses for carbon gain. Although ecosystem C and water fluxes have been intensively studied, yet it remains unclear how ecosystem WUE responds to climate warming and which processes dominate the response of WUE. To answer these questions, we examined canopy WUE (WUEc), ecosystem WUE (WUEe) and their components including gross ecosystem productivity, ecosystem evapotranspiration (ET), soil evaporation (E), and plant canopy transpiration (T), in response to warming in an alpine meadow by using a manipulative warming experiment in 2015 and 2016. As expected, low- and high-level warming treatments increased soil temperature (Tsoil) at 10 cm on average by 1.65 and 2.77°C, but decreased soil moisture (Msoil) by 2.52 and 7.6 vol %, respectively, across the two years. Low- and high-level warming increased WUEe by 7.7 and 9.3% over the two years, but rarely changed WUEc in either year. T/ET ratio determined the differential responses of WUEc and WUEe. Larger T/ET led to less difference between WUEc and WUEe. By partitioning WUEc and WUEe into different carbon and water fluxes, we found that T rather than gross ecosystem productivity or E dominated the responses of WUEc and WUEe to warming. This study provides empirical insights into how ecosystem WUE responds to warming and illustrates the importance of plant transpiration in regulating ecosystem WUE under future climate change.

  12. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Treesearch

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  13. Transpiration-driven aridification of the American West in 21st-Century model projections

    NASA Astrophysics Data System (ADS)

    Mankin, J. S.; Smerdon, J. E.; Cook, B.; Williams, P.; Seager, R.

    2016-12-01

    Climate models project significant 21st-Century declines in soil moisture and runoff over the American West from anthropogenic climate change, but the associated physical mechanisms are poorly characterized. In particular, there are significant uncertainties regarding the modulation of evaporative losses by vegetation and how the physical determinants (i.e., changes in moisture supply and demand) of future surface moisture balance will vary in time, space, and depth in the soil. Using 35-members of the NCAR CESM large ensemble (LENS) and 1800 years of its pre-industrial control simulation, we examine the response of Western surface moisture balance (soil moisture and runoff) to anthropogenic forcing. Declines in runoff and soil moisture are forced primarily by robust increases in evapotranspiration (from increased plant transpiration and canopy evaporation from leaf area index increases), rather than more uncertain changes in total precipitation. This increased water loss occurs even with significant and widespread increases in plant water-use efficiency. Additionally, snowpack reductions in the Rockies and the Pacific Northwest contribute to reductions in summer-season deep soil moisture, while increased transpiration dries out near surface soil moisture even in regions where total precipitation increases. When coupled with a warming- and CO2-induced shift in phenology and increase in net primary production, these vegetation changes reduce peak summer soil moisture and runoff considerably. Our results thus point to a large role for simulated vegetation responses in determining future Western aridity, highlighting the importance of reducing the substantial extant uncertainties in vegetation processes simulated within climate models.

  14. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE PAGES

    Banerjee, Tirtha; Linn, Rodman Ray

    2018-04-11

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  15. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tirtha; Linn, Rodman Ray

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  16. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    PubMed Central

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  17. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    PubMed

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  18. The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency.

    PubMed

    Nilson, Sarah E; Assmann, Sarah M

    2010-04-01

    Land plants must balance CO2 assimilation with transpiration in order to minimize drought stress and maximize their reproductive success. The ratio of assimilation to transpiration is called transpiration efficiency (TE). TE is under genetic control, although only one specific gene, ERECTA, has been shown to regulate TE. We have found that the alpha-subunit of the heterotrimeric G protein in Arabidopsis (Arabidopsis thaliana), GPA1, is a regulator of TE. gpa1 mutants, despite having guard cells that are hyposensitive to abscisic acid-induced inhibition of stomatal opening, have increased TE under ample water and drought stress conditions and when treated with exogenous abscisic acid. Leaf-level gas-exchange analysis shows that gpa1 mutants have wild-type assimilation versus internal CO2 concentration responses but exhibit reduced stomatal conductance compared with ecotype Columbia at ambient and below-ambient internal CO2 concentrations. The increased TE and reduced whole leaf stomatal conductance of gpa1 can be primarily attributed to stomatal density, which is reduced in gpa1 mutants. GPA1 regulates stomatal density via the control of epidermal cell size and stomata formation. GPA1 promoter::beta-glucuronidase lines indicate that the GPA1 promoter is active in the stomatal cell lineage, further supporting a function for GPA1 in stomatal development in true leaves.

  19. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape

    USGS Publications Warehouse

    Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, Ronald

    2011-01-01

    Riparian buffers are designed as management practices to increase infiltration and reduce surface runoff and transport of sediment and nonpoint source pollutants from crop fields to adjacent streams. Achieving these ecosystem service goals depends, in part, on their ability to remove water from the soil via transpiration. In these systems, edges between crop fields and trees of the buffer systems can create advection processes, which could influence water use by trees. We conducted a field study in a riparian buffer system established in 1994 under a humid temperate climate, located in the Corn Belt region of the Midwestern U.S. (Iowa). The goals were to estimate stand level transpiration by the riparian buffer, quantify the controls on water use by the buffer system, and determine to what extent advective energy and tree position within the buffer system influence individual tree transpiration rates. We primarily focused on the water use response (determined with the Heat Ratio Method) of one of the dominant species (Acer saccharinum) and a subdominant (Juglans nigra). A few individuals of three additional species (Quercus bicolor, Betula nigra, Platanus occidentalis) were monitored over a shorter time period to assess the generality of responses. Meteorological stations were installed along a transect across the riparian buffer to determine the microclimate conditions. The differences found among individuals were attributed to differences in species sap velocities and sapwood depths, location relative to the forest edge and prevailing winds and canopy exposure and dominance. Sapflow rates for A. saccharinum trees growing at the SE edge (prevailing winds) were 39% greater than SE interior trees and 30% and 69% greater than NW interior and edge trees, respectively. No transpiration enhancement due to edge effect was detected in the subdominant J. nigra. The results were interpreted as indicative of advection effects from the surrounding crops. Further, significant

  20. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    PubMed

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  1. Carbon dioxide flux, transpiration and light response of millet in the Sahel

    NASA Astrophysics Data System (ADS)

    Friborg, T.; Boegh, E.; Soegaard, H.

    1997-02-01

    Within the framework of the HAPEX-Sahel experiment carried out in Niger during the rainy season of 1992, measurements of fluxes defining the vegetation-atmosphere interaction were conducted over a millet field, for a period of nearly 2 months. These measurements comprised continuous recording of solar radiation, atmospheric carbon dioxide fluxes using the eddy correlation technique, and sap flow through millet plants. Based on biometric measurements of the millet plants comprising height, spacing and leaf area index, the solar radiation is converted to absorbed photosynthetically active radiation (aPAR). The coupling between the three parameters is examined in pairs. The diurnal and seasonal variations are analysed in relation to plant development. A strong linear relationship between aPAR and carbon dioxide assimilation can be established from the measurements, giving a quantum yield of 0.03 mol CO 2 mol -1 quanta. A comparison between CO 2 flux and transpiration shows that this relationship is affected by the water vapour pressure deficit of the atmosphere, but corresponds to the results found for other drought-tolerant C 4 crops.

  2. Transpiration cooled electrodes and insulators for MHD generators

    DOEpatents

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  3. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  4. Transpiration and Groundwater Uptake Dynamics of Pinus Brutia on a Fractured Mediterranean Mountain Slope during Two Hydrologically Contrasting Years

    NASA Astrophysics Data System (ADS)

    Eliades, Marinos; Bruggeman, Adriana; Lubczynski, Maciek; Christou, Andreas; Camera, Corrado; Djuma, Hakan

    2017-04-01

    Semi-arid environments tend to have extreme temporal variability in rainfall, resulting in extended periods with little to no precipitation. The mountainous topography is characterized by steep slopes, often leading to shallow soil layers with limited water storage capacity. Tree species survive in these environments by developing various adaptation mechanisms to access water. The main objective of this study is to examine the differences of two hydrologically contrasting years on the transpiration and groundwater uptake dynamics of Pinus brutia trees. We selected four trees for sap flow monitoring in an 8966-m2 fenced area of Pinus brutia forest. The site is located at 620 m elevation, on the northern foothills of the Troodos mountains in Cyprus. The slope of the site ranges between 0 and 82%. The average daily minimum temperature is 5 0C in January and the average daily maximum temperature is 35 oC in August. The mean annual rainfall is 425 mm. Monitoring started on 1 January 2015 and is ongoing. We measured soil depth in a 1-m grid around each of the selected trees for monitoring. We processed soil depths in ArcGIS software (ESRI) to create a soil depth map. We used a Total Station and a differential GPS for the creation of a high resolution DEM of the area covering the selected trees. We installed seventeen soil moisture sensors at 12-cm depth and two at 30-cm depth, where the soil was deeper than 24 cm. We randomly installed 28 metric manual rain gauges under the trees' canopy to measure throughfall. For stemflow we installed a plastic tube around each tree trunk and connected it to a manual rain gauge. We used sap flow heat ratio method (HRM) instruments to determine sap flow rates of the Pinus brutia. Hourly meteorological conditions were observed by an automatic meteorological station. Here we present the results of the January to October periods, in order to have comparable results for the two contrasting years. During the wet year of 2015, we measured 439

  5. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid ‘Dodoens’

    PubMed Central

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-01-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210

  6. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    NASA Astrophysics Data System (ADS)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  7. Response of transpiration to rain pulses for two tree species in a semiarid plantation.

    PubMed

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration (Ec) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall Ec development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance (Gc) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-dG c/dlnVPD to Gcref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low Ec. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand Ec. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the Ec recovery. Further, the stand Ec was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. Ec enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall Ec recovery. Ec recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall Ec increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of Ec in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  8. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  9. Long-term impact of Ophiostoma novo-ulmi on leaf traits and transpiration of branches in the Dutch elm hybrid 'Dodoens'.

    PubMed

    Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav

    2016-03-01

    To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Diel plant water use and competitive soil cation exchange interact to enhance NH 4 + and K + availability in the rhizosphere

    DOE PAGES

    Espeleta, Javier F.; Cardon, Zoe G.; Mayer, K. Ulrich; ...

    2016-11-12

    Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K + and NH 4 +, both high-demand nutrients. A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K + and NH 4 +. Competitive cation exchangemore » enabled lowdemand cations that accumulate against roots (Ca 2+, Mg 2+, Na +) to desorb NH 4 + and K + from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH 4 + and K + aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations. Finally, diel plant water use and competitive cation exchange enhanced NH 4 + and K + availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.« less

  11. A simple framework to analyze water constraints on seasonal transpiration in rubber tree (Hevea brasiliensis) plantations

    PubMed Central

    Sopharat, Jessada; Gay, Frederic; Thaler, Philippe; Sdoodee, Sayan; Isarangkool Na Ayutthaya, Supat; Tanavud, Charlchai; Hammecker, Claude; Do, Frederic C.

    2015-01-01

    Climate change and fast extension in climatically suboptimal areas threaten the sustainability of rubber tree cultivation. A simple framework based on reduction factors of potential transpiration was tested to evaluate the water constraints on seasonal transpiration in tropical sub-humid climates, according pedoclimatic conditions. We selected a representative, mature stand in a drought-prone area. Tree transpiration, evaporative demand and soil water availability were measured every day over 15 months. The results showed that basic relationships with evaporative demand, leaf area index and soil water availability were globally supported. However, the implementation of a regulation of transpiration at high evaporative demand whatever soil water availability was necessary to avoid large overestimates of transpiration. The details of regulation were confirmed by the analysis of canopy conductance response to vapor pressure deficit. The final objective of providing hierarchy between the main regulation factors of seasonal and annual transpiration was achieved. In the tested environmental conditions, the impact of atmospheric drought appeared larger importance than soil drought contrary to expectations. Our results support the interest in simple models to provide a first diagnosis of water constraints on transpiration with limited data, and to help decision making toward more sustainable rubber plantations. PMID:25610443

  12. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    NASA Astrophysics Data System (ADS)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  13. Application of a tree-level hydrodynamic model to simulate plot-level transpiration in the upland oak/pine forest in New Jersey

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Fatichi, S.; Frasson, R. P. M.; Schafer, K. V.

    2015-12-01

    The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) simulates water flow through the tree using the porous media analogy. Empirical equations relate water potential within the stem to stomatal conductance at the leaf level. Leaves are connected to the stem at each height. While still simplified, this approach brings realism to the simulation of transpiration compared with models where stomatal conductance is directly linked to soil moisture. The FETCH2 model accounts for plant hydraulic traits such as xylem conductivity, area of hydro-active xylem, vertical distribution of leaf area, and maximal and minimal xylem water content, and their effect on the dynamics of water flow in the tree system. Such a modeling tool enhances our understanding of the role of hydraulic limitations and allows us to incorporate the effects of short-term water stresses on transpiration. Here, we use FETCH2 parameterized and evaluated with a large sap-flow observations data set, collected from 21 trees of two genera (oak/pine) at Silas Little Experimental Forest, NJ. The well-drained deep sandy soil leads to water stress during many days throughout the growing season. We conduct a set of tree-level transpiration simulations, and use the results to evaluate the effects of different hydraulic strategies on daily transpiration and water use efficiency. We define these "hydraulic strategies" through combinations of multiple sets of parameters in the model that describe the root, stem and leaf hydraulics. After evaluating the performance of the model, we use the results to shed light on the future trajectory of the forest in terms of species-specific transpiration responses. Application of the model on the two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam) shows that the applied modeling approach was successfully captures the differences in water-use strategy through optimizing multiple physiological and hydraulic parameters.

  14. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    NASA Astrophysics Data System (ADS)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  15. Thermal transpiration: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    T, Joe Francis; Sathian, Sarith P.

    2014-12-01

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  16. Heat transfer to the transpired turbulent boundary layer.

