Science.gov

Sample records for plant-based recombinant expression

  1. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  2. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  3. Plant-based biopharming of recombinant human lactoferrin.

    PubMed

    Yemets, Alla I; Tanasienko, Iryna V; Krasylenko, Yuliya A; Blume, Yaroslav B

    2014-09-01

    Recombinant proteins are currently recognized as pharmaceuticals, enzymes, food constituents, nutritional additives, antibodies and other valuable products for industry, healthcare, research, and everyday life. Lactoferrin (Lf), one of the promising human milk proteins, occupies the expanding biotechnological food market niche due to its important versatile properties. Lf shows antiviral, antimicrobial, antiprotozoal and antioxidant activities, modulates cell growth rate, binds glycosaminoglycans and lipopolysaccharides, and also inputs into the innate/specific immune responses. Development of highly efficient human recombinant Lf expression systems employing yeasts, filamentous fungi and undoubtedly higher plants as bioreactors for the large-scale Lf production is a biotechnological challenge. This review highlights the advantages and disadvantages of the existing non-animal Lf expression systems from the standpoint of protein yield and its biological activity. Special emphasis is put on the benefits of monocot plant system for Lf expression and the biosafety aspects of the transgenic Lf-expressing plants. PMID:24803187

  4. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  5. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  6. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells. PMID:17581705

  7. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus

    PubMed Central

    2011-01-01

    Background To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. Methods A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. Results The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n = 38) and a clinical specificity of 100% (n = 24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. Conclusions The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria. PMID:21529346

  8. Two-step purification procedure for recombinant human asialoerythropoietin expressed in transgenic plants

    PubMed Central

    Kittur, Farooqahmed S.; Arthur, Elena; Nguyen, Maikhanh; Hung, Chiu-Yueh; Sane, David C.; Xie, Jiahua

    2014-01-01

    Asialoerythropoietin (asialo-EPO) is a desialylated form of human glycoprotein hormone erythropoietin (EPO), which has been reported to be neuro-, cardio-, and renoprotective in animal models of organ injuries. Since the current method of production of asialo-EPO from mammalian cell-made recombinant human EPO (rhuEPOM) by enzymatic desialylation is not commercially viable, we and others used plant-based expression systems to produce recombinant human asialo-EPO (asialo-rhuEPOP). Despite achieving high expression levels in plants, its purification from plant extracts has remained a greater challenge, which has prevented studying its tissue-protective effects and translating it into clinical practice. In this study, a procedure was developed to purify asialo-rhuEPOP from transgenic tobacco leaf tissues in two steps: ion-exchange chromatography based on its high pI (8.75) to separate it from acidic plant proteins, and immunoaffinity chromatography to obtain pure asialo-rhuEPOP. Using this process, up to 31% of the asialo-rhuEPOP could be recovered to near homogeneity from plant extracts. This work demonstrates that asialo-rhuEPOP expressed in tobacco plants could be purified in high yield and purity using minimal steps, which might be suitable for scale-up. Furthermore, the ion-exchange chromatography step together with the use of protein-specific antibody column could be used to purify a wide variety of basic recombinant proteins from transgenic leaf tissues. PMID:25450830

  9. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  10. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  11. Recombinant protein expression in Escherichia coli: advances and challenges

    PubMed Central

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  12. Recombinant production of mecasermin in E. coli expression system.

    PubMed

    Jafari, S; Babaeipour, V; Seyedi, H A Eslampanah; Rahaie, M; Mofid, M R; Haddad, L; Namvaran, M M; Fallah, J

    2014-01-01

    Human Insulin-like growth factor 1 (hIGF-1) consists of 70 amino acids in a single chain with three intermolecular disulfide bridges possessing valuable therapeutic effects. To date, numerous variants of specifically engineered hIGF-1 have been produced so as to improve hIGF-1 biological activity, stability and stronger binding to IGF-1 receptor. Mecasermin is one of the modified variants with one amino acid substitution near the N-terminal (T4I) approved for the treatment of growth failure diabetes, wound healing, amyotrophic lateral sclerosis and severe primary IGF-1 deficiency. No scientific report for recombinant production of mecasermin in Escherichia coli (E. coli) expression system has been sofar reported. In the present study, we therefore investigated the overexpression of mecasermin in two different E. coli strains in order to obtain higher yield of recombinant protein. To achieve this goal, mecasermin DNA encoding sequence was designed based on polypeptide sequence, optimized according to E. coli codon preference, and cloned in pET15b. Recombinant vector, pET15-mecasermin, transferred into two E. coli strains rigami B (DE3) and BL21 (DE3) and induced for expression in a small scale. Results revealed the E. coli Origami B (DE3) expression system was a preferable host for mecasermin production due to its high expression level being around twice as much as BL21 (DE3). Large scale mecasermin production was performed in batch culture and produced recombinant protein specifically confirmed by western blotting and mass spectroscopy. Since major part of recombinant mecasermin was expressed as inclusion body, isolation and refolding was accomplished through developed purification procedure, and finally recombinant protein was successfully purified by gel filtration chromatography. PMID:26339260

  13. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  14. Recombinant production of mecasermin in E. coli expression system

    PubMed Central

    Jafari, S.; Babaeipour, V.; Seyedi, H.A. Eslampanah; Rahaie, M.; Mofid, M.R.; Haddad, L.; Namvaran, M.M.; Fallah, J.

    2014-01-01

    Human Insulin-like growth factor 1 (hIGF-1) consists of 70 amino acids in a single chain with three intermolecular disulfide bridges possessing valuable therapeutic effects. To date, numerous variants of specifically engineered hIGF-1 have been produced so as to improve hIGF-1 biological activity, stability and stronger binding to IGF-1 receptor. Mecasermin is one of the modified variants with one amino acid substitution near the N-terminal (T4I) approved for the treatment of growth failure diabetes, wound healing, amyotrophic lateral sclerosis and severe primary IGF-1 deficiency. No scientific report for recombinant production of mecasermin in Escherichia coli (E. coli) expression system has been sofar reported. In the present study, we therefore investigated the overexpression of mecasermin in two different E. coli strains in order to obtain higher yield of recombinant protein. To achieve this goal, mecasermin DNA encoding sequence was designed based on polypeptide sequence, optimized according to E. coli codon preference, and cloned in pET15b. Recombinant vector, pET15-mecasermin, transferred into two E. coli strains rigami B (DE3) and BL21 (DE3) and induced for expression in a small scale. Results revealed the E. coli Origami B (DE3) expression system was a preferable host for mecasermin production due to its high expression level being around twice as much as BL21 (DE3). Large scale mecasermin production was performed in batch culture and produced recombinant protein specifically confirmed by western blotting and mass spectroscopy. Since major part of recombinant mecasermin was expressed as inclusion body, isolation and refolding was accomplished through developed purification procedure, and finally recombinant protein was successfully purified by gel filtration chromatography. PMID:26339260

  15. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    PubMed

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus. PMID:25720152

  16. A Plant-Based Transient Expression System for the Rapid Production of Malaria Vaccine Candidates.

    PubMed

    Boes, Alexander; Reimann, Andreas; Twyman, Richard M; Fischer, Rainer; Schillberg, Stefan; Spiegel, Holger

    2016-01-01

    There are currently no vaccines that provide sterile immunity against malaria. Various proteins from different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates, but none of them have fulfilled expectations. Therefore, combinations of key antigens from different stages of the parasites life cycle may be essential for the development of efficacious malaria vaccines. Following the identification of promising antigens using bioinformatics, proteomics, and/or immunological approaches, it is necessary to express, purify, and characterize these proteins and explore the potential of fusion constructs combining different antigens or antigen domains before committing to expensive and time-consuming clinical development. Here, using malaria vaccine candidates as an example, we describe how Agrobacterium tumefaciens-based transient expression in plants can be combined with a modular and flexible cloning strategy as a robust and versatile tool for the rapid production of candidate antigens during research and development. PMID:27076325

  17. Improved Plant-based Production of E1 endoglucanase Using Potato: Expression Optimization and Tissue Targeting

    SciTech Connect

    Dai, Ziyu; Hooker, Brian S.; Anderson, Daniel B.; Thomas, Steven R.

    2000-06-01

    Optimization of Acidothermus cellulolyticus endoglucanase (E1) gene expression in transgenic potato (Solanum tuberosum L.) was examined in this study, where the E1 coding sequence was transcribed under control of a leaf specific promoter (tomato RbcS-3C) or the Mac promoter (a hybrid promoter of mannopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region). Average E1 activity in leaf extracts of potato transformants, in which E1 protein was targeted by a chloroplast signal peptide and an apoplast signal peptide were much higher than those by an E1 native signal peptide and a vacuole signal peptide. E1 protein accumulated up to 2.6% of total leaf soluble protein, where E1 gene was under control of the RbcS-3C promoter, alfalfa mosaic virus 5-untranslated leader, and RbcS-2A signal peptide. E1 protein production, based on average E1 activity and E1 protein accumulation in leaf extracts, is higher in potato than those measured previously in transgenic tobacco bearing the same transgene constructs. Comparisons of E1 activity, protein accumulation, and relative mRNA levels showed that E1 expression under control of tomato RbcS-3C promoter was specifically localized in leaf tissues, while E1 gene was expressed in both leaf and tuber tissues under control of Mac promoter. This suggests dual-crop applications in which potato vines serve as enzyme production `bioreactors' while tubers are preserved for culinary applications.

  18. Genome engineering for improved recombinant protein expression in Escherichia coli.

    PubMed

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-01-01

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review. PMID:25523647

  19. Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression and Characterization of Recombinant Campylobacter jejuni Chemotactic Proteins Hung-Yueh Yeh*, Kelli L. Hiett, John E. Line, Brian B. Oakley and Bruce S. Seal, Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, Uni...

  20. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    PubMed

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate. PMID:25108114

  1. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  2. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  3. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, L.O.; Ohta, Kazuyoshi; Wood, B.E.

    1998-10-13

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol. 13 figs.

  4. Recombinant cells that highly express chromosomally-integrated heterologous gene

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  5. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    1998-01-01

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  6. Recombinant cells that highly express chromosomally-integrated heterologous genes

    DOEpatents

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2000-08-22

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  7. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells

    SciTech Connect

    Gorman, C.M.; Moffat, L.F.; Howard, B.H.

    1982-09-01

    The authors constructed a series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells. The prototype recombinant in this series, pSV2-cat, consisted of the beta-lactamase gene and origin of replication from pBR322 coupled to a simian virus 40 (SV40) early transcription region into which CAT coding sequences were inserted. Readily measured levels of CAT accumulated within 48 h after the introduction of pSV2-cat DNA into African green monkey kidney CV-1 cells. Because endogenous CAT activity is not present in CV-1 or other mammalian cells, and because rapid, sensitive assays for CAT activity are available, these recombinants provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells. To demonstrate the usefulness of this system, we constructed derivatives of pSV2-cat from which part or all of the SV 40 promoter region was removed. Deletion of one copy of the 72-base-pair repeat sequence in the SV40 promoter caused no significant decrease in CAT synthesis in monkey kidney CV-1 cells; however, an additional deletion of 50 base pairs from the second copy of the repeats reduced CAT synthesis to 11% of its level in the wild type. They also constructed a recombinant, pSVO-cat, in which the entire SV40 promoter region was removed and a unique HindIII site was substituted for the insertion of other promoter sequences.

  8. Expression of Recombinant Vaccines and Antibodies in Plants

    PubMed Central

    2014-01-01

    Plants are able to perform post-translational maturations of therapeutic proteins required for their functional biological activity and suitable in vivo pharmacokinetics. Plants can be a low-cost, large-scale production platform of recombinant biopharmaceutical proteins such as vaccines and antibodies. Plants, however, lack mechanisms of processing authentic human N-glycosylation, which imposes a major limitation in their use as an expression system for therapeutic glycoproducts. Efforts have been made to circumvent plant-specific N-glycosylation, as well as to supplement the plant's endogenous system with human glycosyltransferases for non-immunogenic and humanized N-glycan production. Herein we review studies on the potential of plants to serve as production systems for therapeutic and prophylactic biopharmaceuticals. We have especially focused on recombinant vaccines and antibodies and new expression strategies to overcome the existing problems associated with their production in plants. PMID:24937251

  9. Genetically Engineered Poxviruses for Recombinant Gene Expression, Vaccination, and Safety

    NASA Astrophysics Data System (ADS)

    Moss, Bernard

    1996-10-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure--function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of recombinant vaccinia virus has been realized in the form of an effective oral wild-life rabies vaccine, although no product for humans has been licensed. A genetically altered vaccinia virus that is unable to replicate in mammalian cells and produces diminished cytopathic effects retains the capacity for high-level gene expression and immunogenicity while promising exceptional safety for laboratory workers and potential vaccine recipients.

  10. Alcelaphine herpesvirus 1 glycoprotein B: recombinant expression and antibody recognition.

    PubMed

    Dry, Inga; Todd, Helen; Deane, David; Percival, Ann; Mclean, Kevin; Inglis, Neil F; Manson, Erin D T; Haig, David M; Nayuni, Shilpa; Hutt-Fletcher, Lindsey M; Grant, Dawn M; Bartley, Kathryn; Stewart, James P; Russell, George C

    2016-03-01

    The gammaherpesvirus alcelaphine herpesvirus 1 (AlHV-1) causes fatal malignant catarrhal fever (MCF) in susceptible species including cattle, but infects its reservoir host, wildebeest, without causing disease. Pathology in cattle may be influenced by virus-host cell interactions mediated by the virus glycoproteins. Cloning and expression of a haemagglutinin-tagged version of the AlHV-1 glycoprotein B (gB) was used to demonstrate that the AlHV-1-specific monoclonal antibody 12B5 recognised gB and that gB was the main component of the gp115 complex of AlHV-1, a glycoprotein complex of five components identified on the surface of AlHV-1 by immunoprecipitation and radiolabelling. Analysis of AlHV-1 virus particles showed that the native form of gB was detected by mAb 12B5 as a band of about 70 kDa, whilst recombinant gB expressed by transfected HEK293T cells appeared to be subject to additional cleavage and incomplete post-translational processing. Antibody 12B5 recognised an epitope on the N-terminal furin-cleaved fragment of gB on AlHV-1 virus particles. It could be used to detect recombinant and virus-expressed gB on western blots and on the surface of infected cells by flow cytometry, whilst recombinant gB was detected on the surface of transfected cells by immunofluorescence. Recombinant gB has potential as an antigen for ELISA detection of MCF virus infection and as a candidate vaccine antigen. PMID:26650040

  11. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  12. Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation

    PubMed Central

    Lee, Yu-Chen; Martin, Emil; Murad, Ferid

    2000-01-01

    The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein. PMID:10995472

  13. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  14. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli

    PubMed Central

    Kay, Emily J.; Yates, Laura E.; Terra, Vanessa S.; Cuccui, Jon; Wren, Brendan W.

    2016-01-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  15. Recombinant expression of Streptococcus pneumoniae capsular polysaccharides in Escherichia coli.

    PubMed

    Kay, Emily J; Yates, Laura E; Terra, Vanessa S; Cuccui, Jon; Wren, Brendan W

    2016-04-01

    Currently, Streptococcus pneumoniae is responsible for over 14 million cases of pneumonia worldwide annually, and over 1 million deaths, the majority of them children. The major determinant for pathogenesis is a polysaccharide capsule that is variable and is used to distinguish strains based on their serotype. The capsule forms the basis of the pneumococcal polysaccharide vaccine (PPV23) that contains purified capsular polysaccharide from 23 serotypes, and the pneumococcal conjugate vaccine (PCV13), containing 13 common serotypes conjugated to CRM197 (mutant diphtheria toxin). Purified capsule from S. pneumoniae is required for pneumococcal conjugate vaccine production, and costs can be prohibitively high, limiting accessibility of the vaccine in low-income countries. In this study, we demonstrate the recombinant expression of the capsule-encoding locus from four different serotypes of S. pneumoniae within Escherichia coli. Furthermore, we attempt to identify the minimum set of genes necessary to reliably and efficiently express these capsules heterologously. These E. coli strains could be used to produce a supply of S. pneumoniae serotype-specific capsules without the need to culture pathogenic bacteria. Additionally, these strains could be applied to synthetic glycobiological applications: recombinant vaccine production using E. coli outer membrane vesicles or coupling to proteins using protein glycan coupling technology. PMID:27110302

  16. Recombinant expression of twelve evolutionarily diverse subfamily Iα aminotransferases

    PubMed Central

    Muratore, Kathryn E.; Srouji, John R.; Chow, Margaret A.; Kirsch, Jack F.

    2009-01-01

    Aminotransferases are essential enzymes involved in the central metabolism of all organisms. The Iα subfamily of aspartate and tyrosine aminotransferases (AATases and TATases) is the best-characterized grouping, but only eight enzymes from this subfamily, representing relatively little sequence diversity, have been experimentally characterized for substrate specificity (i.e., AATase vs. TATase). Genome annotation, based on this limited dataset, provides tentative assignments for all sequenced members of this subfamily. This procedure is, however, subject to error, particularly when the experimental basis set is limited. To address this problem we cloned twelve additional subfamily Iα enzymes from an evolutionarily divergent set of organisms. Nine were purified to homogeneity after heterologous expression in E. coli in native, intein-tagged or His6-tagged forms and the two S. cerevisiae isoforms were recombinantly produced in yeast. The effects of the C-terminal tags on expression, purification and enzyme activity are discussed. PMID:17964807

  17. Bacterial expression and purification of recombinant bovine Fab fragments.

    PubMed

    O'Brien, Philippa M; Maxwell, Gavin; Campo, M Saveria

    2002-02-01

    We have previously described a recombinant phagemid expression vector, pComBov, designed for the production of native sequence bovine monoclonal antibodies (mAb) generated by antibody phage display. Bovine mAb Fab fragments isolated from libraries constructed using pComBov in Escherichia coli strain XL1-Blue, which is routinely used for antibodies expressed on the surface of phage, were expressed at very low yields. Therefore, a study was undertaken to determine optimal growth conditions for maximal expression of bovine Fab fragments in E. coli. By varying the E. coli strain, and the temperature and length of the culture growth, we were able to substantially increase the yield of soluble Fab fragments. A high yield of Fab fragments was found in the culture growth medium, which enabled us to devise a rapid and simple single-step method for the purification of native (nondenatured) Fabs based on immobilized metal affinity chromatography against a six-histidine amino acid carboxyl-terminal extension of the heavy-chain constant region. Using these methods we were able to express and purify antigen-specific bovine Fab fragments from E. coli. PMID:11812221

  18. Cloning, Expression and Biological Analysis of Recombinant Chicken IFN-gamma Expressed in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interferon-gamma (CHIFN-') derived from the spleen cells of White Leghorns chicken, a local Chinese breeding species was amplified by RT-PCR. The gene encoding CHIFN-' with the deletion of the N-terminal signal peptide was cloned into prokaryotic expression vector pET30a, resulting in a recombin...

  19. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2.

    PubMed

    Cao, Heping; Chapital, Dorselyn C; Howard, O D; Deterding, Leesa J; Mason, Catherine B; Shockey, Jay M; Klasson, K Thomas

    2012-11-01

    Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may

  20. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  1. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:24674065

  2. Expression of recombinant green fluorescent protein in Bacillus methanolicus.

    PubMed

    Nilasari, Dewi; Dover, Nir; Rech, Sabine; Komives, Claire

    2012-01-01

    Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. PMID:22275315

  3. Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium

    SciTech Connect

    Sollewijn Gelpke, M.D.; Mayfield-Gambill, M.; Lin Cereghino, G.P.; Gold, M.H.

    1999-04-01

    The glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter was used to drive expression of lip2, the gene encoding lignin peroxidase (LiP) isozyme H8, in primary metabolic cultures of Phanerochaete chrysosporium. The expression vector, pUGL, also contained the Schizophyllum commune ura1 gene as a selectable marker. pUGL was used to transform a P. chrysosporium Ura11 auxotroph to prototrophy. Ura{sup +} transformants were screened for peroxidase activity in liquid cultures containing high-carbon and high-nitrogen medium. Recombinant LiP (rLiP) was secreted in active form by the transformants after 4 days of growth, whereas endogenous lip genes were not expressed under these conditions. Approximately 2 mg of homogeneous rLiP/liter was obtained after purification. The molecular mass, pI, and optical absorption spectrum of rLiPH8 were essentially identical to those of the wild-type LiPH8 (wt LiPH8), indicating that heme insertion, folding, and secretion functioned normally in the transformant. Steady-state and transient-state kinetic properties for the oxidation of veratryl alcohol between wtLiPH8 and rLiPH8 were also identical.

  4. Transient expression of VP2 in Nicotiana benthamiana and its use as a plant-based vaccine against infectious bursal disease virus.

    PubMed

    Gómez, Evangelina; Lucero, María Soledad; Chimeno Zoth, Silvina; Carballeda, Juan Manuel; Gravisaco, María José; Berinstein, Analía

    2013-05-28

    Infectious Bursal Disease Virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds. This disease causes important economic losses in the poultry industry worldwide. The VP2 protein has been used for the development of subunit vaccines in a variety of heterologous platforms. In this context, the aim of this study was to investigate VP2 expression and immunogenicity using an experimental plant-based vaccine against IBDV. We determined that the agroinfiltration of N. benthamiana leaves allowed the production of VP2 with no apparent change on its conformational epitopes. Chickens intramuscularly immunized in a dose/boost scheme with crude concentrated extracts developed a specific humoral response with viral neutralizing ability. Given these results, it seems plausible for a plant-based vaccine to have a niche in the veterinary field. Thus, plants can be an adequate system of choice to produce immunogens against IBDV. PMID:23583894

  5. [Stable expression of recombinant human podoplanin in Chinese hamster ovary (CHO) cells].

    PubMed

    Qu, Le; Zhao, Xingpeng; Fu, Jianxin; Xia, Lijun; Dai, Lan; Ruan, Changgeng; Zhao, Yiming

    2016-01-01

    Objective To construct podoplanin (PDPN) eukaryotic expression plasmid PDPN-pEGFP-N1, establish Chinese hamster ovary (CHO) cell line stably expressing recombinant human PDPN and investigate its biological activity. Methods PDPN cDNA was cloned from HEK293 cells by reverse transcription PCR and recombinant DNA technology and inserted into plasmid pEGFP-N1 labeled by enhanced green fluorescent protein (EGFP). The recombinant vector was identified by PCR, restriction enzyme digestion and DNA sequencing, and then transfected into CHO cells. Recombinant PDPN-EGFP was observed by fluorescent microscopy and CHO cell line with the high expression of PDPN-EGFP was selected by flow cytometry. Recombinant PDPN was detected by Western blotting and the biological activity of the cell line was determined by platelet aggregation assay. Results DNA sequencing and restriction enzyme digestion proved that the gene of PDPN was inserted successfully into pEGFP-N1 plasmid. After stable transfection of the recombinant plasmid into CHO cells, CHO with EGFP could be seen under a fluorescent microscope. The CHO cell line with the high expression of recombinant PDPN-EGFP was obtained after sorting by flow cytometry. Western blotting showed that the recombinant PDPN was expressed on the cell surface. The over-expressing PDPN-EGFP CHO cells were able to induce human platelet aggregation. Conclusion The CHO cell line with the stable and high expression of recombinant PDPN-EGFP has been constructed successfully, and it could induce platelet aggregation. PMID:26728373

  6. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    PubMed Central

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  7. Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses.

    PubMed

    Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2016-01-01

    Several arenaviruses cause hemorrhagic fever (HF) disease in humans and pose an important public health problem in their endemic regions. To date, no Food and Drug Administration (FDA)-licensed vaccines are available to combat human arenavirus infections, and current anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetic approaches has provided investigators with a novel and powerful approach for the study of arenavirus biology including virus-host interactions underlying arenavirus induced disease. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, as well as particle assembly and budding. Likewise, it is now feasible to rescue infectious arenaviruses containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. The use of reverse genetics approaches has also allowed the generation of recombinant arenaviruses expressing additional genes of interest. These advances in arenavirus molecular genetics have also facilitated the implementation of novel screens to identify anti-arenaviral drugs, and the development of novel strategies for the generation of arenavirus live-attenuated vaccines. In this review, we will summarize the current knowledge on reporter-expressing, replicating-competent arenaviruses harboring reporter genes in different locations of the viral genome and their use for studying and understanding arenavirus biology and the identification of anti-arenaviral drugs to combat these important human pathogens. PMID:27447662

  8. Reporter-Expressing, Replicating-Competent Recombinant Arenaviruses

    PubMed Central

    Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2016-01-01

    Several arenaviruses cause hemorrhagic fever (HF) disease in humans and pose an important public health problem in their endemic regions. To date, no Food and Drug Administration (FDA)-licensed vaccines are available to combat human arenavirus infections, and current anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetic approaches has provided investigators with a novel and powerful approach for the study of arenavirus biology including virus–host interactions underlying arenavirus induced disease. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription, as well as particle assembly and budding. Likewise, it is now feasible to rescue infectious arenaviruses containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis. The use of reverse genetics approaches has also allowed the generation of recombinant arenaviruses expressing additional genes of interest. These advances in arenavirus molecular genetics have also facilitated the implementation of novel screens to identify anti-arenaviral drugs, and the development of novel strategies for the generation of arenavirus live-attenuated vaccines. In this review, we will summarize the current knowledge on reporter-expressing, replicating-competent arenaviruses harboring reporter genes in different locations of the viral genome and their use for studying and understanding arenavirus biology and the identification of anti-arenaviral drugs to combat these important human pathogens. PMID:27447662

  9. Production of recombinant botulism antigens: a review of expression systems.

    PubMed

    Moreira, G M S G; Cunha, C E P; Salvarani, F M; Gonçalves, L A; Pires, P S; Conceição, F R; Lobato, F C F

    2014-08-01

    Botulism is a paralytic disease caused by intoxication with neurotoxins produced by Clostridium botulinum. Despite their similar mechanism of action, the botulinum neurotoxins (BoNT) are classified in eight serotypes (A to H). As to veterinary medicine, the impact of this disease is essentially economic, since different species of production animals can be affected, especially by BoNT/C and D. In human health, botulism is feared in a possible biological warfare, what would involve mainly the BoNT/A, B, E and F. In both cases, the most effective way to deal with botulism is through prevention, which involves vaccination. However, the current vaccines against this disease have several drawbacks on their process of production and, besides this, can be dangerous to producers since it requires certain level of biosafety. This way, recombinant vaccines have been shown to be a great alternative for the development of vaccines against both animal and human botulism. All BoNTs have a 50-kDa light chain (LC) and a 100-kDa heavy chain (HC). The latter one presents two domains of 50 kDa, called the N-terminal (HN) and C-terminal (HC) halves. Among these regions, the HC alone seem to confer the proper immune response against intoxication. Since innumerous studies describe the expression of these distinct regions using different systems, strategies, and protocols, it is difficult to define the best option for a viable vaccine production. Thereby, the present review describes the problematic of botulism and discusses the main advances for the viable production of vaccines for both human and veterinary medicine using recombinant antigens. PMID:24930432

  10. Improved expression of recombinant human factor IX by co-expression of GGCX, VKOR and furin.

    PubMed

    Liu, Jianming; Jonebring, Anna; Hagström, Jonas; Nyström, Ann-Christin; Lövgren, Ann

    2014-04-01

    Recombinant human FIX concentrates (rhFIX) are essential in the treatment and prevention of bleeding in the bleeding disorder haemophilia B. However, due to the complex nature of FIX production yields are low which leads to high treatment costs. Here we report the production of rhFIX with substantially higher yield by co-expressing human FIX with GGCX (γ-glutamyl carboxylase), VKOR (vitamin K epoxide reductase) and furin (paired basic amino acid cleaving enzyme) in Chinese hamster ovary (CHO) cells. Our results show that controlled co-expression of GGCX with FIX is critical to obtain high rhFIX titre, and, that co-expression of VKOR further increased the yield of active rhFIX. Furin co-expression improved processing of the leader peptide of rhFIX but had a minor effect on yield of active rhFIX. The optimal expression level of GGCX was surprisingly low and required unusual engineering of expression vector elements. For VKOR and furin the control of expression was less critical and could be achieved by standard vector element. Using our expression vectors an rhFIX-producing clone with an expression level of up to 30 mg/L of active rhFIX was obtained. In addition an efficient single step purification method was developed to obtain pure and active rhFIX with up to 94% yield. PMID:24567122

  11. Recombinant Gene Expression in vivo within Endothelial Cells of the Arterial Wall

    NASA Astrophysics Data System (ADS)

    Nabel, Elizabeth G.; Plautz, Gregory; Boyce, Frederick M.; Stanley, James C.; Nabel, Gary J.

    1989-06-01

    A technique for the transfer of endothelial cells and expression of recombinant genes in vivo could allow the introduction of proteins of therapeutic value in the management of cardiovascular diseases. Porcine endothelial cells expressing recombinant β -galactosidase from a murine amphotropic retroviral vector were introduced with a catheter into denuded iliofemoral arteries of syngeneic animals. Arterial segments explanted 2 to 4 weeks later contained endothelial cells expressing β -galactosidase, an indication that they were successfully implanted on the vessel wall.

  12. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese. PMID:26341925

  13. Expression and Characterization of Recombinant Serratia liquefaciens Nucleases Produced with Baculovirus-mediated Silkworm Expression System.

    PubMed

    Iiyama, Kazuhiro; Lee, Jae Man; Tatsuke, Tuneyuki; Mon, Hiroaki; Kusakabe, Takahiro

    2016-06-01

    Baculovirus-Bombyx mori protein expression system has mainly been used for translation of eukaryotic proteins. In contrast, information pertaining to bacterial protein expression using this system is not sufficient. Therefore, recombinant nucleases from Serratia liquefaciens (rSlNucAs) were expressed in a Baculovirus-B. mori protein expression system. rSlNucAs containing the native signal peptide (rSlNucA-NSP) or silkworm 30-K signal peptide (rSlNucA-30K) at the NH2-terminus were constructed to enable secretion into the extracellular fraction. Both rSlNucA-30K and rSlNucA-NSP were successfully secreted into hemolymph of B. mori larvae. Affinity-purified rSlNucAs showed high nuclease activity. Optimum pH was 7.5 and half of maximum activity was maintained between pH 7.0 and 9.5. Optimum temperature was 35 °C. rSlNucAs showed sufficient activity in twofold-diluted radioimmunoprecipitation assay buffer and undiluted, mild lysis buffer. Genomic DNA of Escherichia coli was efficiently digested by rSlNucAs in the bacterial lysate. The results in this study suggest that rSlNucAs expressed by the Baculovirus-B. mori protein expression system will be a useful tool in molecular biology. Functional recombinant protein of bacteria was produced by Baculovirus-B. mori protein expression system. This system may be highly suitable for bacterial extracellular protein secreted via Sec pathway. PMID:27059494

  14. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  15. Enzymatic characterization of recombinant nitrate reductase expressed and purified from Neurospora crassa.

    PubMed

    Ringel, Phillip; Probst, Corinna; Dammeyer, Thorben; Buchmeier, Sabine; Jänsch, Lothar; Wissing, Josef; Tinnefeld, Philip; Mendel, Ralf R; Jockusch, Brigitte M; Kruse, Tobias

    2015-07-01

    We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity. PMID:25914160

  16. THE CRE-LOXP RECOMBINATION-BASED REPORTER SYSTEM FOR PLANT TRANSCRIPTIONAL EXPRESSION STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To facilitate the characterization of plant genes, the Cre-loxP site-specific recombination system was adapted to make reporter vectors for plant expression studies. This system allows promoter fragments to be cloned into a small vector (univector) and subsequently recombined in vitro with binary ve...

  17. Infectious bronchitis virus S2 expressed from recombinant virus confers broad protection against challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed recombinant Newcastle disease virus (NDV) LaSota (rLS) expressing the IBV S2 gene (rLS/IBV.S2). The recombinant virus showed reduced pathogenicity compared to the parental LaSota strain but effectively elicited hemagglutination inhibition antibodies and protected chickens against lethal...

  18. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  19. Cloning, expression, and antigenic characterization of recombinant protein of Mycoplasma gallisepticum expressed in Escherichia coli.

    PubMed

    Rocha, T S; Tramuta, C; Catania, S; Matucci, A; Giuffrida, M G; Baro, C; Profiti, M; Bertolotti, L; Rosati, S

    2015-04-01

    Mycoplasma gallisepticum (MG) is a member of the most important avian mycoplasmas, causing chronic respiratory disease in chickens and leading to important economic losses in the poultry industry. Recombinant technology represents a strategic approach used to achieve highly reliable and specific diagnostic tests in veterinary diseases control: in particular this aspect is crucial for confirming mycoplasma infection and for maintaining mycoplasma-free breeder flocks. In this study, we identified a component of the pyruvate dehydrogenase dihydrolipoamide acetyltransferase (i.e., E2) protein by 2-dimensional electrophoresis (2-DE), characterized it in immunoblotting assays, and analyzed its recombinant (r-E2) in a rec-ELISA test. For full-length protein expression in Escherichia coli (EC) a point mutation was introduced. A rabbit antiserum produced against r-E2 was tested in a Western Blot using different samples of Mycoplasma species. The results showed the applicability of site-directed mutagenesis, with a good yield of the r-E2 after purification. Also, anti-E2 serum reacted with all the tested MG strains showing no cross reaction with other mycoplasmas. The developed E2 ELISA test was capable of detecting MG antibodies in the sera examined. Those results demonstrate the antigenic stability of the E2 protein which could represent a recombinant antigen with potential diagnostic applications. PMID:25667423

  20. A method to generate recombinant Salmonella typhi Ty21a strains expressing multiple heterologous genes using an improved recombineering strategy.

    PubMed

    Yu, Bin; Yang, Mei; Wong, Ho Yin Bosco; Watt, Rory M; Song, Erwei; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2011-07-01

    Live attenuated Salmonella enterica serovar Typhi Ty21a (Ty21a) is an important vaccine strain used in clinical studies for typhoid fever and as a vaccine vector for the expression of heterologous antigens. To facilitate the use of Ty21a in such studies, it is desirable to develop improved strategies that enable the stable chromosomal integration and expression of multiple heterologous antigens. The phage λ Red homologous recombination system has previously been used in various gram-negative bacteria species to mediate the accurate replacement of regions of chromosomal DNA with PCR-generated 'targeting cassettes' that contain flanking regions of shared homologous DNA sequence. However, the efficiency of λ Red-mediated recombineering in Ty21a is far lower than in Escherichia coli and other Salmonella typhimurium strains. Here, we describe an improved strategy for recombineering-based methods in Ty21a. Our reliable and efficient method involves the use of linear DNA-targeting cassettes that contain relatively long flanking 'arms' of sequence (ca. 1,000 bp) homologous to the chromosomal target. This enables multiple gene-targeting procedures to be performed on a single Ty21a chromosome in a straightforward, sequential manner. Using this strategy, we inserted three different influenza antigen expression cassettes as well as a green fluorescent protein gene reporter into four different loci on the Ty21a chromosome, with high efficiency and accuracy. Fluorescent microscopy and Western blotting analysis confirmed that strong inducible expression of all four heterologous genes could be achieved. In summary, we have developed an efficient, robust, and versatile method that may be used to construct recombinant Ty21a antigen-expressing strains. PMID:21611798

  1. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  2. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF)

    PubMed Central

    Mohammadian, Jamal; Mansoori-Derakhshan, Sima; Mohammadian, Masood; Shekari-Khaniani, Mahmoud

    2013-01-01

    Purpose: The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. Methods: EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. Results: PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. Conclusion: Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study. PMID:24312882

  3. Oligonucleotide recombination in corynebacteria without the expression of exogenous recombinases.

    PubMed

    Krylov, Alexander A; Kolontaevsky, Egor E; Mashko, Sergey V

    2014-10-01

    Brevibacterium lactofermentum and Corynebacterium glutamicum are important biotechnology species of the genus Corynebacterium. The single-strand DNA annealing protein (SSAP)-independent oligonucleotide-mediated recombination procedure was successfully applied to the commonly used wild-type strains B. lactofermentum AJ1511 and C. glutamicum ATCC13032. When the rpsL gene was used as a target, the optimized protocol yielded up to (1.4±0.3)×10(3) and (6.7±1.3)×10(3) streptomycin-resistant colonies per 10(8) viable cells for the corresponding strains. We tested the influence of several parameters that are known to enhance the efficiency of oligonucleotide-mediated recombination in other bacterial species. Among them, increasing the concentration of oligonucleotides and targeting the lagging strand of the chromosome have proven to have positive effects on both of the tested species. No difference in the efficiency of recombination was observed between the oligonucleotides phosphorothiorated at the 5' ends and the unmodified oligonucleotides or between the oligonucleotides with four mutated nucleotides and those with one mutated nucleotide. The described approach demonstrates that during the adaptation of the recombineering technique, testing SSAP-independent oligonucleotide-mediated recombination could be a good starting point. Such testing could decrease the probability of an incorrect interpretation of the effect of exogenous protein factors (such as SSAP and/or corresponding exonucleases) due to non-optimal experimental conditions. In addition, SSAP-independent recombination itself could be useful in combination with suitable selection/enrichment methods. PMID:25087479

  4. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  5. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity.