    NASA Technical Reports Server (NTRS)

    Kays, W. M.

    1972-01-01

    This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.

  17. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration

    PubMed Central

    Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg

    2007-01-01

    Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993

  18. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    NASA Astrophysics Data System (ADS)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  19. Plant hydraulic traits govern forest water use and growth

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  20. Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones.

    PubMed

    He, Lei; Li, Changyou; Liu, Runjin

    2017-08-01

    Peanut (Arachis hypogaea Linn. cv: Luhua 11) and tomato (Lycopersicon esculentum Mill. cv: Zhongshu 4) were inoculated with arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae BEG167 (Fm), Rhizophagus intraradices BEG141 (Ri), and Glomus versiforme Berch (Gv), and/or Spodoptera exigua (S. exigua) under greenhouse conditions. Results indicated that feeding by S. exigua had little influence on colonization of peanut plants by AMF, but improved colonization of tomato by Fm and Gv. Feeding by S. exigua had little influence on leaf net photosynthetic rate, transpiration rate, and stomatal conductance of nonmycorrhizal peanut plants but significantly improved net photosynthetic rate and transpiration rate of mycorrhizal plants of both hosts. AMF with or without S. exigua inoculation improved host plant photosynthetic characteristics, growth, and hormone status. Fm showed maximum beneficial effects, followed by Gv. The concentrations and ratios of phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), and jasmonic acid (JA) in the leaves of the host plants were changed due to the interaction between AMF and S. exigua. Generally, AMF with or without S. exigua inoculation increased the concentrations of GA, ZR, and JA and the ratios of IAA/ABA, GA/ABA, ZR/ABA, and IAA + GA + ZR/ABA, while feeding by S. exigua on nonmycorrhizal plants showed the opposite effect. The concentration of JA in the leaves of peanut and tomato inoculated with Fm or Fm + S. exigua was 1.9 and 1.9 times and 2.5 and 2.7 times, respectively, greater than that of the controls inoculated with neither. There was a negative correlation between the JA concentration and the survival percentage of S. exigua larva. We conclude that indirect interactions between AMF and insect herbivores changed the photosynthetic and hormone characteristics, and ratios of phytohormones, thereby revealing mechanisms of belowground-aboveground interactions.

  1. Modeling the Impact of Land Use Change on Regional Water Flux in Northern Wisconsin-Species Effects on Transpiration and Canopy Average Stomatal Conductance

    NASA Astrophysics Data System (ADS)

    Ewers, B. E.; Mackay, D. S.; Ahl, D. E.; Burrows, S. N.; Samanta, S. S.; Gower, S. T.

    2001-05-01

    Land use change has created a diversity of forest cover types in northern Wisconsin. Our objective was to determine if changes in forest cover would result in a significant change in regional water flux. To adequately sample these forest cover types we chose four cover types red pine, sugar maple/basswood, quaking aspen/balsam fir, and northern white-cedar/balsam fir/green alder that represent more than 80 percent of the ground area. The remainder of the ground area is mostly non-forested grassland, shrubland, and open water. Within each cover type we measured sap flux of 8 trees of each species. We scaled point measurements of sap flux to tree transpiration using sensors positioned radially into the conducting sapwood and on both the north and south sides of the tree. We found that aspen/balsam fir had the highest average daily transpiration rates. There was no difference in the northern white-cedar/balsam fir/green alder and red pine cover types. The sugar maple/basswood cover type had the lowest daily average transpiration rate. These changes in transpiration could not be explained by differences in leaf area index. Thus, we calculated canopy average stomatal conductance (GS) using an inversion of the Penman-Monteith equation and tree leaf area. We modified a regional hydrology model to include a simple tree hydraulic sub-model that assumes stomatal regulation of leaf water potential. We tested the behavior of the sub-model by evaluating GS response to vapor pressure deficit, radiation, temperature, and soil moisture for each species. We hypothesize that species with a high canopy average stomatal conductance at low vapor pressure deficit will have to have greater sensitivity to vapor pressure deficit in order to maintain minimal leaf water potential as suggested by the model. Our results indicate that changes to forest cover such as conversion from low transpiring sugar maple/basswood to high transpiring aspen/fir will result in predictable changes to the

  2. [Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis].

    PubMed

    Huo, Hong; Wang, Chuan-kuan

    2007-06-01

    The photosynthesis and transpiration of Pinus koraiensis needles at different canopy positions and of different leaf ages were measured in the field with a Li-6400 portable CO2/H2O infrared gas analyzer. The results showed that canopy position and leaf age had significant effects on the maximum net photosynthetic rate (Pmax), light saturation point (LSP), light compensation point (LCP), maximum apparent quantum efficiency (alpha), transpiration rate (T(r)), and specific leaf area (SLA), but no effects on water use efficiency (WUE). The Pmax decreased with the decrease of canopy position and the increase of leaf age, ranging in 6.55-9.05 micromol.m(-2).s(-1) on average. There were great variations in LSP and LCP among different canopy positions and leaf ages. The needles at middle canopy position had the greatest capacity of utilizing both weak and strong radiation. The T(r) decreased with canopy position decreasing, and varied from 1.37 to 1.59 mmol.m(-2).s(-1) across different leaf ages. There was a significant positive correlation between T(r) and photosynthetically active radiation (R2 = 0.967), and between WUE and net photosynthetic rate (R2 = 0.860). The SLA decreased with canopy position and leaf age increasing, ranging in 6.61-8.41 m2.kg(-1) and 6.65-8.38 m2.kg(-1), respectively.

  3. The competition between liquid and vapor transport in transpiring leaves.

    PubMed

    Rockwell, Fulton Ewing; Holbrook, N Michele; Stroock, Abraham Duncan

    2014-04-01

    In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem.

  4. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    NASA Astrophysics Data System (ADS)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  5. Effects of Post-fire Succession and Edaphic Conditions on Tree Transpiration in a Boreal Black Spruce Forest

    NASA Astrophysics Data System (ADS)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

    2007-12-01

    Boreal forest ecosystems play an integral role in global climate change because of their large land area and ability to store large quantities of carbon. Quantifying and explaining tree water use in both well- and poorly- drained soils and across successional development is critical in understanding the influence of physiological processes on carbon, water, and energy cycling. Four black spruce stands burned in 1850, 1930, 1964, and 1989 were chosen for this research because they had been shown in previous studies to represent critical stages of forest development that capture the successional impacts of both leaf area and species composition change. We hypothesized that tree transpiration will differ between well- and poorly-drained areas and with age due to 1) tree size and age and edaphic-related hydraulic adjustments and 2) tree size will be explained by species specific growth differences from edaphic conditions. Sap flux, leaf water potential (\\PsiL), site specific allometric relationships between sapwood area and leaf area and soil properties such as texture and organic matter depth in each of the four burn ages were utilized to test these hypotheses. Results show that sap flux for Picea mariana at the 1964 burn age differed between well- and poorly-drained soils when scaled per unit xylem area with trees located on poorly-drained soils experiencing higher sap flux rates than trees in well- drained areas (101.79 & 83.02 g cm-2 day-1 respectively). However, when scaled to transpiration on a per tree basis, taking tree size into account, trees on well-drained soils had higher rates than those in poorly- drained locations (366.96 & 216.82 g tree-1 day-1 respectively). The presence of Pinus banksiana and Populus tremuloides in the well-drained areas increased stand transpiration rates for these areas considerably as compared to the poorly-drained areas. Midday \\PsiL for all four burns show no significant difference between well- and poorly-drained (average

  6. Relating xylem cavitation to transpiration in cotton

    USDA-ARS?s Scientific Manuscript database

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  7. Competition for light and water in a coupled soil-plant system

    DOE PAGES

    Manoli, Gabriele; Huang, Cheng -Wei; Bonetti, Sara; ...

    2017-08-14

    Here, it is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, asmore » well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA

  8. Competition for light and water in a coupled soil-plant system

    NASA Astrophysics Data System (ADS)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  9. Competition for light and water in a coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoli, Gabriele; Huang, Cheng -Wei; Bonetti, Sara

    Here, it is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, asmore » well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA

  10. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    PubMed Central

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange

  11. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    PubMed

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  12. Multi-modal sensor system for plant water stress assessment

    USDA-ARS?s Scientific Manuscript database

    Plant stress critically affects plant growth and causes significant loss of productivity and quality. When the plant is under water stress, it impedes photosynthesis and transpiration, resulting in changes in leaf color and temperature. Leaf discoloration in photosynthesis can be assessed by measu...

  13. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    PubMed Central

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source–sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m-2 s-1) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant. PMID:25972884

  14. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling.

    PubMed

    López, Rosana; Brossa, Ricard; Gil, Luis; Pita, Pilar

    2015-01-01

    The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of abscisic acid found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN) and stomatal conductance (gS) in the short term, but later (gS below 0.07 mol m(-2) s(-1)) AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM) and the operating quantum efficiency of photosystem II (ΦPSII) in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  15. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  16. Using a basin-scale hydrological model to estimate crop transpiration and soil evaporation

    NASA Astrophysics Data System (ADS)

    Kite, G.

    2000-03-01

    Increasing populations and expectations, declining crop yields and the resulting increased competition for water necesitate improvements in irrigation management and productivity. A key factor in defining agricultural productivity is to be able to simulate soil evaporation and crop transpiration. In agribusiness terms, crop transpiration is a useful process while soil and open-water evaporations are wasteful processes. In this study a distributed hydrological model was used to compute daily evaporation and transpiration for a variety of crops and other land covers within the 17,200 km 2 Gediz Basin in western Turkey. The model, SLURP, describes the complete hydrological cycle for each land cover within a series of sub-basins including all dams, reservoirs, regulators and irrigation schemes in the basin. The sub-basins and land covers are defined by analysing a digital elevation model and NOAA AVHRR satellite data. In this study, the model uses the FAO implementation of the Penman-Monteith equation to simulate soil evaporation and crop transpiration. The results of the model runs provide time series of data on streamflow at many points along the river system, abstractions and return flows from crops within the irrigation schemes and areally distributed soil evaporation and crop transpiration across the entire basin on each day of an 11 year period. The results show that evaporation and transpiration vary widely across the basin on any one day and over the irrigation season and can be used to evaluate the effectiveness of the various irrigation strategies used in the basin. The advantages of using such a model as compared to deriving evapotranspiration from satellite data are that the model obtains results for each day of an indefinitely long period, as opposed to occasional snapshots, and can also be used to simulate alternate scenarios.

  17. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  18. Modelling the impact of the light regime on single tree transpiration based on 3D representations of plant architecture

    NASA Astrophysics Data System (ADS)

    Bittner, S.; Priesack, E.

    2012-04-01

    We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring

  19. Transpiration of oak trees in the oak savannas of the Southwestern Borderlands region

    Treesearch

    Peter F. Ffolliott; Cody L. Stropki; Aaron T. Kauffman; Gerald J. Gottfried

    2008-01-01

    Transpiration of oak trees on the Cascabel watersheds in the savannas on the eastern slope of the Peloncillo Mountains in southwestern New Mexico has been estimated by the sap-flow method. Transpiration represents the largest loss of gross precipitation falling on a watershed in approximations of water budgets for the more densely stocked oak woodlands of the...

  20. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-03-01

    The contribution of land evaporation to local and remote precipitation (i.e., moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper, Part 1, evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. As the main result we present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of eight days, while transpiration typically resides nine days in the atmosphere. Interception recycling has a much shorter local length scale than transpiration recycling, thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells. On the other hand, transpiration remains active during dry spells and is transported over much larger distances downwind where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that

  1. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle.

  2. Picturing pathogen infection in plants.

    PubMed

    Barón, Matilde; Pineda, Mónica; Pérez-Bueno, María Luisa

    2016-09-01

    Several imaging techniques have provided valuable tools to evaluate the impact of biotic stress on host plants. The use of these techniques enables the study of plant-pathogen interactions by analysing the spatial and temporal heterogeneity of foliar metabolism during pathogenesis. In this work we review the use of imaging techniques based on chlorophyll fluorescence, multicolour fluorescence and thermography for the study of virus, bacteria and fungi-infected plants. These studies have revealed the impact of pathogen challenge on photosynthetic performance, secondary metabolism, as well as leaf transpiration as a promising tool for field and greenhouse management of diseases. Images of standard chlorophyll fluorescence (Chl-F) parameters obtained during Chl-F induction kinetics related to photochemical processes and those involved in energy dissipation, could be good stress indicators to monitor pathogenesis. Changes on UV-induced blue (F440) and green fluorescence (F520) measured by multicolour fluorescence imaging in pathogen-challenged plants seem to be related with the up-regulation of the plant secondary metabolism and with an increase in phenolic compounds involved in plant defence, such as scopoletin, chlorogenic or ferulic acids. Thermal imaging visualizes the leaf transpiration map during pathogenesis and emphasizes the key role of stomata on innate plant immunity. Using several imaging techniques in parallel could allow obtaining disease signatures for a specific pathogen. These techniques have also turned out to be very useful for presymptomatic pathogen detection, and powerful non-destructive tools for precision agriculture. Their applicability at lab-scale, in the field by remote sensing, and in high-throughput plant phenotyping, makes them particularly useful. Thermal sensors are widely used in crop fields to detect early changes in leaf transpiration induced by both air-borne and soil-borne pathogens. The limitations of measuring photosynthesis by

  3. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    PubMed

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  4. Enhancing Elementary Pre-Service Teachers' Plant Processes Conceptions

    ERIC Educational Resources Information Center

    Thompson, Stephen L.; Lotter, Christine; Fann, Xumei; Taylor, Laurie

    2016-01-01

    Researchers examined how an inquiry-based instructional treatment emphasizing interrelated plant processes influenced 210 elementary pre-service teachers' (PTs) conceptions of three plant processes, photosynthesis, cellular respiration, and transpiration, and the interrelated nature of these processes. The instructional treatment required PTs to…

  5. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  6. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones

    PubMed Central

    Li, Chunjia; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-01-01

    Abstract Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. PMID:28444313

  7. Effect of canopy architectural variation on transpiration and thermoregulation

    NASA Astrophysics Data System (ADS)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  8. Does Hawaiian native forest conserve water? Lower uptake rates at tree and stand scale by Metrosideros polymorpha relative to plantation species

    NASA Astrophysics Data System (ADS)

    Kagawa, A. K.; Sack, L.; Duarte, T. K.; James, S. A.

    2007-12-01

    Native plants are often claimed to be conservative water users that enhance groundwater recharge compared to faster-growing non-native species that tend to dominate watersheds. This argument would have implications for motivating conservation and restoration of native forest in Hawai'i. However, few studies have examined differences in native and non-native plant transpiration (water use) at species or at stand level. Our aim was determine whether species matter to stand-level water use. We measured plant transpiration in a continuous mosaic of native forest and non-native tree plantation in Honaunau, Hawaii, focusing on endemic dominant tree Metrosideros polymorpha, alien timber trees Eucalyptus saligna and Fraxinus uhdei, and dominant understory Cibotium tree ferns. We measured xylem sap flow for six individuals of each species continuously for over eight weeks, and we estimated stand water use by scaling up these measurements using stand sapwood area and tree fern leaf area values obtained through vegetation surveys. Native forest dominant Metrosideros had the lowest rates of whole-tree daily water use at 8 kg day-1 (200kg m-2sapwood day-1), less than half the daily rates for Eucalyptus or Fraxinus; Metrosideros also had the lowest maximum transpiration rates of the three tree species. At the stand level, Fraxinus-dominated stands had higher water use than Eucalyptus- and Metrosideros- dominated stands due to the species' high sap flow rates, five-fold greater sapwood allocation, and the stands' two-fold greater dominant tree density. In Metrosideros-dominated stands, high Cibotium tree fern leaf area contributed to nearly 60% of water use, indicating the fern's critical role in forest water balance. Stand water use was influenced by factors at various scales, including species composition, stem density, tree sizes, and tree species' sapwood allocation, and was affected significantly by understory contributions. These findings highlight the importance of

  9. Thermal transpiration in zeolites: A mechanism for motionless gas pumps

    NASA Astrophysics Data System (ADS)

    Gupta, Naveen K.; Gianchandani, Yogesh B.

    2008-11-01

    We explore the use of a naturally occurring zeolite, clinoptilolite, for a chip-scale, thermal transpiration-based gas pump. The nanopores in clinoptilolite enable the required free-molecular flow, even at atmospheric pressure. The pump utilizes a foil heater located between zeolite disks in a plastic package. A 2.3mm thick zeolite disk generates a typical gas flow rate of 6.6×10-3 cc/min-cm2 with an input power of <300mW/cm2. The performance is constrained by imperfections in clinoptilolite, which provide estimated leakage apertures of 10.2-13.5μm/cm2 of flow cross section. The transient response of the pump is studied to quantify nonidealities.

  10. Plants for water recycling, oxygen regeneration and food production

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  11. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  12. How light competition between plants affects their response to climate change.

    PubMed

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Measurements and simulations of water transport in maize plants

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  14. Data Driven Estimation of Transpiration from Net Water Fluxes: the TEA Algorithm

    NASA Astrophysics Data System (ADS)

    Nelson, J. A.; Carvalhais, N.; Cuntz, M.; Delpierre, N.; Knauer, J.; Migliavacca, M.; Ogee, J.; Reichstein, M.; Jung, M.

    2017-12-01

    The eddy covariance method, while powerful, can only provide a net accounting of ecosystem fluxes. Particularly with water cycle components, efforts to partitioning total evapotranspiration (ET) into the biotic component (transpiration, T) and the abiotic component (here evaporation, E) have seen limited success, with no one method emerging as a standard.Here we demonstrate a novel method that uses ecosystem WUE to predict transpiration in two steps: (1) a filtration step that to isolate the signal of ET for periods where E is minimized and ET is likely dominated by the signal of T; and (2) a step which predicts the WUE using meteorological variables, as well as information derived from the carbon and energy fluxes. To assess the the underlying assumptions, we tested the proposed method on three ecological models, allowing validation where the underlying carbon:water relationships, as well as the transpiration estimates, are know.The partitioning method shows high correlation (R²>0.8) between Tmodel/ET and TTEA/ET across timescales from half-hourly to annually, as well as capturing spatial variability across sites. Apart from predictive performance, we explore the sensitivities of the method to the underlying assumptions, such as the effects of residual evaporation in the training dataset. Furthermore, we show initial transpiration estimates from the algorithm at global scale, via the FLUXNET dataset.

  15. Overproduction of Abscisic Acid in Tomato Increases Transpiration Efficiency and Root Hydraulic Conductivity and Influences Leaf Expansion1[OA

    PubMed Central

    Thompson, Andrew J.; Andrews, John; Mulholland, Barry J.; McKee, John M.T.; Hilton, Howard W.; Horridge, Jon S.; Farquhar, Graham D.; Smeeton, Rachel C.; Smillie, Ian R.A.; Black, Colin R.; Taylor, Ian B.

    2007-01-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in δ13C and δ18O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty. PMID:17277097

  16. Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress.

    PubMed

    Nieves-Cordones, Manuel; Caballero, Fernando; Martínez, Vicente; Rubio, Francisco

    2012-02-01

    The Arabidopsis thaliana inward-rectifier K(+) channel AKT1 plays an important role in root K(+) uptake. Recent results show that the calcineurin B-like (CBL)-interacting protein kinase (CIPK) 23-CBL1/9 complex activates AKT1 in the root to enhance K(+) uptake. In addition, this CIPK-CBL complex has been demonstrated to regulate stomatal movements and plant transpiration. However, a role for AKT1 in plant transpiration has not yet been demonstrated. Here we show that disruption of AKT1 conferred an enhanced response to water stress in plants. Experiments performed in hydroponics showed that, when water potential was diminished by adding polyethylene glycol, akt1 adult plants lost less water than wild-type (WT) plants. Under long-term water stress in soil, adult akt1 plants displayed lower transpiration and less water consumption than WT plants. Finally, akt1 stomata closed more efficiently in response to ABA. Such results were also observed in cipk23 plants. The similar responses shown by cipk23 and akt1 plants to water stress denote that the regulation of AKT1 by CIPK23 may also take place in stomata and has a negative impact on plant performance under water stress conditions.

  17. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-12-01

    The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning

  18. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  19. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica.

    PubMed

    Yu, Ming-Han; Ding, Guo-Dong; Gao, Guang-Lei; Sun, Bao-Ping; Zhao, Yuan-Yuan; Wan, Li; Wang, De-Ying; Gui, Zi-Yang

    2015-01-01

    Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.

  20. Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves : Combined measurements with the cell pressure probe and nanoliter osmometer.

    PubMed

    Nonami, H; Schulze, E D

    1989-01-01

    Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.

  1. A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli

    PubMed Central

    Flors, Víctor; Paradís, Mercedes; García-Andrade, Javier; Cerezo, Miguel; González-Bosch, Carmen

    2007-01-01

    Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl− accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound. PMID:19516968

  2. Photochemical Reflectance Index (PRI) as a proxy of Light Use Efficiency (LUE) and transpiration in Mediterranean crop sites

    NASA Astrophysics Data System (ADS)

    LE Dantec, V.; Chebbi, W.; Boulet, G.; Merlin, O.; Lili-Chabaane, Z.; Er Raki, S.; Ceschia, E.; Khabba, S.; Fanise, P.; Zawilski, B.; Simonneaux, V.; Jarlan, L.

    2016-12-01

    The Photochemical Reflectance Index (PRI) is based on the short term reversible xanthophyll pigment changes accompanying plant stress and therefore of the associated photosynthetic activities. Strong relationships between PRI and Light Use Efficiency (LUE) were shown at leaf and canopy scales and over a wide range of species (Garbulsky et al., 2011). But very few previous works have explored the potential link with plant water status. In this study, we have first analyzed the link between PRI and LUE at canopy scale on two different crops in terms of canopy structure and crop management: olive grove (Tunisia) and wheat grown under different water regimes (irrigated or rainfed) and climate zones (France, Morocco). We have investigated the daily and seasonal dynamics of PRI; linking its variations to meteorological factors (global radiation and sun angle effects, soil water content, relative air humidity …) and plant processes. The highest correlations were mainly observed in clear skies conditions. We have found, whatever site, linear negative relationships between PRI and LUE using data acquired in midday (i.e. in solar zenithal angle condition). Linear link between PRI and sapflow measurements was also revealed. This correlation was obtained over periods characterized by a moderate soil water deficit, i.e. by when transpiration rate was mainly control by Vapor Pressure Deficit. We will then briefly presented alternative and complementary approaches to this index, to detect different level of water stress using thermal infrared emissions.

  3. Genotypic variation in transpiration efficiency due to differences in photosynthetic capacity among sugarcane-related clones.

    PubMed

    Li, Chunjia; Jackson, Phillip; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong

    2017-04-01

    Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Leaf transpiration efficiency of some drought-resistant maize lines

    USDA-ARS?s Scientific Manuscript database

    Field measurements of leaf gas exchange in maize often indicate stomatal conductances higher than required to provide substomatal carbon dioxide concentrations saturating to photosynthesis. Thus maize leaves often operate at lower transpiration efficiency (TE) than potentially achievable for specie...

  5. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  6. Difference of stand-scale transpiration between ridge and riparian area in a watershed with Japanese cypress plantation

    NASA Astrophysics Data System (ADS)

    Kume, T.; Tsuruta, K.; Komatsu, H.; Shinohara, Y.; Otsuki, K.

    2011-12-01

    Several different methods to assess water use are available, and the sap flux measurement technique is one of the most promising methods, especially in monotonous watershed. Previously, three spatial levels of scaling have been used to obtain bottom-up transpiration estimates based on the sap flux technique: from within-tree to tree, from tree to stand, and from stand to watershed or landscape. Although there are considerable variations that must be taken into account at each step, few studies have examined plot-to-plot variability of stand-scale transpirations. To design optimum sampling method to accurately estimate transpiration at the watershed-scale, it is indispensable to understand heterogeneity of stand-scale transpiration in a forested watershed and the factors determining the heterogeneity. This study was undertaken to clarify differences of stand-scale transpirations within a watershed and the factors determining the differences. To this aim, we conducted sap flux-based transpiration estimates in two plots such as a lower riparian (RZ) and an upper ridge (UZ) zone in a watershed with Japanese cypress plantation, Kyushu, Japan in two years. Tree height and diameter of breast height (DBH) were lager in RZ than those of UZ. The stand sapwood area (As) was lager in RZ than UZ (21.9 cm2h a-1, 16.8 cm2ha-1, respectively). Stand mean sap flux (Js) in RZ was almost same as that of UZ when relatively lower Js, while, Js in RZ was higher than that of UZ when relatively higher Js (i.e., bright days in summer season). Consequently, daily stand-scale transpiration (E), which is the multiple of As and Js, differed by two times between RZ and UZ in summer season. This study found significant heterogeneity of stand-scale transpiration within the watershed and that the differences could be caused by two aspects such as stand structure and sap flux velocity.

  7. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  8. Water relations of riparian plants from warm desert regions

    USGS Publications Warehouse

    Smith, S.D.; Devitt, Dale A.; Cleverly, James R.; Busch, David E.

    1998-01-01

    Riparian plants have been classified as 'drought avoiders' due to their access to an abundant subsurface water supply. Recent water-relations research that tracks water sources of riparian plants using the stable isotopes of water suggests that many plants of the riparian zone use ground water rather than stream water, and not all riparian plants are obligate phreatophytes (dependent on ground water as a moisture source) but may occasionally be dependent of unsaturated soil moisture sources. A more thorough understanding of riparian plant-water relations must include water-source dynamics and how those dynamics vary over both space and time. Many rivers in the desert Southwest have been invaded by the exotic shrub Tamarix ramosissima (saltcedar). Our studies of Tamarix invasion into habitats formerly dominated by native riparian forests of primarily Populus and Salix have shown that Tamarix successfully invades these habitats because of its (1) greater tolerance to water stress and salinity, (2) status as a facultative, rather than obligate, phreatophyte and, therefore, its ability to recover from droughts and periods of ground-water drawdown, and (3) superior regrowth after fire. Analysis of water- loss rates indicate that Tamarix-dominated stands can have extremely high evapotranspiration rates when water tables are high but not necessarily when water tables are lower. Tamarix has leaf-level transpiration rates that are comparable to native species, whereas sap-flow rates per unit sapwood area are higher than in natives, suggesting that Tamarix maintains higher leaf area than can natives, probably due to its greater water stress tolerance. Tamarix desiccates and salinizes floodplains, due to its salt exudation and high transpiration rates, and may also accelerate fire cycles, thus predisposing these ecosystems to further loss of native taxa. Riparian species on regulated rivers can be exposed to seasonal water stress due to depression of floodplain water tables

  9. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?

    PubMed

    Burkhardt, J; Pariyar, S

    2016-01-01

    Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing <1% ambient aerosol concentrations. In addition, some AA plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and

  10. Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of In Planta endophyte concentration.