    PubMed

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  6. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    PubMed Central

    Iglesias-Figueroa, Blanca; Valdiviezo-Godina, Norberto; Siqueiros-Cendón, Tania; Sinagawa-García, Sugey; Arévalo-Gallegos, Sigifredo; Rascón-Cruz, Quintín

    2016-01-01

    In this study, bovine lactoferrin (bLf), an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf) in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin) demonstrated antibacterial activity against Escherichia coli (E. coli) BL21DE3, Staphylococcus aureus (S. aureus) FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa) ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly. PMID:27294912

  7. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    PubMed Central

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  8. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    PubMed

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources. PMID:26780375

  9. The recombinant expression and activity detection of MAF-1 fusion protein

    PubMed Central

    Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian

    2015-01-01

    This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression. PMID:26423137

  10. Recombinant expression and characterization of a novel fibronectin isoform expressed in cartilaginous tissues.

    PubMed

    Kozaki, Tomohiro; Matsui, Yoshito; Gu, Jianguo; Nishiuchi, Ryoko; Sugiura, Nobuo; Kimata, Koji; Ozono, Keiichi; Yoshikawa, Hideki; Sekiguchi, Kiyotoshi

    2003-12-12

    A novel fibronectin (FN) isoform lacking the segment from IIICS (type III connecting segment) through the I-10 module is expressed predominantly in normal cartilaginous tissues. We expressed and purified recombinant cartilage-type FN using a mammalian expression system and characterized its molecular and biological properties. Although FNs have been shown to be secreted as disulfide-bonded dimers, cartilage-type FN was secreted mainly as a monomer. It was less potent than plasma-type FN in promoting cell adhesion and binding to integrin alpha5beta1, although it was more active than plasma-type FN in binding to chondroitin sulfate E. When added exogenously, cartilage-type FN was poorly assembled into the fibrillar FN matrix, mostly because of its monomeric structure. Given that cartilage is characterized by its non-fibrillar matrix with abundant chondroitin sulfate-containing proteoglycans, it is likely that cartilage-type FN has evolved to adapt itself to the non-fibrillar structure of the cartilage matrix through acquisition of a novel mechanism of alternative pre-mRNA splicing. PMID:14525997

  11. Recombinant bovine herpesvirus-1 expressing p23 protein of Cryptosporidium parvum induces neutralizing antibodies in rabbits.

    PubMed

    Takashima, Yasuhiro; Xuan, Xuenan; Kimata, Isao; Iseki, Motohiro; Kodama, Yoshikatsu; Nagane, Noriko; Nagasawa, Hideyuki; Matsumoto, Yasunobu; Mikami, Takeshi; Otsuka, Haruki

    2003-04-01

    In order to develop a vaccine against cryptosporidiosis in cattle, we constructed a recombinant bovine herpesvirus-1 (BHV-1) expressing an immunodominant surface protein, p23, of Cryptosporidium parvum sporozoites. In the recombinant virus, the p23 gene under the control of a CAG promoter and a gene coding for an enhanced green fluorescent protein were integrated into the gG gene of BHV-1. Despite a low frequency of homologous recombination, cloning of the recombinants was easy because of the specific fluorescence of the plaques formed by recombinants. These plaques were among the plaques of the nonfluorescent parental virus. All clones selected for fluorescence also contained the p23 gene. In MDBK cells infected with the recombinant BHV-1, the antibody against the p23 protein recognized the p23 protein as an approximately 23-kDa specific band in Western blotting analysis. Rabbits immunized with the recombinant produced IgG against the p23 protein. It was also demonstrated that the sera of immunized rabbits reduced infection of C. parvum sporozoites in HCT-8 cells. The serum of an immunized rabbit reduced infection compared with the normal rabbit serum control. These results indicate that the recombinant BHV-1 induces neutralizing antibodies in rabbits. PMID:12760641

  12. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications.

    PubMed

    Liu, Xiuxia; Yang, Yankun; Zhang, Wei; Sun, Yang; Peng, Feng; Jeffrey, Laura; Harvey, Linda; McNeil, Brian; Bai, Zhonghu

    2016-08-01

    Corynebacterium glutamicum (C. glutamicum) is a highly promising alternative prokaryotic host for recombinant protein expression, as it possesses several significant advantages over Escherichia coli (E. coli), the currently leading bacterial protein expression system. During the past decades, several experimental techniques and vector components for genetic manipulation of C. glutamicum have been developed and validated, including strong promoters for tightly regulating target gene expression, various types of plasmid vectors, protein secretion systems and methods of genetically modifying the host strain genome to improve protein production potential. This review critically discusses current progress in establishing C. glutamicum as a host for recombinant protein expression, and examines, in depth, some successful case studies of actual application of this expression system. The established "expression tool box" for developing novel constructs based on C. glutamicum as a host are also evaluated. Finally, the existing issues and solutions in process development with C. glutamicum as a host are specifically addressed. PMID:25714007

  13. Expression, purification, and in vitro characterization of recombinant salmon insulin-like growth factor-II.

    PubMed

    Wilkinson, Ryan J; Elliott, Phillip; Carragher, John F; Francis, Geoffrey

    2004-06-01

    The insulin-like growth factors, IGF-I and IGF-II, are single chain polypeptides, which are structurally related to proinsulin and promote proliferation and differentiation of cells in many vertebrate species. Previous attempts to produce recombinant salmon IGF-II (rsIGF-II) were compromised by low expression levels and co-purification of incorrectly cleaved protein with the authentic recombinant product. In this study, a gene containing the coding region for Atlantic salmon (Salmo salar) IGF-II was cloned into a modified pET32a expression vector and transformed into Escherichia coli BL21 trxB (DE3) cells. Upon growth and induction (with IPTG) of the transformant, recombinant salmon IGF-II (rsIGF-II) was expressed as an insoluble, 28kDa thioredoxin.sIGF-II fusion protein linked by a protease cleavage motif (trx.FAHY.sIGF-II) in inclusion bodies. The inclusion bodies were subsequently solubilized and the fusion protein was purified by Ni-affinity chromatography. Recombinant IGF-II (7.8kDa) was then released from the fusion partner using H64A subtilisin BPN' protease and purified by reversed-phase HPLC. Homogeneity of the final recombinant product was confirmed by N-terminal amino acid sequencing, ion-spray mass spectrometry, SDS-polyacrylamide gel electrophoresis, and analytical reversed-phase HPLC. The biological activity of rsIGF-II was demonstrated in cultured rat L6 myoblasts and was found to be approximately 9- and 5-fold less potent than recombinant human IGF-I and recombinant salmon IGF-I, respectively, a result similar to that demonstrated previously with other recombinant fish IGF-II's in non-homologous cell lines. PMID:15135411

  14. Expression of Functional Recombinant Human Tissue Transglutaminase (TG2) Using the Bac-to-Bac Baculovirus Expression System

    PubMed Central

    Yazdani, Yaghoub; Azari, Shahram; Kalhor, Hamid Reza

    2016-01-01

    Purpose: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer’s disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. Methods: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. Results: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. Conclusion: Human TG2 was expressed efficiently in the active biological form in the Bac-to-Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system. PMID:27123417

  15. Rapid screening for the robust expression of recombinant proteins in algal plastids.

    PubMed

    Barrera, Daniel; Gimpel, Javier; Mayfield, Stephen

    2014-01-01

    Chlamydomonas reinhardtii has many advantages as a photosynthetic model organism. One of these is facile, targeted chloroplast transformation by particle bombardment. Functional recombinant proteins can be expressed to significant levels in this system, potentially outperforming higher plants in speed of scaling, cost, and space requirements. Several strategies and regulatory regions can be used for achieving transgene expression. Here we present two of those strategies: one makes use of the psbD promoter for expressing moderate levels of the recombinant protein in a photosynthetic background. The other strategy is based on the strong psbA promoter for obtaining high yields of the recombinant product in a non-photosynthetic strain. We herein describe the vectors, transformation procedures, and screening methods associated with these two strategies. PMID:24599869

  16. [Recombinant design and expression of human anti-rabies virus ScdsFv].

    PubMed

    Cai, Kun; Wang, Hui; Bao, Shi-zhong; Shi, Jing; Hou, Xiao-jun

    2007-08-01

    To constructed the recombinant human anti-rabies virus ScdsFv, cys sites were introduced into framework region (FR) of VH and VL genes which were amplified from human anti-rabies virus ScFv respectively using genetic point mutation technology. Cloned the ScdsFv gene into expression vector pET22b (+) and transformed into E. coli BL21 (DE3). The target protein was expressed by inducing with IPTG. Followed by renaturation in vitro and purified by Ni-NTA. The binding activity of ScdsFv was identified by Fluorescent antibody test (FAT) and ELISA. Results showed that recombinant ScdsFv were expressed at high level. Purity of the protein > 90% after purified by Ni-NTA and renaturaton in vitro. FAT and ELISA results demonstrated that ScdsFv could binding antigen specificity and was more stable than ScFv. Recombinant ScdsFv provided experiment materials for further functional study. PMID:17944370

  17. Functional Expression of Recombinant Human Stefin A in Mammalian and Bacterial Cells

    PubMed Central

    Calkins, Catharine C.; Dosescu, Julie; Day, Nancy A.; Ren, Wei-Ping; Fridman, Rafael; Sloane, Bonnie F.; Moin, Kamiar

    2007-01-01

    Recombinant human cysteine protease inhibitor, stefin A, was expressed in both E. coli and BSC-1 monkey kidney cells utilizing pET and recombinant Vaccinia virus systems, respectively. The expressed protein was purified and analyzed by SDS-PAGE and western blot analysis utilizing a polyclonal antibody against rat cystatin α. In both cases the purified protein appeared as a single band corresponding to the molecular weight of stefin A (~10 kDa). Viability of the expressed stefin A was determined by the inhibition of the plant cysteine protease, papain. Recombinant human stefin A expressed in both E. coli and BSC-1 cells was shown to almost completely inhibit papain. The expression of a fully functional recombinant human stefin A in the bacterial system provides a highly efficient tool for the production of large quantities of the protein. This can be an important tool in kinetic studies as well as in production of antibodies for other analytical studies (immunoblot, immunohistochemical studies, etc.). Expression in the mammalian cells on the other hand, can provide a significant research tool to study the functional roles of stefin A in the mammalian systems such as the regulation of cysteine proteases. PMID:17208452

  18. The development, characterization, and demonstration of a novel strategy for purification of recombinant proteins expressed in plants.

    PubMed

    Tremblay, Reynald; Diao, Hong; Huner, Norm; Jevnikar, Anthony M; Ma, Shengwu

    2011-12-01

    Plants have attracted increasing attention as an expression platform for the production of pharmaceutical proteins due to its unlimited scalability and low cost potential. However, compared to other expression systems, plants accumulate relatively low levels of foreign proteins, thus necessitating the development of efficient systems for purification of foreign proteins from plant tissues. We have developed a novel strategy for purification of recombinant proteins expressed in plants, based on genetic fusion to soybean agglutinin (SBA), a homotetrameric lectin that binds to N-acetyl-D-galactosamine. Previously it was shown that high purity SBA could be recovered from soybean with an efficiency of greater than 90% following one-step purification using N-acetyl-D-galactosamine-agar columns. We constructed an SBA fusion protein containing the reporter green fluorescent protein (GFP) and transiently expressed it in N. benthamiana plants. We achieved over 2.5% of TSP accumulation in leaves of N. benthamiana. Confocal microscopic analysis demonstrated in vivo activity of the fused GFP partner. Importantly, high purity rSBA-GFP was recovered from crude leaf extract with ~90% yield via one-step purification on N-acetyl-D-galactosamine-agar columns, and the purified fusion protein was able to induce the agglutination of rabbit red blood cells. Combined with this, tetrameric assembly of the fusion protein was demonstrated via western blotting. In addition, rSBA-GFP retained its GFP signal on agglutinated red blood cells, demonstrating the feasibility of using rSBA-GFP for discrimination of cells that bear the ligand glycan on their surface. This work validates SBA as an effective affinity tag for simple and rapid purification of genetically fused proteins. PMID:21365323

  19. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis. PMID:24462869

  20. Elimination of truncated recombinant protein expressed in Escherichia coli by removing cryptic translation initiation site.

    PubMed

    Jennings, Matthew J; Barrios, Adam F; Tan, Song

    2016-05-01

    Undesirable truncated recombinant protein products pose a special expression and purification challenge because such products often share similar chromatographic properties as the desired full length protein. We describe here our observation of both full length and a truncated form of a yeast protein (Gcn5) expressed in Escherichia coli, and the reduction or elimination of the truncated form by mutating a cryptic Shine-Dalgarno or START codon within the Gcn5 coding region. Unsuccessful attempts to engineer in a cryptic translation initiation site into other recombinant proteins suggest that cryptic Shine-Dalgarno or START codon sequences are necessary but not sufficient for cryptic translation in E. coli. PMID:26739786

  1. Chloroplast-Based Expression of Recombinant Proteins by Gateway® Cloning Technology.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas

    2016-01-01

    Plastid transformation for the expression of recombinant proteins and entire enzymatic pathways has become a promising tool for plant biotechnology in the past decade. Several improvements of the technology have turned plant plastids into robust and dependable expression platforms for multiple high value compounds. In this chapter, we describe our current methodology based on Gateway(®) recombinant cloning, which we have adapted for plastid transformation. We describe the steps required for cloning, biolistic transformation, identification, and regeneration of transplastomic plant lines and Western blot analysis. PMID:26614278

  2. Isolation and characterization of recombinant lambda gt11 bacteriophages expressing four different Mycobacterium intracellulare antigens.

    PubMed Central

    Morris, S L; Rouse, D A; Hussong, D; Chaparas, S D

    1990-01-01

    Four bacteriophages expressing different immunoreactive recombinant Mycobacterium intracellulare antigens were isolated from a lambda gt11 library with monoclonal antibodies to M. intracellulare. These four antibodies reacted with native M. intracellulare proteins of 54, 43, 40/38, and 22 kilodaltons. Southern blot hybridizations with DNA probes prepared from insert fragments of these bacteriophages confirmed the M. intracellulare derivation of the inserts. The physical maps of the immunoreactive phages were deduced by restriction enzyme digestions. The molecular weights of the expressed recombinant antigens were determined by Western (immuno-) blotting. Images PMID:2136733

  3. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology

    PubMed Central

    Akbarzadeh, Ali; Dehnavi, Ehsan; Aghaeepoor, Mojtaba; Amani, Jafar

    2015-01-01

    Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant

  4. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR.

    PubMed

    Kianmehr, Anvarsadat; Golavar, Raziyeh; Rouintan, Mandana; Mahrooz, Abdolkarim; Fard-Esfahani, Pezhman; Oladnabi, Morteza; Khajeniazi, Safoura; Mostafavi, Seyede Samaneh; Omidinia, Eskandar

    2016-02-01

    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. PMID:26546410

  5. Vaccination of cats with an attenuated recombinant myxoma virus expressing feline calicivirus capsid protein.

    PubMed

    McCabe, Victoria J; Tarpey, Ian; Spibey, Norman

    2002-06-01

    Myxoma virus, a member of the Poxviridae family (genus Leporipoxvirus) is the agent responsible for myxomatosis in the European rabbit. Recombinant myxoma viruses expressing the capsid gene of an F9 strain of feline calicivirus (FCV) were constructed from an apathogenic, laboratory attenuated, isolate of myxoma virus. The FCV capsid genes were recombined into the myxoma growth factor (MGF) locus of the myxoma genome and expressed from synthetic poxvirus promoters. Myxoma virus is unable to replicate productively in feline cells in vitro, however, cells infected with recombinant viruses do express the heterologous antigens from both late and early/late synthetic promoters. Cats immunised with myxoma-FCV recombinant virus generated high levels of serum neutralising antibody and were protected from disease on subsequent challenge with virulent FCV. Furthermore, there was no evidence of transmission of myxoma-FCV recombinant virus from vaccinated to non-vaccinated cats. These results demonstrate the potential of myxoma virus as a safe vaccine vector for use in non-lepori species and in particular the cat. PMID:12057600

  6. [Construction of recombinant adenoviral vector expressing genes of the conservative influenza proteins M2 and nucleoprotein].

    PubMed

    Esmagambetov, I B; Sedova, E S; Shcherbinin, D N; Lysenko, A A; Garas, M N; Shmarov, M M; Logunov, D Iu

    2014-01-01

    Influenza is a highly contagious and one of the most massive infection diseases. General epidemiological significance has a strain, which belongs to subtype A. A high degree of genetic variety leads to the permanent changes in the antigenic structure of the influenza virus. Therefore, the current influenza vaccines require periodic updating of the composition of strains. Presently, it is important to develop a universal vaccine that can protect against different strains of influenza A virus at the same time and is based on the conserved antigens of the influenza virus. The recombinant adenovirus vectors expressing genes of conserved viral antigenes may be a promising candidate vaccine against influenza A. Using the method of the homologous recombination, we developed in this study recombinant adenovirus of fifth serotype that expresses genes of the ion channel M2 and nucleoprotein NP of the influenza virus A. Genes of the consensus protein M2 and NP of human influenza A virus were included into the structure of the viral genome. The expression of the antigens M2 and NP using recombinant adenovirus vector was detected by a Western blot assay. The immunogenicity of the developed recombinant adenovirus vector was demonstrated by the intranasal immunization of laboratory mice. PMID:25080815

  7. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2.

    PubMed

    Zhang, Zheng; Wang, Guoxian; Li, Chen; Liu, Danping

    2013-08-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2(+) gene) was cloned into an adenovirus shuttle vector to obtain pShuttle cytomegalovirus (CMV)-BMP2(+)-internal ribosome entry site (IRES)-hrGFP-1. The adenovirus plasmid pAd CMV-BMP2(+)-IRES-hrGFP-1 was constructed by homologous recombination and was transfected into HEK293A cells, followed by adenovirus packaging. pAd CMV-BMP2 was used as the control. The two types of adenovirus were transfected into marrow stromal cells (MSCs). The expression of BMP2 and GFP, as well as the alkaline phosphatase (ALP) activity of expressed BMP2 were detected. Following mutagenesis, the BMP2 gene sequence and recombinant adenovirus vector were as predicted. The novel adenovirus vector expressed both BMP2 and GFP, indicating that a novel recombinant human adenovirus vector expressing BMP2 had been successfully constructed. PMID:24137184

  8. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  9. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    SciTech Connect

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M. )

    1990-03-06

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by ({sup 3}H)azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the ({sup 3}H)azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart.

  10. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG. DGAT knockout mice are resistant to diet-induced obesity and lack milk secr...

  11. A Polyclonal Antibody Against Recombinant Bovine Haptoglobin Expressed in Escherichia coli

    PubMed Central

    Guo, Donghua; Zhang, Hong; Li, Chunqiu

    2013-01-01

    The nucleotide sequence of the predicted immunodominant region of bovine haptoglobin (pirBoHp), without the signal peptide sequence, was synthesized based on the codon usage bias of Escherichia coli. The synthesized pirBoHp gene was cloned into the prokaryotic expression vector pET-32a (+), which contains a His-tag. The recombinant pirBoHp protein was successfully expressed in E. coli BL21 (DE3) cells. Western blot analysis showed that the purified recombinant pirBoHp protein could be recognized by an anti-His-tag monoclonal antibody. Further investigations indicated that a polyclonal antibody against the recombinant pirBoHp protein could recognize the α and β chains of native bovine haptoglobin in a pooled plasma sample from dairy cattle suffering from foot rot. PMID:24328747

  12. Research progress in physicochemical characteristics of lactoferrin and its recombinant expression systems.

    PubMed

    Xiaonan, Pang; Xiao, Hong; Xuan, Wei; Xiwen, Chen; Jia, Liu; Defu, Chen

    2015-09-01

    Lactoferrin is an iron-binding glycoprotein with a molecular weight of about 80 kDa that belongs to the transferrin family. Due to its unique physical and chemical properties, lactoferrin has a variety of biological functions including antibacterial, antiviral, anticancer, immunomodulatory activities and regulation of iron absorption. High-yield production of recombinant lactoferrin with biological activity and its application in clinical treatment have been a hot topic for long time. With the development of genetic engineering techniques, various expression systems have been developed to produce recombinant lactoferrin. In this review, we summarize physicochemical characteristics, biological activities, clinical studies and current recombinant expression systems of lactoferrin, in order to provide references for its clinical application. PMID:26399527

  13. [Expression, purification of recombinant cationic peptide AIK in Escherichia coli and its antitumor activity].

    PubMed

    Fan, Fangfang; Sun, Huiying; Xu, Hui; Liu, Jiawei; Zhang, Haiyuan; Li, Yilan; Ning, Xuelian; Sun, Yue; Bai, Jing; Fu, Songbin; Zhou, Chunshui

    2015-12-01

    AIK is a novel cationic peptide with potential antitumor activity. In order to construct the AIK expression vector by Gateway technology, and establish an optimal expression and purification method for recombinant AIK, a set of primers containing AttB sites were designed and used to create the AttB-TEV-FLAG-AIR fusion gene by overlapping PCR. The resulting fusion gene was cloned into the donor vector pDONR223 by attB and attP mediated recombination (BP reaction), then, transferred into the destination vector pDESTl 5 by attL and attR mediated recombination (LR reaction). All the cloning was verified by both colony PCR and DNA sequencing. The BL21 F. coli transformed by the GST-AIR expression plasmid was used to express the GST-AIK fusion protein with IPTG induction and the induction conditions were optimized. GST-AIR fusion protein was purified by glutathione magnetic beads, followed by rTEV cleavage to remove GST tag and MTS assay to test the growth inhibition activity of the recombinant AIR on human leukemia HL-60 cells. We found that a high level of soluble expression of GST-AIK protein (more than 30% out of the total bacterial proteins) was achieved upon 0.1 mmol/L ITPG induction for 4 h at 37 °C in the transformed BL21 F. coli with starting OD₆₀₀ at 1.0. Through GST affinity purification and rTEV cleavage, the purity of the resulting recombinant AIK was greater than 95%. And the MTS assays on HL-60 cells confirmed that the recombinant AIK retains an antitumor activity at a level similar to the chemically synthesized AIK. Taken together, we have established a method for expression and purification of recombinant AIK with a potent activity against tumor cells, which will be beneficial for the large-scale production and application of recombinant AIK in the future. PMID:27093838

  14. Tunable recombinant protein expression in E. coli: enabler for continuous processing?

    PubMed

    Marschall, Lukas; Sagmeister, Patrick; Herwig, Christoph

    2016-07-01

    Tuning of transcription is a powerful process technological tool for efficient recombinant protein production in Escherichia coli. Many challenges such as product toxicity, formation of inclusion bodies, cell death, and metabolic burden are associated with non-suitable (too high or too low) levels of recombinant protein expression. Tunable expression systems allow adjusting the recombinant protein expression using process technological means. This enables to exploit the cell's metabolic capacities to a maximum. Within this article, we review genetic and process technological aspects of tunable expression systems in E. coli, providing a roadmap for the industrial exploitation of the reviewed technologies. We attempt to differentiate the term "expression tuning" from its inflationary use by providing a concise definition and highlight interesting fields of application for this versatile new technology. Dependent on the type of inducer (metabolizable or non-metabolizable), different process strategies are required in order to achieve tuning. To fully profit from the benefits of tunable systems, an independent control of growth rate and expression rate is indispensable. Being able to tackle problems such as long-term culture stability and constant product quality expression tuning is a promising enabler for continuous processing in biopharmaceutical production. PMID:27170324

  15. S2 expressed from recombinant virus confers broad protection against IBV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that chickens primed with a recombinant LaSota virus (rLS) expressing the IBV S2 gene (rLS/IBV.S2) and boosted with an attenuated IBV Massachusetts (Mass)-type vaccine were protected against heterologous IBV Arkansas (Ark)-type virulent challenge. In the current study, we...

  16. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  17. Expression and activity of recombinant proaerolysin derived from Aeromonas hydrophila cultured from diseased channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proaerolysin-coding gene was cloned from the genomic DNA of A. hydrophila and heterologously expressed in E. coli. The purified recombinant proaerolysin was inactive and could be activated by treatment with proteases, furin and trypsin, and extra-cellular proteins (ECPs, the cell-free supernatant of...

  18. Recombinant protein production data after expression in the bacterium Escherichia coli.

    PubMed

    Cantu-Bustos, J Enrique; Cano Del Villar, Kevin D; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-06-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  19. Recombinant protein production data after expression in the bacterium Escherichia coli

    PubMed Central

    Cantu-Bustos, J. Enrique; Cano del Villar, Kevin D.; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-01-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  20. Plant based butters.

    PubMed

    Gorrepati, Kalyani; Balasubramanian, S; Chandra, Pitam

    2015-07-01

    During the last few years the popularity for the plant based butters (nut and seed butters) has increased considerably. Earlier peanut butter was the only alternative to the dairy butter, but over the years development in the technologies and also the consumer awareness about the plant based butters, has led the development of myriad varieties of butters with different nuts and seeds, which are very good source of protein, fiber, essential fatty acids and other nutrients. These days' different varieties of plant based butters are available in the market viz., peanut butter, soy butter, almond butter, pistachio butter, cashew butter and sesame butter etc. The form of butter is one of the healthy way of integrating nuts and seeds in to our regular diet. Nut and seed butters are generally prepared by roasting, grinding and refrigerated to consume it when it is still fresh. During this process it is imperative to retain the nutritional properties of these nuts and seeds in order to reap the benefits of the fresh nuts and seeds in the form of butter as well. Proper care is needed to minimize the conversion of healthful components in to unhealthy components during processing and further storage. Roasting temperature, temperatures during grinding and storage are the vital factors to be considered in order to have healthy and nutritious plant based butters. In this article, different plant based butters and their processing methods have been described. PMID:26139864

  1. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    PubMed

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  2. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs

    PubMed Central

    Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  3. Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets

    PubMed Central

    2013-01-01

    Background Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. Methods A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. Results Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. Conclusions Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length. PMID:23521919

  4. Trichloroethylene degradation using recombinant bacteria expressing the soluble methane monooxygenase from methylosinus trichosporium OB3b

    SciTech Connect

    Jahng, D.; Kim, C.; Wood, T.K.

    1995-12-01

    Soluble methane monooxygenase (sMMO) from M. trichosporium OB3b has the ability to degrade many halogenated aliphatic compounds that are found in contaminated soil and groundwater. For efficient trichloroethylene (TCE) degradation in a foreign host, efforts are being made to improve inconsistent and low sMMO activity of the recombinant strain constructed previously (Pseudomonas putida F1/pSMMO20). Additional smmo-containing recombinant strains have been constructed including various Pseudomonas, Agrobacterium, and Rhizobium strains. Recombinant facultative methylotrophs containing the smmo locus were also constructed through electroporation and tri-parental mating using a new plasmid pSMMO50. TCE degradation by these recombinant strains was examined. The effect of metal ions on in vitro sMMO activity was also discerned to optimize the expression medium. Among the metal ions examined, Cu(I), Cu(II), Ni(II), and Zn(II) inhibited sMMO purified from trichosporium OB3b, and the effect of the metal ions on each of the components of sMMO will also be discussed. In addition, the post-segregational killing locus (hok/sok) from E. coli plasmid R1 was inserted downstream of the smmo locus to stabilize the recombinant plasmid in these host cells, and chemostat cultures were used to optimize expression of active sMMO by varying the growth rate.

  5. An optimized protocol for overproduction of recombinant protein expression in Escherichia coli.

    PubMed

    Bahreini, Elham; Aghaiypour, Khosrow; Abbasalipourkabir, Roghayeh; Goodarzi, Mohammad Taghi; Saidijam, Massoud; Safavieh, Sedigheh Sadat

    2014-01-01

    The gram-negative bacterium Escherichia coli (E. coli) offers a means for rapid, high-yield, and economical production of recombinant proteins. Here, a protocol for optimization of parameters involved in bacterial expression conditions is described. L-Asparaginase (ASNase II) was chosen as a model protein for our experiments. ASNase II gene (ansB) was cloned into the pAED4 plasmid and transformed into E. coli BL21pLysS (DE3)-competent cells. It was assumed that high cell density and high copy number of recombinant plasmid in the bacteria host could result in very high production of the recombinant protein. Circumstances for the overproduction of recombinant ASNase II including cell growth conditions, isopropyl β-D-1-thiogalactopyranoside (IPTG) level, ampicillin (Amp) concentration before and during IPTG induction, and cell density were optimized. Regarding the final optimization, overexpression of ASNase II was assessed on a large scale in LB medium. Periplasmic ASNase II was extracted using an alkaline lysis method. The extracted protein was purified by one-step DEAE-Sepharose fast-flow chromatography. ASNase II activity was considered an index for the protein expression. Applying the optimized practical protocol, protein production was significantly enhanced in comparison to the traditional IPTG induction method in the absence of a fermentor and can be applied for overexpression of other recombinant proteins. PMID:24219068

  6. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli.

    PubMed

    Feng, Xingjun; Xu, Wenshan; Qu, Pei; Li, Xiaochong; Xing, Liwei; Liu, Di; Jiao, Jian; Wang, Jue; Li, Zhongqiu; Liu, Chunlong

    2015-01-01

    The antimicrobial peptide fowlicidin-2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin-2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin-2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin-2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET-32a(+), which features fusion protein thioredoxin at the N-terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria-Bertani (LB) medium. After isopropyl-β-D-thiogalactopyranoside (IPTG) induction, the fowlicidin-2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse-phase high-performance liquid chromatography (RP-HPLC), ∼6.0 mg of fowlicidin-2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram-positive and Gram-negative bacteria, and even drug-resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large-scale production. PMID:25641948

  7. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system.

    PubMed

    Armanmehr, Shiva; Kalhor, Hamid Reza; Tabarraei, Alijan

    2016-05-01

    ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein. PMID:26826316

  8. [Recombinant expression and antibacterial activity of i-type lysozyme from sea cucumber Stichopus japonicus].

    PubMed

    Wang, Xiuxia; Cong, Lina; Wang, Dan; Yang, Xijian; Zhu, Beiwei

    2009-02-01

    The cDNA of an i type lysozyme was cloned from Stichopus japonicus (named as SjLys). The DNA fragment of the mature SjLys was subcloned into expression vector of pET-32a (+) to construct the recombinant plasmid of pET32a (+)-SjLys. The recombinant plasmid was then transformed into Escherichia coli BL21 (DE3) pLysS and induced by isopropylthio-beta-D-galactoside (IPTG). The recombinant protein expressed as inclusion bodies was denatured, partially purified and refolded to be an active form. The bacteriolytic activity of recombinant protein purified by the metal-chelating was 19.2 U/mg. The antibacterial activity of the purified recombinant SjLys (rSjLys) was analyzed. The rSjLys protein displayed inhibitive effect on the growth of the tested Gram-positive and Gram-negative bacteria. In particular, rSjLys had a strong inhibitive activity on Vibrio parahaemolyticus and Pseudomonas aeruginosa, both the most common pathogenic bacteria in the marine animals. The heat-treated rSjLys exhibited more potent activities against all tested bacteria. These results indicated that the S. japonicus lysozyme was the enzyme with combined enzymatic (glycosidase) and non-enzymatic antibacterial action, and it had a wide antibacterial spectrum. Therefore, it is suggested that the S. japonicus lysozyme should be one of the important molecules against pathogens in the innate immunity of sea cucumbers. PMID:19459322

  9. Construtcion of Neisseria gonorrhoeae porin B plasmid recombinant and its expression in E. coli.

    PubMed

    Song, Qifa; Liao, Fang; Ye, Siying; Cui, Bing; Xiong, Ping

    2005-01-01

    A prokaryotic expression recombinant plasmid pET-PIB to express porin B (PIB) of Neisseria gonorrhoeae in E. coli DE3 was constructed in order to provide a basis of research in detection, prophylactic and therapeutic vaccine against the pathogen infection. The gene encoding PIB was amplified by PCR from Neisseria gonorrhoeae and cloned into prokaryotic expression plasmid pET-28a(+) to construct a pET-PIB recombinant, which was verified by restriction endonuclease and DNA sequencing. Protein PIB was expressed in E. coli DE3 induced with IPTG. The antigenicity of the expressed protein was evaluated by indirect ELISA. Rabbits were immunized with the protein and serum was collected after immunization. To assess the immunogenicity of the protein, the titer of serum to protein PIB was determined by ELISA. DNA sequence analysis showed that the nucleic acid sequence of PIB gene was 99.28% of homology compared with that (NGPIB18) published in GenBank. A 41 kD fused protein was detected by SDS-PAGE and was proven to have reactivity with anti-PIB polyclonal antibody from mouse. A polyclonal antibody to PIB of 1:4000 titer determined by indirect EISA was obtained from rabbit immunized with the purified product. Recombinant plasmid encoding PIB of Neisseria gonorrhoeae was constructed. Protein PIB with antigenicity and immunogenicity was successfully expressed. PMID:16201262

  10. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate.

    PubMed

    Okamoto, Shusuke; Chin, Taejun; Nagata, Keisuke; Takahashi, Tetsuya; Ohara, Hitomi; Aso, Yuji

    2015-05-01

    Several studies on fermentative production of a vinyl monomer itaconic acid from hydrolyzed starch using Aspergillus terreus have been reported. Herein, we report itaconic acid production by Escherichia coli expressing recombinant α-amylase, using soluble starch as its sole carbon source. To express α-amylase in E. coli, we first constructed recombinant plasmids expressing α-amylases by using cell surface display technology derived from two amylolytic bacteria, Bacillus amyloliquefaciens NBRC 15535(T) and Streptococcus bovis NRIC 1535. The recombinant α-amylase from S. bovis (SBA) showed activity at 28°C, which is the optimal temperature for production of itaconic acid, while α-amylase from B. amyloliquefaciens displayed no noticeable activity. E. coli cells expressing SBA produced 0.15 g/L itaconic acid after 69 h cultivation under pH-stat conditions, using 1% starch as the sole carbon source. In fact, E. coli cells expressing SBA had similar growth rates when grown in the presence of 1% glucose or starch, thereby highlighting the expression of an active α-amylase that enabled utilization of starch to produce itaconic acid in E. coli. PMID:25468427

  11. Efficient expression and purification of recombinant human m-calpain using an Escherichia coli expression system at low temperature.

    PubMed

    Hata, Shoji; Ueno, Mika; Kitamura, Fujiko; Sorimachi, Hiroyuki

    2012-04-01

    Calpain belongs to the superfamily of Ca(2+)-regulated cysteine proteases, which are indispensable to the regulation of various cellular functions. Of the 15 mammalian calpain isoforms, µ- and m-calpains are the best characterized. Both µ- and m-calpain are ubiquitously expressed and exist as heterodimers, containing a distinct 80-kDa catalytic subunit (CAPN1 and CAPN2, respectively) and the common, 30-kDa regulatory subunit (CAPNS1). To date, various expression systems have been developed for producing recombinant calpains for use in structural and physiological studies, however Escherichia coli systems have proven incompatible with large-scale preparation of calpain, with the exception of rat m-calpain. Here, we have established a highly efficient method to purify active recombinant human m-calpain using an E. coli expression system at low temperature (22°C). This was achieved by co-expressing CAPN2 with a C-terminal histidine-tag, and CAPNS1, lacking the first Gly-repeated region at the N-terminal. After three sequential passes through a chromatographic column, ~5 mg of human m-calpain was homogenously purified from 1 l of E. coli culture. Proteins were stable for several months. This is the first report of efficient, large-scale purification of recombinant human m-calpain using an E. coli expression system. PMID:22232565

  12. Efficient construction of recombinant adenovirus expression vector of the Qinchuan cattle LYRM1 gene.

    PubMed

    Li, Y K; Fu, C Z; Zhang, Y R; Zan, L S

    2015-01-01

    In this study, we cloned the coding DNA sequence (CDS) region of Qinchuan cattle LYR motif-containing 1 (LYRM1) and constructed a recombinant adenovirus expression vector to examine the function of LYRM1 on the cellular level. Total RNA was extracted from the adipose tissue of Qinchuan cattle, cDNA was obtained by reverse transcription, and polymerase chain reaction was used to amplify the CDS region of the LYRM1 gene. The CDS-containing fragment was inserted into the shuttle vector pAdTrack-CMV to construct pAdTrack-CMV-LYRM1 vector. After linearization of pAdTrack-CMV-LYRM1 and the negative control vector pAdTrack-CMV by restriction endonuclease PmeI, the vectors were transformed into Escherichia coli BJ5183 containing pAdEasy-1 to obtain the recombinant adenovirus vector pAd-LYRM1 and pAd-CMV through homologous recombination. pAd-LYRM1 and pAd-CMV were then digested by PacI and transfected into the 293A cell line. The recombinant adenovirus Ad-LYRM1 and Ad-CMV was obtained at a concentration of 7 x 108 and 1.3 x 109 green fluorescent units/mL, respectively. Preadipocytes derived from Qinchuan cattle were separately infected with Ad-LYRM1 and Ad- CMV. Quantitative real-time polymerase chain reaction demonstrated that the expression of LYRM1 was increased by approximate 28,000-folds after the infection with recombinant adenovirus for 48 h. In conclusion, we successfully cloned the CDS region of the Qinchuan cattle LYRM1 gene, constructed the recombinant adenovirus expression vector, and obtained the adenovirus with high titer, providing valuable materials for studying the function of LYRM1 at the cellular level. PMID:26345880

  13. Vaccinia Virus Recombinants: Expression of VSV Genes and Protective Immunization of Mice and Cattle

    NASA Astrophysics Data System (ADS)

    Mackett, M.; Yilma, T.; Rose, J. K.; Moss, B.

    1985-01-01

    Vesicular stomatitis virus (VSV) causes a contagious disease of horses, cattle, and pigs. When DNA copies of messenger RNA's for the G or N proteins of VSV were linked to a vaccinia virus promoter and inserted into the vaccinia genome, the recombinants retained infectivity and synthesized VSV polypeptides. After intradermal vaccination with live recombinant virus expressing the G protein, mice produced VSV-neutralizing antibodies and were protected against lethal encephalitis upon intravenous challenge with VSV. In cattle, the degree of protection against intradermalingually injected VSV was correlated with the level of neutralizing antibody produced following vaccination.

  14. Large-scale expression of recombinant cardiac sodium-calcium exchange in insect larvae.

    PubMed

    Hale, C C; Zimmerschied, J A; Bliler, S; Price, E M

    1999-02-01

    Recombinant bovine cardiac sodium-calcium exchange (NCX1) in a baculovirus construct was used to infect cabbage looper larvae (Trichoplusia ni). Infected larvae were homogenized and larvae membrane vesicles were purified. Western blot analysis indicated the presence of recombinant NCX1 protein in vesicles from infected larvae but not in controls. Vesicles from infected larvae expressed high levels of NCX1 activity (1.7 nmol Ca2+/mg protein/s) while vesicles from control larvae had no activity. NCX1 in larvae vesicles was bidirectional. Kinetic analysis yielded a Vmax of 3.6 nmol Ca2+/mg protein/s and a Km for Ca of 4.2 microM. NCX1 activity was inhibited by the exchange inhibitory peptide with an IC50 of 4 microM. These data demonstrate a novel and efficient method for the expression of large amounts of active recombinant NCX1 protein that has general application for expression and analysis of recombinant membrane proteins. PMID:10024479

  15. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    PubMed Central

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-01-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  16. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata.