    PubMed

    Spiering, Martin J; Greer, Dennis H; Schmid, Jan

    2006-08-01

    Neotyphodium lolii is a fungal endophyte of perennial ryegrass (Lolium perenne), improving grass fitness through production of bioactive alkaloids. Neotyphodium species can also affect growth and physiology of their host grasses (family Poaceae, sub-family Pooideae), but little is known about the mechanisms. This study examined the effect of N. lolii on net photosynthesis (P(n)) and growth rates in ryegrass genotypes differing in endophyte concentration in all leaf tissues. Plants from two ryegrass genotypes, Nui D and Nui UIV, infected with N. lolii (E+) differing approx. 2-fold in endophyte concentration or uninfected clones thereof (E-) were grown in a controlled environment. For each genotype x endophyte treatment, plant growth rates were assessed as tillering and leaf extension rates, and the light response of P(n), dark respiration and transpiration measured in leaves of young (30-45 d old) and old (>90 d old) plants with a single-chamber open infrared gas-exchange system. Neotyphodium lolii affected CO(2)-limited rates of P(n), which were approx. 17 % lower in E+ than E- plants (P < 0.05) in the young plants. Apparent photon yield and dark respiration were unaffected by the endophyte (P > 0.05). Neotyphodium lolii also decreased transpiration (P < 0.05), but only in complete darkness. There were no endophyte effects on P(n) in the old plants (P > 0.05). E+ plants grew faster immediately after replanting (P < 0.05), but had approx. 10 % lower growth rates during mid-log growth (P < 0.05) than E- plants, but there was no effect on final plant biomass (P > 0.05). The endophyte effects on P(n) and growth tended to be more pronounced in Nui UIV, despite having a lower endophyte concentration than Nui D. Neotyphodium lolii affects CO(2) fixation, but not light interception and photochemistry of P(n). The impact of N. lolii on plant growth and photosynthesis is independent of endophyte concentration in the plant, suggesting that the endophyte mycelium is not simply

  11. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    PubMed

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  12. Effect of Leaf Water Potential on Internal Humidity and CO 2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    DOE PAGES

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; ...

    2017-02-06

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on

  13. Effect of Leaf Water Potential on Internal Humidity and CO 2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flatmore » surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Here, our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. Lastly, the omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on

  14. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    NASA Astrophysics Data System (ADS)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  15. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Markus, Weiler; Theresa, Blume

    2017-04-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls. We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km2-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocities of these 61 trees and determined the importance of the different predictors. Results indicate that a combination of tree-, stand- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, the stand density, geology and aspect. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. Thus, transpiration estimates at the

  16. Water vapor recovery from plant growth chambers

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Newbold, D. D.; Colton, R. H.; Mccray, S. B.

    1991-01-01

    NASA is investigating the use of plant growth chambers (PGCs) for space missions and for bases on the moon and Mars. Key to successful development of PGCs is a system to recover and reuse the water vapor that is transpired from the leaves of the plants. A design is presented for a simple, reliable, membrane-based system that allows the recovery, purification, and reuse of the transpired water vapor through control of temperature and humidity levels in PGCs. The system is based on two membrane technologies: (1) dehumidification membrane modules to remove water vapor from the air, and (2) membrane contactors to return water vapor to the PGC (and, in doing so, to control the humidity and temperature within the PGC). The membrane-based system promises to provide an ideal, stable growth environment for a variety of plants, through a design that minimizes energy usage, volume, and mass, while maximizing simplicity and reliability.

  17. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    NASA Astrophysics Data System (ADS)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  18. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants

    USGS Publications Warehouse

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.

    1991-01-01

    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  19. Mechanical Stress Regulation of Plant Growth and Development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1985-01-01

    Growth dynamics analysis was used to determine to what extent the seismic stress induced reduction in photosynthetic productivity in shaken soybeans was due to less photosynthetic surface, and to what extent to lower efficiency of assimulation. Seismic stress reduces shoot transpiration rate 17% and 15% during the first and second 45 minute periods following a given treatment. Shaken plants also had a 36% greater leaf water potential 30 minutes after treatment. Continuous measurement of whole plant photosynthetic rate shows that a decline in CO2 fixation began within seconds after the onset of shaking treatment and continued to decline to 16% less than that of controls 20 minutes after shaking, after which gradual recovery of photosynthesis begins. Photosynthetic assimilation recovered completely before the next treatment 5 hours later. The transitory decrease in photosynthetic rate was due entirely to a two fold increase in stomatal resistance to CO2 by the abaxial leaf surface. Mesophyll resistance was not significantly affected by periodic seismic treatment. Temporary stomatal aperture reduction and decreased CO2 fixation are responsible for the lower dry weight of seismic stressed plants growing in a controlled environment.

  20. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1

    PubMed Central

    Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki

    1990-01-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719

  1. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea).

    PubMed

    Bronson, Dustin R; English, Nathan B; Dettman, David L; Williams, David G

    2011-11-01

    Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO(2) assimilation (A(net)), stomatal conductance (g(s)), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUE(day)) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO(2) uptake responding to shifts in nighttime air temperature and humidity. The lowest WUE(day) occurred during time periods with extreme high and low air vapor pressure deficit (D(a)). The diurnal with the highest D(a) had low WUE(day) due to minimal net carbon gain across the 24 h period. Low WUE(day) was also observed under conditions of low D(a); however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D(a) confirmed the relationship between D(a) and g(s). Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.

  2. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit.

    PubMed

    de Freitas, Sergio Tonetto; Shackel, Kenneth A; Mitcham, Elizabeth J

    2011-05-01

    Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.

  3. Evaluating physiological responses of plants to salinity stress

    PubMed Central

    Negrão, S.; Schmöckel, S. M.; Tester, M.

    2017-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746

  4. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests.

    PubMed

    Oren, Ram; Pataki, Diane E

    2001-05-01

    Responses of forests to changes in environmental conditions reflect the integrated behavior of their constituent species. We investigated sap flux-scaled transpiration responses of two species prevalent in upland eastern hardwood forests, Quercus alba in the upper canopy and Acer rubrum in the low to mid canopy, to changes in photosynthetically active radiation above the canopy (Q o ), vapor pressure deficit within the canopy (D), and soil moisture depletion during an entire growing season. Water loss before bud break (presumably through the bark) increased linearly with D, reaching 8% of daily stand transpiration (E C ) as measured when leaf area index was at maximum, and accounting for 5% of annual water loss. After leaves were completely expanded and when soil moisture was high, sap flux-scaled daily E C increased linearly with the daily sum of Q o . Species differences in this response were observed. Q. alba reached a maximum transpiration at low Q o , while A. rubrum showed increasing transpiration with Q o at all light levels. Daily E C increased in response to daily average D, with an asymptotic response due to the behavior of Q. alba. Transpiration of A. rubrum showed a greater response to soil moisture depletion than did that of Q. alba. When evaluated at a half-hourly scale under high Q o , mean canopy stomatal conductance (G S ) of individuals decreased with D. The sensitivity of G S to D was greater in species with higher intrinsic G S . Regardless of position in the canopy, diffuse-porous species in this and an additional, more mesic stand showed higher G S and greater stomatal sensitivity to environmental variation than do ring-porous species.

  5. Reference Canopy Stomatal Conductance Explains Spatiotemporal Patterns of Tree Transpiration

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Mackay, D. S.; Ewers, B. E.; Kruger, E. L.; Traver, E.

    2007-12-01

    Increased heterogeneity in patterns of whole tree transpiration (EC) with increasing atmospheric vapor pressure deficit (D) suggests a dynamic response of sap flow velocity (JS) to environmental drivers. We hypothesized that differences in reference stomatal conductance (GSref), stomatal conductance at D = 1kPa, would explain the spatiotemporal dynamics of JS. Using a coupled model of plant hydraulic and biochemical processes we tested this hypothesis with sap flux data for 106 aspen ( Populus tremuloides) and 108 sugar maple ( Acer saccharum) trees collected from plots using in 2-D cyclic sampling scheme during the summer of 2005 in northern Wisconsin. Inverse modeling is used to estimate GSref for each tree. For each species, trees from across the ranges of JS and diameter distributions are compared. GSref explained temporal variability in spatial patterns of EC We explore several possible mechanistic explanations for differences in GSref among trees. Topoedaphic factors are considered to determine if location within a stand has an effect. We also consider competition with neighboring individuals as a possible explanation. Variations in GSref in aspen were explained in part by competition for light between neighboring individuals, while competition for light was not a significant factor for sugar maple. Based on simulation analysis we identify possible biochemical feedbacks as drivers of the variability in plant hydraulics. Other factors examined included micro-topography within both sites.

  6. National Wetland Plant List Indicator Rating Definitions

    DTIC Science & Technology

    2012-07-01

    ER D C/ CR RE L TN -1 2- 1 National Wetland Plant List Indicator Rating Definitions Co ld R eg io ns R es ea rc h an d En gi ne er in... Rating Definitions Robert W. Lichvar Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme...status ratings in the United States. In 2012 the list, now called the National Wetland Plant List, was updated and approved for use for various

  7. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Treesearch

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  8. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  9. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

  10. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  11. Canopy Transpiration in a Chronosequence of Central Siberian Pine Forests

    NASA Technical Reports Server (NTRS)

    Reiner, Z.; Ernst-Detler, S.; Christian, W.; Ernst-Eckart, S.; Waldemar, Z.

    1998-01-01

    Tree transpiration was measured in 28, 67, 204 and 383 - year old uniform stands and in a multi-cohort stand (140 t0 430) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August of 1995.

  12. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    USGS Publications Warehouse

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  13. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    PubMed

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  14. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    PubMed Central

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  15. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    NASA Astrophysics Data System (ADS)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2018-01-01

    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal

  16. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  17. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    PubMed

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  18. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE PAGES

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.; ...

    2016-11-21

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  19. The effect of plant water storage on water fluxes within the coupled soil-plant system [The role of plant water storage on water fluxes within the coupled soil-plant system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Cheng -Wei; Domec, Jean -Christophe; Ward, Eric J.

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. Here, the model numerically resolves soil–plant hydrodynamics by coupling them to leaf-level gas exchange and soil–root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (F e,night) on hydraulic redistribution (HR) in the soil.

  20. On the Resistance to Transpiration of the Sites of Evaporation within the Leaf 1

    PubMed Central

    Farquhar, Graham D.; Raschke, Klaus

    1978-01-01

    The rates of transpiration from the upper and lower surfaces of leaves of Gossypium hirsutum, Xanthium strumarium, and Zea mays were compared with the rates at which helium diffused across those leaves. There was no evidence for effects of CO2 concentration or rate of evaporation on the resistance to water loss from the evaporating surface (“resistance of the mesophyll wall to transpiration”) and no evidence for any significant wall resistance in turgid tissues. The possible existence of a wall resistance was also tested in leaves of Commelina communis and Tulipa gesneriana whose epidermis could be easily peeled. Only when an epidermis was removed from a leaf, evaporation from the mesophyll tissue declined. We conclude that under conditions relevant to studies of stomatal behavior, the water vapor pressure at the sites of evaporation is equal to the saturation vapor pressure. PMID:16660404

  1. Coal-Fired Power Plant Heat Rate Reductions

    EPA Pesticide Factsheets

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  2. The Evolution of Land Plants and the Silicate Weathering Feedback

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves Rugenstein, J. K.; Bachan, A.; Baresch, A.; Lau, K. V.; Thomas, D.; Lee, J. E.; Boyce, C. K.; Chamberlain, C. P.

    2017-12-01

    It has long been recognized that the advent of vascular plants in the Paleozoic must have changed silicate weathering and fundamentally altered the long-term carbon cycle. Efforts to quantify these effects have been formulated in carbon cycle models that are, in part, calibrated by weathering studies of modern plant communities. In models of the long-term carbon cycle, plants play a key role in controlling atmospheric CO2, particularly in the late Paleozoic. We test the impact of some established and recent theories regarding plant-enhanced weathering by coupling a one-dimensional vapor transport model to a reactive transport model of silicate weathering. In this coupled model, we evaluate consequences of plant evolutionary innovation that have not been mechanistically incorporated into most existing models: 1) the role of evolutionary shifts in plant transpiration in enhancing silicate weathering by increasing downwind transport and recycling of water vapor to continental interiors; 2) the importance of deeply-rooted plants and their associated microbial communities in increasing soil CO2 and weathering zone length scales; and, 3) the cumulative effect of these processes. Our modeling approach is framed by energy/supply constraints calibrated for minimally vegetated-, vascular plant forested-, and angiosperm-worlds. We find that the emergence of widespread transpiration and associated inland vapor recycling approximately doubles weathering solute concentrations when deep-rooted vascular plants (Devonian-Carboniferous) fully replace a minimally vegetated (pre-Devonian) world. The later evolution of angiosperms (Cretaceous and Cenozoic) and subsequent increase in transpiration fluxes increase weathering solute concentrations by approximately an additional 20%. Our estimates of the changes in weatherability caused by land plant evolution are of a similar magnitude, but explained with new process-based mechanisms, than those used in existing carbon cycle models. We

  3. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  4. The Competition between Liquid and Vapor Transport in Transpiring Leaves1[W][OPEN

    PubMed Central

    Rockwell, Fulton Ewing; Holbrook, N. Michele; Stroock, Abraham Duncan

    2014-01-01

    In leaves, the transpirational flux of water exits the veins as liquid and travels toward the stomata in both the vapor and liquid phases before exiting the leaf as vapor. Yet, whether most of the evaporation occurs from the vascular bundles (perivascular), from the photosynthetic mesophyll cells, or within the vicinity of the stomatal pore (peristomatal) remains in dispute. Here, a one-dimensional model of the competition between liquid and vapor transport is developed from the perspective of nonisothermal coupled heat and water molecule transport in a composite medium of airspace and cells. An analytical solution to the model is found in terms of the energy and transpirational fluxes from the leaf surfaces and the absorbed solar energy load, leading to mathematical expressions for the proportions of evaporation accounted for by the vascular, mesophyll, and epidermal regions. The distribution of evaporation in a given leaf is predicted to be variable, changing with the local environment, and to range from dominantly perivascular to dominantly peristomatal depending on internal leaf architecture, with mesophyll evaporation a subordinate component. Using mature red oak (Quercus rubra) trees, we show that the model can be solved for a specific instance of a transpiring leaf by combining gas-exchange data, anatomical measurements, and hydraulic experiments. We also investigate the effect of radiation load on the control of transpiration, the potential for condensation on the inside of an epidermis, and the impact of vapor transport on the hydraulic efficiency of leaf tissue outside the xylem. PMID:24572172

  5. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  6. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    PubMed

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  7. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  8. Terrestrial ecosystems in a changing environment: a dominant role for water.

    PubMed

    Bernacchi, Carl J; VanLoocke, Andy

    2015-01-01

    Transpiration--the movement of water from the soil, through plants, and into the atmosphere--is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps.

  9. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  10. Soil, Water, Plants and Preferred Flow in All Directions: A Biosphere-2 Experiment

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Evaristo, J. A.; Kim, M.; Van Haren, J. L. M.; Pangle, L. A.; Harman, C. J.; Troch, P. A. A.

    2016-12-01

    Measuring, understanding and predicting preferential flow in the critical zone is impossibly difficult, but we must try. While past work has focused on specific features of preferential flow pathways and model parameterizations, the resultant effect of preferential flow is often difficult to detect because we do not know the boundary conditions of our flow domain. Here we take a holistic view of preferential flow at the ecosystem level. We present new results from the tropical rainforest biome at Biosphere 2. We test the null hypothesis that the ecohydrological system is well mixed and that water forming groundwater recharge and plant transpiration is from a common pool. Our specific research question is what is the nature of preferential flow and partitioning of groundwater recharge, soil water recharge, and transpiration water after rainfall events? We performed a 10-week drought experiment and then added 66 mm of labelled rainfall with 152‰ deuterium (D), distributed over four events (mean 16.5 mm per event). This was followed by a total of 87 mm of rainfall (-60‰ D) distributed over 13 events that were spaced every 2-3 days. Our results show that flow in all ecohydrological domains (soil water, groundwater recharge and plant transpiration) was preferential. With known boundary conditions, we found that groundwater recharge was 3-8 times younger ( 8 days) than transpired water (range 24-64 days). The "age" of transpired water showed strong dependence on species and was intimately linked to driving force (difference between soil matric potential and midday leaf water potential). These results suggest that preferential flow in the critical zone is one whereby transpiration is strongly species-dependent, and groundwater recharge is controlled by inherent subsurface heterogeneity. The marked difference in the ages associated with these two fluxes supports the concept of ecohydrological separation—in this case, in a `time-based' context.

  11. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.

    PubMed

    Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja

    2018-04-21

    It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.

  12. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant

    Treesearch

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek

    2000-01-01

    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  13. Some Finite Difference Solutions of the Laminar Compressible Boundary Layer Showing the Effects of Upstream Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1959-01-01

    Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.

  14. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.

    PubMed

    Daley, Michael J; Phillips, Nathan G

    2006-04-01

    Transpiration is generally assumed to be insignificant at night when stomata close in response to the lack of photosynthetically active radiation. However, there is increasing evidence that the stomata of some species remain open at night, which would allow for nighttime transpiration if there were a sufficient environmental driving force. We examined nighttime water use in co-occurring species in a mixed deciduous stand at Harvard Forest, MA, using whole-tree and leaf-level measurements. Diurnal whole-tree water use was monitored continuously with Granier-style sap flux sensors in paper birch (Betula papyrifera Marsh.), red oak (Quercus rubra L.) and red maple (Acer rubrum L.). An analysis was conducted in which nighttime water flux could be partitioned between refilling of internal water stores and transpiration. Substantial nighttime sap flux was observed in all species and much of this flux was attributed to the refilling of depleted water stores. However, in paper birch, nighttime sap flux frequently exceeded recharge estimates. Over 10% of the total daily sap flux during the growing season was due to transpiration at night in paper birch. Nighttime sap flux was over 8% of the total daily flux in red oak and 2% in red maple; however, this flux was mainly associated with recharge. On nights with elevated vapor pressure deficit, sap flux continued through the night in paper birch, whereas it reached zero during the night in red oak and red maple. Measurements of leaf-level gas exchange on a night with elevated vapor pressure deficit showed stomatal conductance dropping by only 25% in paper birch, while approaching zero in red oak and red maple. The study highlighted differences in ecophysiological controls on sap flux exerted by co-occurring species. Paper birch is a fast-growing, shade-intolerant species with an earlier successional status than red oak and red maple. Risking water loss through nighttime transpiration may provide paper birch with an ecological

  15. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    PubMed

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  16. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    PubMed

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  17. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.

    2008-02-01

    Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.

  18. Representing Plant Hydraulics in a Global Model: Updates to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Kennedy, D.; Swenson, S. C.; Oleson, K. W.; Lawrence, D. M.; Fisher, R.; Gentine, P.

    2017-12-01

    In previous versions, the Community Land Model has used soil moisture to stand in for plant water status, with transpiration and photosynthesis driven directly by soil water potential. This eschews significant literature demonstrating the importance of plant hydraulic traits in the dynamics of water flow through the soil-plant-atmosphere continuum and in the regulation of stomatal aperture. In this study we install a simplified hydraulic framework to represent vegetation water potential and to regulate root water uptake and turbulent fluxes. Plant hydraulics allow for a more explicit representation of plant water status, which improves the physical basis for many processes represented in CLM. This includes root water uptake and the attenuation of photosynthesis and transpiration with drought. Model description is accompanied by results from a point simulation based at the Caxiuanã flux tower site in Eastern Amazonia, covering a throughfall exclusion experiment from 2001-2003. Including plant hydraulics improves the response to drought forcing compared to previous versions of CLM. Parameter sensitivity is examined at the same site and presented in the context of estimating hydraulic parameters in a global model.

  19. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    Water uptake by plant roots is a complex mechanism controlled by biological and physical properties of the soil-plant-atmosphere system and affects a major component of the water cycle, transpiration. This uptake of water by plants is one of the major factors of plant development. Since water uptake occurs at the roots, root architecture and hydraulic properties both play a crucial role in plant productivity. A fundamental understanding of the main processes of water uptake will enable better breeding of drought resistant plants and the improvement of irrigation strategies. In this work we analyzed the differences of root water uptake between idealized genotypes of a plant using mathematical modelling The numerical simulations were performed by the R-SWMS software (Javaux et al., 2008). The model describes 3-D water movement in soil by solving Richard's equation with a sink term representing root uptake. Water flow within the root xylem network and between soil and root is modelled based on water pressure gradients and calculated according to Doussan's model. The sink term is calculated by integration of local uptakes within rooted representative elementary volumes of soil. The plant water demand is described by a boundary condition at the base of the shoot. We compare the water uptake efficiency of three types of root system architectures of a maize plant. Two are actual architectures from genotypes showing significant differences regarding the internodal distance, the root growth rate and the insertion angle of their primary roots. The third one is an ideotype according to Lynch of the maize plant designed to perform better in one dry environment. We generated with RootBox five repetitions of these three root systems with the same total root volume and simulated two drought scenarios at the flowering stage (lack of water at the top or at the bottom of the soil domain). We did these simulations for two distinct distributions of local conductivities of root

  20. Gas Exchange, Transpiration and Yield of Sweetpotato Grown in a Controlled Environment

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith E.; Mortley, Desmond G.; Henninger, Donald L.

    2000-01-01

    Sweetpotato was grown to harvest maturity within NASA Johnson Space Center's Variable Pressure Growth Chamber (VPGC) to characterize crop performance for potential use in advanced life support systems as a contributor to food production, air revitalization and resource recovery. Stem cuttings of breeding clone "TU-82-155" were grown hydroponically at a density of 17 plants m(sup -2) using a modified pressure-plate growing system (Patent No. 4860-490, Tuskegee University). Lighting was provided by HPS lamps at a photoperiod of 12h light: 12h dark. The photosynthetic photon flux was maintained at 500, 750 and 1000 micro mol m(sup -2) s(sub -1) during days 1-15, 16-28, 29-119, respectively. Canopy temperatures were maintained at 28 C: light: 22 C:dark. During the light period, relative humidity and carbon dioxide were maintained at 70% and 1200 micro liters l(sup -1), respectively. Nutrient solution was manually adjusted 2 to 4 times per week by addition of 10X concentrated modified half-strength Hoagland nutrient salts and NaOH to return the electrical conductivity and pH to 1.2 mS cm(sup -1) and 6.0, respectively. At 17 weeks (119 days) from transplanting, a total of 56.5 kilograms fresh mass of storage roots (84.1% moisture) were harvested from the 11.2 m(sup 2) chamber, resulting in a yield 5.0 kilograms m(sup -2). Harvest index, based on fresh mass, was 38.6%. Rates of net photosynthesis, dark respiration, transpiration, and ethylene production will be reported.

  1. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    PubMed

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  2. [Design and Preparation of Plant Bionic Materials Based on Optical and Infrared Features Simulation].

    PubMed

    Jiang, Xiao-jun; Lu, Xu-liang; Pan, Jia-liang; Zhang, Shuan-qin

    2015-07-01

    Due to the life characteristics such as physiological structure and transpiration, plants have unique optical and infrared features. In the optical band, because of the common effects of chlorophyll and water, plant leafs show spectral reflectance characteristics change in 550, 680, 1400 and 1900 nm significantly. In the infrared wave band, driven by transpiration, plants could regulate temperature on their own initiative, which make the infrared characteristics of plants different from artificial materials. So palnt bionic materials were proposed to simulate optical and infrared characteristics of plants. By analyzing formation mechanism of optical and infrared features about green plants, the component design and heat-transfer process of plants bionic materials were studied, above these the heat-transfer control formulation was established. Based on water adsorption/release compound, optical pigments and other man-made materials, plant bionic materials preparation methods were designed which could simulate the optical and infrared features of green plants. By chemical casting methods plant bionic material films were prepared, which use polyvinyl alcohol as film forming and water adsorption/release compound, and use optical pigments like chrome green and macromolecule yellow as colouring materials. The research conclusions achieved by testings figured out: water adsorption/release testing showed that the plant bionic materials with a certain thickness could absorb 1.3 kg water per square meter, which could satisfy the water usage of transpiration simulation one day; the optical and infrared simulated effect tests indicated that the plant bionic materials could preferably simulate the spectral reflective performance of green plants in optical wave band (380-2500 nm, expecially in 1400 and 1900 nm which were water absorption wave band of plants), and also it had similar daily infrared radiation variations with green plants, daily average radiation temperature

  3. Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

    NASA Astrophysics Data System (ADS)

    Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.

    2017-12-01

    Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction

  4. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    PubMed

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  5. Species-specific photorespiratory rate, drought tolerance and isoprene emission rate in plants.

    PubMed

    Dani, K G Srikanta; Jamie, Ian M; Prentice, I Colin; Atwell, Brian J

    2015-01-01

    The effect of drought on plant isoprene emission varies tremendously across species and environments. It was recently shown that an increased ratio of photosynthetic electron transport rate (ETR) to net carbon assimilation rate (NAR) consistently supported increased emission under drought. In this commentary, we highlight some of the physiological aspects of drought tolerance that are central to the observed variability. We briefly discuss some of the issues that must be addressed in order to refine our understanding of plant isoprene emission response to drought and increasing global temperature.

  6. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  7. Does the plant defend itself against leaf-feeding insects?

    Treesearch

    Paul M. Rafes

    1991-01-01

    Trees do not actively respond to herbivore grazing, they react to the deterioration in the balance of their roots and crowns functions, which comes when transpiration powers fall off. Such inherent reactions of plants originated as abilities to restore photosynthesis.

  8. Seasonal Shift in Climatic Limiting Factors on Tree Transpiration: Evidence from Sap Flow Observations at Alpine Treelines in Southeast Tibet

    PubMed Central

    Liu, Xinsheng; Nie, Yuqin; Luo, Tianxiang; Yu, Jiehui; Shen, Wei; Zhang, Lin

    2016-01-01

    Alpine and northern treelines are primarily controlled by low temperatures. However, little is known about the impact of low soil temperature on tree transpiration at treelines. We aim to test the hypothesis that in cold-limited forests, the main limiting factors for tree transpiration switch from low soil temperature before summer solstice to atmospheric evaporative demand after summer solstice, which generally results in low transpiration in the early growing season. Sap flow, meteorological factors and predawn needle water potential were continuously monitored throughout one growing season across Smith fir (Abies georgei var. smithii) and juniper (Juniperus saltuaria) treelines in southeast Tibet. Sap flow started in early May and corresponded to a threshold mean air-temperature of 0°C. Across tree species, transpiration was mainly limited by low soil temperature prior to the summer solstice but by vapor pressure deficit and solar radiation post-summer solstice, which was further confirmed on a daily scale. As a result, tree transpiration for both tree species was significantly reduced in the pre-summer solstice period as compared to post-summer solstice, resulting in a lower predawn needle water potential for Smith fir trees in the early growing season. Our data supported the hypothesis, suggesting that tree transpiration mainly responds to soil temperature variations in the early growing season. The results are important for understanding the hydrological response of cold-limited forest ecosystems to climate change. PMID:27468289

  9. Athletic field paint color impacts transpiration and canopy temperature in bermudagrass

    USDA-ARS?s Scientific Manuscript database

    Athletic field paints have varying impacts on turfgrass health which have been linked to their ability to alter photosynthetically active radiation (PAR) and photosynthesis based on color. It was further hypothesized they may also alter transpiration and canopy temperature by disrupting gas exchange...

  10. Leaf transpiration efficiency in corn varieties grown at elevated carbon dioxide

    USDA-ARS?s Scientific Manuscript database

    Higher leaf transpiration efficiency (TE) without lower photosynthesis has been identified in some varieties of corn in field tests, and could be a useful trait to improve yield under dry conditions without sacrificing yield under favorable conditions. However, because the carbon dioxide concentrat...