    PubMed

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-03-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C-C-CC-C-C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  17. Multiplexed expression and screening for recombinant protein production in mammalian cells

    PubMed Central

    Chapple, Susan DJ; Crofts, Anna M; Shadbolt, S Paul; McCafferty, John; Dyson, Michael R

    2006-01-01

    Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell culture will also be useful

  18. Plant-based solutions for veterinary immunotherapeutics and prophylactics.

    PubMed

    Kolotilin, Igor; Topp, Ed; Cox, Eric; Devriendt, Bert; Conrad, Udo; Joensuu, Jussi; Stöger, Eva; Warzecha, Heribert; McAllister, Tim; Potter, Andrew; McLean, Michael D; Hall, J Christopher; Menassa, Rima

    2014-01-01

    An alarming increase in emergence of antibiotic resistance among pathogens worldwide has become a serious threat to our ability to treat infectious diseases according to the World Health Organization. Extensive use of antibiotics by livestock producers promotes the spread of new resistant strains, some of zoonotic concern, which increases food-borne illness in humans and causes significant economic burden on healthcare systems. Furthermore, consumer preferences for meat/poultry/fish produced without the use of antibiotics shape today's market demand. So, it is viewed as inevitable by the One Health Initiative that humans need to reduce the use of antibiotics and turn to alternative, improved means to control disease: vaccination and prophylactics. Besides the intense research focused on novel therapeutic molecules, both these strategies rely heavily on the availability of cost-effective, efficient and scalable production platforms which will allow large-volume manufacturing for vaccines, antibodies and other biopharmaceuticals. Within this context, plant-based platforms for production of recombinant therapeutic proteins offer significant advantages over conventional expression systems, including lack of animal pathogens, low production costs, fast turnaround and response times and rapid, nearly-unlimited scalability. Also, because dried leaves and seeds can be stored at room temperature for lengthy periods without loss of recombinant proteins, plant expression systems have the potential to offer lucrative benefits from the development of edible vaccines and prophylactics, as these would not require "cold chain" storage and transportation, and could be administered in mass volumes with minimal processing. Several biotechnology companies currently have developed and adopted plant-based platforms for commercial production of recombinant protein therapeutics. In this manuscript, we outline the challenges in the process of livestock immunization as well as the current

  19. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds.

    PubMed

    Yao, N; Ai, L; Dong, Y Y; Liu, X M; Wang, D Z; Wang, N; Li, X W; Wang, F W; Li, Xk; Li, H Y; Jiang, C

    2016-01-01

    Recombinant human anti-tumor necrosis factor (TNF)-α scFv-Fc was expressed in TKO mutant Arabidopsis thaliana seeds using plant-specific codons. Immunoblotting using a human IgG1 antibody detected the expression of anti-TNF-α proteins in plants. Results from qRT-PCR analysis demonstrated that the time of harvest significantly affected the protein yield and quality. Our results indicate that the Phaseolus vulgaris β-phaseolin promoter directed anti-TNF-α scFv-Fc expression in A. thaliana seeds, with a maximum yield obtained at 20-days of development. Although the yield of anti-TNF-α scFv-Fc protein was not very high, accumulation of recombinant proteins in seeds is an attractive and simple method that can be used to purify biologically active anti-TNF-α scFv-Fc. PMID:27420937

  20. Characterization and high expression of recombinant Ustilago maydis xylanase in Pichia pastoris.

    PubMed

    Han, Hongjuan; You, Shuang; Zhu, Bo; Fu, Xiaoyan; Sun, Baihui; Qiu, Jin; Yu, Chengye; Chen, Lei; Peng, Rihe; Yao, Quanhong

    2015-03-01

    A recombinant xylanase gene (rxynUMB) from Ustilago maydis 521 was expressed in Pichia pastoris, and the enzyme was purified and characterized. Phylogenetic analysis demonstrated that rxynUMB belongs to glycosyl hydrolase family 11. The Trp84, Trp95, Glu93, and Glu189 residues are proposed to be present at the active site. The apparent molecular mass of the recombinant xylananse was approximately 24 kDa, and the optimum pH and temperature were 4.3 and 50 °C, respectively. Xylanase activity was enhanced by 166 and 115% with Fe(2+) and Mn(2+), respectively. The biochemical properties of this recombinant xylanase suggest that it may be a useful candidate for a variety of commercial applications. PMID:25381595

  1. In search of expression bottlenecks in recombinant CHO cell lines--a case study.

    PubMed

    Reinhart, David; Sommeregger, Wolfgang; Debreczeny, Monika; Gludovacz, Elisabeth; Kunert, Renate

    2014-07-01

    The efficient production of recombinant proteins such as antibodies typically involves the screening of an extravagant number of clones in order to finally select a stable and high-producing cell line. Thereby, the underlying principles of a powerful protein machinery, but also potential expression limitations, often remain poorly understood. To shed more light on this topic, we applied several different techniques to investigate a previously generated cell line (4B3-IgA), which expressed recombinant immunoglobulin A (IgA) with an unusually low specific productivity. Results were compared to the host cell line and to another recombinant CHO cell line (3D6-IgA) expressing another IgA that binds to an overlapping epitope. The low specific productivity of clone 4B3-IgA could not be explained by GCN or mRNA levels, but insufficiencies in protein maturation and/or secretion were determined. Despite the presence of free light chain polypeptides, they occasionally failed to associate with their heavy chain partners. Consequently, heavy chains were misassembled and accumulated to form intracellular aggregates, so-called Russell bodies. These protein deposits evoked the expression of increased amounts of ER-resident chaperones to combat the induced stress. Despite bottlenecks in protein processing, the cells' quality checkpoints remained intact, and predominantly correctly processed IgA was exported into the culture medium. The results of our study demonstrated that recombinant protein expression was impaired by heavy chain aggregation despite the presence of a disposable light chain and revealed elevated chaperone formation in combination with limited antibody assembly. Our studies suggest that the primary amino acid sequence and consequently the resulting structure of an expressed protein need to be considered as a factor influencing a cell's productivity. PMID:24557570

  2. Construction of recombinant eukaryotic expression plasmid containing murine CD40 ligand gene and its expression in H22 cells

    PubMed Central

    Jiang, Yong-Fang; He, Yan; Gong, Guo-Zhong; Chen, Jun; Yang, Chun-Yan; Xu, Yun

    2005-01-01

    AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC). METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing, and the product expressed was detected by RT-PCR and immunofluorescence methods. RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis, and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining. CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma. PMID:15633212

  3. Development of recombinant canine adenovirus type-2 expressing the Gn glycoprotein of Seoul virus.

    PubMed

    Yuan, Ziguo; Zhang, Xiuxiang; Zhang, Shoufeng; Liu, Ye; Gao, Shengyan; Zhang, Fei; Xu, Huijuan; Wang, Xiaohu; Hu, Rongliang

    2008-05-01

    Seoul virus glycoprotein Gn is a major structural protein and candidate antigen of hantavirus that induces a highly immunogenic response for hantavirus vaccine. In this study, a replication-competent recombinant canine adenovirus type-2 expressing Gn was constructed by the in vitro ligation method. The Gn expression cassette, including the human cytomegalovirus (hCMV) promoter/enhancer and the SV40 early mRNA polyadenylation signal, was cloned into the SspI site of the E3 region which is not essential for proliferation of CAV-2. Expression of Gn was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. PMID:18249007

  4. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.)

    PubMed Central

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-01-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug’s therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human- or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  5. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.).

    PubMed

    Zhang, Deshui; Nandi, Somen; Bryan, Paula; Pettit, Steve; Nguyen, Diane; Santos, Mary Ann; Huang, Ning

    2010-11-01

    Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug's therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines. PMID:20447458

  6. Biochemical characterization of Aspergillus oryzae native tannase and the recombinant enzyme expressed in Pichia pastoris.

    PubMed

    Mizuno, Toshiyuki; Shiono, Yoshihito; Koseki, Takuya

    2014-10-01

    In this study, the biochemical properties of the recombinant tannase from Aspegillus oryzae were compared with those of the native enzyme. Extracellular native tannase was purified from a commercial enzyme source. Recombinant tannase highly expressed in Pichia pastoris was prepared as an active extracellular protein. Purified native and recombinant tannases produced smeared bands with apparent molecular masses of 45-80 kDa and 45-75 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After N-deglycosylation, the native enzyme yielded molecular masses of 33 kDa and 30 kDa, whereas the recombinant enzyme yielded molecular masses of 34 kDa and 30 kDa. Purified native and recombinant tannases had an optimum pH of 4.0-5.0 and 5.0, respectively, and were stable up to 40°C. After N-deglycosylation, both enzymes exhibited reduced thermostability. Catalytic efficiencies of both purified enzymes were greater with natural substrates, such as (-)-catechin, (-)-epicatechin, and (-)-epigallocatechin gallates, than those with synthetic substrates, such as methyl, ethyl, and propyl gallates. However, there were no activities against the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids, which indicate feruloyl esterase activity, or the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid, which indicate paraben hydrolase activity. PMID:24856589

  7. A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein.

    PubMed

    Amann, Ralf; Rohde, Jörg; Wulle, Ulrich; Conlee, Douglas; Raue, Rudiger; Martinon, Olivier; Rziha, Hanns-Joachim

    2013-02-01

    The present study describes the generation of a new Orf virus (ORFV) recombinant, D1701-V-RabG, expressing the rabies virus (RABV) glycoprotein that is correctly presented on the surface of infected cells without the need of replication or production of infectious recombinant virus. One single immunization with recombinant ORFV can stimulate high RABV-specific virus-neutralizing antibody (VNA) titers in mice, cats, and dogs, representing all nonpermissive hosts for the ORFV vector. The protective immune response against severe lethal challenge infection was analyzed in detail in mice using different dosages, numbers, and routes for immunization with the ORFV recombinant. Long-term levels of VNA could be elicited that remained greater than 0.5 IU per ml serum, indicative for the protective status. Single applications of higher doses (10(7) PFU) can be sufficient to confer complete protection against intracranial (i.c.) challenge, whereas booster immunization was needed for protection by the application of lower dosages. Anamnestic immune responses were achieved by each of the seven tested routes of inoculation, including oral application. Finally, in vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T cell subpopulations during immunization and/or challenge infection attested the importance of CD4 T cells for the induction of protective immunity by D1701-V-RabG. This report demonstrates another example of the potential of the ORFV vector and also indicates the capability of the new recombinant for vaccination of animals. PMID:23175365

  8. [The expression of BmK AngM1 in Mut(s) and Mut(+) recombinants of Pichia pastoris].

    PubMed

    Wang, Qing-hua; Liang, Lan; Chen, Jing-jing; Gong, Ting; Hou, Qi; Yang, Jin-ling; Zhu, Ping

    2015-07-01

    BmK AngM1 is a long-chain scorpion toxin purified from the venom of Buthus martensii Karsch. It has been reported to exhibit evident analgesic effect and low toxicity, and has the potential to be a novel analgesic drug. The BmKAngM1 gene was transformed into Pichiapastoris GS115. Mut+ and Mut(s) recombinant strains were screened by phenotype and Mut+ recombinant strains were used to detect BmK AngMl gene copy number in the real-time PCR. Expression of BmK AngM1 in the Mut+ recombinant strain was compared with that of the Mut(s) recombinant strain with the same single copy of BmK AngM1 gene under the same condition. The results indicated that the transcription level of BmK AngM1 gene in the Mut(s) recombinant strain was 2.7 fold of that in the Mut recombinant strain in the real-time PCR, and the expression of BmK AngM 1 in the Mut(s) recombinant strain was 1.5 fold of that in the Mut+ recombinant strain. Therefore, Mut(s) recombinant strain showed better ability to express BmK AngM1 than Mut+ recombinant strain. PMID:26552156

  9. Recombinant expression and reconstitution of multiprotein complexes by the USER cloning method in the insect cell-baculovirus expression system.

    PubMed

    Zhang, Ziguo; Yang, Jing; Barford, David

    2016-02-15

    The capacity to reconstitute complex biological processes in vitro is a crucial step in providing a quantitative understanding of these systems. It provides material for structural, biochemical and biophysical analyses and allows the testing of biological hypotheses and the introduction of chemical probes and tags for single molecule analysis. Reconstitution of these systems requires access to homogenous components, usually through their over-production in heterologous over-expression systems. Here we describe the application of the USER (Uracil-Specific Excision Reagent) ligation-free cloning method to assemble recombinant MultiBac transfer vectors for the generation of recombinant baculovirus suitable for the expression of multi-protein complexes in insect cells. PMID:26454197

  10. RECOMBINANT SIMIAN VARICELLA VIRUSES EXPRESSING RESPIRATORY SYNCYTIAL VIRUS ANTIGENS ARE IMMUNOGENIC

    PubMed Central

    Ward, Toby M.; Traina-Dorge, Vicki; Davis, Kara A.; Gray, Wayne L.

    2013-01-01

    SUMMARY Recombinant simian varicella viruses (rSVVs) were engineered to express respiratory syncytial virus (RSV) antigens. The RSV surface glycoprotein G and second matrix protein M2 (22k) genes were cloned into the SVV genome, and recombinant viruses were characterized in vitro and in vivo. rSVVs were also engineered to express the membrane-anchored or secreted forms of the RSV G protein as well as an RSV G lacking its chemokine mimicry motif (CX3C), which may have different effects on priming the host immune response. The RSV genes were efficiently expressed in rSVV/RSV infected Vero cells as RSV G and M2 transcripts were detected by RT-PCR and RSV antigens were detected by immunofluorescence and immunoblot assays. The rSVVs replicated efficiently in Vero cell culture. Rhesus macaques immunized with rSVV/RSV-G and rSVV/RSV-M2 vaccines produced antibody responses to SVV and RSV antigens. The results demonstrate that recombinant varicella viruses are suitable vectors for expression of RSV antigens and may represent a novel vaccine strategy for immunization against both pathogens. PMID:18272766

  11. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    PubMed

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals. PMID:25764477

  12. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation. PMID:25982944

  13. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  14. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae.

    PubMed

    Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S

    2015-09-01

    The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding  sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine. PMID:26435147

  15. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement. PMID:26216265

  16. Over-expression and characterization of active recombinant rat liver carnitine palmitoyltransferase II using baculovirus.

    PubMed Central

    Johnson, T M; Mann, W R; Dragland, C J; Anderson, R C; Nemecek, G M; Bell, P A

    1995-01-01

    The cDNA encoding rat liver carnitine palmitoyltransferase II (CPT-II) was heterologously expressed using a recombinant baculovirus/insect cell system. Unlike Escherichia coli, the baculovirus-infected insect cells expressed mostly soluble active recombinant CPT-II (rCPT-II). CPT activity from crude lysates of recombinant baculovirus-infected insect cells was maximal between 50 and 72 h post-infection, with a peak specific activity of 100-200 times that found in the mock- or wild-type-infected control lysates. Milligram quantities (up to 1.8 mg/l of culture) of active rCPT-II were chromatographically purified from large-scale cultures of insect cells infected with the recombinant baculovirus. The rCPT-II was found to be: (1) similar in size to the native rat liver enzyme (approximately 70 kDa) as judged by SDS/PAGE; (2) immunoreactive with a polyclonal serum raised against rat liver CPT-II; and (3) not glycosylated. Kinetic analysis of soluble rCPT-II revealed Km values for carnitine and palmitoyl-CoA of 950 +/- 27 microM and 34 +/- 5.6 microM respectively. Images Figure 1 Figure 2 Figure 4 PMID:7626037

  17. Expression and characterization of a recombinant endoglucanase from western corn rootworm, in Pichia pastoris.

    PubMed

    Valencia Jiménez, Arnubio; Wang, Haichuan; Siegfried, Blair D

    2014-01-01

    The endoglucanase cDNA, Dvv-ENGase I, from western corn rootworm, Diabrotica virgifera virgifera LeConte was expressed using the GS115 methylotrophic strain of Pichia pastoris. The Dvv-ENGase I gene was cloned into the integrative plasmid pPICZαA under the control of AOX1, which is a methanol-inducible promoter. Positive clones were selected for their ability to produce the recombinant endoglucanase upon continuous methanol induction. The secreted recombinant insect endoglucanase Dvv-ENGase I has an apparent molecular mass of 29 kDa. The recombinant endo-1,4-β-glucanase (ENGase) was able to digest the substrates: hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and Whatman No. 1 filter paper. A higher accumulation of reducing sugar was evident when the P. pastoris expression medium contained HEC (1%) instead of CMC (1%). An enzymatic activity band was detected after performing electrophoretic separation under nondenaturing conditions. The biological activity of the recombinant Dvv-ENGase I was influenced by the presence of protease inhibitors in the culture medium. PMID:25434035

  18. Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection.

    PubMed

    Liu, Long; Yang, Haiquan; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-11-01

    Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces. PMID:24068337

  19. Investigation of TtrD, an expressing recombinant fusion tag, in Escherichia coli.

    PubMed

    Chen, Anqi; Zhang, Li; Gu, Shaohua; Tang, Rong; Xie, Yi; Ji, Chaoneng

    2016-04-01

    Escherichia coli is widely used for expressing recombinant proteins, and several tags have been developed to improve protein solubility. However, expressing and purifying protein from other organisms is not always successful. In this study, we investigated the possibility of using TtrD as an expressing fusion tag in E. coli. Twenty RING finger domain containing human genes were expressed in E. coli grown at 37 °C and 18 °C and tested with four other fusion tags, namely His, SUMO, GST and MBP, for comparison. The results indicated that the soluble expressing ability of the tags was MBP, GST, TtrD, SUMO, and His in descending order. A one-column refolding process was used to purify the expressed proteins in inclusion bodies, and TtrD showed the strongest refolding ability. The results suggested that the TtrD tag enhanced recombinant protein solubility and refolding ability and might be a useful tag for protein expression in E. coli. PMID:26690374

  20. Construction of an Expression System for Bioactive IL-18 and Generation of Recombinant Canine Distemper Virus Expressing IL-18

    PubMed Central

    LIU, Yuxiu; SATO, Hiroki; HAMANA, Masahiro; MOONAN, Navita Anisia; YONEDA, Misako; XIA, Xianzhu; KAI, Chieko

    2014-01-01

    ABSTRACT Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo. PMID:24898077

  1. Construction of an expression system for bioactive IL-18 and generation of recombinant canine distemper virus expressing IL-18.

    PubMed

    Liu, Yuxiu; Sato, Hiroki; Hamana, Masahiro; Moonan, Navita Anisia; Yoneda, Misako; Xia, Xianzhu; Kai, Chieko

    2014-09-01

    Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo. PMID:24898077

  2. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems.

    PubMed

    Smith, Daryl G S; Frahm, Grant E; Kane, Anita; Lorbetskie, Barry; Girard, Michel; Johnston, Michael J W; Cyr, Terry D

    2015-09-01

    Human serum albumin (HSA) is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3) (2012) 209-290). Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA) (Chen et al., Biochim. Biophys. Acta (BBA)-Gen. Subj. 1830(12) (2013) 5515-5525; Kobayashi, Biologicals 34(1) (2006) 55-59). Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15) (2012) 4661-4670), both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article 'Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa' where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9) (2014) e109893). We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence. PMID:26322323

  3. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors

    PubMed Central

    Hart, Bryan E.; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D.; Lukose, Regy; Souther, Sommer J. R.; Rayasam, Swati D. G.; Saelens, Joseph W.; Chen, Ching-ju; Seay, Sarah A.; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E.; Ng, Tony W.; Tobin, David M.; Porcelli, Steven A.; Larsen, Michelle H.; Schmitz, Joern E.; Haynes, Barton F.; Jacobs, William R.; Lee, Sunhee

    2015-01-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 1024-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >1068-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  4. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors.

    PubMed

    Hart, Bryan E; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D; Lukose, Regy; Souther, Sommer J R; Rayasam, Swati D G; Saelens, Joseph W; Chen, Ching-Ju; Seay, Sarah A; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E; Ng, Tony W; Tobin, David M; Porcelli, Steven A; Larsen, Michelle H; Schmitz, Joern E; Haynes, Barton F; Jacobs, William R; Lee, Sunhee; Frothingham, Richard

    2015-07-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  5. Recombinant Human Butyrylcholinesterase As a New-Age Bioscavenger Drug: Development of the Expression System

    PubMed Central

    Ilyushin, D.G.; Haertley, O.M.; Bobik, T.V.; Shamborant, O.G.; Surina, E.A.; Knorre, V.D.; Masson, P.; Smirnov, I.V.; Gabibov, A.G.; Ponomarenko, N.A.

    2013-01-01

    Butyrylcholinesterase (BChE) is a serine hydrolase (EC 3.1.1.8) which can be found in most animal tissues. This enzyme has a broad spectrum of efficacy against organophosphorus compounds, which makes it a prime candidate for the role of stoichiometric bioscavenger. Development of a new-age DNA-encoded bioscavenger is a vival task. Several transgenic expression systems of human BChE were developed over the past 20 years; however, none of them has been shown to make economic sense or has been approved for administration to humans. In this study, a CHO-based expression system was redesigned, resulting in a significant increase in the production level of functional recombinant human butyrylcholinesterase as compared to the hitherto existing systems. The recombinant enzyme was characterized with Elman and ELISA methods. PMID:23556132

  6. Expression and purification of two recombinant sterol-carrier proteins: SCPX and SCP2.

    PubMed

    Manfra, D J; Baum, C L; Reschley, E; Lundell, D; Zavodny, P; Dalie, B

    1995-04-01

    We report the cloning, expression, and purification of the rat sterol carrier proteins SCPX and SCP2. The cDNA's encoding rat SCPX and SCP2 were isolated from a lambda gt11 rat liver cDNA library. To maximize expression and to facilitate the purification of the recombinant proteins, the SCPX and SCP2 proteins were expressed as carboxy-terminal fusion proteins to the glutathione S-transferase (GST). The GST-SCPX and GST-SCP2 fusion proteins contained a thrombin recognition site between the GST and SCPX or SCP2 polypeptides. The expression of the fusion proteins was controlled by the inducible tac promoter. Under optimal conditions, the approximately 85-kDa GST-SCPX and the approximately 41-kDa GST-SCP2 proteins represented approximately 1-2% of the total cell lysate. Both fusion proteins were easily purified under nondenaturing conditions from the soluble fraction of total cell lysate by glutathione-Sepharose 4B affinity chromatography. Thrombin cleavage resulted in the release of the SCPX and SCP2 proteins from the GST-SCPX and GST-SCP2 fusions, respectively. Amino terminal protein sequencing confirmed the authenticity of the recombinant proteins. Furthermore, functional assay revealed that recombinant SCP2 is highly active in facilitating the conversion of 7-dehydrocholesterol to cholesterol. Recombinant SCPX is also active in this assay but only 50% as active as SCP2. We anticipate that the preparation and purification techniques described in this study will facilitate further biochemical characterization of these proteins. PMID:7606169

  7. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli.

    PubMed

    Zhao, Mingzhi; Cai, Man; Wu, Feilin; Zhang, Yao; Xiong, Zhi; Xu, Ping

    2016-10-01

    Several protease IV enzymes are widely used in proteomic research. Specifically, protease IV from Pseudomonas aeruginosa has lysyl endopeptidase activity. Here, we report the recombinant expression, refolding, activation, and purification of this protease in Escherichia coli. Proteolytic instability of the activated intermediate, a major obstacle for efficient production, is controlled through ammonium sulfate precipitation. The purified protease IV exhibits superior lysyl endopeptidase activity compared to a commercial product. PMID:27260967

  8. Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli.

    PubMed

    Zhu, Xiaopeng; Bi, Jianpeng; Yu, Jinpeng; Li, Xiaodan; Zhang, Yaning; Zhangsun, Dongting; Luo, Sulan

    2016-01-01

    α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His₆ tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His₆ fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost. PMID:26742048

  9. Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli

    PubMed Central

    Zhu, Xiaopeng; Bi, Jianpeng; Yu, Jinpeng; Li, Xiaodan; Zhang, Yaning; Zhangsun, Dongting; Luo, Sulan

    2016-01-01

    α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His6 tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His6 fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost. PMID:26742048

  10. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis.

    PubMed

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J; Liu, Shihui; Leppla, Stephen H

    2013-01-01

    Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein. PMID:23200832

  11. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters

    PubMed Central

    Kanno, Alex I.; Goulart, Cibelly; Rofatto, Henrique K.; Oliveira, Sergio C.; Leite, Luciana C. C.

    2016-01-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovis BCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  12. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    PubMed Central

    Gao, Meili; Li, Yongfei; Xue, Xiaochang; Wang, Xianfeng; Long, Jiangang

    2012-01-01

    Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed. PMID:23093835

  13. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters.

    PubMed

    Kanno, Alex I; Goulart, Cibelly; Rofatto, Henrique K; Oliveira, Sergio C; Leite, Luciana C C; McFadden, Johnjoe

    2016-04-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  14. Complement receptor activity of recombinant porcine CR1-like protein expressed in a eukaryotic system.

    PubMed

    Yin, Wei; Wei, Xiaoming; Jiang, Junbing; Fan, Kuohai; Zhao, Junxing; Sun, Na; Wang, Zhiwei; Sun, Yaogui; Ma, Haili; Zhao, Xin; Li, Hongquan

    2016-08-01

    Primate complement receptor type 1 (CR1) protein, a single-chain transmembrane glycoprotein, plays an important role in immune adherence and clearing complement-opsonized immune complexes. Here, the mRNA of the porcine primate-like complement receptor (CR1-like) gene was analyzed, and two domain sequences with potential functions were cloned into the pwPICZalpha vector for expression in Pichia pastoris. The recombinant proteins were purified with both Protein Pure Ni-NTA resin and strong anion exchange resin. The activities of the purified recombinant proteins were evaluated by SDS-PAGE, western blotting, and complement receptor assays. The results indicated that two domains of the CR1-like protein, CCP36 and CCP811 with molecular weights of 29.8 kDa and 30 kDa, respectively, were successfully expressed in P. pastoris. These two recombinant proteins possess some of the functions of the primate CR1 protein. Using these two proteins coupled with an antibody blocking technique, we also showed that CR1-like is expressed on natural porcine erythrocytes. PMID:26903010

  15. Immunogenicity of recombinant BCGs expressing predicted antigenic epitopes of bovine viral diarrhea virus E2 gene.

    PubMed

    Liu, Dongxu; Lu, Huijun; Shi, Kun; Su, Fengyan; Li, Jianming; Du, Rui

    2014-10-01

    To develop a vaccine to prevent diseases caused by Mycobacterium tuberculosis and bovine viral diarrhea virus (BVDV) simultaneously, recombinant Bacillus Calmette-Guerin (rBCG) vaccines expressing different regions of the BVDV E2 gene were constructed. Using DNASTAR 6.0 software, potential antigenic epitopes were predicted, and six regions were chosen to generate recombinant plasmids with the pMV361 vector (pMV361-E2-1, pMV361-E2-2, pMV361-E2-3, pMV361-E2-4, pMV361-E2-5 and pMV361-E2-6, respectively). The recombinant plasmids were transformed into BCG, and protein expression was thermally induced at 45 °C. Mice were immunized with 5 × 10(6) CFU/200 µL of each rBCG strain. Compared with other groups, BVDV E2 specific antibody titers were higher in mice immunized with rBCG-E2-6. Ratios and numbers of CD4+, CD8+ and IL-12 expressing spleen lymphocytes of the rBCG-E2-6 group also were higher than those of other groups. Thus, the rBCG-E2-6 vaccine showed the highest immunogenicity of all groups based on the humoral and cellular responses to vaccination. PMID:25135492

  16. Expression of GPI anchored human recombinant erythropoietin in CHO cells is devoid of glycosylation heterogeneity.

    PubMed

    Singh, Pankaj Kumar; Devasahayam, Mercy; Devi, Sobita

    2015-04-01

    Erythropoietin is a glycohormone involved in the regulation of the blood cell levels. It is a 166 amino acid protein having 3 N-glycosylation and one O-linked glycosylation sites, and is used to treat anaemia related illness. Though human recombinant erythropoietin (rEPO) is produced in CHO cells, the loss in quality control is 80% due to incomplete glycosylation of the rEPO with low levels of fully glycosylated active rEPO. Here, we describe the expression from CHO cells of fully glycosylated human rEPO when expressed as a GPI anchored molecule (rEPO-g). The results demonstrated the production of a homogenous completely glycosylated human rEPO-g as a 42 kD band without any low molecular weight glycoform variants as shown by affinity chromatography followed by SDS-PAGE and anti-human EPO specific western blot. The western blot using specific monoclonal antibody is the available biochemical technique to prove the presence of homogeneity in the expressed recombinant protein. The GPI anchor can be removed during the purification process to yield a therapeutically relevant recombinant erythropoietin molecule cells with a higher in vivo biological activity due to its high molecular weight of 40 kD. This is possibly the first report on the production of a homogenous and completely glycosylated human rEPO from CHO cells for efficient therapy. PMID:26011979

  17. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.

    PubMed

    Auslender, Evgenia L; Dorion, Sonia; Dumont, Sébastien; Rivoal, Jean

    2015-06-01

    The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates. PMID:25573389

  18. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  19. Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase.

    PubMed

    Sidoruk, K V; Pokrovsky, V S; Borisova, A A; Omeljanuk, N M; Aleksandrova, S S; Pokrovskaya, M V; Gladilina, Ju A; Bogush, V G; Sokolov, N N

    2011-12-01

    Recombinant E. coli strain producing Y. pseudotuberculosis Q66CJ2 (YpA) L-asparaginase II was created. Gene ansB homologue encoding Y. pseudotuberculosis IP 32953 L-asparaginase precursor was synthesized. The gene was cloned in pBad24 expression vector and expressed in E. coli BL21 (DE3) strain. Optimal conditions for the producer strain culturing were selected. An effective method for isolation and purification of the enzyme by two-staged column chromatography was developed. PMID:22808465

  20. Expression and Purification of Recombinant CDKs: CDK7, CDK8, and CDK9.

    PubMed

    Pinhero, Reena; Yankulov, Krassimir

    2016-01-01

    Cyclin-dependent kinases have established roles in the regulation of cell cycle, in gene expression and in cell differentiation. Many of these kinases have been considered as drug targets and numerous efforts have been made to develop specific and potent inhibitors against them. The first step in all of these attempts and in many other biochemical analyses is the production of highly purified and reliable kinase, most frequently in a recombinant form. In this chapter we describe our experience in the cloning, expression, and purification of CDKs using CDK7/CycH, CDK8/CycC, and CDK9/CycT1 as an example. PMID:26231705

  1. Adjuvant and immunostimulating properties of the recombinant Bm86 protein expressed in Pichia pastoris.

    PubMed

    García-García, J C; Soto, A; Nigro, F; Mazza, M; Joglar, M; Hechevarría, M; Lamberti, J; de la Fuente, J

    1998-01-01

    The cattle tick Boophilus microplus has remained a latent problem to the cattle industry. The recombinant vaccine GAVAC against the cattle tick has proved its efficacy and, conveniently, combined with the use of chemicals could be the solution to this problem. As this vaccine is based in the recombinant concealed antigen Bm86, it has to be given periodically to the animal to maintain an adequate level of antibodies. Some other commercially available vaccines for cattle also have to be given periodically, which creates the possibility of combining vaccines for cattle. In an attempt to evaluate the possible interactions of the Bm86 with other vaccine antigens, a potent stimulatory effect was demonstrated of the recombinant Bm86 on the humoral immune response to the recombinant Hepatitis B surface antigen in mice, and to the inactivated Infectious Bovine Rhinothraqueitis virus in cattle. These results make the Bm86 antigen expressed in Pichia pastoris a good candidate for combining vaccines for cattle because of its dual role, immunogen and adjuvant. PMID:9682358

  2. Expression, purification and characterization of recombinant toxins consisting of truncated gastrin 17 and pseudomonas exotoxin.

    PubMed

    Feng, Xiao-Li; Liu, Xi-Lin; Lu, Shi-Ying; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Wang, Quan; Tong, Weihua; Yan, Dong-Ming; Zhou, Yu; Zhang, Song; Jin, Wen; Liu, Zeng-Shan

    2015-01-01

    Gastric cancer is a major cause of mortality and morbidity around world. However the effectiveness of the current approaches to the diagnosis and treatment of gastric cancer is limited. Recombinant targeted toxins may represent a novel direction of cancer therapy. In this study, we aimed to explore whether recombinant toxins fused with the truncated forms of G17 could target to kill cancer cells by recognizing CCK2R. Four recombinant Pseudomonas toxins PE38 fused with the forward or reverse truncated forms of G17 (G14 and G13) were successfully constructed, expressed, and purified. Their characteristics were further analyzed by SDS-PAGE, western blot and indirect immunofluorescence assay. The cytotoxicity assay demonstrated that only reversely fused recombinant toxins rG14PE38 and rG13PE38 exhibited certain toxicity on several cancer cell lines, and a competition assay indicated that the binding of the reverse gastrin-endotoxin to CCK2R (+) cells may be mediated by interaction between gastrin/gastrin-like and CCK2R. PMID:25353354

  3. Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli.

    PubMed

    Zafar, Muddassar; Ahmed, Sibtain; Khan, Muhammad Imran Mahmood; Jamil, Amer

    2014-05-01

    The goal of this work was to produce high levels of endoglucanase in Escherichia coli for its potential usage in different industrial applications. Endoglucanase gene was amplified from genomic DNA of Bacillus subtilis JS2004 by PCR. The isolated putative endoglucanase gene consisted of an open reading frame of 1,701 nucleotides and encoded a protein of 567 amino acids with a molecular mass of 63-kDa. The gene was cloned into pET-28a(+) and expressed in E. coli BL21 (DE3). Optimum temperature and pH of the recombinant endoglucanase were 50 °C and 9, respectively which makes it very attractive for using in bio-bleaching and pulp industry. It had a K M of 1.76 μmol and V max 0.20 μmol/min with carboxymethylcellulose as substrate. The activity of recombinant endoglucanse was enhanced by Mg2+, Ca2+, isopropanol and Tween 20 and inhibited by Hg2+, Zn2+, Cu2+, Ni2+ and SDS. The activity of this recombinant endoglucanase was significantly higher than wild type. Therefore, this recombinant enzyme has potential for many industrial applications involving biomass conversions, due to characteristic of broad pH and higher temperature stability. PMID:24493451

  4. Expression, Purification and Characterization of Three Overlapping Immunodominant Recombinant Fragments from Bordetella pertussis Filamentous Hemagglutinin

    PubMed Central

    Asgarian-Omran, Hossein; Amirzargar, Ali Akbar; Arjmand, Mohammad; Eshraghian, Mohammadreza; Nikbin, Behrooz; Eshraghi, Saeid; Mahdavi, Marzieh; Khoshnoodi, Jalal; Jeddi-Tehrani, Mahmood; Rabbani, Hodjatallah; Shokri, Fazel

    2013-01-01

    Background Filamentous hemagglutinin (FHA) is one of the most important immunoprotective antigens of Bordetella pertussis (B. pertussis) and a major component of the acellular pertussis vaccine. In the present study, three overlapping recombinant fragments from the immunodominant region of FHA were produced and their immunogenicity was investigated. Methods Three overlapping coding sequences of FHA antigen were amplified from B. pertussis genomic DNA by PCR. Amplified fragments were expressed in Escherichia coli (E. coli) BL21(DE3) strain and purified through His-tag using Nickel-based chromatography. Purified fragments were characterized by SDS-PAGE and Western blotting techniques. In vitro peripheral blood mononuclear cells (PBMC) proliferation and IFN-γ production were assessed in a limited number of healthy adults vaccinated with a commercial acellular pertussis vaccine in response to all purified FHA fragments by H3-Thymidine incorporation and ELISA, respectively. Results Recombinant FHA segments were successfully cloned and produced at high levels in E. coli BL21(DE3). SDS-PAGE and Western blot analyses confirmed their purity and reactivity. All three recombinant fragments together with a commercial native FHA were able to induce in vitro PBMC proliferation and IFN-γ production. Conclusion Our preliminary results suggest that these overlapping recombinant FHA fragments are immunogenic and may prove to be immuno-protective. PMID:23626873

  5. Expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans and some properties of the recombinant enzyme.

    PubMed Central

    Adams, Benjamin; Lowe, David J; Smith, Andrew T; Scazzocchio, Claudio; Demais, Stephane; Bray, Robert C

    2002-01-01

    Recent crystal structures of xanthine dehydrogenase, xanthine oxidase and related enzymes have paved the way for a detailed structural and functional analysis of these enzymes. One problem encountered when working with these proteins, especially with recombinant protein, is that the preparations tend to be heterogeneous, with only a fraction of the enzyme molecules being active. This is due to the incompleteness of post-translational modification, which for this protein is a complex, and incompletely understood, process involving incorporation of the Mo and Fe/S centres. The enzyme has been expressed previously in both Drosophila and insect cells using baculovirus. The insect cell system has been exploited by Iwasaki et al. [Iwasaki, Okamoto, Nishino, Mizushima and Hori (2000) J. Biochem (Tokyo) 127, 771-778], but, for the rat enzyme, yields a complex mixture of enzyme forms, containing around 10% of functional enzyme. The expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillus nidulans is described. The purified protein has been analysed both functionally and spectroscopically. Its specific activity is indistinguishable from that of the enzyme purified from fruit flies [Doyle, Burke, Chovnick, Dutton, Whittle and Bray (1996) Eur. J. Biochem. 239, 782-795], and it appears to be more active than recombinant xanthine dehydrogenase produced with the baculovirus system. EPR spectra of the recombinant Drosophila enzyme are reported, including parameters for the Fe/S centres. Only a very weak "Fe/SIII" signal (g(1,2,3), 2.057, 1.930, 1.858) was observed, in contrast to the strong analogous signal reported for the enzyme from baculovirus. Since this signal appears to be associated with incomplete post-translational modification, this is consistent with relatively more complete cofactor incorporation in the Aspergillus-produced enzyme. Thus we have developed a recombinant expression system for D. melanogaster xanthine dehydrogenase, which can be used

  6. Cloning and expression of recombinant human platelet-derived growth factor-BB in Pichia Pink.

    PubMed

    Babavalian, H; Latifi, A M; Shokrgozar, M A; Bonakdar, S; Tebyanian, H; Shakeri, F

    2016-01-01

    The PDGF-BB plays a key role in several pathogenesis diseases and it is believed to be an important mediator for wound healing. The recombinant human PDGF-BB is safe and effective to stimulate the healing of chronic, full thickness and lower extremity diabetic neurotrophic ulcers. In the present study, we attempted to produce a PDGF-BB growth factor and also, evaluate its functionality in cell proliferation in yeast host Pichia pink. Pichia pink yeast was used as a host for evaluation of the rhPDGF-BB expression. The coding sequence of PDGF-BB protein was synthesized after optimization and packed into the pGEM. Recombinant proteins were produced and purified. The construct of pPinkα-HC-pdgf was confirmed by sequence, the PDGF-BB protein was expressed and purified with using a nickel affinity chromatography column and then characterized by SDS-PAGE electrophoresis. The biological activity of PDGF-BB was estimated with using human fibroblast cell line. The measurement of protein concentration was determined by Bradford and human PDGF-BB ELISA kit. Purified rhPDGF-BB showed similar biological activity (as the standard PDGF-BB) and suggested that the recombinant protein has a successful protein expression (as well as considerable biological activity in P. pink host). The exact amount of recombinant PDGF-BB concentrations were measured by specific ELISA test which it was about 30 μg/ml. Our study suggested that efficiency of biological activity of PDGF-BB protein may be related to its conformational similarity with standard type and also, it practically may be important in wound healing and tissue regeneration. PMID:27545214

  7. Expression of recombinant sea urchin cellulase SnEG54 using mammalian cell lines.

    PubMed

    Okumura, Fumihiko; Kameda, Hiroyuki; Ojima, Takao; Hatakeyama, Shigetsugu

    2010-05-01

    We previously identified the cellulase SnEG54 from Japanese purple sea urchin Strongylocentrotus nudus, the molecular mass of which is about 54kDa on SDS-PAGE. It is difficult to express and purify a recombinant cellulase protein using bacteria such as Escherichia coli or yeast. In this study, we generated mammalian expression vectors encoding SnEG54 to transiently express SnEG54 in mammalian cells. Both SnEG54 expressed in mammalian cells and SnEG54 released into the culture supernatant showed hydrolytic activity toward carboxymethyl cellulose. By using a retroviral expression system, we also established a mammalian cell line that constitutively produces SnEG54. Unexpectedly, SnEG54 released into the culture medium was not stable, and the peak time showing the highest concentration was approximately 1-2days after seeding into fresh culture media. These findings suggest that non-mammalian sea urchin cellulase can be generated in human cell lines but that recombinant SnEG54 is unstable in culture medium due to an unidentified mechanism. PMID:20381456

  8. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae.