  11. Modeling climate change impacts on maize growth with the focus on plant internal water transport

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Based on climate change experiments in chambers and on field measurements, the scientific community expects regional and global changes of crop biomass production and yields. In central Europe one major aspect of climate change is the shift of precipitation towards winter months and the increase of extreme events, e.g. heat stress and heavy precipitation, during the main growing season in summer. To understand water uptake, water use, and transpiration rates by plants numerous crop models were developed. We tested the ability of two existing canopy models (CERES-Maize and SPASS) embedded in the model environment Expert-N5.0 to simulate the water balance, water use efficiency and crop growth. Additionally, sap flow was measured using heat-ratio measurement devices at the stem base of individual plants. The models were tested against data on soil water contents, as well as on evaporation and transpiration rates of Maize plants, which were grown on lysimeters at Helmholtz Zentrum München and in the field at the research station Scheyern, Germany, in summer 2013 and 2014. We present the simulation results and discuss observed shortcomings of the models. CERES-Maize and SPASS could simulate the measured dynamics of xylem sap flow. However, these models oversimplify plant water transport, and thus, cannot explain the underlying mechanisms. Therefore, to overcome these shortcomings, we additionally propose a new model, which is based on two coupled 1-D Richards equations, describing explicitly the plant and soil water transport. This model, which has previously successfully been applied to simulate water flux of 94 individual beech trees of an old-grown forest, will lead to a more mechanistic representation of the soil-plant-water-flow-continuum. This xylem water flux model was now implemented into the crop model SPASS and adjusted to simulate water flux of single maize plants. The modified version is presented and explained. Basic model input requirements are the plant

  12. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    NASA Astrophysics Data System (ADS)

    Park, Juhan; Kim, Taekyu; Moon, Minkyu; Cho, Sungsik; Ryu, Daun; Kim, Hyun Seok

    2015-04-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for two years. Forest thinning, which removes some fraction of trees from stand, is widely conducted for reducing competition between remaining trees, improving tree productivity, reducing the risk of natural fire, and thus maintaining healthy forest. Forest thinning alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related productivity. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning (20%), and Heavy-thinning (40% of tree density)). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites. The climatic conditions showed little differences between two years. During the first growing season after thinning, stand transpiration was ca. 20% and 42% lower on light-thinning and heavy-thinning stand, respectively, even though sap flux density were higher in thinned stand. The difference in stand transpiration among treatments showed seasonal trends, so it was larger on summer when soil moisture was abundant due to monsoon, but was diminished on spring and autumn when soil moisture was limited. Tree-level productivity increased ca. 8% and 21% on light-thinning and heavy thinning stand, respectively. However, stand net primary production was ca. 20% lower on light-thinning stand, and ca. 31% on heavy-thinning stand. As a result, water use efficiency increased only in heavy-thinning stand. During the second growing season after thinning, stand transpiration was ca. 19% lower on light-thinning stand, and ca. 37% lower on heavy-thinning stand. The reduction

  13. A global synthesis of plant extinction rates in urban areas.

    PubMed

    Hahs, Amy K; McDonnell, Mark J; McCarthy, Michael A; Vesk, Peter A; Corlett, Richard T; Norton, Briony A; Clemants, Steven E; Duncan, Richard P; Thompson, Ken; Schwartz, Mark W; Williams, Nicholas S G

    2009-11-01

    Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future.

  14. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress.

    PubMed

    Meng, Delong; Fricke, Wieland

    2017-04-01

    The aim of the present work was to assess the significance of changes in root AQP gene expression and hydraulic conductivity (Lp) in the regulation of water balance in two hydroponically-grown rice cultivars (Azucena, Bala) which differ in root morphology, stomatal regulation and aquaporin (AQP) isoform expression. Plants were exposed to NaCl (25 mM, 50 mM) and osmotic stress (5%, 10% PEG6000). Root Lp was determined for exuding root systems (osmotic forces driving water uptake; 'exudation Lp') and transpiring plants (hydrostatic forces dominating; 'transpiration-Lp'). Gene expression was analysed by qPCR. Stress treatments caused a consistent and significant decrease in plant growth, transpirational water loss, stomatal conductance, shoot-to-root surface area ratio and root Lp. Comparison of exudation-with transpiration-Lp supported a significant contribution of AQP-facilitated water flow to root water uptake. Changes in root Lp in response to treatments were correlated much stronger with root morphological characteristics, such as the number of main and lateral roots, surface area ratio of root to shoot and plant transpiration rate than with AQP gene expression. Changes in root Lp, involving AQP function, form an integral part of the plant hydraulic response to stress and facilitate changes in the root-to-shoot surface area ratio, transpiration and stomatal conductance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Sap flow based transpiration estimates in species-rich secondary forests of different ages in central Panama during a wet-season drought

    NASA Astrophysics Data System (ADS)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.

    2015-12-01

    Many landscapes that were previously covered by mature tropical forests in central Panama today comprise of a mosaic of mature forest fragments, pastures and agricultural land, and regrowing secondary forests. An increasing demand for water due to urbanization and the expansion of the Panama Canal, along with a predicted transition into a dryer climatic period necessitate a better understanding regarding the effects of land use and land use history on hydrological processes. Such knowledge, including water storage, residence times, and fluxes is essential to develop effective land management strategies and propose incentives to alter land use practices to enhance hydrological services. To quantify transpiration rates at different stages of secondary forest succession, we measured sap flow in forests growing for 8, ~25, and 80+ years since last known land use in the 15 km2 "Agua Salud" study area, located in central Panama. In each forest, we selected a subset of at least 15 individuals, representing the local tree size distribution, and recorded data from heat-ratio sap flow sensors every 30 minutes starting in February 2015. All instrumented trees were identified to species and compared to local species distributions. Basal area in the three forest types was 9.1, 10.8, and 50.2 m2 ha-1 for 8, ~25, and 80+ year old forests, respectively. Average daily transpiration was highly correlated to forest age, with highest rates in the oldest forest (3.0 to 18.2 mm ha-1 day-1), followed by intermediate (1.2 to 6.7 mm ha-1 day-1) and youngest forests (0.2 to 2.7 mm ha-1 day-1), suggesting roughly a doubling in transpiration from 8 to ~25 year old forests, despite similar basal area, and again from ~25 to 80+ year old forests. Flow rates in individual trees generally reflected the dry-to-wet season transition but behaved differently in response to the unprecedentedly dry conditions during the first half of 2015 in central Panama.

  16. Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model

    NASA Astrophysics Data System (ADS)

    Vrettas, Michail D.; Fung, Inez Y.

    2017-06-01

    The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.

  17. Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model

    DOE PAGES

    Vrettas, Michail D.; Fung, Inez Y.

    2017-05-04

    The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths ofmore » the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains math formula of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.« less

  18. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  19. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    NASA Astrophysics Data System (ADS)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  20. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment

    Treesearch

    G.W. Moore; J.A. Jones; B.J. Bond

    2011-01-01

    The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to...

  1. Mostly Plants. Individualized Biology Activities on: I. Investigating Bread Mold; II. Transpiration; III. Botany Project; IV. Collecting/Preserving/Identifying Leaves; [and] V. Student Science Laboratory Write-Ups.

    ERIC Educational Resources Information Center

    Gibson, Paul R.

    Individualized biology activities for secondary students are presented in this teaching guide. The guide is divided into five sections: (1) investigating bread mold; (2) investigating transpiration; (3) completing a botany project; (4) collecting, preserving, and identifying leaves; and (5) writing up science laboratory investigations. The…

  2. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  3. Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Matheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; Morin, Timothy H.; He, Lingli; Frasson, Renato Prata de Moraes; Mirfenderesgi, Golnazalsadat; Schäfer, Karina V. R.; Gough, Christopher M.; Ivanov, Valeriy Y.; Curtis, Peter S.

    2014-12-01

    Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early successional trees to simulate an accelerated age-related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal conductance. We found transpiration to be 15% lower in disturbed plots than in unmanipulated control plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith model for LE to demonstrate that these species-specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.

  4. Wind drives nocturnal, but not diurnal, transpiration in Leucospermum conocarpodendron trees: implications for stilling on the Cape Peninsula.

    PubMed

    Karpul, Rebecca H; West, Adam G

    2016-08-01

    Surface winds have declined in many regions of the world over the past few decades. These trends are referred to as global stilling and have recently been observed in the Western Cape Province of South Africa. The potential consequences of such changes on ecosystem function and productivity are a particular concern for the highly diverse and endemic local flora, largely associated with the fynbos biome. Yet, few studies have directly examined the impact of wind in the region. In this study, we explored the importance of wind and other drivers of plant transpiration (E) in a stand of Leucospermum conocarpodendron (L.) Buek trees on the Cape Peninsula. Wind speeds can be high in the Cape and could play an important role in influencing the rate of E Overall, the influence of wind appeared to be significantly greater at night than during the day. While daytime E responded most strongly to changes in solar radiation (R(2) = 0.79) and vapour pressure deficit (R(2) = 0.57-0.67), night-time E (En) was primarily driven by wind speed (R(2) = 0.30-0.59). These findings have important implications for stilling and other aspects of climate change. Since En was found to be a regular and significant (P < 0.00) component of total daily E (10-27%), plants may conserve water should stilling continue. Still, the extent of this could be offset by strong daytime drivers. As such, plant water consumption will most likely increase in response to a warmer and drier climate. Changes in other biophysical variables are, however, clearly important to consider in the current debate on the impact of climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Transpiration, and Nitrogen Uptake and Flow in Two Maize (Zea mays L.) Inbred Lines as Affected by Nitrogen Supply

    PubMed Central

    Niu, Junfang; Chen, Fanjun; Mi, Guohua; Li, Chunjian; Zhang, Fusuo

    2007-01-01

    Background and Aims The influence of two nitrogen (N) levels on growth, water relations, and N uptake and flow was investigated in two different inbred lines of maize (N-efficient Zi330 and N-inefficient Chen94-11) to analyse the differences in N uptake and cycling within a plant. Methods Xylem sap from different leaves of the inbred lines cultured in quartz sand was collected by application of pressure to the root system. Plant transpiration was measured on a daily basis by weighing five pots of each of the treatments. Key Results N-efficient Zi330 had a higher relative growth rate and water-use efficiency at both high (4 mm) and low (0·08 mm) N levels. At a high N level, the amount of N taken up was similar for the two inbred lines; the amount of N transported in the xylem and retranslocated in the phloem was slight greater in Chen94-11 than in Zi330. At a low N level, however, the total amount of N taken up, transported in the xylem and retranslocated in the phloem of Zi330 was 2·2, 2·7 and 2·7 times more, respectively, than that of Chen94-11. Independent of inbred line and N level, the amounts of N transported in the xylem and cycled in the phloem were far more than that taken up by roots at the same time. Low N supply shifted NO3−1 reduction towards the roots. The major nitrogenous compound in the xylem sap was NO3−1, when plants grew at the high N level, while amino acid-N was predominant when plants grew at the low N level. Conclusions The N-efficient maize inbred line Zi330 had a higher ability to take up N and cycle N within the plant than N-inefficient Chen94-11 when grown under N-deficiency. PMID:17088295

  6. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    PubMed

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  7. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation

    NASA Astrophysics Data System (ADS)

    Donohue, Randall J.; Roderick, Michael L.; McVicar, Tim R.; Yang, Yuting

    2017-01-01

    Elevated CO2 increases leaf-level water-use efficiency (ω) almost universally. How canopy-level transpiration and assimilation fluxes respond to increased ω is currently unclear. We present a simple, resource-availability-based hypothesis of how equilibrium (or mature) leaf and canopy transpiration and assimilation rates, along with leaf area index (L), respond to elevated CO2. We quantify this hypothesis in the form of a model and test it against observations from eight Free Air CO2 Enrichment sites that span a wide range of resource availabilities. Sites were grouped according to vegetation disturbance status. We find the model adequately accounts for the responses of undisturbed vegetation (R2 = 0.73, 11% error) but cannot account for the responses of disturbed vegetation (R2 = 0.47, 17% error). At undisturbed sites, the responses of L and of leaf and canopy transpiration vary predictably (7% error) with resource availability, whereas the leaf assimilation response is less predictable. In contrast, the L and transpiration flux responses at the disturbed (mostly forested) sites are highly variable and are not strongly related to resource availability. Initial analyses suggest that they are more strongly related to regrowth age than to resource availability. We conclude that (i) our CO2 response hypothesis is valid for capturing the responses of undisturbed vegetation only, (ii) that the responses of disturbed vegetation are distinctly different from undisturbed vegetation, and (iii) that these differences need to be accounted for when predicting the effects of elevated CO2 on land surface processes generally, and on leaf area and water fluxes in particular.

  8. High temperature causes negative whole-plant carbon balance under mild drought.

    PubMed

    Zhao, Junbin; Hartmann, Henrik; Trumbore, Susan; Ziegler, Waldemar; Zhang, Yiping

    2013-10-01

    Theoretically, progressive drought can force trees into negative carbon (C) balance by reducing stomatal conductance to prevent water loss, which also decreases C assimilation. At higher temperatures, negative C balance should be initiated at higher soil moisture because of increased respiratory demand and earlier stomatal closure. Few data are available on how these theoretical relationships integrate over the whole plant. We exposed Thuja occidentalis to progressive drought under three temperature conditions (15, 25, and 35°C), and measured C and water fluxes using a whole-tree chamber design. High transpiration rates at higher temperatures led to a rapid decline in soil moisture. During the progressive drought, soil moisture-driven changes in photosynthesis had a greater impact on the whole-plant C balance than respiration. The soil moisture content at which whole-plant C balance became negative increased with temperature, mainly as a result of higher respiration rates and an earlier onset of stomatal closure under a warmer condition. Our results suggest that the effect of drought on whole-plant C balance is highly temperature-dependent. High temperature causes a negative C balance even under mild drought and may increase the risk of C starvation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Transpiration efficiency: new insights into an old story.