    PubMed

    Liu, Zihe; Tyo, Keith E J; Martínez, José L; Petranovic, Dina; Nielsen, Jens

    2012-05-01

    Yeast Saccharomyces cerevisiae has become an attractive cell factory for production of commodity and speciality chemicals and proteins, such as industrial enzymes and pharmaceutical proteins. Here we evaluate most important expression factors for recombinant protein secretion: we chose two different proteins (insulin precursor (IP) and α-amylase), two different expression vectors (POTud plasmid and CPOTud plasmid) and two kinds of leader sequences (the glycosylated alpha factor leader and a synthetic leader with no glycosylation sites). We used IP and α-amylase as representatives of a simple protein and a multi-domain protein, as well as a non-glycosylated protein and a glycosylated protein, respectively. The genes coding for the two recombinant proteins were fused independently with two different leader sequences and were expressed using two different plasmid systems, resulting in eight different strains that were evaluated by batch fermentations. The secretion level (µmol/L) of IP was found to be higher than that of α-amylase for all expression systems and we also found larger variation in IP production for the different vectors. We also found that there is a change in protein production kinetics during the diauxic shift, that is, the IP was produced at higher rate during the glucose uptake phase, whereas amylase was produced at a higher rate in the ethanol uptake phase. For comparison, we also refer to data from another study, (Tyo et al. submitted) in which we used the p426GPD plasmid (standard vector using URA3 as marker gene and pGPD1 as expression promoter). For the IP there is more than 10-fold higher protein production with the CPOTud vector compared with the standard URA3-based vector, and this vector system therefore represent a valuable resource for future studies and optimization of recombinant protein production in yeast. PMID:22179756

  9. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes

    PubMed Central

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B.; Wen, Xin; Harasta, Anne E.; Ramkumar, Roshini; Spencer, Ziggy H. T.; Housley, Gary D.; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  10. Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes.

    PubMed

    von Jonquieres, Georg; Fröhlich, Dominik; Klugmann, Claudia B; Wen, Xin; Harasta, Anne E; Ramkumar, Roshini; Spencer, Ziggy H T; Housley, Gary D; Klugmann, Matthias

    2016-01-01

    Leukodystrophies are hereditary central white matter disorders caused by oligodendrocyte dysfunction. Recent clinical trials for some of these devastating neurological conditions have employed an ex vivo gene therapy approach that showed improved endpoints because cross-correction of affected myelin-forming cells occurred following secretion of therapeutic proteins by transduced autologous grafts. However, direct gene transfer to oligodendrocytes is required for the majority of leukodystrophies with underlying mutations in genes encoding non-secreted oligodendroglial proteins. Recombinant adeno-associated viral (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in rodents have shown that the use of cellular promoters is sufficient to target AAV-mediated transgene expression to glia. The potential of this strategy has not been exploited. The major caveat of the AAV system is its limited packaging capacity of ~5 kb, providing the rationale for identifying small yet selective recombinant promoters. Here, we characterize the human myelin associated glycoprotein (MAG) promoter for reliable targeting of AAV-mediated transgene expression to oligodendrocytes in vivo. A homology screen revealed highly conserved genomic regions among mammalian species upstream of the transcription start site. Recombinant AAV expression cassettes carrying the cDNA encoding enhanced green fluorescent protein (GFP) driven by truncated versions of the recombinant MAG promoter (2.2, 1.5 and 0.3 kb in size) were packaged as cy5 vectors and delivered into the dorsal striatum of mice. At 3 weeks post-injection, oligodendrocytes, neurons and astrocytes expressing the reporter were quantified by immunohistochemical staining. Our results revealed that both 2.2 and 1.5 kb MAG promoters targeted more than 95% of transgene expression to oligodendrocytes. Even the short 0.3 kb fragment conveyed high oligodendroglial specific transgene

  11. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives

    PubMed Central

    2016-01-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  12. Construction of recombinant HEK293 cell lines for the expression of the neurotensin receptor NTSR1.

    PubMed

    Xiao, Su; Shiloach, Joseph; Grisshammer, Reinhard

    2015-01-01

    G protein-coupled receptors (GPCRs) are associated with a wide array of diseases and are targets of most of the medicines sold worldwide. Despite their clinical importance, only 25 unique GPCR structures have been determined as of April 2014. The first step for structural studies is to establish the expression of correctly folded, functional receptors in recombinant host cells at quantities to allow subsequent purification and crystallization trials. Here we describe the T-REx™-inducible expression system to construct and select a stable HEK293 cell line for high-level expression of functional neurotensin receptor type I (NTSR1). We also present the protocols used for the adaptation of the cells into suspension culture, as well as the optimization of the induction parameters for NTSR1 expression, which led to 1 mg of purified NTSR1 per liter suspension culture in bioreactors. PMID:25563176

  13. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives.

    PubMed

    Jia, Baolei; Jeon, Che Ok

    2016-08-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  14. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    SciTech Connect

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  15. Mycobacterium bovis BCG priming induces a strong potentiation of the antibody response induced by recombinant BCG expressing a foreign antigen.

    PubMed Central

    Gheorghiu, M; Lagranderie, M R; Gicquel, B M; Leclerc, C D

    1994-01-01

    Several recent studies have demonstrated that strong cellular or humoral immune responses can be induced against foreign antigens expressed by recombinant Mycobacterium bovis BCG. It has therefore been suggested that BCG could represent one of the best candidate vectors for live recombinant vaccines. However, a large percentage of the human population has been immunized by BCG, and this priming could modify the immune response to future recombinant BCG vaccines. In the present study, we have therefore compared the immune responses induced in naive and BCG-primed mice by two recombinant BCG vaccines expressing either beta-galactosidase or human immunodeficiency virus type 1 Nef antigens. Our results demonstrated that BCG priming limits the growth of recombinant BCG in mouse spleen or lymph nodes. This reduction in BCG growth was associated with decreased proliferative responses against Nef or beta-galactosidase antigens. This suppression, however, never exceeded 50%. Interestingly, in contrast to these reduced T-cell responses, BCG-primed mice developed high levels of anti-beta-galactosidase antibodies after immunization with recombinant BCG expressing this antigen. This stimulation of antibody responses was not due to polyclonal stimulation or to a nonspecific adjuvant effect of BCG. The isotypic patterns of anti-beta-galactosidase antibody responses induced by the recombinant BCG were similar in naive and BCG-primed mice. These results indicate that priming with BCG will not be a limitation for the use of recombinant BCG vaccines in humans. PMID:7927686

  16. Development of anaerobically inducible nar promoter expression vectors for the expression of recombinant proteins in Escherichia coli.

    PubMed

    Kim, Nag-Jong; Choi, Jong Hyun; Kim, Yeon Chul; Lee, Jongwon; Lee, Sang Yup; Chang, Ho Nam; Lee, Pyung Cheon

    2011-01-10

    Dissolved oxygen (DO)-controlled nar promoter expression vectors were constructed, and their expression efficiency was compared with that of the T7 promoter pET22 expression vector by expressing human growth hormone (hGH), enhanced green fluorescence protein (EGFP), and β-tyrosinase in Escherichia coli cells. The nar promoter expression vector pRBS, which was engineered with a 5'-untranslated region and ribosomal binding site for the T7 promoter, expressed hGH at a rate of up to 32% of the total cellular proteins (TCP) in E. coli W3110narL⁻. The expression level of hGH was further enhanced, up to ~42% of the TCP, by adding the N-terminal peptide tag of β-galactosidase to hGH, which was comparable to the expression of ~43% of the TCP in pET-lac:hGH/BL21(DE3). A further engineered expression vector, pRBS(fnr), which coexpressed fumarate/nitrate reductase (fnr), expressed more EGFP than pET22 in BL21(DE3). In addition, recombinant β-tyrosinase was successfully expressed at a rate of up to ~45% of the TCP in pRBS(fnr) in W3110narL⁻. From these results, the DO-controlled nar promoter system developed in this study can be considered a reliable and cost-effective expression system for protein production, especially in large-scale fermentation, as an alternative to the pET/BL(DE3) system. PMID:21111764

  17. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals

    PubMed Central

    Liew, Pit Sze; Hair-Bejo, Mohd

    2015-01-01

    Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. PMID:26351454

  18. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals.

    PubMed

    Liew, Pit Sze; Hair-Bejo, Mohd

    2015-01-01

    Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. PMID:26351454

  19. Fibroblast adhesion to recombinant tropoelastin expressed as a protein A-fusion protein.

    PubMed Central

    Grosso, L E; Parks, W C; Wu, L J; Mecham, R P

    1991-01-01

    A bovine tropoelastin cDNA encoding exons 15-36 that includes the elastin-receptor binding site was expressed in Escherichia coli as a fusion protein with Protein A from Staphylococcus aureus. After isolation of the fusion protein by affinity chromatography on Ig-Sepharose, the tropoelastin domain was separated from plasmid-pR1T2T-encoded Protein A (Protein A') by CNBr cleavage. Cell-adhesion assays demonstrated specific adhesion to the recombinant tropoelastin. Furthermore, the data indicate that interactions involving the bovine elastin receptor mediate nuchalligament fibroblast adhesion to the recombinant protein. In agreement with earlier studies of fibroblast chemotaxis to bovine tropoelastin, nuchal-ligament fibroblast adhesion demonstrated developmental regulation of the elastin receptor. Images Fig. 2. Fig. 3. PMID:1996952

  20. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    PubMed Central

    Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2016-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  1. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  2. Ectopic expression of a conifer Abscisic Acid Insensitive3 transcription factor induces high-level synthesis of recombinant human alpha-L-iduronidase in transgenic tobacco leaves.

    PubMed

    Kermode, Allison R; Zeng, Ying; Hu, Xiaoke; Lauson, Samantha; Abrams, Suzanne R; He, Xu

    2007-04-01

    We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of

  3. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain.

    PubMed

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-08-01

    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (p<0.001) changed between the treatment. Within this gene set, 20 genes were significantly changed between treated cells and the control cells with cutoff fold change of more than 1.5. These genes are RNA-binding motif, single-stranded interacting protein 1 (RBMS1), ribosomal protein L29 (RPL29), glutathione S-transferase mu 2 (GSTM2), C15orf32, Akt3, B cell translocation gene 1 (BTG1), C6orf62, C7orf60, kinesin-associated protein 3 (KIFAP3), FBXO11, AT-rich interactive domain 4A (ARID4A), COPS2, TBPL1|SLC2A12, TMEM59, SNORD46, glioma tumor suppressor candidate region gene 2 (GLTSCR2), and LRRFIP. Our observation on gene expression indicated that recombinant bromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles. PMID:24928548

  4. Characterization of the recombinant proteins of porcine circovirus type2 field isolate expressed in the baculovirus system.

    PubMed

    Kim, Yuna; Kim, Jinhyun; Kang, Kyoungsoo; Lyoo, Young S

    2002-03-01

    Porcine circovirus (PCV) type2 was isolated using primary porcine kidney cells from lymph node of piglets with typical PMWS. The presence of the virus was identified by PCR using primers specific to PCV type2. The ORFs 1 and 2 were amplified by PCR using primers corresponding to the target genes of the PCV type 2. Cloned genes were inserted into the baculovirus expression vector and PCV recombinant proteins were expressed using baculovirus expression system. Recombinant protein expression was determined by indirect immunofluorescent assay (IFA) and immunoblotting using polyclonal antiserum to PCV. ORF1 gene expressed two proteins with approximately 17 kDa and 31 kDa proteins in the baculovirus system. Recombinant protein of the ORF2 was similar to that of the native virus except minor bands with different molecular weight were detected. Recombinant protein expressed in the baculovirus system showed at least two glycosylation sites based on the tunicamycin treatment. Recombinant protein of the ORF2 assembled virus-like particle in recombinant virus infected insect cells. PMID:14614268

  5. Development of a recombinant hCG-specific single chain immunotoxin cytotoxic to hCG expressing cancer cells.

    PubMed

    Nand, Kripa N; Gupta, Jagdish C; Panda, A K; Jain, S K

    2015-02-01

    A large number of cancers express human chorionic gonadotropin (hCG) or its subunits ectopically. Patients harboring such cancers have poor prognosis and adverse survival. PiPP is a monoclonal antibody of high affinity and specificity for hCGβ/hCG. Work was carried out to develop a PiPP based recombinant immunotoxin for the immunotherapy of hCG expressing cancers. Recombinant PiPP antibody was constructed in scFv format in which gene encoding the VH and VL domains were joined through a linker. This scFv gene was fused to the gene expressing Pseudomonas exotoxin (PE38), and cloned in a Escherichia coli based expression vector under the control of strong bacteriophage T7 promoter. Immunotoxin conjugating scFv(PiPP) and PE38, was expressed in E. coli as recombinant protein. Recombinant PiPP immunotoxin was purified from the bacterial cell lysate and tested for binding and killing of hCGβ expressing lymphoma, T-lymphoblastic leukemia and lung carcinoma cells in vitro. Immunotoxin showed nearly 90% killing on the cells. This is the first ever report on recombinant immunotoxin for binding and cytotoxicity to hCG expressing cancer cells, and thus can be a potential candidate for the immunotherapy of hCG expressing cells. PMID:25448825

  6. Effect of periplasmic expression of recombinant mouse interleukin-4 on hydrogen peroxide concentration and catalase activity in Escherichia coli.

    PubMed

    Mehdizadeh Aghdam, Elnaz; Mahmoudi Azar, Lena; Barzegari, Abolfazl; Karimi, Farrokh; Mesbahfar, Majid; Samadi, Naser; Hejazi, Mohammad Saeid

    2012-12-15

    Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H(2)O(2) concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H(2)O(2) concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H(2)O(2) concentration of the cells. However, the H(2)O(2) concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H(2)O(2) elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H(2)O(2) concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase. PMID:23000065

  7. Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina

    NASA Astrophysics Data System (ADS)

    Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen

    2007-05-01

    Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.

  8. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    PubMed

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant. PMID:24744029

  9. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins.

    PubMed

    Taylor, J; Weinberg, R; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1992-03-01

    The development of canarypox virus (CPV) recombinants expressing the hemagglutinin (HA) and fusion (F) glycoproteins of measles virus (MV) is described. Inoculation of the CPV-MV recombinants into avian or nonavian tissue culture substrates led to the expression of authentic MVF and MVHA as determined by radioimmunoprecipitation and surface immunofluorescence. In contrast to avian-derived tissue culture, no productive replication of the CPV recombinant was evident in tissue culture cells derived from nonavian origin. On inoculation of dogs, a species restricted for avipoxvirus replication, the recombinants elicited a protective immune response against a lethal canine distemper virus (CDV) challenge. The level of MV neutralizing antibodies and the level of protection induced against CDV challenge achieved by the host-restricted CPV vector were equivalent to that obtained by vaccinia virus vectors expressing the same MV antigens. PMID:1736535

  10. Efficient expression and purification of recombinant therapeutic protein candidates, human midkine and pleiotrophin.

    PubMed

    Murasugi, Akira

    2013-01-01

    Midkine is a heparin-binding growth factor that promotes cell growth, survival, and migration. Externally added midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction in the mouse. Preclinical testing of this protein is in progress. Externally added pleiotrophin, a member of the midkine protein family, promotes functional recovery after neural transplantation in rats. Thus, pleiotrophin is also a candidate therapeutic protein. Large amounts of these proteins were obtained by using the heterologous protein expression system of Pichia pastoris, and the recombinant P. pastoris clones were cultured in a controlled fermentor. Intracellular expression yielded about 300 mg/L recombinant human (rh)-midkine, which was extracted, renatured, and purified. From 1 L of the culture, 64 mg of rh-midkine was purified. Secretory expression induced by the midkine secretion signal resulted in about 100 mg of rhmidkine in 1 L of the culture supernatant, but over 70% of the rh-midkine had yeast-specific glycosylation. Three threonyl residues that are targets for glycosylation were substituted with alanyl residues, and nonglycosylated, active rh-midkine was obtained. In secretory expression using α-mating factor prepro-sequence, about 640 mg/L rh-midkine was obtained, but it was partially truncated. Therefore, a protease-deficient host was used, and about 360 mg/L intact rh-midkine was then obtained. The rh-midkine was recovered and purified, with 70% final yield. All purified rh-midkine, regardless of expression method, was able to promote mammalian cell proliferation. In secretory expression of rh-pleiotrophin using α- mating factor prepro-sequence, 260 mg/L rh-pleiotrophin could be secreted. The rh-pleiotrophin was recovered and efficiently purified with 72% final yield. PMID:24372230

  11. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    PubMed Central

    YADEGARI, Zahra; BANDEHPOUR, Mojgan; KAZEMI, Bahram; SHARIFI-SARASIABI, Khojasteh

    2015-01-01

    Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD) can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate expression of full-length functional recombinant human amelogenin (rhAm) in Iranian lizard Leishmania (I.L.L.) as an alternative eukaryotic expression system. Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control. Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm significantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+) multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells. Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future. PMID:26576377

  12. Inducible and Reversible Lentiviral and Recombination Mediated Cassette Exchange (RMCE) Systems for Controlling Gene Expression

    PubMed Central

    Bersten, David C.; Sullivan, Adrienne E.; Li, Dian; Bhakti, Veronica; Bent, Stephen J.; Whitelaw, Murray L.

    2015-01-01

    Manipulation of gene expression to invoke loss of function (LoF) or gain of function (GoF) phenotypes is important for interrogating complex biological questions both in vitro and in vivo. Doxycycline (Dox)-inducible gene expression systems are commonly used although success is often limited by high background and insufficient sensitivity to Dox. Here we develop broadly applicable platforms for reliable, tightly controlled and reversible Dox-inducible systems for lentiviral mediated generation of cell lines or FLP Recombination-Mediated Cassette Exchange (RMCE) into the Collagen 1a1 (Col1a1) locus (FLP-In Col1a1) in mouse embryonic stem cells. We significantly improve the flexibility, usefulness and robustness of the Dox-inducible system by using Tetracycline (Tet) activator (Tet-On) variants which are more sensitive to Dox, have no background activity and are expressed from single Gateway-compatible constructs. We demonstrate the usefulness of these platforms in ectopic gene expression or gene knockdown in multiple cell lines, primary neurons and in FLP-In Col1a1 mouse embryonic stem cells. We also improve the flexibility of RMCE Dox-inducible systems by generating constructs that allow for tissue or cell type-specific Dox-inducible expression and generate a shRNA selection algorithm that can effectively predict potent shRNA sequences able to knockdown gene expression from single integrant constructs. These platforms provide flexible, reliable and broadly applicable inducible expression systems for studying gene function. PMID:25768837

  13. High Expression of Water-Soluble Recombinant Antigenic Domains of Toxoplasma gondii Secretory Organelles

    PubMed Central

    Yang, Zhaoshou; Ahn, Hye-Jin

    2014-01-01

    Recombinant antigenic proteins of Toxoplasma gondii are alternative source of antigens which are easily obtainable for serodiagnosis of toxoplasmosis. In this study, highly antigenic secretory organellar proteins, dense granular GRA2 and GRA3, rhoptrial ROP2, and micronemal MIC2, were analyzed by bioinformatics approach to express as water-soluble forms of antigenic domains. The transmembrane region and disorder tendency of 4 secretory proteins were predicted to clone the genes into pGEX-4T-1 vector. Recombinant plasmids were transformed into BL21 (DE3) pLysS E. coli, and GST fusion proteins were expressed with IPTG. As a result, GST fusion proteins with GRA225-105, GRA339-138, ROP2324-561, and MIC21-284 domains had respectively higher value of IgG avidity. The rGST-GRA225-105 and rGST-GRA339-138 were soluble, while rGST-ROP2324-561 and rGST-MIC21-284 were not. GRA231-71, intrinsically unstructured domain (IUD) of GRA2, was used as a linker to enhance the solubility. The rGST-GRA231-71-ROP2324-561, a chimeric protein, appeared to be soluble. Moreover, rGST-GRA231-71-MIC21-284 was also soluble and had higher IgG avidity comparing to rGST-MIC21-284. These 4 highly expressed and water-soluble recombinant antigenic proteins may be promising candidates to improve the serodiagnosis of toxoplasmosis in addition to the major surface antigen of SAG1. PMID:25246715

  14. High expression of water-soluble recombinant antigenic domains of Toxoplasma gondii secretory organelles.

    PubMed

    Yang, Zhaoshou; Ahn, Hye-Jin; Nam, Ho-Woo

    2014-08-01

    Recombinant antigenic proteins of Toxoplasma gondii are alternative source of antigens which are easily obtainable for serodiagnosis of toxoplasmosis. In this study, highly antigenic secretory organellar proteins, dense granular GRA2 and GRA3, rhoptrial ROP2, and micronemal MIC2, were analyzed by bioinformatics approach to express as water-soluble forms of antigenic domains. The transmembrane region and disorder tendency of 4 secretory proteins were predicted to clone the genes into pGEX-4T-1 vector. Recombinant plasmids were transformed into BL21 (DE3) pLysS E. coli, and GST fusion proteins were expressed with IPTG. As a result, GST fusion proteins with GRA225-105, GRA339-138, ROP2324-561, and MIC21-284 domains had respectively higher value of IgG avidity. The rGST-GRA225-105 and rGST-GRA339-138 were soluble, while rGST-ROP2324-561 and rGST-MIC21-284 were not. GRA231-71, intrinsically unstructured domain (IUD) of GRA2, was used as a linker to enhance the solubility. The rGST-GRA231-71-ROP2324-561, a chimeric protein, appeared to be soluble. Moreover, rGST-GRA231-71-MIC21-284 was also soluble and had higher IgG avidity comparing to rGST-MIC21-284. These 4 highly expressed and water-soluble recombinant antigenic proteins may be promising candidates to improve the serodiagnosis of toxoplasmosis in addition to the major surface antigen of SAG1. PMID:25246715

  15. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli.

    PubMed

    Jia, Ying; Pérez, John C

    2009-07-01

    Parvalbumins (PV) are small, acidic, water soluble and calcium-binding proteins generally present in muscular and nervous tissues. In the present study, we identified and characterized a cDNA clone encoding PV, named AplPV, from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. AplPV belongs to EF-hand proteins with six alpha-helices constituting three EF-hand domains. The deduced amino acid sequence of AplPV is 91% and 68% identical to the previously characterized PVs of Boa constrictor and Cyprinus carpio, respectively. The full-length cDNA was subcloned into the expression vector pGEX and transformed into Escherichia coli (E.coli) to produce recombinant protein. The bacterially expressed GST-AplPV fusion protein was highly expressed, and effectively purified by Glutathione-Sepharose affinity chromatography. A high concentration of thrombin protease specifically cleaved and removed the GST tag from fusion protein, and further purified by Benzamidine column for removal of thrombin protease. As a result, the 12 kDa AplPV recombinant protein alone was purified. To investigate the tissue-specific biological occurrence of AplPV, a polyclonal antibody (anti-AplPV-antibody) was raised against GST-AplPV fusion protein in rabbit. Western blot analysis revealed that immunoreactive bands were exhibited in both recombinant protein and samples of venom glands, but not in any crude venom. This specific occurrence indicates a specialized function of AplPV in snake venom glands. PMID:19275943

  16. Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production.

    PubMed

    Liu, Ya-Li; Jiang, Shu; Ke, Zu-Min; Wu, Hai-Shui; Chi, Cheng-Wu; Guo, Zhan-Yun

    2009-04-21

    Recently, considerable attention has been focused on chitosan oligosaccharides (COSs) due to their various biological activities. COSs can be prepared by enzymatic degradation of chitosan, which is the deacetylation product of chitin, one of the most abundant biopolymers in nature. In the current study, we recombinantly expressed a chitosanase and used it for COS preparation. A bacillus-derived GH8 family chitosanase with a 6xHis tag fused at its N-terminal was expressed in the Escherichia coli strain BL21(DE3) as a soluble and active form. Its expression level could be as high as 500 mg/L. Enzymatic activity could reach approximately 140,000 U/L under our assay conditions. The recombinant chitosanase could be purified essentially to homogeneity by immobilized metal-ion affinity chromatography. The enzyme could efficiently convert chitosan into monomer-free COS: 1g of enzyme could hydrolyze about 100 kg of chitosan. Our present work has provided a cheap chitosanase for large-scale COS production in industry. PMID:19254792

  17. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway

    PubMed Central

    Bettiga, Maurizio; Bengtsson, Oskar; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2009-01-01

    Background Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose sugar fermentation. Results A new recombinant S. cerevisiae strain expressing an improved fungal pathway for the utilization of L-arabinose and D-xylose was constructed and characterized. The new strain grew aerobically on L-arabinose and D-xylose as sole carbon sources. The activities of the enzymes constituting the pentose utilization pathway(s) and product formation during anaerobic mixed sugar fermentation were characterized. Conclusion Pentose fermenting recombinant S. cerevisiae strains were obtained by the expression of a pentose utilization pathway of entirely fungal origin. During anaerobic fermentation the strain produced biomass and ethanol. L-arabitol yield was 0.48 g per gram of consumed pentose sugar, which is considerably less than previously reported for D-xylose reductase expressing strains co-fermenting L-arabinose and D-xylose, and the xylitol yield was 0.07 g per gram of consumed pentose sugar. PMID:19630951

  18. A tool kit for rapid cloning and expression of recombinant antibodies

    PubMed Central

    Dodev, Tihomir S.; Karagiannis, Panagiotis; Gilbert, Amy E.; Josephs, Debra H.; Bowen, Holly; James, Louisa K.; Bax, Heather J.; Beavil, Rebecca; Pang, Marie O.; Gould, Hannah J.; Karagiannis, Sophia N.; Beavil, Andrew J.

    2014-01-01

    Over the last four decades, molecular cloning has evolved tremendously. Efficient products allowing assembly of multiple DNA fragments have become available. However, cost-effective tools for engineering antibodies of different specificities, isotypes and species are still needed for many research and clinical applications in academia. Here, we report a method for one-step assembly of antibody heavy- and light-chain DNAs into a single mammalian expression vector, starting from DNAs encoding the desired variable and constant regions, which allows antibodies of different isotypes and specificity to be rapidly generated. As a proof of principle we have cloned, expressed and characterized functional recombinant tumor-associated antigen-specific chimeric IgE/κ and IgG1/κ, as well as recombinant grass pollen allergen Phl p 7 specific fully human IgE/λ and IgG4/λ antibodies. This method utilizing the antibody expression vectors, available at Addgene, has many applications, including the potential to support simultaneous processing of antibody panels, to facilitate mechanistic studies of antigen-antibody interactions and to conduct early evaluations of antibody functions. PMID:25073855

  19. Comparison of Recombinant Human Haptocorrin Expressed in Human Embryonic Kidney Cells and Native Haptocorrin

    PubMed Central

    Furger, Evelyne; Fedosov, Sergey N.; Launholt Lildballe, Dorte; Waibel, Robert; Schibli, Roger; Nexo, Ebba; Fischer, Eliane

    2012-01-01

    Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies. PMID:22662153

  20. Expression and purification of recombinant human alpha-defensins in Escherichia coli.

    PubMed

    Pazgier, Marzena; Lubkowski, Jacek

    2006-09-01

    Different strategies have been developed to produce small antimicrobial peptides (AMPs) using recombinant techniques. Up to now, all efforts to obtain larger quantities of active recombinant human alpha-defensins have been only moderately successful. Here we report an effective method of biosynthesis of human alpha-defensins (hNP-1 to hNP-3 and hD-5 and hD-6) in the Escherichia coli. All the peptides, expressed as insoluble fusions with the peptide encoded by a portion of E. coli tryptophan operon (trp DeltaLE 1413 polypeptide), were isolated from the inclusion bodies by immobilized metal affinity chromatography (IMAC) and separated from the fusion leader by chemical cleavage. Fully reduced peptides that were purified according to a straightforward protocol were subsequently folded, oxidized, and subjected to functional and structural analyses. With the exception of hD-6, all recombinant alpha-defensins exhibit expected anti-E. coli activity, as measured by the colony counting method. The method described in this report is a low-cost, efficient way of generating alpha-defensins in quantities ranging from milligrams to grams. PMID:16839776

  1. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization

    PubMed Central

    Ciaccio, Chiara; Gambacurta, Alessandra; Sanctis, Giampiero DE; Spagnolo, Domenico; Sakarikou, Christina; Petrella, Giovanni; Coletta, Massimo

    2006-01-01

    A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast α-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN−, Br− and Cl−. On the basis of the estimated Km and kcat values it is evident that the pseudohalide SCN− is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood. PMID:16396635

  2. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica.

    PubMed Central

    Bruchhaus, I; Richter, S; Tannich, E

    1998-01-01

    The gene encoding a putative NADPH:flavin oxidoreductase of the protozoan parasite Entamoeba histolytica (Eh34) was recombinantly expressed in Escherichia coli. The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein. RecEh34 reveals two different enzymic activities. It catalyses the NADPH-dependent reduction of oxygen to hydrogen peroxide (H2O2), as well as of disulphides such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and cystine. The disulphide reductase but not the H2O2-forming NADPH oxidase activity is inhibitable by sulphydryl-active compounds, indicating that a thiol component is part of the active site for the disulphide reductase activity, whereas for the H2O2-forming NADPH oxidase activity only the flavin is required. Compared with the recombinant protein, similar activities are present in amoebic extracts. Native Eh34 is active in a monomeric as well as in a dimeric state. In contrast to recEh34, no flavin was associated with the native protein. However, both NADPH oxidase as well as DTNB reductase activity were found to be dependent on the addition of FAD or FMN. PMID:9494088

  3. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection.

    PubMed

    Ma, Li; Ding, Qinfeng; Feng, Xiping; Li, Fei

    2013-10-01

    A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum. PMID:23644821

  4. Efficacy and immunogenicity of recombinant swinepox virus expressing the A epitope of the TGEV S protein.

    PubMed

    Yuan, Xiaomin; Lin, Huixing; Fan, Hongjie

    2015-07-31

    To explore the possibility of developing a vaccine against transmissible gastroenteritis virus (TGEV) infection, a recombinant swinepox virus (rSPV-SA) expressing a TGEV protective antigen has been constructed. Immune responses and protection efficacy of the vaccination vector were assessed in both mice and pig models. An indirect ELISA assay suggested that when mice were vaccinated with rSPV-SA, the level of IgG against TGEV was enhanced dramatically. The cytokine assays were employed and the results indicated that both the Th1-type and Th2-type cytokine levels raised after vaccination with rSPV-SA in mice models. Results from the passive immunity protection test of new born piglets demonstrated that the recombinant live-vector vaccine, rSPV-SA, could 100% protect piglets from the SPV infection, and there was no significant clinical symptom in the rSPV-SA treatment group during this experiment. The data suggest that the novel recombinant swinepox virus is a potential vaccine against TGEV infection. PMID:26116254

  5. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    PubMed

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system. PMID:20705597

  6. Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells.

    PubMed

    Montesino, R; Cremata, J; Rodríguez, M; Besada, V; Falcón, V; de la Fuente, J

    1996-02-01

    In the present paper we report the biochemical characteristics of the recombinant tick (Boophilus microplus) gut antigen Bm86 that previously has been cloned, expressed and recovered at high levels in the methylotrophic yeast Pichia pastoris. The results demonstrate that rBm86 had a modification at position 92 (Thr replaced by Ile) and aggregated, forming particles ranging between 17 and 40 nm. The rBm86 was N-glycosylated, having at least two non-glycosylated sequons (Asn-329 and Asn-363) and a ratio of only 0.4/65 (free Cys/total Cys)/mol of protein. PMID:8867893

  7. Development of a recombinant antibody to target peptides and proteins to sialoadhesin-expressing macrophages

    PubMed Central

    2013-01-01

    Background Sialoadhesin (Sn)-expressing monocytes/macrophages have been associated with several diseases like inflammatory and autoimmune disorders as well as viral infections, and they also appear to play a role in the initiation of an adaptive immune response. This makes Sn-expressing cells not only attractive targets for cell-directed therapies, but also an appealing target for vaccination. Furthermore, since Sn was shown to be an endocytic receptor, the conjugation of effector molecules to an Sn-specific ligand should allow intracellular delivery of these conjugates. Previously, we developed functional Sn-specific immunoconjugates that were generated via chemical coupling. Although successful, the system requires significant optimization for each immunoconjugate to be made. To generate a more flexible and controlled system, we developed a recombinant antibody vector allowing the creation of genetic antibody fusion constructs. This paper reports on the characterization of the recombinant antibody and the evaluation of its use for Sn-directed targeting. Results The variable domains of the porcine Sn-specific monoclonal antibody 41D3 were sequenced and cloned in frame with a mouse IgG1 backbone. Transfection of HEK293T cells with the resulting plasmid led to the secretion of fully assembled IgG into the culture medium. This recombinant antibody rec41D3 was shown to specifically bind to porcine Sn with a comparable affinity as the native monoclonal antibody. In addition, rec41D3 also induced Sn endocytosis in primary macrophages and resided for prolonged times in early/late endosomes. To allow the generation of antibody fusion constructs, a multiple cloning site was introduced at the C-terminus of the heavy chain. Two fusion constructs were generated, one containing a V5 peptide tag and one containing an eGFP molecule. Both constructs were shown to be efficiently produced in HEK293T cells and easily purified using standard protein G chromatography. In addition

  8. Use of Bacterial Artificial Chromosomes in Baculovirus Research and Recombinant Protein Expression: Current Trends and Future Perspectives

    PubMed Central

    Roy, Polly; Noad, Rob

    2012-01-01

    The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome. PMID:23762754

  9. Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa

    PubMed Central

    Frahm, Grant E.; Smith, Daryl G. S.; Kane, Anita; Lorbetskie, Barry; Cyr, Terry D.; Girard, Michel; Johnston, Michael J. W.

    2014-01-01

    The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs) leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA) produced in Oryza sativa (Asian rice) (OsrHSA) from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA) and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae). The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC), reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE). Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS). The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD) and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which correlated well

  10. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein.

    PubMed

    Robert, Stéphanie; Goulet, Marie-Claire; D'Aoust, Marc-André; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 μg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 μg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins. PMID:26286859

  11. Cloning, expression, and purification of a recombinant Tat-HA-NR2B9c peptide.

    PubMed

    Zhou, Hai-Hui; Zhang, Ai-Xia; Zhang, Yu; Zhu, Dong-Ya

    2012-10-01

    To design a peptide disrupting the interaction between N-methyl-d-aspartate receptors-2B (NR2B) and postsynaptic density protein-95 (PSD-95), a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide contained a fragment of the cell membrane transduction domain of the human immunodeficiency virus type1 (HIV-1) Tat, a influenza virus hemagglutinin (HA) epitope-tag, and the C-terminal 9 amino acids of NR2B (NR2B9c). We named the chimeric peptide Tat-HA-NR2B9c. The expression plasmid contained a gene fragment encoding the Tat-HA-NR2B9c was ligated to the C-terminal fragment of l-asparaginase (AnsB-C) via a unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in inclusion body in Escherichia coli under isopropyl β-d-1-thiogalactopyranoside (IPTG) and purified by washing with 2M urea, solubilizing in 4M urea, and then ethanol precipitation. The target chimeric peptide Tat-HA-NR2B9c was released from the fusion partner following acid hydrolysis and purified by isoelectric point precipitation and ultrafiltration. SDS-PAGE analysis and MALDI-TOF-MS analysis showed that the purified Tat-HA-NR2B9c was highly homogeneous. Furthermore, we investigated the effects of Tat-HA-NR2B9c on ischemia-induced cerebral injury in the rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and found that the peptide reduced infarct size and improved neurological functions. PMID:22944204

  12. Effect of recombinant lactobacillus expressing canine GM-CSF on immune function in dogs.

    PubMed

    Chung, Jin Young; Sung, Eui Jae; Cho, Chun Gyu; Seo, Kyoung Won; Lee, Jong-Soo; Bhang, Dong Ha; Lee, Hee Woo; Hwang, Cheol Yong; Lee, Wan Kyu; Youn, Hwa Young; Kim, Chul Joong

    2009-11-01

    Many Lactobacillus strains have been promoted as good probiotics for the prevention and treatment of diseases. We engineered recombinant Lactobacillus casei, producing biologically active canine granulocyte macrophage colony stimulating factor (cGM-CSF), and investigated its possibility as a good probiotic agent for dogs. Expression of the cGM-CSF protein in the recombinant Lactobacillus was confirmed by SDS-PAGE and Western blotting methods. For the in vivo study, 18 Beagle puppies of 7 weeks of age were divided into three groups; the control group was fed only on a regular diet and the two treatment groups were fed on a diet supplemented with either 1 x 10(9) colony forming units (CFU)/day of L. casei or L. casei expressing cGM-CSF protein for 7 weeks. Body weight was measured, and fecal and blood samples were collected from the dogs during the experiment for the measurement of hematology, fecal immunoglobulin (Ig)A and IgG, circulating IgA and IgG, and canine corona virus (CCV)-specific IgG. There were no differences in body weights among the groups, but monocyte counts in hematology and serum IgA were higher in the group receiving L. casei expressing cGMCSF than in the other two groups. After the administration of CCV vaccine, CCV-specific IgG in serum increased more in the group supplemented with L. casei expressing cGM-CSF than the other two groups. This study shows that a dietary L. casei expressing cGM-CSF enhances specific immune functions at both the mucosal and systemic levels in puppies. PMID:19996694

  13. Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression

    PubMed Central

    Mueller, Christian; Chulay, Jeffrey D.; Trapnell, Bruce C.; Humphries, Margaret; Carey, Brenna; Sandhaus, Robert A.; McElvaney, Noel G.; Messina, Louis; Tang, Qiushi; Rouhani, Farshid N.; Campbell-Thompson, Martha; Fu, Ann Dongtao; Yachnis, Anthony; Knop, David R.; Ye, Guo-jie; Brantly, Mark; Calcedo, Roberto; Somanathan, Suryanarayan; Richman, Lee P.; Vonderheide, Robert H.; Hulme, Maigan A.; Brusko, Todd M.; Wilson, James M.; Flotte, Terence R.

    2013-01-01

    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type α-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vβ region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1–AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy. PMID:24231351

  14. Immune responses elicited in mice with recombinant Lactococcus lactis expressing F4 fimbrial adhesin FaeG by oral immunization.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2010-08-01

    Enterotoxigenic Escherichia coli (ETEC) is a major pathogenic agent causing piglet diarrhea. The major subunit and adhesin FaeG of F4(+) ETEC is an important virulence factor with strong immunogenicity. To determine whether Lactococcus lactis (L. lactis) could effectively deliver FaeG to the mucosal immune system, recombinant L. lactis expressing FaeG was constructed, and immune responses in mice following oral route delivery of recombinant L. lactis were explored. The production of FaeG expressed in L. lactis was up to approximately 10% of soluble whole-cell proteins, and recombinant FaeG (rFaeG) possessed good immunoreactivity by Western blot analysis. Oral immunization with recombinant L. lactis expressing FaeG induced F4-specific mucosal and systemic immune responses in the mice. In addition, high dose recombinant L. lactis or co-administration of high dose recombinant L. lactis with CTB enhanced the immune responses. These results suggested that L. lactis expressing FaeG was a promising candidate vaccine against ETEC. PMID:20532816

  15. Application of recombinant adenoviruses expressing glycoprotein or nucleoprotein of rabies virus to Korean raccoon dogs

    PubMed Central

    Choi, Jiyoung; Kim, Ha-Hyun; Jo, Hyun-Ye; Choi, Sung-Suk; Kim, Jong-Taek; Cho, In-Soo; Kim, Hee-Won

    2015-01-01

    Purpose A new rabies vaccine for animals, including raccoon dogs, in Korea is needed to eradicate rabies infection. In this study, we constructed two recombinant adenoviruses expressing the glycoprotein or nucleoprotein of the rabies virus (RABV). We then investigated the safety and immunogenicity of these strains in raccoon dogs, depending on inoculation route. Materials and Methods Recombinant adenoviruses expressing the glycoprotein (Ad-0910G) or nucleoprotein (Ad-0910N) of rabies were constructed in 293A cells using an adenoviral system. One-year-old raccoon dogs underwent intramuscular (IM) inoculation or oral administration of the recombinant Ad-0910G and Ad-0910N. Clinical symptoms were observed and virus-neutralizing antibodies (VNA) against RABV were measured at 0, 2, 4, and 6 weeks after the immunization. Raccoons were considered positive if VNA titers were ≥ 0.1 IU/mL. Results Raccoon dogs inoculated with the combined Ad-0910G and Ad-0910N virus via the IM route did not exhibit any clinical sign of rabies during the observation period. All raccoon dogs (n = 7) immunized IM had high VNA titers, ranging from 0.17 to 41.6 IU/mL at 2 weeks after inoculation, but 70% (7/10) of raccoon dogs administered viruses via the oral route responded by 6 weeks after administration against RABV. Conclusion Raccoon dogs inoculated with Ad-0910G and Ad-0910N viruses showed no adverse effects. Immunization with the combined Ad-0910G and Ad-0910N strains may play an important role in inducing VNA against RABV in raccoon dogs. PMID:26273578

  16. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform.

    PubMed Central

    Yun, D J; D'Urzo, M P; Abad, L; Takeda, S; Salzman, R; Chen, Z; Lee, H; Hasegawa, P M; Bressan, R A

    1996-01-01

    NaCl (428 mM)-adapted tobacco (Nicotiana tabacum L. var Wisconsin 38) cells accumulate and secrete several antifungal chitinases. The predominant protein secreted to the culture medium was a 29-kD peptide that, based on internal amino acid sequence, was determined to be a class II acidic chitinase with similarity to PR-Q. The four predominant chitinases (T1, T2, T3, and T4) that accumulated intracellularly in 428 mM NaCl-adapted cells were purified. Based on N-terminal sequence analyses, two of these were identified as class I chitinase isoforms, one similar to the N. tomentosiformis (H. Shinshi, J.M. Neuhaus, J. Ryals, F. Meins [1990] Plant Mol Biol 14:357-368) protein (T1) and the other homologous to the N. sylvestris (Y. Fukuda, M. Ohme, H. Shinshi [1991] Plant Mol Biol 16:1-10) protein (T2). The other two proteins (T3 and T4) were determined to be novel chitinases that have sequence similarity with class I chitinases, but each lacks a chitin-binding domain. All four chitinases inhibited Fusarium oxysporum f. sp. lycopersici and Trichoderma longibrachiatum hyphal growth in vitro, although the isoforms containing a chitin-binding domain were somewhat more active. Conditions were established for the successful expression of soluble and active bacterial recombinant T2. Expression of soluble recombinant T2 was achieved when isopropyl beta-D-thiogalactopyranoside induction occurred at 18 degrees C but not at 25 or 37 degrees C. The purified recombinant protein exhibited antifungal activity comparable to a class I chitinase purified from NaCl-adapted tobacco cells. PMID:8756502

  17. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris

    PubMed Central

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL−1 at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg−1. The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0–8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t1/2) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  18. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris.

    PubMed

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  19. Identifying the Effects of BRCA1 Mutations on Homologous Recombination using Cells that Express Endogenous Wild-type BRCA1

    PubMed Central

    Parvin, Jeffrey; Chiba, Natsuko; Ransburgh, Derek

    2011-01-01

    The functional analysis of missense mutations can be complicated by the presence in the cell of the endogenous protein. Structure-function analyses of the BRCA1 have been complicated by the lack of a robust assay for the full length BRCA1 protein and the difficulties inherent in working with cell lines that express hypomorphic BRCA1 protein1,2,3,4,5. We developed a system whereby the endogenous BRCA1 protein in a cell was acutely depleted by RNAi targeting the 3'-UTR of the BRCA1 mRNA and replaced by co-transfecting a plasmid expressing a BRCA1 variant. One advantage of this procedure is that the acute silencing of BRCA1 and simultaneous replacement allow the cells to grow without secondary mutations or adaptations that might arise over time to compensate for the loss of BRCA1 function. This depletion and add-back procedure was done in a HeLa-derived cell line that was readily assayed for homologous recombination activity. The homologous recombination assay is based on a previously published method whereby a recombination substrate is integrated into the genome (Figure 1)6,7,8,9. This recombination substrate has the rare-cutting I-SceI restriction enzyme site inside an inactive GFP allele, and downstream is a second inactive GFP allele. Transfection of the plasmid that expresses I-SceI results in a double-stranded break, which may be repaired by homologous recombination, and if homologous recombination does repair the break it creates an active GFP allele that is readily scored by flow cytometry for GFP protein expression. Depletion of endogenous BRCA1 resulted in an 8-10-fold reduction in homologous recombination activity, and add-back of wild-type plasmid fully restored homologous recombination function. When specific point mutants of full length BRCA1 were expressed from co-transfected plasmids, the effect of the specific missense mutant could be scored. As an example, the expression of the BRCA1(M18T) protein, a variant of unknown clinical significance10, was

  20. [Construction of recombinant baculovirus co-expressing M1 and HA of influenza A virus].

    PubMed

    Xu, Peng-Wei; Guo, Jian-Qiang; Yao, Li-Hong; Chen, Ai-Jun; Liu, Xiao-Yu; Zeng, Xian-Yin; Zhang, Zhi-Qing

    2012-05-01

    The M1 and HA genes of H1N1 influenza virus were amplified and then cloned into the pFastBac dual donor plasmid. The recombinant pFastBac Dual-M1-HA was identified by restriction enzyme digestion. After the pFastBacdual-M1-HA was transformed into the baculovirus shuttle plasmid (bacmid) in DH10Bac competent cells, the colonies were identified by antibiotics and blue-white selection. The rBac-mid-M1-HA was verified by PCR and transfected into S f9 cells to produce recombinant baculovirus (rBac-M1-HA). Gene insertion of rBac-M1-HA was verified and the expression of M1 and HA genes was analyzed by IFA and Western-blot, demonstrating M1 and HA were co-expressed successfully. This study provides the foundation for researching the formation mechanism of influenza VLP and developing new influenza vaccines. PMID:22764525

  1. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  2. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  3. Expression, crystallization and preliminary X-ray diffraction studies of recombinant Clostridium perfringens β2-toxin

    SciTech Connect

    Gurjar, Abhijit A.; Yennawar, Neela H.; Yennawar, Hemant P.; Rajashankar, Kanagalaghatta R.; Hegde, Narasimha V.; Jayarao, Bhushan M.

    2007-06-01

    The cloning, expression, purification and crystallization of recombinant Clostridium perfringens β2-toxin is described. The crystals diffracted to 2.9 Å resolution. Clostridium perfringens is a Gram-positive sporulating anaerobic bacterium that is responsible for a wide spectrum of diseases in animals, birds and humans. The virulence of C. perfringens is associated with the production of several enterotoxins and exotoxins. β2-toxin is a 28 kDa exotoxin produced by C. perfringens. It is implicated in necrotic enteritis in animals and humans, a disease characterized by a sudden acute onset with lethal hemorrhagic mucosal ulceration. The recombinant expression, purification and crystallization of β2-toxin using the batch-under-oil technique are reported here. Native X-ray diffraction data were obtained to 2.9 Å resolution on a synchrotron beamline at the F2 station at Cornell High Energy Synchrotron Source (CHESS) using an ADSC Quantum-210 CCD detector. The crystals belong to space group R3, with a dimer in the asymmetric unit; the unit-cell parameters are a = b = 103.71, c = 193.48 Å, α = β = 90, γ = 120° using the hexagonal axis setting. A self-rotation function shows that the two molecules are related by a noncrystallographic twofold axis with polar angles ω = 90.0, ϕ = 210.3°.

  4. Cloning, Expression and Characterization of Recombinant, NADH Oxidase from Giardia lamblia.

    PubMed

    Castillo-Villanueva, Adriana; Méndez, Sara Teresa; Torres-Arroyo, Angélica; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2016-02-01

    The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia. PMID:26685698

  5. Expression and purification of bioactive high-purity recombinant mouse SPP1 in Escherichia coli.

    PubMed

    Yuan, Yunsheng; Zhang, Xiyuan; Weng, Shunyan; Guan, Wen; Xiang, Di; Gao, Jin; Li, Jingjing; Han, Wei; Yu, Yan

    2014-05-01

    Secreted phosphoprotein 1 (SPP1) is a phosphorylated acidic glycoprotein. It is broadly expressed in a variety of tissues, and it is involved in a number of physiological and pathological events, including cancer metastasis, tissues remodeling, pro-inflammation regulation, and cell survival. SPP1 has shown its function of protecting tissues and organs against injury and wound, giving itself potentials to become a therapy target or giving its antibodies of other counter-acting reagents potentials to become drug candidates. Non-tagged (native) recombinant SPP1 would be valuable in therapeutic and pharmaceutical researches. In our study, mouse Spp1 DNA fragment without signal peptide was built in pET28a(+) vector and transformed into Escherichia coli BL21 (DE3). The recombinant mouse SPP1 (rmSPP1) was then expressed in bacteria upon induction by isopropyl β-D-thiogalactopyranoside (IPTG). The abundance of rmSPP1 was increased using isoelectric precipitation and ammonium sulfate fractionation methods, and anion and cation exchange chromatography was employed to further purify rmSPP1. Finally, we got rmSPP1 product with 12.8 % productivity, 97 % purity, satisfactory bioactivity, and low endotoxin content. PMID:24664233

  6. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris.

    PubMed

    Liu, Yushan; Wu, Chengsheng; Wang, Jinyu; Mo, Wei; Yu, Min

    2013-12-01

    Interleukin (IL)-25 (also known as IL-17E) is a distinct member of the IL-17 cytokine family which induces IL-4, IL-5, and IL-13 expression and promotes pathogenic T helper (Th)-2 cell responses in various organs. IL-25 has been shown to have crucial role between innate and adaptive immunity and also a key component of the protection of gastrointestinal helminthes. In this study, to produce bioactive recombinant human IL-25 (rhIL-25), the cDNA of mature IL-25 was performed codon optimization based on methylotropic yeast Pichia pastoris codon bias and cloned into the expression vector pPICZαA. The recombinant vector was transformed into P. pichia strain X-33 and selected by zeocin resistance. Benchtop fermentation and simple purification strategy were established to purify the rhIL-25 with about 17 kDa molecular mass. Functional analysis showed that purified rhIL-25 specifically bond to receptor IL-17BR and induce G-CSF production in vitro. Further annexin V-FITC/PI staining assay indicated that rhIL-25 induced apoptosis in two breast cancer cells, MDA-MB-231 and HBL-100. This study provides a new strategy for the large-scale production of bioactive IL-25 for biological and therapeutic applications. PMID:24100683

  7. Expression, purification and production of antisera against recombinant truncated VP22 protein

    PubMed Central

    YU, XIAN; LEI, JUN; YANG, QIN; XU, ZHENGMIN; WANG, YAN

    2016-01-01

    Cell-penetrating peptides (CPPs) are non-invasive vectors that can efficiently transport bioactive cargo across the cell membrane. Naturally occurring CPPs, such as the tegument protein VP22 of the Herpes simplex virus type 1, can potentiate protein-drug delivery into living cells. The aim of the present study was to construct anti-VP22 antibodies that can be used to detect VP22-fusion drugs. Therefore, 60- and 45-amino acid peptides corresponding to the N-terminus and C-terminus of VP22, respectively, were cloned, expressed and purified. Subsequently, polyclonal antisera against them were generated. The DNA sequence, cloned into the pGEX-5X-1 vector, was transformed into E. coli BL21 (DE3). After inducing expression with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) at 25°C for 4 h, the recombinant VP22 proteins were purified by electroelution. The high titers of polyclonal antisera obtained subsequent to immunization of mice with the purified recombinant truncated VP22 was confirmed by ELISA. Western blot and immunofluorescence analysis showed that the antisera detected both the truncated and full-length VP22 protein. Therefore, the polyclonal antisera against VP22 may be used in the detection of the intracellular location of VP22-fusion protein drugs. PMID:27168799

  8. Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system.

    PubMed

    George, Susan; Bhasker, Salini; Madhav, Harish; Nair, Archana; Chinnamma, Mohankumar

    2014-02-01

    Bromelain (BRM) is a defense protein present in the fruit and stem of pineapple (Ananas comosus) and it is grouped as a cysteine protease enzyme with diversified medicinal uses. Based on its therapeutic applications, bromelain has got sufficient attention in pharmaceutical industries. In the present study, the full coding gene of bromelain in pineapple stem (1,093 bp) was amplified by RT-PCR. The PCR product was cloned, sequenced, and characterized. The sequence analysis of the gene revealed the single nucleotide polymorphism and its phylogenetic relatedness. The peptide sequence deduced from the gene showed the amino acid variations, physicochemical properties and secondary and tertiary structural features of the protein. The full BRM gene was transformed to prokaryotic vector pET32b and expressed in Escherichia coli BL21 DE3pLysS host cells successfully. The identity of the recombinant bromelain (rBRM) protein was confirmed by Western blot analysis using anti-BRM-rabbit IgG antibody. The activity of recombinant bromelain compared with purified native bromelain was determined by protease assay. The inhibitory effect of rBRM compared with native BRM in the growth of Gram-positive and Gram-negative strains of Streptococcus agalactiae and Escherichia coli O111 was evident from the antibacterial sensitivity test. To the best of our knowledge, this is the first report showing the bactericidal property of rBRM expressed in a prokaryotic system. PMID:23921698

  9. BacMam production of active recombinant lecithin-cholesterol acyltransferase: Expression, purification and characterization.

    PubMed

    Romanow, William G; Piper, Derek E; Fordstrom, Preston; Thibault, Stephen; Zhou, Mingyue; Walker, Nigel P C

    2016-09-01

    Lecithin-cholesterol acyltransferase (LCAT) is a key enzyme in the esterification of cholesterol and its subsequent incorporation into the core of high density lipoprotein (HDL) particles. It is also involved in reverse cholesterol transport (RCT), the mechanism by which cholesterol is removed from peripheral cells and transported to the liver for excretion. These processes are involved in the development of atherosclerosis and coronary heart disease (CHD) and may have therapeutic implications. This work describes the use of baculovirus as a transducing vector to express LCAT in mammalian cells, expression of the recombinant protein as a high-mannose glycoform suitable for deglycosylation by Endo H and its purification to homogeneity and characterization. The importance of producing underglycosylated forms of secreted glycoproteins to obtain high-resolution crystal structures is discussed. PMID:26363122

  10. Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system

    PubMed Central

    Rabert, Claudia; Weinacker, Daniel; Pessoa, Adalberto; Farías, Jorge G.

    2013-01-01

    The innovation in industrial process with impact in the efficient production is the major challenge for actual industry. A high numerous of enzymes are utilized in at different level of process; the search for new alternatives with better characteristic has become a field of study of great interest, the recombinant protein achievement in a different host system is an alternative widely assessed for production of this. The microorganism Pichia pastoris has been used like a successful expression system in diverse areas, improved the yield and extraction-recovery of the product expressed. The reported of diverse authors in the production of enzymes with different application in industry is varied, in this review the different industry areas and the characteristic of the enzymes produced are detailed. PMID:24294221

  11. Expression and In Silico Analysis of the Recombinant Bovine Papillomavirus E6 Protein as a Model for Viral Oncoproteins Studies

    PubMed Central

    Mazzuchelli-de-Souza, J.; Carvalho, R. F.; Ruiz, R. M.; Melo, T. C.; Araldi, R. P.; Carvalho, E.; Thompson, C. E.; Sircili, M. P.; Beçak, W.; Stocco, R. C.

    2013-01-01

    Bovine papillomaviruses (BPVs) are recognized as the causal agents of economical relevant diseases in cattle, associated with the development of tumors in skin and mucosa. The oncogenesis process is mainly associated with different viral oncoprotein expressions, which are involved in cell transformation. The expression and characterization of recombinant viral oncoproteins represent an attractive strategy to obtain biotechnological products as antibodies and potential vaccines, Thus, the aim of this work was to clone and express the BPV-1 and BPV-2 E6 recombinant proteins and perform in silico analysis in order to develop a strategy for the systematic study of other papillomaviruses oncoproteins. The results demonstrated that BPV-1 and BPV-2 E6 recombinant proteins were expressed and purified from bacterial system as well as its in silico analysis was performed in order to explore and predict biological characteristics of these proteins. PMID:23878806

  12. Characterization of a Pasteurella multocida plasmid and its use to express recombinant proteins in P. multocida.

    PubMed

    Wright, C L; Strugnell, R A; Hodgson, A L

    1997-01-01

    The complete nucleotide sequence of a naturally occurring 5.36-kb streptomycin and sulphonamide resistance plasmid, designated pIG1, isolated from type D Pasteurella multocida was determined. A 1.6-kb noncoding region and a 1.4-kb region encoding three putative proteins were shown by sequence homologies and functional characterizations to be involved in the replication and mobilization of pIG1, respectively. The remaining sequence carried an unusual arrangement of streptomycin- and sulphonamide-resistant genes when compared to various other plasmids. It appears that the antibiotic resistance region of pIG1 may have evolved by recombination between three different short direct repeat DNA sequences. A 4.5-kb recombinant plasmid was constructed by replacing the antibiotic resistance genes of pIG1 with a kanamycin resistance gene and seven unique restriction sites. The resulting plasmid, designated pIG112, stably replicates in P. multocida, Pasteurella haemolytica, Actinobacillus pleuropneumoniae, and Escherichia coli and can be introduced into these organisms by either transformation or conjugation. This vector exists at approximately 70 copies per cell in P. multocida and approximately 20 copies per cell in E. coli. To demonstrate plasmid-borne gene expression in P. multocida, the P. multocida dermonecrotic toxin gene, toxA, and a genetically modified form of this gene were cloned into pIG112 and expressed in high amounts in a nontoxigenic P. multocida strain. Cell culture assays demonstrated that nontoxigenic P. multocida expressing toxA was cytopathic, whereas a strain expressing the modified toxA derivative was not. PMID:9073583

  13. Improving xylitol production through recombinant expression of xylose reductase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Hirabayashi, Sho; Wang, Jianqiao; Kawagishi, Hirokazu; Hirai, Hirofumi

    2015-07-01

    We generated an expression construct consisting of the xylose reductase (XR) gene (xr) from Phanerochaete chrysosporium. Transformant X7 exhibited increased xylitol production and markedly higher XR activities than the wild-type strain. RT-PCR analysis demonstrated that the increased XR activity was associated with constant expression of the recombinant xr gene. PMID:25547244

  14. Expression of Recombinant Cellulase Cel5A from Trichoderma reesei in Tobacco Plants

    PubMed Central

    Garvey, Megan; Fischer, Rainer; Commandeur, Ulrich

    2014-01-01

    Cellulose degrading enzymes, cellulases, are targets of both research and industrial interests. The preponderance of these enzymes in difficult-to-culture organisms, such as hyphae-building fungi and anaerobic bacteria, has hastened the use of recombinant technologies in this field. Plant expression methods are a desirable system for large-scale production of enzymes and other industrially useful proteins. Herein, methods for the transient expression of a fungal endoglucanase, Trichoderma reesei Cel5A, in Nicotiana tabacum are demonstrated. Successful protein expression is shown, monitored by fluorescence using an mCherry-enzyme fusion protein. Additionally, a set of basic tests are used to examine the activity of transiently expressed T. reesei Cel5A, including SDS-PAGE, Western blotting, zymography, as well as fluorescence and dye-based substrate degradation assays. The system described here can be used to produce an active cellulase in a short time period, so as to assess the potential for further production in plants through constitutive or inducible expression systems. PMID:24962636

  15. Expression of recombinant cellulase Cel5A from Trichoderma reesei in tobacco plants.

    PubMed

    Garvey, Megan; Klinger, Johannes; Klose, Holger; Fischer, Rainer; Commandeur, Ulrich

    2014-01-01

    Cellulose degrading enzymes, cellulases, are targets of both research and industrial interests. The preponderance of these enzymes in difficult-to-culture organisms, such as hyphae-building fungi and anaerobic bacteria, has hastened the use of recombinant technologies in this field. Plant expression methods are a desirable system for large-scale production of enzymes and other industrially useful proteins. Herein, methods for the transient expression of a fungal endoglucanase, Trichoderma reesei Cel5A, in Nicotiana tabacum are demonstrated. Successful protein expression is shown, monitored by fluorescence using an mCherry-enzyme fusion protein. Additionally, a set of basic tests are used to examine the activity of transiently expressed T. reesei Cel5A, including SDS-PAGE, Western blotting, zymography, as well as fluorescence and dye-based substrate degradation assays. The system described here can be used to produce an active cellulase in a short time period, so as to assess the potential for further production in plants through constitutive or inducible expression systems. PMID:24962636

  16. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme.

    PubMed

    Pan, Y T; Carroll, J D; Elbein, A D

    2002-12-01

    The trehalose-phosphate synthase (TPS) of Mycobacterium smegmatis was previously purified to apparent homogeneity and several peptides from the 58 kDa protein were sequenced. Based on that sequence information, the gene for TPS was identified in the Mycobacterium tuberculosis genome, and the gene was cloned and expressed in Escherichia coli with a (His)6 tag at the amino terminus. The TPS was expressed in good yield and as active enzyme, and was purified on a metal ion column to give a single band of approximately 58 kDa on SDS/PAGE. Approximately 1.3 mg of purified TPS were obtained from a 1-L culture of E. coli ( approximately 2.3 g cell paste). The purified recombinant enzyme showed a single band of approximately 58 kDa on SDS/PAGE, but a molecular mass of approximately 220 kDa by gel filtration, indicating that the active TPS is probably a tetrameric protein. Like the enzyme originally purified from M. smegmatis, the recombinant enzyme is an unusual glycosyltransferase as it can utilize any of the nucleoside diphosphate glucose derivatives as glucosyl donors, i.e. ADP-glucose, CDP-glucose, GDP-glucose, TDP-glucose and UDP-glucose, with ADP-glucose, GDP-glucose and UDP-glucose being the preferred substrates. These studies prove conclusively that the mycobacterial TPS is indeed responsible for catalyzing the synthesis of trehalose-P from any of the nucleoside diphosphate glucose derivatives. Although the original enzyme from M. smegmatis was greatly stimulated in its utilization of UDP-glucose by polyanions such as heparin, the recombinant enzyme was stimulated only modestly by heparin. The Km for UDP-glucose as the glucosyl donor was approximately 18 mm, and that for GDP-glucose was approximately 16 mm. The enzyme was specific for glucose-6-P as the glucosyl acceptor, and the Km for this substrate was approximately 7 mm when UDP-glucose was the glucosyl donor and approximately 4 mm with GDP-glucose. TPS did not show an absolute requirement for divalent cations

  17. Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity

    PubMed Central

    Ge, Jingping; An, Qi; Gao, Dongni; Liu, Ying; Ping, Wenxiang

    2016-01-01

    Recombinant baculoviruses with different promoter and regulatory elements were constructed to enhance the expression of target protein and boost the efficacies of avian influenza vaccine. Hemagglutinin gene was cloned into the baculovirus transfer vectors driven by cytomegaloviru (CMV) and White spot syndrome virus immediate-early promoter one (WSSV ie1) promoter respectively, with different regulatory elements. The recombinant baculoviruses were directly used as vaccines to immunize specific pathogen-free chickens. The protein expression levels of recombinant baculoviruses BV-S-HA and BV-S-ITRs-HA were respectively 2.43 and 2.67 times than that of BV-S-con-HA, while the protein expression levels of BV-A-HA and BV-A-ITRs-HA were respectively 2.44 and 2.69 times than that of BV-S-con-HA. Immunoglobulin G (IgG) antibody levels induced by BV-A and BV-S series recombinant baculovirus were significantly higher than the commercialized vaccine group (P < 0.05). Among the groups with same promoter, the IgG antibody levels induced by the baculovirus containing regulatory elements were significantly higher than control group. Additionally, the immune effects induced by BV-A series recombinant baculoviruses with WSSV ie1 promoter were significantly stronger than the BV-S series recombinant baculoviruses with CMV promoter. The avian influenza vaccine prepared based on baculovirus vector can simultaneously stimulate the humoral and cellular immune responses. PMID:27063566

  18. Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity.

    PubMed

    Ge, Jingping; An, Qi; Gao, Dongni; Liu, Ying; Ping, Wenxiang

    2016-01-01

    Recombinant baculoviruses with different promoter and regulatory elements were constructed to enhance the expression of target protein and boost the efficacies of avian influenza vaccine. Hemagglutinin gene was cloned into the baculovirus transfer vectors driven by cytomegaloviru (CMV) and White spot syndrome virus immediate-early promoter one (WSSV ie1) promoter respectively, with different regulatory elements. The recombinant baculoviruses were directly used as vaccines to immunize specific pathogen-free chickens. The protein expression levels of recombinant baculoviruses BV-S-HA and BV-S-ITRs-HA were respectively 2.43 and 2.67 times than that of BV-S-con-HA, while the protein expression levels of BV-A-HA and BV-A-ITRs-HA were respectively 2.44 and 2.69 times than that of BV-S-con-HA. Immunoglobulin G (IgG) antibody levels induced by BV-A and BV-S series recombinant baculovirus were significantly higher than the commercialized vaccine group (P < 0.05). Among the groups with same promoter, the IgG antibody levels induced by the baculovirus containing regulatory elements were significantly higher than control group. Additionally, the immune effects induced by BV-A series recombinant baculoviruses with WSSV ie1 promoter were significantly stronger than the BV-S series recombinant baculoviruses with CMV promoter. The avian influenza vaccine prepared based on baculovirus vector can simultaneously stimulate the humoral and cellular immune responses. PMID:27063566

  19. Optimal gene expression and amplification strategies for batch and continuous recombinant cultures

    SciTech Connect

    Seressiotis, A.; Bailey, J.E.

    1987-02-20

    Maximizing the amount of protein produced from a cloned gene in a recombinant organism requires careful consideration of the trade-offs involved between cloned gene expression and host cell growth and biosythetic activity. Numerous experimental studies of recombinant Escherichia coli and Saccharomyces cerevisiae have shown that the presence of plasmids reduces host cell growth rate and, overall protein synthesis activity. Reduction host cell growth rates and biosynthetic activity in the presence of plasmid-directed macromolecular synthesis presumably occurs because of competition between plasmid-directed and host-cell-directed activity for common pools of precursors, chemical energy and electrons, activator species, repressor molecules, transport apparatus, and enzymes and other catalytic assemblies. The use of regulated promoters and plasmid replication controls amenable to environmental manipulation offers the opportunity of reconciling the opposing effects of cloned-gene content and expression level on process productivity. Several promoters are available for E. coli, S. cerevisiae, and other hosts that allow the expression level of the cloned gene to be switched from a relatively low to a relatively high level by a change in the organism environment. Similarly, in a plasmid replicon repressed by a temperature-sensitive molecule, such as the ColE1 origin of replication for E. coli plasmids with a mutant RNA I gene providing temperature-sensitive replication repressor activity, cellular plasmid content can be altered from around 25 to 700 or more copies per cell by increasing the medium temperature. Similar temperature-sensitive replication regulators are known for R1 plasmids.

  20. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  1. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  2. [Construction and identification of a recombinant PRRSV expressing ORF2 of porcine circovirus type 2].

    PubMed

    Zhang, Tingjie; Liu, Xing; Sun, Tao; Zhu, Xuejiao; Fan, Baochao; Bai, Juan; Jiang, Ping

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are very two important pathogens that have coursed huge economic losses in swine production in worldwide. In this study,a vector pCMV-TJM containing the full-length cDNA clone of PRRSV attenuated strain TJM-F92 was firstly constructed by PCR method. Then a gene sequence containing Afl II/Mlu I e restriction enzyme sites and a transcription regulatory sequence for ORF6 (TRS6) was inserted be- tween ORF7 and 3'UTR, yielding a expression vector pCMV-TJM-TRS. Subsequently, a plasmid pCMV-TJM-Cap was constructed by cloning of PCV2 ORF2 gene into the unique sites Afl II /Mlu I of pCMV- TJM-TRS plasmid DNA. Then three recombinant PRRSV, rTJM, rTJM/TRS and rTJM/Cap, were rescued by transfection of pCMV-TJM, pCMV-TJM-TRS and pCMV-TJM-Cap into Marc-145 cells, respectively,and confirmed by the genome sequence, restriction enzyme digestion, Western Blot and IFA. They all had the molecular markers which was different from the parent virus. The growth characteristics of the rescued viruses were similar to that of parent virus. rTJM/Cap could also express efficiently PCV2 Cap protein in Marc-145 cells. At passage 8, it still had PCV2 ORF2 gene which examined by RT-PCR. It indicated that the full-length cDNA clone of PRRSV attenuated strain TJM-F92 and recombinant PRRSV rTJM/Cap expressing PCV2 Cap protein were successfully constructed. It made an important foundation for studying on the pathogenic mechanisms of PRRSV and PRRSV-PCV2 vaccine in the future. PMID:25997333

  3. Expression of a foreign gene by recombinant canine distemper virus recovered from cloned DNAs.

    PubMed

    Parks, Christopher L; Wang, Hai-Ping; Kovacs, Gerald R; Vasilakis, Nikos; Kowalski, Jacek; Nowak, Rebecca M; Lerch, Robert A; Walpita, Pramila; Sidhu, Mohinderjit S; Udem, Stephen A

    2002-02-26

    A canine distemper virus (CDV) genomic cDNA clone and expression plasmids required to establish a CDV rescue system were generated from a laboratory-adapted strain of the Onderstepoort vaccine virus. In addition, a CDV minireplicon was prepared and used in transient expression studies performed to identify optimal virus rescue conditions. Results from the transient expression experiments indicated that minireplicon-encoded reporter gene activity was increased when transfected cell cultures were maintained at 32 rather than 37 degrees C, and when the cellular stress response was induced by heat shock. Applying these findings to rescue of recombinant CDV (rCDV) resulted in efficient recovery of virus after transfected HEp2 or A549 cells were co-cultured with Vero cell monolayers. Nucleotide sequence determination and analysis of restriction site polymorphisms confirmed that rescued virus was rCDV. A rCDV strain also was engineered that contained the luciferase gene inserted between the P and M genes; this virus directed high levels of luciferase expression in infected cells. PMID:11864746

  4. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering.

    PubMed

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-01-01

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation. PMID:26875499

  5. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  6. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering

    PubMed Central

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-01-01

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation. PMID:26875499

  7. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. PMID:25450237

  8. Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris.

    PubMed

    Wang, Sue-Hong; Yang, Tien-Shuh; Lin, Shiang-Ming; Tsai, Ming-Shiun; Wu, Shinn-Chih; Mao, Simon J T

    2002-06-01

    Recombinant porcine lactoferrin (rPLF) was synthesized in Pichia pastoris using a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene. Strains expressing rPLF with its own signal sequence or with that from the yeast alpha-mating factor (alpha-MF) were able to produce and secrete rPLF, but levels were consistently higher using alpha-MF constructs. In contrast, P. pastoris strains that expressed rPLF without a signal sequence produced the protein in an insoluble intracellular form. Increasing the initial pH of shake-flask culture medium from 6.0 to 7.0 or adding ferric ions to the medium (to 100 microM) resulted in significant improvements in expression of rPLF from P. pastoris. Expression levels (approximately 12 mg/L) were much higher than those observed from Saccharomyces cerevisiae strains (1-2 mg/L). P. pastoris-secreted rPLF was isolated and purified via a one-step simple procedure using a heparin column. The molecular size (78 kDa), isoelectric point (8.8-9.0), N-terminal amino acid sequence, and iron-binding capability of rPLF were each similar to that of native milk PLF. PMID:12071697

  9. Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes.

    PubMed

    Davodeau, F; Peyrat, M A; Gaschet, J; Hallet, M M; Triebel, F; Vié, H; Kabelitz, D; Bonneville, M

    1994-11-01

    Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire. PMID:7964454

  10. Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris.

    PubMed

    Kelle, Sebastian; Zelena, Katerina; Krings, Ulrich; Linke, Diana; Berger, Ralf G

    2014-03-01

    The first heterologous expression of an iron-containing lipoxygenase from a basidiomycete in Pichia pastoris is reported. Five different expression constructs of the lipoxygenase gene LOX1 from Pleurotus sapidus were cloned and successfully transferred into P. pastoris SMD1168, but only one pPIC9K vector construct was functionally expressed. In this construct the vector-provided α-factor signal sequence was replaced by insertion of a second Kozak sequence between the signal sequence and the LOX1 gene. His(+) transformants were screened for their level of resistance to geneticin (G418). Lox1 was expressed under different culture conditions and purified using the N-terminal His-tag. Relative enzyme activity increased significantly 48h after methanol induction and was highest with 2mll(-1) inducer. The recombinant enzyme showed an optimal lipoxygenase activity at pH 7 and 30-35°C and a vmax like the wild-type enzyme. PMID:24440506

  11. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells

    SciTech Connect

    Pendse, G.J.; Bailey, J.E. . Dept. of Chemical Engineering)

    1994-12-01

    Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA cells show a reduced specific growth rate in the VHb-expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture.

  12. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF.