    PubMed

    Vadez, Vincent; Kholova, Jana; Medina, Susan; Kakkera, Aparna; Anderberg, Hanna

    2014-11-01

    Producing more food per unit of water has never been as important as it is at present, and the demand for water by economic sectors other than agriculture will necessarily put a great deal of pressure on a dwindling resource, leading to a call for increases in the productivity of water in agriculture. This topic has been given high priority in the research agenda for the last 30 years, but with the exception of a few specific cases, such as water-use-efficient wheat in Australia, breeding crops for water-use efficiency has yet to be accomplished. Here, we review the efforts to harness transpiration efficiency (TE); that is, the genetic component of water-use efficiency. As TE is difficult to measure, especially in the field, evaluations of TE have relied mostly on surrogate traits, although this has most likely resulted in over-dependence on the surrogates. A new lysimetric method for assessing TE gravimetrically throughout the entire cropping cycle has revealed high genetic variation in different cereals and legumes. Across species, water regimes, and a wide range of genotypes, this method has clearly established an absence of relationships between TE and total water use, which dismisses previous claims that high TE may lead to a lower production potential. More excitingly, a tight link has been found between these large differences in TE in several crops and attributes of plants that make them restrict water losses under high vapour-pressure deficits. This trait provides new insight into the genetics of TE, especially from the perspective of plant hydraulics, probably with close involvement of aquaporins, and opens new possibilities for achieving genetic gains via breeding focused on this trait. Last but not least, small amounts of water used in specific periods of the crop cycle, such as during grain filling, may be critical. We assessed the efficiency of water use at these critical stages. © The Author 2014. Published by Oxford University Press on behalf of

  10. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    NASA Technical Reports Server (NTRS)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  11. Thermography to explore plant-environment interactions.

    PubMed

    Costa, J Miguel; Grant, Olga M; Chaves, M Manuela

    2013-10-01

    Stomatal regulation is a key determinant of plant photosynthesis and water relations, influencing plant survival, adaptation, and growth. Stomata sense the surrounding environment and respond rapidly to abiotic and biotic stresses. Stomatal conductance to water vapour (g s) and/or transpiration (E) are therefore valuable physiological parameters to be monitored in plant and agricultural sciences. However, leaf gas exchange measurements involve contact with leaves and often interfere with leaf functioning. Besides, they are time consuming and are limited by the sampling characteristics (e.g. sample size and/or the high number of samples required). Remote and rapid means to assess g s or E are thus particularly valuable for physiologists, agronomists, and ecologists. Transpiration influences the leaf energy balance and, consequently, leaf temperature (T leaf). As a result, thermal imaging makes it possible to estimate or quantify g s and E. Thermal imaging has been successfully used in a wide range of conditions and with diverse plant species. The technique can be applied at different scales (e.g. from single seedlings/leaves through whole trees or field crops to regions), providing great potential to study plant-environment interactions and specific phenomena such as abnormal stomatal closure, genotypic variation in stress tolerance, and the impact of different management strategies on crop water status. Nevertheless, environmental variability (e.g. in light intensity, temperature, relative humidity, wind speed) affects the accuracy of thermal imaging measurements. This review presents and discusses the advantages of thermal imaging applications to plant science, agriculture, and ecology, as well as its limitations and possible approaches to minimize them, by highlighting examples from previous and ongoing research.

  12. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    NASA Astrophysics Data System (ADS)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    largely explained by higher conductivity of the xylem cross section area. Palms transpired a mean of 1.67 mm m-2 of water per unit crown projection area per day, whereas trees transpired only 0.30 mm m-2 per day, resulting in a 5.6 times lower transpiration rate. We conclude that changes in the water table due to land use change are predictable and highly depending on the species planted in the area with altered land use.

  13. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    PubMed

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  14. Calcium delivery and storage in plant leaves: exploring the link with water flow.

    PubMed

    Gilliham, Matthew; Dayod, Maclin; Hocking, Bradleigh J; Xu, Bo; Conn, Simon J; Kaiser, Brent N; Leigh, Roger A; Tyerman, Stephen D

    2011-04-01

    Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.

  15. Effect of solar loading on greenhouse containers used in transpiration efficiency screening

    USDA-ARS?s Scientific Manuscript database

    Earlier we described a simple high throughput method of screening sorghum for transpiration efficiency (TE). Subsequently it was observed that while results were consistent between lines exhibiting high and low TE, ranking between lines with similar TE was variable. We hypothesized that variable mic...

  16. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results

    Treesearch

    Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm

    2017-01-01

    Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...

  17. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    DTIC Science & Technology

    2017-02-28

    AFRL-AFOSR-UK-TR-2017-0012 Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept Olivier Chazot INSTITUT VON KARMAN DE DYNAMIQUE DES...28-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Dec 2015 to 30 Nov 2016 4. TITLE AND SUBTITLE Plasma Wind Tunnel Testing of Electron ...Aeronautics and Aerospace Department B-1640 Rhode Saint Genèse Belgium Internal Ref: ARR 1605 February 2017 Plasma Wind Tunnel Testing of Electron

  18. Model development for prediction of soil water dynamics in plant production.

    PubMed

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng

    2015-09-01

    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  19. Effects of Bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay.

    PubMed

    Endeshaw, Solomon T; Murolo, Sergio; Romanazz, Gianfranco; Neri, Davide

    2012-06-01

    Bois noir (BN) is one of the main phytoplasma diseases of grapevine (Vitis vinifera). It is widespread, and can cause severe losses in European vineyards. The infective agent colonizes phloem elements and induces visible symptoms of leaf yellowing or reddening after a relatively long incubation period. As the most sensitive cultivars to BN, Chardonnay plants were grouped as healthy or symptomatic in spring, based on the records from the previous year. Leaf gas exchange and chlorophyll a fluorescence were measured weekly from July to September in healthy plants, and in symptomatic and asymptomatic leaves from symptomatic plants. The midday relative water content (mRWC) was measured once per month. The detection of phytoplasma DNA by nested-polymerase chain reaction revealed BN infection in symptomatic leaf samples at the end of September. A significant decrease in pigment content and maximum quantum efficiency of photosystem II (Fv/Fm) of these symptomatic leaves was detected from July to September, although in the asymptomatic leaves of the symptomatic plants the net photosynthesis (Pn) decrease was not significant. In the leaves from the healthy plants, Pn and transpiration were relatively stable. Of note, in July, an initially healthy plant showed a strong Pn reduction that was followed by visible leaf yellowing symptoms only in August. The phytoplasma infection also stimulated significant reductions in mRWC of the symptomatic leaves, with a final large decrease in yield.

  20. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.

    PubMed

    Osborne, Colin P; Sack, Lawren

    2012-02-19

    C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.

  1. Transpirational drying and costs for transporting woody biomass - a preliminary review

    Treesearch

    Bryce J. Stokes; Bryce J. McDonaStokes; Timothy P. McDonald; Tyrone Kelley

    1993-01-01

    High transport costs arc a factor to consider in the use of forest residues for fuel. Costs can be reduced by increasing haul capacities, reducing high moisture contents, and improving trucking efficiency. The literature for transpirational drying and the economics of hauling woody biomass is summarized here. Some additional, unpublished roundwood and chipdrying test...

  2. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination.

    PubMed

    Barbour, Margaret M; Warren, Charles R; Farquhar, Graham D; Forrester, Guy; Brown, Hamish

    2010-07-01

    Leaf internal, or mesophyll, conductance to CO(2) (g(m)) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in g(m) and the effect of g(m) on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in g(m) was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest g(m) also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Delta(p)). These results suggest g(m) has unexplored potential to provide TE improvement within crop breeding programmes.

  3. Amplification of heat extremes by plant CO2 physiological forcing.

    PubMed

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  4. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow

  5. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    PubMed

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplast with water loss pathways. AQPs appear to play a role in regulating dynamic changes of root, stem and leaf hydraulic conductivity, especially in response to environmental changes, opening the door to using AQP expression to regulate plant water-use efficiency. We highlight the role of vascular AQPs in regulating leaf hydraulic conductivity and raise questions regarding their role (as well as tonoplast AQPs) in determining the plant isohydric threshold, growth rate, fruit yield production and harvest index. The tissue- or cell-specific expression of AQPs is discussed as a tool to increase yield relative to control plants under both normal and water-stressed conditions. © 2014 John Wiley & Sons Ltd.

  6. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo

    2013-12-01

    Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus  ×  paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.

  7. The marginal cost of carbon abatement from planting street trees in New York City

    Treesearch

    Kent F. Kovacs; Robert G. Haight; Suhyun Jung; Dexter H. Locke; Jarlath O' Neil-Dunne

    2013-01-01

    Urban trees can store carbon through the growth process and reduce fossil fuel use by lowering cooling and heating energy consumption of buildings through the process of transpiration, shading, and the blocking of wind. However, the planting and maintenance of urban trees come at a cost. We estimate the discounted cost of net carbon reductions associated with planting...

  8. Thermal/structural analysis of a transpiration cooled nozzle

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Thompson, Jon E.; Babcock, Dale A.; Gray, Carl E., Jr.; Mouring, Chris A.

    1992-01-01

    The 8-foot High Temperature Tunnel (HTT) at LaRC is a combustion driven, high enthalpy blow down wind tunnel. In Mar. 1991, during check out of the transpiration cooled nozzle, pieces of platelets were found in the tunnel test section. It was determined that incorrect tolerancing between the platelets and the housing was the primary cause of the platelet failure. An analysis was performed to determine the tolerance layout between the platelets and the housing to meet the structural and performance criteria under a range of thermal, pressure, and bolt preload conditions. Three recommendations resulted as a product of this analysis.

  9. Canopy transpiration of two black locust (Robinia pseudoacacia) plantations with different ages in semi-arid Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Jiao, L.

    2015-12-01

    Black locust (Robinia pseudoacacia) was widely planted to control soil erosion and restore degraded ecosystem in Loess Plateau. The water use of the plantations was concerned due to its potential effects on hydrological cycle and regional water resource. Although some studies estimated canopy transpiration (Ec) of the mature black locust plantation, variation in Ec in plantations with different ages was not clear. In this study, we selected two plantations with different ages (12 years and 27 years, denoted as young stand and mature stand, respectively) in similar topographical conditions in Yangjuangou catchment in the central of Loess Plateau. Sap flux density (Fd) and tree biometrics were measured in each stand during the growing season in 2014. Soil water content (SWC) in each plot and meteorological variables in the catchment were simultaneously monitored. Tree transpiration (Et) was derived from Fd and tree sapwood area (As). Canopy transpiration (Ec) was estimated by a product of mean stand sap flux density (Js) and stand total sapwood area (AST). The mean Fd of mature trees was 2-fold larger than that of young trees.However, tree-to-tree variation in Fd among sampled trees within mature stand was evident compared to that within young stand. Mean Et in mature stand was higher than that in young stand. Ec in mature stand was significant higher than that in young stand,with cumulative value of 54 mm and 27 mm respectively. This is attributed to higher Js in mature stand although AST in young is slightly higher than that in mature stand. The patterns of daily Ec during the growing season were similar in both stands during the study period. A exponential saturation model can explain the responses of Ec to vapor deficit pressure (VPD) and solar radiation (Rs) in both stands.The relationship between Ec and SWC was not detected. Our finding suggested that stand age should be taken into consideration when estimated vegetation water use in this region. Further

  10. Transpiration cooling in the locality of a transverse fuel jet for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Capriotti, Diego P.; Byington, Carl S.

    1990-01-01

    The objective of the current work was to determine the feasibility of transpiration cooling for the relief of the local heating rates in the region of a sonic, perpendicular, fuel jet of gaseous hydrogen. Experiments were conducted to determine the interaction between the cooling required and flameholding limits of a transverse jet in a high-enthalpy, Mach 3 flow in both open-jet and direct-connect test mode. Pulsed shadowgraphs were used to illustrate the flow field. Infrared thermal images indicated the surface temperatures, and the OH(-) emission of the flame was used to visualize the limits of combustion. Wall, static presures indicated the location of the combustion within the duct and were used to calculate the combustion efficiency. The results from both series of tests at facility total temperatures of 1700 K and 2000 K are presented.

  11. Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning

    USGS Publications Warehouse

    Asbjornsen, H.; Tomer, M.D.; Gomez-Cardenas, M.; Brudvig, L.A.; Greenan, C.M.; Schilling, K.

    2007-01-01

    Oak savannas, once common in the Midwest, are now isolated remnants within agricultural landscapes. Savanna remnants are frequently encroached by invasive trees to become woodlands. Thinning and prescribed burning can restore savanna structure, but the ecohydrological effects of managing these remnants are poorly understood. In this study, we measured sap flow (Js) to quantify transpiration in an Iowa bur oak (Quercus macrocarpa) savanna woodland encroached by elms (Ulmus americana), and in an adjacent restored savanna after thinning to remove elms, during summer 2004. Savanna oaks had greater mean daily Js (35.9 L dm-2 day-1) than woodland oaks (20.7 L dm-2 day-1) and elms (12.4 L dm-2 day-1). The response of Js to vapor pressure deficit (D) was unexpectedly weak, although oaks in both stands showed negative correlation between daily Js and D for D > 0.4 kPa. An earlier daily peak in Js in the elm trees showed a possible advantage for water uptake. As anticipated, the woodland's stand transpiration was greater (1.23 mm day-1) than the savanna's (0.35 mm day-1), yet the savanna achieved 30% of the woodland's transpiration with only 11% of its sapwood area. The difference in transpiration influenced water table depths, which were 2 m in the savanna and 6.5 m in the woodland. Regionally, row-crop agriculture has increased groundwater recharge and raised water tables, providing surplus water that perhaps facilitated elm encroachment. This has implications for restoration of savanna remnants. If achieving a savanna ecohydrology is an aim of restoration, then restoration strategies may require buffers, or targeting of large or hydrologically isolated remnants. ?? 2007.

  12. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  13. Parasitic plants have increased rates of molecular evolution across all three genomes.