    PubMed

    Li, Zhijun; Wang, Gang; Wang, Yan; Zhang, Chong; Huang, Baicheng; Li, Qiongyi; Li, Liangliang; Xue, Biyun; Ding, Peiyang; Cai, Xuehui; Wang, Chengbao; Zhou, En-Min

    2015-11-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection. PMID:26300317

  13. Effect of particulation on the immunogenic and protective properties of the recombinant Bm86 antigen expressed in Pichia pastoris.

    PubMed

    García-García, J C; Montero, C; Rodríguez, M; Soto, A; Redondo, M; Valdés, M; Méndez, L; de la Fuente, J

    1998-02-01

    The recombinant Bm86 tick antigen expressed in Pichia pastoris is obtained in a highly particulated form, as a distinguish feature of this expression system. This particulated protein, the active principle of the recombinant vaccine Gavac against the cattle tick, have shown high immunogenic and protective properties, probably associated with its own characteristics. To evaluate the effects of particulation on the properties of Bm86, three groups of calves were immunized with particulated or non-particulated recombinant Bm86 and the anti-Bm86 antibody response determined. Animals were challenged with a controlled tick infestation and the protective capacities of both proteins assessed. Humoral immune response and protection in cattle vaccinated with the particulated antigen were higher. These experiments suggested that particulation of the Bm86 expressed in P. pastoris is an important feature for the protective properties of the antigen in vaccine preparations. PMID:9607058

  14. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. PMID:26766784

  15. An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein

    PubMed Central

    Juleff, Nicholas; Moffat, Katy; Berryman, Stephen; Christie, John M.; Charleston, Bryan; Jackson, Terry

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed. PMID:23559477

  16. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain.

    PubMed Central

    Bedigian, H G; Taylor, B A; Meier, H

    1981-01-01

    Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease. Images PMID:6268848

  17. Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications

    PubMed Central

    Ceccoli, Romina D.; Bianchi, Dario A.; Rial, Daniela V.

    2014-01-01

    External flavoprotein monooxygenases comprise a group of flavin-dependent oxidoreductases that catalyze the insertion of one atom of molecular oxygen into an organic substrate and the second atom is reduced to water. These enzymes are involved in a great number of metabolic pathways both in prokaryotes and eukaryotes. Flavoprotein monooxygenases have attracted the attention of researchers for several decades and the advent of recombinant DNA technology caused a great progress in the field. These enzymes are subjected to detailed biochemical and structural characterization and some of them are also regarded as appealing oxidative biocatalysts for the production of fine chemicals and valuable intermediates toward active pharmaceutical ingredients due to their high chemo-, stereo-, and regioselectivity. Here, we review the most representative reactions catalyzed both in vivo and in vitro by prototype flavoprotein monooxygenases, highlighting the strategies employed to produce them recombinantly, to enhance the yield of soluble proteins, and to improve cofactor regeneration in order to obtain versatile biocatalysts. Although we describe the most outstanding features of flavoprotein monooxygenases, we mainly focus on enzymes that were cloned, expressed and used for biocatalysis during the last years. PMID:24567729

  18. Expression and V(D)J recombination activity of mutated RAG-1 proteins.

    PubMed Central

    Sadofsky, M J; Hesse, J E; McBlane, J F; Gellert, M

    1993-01-01

    The products of the RAG-1 and RAG-2 genes are essential for the recombination of the DNA encoding the antigen receptors of the developing immune system. Little is known of the specific role these genes play. We have explored the sequences encoding mouse RAG-1 by deleting large parts of the gene and by introducing local sequence changes. We find that a RAG-1 gene with 40% of the coding region deleted still retains its recombination function. In addition, a series of small deletions within the strongly conserved remaining 60% of the coding region was tested. Nine out of ten of these prove unable to provide RAG-1 activity, but one is quite active. Certain peptide sequences were also specifically targeted for mutagenesis. The RAG-1 protein generated from this expression system is transported to the nucleus and is degraded with a 15 minute half-life. The fate of the proteins made by the deletion mutants were also assessed. Transport of RAG-1 protein to the nucleus was found even with the most extensive deletions studied. The functionality of the deleted proteins is discussed with relation to an alignment of RAG-1 sequences from five animal species. Images PMID:8284210

  19. A recombinant pseudotyped lentivirus expressing the envelope glycoprotein of Hantaan virus induced protective immunity in mice

    PubMed Central

    2013-01-01

    Background Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must. Methods In the present study, a recombinant pseudotyped lentivirus bearing the hantaan virus (HTNV) envelope glycoproteins (GP), rLV-M, was constructed. C57BL/6 mice were immunized with the rLV-M and a series of immunological assays were conducted to determine the immunogenicity of the recombinant pseudotyped lentivirus. The humoral and cell-mediated immune responses induced by rLV-M were compared with those of the inactivated HFRS vaccine. Results Indirect immunofluorescence assay (IFA) showed the rLV-M expressed target proteins in HEK-293cells. In mice, the rLV-M efficiently induced GP-specific humoral responses and protection against HTNV infection. Furthermore, the rLV-M induced higher neutralizing antibody titers than the inactivated HFRS vaccine control. Conclusions The results indicated the potential of using a pseudotyped lentivirus as a delivery vector for a hantavirus vaccine immunogen. PMID:24093752

  20. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    PubMed

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells. Biotechnol. Bioeng. 2016;113: 1094-1101. © 2015 Wiley Periodicals, Inc. PMID:26523469

  1. High yield soluble bacterial expression and streamlined purification of recombinant human interferon α-2a.

    PubMed

    Bis, Regina L; Stauffer, Tara M; Singh, Surinder M; Lavoie, Thomas B; Mallela, Krishna M G

    2014-07-01

    Interferon α-2a (IFNA2) is a member of the Type I interferon cytokine family, known for its antiviral and anti-proliferative functions. The role of this family in the innate immune response makes it an attractive candidate for the treatment of many viral and chronic immune-compromised diseases. Recombinant IFNA2 is clinically used to modulate hairy cell leukemia as well as hepatitis c. Historically, IFNA2 has been purified from human leukocytes as well as bacterial expression systems. In most cases, bacterial expression of IFNA2 resulted in inclusion body formation, or required numerous purification steps that decreased the protein yield. Here, we describe an expression and purification scheme for IFNA2 using a pET-SUMO bacterial expression system and a single purification step. Using the SUMO protein as the fusion tag achieved high soluble protein expression. The SUMO tag was cleaved with the Ulp1 protease leaving no additional amino acids on the fusion terminus following cleavage. Mass spectrometry, circular dichroism, 2D heteronuclear NMR, and analytical ultracentrifugation confirmed the amino acid sequence identity, secondary and tertiary protein structures, and the solution behavior of the purified IFNA2. The purified protein also had antiviral and anti-proliferative activities comparable to the WHO International Standard, NIBSC 95/650, and the IFNA2 standard available from PBL Assay Science. Combining the expression and purification protocols developed here to produce IFNA2 on a laboratory scale with the commercial fermenter technology commonly used in pharmaceutical industry may further enhance IFNA2 yields, which will promote the development of interferon-based protein drugs to treat various disorders. PMID:24794500

  2. Expression and functional characterization of a recombinant targeted toxin with an uPA cleavable linker in Pichia pastoris.

    PubMed

    Zhu, Wen he; Sun, Miao nan; Wang, Yong sheng; Sun, De Jun; Zhang, Shao xuan

    2011-04-01

    A recombinant targeted toxin (Disintegrin-Conj-Mel) was developed that contained a disintegrin connected to cytotoxic melittin by a urokinase plasminogen activator (uPA)-cleavable linker. This recombinant targeted toxin was designed to target tumor cells expressing integrin αvβ3. The fusion gene was expressed under the control of the promoter AOX1 in Pichia pastoris. Electrophoresis by SDS-PAGE and Western blotting assays of culture broth from a methanol-induced expression strain, demonstrated that an approximately 13 kDa fusion protein was secreted into the culture medium. The molecular weight was that calculated from the predicted amino acid sequence. After optimizing the growth and expression conditions of the transformant strain, about 160 mg/L of the recombinant protein was achieved. The recombinant protein was purified to more than 95% purity by SP Sepharose ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The hemolysis bioactivity test revealed that the fusion had no hemolytic activity or cytotoxicity against uPA non-expressing 293 cells, but exerted dose-dependent inhibition on uPA-expressing A549 cell proliferation. PMID:21144903

  3. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  4. C-Terminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants

    PubMed Central

    Kittur, Farooqahmed S.; Lalgondar, Mallikarjun; Hung, Chiu-Yueh; Sane, David C.

    2014-01-01

    Asialo-erythropoietin (asialo-EPO), a desialylated form of EPO, is a potent tissue-protective agent. Recently, we and others have exploited a low cost plant-based expression system to produce recombinant human asialo-EPO (asialo-rhuEPOP). To facilitate purification from plant extracts, Strep-tag II was engineered at the C-terminus of EPO. Although asialo-rhuEPOP was efficiently expressed in transgenic tobacco plants, affinity purification based on Strep-tag II did not result in the recovery of the protein. In this study, we investigated the stability of Strep-tag II tagged asialo-rhuEPOP expressed in tobacco plants to understand whether this fused tag is cleaved or inaccessible. Sequencing RT-PCR products confirmed that fused DNA sequences encoding Strep-tag II were properly transcribed, and three-dimensional protein structure model revealed that the tag must be fully accessible. However, Western blot analysis of leaf extracts and purified asialo-rhuEPOP revealed that the Strep-tag II was absent on the protein. Additionally, no peptide fragment containing Strep-tag II was identified in the LC-MS/MS analysis of purified protein further supporting that the affinity tag was absent on asialo-rhuEPOP. However, Strep-tag II was detected on asialo-rhuEPOP that was retained in the endoplasmic reticulum, suggesting that the Strep-tag II is removed during protein secretion or extraction. These findings together with recent reports that C-terminally fused Strep-tag II or IgG Fc domain are also removed from EPO in tobacco plants, suggest that its C-terminus may be highly susceptible to proteolysis in tobacco plants. Therefore, direct fusion of purification tags at the C-terminus of EPO should be avoided while expressing it in tobacco plants. PMID:25504272

  5. Expression, purification and characterization of a recombinant beta-glucosidase from Volvariella Volvacea.

    PubMed

    Li, Xun; Pei, Jianjun; Wu, Guogan; Shao, Weilan

    2005-09-01

    For the first time, a beta-glucosidase gene from the edible straw mushroom, Volvariella volvacea V1-1, has been over-expressed in E. coli. The gene product was purified by chromatography showing a single band on SDS-PAGE. The recombinant enzyme had a molecular mass of 380 kDa with subunits of 97 kDa. The maximum activity was at pH 6.4 and 50 degrees C over a 5 min assay. The purified enzyme was stable from pH 5.6-8.0, had a half life of 1 h at 45 degrees C. The beta-glucosidase had a K(m) of 0.2 mM: for p-nitrophenyl-beta-D: -glucopyranoside. PMID:16215851

  6. Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.

    PubMed Central

    Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

    1990-01-01

    Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

  7. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

    PubMed Central

    Fonseca, Wendy; Ozawa, Makoto; Hatta, Masato; Orozco, Esther; Martínez, Máximo B; Kawaoka, Yoshihiro

    2014-01-01

    Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections. PMID:24292020

  8. Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.

    PubMed

    Artois, M; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M K; Campbell, J B

    1990-10-01

    Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and most of the gulls died from diseases unrelated to vaccination during the observation period, but all other animals remained healthy and survived. These deaths from causes other than vaccination and the absence of any lesions suggestive of vaccinia infection indicate that it is unlikely that any animal suffered or died as a result of V-RG administration. In addition several animals showed an unexpected high level of rabies neutralizing antibodies. PMID:2249183

  9. Recombinant expression and inhibition mechanism analysis of pectin methylesterase from Aspergillus flavus.

    PubMed

    Jiang, Xiuping; Jia, Qiulei; Chen, Lei; Chen, Qi; Yang, Qing

    2014-06-01

    Phytopathogenic microorganisms can produce pectin methylesterase (PME) to degrade plant cell walls during plant invasion. This enzyme is thought to be a virulence factor of phytopathogens. In this work, PME from Aspergillus flavus (AFPME) was expressed in Pichia pastoris and an in vitro inhibitor study was performed. The purified AFPME with a yield of 52.2% was resolved as one band with a molecular mass of c. 40 kDa by SDS-PAGE. Optimal activity of the enzyme occurred at a temperature of 55 °C and a pH of 4.8. Epigallocatechin gallate (EGCG) strongly inhibited the activity of recombinant AFPME. The molecular docking analysis indicated that EGCG could form hydrogen bonds and π-π interactions with some amino acid residues in the active site of AFPME. Our studies provide a novel strategy for the control of the plant invasion of A. flavus. PMID:24766423

  10. Design, recombinant expression, and antibacterial activity of the cecropins-melittin hybrid antimicrobial peptides.

    PubMed

    Cao, Yu; Yu, Rong Qing; Liu, Yi; Zhou, Huo Xiang; Song, Ling Ling; Cao, Yi; Qiao, Dai Rong

    2010-09-01

    In order to evaluate their antibacterial activities and toxicities, the cecropins-melittin hybrid antimicrobial peptide, CA(1-7)-M(4-11) (CAM) and CB(1-7)-M(4-11) (CBM), were designed by APD2 database. The recombinant hybrid antimicrobial peptides were successfully expressed and purified in Pichia pastoris. Antimicrobial activity assay showed that both of the two hybrid antimicrobial peptides had strong antibacterial abilities against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis, Bacillus thuringiensis, and Salmonella derby. The potency of CAM and CBM to E. coli 25922 were 0.862 and 0.849, respectively, slightly lower than Amp's 0.957. The hemolytic assays indicated CAM and CBM had no hemolytic in vivo and in vitro, and so they had a good application prospect. PMID:20111863

  11. Expression and Purification of Recombinant Mouse Interleukin-4 and -6 from Transgenic Rice Seeds.

    PubMed

    Fujiwara, Yoshihiro; Yang, Lijun; Takaiwa, Fumio; Sekikawa, Kenji

    2016-04-01

    Transgenic rice seed can be utilized as a bioreactor to produce high-value recombinant proteins. Mouse interleukin 4 (mIL-4) and mIL-6 were specifically expressed as secretory proteins in rice endosperm by ligating the N-terminal glutelin B-1 (GluB-1) signal peptide and the C-terminal KDEL endoplasmic reticulum retention signal under control of the endosperm-specific GluB-1 promoter. In the transgenic rice seed, mIL-4 and mIL-6 accumulated in levels up to 0.43 mg/g grain and 0.16 mg/g grain, respectively. The reducing agents and detergents required for extraction from the transgenic rice seeds differed between the two proteins, indicating differences in their intracellular localization within the endosperm cell. Purified mIL-4 and mIL-6 exhibited high activity and very low endotoxin contamination. PMID:26876890

  12. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma.

    PubMed

    Shi, Feng; Zhan, Wubing; Li, Yongfu; Wang, Xiaoyuan

    2014-01-01

    Red yeast Phaffia rhodozyma is a prominent microorganism able to synthesize carotenoid. Here, three carotenogenic cDNAs of P. rhodozyma CGMCC 2.1557, crtE, crtYB and crtI, were cloned and introduced into Saccharomyces cerevisiae INVSc1. The recombinant Sc-EYBI cells could synthesize 258.8 ± 43.8 μg g(-1) dry cell weight (DCW) of β-carotene when growing at 20 °C, about 59-fold higher than in those growing at 30 °C. Additional expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase from S. cerevisiae (Sc-EYBIH) increased the β-carotene level to 528.8 ± 13.3 μg g(-1) DCW as cells growing at 20 °C, 27-fold higher than cells growing at 30 °C, although cells grew faster at 30 °C than at 20 °C. Consistent with the much higher β-carotene level in cells growing at 20 °C, transcription level of three crt genes and cHMG1 gene in cells growing at 20 °C was a little higher than in those growing at 30 °C. Meanwhile, expression of three carotenogenic genes and accumulation of β-carotene promoted cell growth. These results reveal the influence of temperature on β-carotene biosynthesis and may be helpful for improving β-carotene production in recombinant S. cerevisiae. PMID:23861041

  13. Stable Expression of Recombinant Factor VIII in CHO Cells Using Methotrexate-Driven Transgene Amplification.

    PubMed

    Orlova, N A; Kovnir, S V; Vorobiev, I I; Yuriev, A S; Gabibov, A G; Vorobiev, A I

    2012-01-01

    Prophylaxis and treatment of inherited clotting disorder hemophilia A requires regular administration of factor VIII. Recombinant factor VIII, which is produced in CHO or BHK cells, is equivalent to the plasma-derived one and is prevalent in current clinical practice in developed countries. Development of a biosimilar recombinant FVIII requires the creation of a highly productive clonal cell line and generation of monoclonal antibodies suitable for affinity purification of the product. Methotrexate-driven transgene amplification of genetic cassettes that code full-length and truncated variants of FVIII under the control of the CMV promoter was studied. It was shown that the expression level of the truncated variant of FVIII is 6.5 times higher than that of the full-length molecule. The transgene amplification procedure was sufficient for a twofold increase of the expression level in the transfected cells pool and subsequent selection of the clonal line, stably producing truncated FVIII at the level of 0.52 IU/ml during cultivation in a chemically defined protein-free culture medium. Four generated mouse monoclonal antibodies toward the heavy chain of FVIII were found suitable for binding the truncated variant of FVIII directly from the conditioned medium and elution of the FVIII with a more than 85% yield and normal pro-coagulant activity. The producer cell line and monoclonal antibodies obtained are sufficient for the development of upstream and downstream processes of biosimilar FVIII production. Generation of more productive cell lines by the use of stronger, nonviral promoters and shorter cDNA of FVIII will be the subject of further studies. PMID:22708069

  14. Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer.

    PubMed

    Hart, Bryan E; Hale, Laura P; Lee, Sunhee

    2015-09-01

    Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette-Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. PMID:26393347

  15. Recombinant BCG Expressing Mycobacterium ulcerans Ag85A Imparts Enhanced Protection against Experimental Buruli ulcer

    PubMed Central

    Hart, Bryan E.; Hale, Laura P.; Lee, Sunhee

    2015-01-01

    Buruli ulcer, an emerging tropical disease caused by Mycobacterium ulcerans (MU), is characterized by disfiguring skin necrosis and high morbidity. Relatively little is understood about the mode of transmission, pathogenesis, or host immune responses to MU infection. Due to significant reduction in quality of life for patients with extensive tissue scarring, and that a disproportionately high percentage of those affected are disadvantaged children, a Buruli ulcer vaccine would be greatly beneficial to the worldwide community. Previous studies have shown that mice inoculated with either M. bovis bacille Calmette–Guérin (BCG) or a DNA vaccine encoding the M. ulcerans mycolyl transferase, Ag85A (MU-Ag85A), are transiently protected against pathology caused by intradermal challenge with MU. Building upon this principle, we have generated quality-controlled, live-recombinant strains of BCG and M. smegmatis which express the immunodominant MU Ag85A. Priming with rBCG MU-Ag85A followed by an M. smegmatis MU-Ag85A boost strongly induced murine antigen-specific CD4+ T cells and elicited functional IFNγ-producing splenocytes which recognized MU-Ag85A peptide and whole M. ulcerans better than a BCG prime-boost vaccination. Strikingly, mice vaccinated with a single subcutaneous dose of BCG MU-Ag85A or prime-boost displayed significantly enhanced survival, reduced tissue pathology, and lower bacterial load compared to mice vaccinated with BCG. Importantly, this level of superior protection against experimental Buruli ulcer compared to BCG has not previously been achieved. These results suggest that use of BCG as a recombinant vehicle expressing MU antigens represents an effective Buruli ulcer vaccine strategy and warrants further antigen discovery to improve vaccine efficacy. PMID:26393347

  16. Expression, purification and biochemical characterization of recombinant murine secretory component: a novel tool in mucosal immunology.

    PubMed Central

    Crottet, P; Cottet, S; Corthésy, B

    1999-01-01

    Reconstitution of secretory IgA (S-IgA) by the association in vitro of secretory component (SC) and polymeric IgA (pIgA) obtained from hybridomas is a valuable tool in the study of the structure-function relationship in this particular class of antibody. Although dimeric IgA (dIgA) can be obtained and purified from hybridoma clones, SC remains tedious to isolate in sufficient amounts from colostral milk. Several murine models for the study of mucosal immunity are available, which could potentially benefit from the use of cognate IgA antibodies in various molecular forms, including dIgA and S-IgA. We report here on the establishment of two expression systems allowing the production of milligram amounts of pure recombinant murine SC (rmSC) with preserved murine pIgA-binding capability. The first system relies on the use of recombinant vaccinia virus to prompt infected HeLa cells to express the murine SC protein, whereas the second system is based on a stably transfected cell clone exhibiting murine glycosylation. The second source of rmSC will permit the study of the role of its sugar moieties in pathogen-host interactions, and the evaluation of its function in passive protection without risking adverse immune responses. The extensive biochemical characterization conducted in this study demonstrates that rmSC is a dependable and convenient alternative to the natural product, and indicates that the J chain is dispensable in the recognition of pIgA and SC in vitro, whereas it is required for proper pIgA-polymeric Ig receptor interaction in vivo. PMID:10393086

  17. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus

    PubMed Central

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development. PMID:26930411

  18. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity.

    PubMed

    Tan, B H; Fu, J; Sugrue, R J; Yap, E H; Chan, Y C; Tan, Y H

    1996-02-15

    The complete nonstructural NS5 gene of dengue type 1 virus, Singapore strain S275/90 (D1-S275/90) was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein (126 kDa). The GST-NS5 fusion protein was purified and the recombinant NS5 protein released from the fusion protein by thrombin cleavage. The recombinant NS5 had a predicted molecular weight of 100 kDa and reacted with antiserum against D1-S275/90 virus in Western blot analysis. The purified recombinant NS5 protein possessed RNA-dependent RNA polymerase activity which was inhibited (>99%) by antibodies against the recombinant NS5 protein. The polymerase product was shown to be a negative-stranded RNA molecule, of template size, which forms a double-stranded complex with the template RNA. PMID:8607261

  19. Expression, purification and characterization of recombinant Jerdonitin, a P-II class snake venom metalloproteinase comprising metalloproteinase and disintegrin domains.

    PubMed

    Zhu, Lili; Yuan, Cai; Chen, Zhuo; Wang, Wanyu; Huang, Mingdong

    2010-01-01

    Jerdonitin is a P-II class snake venom metalloproteinase comprising metalloproteinase and disintegrin domains. In this study, we established a high-level expression system in Pichia pastoris and developed a purification strategy for the recombinant Jerdonitin. This recombinant Jerdonitin degraded fibrinogen at a level of activity comparable with its wild type. The effects of recombinant Jerdonitin on inhibiting ADP-induced human platelet aggregation were in a dose-dependent manner with an IC(50) of 248nM. In addition, we reported here that Jerdonitin can significantly inhibit the growth of several cell lines, including human liver cancer cells (Bel7402), human leukemia cells (K562) and human gastric carcinoma cells (BGC823). This study offers recombinant Jerdonitin that will be valuable for further functional and structural studies of Jerdonitin. PMID:19732785

  20. Expression and Purification of Recombinant Human Apolipoprotein A-II in Pichia pastoris

    PubMed Central

    Su, Manman; Qi, Yitian; Wang, Mingxing; Chang, Weiqin; Peng, Shuang; Wang, Dingding

    2013-01-01

    Abstract Apolipoprotein A-II (ApoA-II) is the second most abundant protein constituent of high-density lipoprotein (HDL). The physiologic role of ApoA-II is poorly defined. ApoA-II may inhibit lecithin:cholesterol acyltransferase and cholesteryl-ester-transfer protein activities, but may increase the hepatic lipase activity. ApoA-II may also inhibit the hepatic cholesteryl uptake from HDL probably through the scavenger receptor class B type I depending pathway. Interpretation of data from transgenic and knockout mice of genes involved in lipoprotein metabolism has been often complicated as clinical implications because of species difference. So it is important to obtain human ApoA-II for further studies about its functions. In our studies, Pichia pastoris expression system was first used to express a high-level secreted recombinant human ApoA-II (rhApoA-II). We have cloned the cDNA encoding human ApoA-II and achieved its high-level secreting expression with a yield of 65 mg/L of yeast culture and the purification process was effective and easy to handle. The purified rhApoA-II can be used to further study its biological activities. PMID:24116940

  1. The pCri System: a vector collection for recombinant protein expression and purification.

    PubMed

    Goulas, Theodoros; Cuppari, Anna; Garcia-Castellanos, Raquel; Snipas, Scott; Glockshuber, Rudi; Arolas, Joan L; Gomis-Rüth, F Xavier

    2014-01-01

    A major bottleneck in structural, biochemical and biophysical studies of proteins is the need for large amounts of pure homogenous material, which is generally obtained by recombinant overexpression. Here we introduce a vector collection, the pCri System, for cytoplasmic and periplasmic/extracellular expression of heterologous proteins that allows the simultaneous assessment of prokaryotic and eukaryotic host cells (Escherichia coli, Bacillus subtilis, and Pichia pastoris). By using a single polymerase chain reaction product, genes of interest can be directionally cloned in all vectors within four different rare restriction sites at the 5'end and multiple cloning sites at the 3'end. In this way, a number of different fusion tags but also signal peptides can be incorporated at the N- and C-terminus of proteins, facilitating their expression, solubility and subsequent detection and purification. Fusion tags can be efficiently removed by treatment with site-specific peptidases, such as tobacco etch virus proteinase, thrombin, or sentrin specific peptidase 1, which leave only a few extra residues at the N-terminus of the protein. The combination of different expression systems in concert with the cloning approach in vectors that can fuse various tags makes the pCri System a valuable tool for high throughput studies. PMID:25386923

  2. N‐Lauroylation during the Expression of Recombinant N‐Myristoylated Proteins: Implications and Solutions

    PubMed Central

    Flamm, Andrea Gabriele; Le Roux, Anabel‐Lise; Mateos, Borja; Díaz‐Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel

    2015-01-01

    Abstract Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N‐myristoylated proteins in Escherichia coli can be achieved by co‐expressing yeast N‐myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12‐carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1–185 N‐terminal region of c‐Src, we show the significant, and protein‐specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl‐free samples of myristoylated proteins in both rich and minimal media. PMID:26522884

  3. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.

    PubMed

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2009-01-01

    In this study, for the first time, functionally active, recombinant, cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were expressed and purified using a prokaryotic expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Escherichia coli was commensurate with that of the same proteins previously obtained from plant tissues. Both proteins exhibited strong antibacterial activity against the phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus (50% inhibitory concentration (IC(50)) 1.5-8 microM) and antifungal activity against the phytopathogenic fungi Colletotrichum coccoides and Botrytis cinerea (IC(50) 5-14 microM). Significantly weaker activity was observed against Pseudomonas syringae pv. syringae and Pseudomonas syringae pv. tabaci. A pronounced synergistic antimicrobial effect against P. syringae pv. syringae and an additive effect against P. syringae pv. tabaci occurred with a combination of SN1 and PTH1. Aggregation of C. michiganensis subsp. sepedonicus bacterial cells at all protein concentrations tested was observed with the combination of SN1 and PTH1 and with SN1 alone. Our results demonstrate the use of a cost effective prokaryotic expression system for generation and in vitro characterization of plant cysteine-rich proteins with potential antimicrobial activities against a wide range of phytopathogenic microorganisms in order to select the most effective agents for future in vivo studies. PMID:18824107

  4. Oral Immunization with Recombinant Streptococcus gordonii Expressing Porphyromonas gingivalis FimA Domains

    PubMed Central

    Sharma, Ashu; Honma, Kiyonobu; Evans, Richard T.; Hruby, Dennis E.; Genco, Robert J.

    2001-01-01

    Porphyromonas gingivalis, a gram-negative anaerobe, is implicated in the etiology of adult periodontitis. P. gingivalis fimbriae are one of several critical surface virulence factors involved in both bacterial adherence and inflammation. P. gingivalis fimbrillin (FimA), the major subunit protein of fimbriae, is considered an important antigen for vaccine development against P. gingivalis-associated periodontitis. We have previously shown that biologically active domains of P. gingivalis fimbrillin can be expressed on the surface of the human commensal bacterium Streptococcus gordonii. In this study, we examined the effects of oral coimmunization of germfree rats with two S. gordonii recombinants expressing N (residues 55 to 145)- and C (residues 226 to 337)-terminal epitopes of P. gingivalis FimA to elicit FimA-specific immune responses. The effectiveness of immunization in protecting against alveolar bone loss following P. gingivalis infection was also evaluated. The results of this study show that the oral delivery of P. gingivalis FimA epitopes via S. gordonii vectors resulted in the induction of FimA-specific serum (immunoglobulin G [IgG] and IgA) and salivary (IgA) antibody responses and that the immune responses were protective against subsequent P. gingivalis-induced alveolar bone loss. These results support the potential usefulness of the S. gordonii vectors expressing P. gingivalis fimbrillin as a mucosal vaccine against adult periodontitis. PMID:11292708

  5. Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A

    PubMed Central

    Hickey, Rita M.; Ross, R. Paul; Hill, Colin

    2004-01-01

    This study concerns the exploitation of the lytic enzyme enterolysin A (EntL), produced by Enterococcus faecalis strain DPC5280, to elicit the controlled autolysis of starter lactococci. EntL, a cell wall metalloendopeptidase secreted by some E. faecalis strains, can kill a wide range of gram-positive bacteria, including lactococci. The controlled expression of entL, which encodes EntL, was achieved using a nisin-inducible expression system in a lactococcal host. Zymographic analysis of EntL activity demonstrated that active enzyme is produced by the recombinant lactococcal host. Indeed, expression of EntL resulted in almost complete autolysis of the host strain 2 h after induction with nisin. Model cheese experiments using a starter strain in addition to the inducible enterolysin-producing strain showed a 27-fold increase in activity with respect to the release of lactate dehydrogenase in the strain overexpressing EntL, demonstrating the potential of EntL production in large-scale cheese production systems. Indeed, the observation that a wide range of lactic bacteria are sensitive to EntL suggests that EntL-induced autolysis has potential applications with a variety of lactic acid bacteria and could be a basis for probiotic delivery systems. PMID:15006800

  6. A newly isolated yeast as an expression host for recombinant lipase.

    PubMed

    Oslan, Siti Nurbaya; Salleh, Abu Bakar; Raja Abd Rahman, Raja Noor Zaliha; Leow, Thean Chor; Sukamat, Hafizah; Basri, Mahiran

    2015-06-01

    Pichia guilliermondii strain SO isolated from spoiled orange was developed for use as an alternative expression host by using Pichia pastoris as the model of the experiment. This is the first study to report on the capability of P. guilliermondii SO as a host to express thermostable T1 lipase from Geobacillus zalihae. Alcohol oxidase and formaldehyde dehydrogenase promoters were present in the yeast genome. Interestingly, the recombinant yeast [SO/pPICZαB/T1-2 (SO2)] took only 30 h to reach optimal production with minimal methanol induction [1.5% (v/v)] in YPTM medium, as compared to P. pastoris, which took longer to reach its optimal condition. The purification yield of the His-tagged fusion lipase was 68.58%, with specific activity of 194.58 U/mg. The optimum temperature was 65°C at pH 9 in glycine-NaOH buffer, and it was stable up to 70°C in a wide pH range from pH 5 to 12. In conclusion, a newly isolated yeast from spoiled orange has been proven suitable for use as an expression host. PMID:26204408

  7. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    PubMed

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. PMID:26522884

  8. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis).

    PubMed

    Hao, Juan; Li, Yan-Wei; Xie, Ming-Quan; Li, An-Xing

    2012-01-01

    Hepcidin, a cysteine-rich cationic antibacterial peptide, plays an important role in human defense against pathogen infection. However, its role in reptile immune response and whether it is involved in antibacterial immune have not yet been proven. In order to study the antibacterial activity of Crocodylus siamensis hepcidin (Cshepc), a common reptile which lives in topic region of Southeast Asia, a cDNA sequence of Cshepc was cloned, which included an open reading frame (ORF) of 300 bp encoding a 99 amino acid preprohepcidin. Cshepc has eight cysteines formed four conserved disulfide bridges, similarly to that of human's. Sequence analysis showed that Cshepc mature peptide was more conserved than that of preprohepcidin. Tissue expression analysis indicated that Cshepc transcripts were highly expressed in the liver, muscle and heart of C. siamensis. Recombinant expressed hepcidin could significantly inhibit the growth of the Gram-negative bacteria Escherichia coli and Aeromonas sobria as well as the Gram-positive bacterium Staphylococcus aureus, and Bacillus subtilis in vitro, suggesting that Cshepc, like human hepcidin could play a role in the antibacterial function in hosts innate immune response. PMID:22967859

  9. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    PubMed Central

    Yuan, Hui; Peng, Li; Han, Zhong; Xie, Juan-Juan; Liu, Xi-Peng

    2015-01-01

    Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms. PMID:26441878

  10. Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola.

    PubMed Central

    Fenno, J C; Müller, K H; McBride, B C

    1996-01-01

    The gene encoding the major outer sheath protein (Msp) of the oral spirochete Treponema denticola ATCC 35405 was cloned, sequenced, and expressed in Escherichia coli. Preliminary sequence analysis showed that the 5' end of the msp gene was not present on the 5.5-kb cloned fragment described in a recent study (M. Haapasalo, K. H. Müller, V. J. Uitto, W. K. Leung, and B. C. McBride, Infect. Immun. 60:2058-2065,1992). The 5' end of msp was obtained by PCR amplification from a T. denticola genomic library, and an open reading frame of 1,629 bp was identified as the coding region for Msp by combining overlapping sequences. The deduced peptide consisted of 543 amino acids and had a molecular mass of 58,233 Da. The peptide had a typical prokaryotic signal sequence with a potential cleavage site for signal peptidase 1. Northern (RNA) blot analysis showing the msp transcript to be approximately 1.7 kb was consistent with the identification of a promoter consensus sequence located optimally upstream of msp and a transcription termination signal found downstream of the stop codon. The entire msp sequence was amplified from T. denticola genomic DNA and cloned in E. coli by using a tightly regulated T7 RNA polymerase vector system. Expression of Msp was toxic to E. coli when the entire msp gene was present. High levels of Msp were produced as inclusion bodies when the putative signal peptide sequence was deleted and replaced by a vector-encoded T7 peptide sequence. Recombinant Msp purified to homogeneity from a clone containing the full-length msp gene adhered to immobilized laminin and fibronectin but not to bovine serum albumin. Attachment of recombinant Msp was decreased in the presence of soluble substrate. Attachment of T. denticola to immobilized laminin and fibronectin was increased by pretreatment of the substrate with recombinant Msp. These studies lend further support to the hypothesis that Msp mediates the extracellular matrix binding activity of T. denticola. PMID

  11. Recombinant Newcastle Disease virus Expressing IL15 Demonstrates Promising Antitumor Efficiency in Melanoma Model.

    PubMed

    Niu, Zeshan; Bai, Fuliang; Sun, Tian; Tian, Hui; Yu, Dan; Yin, Jiechao; Li, Siming; Li, Tianhe; Cao, Hongwei; Yu, Qingzhong; Wu, Yunzhou; Ren, Guiping; Li, Deshan

    2015-10-01

    Recombinant Newcastle Disease Virus (rNDV) has shown oncolytic therapeutic effect in preclinical studies. Previous data indicate that rNDV carrying IL2 has shown promise in cancer therapy. Due to the significant side effects of IL2, IL15 has been introduced into cancer therapy. A number of studies have suggested that IL15 efficiently enhances the activities of CTL and NK cells and inhibits the tumor recurrence and metastasis. Furthermore, IL15 is less toxic than IL2. Therefore, we hypothesize that a recombinant NDV expressing IL15 would be a promising agent for the treatment of malignant tumors. The human IL15 gene or IL2 gene was incorporated into the genome of lentogenic LaSota strain at the position between the HN and L genes (namely rNDV-IL15 or rNDV-IL2). The two viruses efficiently infected tumor cells and expressed IL15 or IL2 protein. Melanoma tumor-bearing mice were treated by intra-tumoral (i.t.) injection of rNDV-IL15 or rNDV-IL2. Both rNDV-IL15 and rNDV-IL2 effectively suppressed tumor growth compared with rNDV. The 120-day survival rate of rNDV-IL15- treated group was 12.5% higher than that of rNDV-IL2 group, although the difference was not statistically significant, both recombinant viruses had strong abilities to induce CD41 T cell and CTL cell responses. However, rNDV-IL15 significantly induced more IFN-γ release and stimulated more CD81 T cells infiltration in the tumor sites compared with rNDV-IL2. In the tumor re-challenged experiment, the survival rates of rNDV-IL15 group and rNDV-IL2 group were statistically higher than that of PBS group. The survival rate of rNDV-IL15 group was 26.67% higher than that of rNDV-IL2 group although the difference was not statistically significant. In conclusion, rNDV-IL15 is a promising antitumor agent against melanoma. PMID:24645750

  12. Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones.

    PubMed

    Grigoroudis, Asterios I; McInnes, Campbell; Premnath, Padmavathy Nandha; Kontopidis, George

    2015-09-01

    Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove. PMID:25956535

  13. HEK293 cell line: a vehicle for the expression of recombinant proteins.

    PubMed

    Thomas, Philip; Smart, Trevor G

    2005-01-01

    The HEK cell line has been extensively used as an expression tool for recombinant proteins since it was generated over 25 years ago. Although of epithelial origin, its biochemical machinery is capable of carrying out most of the post-translational folding and processing required to generate functional, mature protein from a wide spectrum of both mammalian and non-mammalian nucleic acids. Though popular as a transient expression system, this cell type has also seen wide use in stably transfected forms (i.e. transformed cells) to study a variety of cell-biological questions in neurobiology. The principal attributes which have made the HEK cell a popular choice among electrophysiologists to study isolated receptor channels include; its quick and easy reproduction and maintenance; amenability to transfection using a wide variety of methods; high efficiency of transfection and protein production; faithful translation and processing of proteins; and small cell size with minimal processes appropriate for voltage-clamp experimentation. These, and other attributes, also mean that complementary biochemical/cell biological evaluations of expressed proteins can be performed in concert with functional analyses to establish detailed pharmacological and biophysical profiles for the action of new drugs and their targets. The increased amount of sequence information available from the human genome has placed greater emphasis upon heterologous cell expression systems as targets for high throughput structure-function evaluation of novel drug targets and disease markers. Here we have highlighted some of the innate characteristics of the HEK cell in order that its suitability as a vehicle for the expression of a gene product can be assessed for particular needs. We have also detailed some of the standard methods used for transfection and obtaining functional data from electrophysiological recording techniques. PMID:15862464

  14. Construction and evaluation of a plasmid vector for the expression of recombinant lipoproteins in Escherichia coli.

    PubMed

    Cullen, Paul A; Lo, Miranda; Bulach, Dieter M; Cordwell, Stuart J; Adler, Ben

    2003-01-01

    Outer membrane lipoproteins are emerging as key targets for protective immunity to many bacterial pathogens. Heterologous expression of lipoproteins in Escherichia coli does not always result in high level expression of acylated recombinant protein. Thus, these proteins do not take up their correct membrane topology and are lacking the immunostimulatory properties endowed by the lipid. To this end, we have designed a lipoprotein expression vector (pDUMP) that results in the production of fusion proteins containing the E. coli major outer membrane lipoprotein (Lpp) signal sequence, lipoprotein signal peptidase recognition site, and the +2 outer membrane sorting signal at their N termini. To test the ability of pDUMP to express lipoproteins from heterologous hosts, the surface lipoprotein PsaA from the Gram-positive organism Streptococcus pneumoniae and the outer membrane lipoproteins MlpA from the Gram-negative Pasteurella multocida and BlpA from the spirochete Brachyspira hyodysenteriae were cloned into both hexahistidine fusion vectors and pDUMP. High level expression of antigenically active protein from both the hexahistidine fusion vectors and pDUMP resulted in abundant bands of the predicted molecular masses when analyzed by SDS-PAGE. When grown in the presence of 3[H]palmitic acid, proteins encoded by pDUMP were observed to incorporate palmitic acid whilst the hexahistidine fusion proteins did not. Using mass spectrometry and image analysis we determined the efficiency of lipidation between the three clones to vary from 31.7 to 100%. In addition, lipidated, but not hexahistidine, forms of the proteins were presented on the E. coli surface. PMID:12583997

  15. Regulation of aicda expression and AID activity: Relevance to somatic hypermutation and class switch DNA recombination

    PubMed Central

    Xu, Zhenming; Pone, Egest J.; Al-Qahtani, Ahmed; Park, Seok-Rae; Zan, Hong; Casali, Paolo

    2010-01-01

    Expression and activity of activation-induced cytidine deaminase (AID) encoded by the aicda gene are essential for immunoglobulin (Ig) gene somatic hypermutation (SHM) and class switch DNA recombination (CSR). SHM and CSR unfold in general in germinal centers and are central to the maturation of effective antibody responses. AID expression is induced by activated B cell CD40 signaling, which is critical for the germinal center reaction, and is further enhanced by other stimuli, including interleukin-4 (IL-4) secreted from CD4+ T cells or Toll-like receptor (TLR)-activating bacterial and/or viral molecules. Integration of different intracellular signal transduction pathways, as activated by these stimuli, leads to a dynamic aicda-regulating program, which involves both positively acting trans-factors, such as Pax5, HoxC4, E47 and Irf8, and negative modulators, such as Blimp1 and Id2, to restrict aicda expression primarily to germinal center B cells. The phosphatidylinositol 3-kinase (PI 3-K), which functions downstream of activated B cell receptor (BCR) signaling, likely plays an important role in triggering the downregulation of aicda expression in post-germinal center B cells and throughout plasmacytoid differentiation. In B cells undergoing SHM and CSR, AID activity and, possibly, AID targeting to the Ig locus are regulated at a post-translational level, including AID dimerization/oligomerization, nuclear/cytoplasmic AID translocation and phosphorylation of the AID Ser38 residue by protein kinase A (PKA). Here, we will discuss the role of B cell activation signals, transcription regulation programs and post-translational modifications in controlling aicda expression and AID activity, thereby delineating an integrated model of modulation of SHM and CSR in the germinal center reaction. PMID:18197815

  16. Characterization of the N-glycans of recombinant bee venom hyaluronidase (Api m 2) expressed in insect cells.

    PubMed

    Soldatova, Lyudmila N; Tsai, Chaoming; Dobrovolskaia, Ekaterina; Marković-Housley, Zora; Slater, Jay E

    2007-01-01

    Honeybee venom hyaluronidase (Api m 2) is a major glycoprotein allergen. Previous studies have indicated that recombinant Api m 2 expressed in insect cells has enzyme activity and IgE binding comparable with that of native Api m 2. In contrast, Api m 2 expressed in Escherichia coli does not. In this study, we characterized the carbohydrate side chains of Api m 2 expressed in insect cells, and compared our data with the established carbohydrate structure of native Api m 2. We assessed both the monosaccharide and the oligosaccharide content of recombinant Api m 2 using fluorophore-assisted carbohydrate electrophoresis and HPLC. To identify the amino acid residues at which glycosylation occurs, we digested recombinant Api m 2 with endoproteinase Glu-C and identified the fragments that contained carbohydrate by specific staining. Recombinant Api m 2 expressed in insect cells contains N-acetylglucosamine, mannose, and fucose, as well as trace amounts of glucose and galactose, and the oligosaccharide analysis is consistent with heterogeneous oligosaccharide chains consisting of two to seven monosaccharides. No sialic acid or N-acetylgalactosamine were detected. These results are similar to published data for native Api m 2, although some monosaccharide components appear to be absent in the recombinant protein. Analysis of proteolytic digests indicates that of the four candidate N-glycosylation sites, carbohydrate chains are attached at asparagines 115 and 263. Recombinant Api m 2 expressed in insect cells has enzymic activity and IgE binding comparable with the native protein, and its carbohydrate composition is very similar. PMID:17479607

  17. Comparison of recombinant α-hemoglobin from Crocodylus siamensis expressed in different cloning vectors and their biological properties.

    PubMed

    Maijaroen, Surachai; Anwised, Preeyanan; Klaynongsruang, Sompong; Daduang, Sakda; Boonmee, Atcha

    2016-02-01

    Hemoglobin (Hb) is an important component in red blood cells of the vertebrate. It is a major respiratory protein with oxygen or carbon dioxide transport function. Hb has been reported to contain bioactive peptides which have antibacterial and antioxidant activities. In this study, the alpha-chain hemoglobin(αHb) gene of Crocodylus siamensis was cloned into the three different expression vectors and expressed in Escherichia coli BL21 (DE3). The recombinant αHb proteins from all constructs could be expressed and purified. The result from UV-visible absorption spectra showed a similar pattern of all recombinant proteins to the oxy-hemoglobin form of intact Hb. The different recombinant αHb could exhibit antioxidant activities. All recombinant proteins could inhibit the growth of Bacillus spp. Especially, most of the recombinant proteins could inhibit the growth of Bacillus amyloliquefaciens TISTR 1045 better than intact one. The result obtained from this study can provide us further information about the possibility using of αHb as a supplementary food. PMID:26455814

  18. New strategy for expression of recombinant hydroxylated human collagen α1(III) chains in Pichia pastoris GS115.

    PubMed

    He, Jing; Ma, Xiaoxuan; Zhang, Fenglong; Li, Linbo; Deng, Jianjun; Xue, Wenjiao; Zhu, Chenhui; Fan, Daidi

    2015-01-01

    Type III collagen is one of the most abundant proteins in the human body, which forms collagen fibrils and provides the stiff, resilient characteristics of many tissues. In this paper, a new method for secretory expression of recombinant hydroxylated human collagen α1(III) chain in Pichia pastoris GS115 was applied. The gene encoding for full-length human collagen α1(III) chain (COL3A1) without N-terminal propeptide and C-terminal propeptide was cloned in the pPIC9K expression vector. The prolyl 4-hydroxylase (P4H, EC 1.14.11.2) α-subunit (P4Hα) and β-subunit (P4Hβ) genes were cloned in the same expression vector, pPICZB. Fluorogenic quantitative PCR indicates that COL3A1 and P4H genes have been expressed in mRNA level. SDS-PAGE shows that secretory expression of recombinant human collagen α1(III) chain was successfully achieved in P. pastoris GS115. In addition, the result of amino acids composition analysis shows that the recombinant human collagen α1(III) chain contains hydroxyproline by coexpression with the P4H. Furthermore, liquid chromatography coupled with tandem mass spectrometry analysis demonstrates that proline residues of the recombinant human collagen α1(III) chain were hydroxylated in the X or Y positions of Gly-X-Y triplets. PMID:24953863

  19. Recombinant Outer Capsid Glycoprotein (VP7) of Rotavirus Expressed in Insect Cells Induces Neutralizing Antibodies in Rabbits

    PubMed Central

    Khodabandehloo, M; Shahrabadi, M Shamsi; Keyvani, H; Bambai, B; Sadigh, ZA

    2012-01-01

    Background: Rotaviruses cause diarrhea in infants and young children worldwide. Rotavirus outer capsid protein, VP7 is major neutralizing antigen that is important component of subunit vaccine to prevent rotavirus infection. Many efforts have been done to produce recombinant VP7 that maintain native characteristics. We used baculovirus expression system to produce rotavirus VP7 protein and to study its immunogenicity. Methods: Simian rotavirus SA11 full-length VP7 ORF was cloned into a cloning plasmid and then the cloned gene was inserted into the linear DNA of baculovirus Autographa californica Nuclear Polyhedrosis Virus (AcNPV) downstream of the polyhedrin promoter by in vitro recombination reactions. The expressed VP7 in the insect cells was recognized by rabbit hyperimmune serum raised against SA11 rotavirus by Immunofluorescence and western blotting assays. Rabbits were immunized subcutaneously by cell extracts expressing VP7 protein. Results: Reactivity with anti-rotavirus antibody suggested that expressed VP7 protein had native antigenic determinants. Injection of recombinant VP7 in rabbits elicited the production of serum antibodies, which were able to recognize VP7 protein from SA11 rotavirus by Western blotting test and neutralized SA11 rotavirus in cell culture. Conclusion: Recombinant outer capsid glycoprotein (VP7) of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits and may be a candidate of rotavirus vaccine. PMID:23113180

  20. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells

    PubMed Central

    Chen, Fang-Fang; Yen, Zen-Zen; Lindemann, Nils; Meyer, Steffen; Spehr, Johannes; van den Heuvel, Joop

    2016-01-01

    The Baculovirus Expression Vector System (BEVS) is widely used to produce high amounts of recombinant proteins. Nevertheless, generating recombinant baculovirus in high quality is rather time-consuming and labor-intensive. Alternatively, virus-free expression in insect cells did not achieve similar expression levels for most proteins so far. The transactivation method is a promising approach for protein expression in Sf21 cells. It combines advantages of BEVS and plasmid-based expression by activating strong virus-dependent promoters on a transfected plasmid by baculoviral coinfection. Here, we identified expression elements required for transactivation. Therefore, we designed several vectors comprising different viral promoters or promoter combinations and tested them for eGFP expression using the automated BioLector microcultivation system. Remarkably, only the combination of the very late promoter p10 together with the homologous region 5 (hr5) could boost expression during transactivation. Other elements, like p10 alone or the late viral promoter polH, did not respond to transactivation. A new combination of hr5 and p10 with the strongest immediate early OpMNPV viral promoter OpIE2 improved the yield of eGFP by ~25% in comparison to the previous applied hr5-IE1-p10 expression cassette. Furthermore, we observed a strong influence of the transcription termination sequence and vector backbone on the level of expression. Finally, the expression levels for transactivation, BEVS and solely plasmid-based expression were compared for the marker protein eGFP, underlining the potential of transactivation for fast recombinant protein expression in Sf21 cells. In conclusion, essential elements for transactivation could be identified. The optimal elements were applied to generate an improved vector applicable in virus-free plasmid-based expression, transactivation and BEVS. PMID:26934632

  1. Recombinant expression and in vitro characterisation of active Huwentoxin-IV.

    PubMed

    Sermadiras, Isabelle; Revell, Jefferson; Linley, John E; Sandercock, Alan; Ravn, Peter

    2013-01-01

    Huwentoxin-IV (HwTx-IV) is a 35-residue neurotoxin peptide with potential application as a novel analgesic. It is a member of the inhibitory cystine knot (ICK) peptide family, characterised by a compact globular structure maintained by three intramolecular disulfide bonds. Here we describe a novel strategy for producing non-tagged, fully folded ICK-toxin in a bacterial system. HwTx-IV was expressed as a cleavable fusion to small ubiquitin-related modifier (SUMO) in the cytoplasm of the SHuffle T7 Express lysY Escherichia coli strain, which allows cytosolic disulfide bond formation. Purification by IMAC with selective elution of monomeric SUMO fusion followed by proteolytic cleavage and polishing chromatographic steps yielded pure homogeneous toxin. Recombinant HwTx-IV is produced with a C-terminal acid, whereas the native peptide is C-terminally amidated. HwTx-IV(acid) inhibited Nav1.7 in a dose dependent manner (IC50 = 463-727 nM). In comparison to HwTx-IV(amide) (IC50 = 11 ± 3 nM), the carboxylate was ~50 fold less potent on Nav1.7, which highlights the impact of the C-terminus. As the amide bond of an additional amino acid may mimic the carboxamide, we expressed the glycine-extended analogue HwTx-IV(G36)(acid) in the SUMO/SHuffle system. The peptide was approximately three fold more potent on Nav1.7 in comparison to HwTx-IV(acid) (IC50 = 190 nM). In conclusion, we have established a novel system for expression and purification of fully folded and active HwTx-IV(acid) in bacteria, which could be applicable to other structurally complex and cysteine rich peptides. Furthermore, we discovered that glycine extension of HwTx-IV(acid) restores some of the potency of the native carboxamide. This finding may also apply to other C-terminally amidated peptides produced recombinantly. PMID:24324842

  2. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. PMID:25865465

  3. Production and evaluation of a recombinant subunit vaccine against botulinum neurotoxin serotype B using a 293E expression system.

    PubMed

    Yu, YunZhou; Shi, DanYang; Liu, Si; Gong, Zheng-Wei; Wang, Shuang; Sun, ZhiWei

    2015-01-01

    Although Escherichia coli and yeast were commonly used to express recombinant Hc of botulinum neurotoxins, as an alternative, in current study, a 293E expression system was used to express the Hc of botulinum neurotoxin serotype B (BHc) as soluble recombinant protein for experimental vaccine evaluation. Our results demonstrated that the 293E expression system could produce high level of recombinant secreted BHc protein, which was immunorecognized specifically by anti-botulinum neurotoxin serotype B (BoNT/B) sera and showed ganglioside binding activities. The serological response and efficacy of recombinant BHc formulated with aluminum hydroxide adjuvant were evaluated in mice. Immunization with Alhydrogel-formulated BHc subunit vaccine afforded the effective protection against BoNT/B challenge. A frequency- and dose-dependent effect to immunization with BHc subunit vaccine was observed and the ELISA antibody titers correlated well with neutralizing antibody titers and protection. And a solid-phase assay showed that the neutralizing antibodies from the BHc-immunized mice inhibited the binding of BHc to the ganglioside GT1b. Our results also show that the plasmid pABE293SBHc derived of the 293E expression system as DNA vaccine is capable of inducing stronger humoral response and protective efficacy against BoNT/B than the pVAX1SBHc. In summary, immunization with the 293E-expressed BHc protein generates effective immune protection against BoNT/B as E. coli or yeast-expressed BHc, so the efficient expression of botulinum Hc protein for experimental vaccine can be prepared using the 293E expression system. PMID:25483668

  4. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    PubMed

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. PMID:24070904

  5. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    PubMed Central

    2012-01-01

    Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive

  6. Expression of a codon-optimised recombinant Ara h 2.02 peanut allergen in Escherichia coli.

    PubMed

    Lew, Min Han; Lim, Renee Lay Hong

    2016-01-01

    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study. PMID:26411458

  7. Recombinant Rabies Viruses Expressing GM-CSF or Flagellin Are Effective Vaccines for Both Intramuscular and Oral Immunizations

    PubMed Central

    Gnanadurai, Clement W.; Li, Zhenguang; Chai, Qingqing; Yang, Yang; Leyson, Christina M.; Wu, Wenxue; Cui, Min; Fu, Zhen F.

    2013-01-01

    Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations. PMID:23700422

  8. Recombinant rabies viruses expressing GM-CSF or flagellin are effective vaccines for both intramuscular and oral immunizations.

    PubMed

    Zhou, Ming; Zhang, Guoqing; Ren, Guiping; Gnanadurai, Clement W; Li, Zhenguang; Chai, Qingqing; Yang, Yang; Leyson, Christina M; Wu, Wenxue; Cui, Min; Fu, Zhen F

    2013-01-01

    Our previous studies indicated that recombinant rabies viruses (rRABV) expressing chemokines or cytokines (including GM-CSF) could enhance the immunogenicity by recruiting and/or activating dendritic cells (DC). In this study, bacterial flagellin was cloned into the RABV genome and recombinant virus LBNSE-Flagellin was rescued. To compare the immunogenicity of LBNSE-Flagellin with recombinant virus expressing GMCSF (LBNSE-GMCSF), mice were immunized with each of these rRABVs by intramuscular (i.m.) or oral route. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. The i.m.-immunized mice were bled at three weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with 50 LD50 challenge virus standard (CVS-24). Orally immunized mice were boosted after three weeks and then bled and challenged one week after the booster immunization. It was found that both LBNSE-GMCSF and LBNSE-Flagellin recruited/activated more DCs and B cells in the periphery, stimulated higher levels of adaptive immune responses (VNA), and protected more mice against challenge infection than the parent virus LBNSE in both the i.m. and the orally immunized groups. Together, these studies suggest that recombinant RABV expressing GM-CSF or flagellin are more immunogenic than the parent virus in both i.m. and oral immunizations. PMID:23700422

  9. The effect of IL-2 expression by recombinant Newcastle disease virus on host immune response, viral replication and pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interleukin 2 (IL-2) is a soluble cytokine that stimulates the cell-mediated immune response. Virus constructs, such as recombinant vaccinia virus, expressing chicken IL-2 have been shown to improve viral clearance by natural killer cells in mice. We have inserted the open-reading frame of the chi...

  10. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    PubMed

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis. PMID:24096450

  11. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies.

    PubMed

    Lai, Xuelei; Soler-Lopez, Montserrat; Wichers, Harry J; Dijkstra, Bauke W

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design. PMID:27551823

  12. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies

    PubMed Central

    Lai, Xuelei; Soler-Lopez, Montserrat; Wichers, Harry J.

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design. PMID:27551823

  13. Optimized Condition for Enhanced Soluble-Expression of Recombinant Mutant Anabaena Variabilis Phenylalanine Ammonia Lyase

    PubMed Central

    Zarei Jaliani, Hossein; Farajnia, Safar; Safdari, Yaghoub; Mohammadi, Seyyed Abolghasem; Barzegar, Abolfazl; Talebi, Saeed

    2014-01-01

    Purpose: Recently discovered Anabaena variabilis phenylalanine ammonia lyase (AvPAL) proved to be a good candidate for enzyme replacement therapy of phenylketonuria. Outstanding stability properties of a mutant version of this enzyme, produced already in our laboratory, have led us to the idea of culture conditions optimization for soluble expression of this therapeutically valuable enzyme in E. coli. Methods: In the present study, the gene encoding mutant version of AvPAL was cloned into the pET28a expression vector. Different concentrations of IPTG, induction period, growth temperature, shaking speed, as well as different types of culture media were examined with respect to the amount of recombinant protein produced and specific activity of the enzyme. Results: Based upon our findings, maximum amount of active mutant enzyme was attained by addition of 0.5 mM IPTG at 150 rpm to the TB culture media. The yield of active enzyme at cluture tempreature of 25 °C and induction period of 18 hour was the highest. Conclusion: The results of this study indicated that the yield of mutant AvPAL production in E. coli can be affected mainly by culture temperature and inducer concentration. PMID:24754010

  14. Expression and biochemical characterisation of recombinant AceA, a bacterial alpha-mannosyltransferase.

    PubMed

    Geremia, R A; Roux, M; Ferreiro, D U; Dauphin-Dubois, R; Lellouch, A C; Ielpi, L

    1999-07-01

    Biosynthesis of repeat-unit polysaccharides and N-linked glycans proceeds by sequential transfer of sugars from the appropriate sugar donor to an activated lipid carrier. The transfer of each sugar is catalysed by a specific glycosyltransferase. The molecular basis of the specificity of sugar addition is not yet well understood, mainly because of the difficulty of isolating these proteins. In this study, the aceA gene product expressed by Acetobacter xylinum, which is involved in the biosynthesis of the exopolysaccharide acetan, was overproduced in Escherichia coli and its function was characterised. The aceA ORF was subcloned into the expression vector pET29 in frame with the S.tag epitope. The recombinant protein was identified, and culture conditions were optimised for production of the soluble protein. The results of test reactions showed that AceA is able to transfer one alpha-mannose residue from GDP-mannose to cellobiose-P-P-lipid to produce alpha-mannose-cellobiose-P-P-lipid. AceA was not able to use free cellobiose as a substrate, indicating that the pyrophosphate-lipid moiety is needed for enzymatic activity. PMID:10485283

  15. The use of directed evolution to create a stable and immunogenic recombinant BCG expressing a modified HIV-1 Gag antigen.

    PubMed

    Chapman, Rosamund; Bourn, William R; Shephard, Enid; Stutz, Helen; Douglass, Nicola; Mgwebi, Thandi; Meyers, Ann; Chin'ombe, Nyasha; Williamson, Anna-Lise

    2014-01-01

    Numerous features make Mycobacterium bovis BCG an attractive vaccine vector for HIV. It has a good safety profile, it elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable. Despite these advantages it is often difficult to express viral antigens in BCG, which results in genetic instability and low immunogenicity. The aim of this study was to generate stable recombinant BCG (rBCG) that express high levels of HIV antigens, by modification of the HIV genes. A directed evolution process was applied to recombinant mycobacteria that expressed HIV-1 Gag fused to the green fluorescent protein (GFP). Higher growth rates and increased GFP expression were selected for. Through this process a modified Gag antigen was selected. Recombinant BCG that expressed the modified Gag (BCG[pWB106] and BCG[pWB206]) were more stable, produced higher levels of antigen and grew faster than those that expressed the unmodified Gag (BCG[pWB105]). The recombinant BCG that expressed the modified HIV-1 Gag induced 2 to 3 fold higher levels of Gag-specific CD4 T cells than those expressing the unmodified Gag (BCG[pWB105]). Mice primed with 10(7) CFU BCG[pWB206] and then boosted with MVA-Gag developed Gag-specific CD8 T cells with a frequency of 1343±17 SFU/10(6) splenocytes, 16 fold greater than the response induced with MVA-Gag alone. Levels of Gag-specific CD4 T cells were approximately 5 fold higher in mice primed with BCG[pWB206] and boosted with MVA-Gag than in those receiving the MVA-Gag boost alone. In addition mice vaccinated with BCG[pWB206] were protected from a surrogate vaccinia virus challenge. PMID:25061753

  16. Balancing the Expression and Production of a Heterodimeric Protein: Recombinant Agkisacutacin as a Novel Antithrombotic Drug Candidate.

    PubMed

    Guo, Yugang; Wu, Jing; Jia, Hao; Chen, Wei; Shao, Changsheng; Zhao, Lei; Ma, Jiajia; Li, Rui; Zhong, Yongjun; Fang, Fang; Wang, Dong; Sun, Jie; Qian, Fang; Dai, Xiangrong; Zhang, Guohui; Tian, Zhigang; Xiaoyi Li, Benjamin; Xiao, Weihua

    2015-01-01

    Agkisacucetin extracted from the venom of Agkistrodon acutus has been demonstrated to be a promising antithrombotic drug candidate in clinical studies due to its function as a novel platelet membrane glycoprotein (GP) Ib inhibitor. Agkisacucetin is a heterodimeric protein composed of α- and β-subunits with seven disulphide bonds. Both subunits form inactive homodimeric products, which cause difficulties for recombinant production. In this study, Agkisacucetin α- and β-subunits were inserted sequentially into the chromosome of Pichia pastoris at the mutant histidinol dehydrogenase gene and ribosomal DNA repeat sites, respectively. By optimizing the gene copies and productivity of each subunit by drug screening, we successfully obtained a recombinant strain with balanced expression of the two subunits. Using this strain, a yield greater than 100 mg/L recombinant Agkisacucetin in fed-batch fermentation was reached. The recombinant Agkisacucetin possessed extremely similar binding affinity to recombinant GPIb and human platelets in in vitro assays, and its ristocetin-induced platelet aggregation activity ex vivo was identical to that of the extracted native Agkisacucetin, demonstrating that the yeast-derived Agkisacucetin could be an effective alternative to native Agkisacucetin. Moreover, this study provides an effective strategy for balancing the expression and production of heterodimeric proteins in P. pastoris. PMID:26144864

  17. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris.

    PubMed

    Kuddus, Md Ruhul; Rumi, Farhana; Tsutsumi, Motosuke; Takahashi, Rika; Yamano, Megumi; Kamiya, Masakatsu; Kikukawa, Takashi; Demura, Makoto; Aizawa, Tomoyasu

    2016-06-01

    Snakin-1 (SN-1) is a small cysteine-rich plant antimicrobial peptide with broad spectrum antimicrobial activity which was isolated from potato (Solanum tuberosum). Here, we carried out the expression of a recombinant SN-1 in the methylotrophic yeast Pichia pastoris, along with its purification and characterization. A DNA fragment encoding the mature SN-1 was cloned into pPIC9 vector and introduced into P. pastoris. A large amount of pure recombinant SN-1 (approximately 40 mg/1L culture) was obtained from a fed-batch fermentation culture after purification with a cation exchange column followed by RP-HPLC. The identity of the recombinant SN-1 was verified by MALDI-TOF MS, CD and (1)H NMR experiments. All these data strongly indicated that the recombinant SN-1 peptide had a folding with six disulfide bonds that was identical to the native SN-1. Our findings showed that SN-1 exhibited strong antimicrobial activity against test microorganisms and produced very weak hemolysis of mammalian erythrocytes. The mechanism of its antimicrobial action against Escherichia coli was investigated by both outer membrane permeability assay and cytoplasmic membrane depolarization assay. These assays demonstrated that SN-1 is a membrane-active antimicrobial peptide which can disrupt both outer and cytoplasmic membrane integrity. This is the first report on the recombinant expression and purification of a fully active SN-1 in P. pastoris. PMID:26854372

  18. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge.

    PubMed

    Taylor, J; Pincus, S; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1991-08-01

    cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge. PMID:1830113

  19. Vaccinia virus recombinants expressing either the measles virus fusion or hemagglutinin glycoprotein protect dogs against canine distemper virus challenge.

    PubMed Central

    Taylor, J; Pincus, S; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1991-01-01

    cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge. Images PMID:1830113

  20. Production and immunological analysis of IgE reactive recombinant egg white allergens expressed in Escherichia coli.

    PubMed

    Dhanapala, Pathum; Doran, Tim; Tang, Mimi L K; Suphioglu, Cenk

    2015-05-01

    IgE-mediated allergy to chicken egg affects a large number of children and adults worldwide. The current management strategy for egg allergy is strict avoidance, however this is impractical due to the presence of eggs in a range of foods and pharmaceutical products including vaccines. Strict avoidance also poses nutritional disadvantages due to high nutritional value of eggs. Allergen specific immunotherapy is being pursued as a curative treatment, in which an allergic individual is gradually exposed to the allergen to induce tolerance. Use of recombinant proteins for immunotherapy has been beneficial due to the purity of the recombinant proteins compared to natural proteins. In this study, we produced IgE reactive recombinant egg white proteins that can be used for future immunotherapy. Using E. coli as an expression system, we successfully produced recombinant versions of Gal d 1, 2 and 3, that were IgE reactive when tested against a pool of egg allergic patients' sera. The IgE reactivity indicates that these recombinant proteins are capable of eliciting an immune response, thus being potential candidates for immunotherapy. We have, for the first time, attempted to produce recombinant versions of all 4 major egg white allergens in E. coli, and successfully produced 3, with only Gal d 4 showing loss of IgE reactivity in the recombinant version. The results suggest that egg allergy in Australian populations may mainly be due to IgE reactivity to Gal d 3 and 4, while Gal d 1 shows higher IgE reactivity. This is the first report of a collective and comparative immunological analysis of all 4 egg white allergens. The significance of this study is the potential use of the IgE reactive recombinant egg white proteins in immunotherapy to treat egg allergic patients. PMID:25656803

  1. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. PMID:26456648

  2. Expression, purification and characterization of recombinant caprine N-acetylglucosamine-6-sulphatase.

    PubMed Central

    Litjens, T; Bielicki, J; Anson, D S; Friderici, K; Jones, M Z; Hopwood, J J

    1997-01-01

    Mucopolysaccharidosis type IIID or Sanfilippo D syndrome is a lysosomal storage disorder caused by the deficiency of N-acetylglucosamine-6-sulphatase (Glc6S). In addition to human patients, a Nubian goat with this disorder has been described and the caprine Glc6S (cGlc6S) cDNA cloned. In this study, the full-length cGlc6S cDNA was inserted into the expression vector, pEFNeo, which placed the cGlc6S cDNA under the transcriptional control of the human polypeptide chain elongation factor promoter. The pEFNeo expression vector also contains the human growth hormone polyadenylation signal and the genes encoding resistance to ampicillin and G418. The cGlc6S expression construct was electroporated into Chinese hamster ovary (CHO-K1) cells, and stably transfected clones were isolated. One clone, CHOrcGlc6S.17, which secreted the highest Glc6S activity into the culture medium, was selected and cultured in cell factories. The secreted recombinant cGlc6S (rcGlc6S) precursor was purified to homogeneity from conditioned medium by a two-column procedure which consisted of a Cu2+-chelating Sepharose column followed by TSK G3000SW gel filtration. The native molecular mass of rcFlc6S was estimated to be 102 kDa and the subunit size was 94 kDa. The kinetic properties of cGlc6S were similar to those of human Glc6S isolated from liver. rcGlc6S was endocytosed by fibroblasts from patients with mucopolysaccharidosis type IIID via the mannose 6-phosphate receptor-mediated pathway resulting in correction of the storage phenotype of these cells. PMID:9355739

  3. A novel method for monitoring Mycobacterium bovis BCG trafficking with recombinant BCG expressing green fluorescent protein.

    PubMed Central

    Luo, Y; Szilvasi, A; Chen, X; DeWolf, W C; O'Donnell, M A

    1996-01-01

    To better understand intracellular and extracellular trafficking of Mycobacterium bovis bacillus Calmette-Guérin (BCG) when used as an intravesical agent in the treatment of transitional cell carcinoma (TCC) of the bladder, recombinant BCG (rBCG) expressing the jellyfish green fluorescent protein (GFP) was created. When the MB49.1 murine TCC cell line was incubated with GFP-expressing rBCG, internalization of the pathogen could be directly visualized by UV microscopy and quantitated by flow cytometry. The in vitro internalization of the GFP rBCG by the bladder tumor cells was temperature dependent, occurring most readily at 37 degrees C and being severely inhibited at 4 degrees C. Optimum internalization was achieved in vitro at a 10:1 BCG-to-tumor cell ratio over 24 h during which approximately 16% of the tumor cells became infected. Cytochalasin B, a phagocytosis inhibitor, abrogated the ingestion by almost 100% at a concentration of 200 micrograms/ml, indicating that contractile microfilaments likely played an important role in this process. By using mitomycin, a DNA cross-linking reagent, to inhibit proliferation of MB49.1 cells, clearance of about 40% of the green rBCG was achieved by 3 days postinfection. No significant difference between the GFP rBCG and wild-type BCG was observed in the ability to induce the expression of cell membrane proteins of major histocompatibility classes I and II, ICAM-I and -II, B7-1 and -2, of Fas from MB49.1 cells or cytokine production from mouse spleen cells. These results indicate that GFP rBCG may serve as a useful substitute for wild-type BCG in future studies of in vivo trafficking experimental and clinical immunotherapy. PMID:8914772

  4. Characterization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia viruses.

    PubMed

    Ralston, R; Thudium, K; Berger, K; Kuo, C; Gervase, B; Hall, J; Selby, M; Kuo, G; Houghton, M; Choo, Q L

    1993-11-01

    We constructed recombinant vaccinia virus vectors for expression of the structural region of hepatitis C virus (HCV). Infection of mammalian cells with a vector (vv/HCV1-906) encoding C-E1-E2-NS2 generated major protein species of 22 kDa (C), 33 to 35 kDa (E1), and 70 to 72 kDa (E2), as observed previously with other mammalian expression systems. The bulk of the E1 and E2 expressed by vv/HCV1-906 was found integrated into endoplasmic reticulum membranes as core-glycosylated species, suggesting that these E1 and E2 species represent intracellular forms of the HCV envelope proteins. HCV E1 and E2 formed E1-E2 complexes which were precipitated by either anti-E1 or anti-E2 serum and which sedimented at approximately 15 S on glycerol density gradients. No evidence of intermolecular disulfide bonding between E1 and E2 was detected. E1 and E2 were copurified to approximately 90% purity by mild detergent extraction followed by chromatography on Galanthus nivalus lectin-agarose and DEAE-Fractogel. Immunization of chimpanzees with purified E1-E2 generated high titers of anti-E1 and anti-E2 antibodies. Further studies, to be reported separately, demonstrated that purified E1-E2 complexes were recognized at high frequency by HCV+ human sera (D. Y. Chien, Q.-L. Choo, R. Ralston, R. Spaete, M. Tong, M. Houghton, and G. Kuo, Lancet, in press) and generated protective immunity in chimpanzees (Q.-L. Choo, G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, K. Thudium, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Mass, L. B. Cummins, E. Muchmore, and M. Houghton, submitted for publication), suggesting that these purified HCV envelope proteins display native HCV epitopes. PMID:8411378

  5. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    PubMed Central

    2012-01-01

    Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra

  6. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    PubMed Central

    2010-01-01

    Background Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L) in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL) pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction), based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein) under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is not necessary to protect

  7. Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast.

    PubMed

    Monsalve, R I; Lu, G; King, T P

    1999-08-01

    Antigen 5 is a major allergen of vespid venom. It has partial sequence identity with proteins from diverse sources. The biologic function of Ag 5 and its related proteins is not known. We are interested in the expression of Ag 5 with the native conformation of the natural protein since its B cell epitopes are mainly of the discontinuous type. When expressed in bacteria, recombinant Ag 5 formed an insoluble intracellular product, and it did not translocate from cytoplasm to periplasm by the addition of a pelB leader sequence to the cloned protein. When expressed in yeast Pichia pastoris, Ag 5 was secreted because the cloned protein contained a yeast alpha signal leader sequence. Recombinant Ag 5 from yeast was shown to have the native structure of the natural protein and the recombinant Ag 5 from bacteria did not. This was shown by comparison of their solubility, electrophoretic behavior, disulfide bond content, CD spectrum, and binding of IgE antibodies from allergic patients and IgG antibodies from mice immunized with natural Ag 5 or recombinant Ag 5s from yeast or bacteria. These studies were made with Ag 5s from yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis). PMID:10425162

  8. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. PMID:26805756

  9. [Construction of recombinant adenovirus co-expressing M1 and HA genes of influenza virus type A].

    PubMed

    Guo, Jian-Qiang; Yao, Li-Hong; Chen, Ai-Jun; Xu, Yi; Jia, Run-Qing; Bo, Hong; Dong, Jie; Zhou, Jian-Fang; Shu, Yue-Long; Zhang, Zhi-Qing

    2009-03-01

    Based on the human H5N1 influenza virus strain A/Anhui/1/2005, recombinant adenovirus co-expressing M1 and HA genes of H5N1 influenza virus was constructed using an internal ribosome entry site (IRES) sequence to link the two genes. The M1 and HA genes of H5N1 influenza virus were amplified by PCR and subcloned into pStar vector separately. Then the M1-IRES-HA fragment was amplified and subcloned into pShuttle-CMV vector, the shuttle plasmid was then linearized and transformed into BJ5183 bacteria which contained backbone vector pAd-Easy. The recombinant vector pAd-Easy was packaged in 293 cells to get recombinant adenovirus Ad-M1/HA. CPE was observed after 293 cells were transfected by Ad-M1/HA. The co-expression of M1 and HA genes was confirmed by Western-blot and IFA (immunofluorescence assay). The IRES containing recombinant adenovirus allowed functional co-expression of M1 and HA genes and provided the foundation for developing new influenza vaccines with adenoviral vector. PMID:19678564

  10. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum.