    PubMed

    Bromham, Lindell; Cowman, Peter F; Lanfear, Robert

    2013-06-19

    Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than

  14. The evaluation of Murray's law in Psilotum nudum (Psilotaceae), an analogue of ancestral vascular plants.

    PubMed

    McCulloh, Katherine A; Sperry, John S

    2005-06-01

    Previous work has shown that the xylem of seed plants follows Murray's law when conduits do not provide structural support to the plant. Here, compliance with Murray's law was tested in the stem photosynthesizer Psilotum nudum, a seedless vascular plant. Psilotum nudum was chosen because the central stele does not provide structural support, which means that Murray's law is applicable, and because its simple shoot structure resembles the earliest vascular plants. Murray's law predicts that the sum of the conduit radii cubed (Σr(3)) should decrease in direct proportion with the volume flow rate (Q) to maximize the hydraulic conductance per unit vascular investment. Agreement with Murray's law was assessed by estimating the transpiration rate distal to a cross-section, which should determine Q under steady state conditions, and comparing that with the Σr(3) of that cross-section. As predicted, regressions between the Σr(3) of the cross-section and Q resulted in a linear relationship with a y-intercept that was not different from zero. Two more rigorous statistical tests were also unable to reject Murray's law. Psilotum nudum plants also increased their conductance per investment by having more conduits distally than proximally, which is more efficient hydraulically than equal or declining conduit numbers distally.

  15. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  16. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  17. Quantification of excess water loss in plant canopies warmed with infrared heating

    USDA-ARS?s Scientific Manuscript database

    Here we investigate the extent to which infrared heating used to warm plant canopies in climate manipulation experiments increases transpiration. Concerns regarding the impact of the infrared heater technique on the water balance have been raised before, but a quantification is lacking. We calculate...

  18. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  19. Tritium Concentrations in Environmental Samples and Transpiration Rates from the Vicinity of Mary's Branch Creek and Background Areas, Barnwell, South Carolina, 2007-2009

    USGS Publications Warehouse

    Vroblesky, Don A.; Canova, Judy L.; Bradley, Paul M.; Landmeyer, James E.

    2009-01-01

    Tritium in groundwater from a low-level radioactive waste disposal facility near Barnwell, South Carolina, is discharging to Mary's Branch Creek. The U.S. Geological Survey conducted an investigation from 2007 to 2009 to examine the tritium concentration in trees and air samples near the creek and in background areas, in groundwater near the creek, and in surface water from the creek. Tritium was found in trees near the creek, but not in trees from background areas or from sites unlikely to be in direct root contact with tritium-contaminated groundwater. Tritium was found in groundwater near the creek and in the surface water of the creek. Analysis of tree material has the potential to be a useful tool in locating shallow tritium-contaminated groundwater. A tritium concentration of 1.4 million picocuries per liter was measured in shallow groundwater collected near a tulip poplar located in an area of tritium-contaminated groundwater discharge. Evapotranspiration rates from the tree and tritium concentrations in water extracted from tree cores indicate that during the summer, this tulip poplar may remove more than 17.1 million picocuries of tritium per day from the groundwater that otherwise would discharge to Mary's Branch Creek. Analysis of air samples near the tree showed no evidence that the transpirative release of tritium to the air created a vapor hazard in the forest.

  20. Use of plant woody species electrical potential for irrigation scheduling

    PubMed Central

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  1. Use of plant woody species electrical potential for irrigation scheduling.

    PubMed

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  2. Tree root systems competing for soil moisture in a 3D soil–plant model

    Treesearch

    Gabriele Manoli; Sara Bonetti; Jean-Christophe Domec; Mario Putti; Gabriel Katul; Marco Marani

    2014-01-01

    Competition for water among multiple tree rooting systems is investigated using a soil–plant model that accounts for soil moisture dynamics and root water uptake (RWU), whole plant transpiration, and leaflevel photosynthesis. The model is based on a numerical solution to the 3D Richards equation modified to account for a 3D RWU, trunk xylem, and stomatal conductances....

  3. Differential responses of C3 and CAM native Brazilian plant species to a SO2- and SPMFe-contaminated Restinga.

    PubMed

    da Silva, Luzimar Campos; de Araújo, Talita Oliveira; Martinez, Carlos Alberto; de Almeida Lobo, Francisco; Azevedo, Aristéa Alves; Oliva, Marco Antonio

    2015-09-01

    Aiming to evaluate responses in terms of growth rates, physiological parameters, and degree of sensitivity to SO2 and SPMFe in Eugenia uniflora L. (Myrtaceae, a C3 species) and Clusia hilariana Schlecht (Clusiaceae, a CAM species); saplings were exposed to emissions from a pelletizing factory for 7 months. The species were distributed along a transect (200, 500, 800, 1400, and 1700 m away from the emission source), and analyses were performed after 71, 118, and 211 days of exposure to the pollutants. E. uniflora received higher superficial deposition of particulate iron. The highest total iron foliar contents were observed 200 m away from the emission source in both plant species, while the highest total sulfur foliar contents were observed 200 m away in C. hilariana and 800 m away in E. uniflora. E. uniflora presented decreased values of height growth rate, number of necrotic leaves, chlorophyll analysis (SPAD index) and transpiration, in relation to the distances from the emission source. C. hilariana showed decreased values of height growth rate, number of leaves, number of necrotic leaves, total ionic permeability, stomatal conductance, transpiration, net CO2 assimilation, and total dry matter, in relation to distances from the emission source. In relation to the days of exposure, both species presented increased number of necrotic leaves and foliar phytotoxicity index, and decreased values in the chlorophyll analysis. The two native plant species, both of which occur in the Brazilian Restinga, showed damage when exposed to emissions from an iron ore pelletizing factory. C. hilariana was considered the most sensitive species due to the decreased values in a higher number of variables after exposition.

  4. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds

    USGS Publications Warehouse

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.

    2014-01-01

    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  5. Measurement and Empirical Correlation of Transpiration-Cooling Parameters on a 25 degree Cone in a Turbulent Boundary Layer in Both Free Flight and a Hot-Gas Jet

    NASA Technical Reports Server (NTRS)

    Walton, Thomas E., Jr.; Rashis, Bernard

    1961-01-01

    Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.

  6. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  7. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  8. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    USDA-ARS?s Scientific Manuscript database

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  9. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is

  10. Whole-plant water flux in understory red maple exposed to altered precipitation regimes.

    PubMed

    Wullschleger, Stan D.; Hanson, Paul J.; Tschaplinski, Tim J.

    1998-02-01

    Sap flow gauges were used to estimate whole-plant water flux for five stem-diameter classes of red maple (Acer rubrum L.) growing in the understory of an upland oak forest and exposed to one of three large-scale (0.64 ha) manipulations of soil water content. This Throughfall Displacement Experiment (TDE) used subcanopy troughs to intercept roughly 30% of the throughfall on a "dry" plot and a series of pipes to move this collected precipitation across an "ambient" plot and onto a "wet" plot. Saplings with a stem diameter larger than 10 cm lost water at rates 50-fold greater than saplings with a stem diameter of 1 to 2 cm (326 versus 6.4 mol H(2)O tree(-1) day(-1)). These size-class differences were driven largely by differences in leaf area and cross-sectional sapwood area, because rates of water flux expressed per unit leaf area (6.90 mol H(2)O m(-2) day(-1)) or sapwood area (288 mol H(2)O dm(-2) day(-1)) were similar among saplings of the five size classes. Daily and hourly rates of transpiration expressed per unit leaf area varied throughout much of the season, as did soil matrix potentials, and treatment differences due to the TDE were observed during two of the seven sampling periods. On July 6, midday rates of transpiration averaged 1.88 mol H(2)O m(-2) h(-1) for saplings in the "wet" plot, 1.22 mol H(2)O m(-2) h(-1) for saplings in the "ambient" plot, and 0.76 mol H(2)O m(-2) h(-1) for saplings in the "dry" plot. During the early afternoon of August 28, transpiration rates were sevenfold lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 2.5-fold lower compared to saplings in the "ambient" plot. Treatment differences in crown conductance followed a pattern similar to that of transpiration, with values that averaged 60% lower for saplings in the "dry" plot compared to saplings in the "wet" plot and 35% lower compared to saplings in the "ambient" plot. Stomatal and boundary layer conductances were roughly equal in magnitude

  11. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  12. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    PubMed

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  13. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  14. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    PubMed

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  15. Riparian Plant Water Relations Along the North Fork Kings River, California

    Treesearch

    Janet L. Nachlinger; Stanley D. Smith; Roland J. Risser

    1989-01-01

    Plant water relations of five obligate riparian species were studied along California's North Fork Kings River. Diurnal stomatal conductance, transpiration, and xylem pressure potentials were measured throughout the 1986 growing season and in mid-season in 1987. Patterns were similar for all species although absolute values varied considerably. Maximum stomatal...

  16. Reduced plant water status under sub-ambient pCO2 limits plant productivity in the wild progenitors of C3 and C4 cereals

    PubMed Central

    Cunniff, Jennifer; Charles, Michael; Jones, Glynis; Osborne, Colin P.

    2016-01-01

    Background and Aims The reduction of plant productivity by low atmospheric CO2 partial pressure (pCO2) during the last glacial period is proposed as a limiting factor for the establishment of agriculture. Supporting this hypothesis, previous work has shown that glacial pCO2 limits biomass in the wild progenitors of C3 and C4 founder crops, in part due to the direct effects of glacial pCO2 on photosynthesis. Here, we investigate the indirect role of pCO2 mediated via water status, hypothesizing that faster soil water depletion at glacial (18 Pa) compared to post-glacial (27 Pa) pCO2, due to greater stomatal conductance, feeds back to limit photosynthesis during drying cycles. Methods We grew four wild progenitors of C3 and C4 crops at glacial and post-glacial pCO2 and investigated physiological changes in gas exchange, canopy transpiration, soil water content and water potential between regular watering events. Growth parameters including leaf area were measured. Key Results Initial transpiration rates were higher at glacial pCO2 due to greater stomatal conductance. However, stomatal conductance declined more rapidly over the soil drying cycle in glacial pCO2 and was associated with decreased intercellular pCO2 and lower photosynthesis. Soil water content was similar between pCO2 levels as larger leaf areas at post-glacial pCO2 offset the slower depletion of water. Instead the feedback could be linked to reduced plant water status. Particularly in the C4 plants, soil–leaf water potential gradients were greater at 18 Pa compared with 27 Pa pCO2, suggesting an increased ratio of leaf evaporative demand to supply. Conclusions Reduced plant water status appeared to cause a negative feedback on stomatal aperture in plants at glacial pCO2, thereby reducing photosynthesis. The effects were stronger in C4 species, providing a mechanism for reduced biomass at 18 Pa. These results have added significance when set against the drier climate of the glacial period

  17. Removal of cyanide by woody plants.

    PubMed

    Larsen, Morten; Trapp, Stefan; Pirandello, Alessandro

    2004-01-01

    Hydrogen cyanide is a high volume production chemical that causes severe environmental problems. The toxicity of potassium cyanide (KCN) to basket willow trees (Salix viminalis) was tested. In aqueous solution, 2 mg CN l(-1) as KCN depressed the transpiration after 72 h about 50%. Trees exposed to 0.4 mg CN l(-1) in aqueous solution showed initially a depression of transpiration, but recovered. Doses of 8 and 20 mg CN l(-1) in aqueous solution were quickly mortal to the trees. At the end of the test, almost all cyanide had disappeared from the solutions. Levels of cyanide in plants were related to the toxicity, with no elevated levels of cyanide in plants exposed to 0.4 mg CN l(-1). Willows grown in sand survived 423.5 h irrigation with 20 mg CN l(-1). Willows grown in sand irrigated with 50 mg CN l(-1) died within a few days. The roots of the surviving willows were able to consume about 10 mg CN kg fresh weight(-1)h(-1). Vascular plants possess the enzymes beta-cyanoalanine synthase and beta-cyanoalanine hydrolase, which convert free cyanide to the amino acid asparagine. The in vivo capacity of woody plants (willow, poplar, elder, rose, birch) to remove cyanide was evaluated. Tests were performed with detached leaves and roots in KCN solutions of different concentrations. The highest removal capacity was obtained for basket willow hybrids (Salix viminalis x schwerinii). The Michaelis-Menten kinetics was determined. Realistic values of the half-saturation constant, K(M), were between 0.6 and 1.7 mg CN l(-1); the maximum metabolic capacity, v(max), was around 9.3 mg CN kg fresh weight(-1)h(-1). The removal of cyanide by plants might be useful in phytoremediation and treatment of wastewater from gold mining.

  18. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    PubMed

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  19. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].

    PubMed

    Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun

    2014-06-01

    'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.

  20. Reducing Uncertainty in Transpiration Estimation in Wet Tropical Forests and Upscaling Sap Flux Measurements in Complex Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Aparecido, L. M. T.; Jaimes, A.

    2017-12-01

    High tree species and functional diversity, complex age and stand structure, deeper active sapwood, and potential factors that reduce transpiration, such as frequent cloud cover and wet leaves are inherent in wet tropical forests. In face of these unique challenges, advancements are needed for optimizing in situ measurement strategies to reduce uncertainties, in particular, within-tree and among-tree variation. Over a five-year period, we instrumented 44 trees with heat dissipation sap flow sensors within a premontane wet tropical rainforest in Costa Rica (5000 mm MAP). Sensors were systematically apportioned among overstory, midstory, and suppressed trees. In a subset of dominant trees, radial profiles across the full range of active xylem were fitted as deep as 16 cm. Given high diversity, few instrumented trees belonged to the same species, genus, or even family. Leaf surfaces were wet 20-80% of daylight hours from the top to bottom of the canopy, respectively. As a result, transpiration was suppressed, even after accounting for lower vapor pressure deficit (<0.5 kPa) and reduced solar radiation (<500 W m-1). To the contrary, the driest month on record resulted in higher, not lower transpiration. We identified multiple functional types according to patterns in dry season water use for the period February to April, 2016 using Random Forest analysis to discriminate groups with unique temporal responses. These efforts are critical for improving global land surface models that increasingly partition canopy components within complex heterogeneous systems, and for improved accuracy of transpiration estimates in tropical forests.