    PubMed

    Zhang, Chengsheng; Feng, Chao; Wang, Jing; Kong, Fanyu; Sun, Wenxiu; Wang, Fenglong

    2016-05-01

    Polygalacturonase inhibiting proteins (PGIPs) are major defensive proteins produced by plant cell walls that play a crucial role in pathogen resistance by reducing polygalacturonase (PG) activity. In the present study, a novel PGIP gene was isolated from tobacco (Nicotiana tabacum), hereafter referred as NtPGIP. A full-length NtPGIP cDNA of 1,412 bp with a 186 bp 5'-untranslated region (UTR), and 209 bp 3'-UTR was cloned from tobacco, NtPGIP is predicted to encode a protein of 338 amino acids. The NtPGIP sequence from genomic DNA showed no introns and sequence alignments of NtPGIP's deduced amino acid sequence showed high homology with known PGIPs from other plant species. Moreover, the putative NtPGIP protein was closely clustered with several Solanaceae PGIPs. Further, the expression profile of NtPGIP was examined in tobacco leaves following stimulation with the oomycete Phytophthora nicotianae and other stressors, including salicylic acid (SA), abscisic acid (ABA), salt, and cold treatment. The results showed that all of the treatments up-regulated the expression of NtPGIP at different times. To understand the biochemical activity of NtPGIP gene, a full-length NtPGIP cDNA sequence was subcloned into a pET28a vector and transformed into E. coli BL21 (DE3). Recombinant proteins were successfully induced by 1.0 nmol/L IPTG and the purified proteins effectively inhibited Phytophthora capsici PG activity. The results of this study suggest that NtPGIP may be a new candidate gene with properties that could be exploited in plant breeding. PMID:27441281

  11. Crimean-Congo Hemorrhagic Fever Virus Gn Bioinformatic Analysis and Construction of a Recombinant Bacmid in Order to Express Gn by Baculovirus Expression System

    PubMed Central

    Rahpeyma, Mehdi; Fotouhi, Fatemeh; Makvandi, Manouchehr; Ghadiri, Ata; Samarbaf-Zadeh, Alireza

    2015-01-01

    Background Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the nairovirus, a genus in the Bunyaviridae family, which causes a life threatening disease in human. Currently, there is no vaccine against CCHFV and detailed structural analysis of CCHFV proteins remains undefined. The CCHFV M RNA segment encodes two viral surface glycoproteins known as Gn and Gc. Viral glycoproteins can be considered as key targets for vaccine development. Objectives The current study aimed to investigate structural bioinformatics of CCHFV Gn protein and design a construct to make a recombinant bacmid to express by baculovirus system. Materials and Methods To express the Gn protein in insect cells that can be used as antigen in animal model vaccine studies. Bioinformatic analysis of CCHFV Gn protein was performed and designed a construct and cloned into pFastBacHTb vector and a recombinant Gn-bacmid was generated by Bac to Bac system. Results Primary, secondary, and 3D structure of CCHFV Gn were obtained and PCR reaction with M13 forward and reverse primers confirmed the generation of recombinant bacmid DNA harboring Gn coding region under polyhedron promoter. Conclusions Characterization of the detailed structure of CCHFV Gn by bioinformatics software provides the basis for development of new experiments and construction of a recombinant bacmid harboring CCHFV Gn, which is valuable for designing a recombinant vaccine against deadly pathogens like CCHFV. PMID:26862379

  12. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli

    PubMed Central

    Ali, Syed A.; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  13. Use of FabV-Triclosan Plasmid Selection System for Efficient Expression and Production of Recombinant Proteins in Escherichia coli.

    PubMed

    Ali, Syed A; Chew, Yik Wei; Omar, Tasyriq Che; Azman, Nizuwan

    2015-01-01

    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system. PMID:26642325

  14. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42). PMID:22982229

  15. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    PubMed

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-01

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. PMID:25465178

  16. Cloning, expression, and purification of a highly immunogenic recombinant gonadotropin-releasing hormone (GnRH) chimeric peptide.

    PubMed

    Xu, Jinshu; Zhu, Zheng; Duan, Peng; Li, Wenjia; Zhang, Yin; Wu, Jie; Hu, Zhuoyi; Roque, Rouel S; Liu, Jingjing

    2006-12-01

    To design an anti-gonadotropin-releasing hormone (GnRH) vaccine capable of eliciting strong immunogenicity, a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide called GnRH3-hinge-MVP contained three linear repeats of GnRH (GnRH3), a fragment of the human IgG1 hinge region, and a T-cell epitope of measles virus protein (MVP). The expression plasmid contained the GnRH3-hinge-MVP construct ligated to its fusion partner (AnsB-C) via an unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in an inclusion body in Escherichia coli under IPTG or lactose induction and the target peptide was easily purified using washing of urea and ethanol precipitation. The target chimeric peptide was isolated from the fusion partner following acid hydrolysis and purified using DEAE-Sephacel chromatography. The purified GnRH3-hinge-MVP was determined to be highly homogeneous by IEF analysis and the N-terminal sequencing. Further, immunization of female mice with the recombinant chimeric peptide resulted in generation of high-titer antibodies specific for GnRH. The results showed that GnRH3-hinge-MVP could be considered as a candidate anti-GnRH vaccine. PMID:17064933

  17. MAC-T cells as a tool to evaluate lentiviral vector construction targeting recombinant protein expression in milk.

    PubMed

    Monzani, Paulo S; Guemra, Samuel; Adona, Paulo R; Ohashi, Otavio M; Meirelles, Flávio V; Wheeler, Matthew B

    2015-01-01

    Prior to generating transgenic animals for bioreactors, it is important to evaluate the vector constructed to avoid poor protein expression. Mammary epithelial cells cultured in vitro have been proposed as a model to reproduce the biology of the mammary gland. In the present work, three lentiviral vectors were constructed for the human growth hormone (GH), interleukin 2 (IL2), and granulocyte colony-stimulating factor 3 (CSF3) genes driven by the bovine β-casein promoter. The lentiviruses were used to transduce mammary epithelial cells (MAC-T), and the transformed cells were cultured on polystyrene in culture medium with and without prolactin. The gene expression of transgenes was evaluated by PCR using cDNA, and recombinant protein expression was evaluated by Western-blotting using concentrated medium and cellular extracts. The gene expression, of the three introduced genes, was detected in both induced and non induced MAC-T cells. The human GH protein was detected in the concentrated medium, whereas CSF3 was detected in the cellular extract. Apparently, the cellular extract is more appropriate than the concentrated medium to detect recombinant protein, principally because concentrated medium has a high concentration of bovine serum albumin. The results suggest that MAC-T cells may be a good system to evaluate vector construction targeting recombinant protein expression in milk. PMID:25380466

  18. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    PubMed

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. PMID:27449079

  19. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    PubMed

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. PMID:27109467

  20. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk.

    PubMed

    Lu, Dan; Liu, Shen; Shang, Shengzhe; Wu, Fangfang; Wen, Xiao; Li, Zhiyuan; Li, Yan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Qiuyan; Li, Ning

    2015-01-01

    Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection. PMID:25955256

  1. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein

    PubMed Central

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  2. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells

    SciTech Connect

    Kaufman, R.J.; Wasley, L.C.; Dorner, A.J.

    1988-05-05

    The synthesis, processing, and secretion of factor VIII expressed from heterologous genes introduced into Chinese hamster ovary cells has been studied. The results show factor VIII to be synthesized as a primary translation product of approximately 230 kDa that can be detected in the lumen of the endoplasmic reticulum. In this compartment, the majority of the factor VIII is in a complex with a resident protein of the endoplasmic reticulum, binding protein, and may never appear in the medium. Some factor VIII transits the endoplasmic reticulum to the Golgi apparatus, where it is cleaved to generate the mature heavy and light chains. In the absence of von Willebrand factor in the medium, the secreted heavy and light chains are unassociated and subsequently degraded. In the presence of von Willebrand factor in the medium, the heavy and light chains are secreted as a stable complex and activity accumulates linearly with time. The utilization and complexity of asparagine-linked carbohydrate present on the secreted recombinant-derived factor VIII and human plasma-derived factor VIII were compared and found to be very similar. In both cases, the asparagine-linked carbohydrate moieties on the heavy chain are primarily of the hybrid or complex-type. In contrast, the factor VIII from both sources contains a high-mannose type of asparagine-linked carbohydrate on the light chain.

  3. Expression, immunogenicity, histopathology, and potency of a mosquito-based malaria transmission-blocking recombinant vaccine.

    PubMed

    Mathias, D K; Plieskatt, J L; Armistead, J S; Bethony, J M; Abdul-Majid, K B; McMillan, A; Angov, E; Aryee, M J; Zhan, B; Gillespie, P; Keegan, B; Jariwala, A R; Rezende, W; Bottazzi, M E; Scorpio, D G; Hotez, P J; Dinglasan, R R

    2012-04-01

    Vaccines have been at the forefront of global research efforts to combat malaria, yet despite several vaccine candidates, this goal has yet to be realized. A potentially effective approach to disrupting the spread of malaria is the use of transmission-blocking vaccines (TBV), which prevent the development of malarial parasites within their mosquito vector, thereby abrogating the cascade of secondary infections in humans. Since malaria is transmitted to human hosts by the bite of an obligate insect vector, mosquito species in the genus Anopheles, targeting mosquito midgut antigens that serve as ligands for Plasmodium parasites represents a promising approach to breaking the transmission cycle. The midgut-specific anopheline alanyl aminopeptidase N (AnAPN1) is highly conserved across Anopheles vectors and is a putative ligand for Plasmodium ookinete invasion. We have developed a scalable, high-yield Escherichia coli expression and purification platform for the recombinant AnAPN1 TBV antigen and report on its marked vaccine potency and immunogenicity, its capacity for eliciting transmission-blocking antibodies, and its apparent lack of immunization-associated histopathologies in a small-animal model. PMID:22311924

  4. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis.

    PubMed

    Valenzuela, Susana V; Díaz, Pilar; Javier Pastor, F I

    2010-04-28

    Xylanase A from Paenibacillus barcinonensis, a new species isolated from a rice field, has been cloned and expressed in Escherichia coli. Purified recombinant xylanase showed high activity on xylans from hardwoods and cereals, and exhibited K(m) and V(max) of 2.93 mg/mL and 50.67 U/mg on birchwood xylan. Xylanase A was highly active at 60 degrees C in alkaline pH values up to 9.5 and remained stable for at least 3 h in alkaline conditions. The amino acid sequence deduced from xynA revealed that it is a single domain xylanase belonging to the GH10 family. Thin layer chromatography analysis showed that the enzyme released a mixture of hydrolysis products including substituted xylooligomers from cereal arabinoxylans, while xylose, xylobiose, and aldotetraouronic acid were the main products released from glucuronoxylan from birchwood. The enzyme released a complex mixture of xylooligomers for acetylated xylan from eucalyptus, revealing its potential to depolymerize this widely used resource in the pulp and paper industry. PMID:20218604

  5. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  6. Characteristics of rabbit transgenic mammary gland expressing recombinant human factor VIII.

    PubMed

    Chrenek, P; Makarevich, A V; Pivko, J; Massanyi, P; Lukac, N

    2009-02-01

    The objective of this research was to compare (i) the content of milk protein and recombinant human factor VIII (rhFVIII) in the milk of transgenic and non-transgenic rabbit females at three lactations and (ii) histological structure, ultrastructural morphology and occurrence of apoptosis in rabbit transgenic and non-transgenic mammary gland during third lactation and involution. Significant differences (t(0.05)) in milk protein content were found between transgenic and non-transgenic at all three lactations. The percentage of apoptotic cells was significantly higher (t(0.01)) in non-transgenic ones compared with transgenic mammary gland tissues (6.5% versus 2.4%) taken at the involution stage. Morphometrical analysis of histological preparations at the involution stage detected a significantly higher (t(0.05)) relative volume of lumen in transgenic animals compared with non-transgenic ones (60.00 versus 46.51%). Ultrastructural morphology of the transgenic mammary gland epithelium at the involution stage revealed an increased relative volume of protein globules (t(0.05)); at the lactation stage, a significantly higher volume of mitochondria (13.8%) compared with the non-transgenic (9.8%) ones was observed. These results, although revealing differences in some parameters of ultrastructure and histology, indicate no harmful effect of the mouse whey acid protein-hFVIII transgene expression on the state of mammary gland of transgenic rabbit females. PMID:19143684

  7. Expression, purification, and characterization of recombinant human L-chain ferritin.

    PubMed

    Zou, Wenyan; Liu, Xiaoyu; Zhao, Xi; Wang, Jie; Chen, Dianhua; Li, Jiahuang; Ji, Lina; Hua, Zichun

    2016-03-01

    Ferritins form nanocage architectures and demonstrate their potential to serve as functional nanomaterials with potential applications in medical imaging and therapy. In our study, the cDNA of human L-chain ferritin was cloned into plasmid pET-28a for its overexpression in Escherichia coli. However, the recombinant human L-chain ferritin (rLF) was prone to form inclusion bodies. Molecular chaperones were co-expressed with rLF to facilitate its correct folding. Our results showed that the solubility of rLF was increased about 3-fold in the presence of molecular chaperones, including GroEL, GroES and trigger factor. Taking advantage of its N-terminal His-tag, rLF was then purified with Ni-affinity chromatography. With a yield of 10 mg/L from bacterial culture, the purified rLF was analyzed by circular dichroism spectrometry for its secondary structure. Furthermore, the rLF nanocages were characterized using dynamic light scattering and transmission electron microscopy. PMID:26621552

  8. Prevention of gastrointestinal lead poisoning using recombinant Lactococcus lactis expressing human metallothionein-I fusion protein.

    PubMed

    Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian

    2016-01-01

    Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906

  9. Recombinant human erythropoietin-induced erythropoiesis regulates hepcidin expression over iron status in the rat.

    PubMed

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Rocha, Susana; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-07-01

    The crosstalk between several factors controlling hepcidin synthesis is poorly clarified for different physiological and pathological conditions. Our aim was to study the impact of increasing recombinant human erythropoietin (rHuEPO) doses on erythropoiesis, iron metabolism and hepcidin, using a rat model. Male Wistar rats were divided in 5 groups: control (vehicle) and rHuEPO-treated groups (100, 200, 400 and 600IU/kgbody weight/week), 3 times per week, during 3weeks. Hematological and iron data were evaluated. The expression of several genes involved in iron metabolism was analyzed by qPCR. Liver hepcidin protein was evaluated by Western Blot. The rHuEPO treatment induced erythropoiesis and increased transferrin saturation (TSAT) in a dose dependent manner. Tf receptor 2 (TfR2), hemojuvelin (HJV) and bone morphogenetic protein 6 (BMP6) were up-regulated in rHuEPO200 group. Matriptase-2 was down-regulated in rHuEPO200 group, and up-regulated in the other rHuEPO-treated groups. Hepcidin synthesis was increased in rHuEPO200 group, and repressed in the rHuEPO400 and rHuEPO600 groups. Our study showed that when a high erythropoietic stimulus occurs, hepcidin synthesis is mainly regulated by TSAT; however, when the erythropoiesis rate reaches a specific threshold, extramedullary hematopoiesis is triggered, and the control of hepcidin synthesis is switched to matriptase-2, thus inhibiting hepcidin synthesis. PMID:27282570

  10. Recombinant rabies virus expressing IFNα1 enhanced immune responses resulting in its attenuation and stronger immunogenicity.

    PubMed

    Wang, Yifei; Tian, Qin; Xu, Xiaojuan; Yang, Xianfeng; Luo, Jun; Mo, Weiyu; Peng, Jiaojiao; Niu, Xuefeng; Luo, Yongwen; Guo, Xiaofeng

    2014-11-01

    Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage. PMID:25310498

  11. High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus.

    PubMed Central

    Stunnenberg, H G; Lange, H; Philipson, L; van Miltenburg, R T; van der Vliet, P C

    1988-01-01

    Initiation of Adenovirus (Ad) DNA replication occurs by a protein-priming mechanism in which the viral precursor terminal protein (pTP) and DNA polymerase (pol) as well as two nuclear DNA-binding proteins from uninfected HeLa cells are required. Biochemical studies on the pTP and DNA polymerase proteins separately have been hampered due to their low abundance and their presence as a pTP-pol complex in Ad infected cells. We have constructed a genomic sequence containing the large open reading frame from the Ad5 pol gene to which 9 basepairs from a putative exon were ligated. When inserted behind a modified late promoter of vaccinia virus the resulting recombinant virus produced enzymatically active 140 kDa Ad DNA polymerase. The same strategy was applied to express the 80 kDa pTP gene in a functional form. Both proteins were overexpressed at least 30-fold compared to extracts from Adenovirus infected cells and, when combined, were fully active for initiation in an in vitro Adenovirus DNA replication system. Images PMID:3362670

  12. Expression of recombinant dystrophin and its localization to the cell membrane.

    PubMed

    Lee, C C; Pearlman, J A; Chamberlain, J S; Caskey, C T

    1991-01-24

    Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies. PMID:1824797

  13. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B

    SciTech Connect

    Lawford, H.G.; Rousseau, J.D.

    1997-12-31

    The economics of large-scale production of fuel ethanol from biomass and wastes requires the efficient utilization of all the sugars derived from the hydrolysis of the heteropolymeric hemicellulose component of lignocellulosic feedstocks. Glucuronic and 4-0-methyl-glucuronic acids are major side chains in xylans of the grasses and hardwoods that have been targeted as potential feedstocks for the production of cellulosic ethanol. The amount of these acids is similar to that of arabinose, which is now being viewed as another potential substrate in the production of biomass-derived ethanol. This study compared the end-product distribution associated with the fermentation of D-glucose (Glc) and D-glucuronic acid (GlcUA) (as sole carbon and energy sources) by Escherichia coli B (ATCC 11303) and two different ethanologenic recombinants--a strain in which pet expression was via a multicopy plasmid (pLOI297) and a chromosomally integrated construct, strain KO11. pH-stat batch fermentations were conducted using a modified LB medium with 2% (w/v) Glc or GlcUA with the set-point for pH control at either 6.3 or 7.0. The nontransformed host culture produced only lactic acid from glucose, but fermentation of GlcUA yielded a mixture of ethanol, acetic, and lactic acids, with acetic acid being the predominant end-product. 73 refs., 6 figs., 2 tabs.

  14. Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis.

    PubMed Central

    Niranjanakumari, S; Kurz, J C; Fierke, C A

    1998-01-01

    Ribonuclease P is a ribonucleoprotein complex that catalyzes the essential 5' maturation of all precursor tRNA molecules. The protein component both alters the conformation of the RNA component and enhances the substrate affinity and specificity. To facilitate biochemical and biophysical studies, the protein component of Bacillus subtilis ribonuclease P (RNase P) was overproduced in Escherichia coli using the native amino acid sequence with the initial 20 codons optimized for expression in E.coli . A simple purification procedure using consecutive cation exchange chromatography steps in the presence and absence of urea was developed to purify large quantities of P protein without contaminating nucleic acids. The identity of the recombinant protein as a cofactor of RNase P was established by its ability to stimulate the activity of the RNA component in low ionic strength buffer in a 1:1 stoichiometry. Circular dichroism studies indicate that P protein is a combination of alpha-helix and beta-sheet secondary structures and is quite stable, with a T m of 67 degrees C. The described methods facilitated the large scale purification of homogeneous, RNA-free P protein required for high resolution crystallographic analyses and may be useful for the preparation of other RNA binding proteins. PMID:9628904

  15. Production of Transgenic-Cloned Pigs Expressing Large Quantities of Recombinant Human Lysozyme in Milk

    PubMed Central

    Shang, Shengzhe; Wu, Fangfang; Wen, Xiao; Li, Zhiyuan; Li, Yan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Qiuyan; Li, Ning

    2015-01-01

    Human lysozyme is a natural non-specific immune factor in human milk that plays an important role in the defense of breastfed infants against pathogen infection. Although lysozyme is abundant in human milk, there is only trace quantities in pig milk. Here, we successfully generated transgenic cloned pigs with the expression vector pBAC-hLF-hLZ-Neo and their first generation hybrids (F1). The highest concentration of recombinant human lysozyme (rhLZ) with in vitro bioactivity was 2759.6 ± 265.0 mg/L in the milk of F0 sows. Compared with wild-type milk, rhLZ milk inhibited growth of Escherichia coli K88 during the exponential growth phase. Moreover, rhLZ in milk from transgenic sows was directly absorbed by the intestine of piglets with no observable anaphylactic reaction. Our strategy may provide a powerful tool for large-scale production of this important human protein in pigs to improve resistance to pathogen infection. PMID:25955256

  16. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    PubMed

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future. PMID:26920159

  17. Identification, Recombinant Expression, and Biochemical Analysis of Putative Secondary Product Glucosyltransferases from Citrus paradisi.

    PubMed

    Devaiah, Shivakumar P; Owens, Daniel K; Sibhatu, Mebrahtu B; Sarkar, Tapasree Roy; Strong, Christy L; Mallampalli, Venkata K P S; Asiago, Josephat; Cooke, Jennifer; Kiser, Starla; Lin, Zhangfan; Wamucho, Anye; Hayford, Deborah; Williams, Bruce E; Loftis, Peri; Berhow, Mark; Pike, Lee M; McIntosh, Cecilia A

    2016-03-01

    Flavonoid and limonoid glycosides influence taste properties as well as marketability of Citrus fruit and products, particularly grapefruit. In this work, nine grapefruit putative natural product glucosyltransferases (PGTs) were resolved by either using degenerate primers against the semiconserved PSPG box motif, SMART-RACE RT-PCR, and primer walking to full-length coding regions; screening a directionally cloned young grapefruit leaf EST library; designing primers against sequences from other Citrus species; or identifying PGTs from Citrus contigs in the harvEST database. The PGT proteins associated with the identified full-length coding regions were recombinantly expressed in Escherichia coli and/or Pichia pastoris and then tested for activity with a suite of substrates including flavonoid, simple phenolic, coumarin, and/or limonoid compounds. A number of these compounds were eliminated from the predicted and/or potential substrate pool for the identified PGTs. Enzyme activity was detected in some instances with quercetin and catechol glucosyltransferase activities having been identified. PMID:26888166

  18. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression

    PubMed Central

    Rahimpour, Azam; Ahani, Roshanak; Najaei, Azita; Adeli, Ahmad; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2016-01-01

    Background Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). Methods CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. Results Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. Conclusion The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression. PMID:27547109

  19. Recombinant Expression and Characterization of the Cytoplasmic Rice β-Glucosidase Os1BGlu4

    PubMed Central

    Rouyi, Chen; Baiya, Supaporn; Lee, Sang-Kyu; Mahong, Bancha; Jeon, Jong-Seong; Ketudat-Cairns, James R.; Ketudat-Cairns, Mariena

    2014-01-01

    The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4's cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-β-d-glucoside (pNPGlc) efficiently (kcat/Km  =  17.9 mM−1·s−1), and hydrolyzes pNP-β-d-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed β-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2–3, and β-(1,4)-linked oligosaccharide of DP 3–4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-β-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis. PMID:24802508

  20. Expression, purification and immunochemical characterization of recombinant OMP28 protein of Brucella species

    PubMed Central

    Manat, Y.; Shustov, A.V.; Evtehova, E.; Eskendirova, S.Z.

    2016-01-01

    Brucellosis is the lion’s share of infectious disease of animals and it has a particular socio-economic importance for the Republic of Kazakhstan. Sixty percent of epizootic outbreaks of brucellosis identified in the Commonwealth of Independent States (CIS) originated from Kazakhstan in recent years. Definitive diagnosis of brucellosis remains a difficult task. Precisely for this reason, we evaluated a purified recombinant out membrane protein 28 (rOMP28) of Brucella species (Brucella spp.) produced in Escherichia coli (E. coli) as a diagnostic antigen in an Indirect ELISA (I-ELISA) for bovine brucellosis. The gene encoding OMP28 was synthesized using a two-round PCR procedure. In order to produce the rOMP28, the de novo synthesized DNA was cloned into the expression vector pET-22b(+). Then, the rOMP28 was expressed in E. coli system and characterized in the present study. We further estimated the diagnostic potential of purified rOMP28 of Brucella spp. for screening bovine sera. To determine if rOMP28 has a valuable benefit for use in the serodiagnosis of bovine brucellosis, rOMP28-based I-ELISA was performed. Brucella spp. positive (n=62) and Brucella spp. negative (n=28) samples from tube agglutination test (TAT) were positive (n=59) and negative (n=27) by I-ELISA, respectively. These findings show that the rOMP28 of Brucella spp. could be a good candidate for improving serological diagnostic methods for bovine brucellosis. PMID:27303654

  1. Expression, purification and immunochemical characterization of recombinant OMP28 protein of Brucella species.

    PubMed

    Manat, Y; Shustov, A V; Evtehova, E; Eskendirova, S Z

    2016-01-01

    Brucellosis is the lion's share of infectious disease of animals and it has a particular socio-economic importance for the Republic of Kazakhstan. Sixty percent of epizootic outbreaks of brucellosis identified in the Commonwealth of Independent States (CIS) originated from Kazakhstan in recent years. Definitive diagnosis of brucellosis remains a difficult task. Precisely for this reason, we evaluated a purified recombinant out membrane protein 28 (rOMP28) of Brucella species (Brucella spp.) produced in Escherichia coli (E. coli) as a diagnostic antigen in an Indirect ELISA (I-ELISA) for bovine brucellosis. The gene encoding OMP28 was synthesized using a two-round PCR procedure. In order to produce the rOMP28, the de novo synthesized DNA was cloned into the expression vector pET-22b(+). Then, the rOMP28 was expressed in E. coli system and characterized in the present study. We further estimated the diagnostic potential of purified rOMP28 of Brucella spp. for screening bovine sera. To determine if rOMP28 has a valuable benefit for use in the serodiagnosis of bovine brucellosis, rOMP28-based I-ELISA was performed. Brucella spp. positive (n=62) and Brucella spp. negative (n=28) samples from tube agglutination test (TAT) were positive (n=59) and negative (n=27) by I-ELISA, respectively. These findings show that the rOMP28 of Brucella spp. could be a good candidate for improving serological diagnostic methods for bovine brucellosis. PMID:27303654

  2. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.

    PubMed

    Arias, Mauricio; Hoffarth, Elesha R; Ishida, Hiroaki; Aramini, James M; Vogel, Hans J

    2016-05-01

    The increase in antibiotic-resistant bacterial infections has prompted significant academic research into new therapeutic agents targeted against these pathogens. Antimicrobial peptides (AMPs) appear as promising candidates, due their potent antimicrobial activity and their ubiquitous presence in almost all organisms. Tritrpticin is a member of this family of peptides and has been shown to exert a strong antimicrobial activity against several bacterial strains. Tritrpticin's main structural characteristic is the presence of three consecutive Trp residues at the center of the peptide. These residues play an important role in the activity of tritrpticin against Escherichia coli. In this work, a recombinant version of tritrpticin was produced in E. coli using calmodulin as a fusion protein expression tag to overcome the toxicity of the peptide. When used in combination with glyphosate, an inhibitor of the endogenous synthesis of aromatic amino acids, this expression system allowed for the incorporation of fluorinated Trp analogs at very high levels (>90%). The antimicrobial activity of the 4-, 5- and 6-fluoro-Trp-containing tritrpticins against E. coli was as strong as the activity of the native peptide. Similarly, the tritrpticin analogs exhibited comparable abilities to perturb and permeabilize synthetic lipid bilayers as well as the outer and inner membrane of E. coli. Furthermore, the use of 19F NMR spectroscopy established that each individual fluoro-Trp residue interacts differently with SDS micelles, supporting the idea that each Trp in the original tritrpticin plays a different role in the perturbing/permeabilizing activity of the peptide. Moreover, our work demonstrates that the use of fluoro-Trp in solvent perturbation 19F NMR experiments provides detailed site-specific information on the insertion of the Trp residues in biological membrane mimetics. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai

  3. Cloning, expression, and purification of recombinant bovine rotavirus hemagglutinin, VP8*, in Escherichia coli.

    PubMed

    Favacho, Alexsandra R M; Kurtenbach, Eleonora; Sardi, Silvia I; Gouvea, Vera S

    2006-04-01

    Rotavirus VP8* subunit is the minor trypsin cleavage product of the spike protein VP4, which is the major determinant of the viral infectivity and neutralization. To study the structure-function relationship of this fragment and to obtain type-specific reagents, substantial amounts of this protein are needed. Thus, full-length VP8* cDNA, including the entire trypsin cleavage-encoding region in gene 4, was synthesized and amplified by RT-PCR from total RNA purified from bovine rotavirus strain C486 propagated in MA104 cell culture. The extended VP8* cDNA (VP8ext) was cloned into the pGEM-T Easy plasmid and subcloned into the Escherichia coli expression plasmid pET28a(+). The correspondent 30 kDa protein was overexpressed in E. coli BL21(DE3)pLysS cells under the control of the T7 promoter. The identity and the antigenicity of VP8ext were confirmed on Western blots using anti-His and anti-rotavirus antibodies. Immobilized Ni-ion affinity chromatography was used to purify the expressed protein resulting in a yield of 4 mg of VP8ext per liter of induced E. coli culture. Our results indicate that VP8ext maintained its native antigenicity and specificity, providing a good source of antigen for the production of P type-specific immune reagents. Detailed structural analysis of pure recombinant VP8 subunit should allow a better understanding of its role in cell attachment and rotavirus tropism. Application of similar procedure to distinct rotavirus P serotypes should provide valuable P serotype-specific immune reagents for rotavirus diagnostics and epidemiologic surveys. PMID:16275130

  4. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems.

    PubMed

    Tremblay, Reynald; Feng, Mary; Menassa, Rima; Huner, Norman P A; Jevnikar, Anthony M; Ma, Shengwu

    2011-04-01

    Soybean agglutinin (SBA) is a specific N-acetylgalactosamine-binding plant lectin that can agglutinate a wide variety of cells. SBA has great potential for medical and biotechnology-focused applications, including screening and treatment of breast cancer, isolation of fetal cells from maternal blood for genetic screening, the possibility as a carrier system for oral drug delivery, and utilization as an affinity tag for high-quality purification of tagged proteins. The success of these applications, to a large degree, critically depends on the development of a highly efficient expression system for a source of recombinant SBA (rSBA). Here, we demonstrate the utility of transient and stable expression systems in Nicotiana benthamiana and potato, respectively, for the production of rSBA, with the transgenic protein accumulated to 4% of total soluble protein (TSP) in Nicotiana benthamiana leaves and 0.3% of TSP in potato tubers. Furthermore, we show that both plant-derived rSBAs retain their ability to induce the agglutination of red blood cells, are similarly glycosylated when compared with native SBA, retained their binding specificity for N-acetylgalactosamine, and were highly resistant to degradation in simulated gastric and intestinal fluids. Affinity column purification using N-acetylgalactosamine as a specific ligand resulted in high recovery and purity of rSBA. This work is the first step toward use of rSBA for various new applications, including the development of rSBA as a novel affinity tag for simplified purification of tagged proteins and as a new carrier molecule for delivery of oral drugs. PMID:20559869

  5. Differential effects of diazepam treatment and withdrawal on recombinant GABAA receptor expression and functional coupling.

    PubMed

    Svob Strac, Dubravka; Vlainić, Josipa; Jazvinsćak Jembrek, Maja; Pericić, Danka

    2008-12-30

    Prolonged exposure to benzodiazepines, drugs known to produce tolerance and dependence and also to be abused, leads to adaptive changes in GABA(A) receptors. To further explore the mechanisms responsible for these phenomena, we studied the effects of prolonged diazepam treatment on the recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptors, stably expressed in human embryonic kidney (HEK) 293 cells. The results demonstrating that long-term (48 and 72 h) exposure of cells to a high concentration of diazepam (50 microM) enhanced the maximum number (B(max)) of [(3)H]flunitrazepam, [(3)H]muscimol and [(3)H]t-butylbicycloorthobenzoate ([(3)H]TBOB) binding sites, without changing their affinity (K(d)), suggested the up-regulation of GABA(A) receptors. As demonstrated by cell counting and WST-1 proliferation assay, the observed increase in receptor expression was not a consequence of stimulated growth of cells exposed to diazepam. Semi-quantitative RT-PCR and Western blot analysis, showing elevated levels of alpha(1) subunit mRNA as well as beta(2) and gamma(2) subunit proteins, respectively, suggested that prolonged high dose diazepam treatment induced de novo receptor synthesis by acting at both transcriptional and translational levels. The finding that the number of GABA(A) receptor binding sites returned to control value 24 h following diazepam withdrawal, makes this process less likely to account for the development of benzodiazepine tolerance and dependence. On the other hand, the results demonstrating that observed functional uncoupling between GABA and benzodiazepine binding sites persisted after the termination of diazepam treatment supported the hypothesis of its possible role in these phenomena. PMID:18955034

  6. Recombinant Newcastle disease virus expressing H9 HA protects chickens against heterologous avian influenza H9N2 virus challenge.

    PubMed

    Nagy, Abdou; Lee, Jinhwa; Mena, Ignacio; Henningson, Jamie; Li, Yuhao; Ma, Jingjiao; Duff, Michael; Li, Yonghai; Lang, Yuekun; Yang, Jianmei; Abdallah, Fatma; Richt, Juergen; Ali, Ahmed; García-Sastre, Adolfo; Ma, Wenjun

    2016-05-17

    In order to produce an efficient poultry H9 avian influenza vaccine that provides cross-protection against multiple H9 lineages, two Newcastle disease virus (NDV) LaSota vaccine strain recombinant viruses were generated using reverse genetics. The recombinant NDV-H9Con virus expresses a consensus-H9 hemagglutinin (HA) that is designed based on available H9N2 sequences from Chinese and Middle Eastern isolates. The recombinant NDV-H9Chi virus expresses a chimeric-H9 HA in which the H9 ectodomain of A/Guinea Fowl/Hong Kong/WF10/99 was fused with the cytoplasmic and transmembrane domain of the fusion protein (F) of NDV. Both recombinant viruses expressed the inserted HA stably and grew to high titers. An efficacy study in chickens showed that both recombinant viruses were able to provide protection against challenge with a heterologous H9N2 virus. In contrast to the NDV-H9Chi virus, the NDV-H9Con virus induced a higher hemagglutination inhibition titer against both NDV and H9 viruses in immunized birds, and efficiently inhibited virus shedding through the respiratory route. Moreover, sera collected from birds immunized with either NDV-H9Con or NDV-H9Chi were able to cross-neutralize two different lineages of H9N2 viruses, indicating that NDV-H9Con and NDV-H9Chi are promising vaccine candidates that could provide cross-protection among different H9N2 lineage viruses. PMID:27102817

  7. Eri silkworm (Samia ricini), a non-mulberry host system for AcMNPV mediated expression of recombinant proteins.

    PubMed

    Hosamani, Madhusudan; Basagoudanavar, Suresh H; Sreenivasa, B P; Inumaru, Shigeki; Ballal, Chandish R; Venkataramanan, Ramamurthy

    2015-12-20

    The baculovirus expression system (BVES) based on Autographa californica nucleopolyhedrovirus (AcMNPV) is widely used for the expression of eukaryotic proteins. Several insect cells/larvae that are permissive to AcMNPV have been routinely used as hosts to express heterologous proteins. Domesticated Eri silkworm (Samia ricini), reared in many parts of India, Japan and China, is a non-mulberry silkworm. The present study shows that the Eri silkworm larvae are susceptible to intra-haemocoelical inoculation of AcMNPV. The virus replicates in the larva, as indicated by an increased viral loads in the haemolymph upon injection of a recombinant AcMNPV carrying green fluorescent protein gene. The virus showed localized replication in different tissues including the fat body, haemocytes, tracheal matrix and in the Malphigian tubules. The larval system was successfully used to express heterologous protein, by infecting with a recombinant AcMNPV carrying the 3ABC coding sequence of foot-and-mouth disease virus (FMDV). The study shows that the Eri silkworm larva can be a potential alternative bioreactor, for scaling up of the recombinant proteins employing the baculovirus system. PMID:26467714

  8. Rift Valley Fever Virus Structural and Nonstructural Proteins: Recombinant Protein Expression and Immunoreactivity Against Antisera from Sheep

    PubMed Central

    Faburay, Bonto; Wilson, William; McVey, D. Scott; Drolet, Barbara S.; Weingartl, Hana; Madden, Daniel; Young, Alan; Ma, Wenjun

    2013-01-01

    Abstract The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA). PMID:23962238

  9. Characterization and immunological activity of different forms of recombinant secreted Hc of botulinum neurotoxin serotype B products expressed in yeast.

    PubMed

    Liu, Bo; Shi, DanYang; Chang, ShaoHong; Gong, Xin; Yu, YunZhou; Sun, ZhiWei; Wu, Jun

    2015-01-01

    The recombinant Hc proteins of botulinum neurotoxins and tetanus toxin are exclusively produced by intracellular heterologous expression in Pichia pastoris for use in subunit vaccines; the same Hc proteins produced by secreted heterologous expression are hyper-glycosylated and immunologically inert. Here, several different recombinant secreted Hc proteins of botulinum neurotoxin serotype B (BHc) were expressed in yeast and we characterized and assessed their immunological activity in detail. Recombinant low-glycosylated secreted BHc products (BSK) were also immunologically inert, similar to hyper-glycosylated BHc products (BSG), although deglycosylation restored their immunological activities. Unexpectedly, deglycosylated proBHc contained an unexpected pro-peptide of an α-factor signal and fortuitous N-linked glycosylation sites in the non-cleaved pro-peptide sequences, but not in the BHc sequences. Notably, a non-glycosylated secreted homogeneous BHc isoform (mBHc), which we successfully prepared after deleting the pro-peptide and removing its single potential glycosylation site, was immunologically active and could confer effective protective immunity, similarly to non-glycosylated rBHc. In summary, we conclude that a non-glycosylated secreted BHc isoform can be prepared in yeast by deleting the pro-peptide of the α-factor signal and mutating its single potential glycosylation site. This approach provides a rational and feasible strategy for the secretory expression of botulism or other toxin antigens. PMID:25567004

  10. Intracellular expression of Vitreoscilla hemoglobin improves production of Yarrowia lipolytica lipase LIP2 in a recombinant Pichia pastoris.

    PubMed

    Wang, Xiaofeng; Sun, Yongchuan; Shen, Xuguang; Ke, Feng; Zhao, Heyun; Liu, Yun; Xu, Li; Yan, Yunjun

    2012-01-01

    The Yarrowia lipolytica lipase LIP2 (YlLIP2) gene lip2 and Vitreoscilla hemoglobin gene vgb were co-expressed in Pichia pastoris, both under the control of AOX1 promoter, in order to alleviate respiration limitation under conditions of high cell-density fermentation and enhance YlLIP2 production. The results showed that recombinant P. pastoris strains harboring the lip2 and vgb genes (VHb(+)) displayed higher biomass and YlLIP2 activity than control strains (VHb(-)). Compared with VHb(-) cells, the expression levels of YlLIP2 in VHb-expressing cells when oxygen was not a limiting factor were improved 31.5% in shake-flask culture and 22% in a 10-L fermentor. Under non-limiting dissolved oxygen (DO) conditions, the maximum YlLIP2 activity of VHb(+) in a 10-L fermentor reached 33,000 U/mL. Oxygen limitation had a more negative effect on YlLIP2 productivity in VHb(-) cells than in VHb(+) cells. The highest YlLIP2 activity of VHb(+) cells was approximately 1.84-fold higher than that of VHb(-) cells at lower DO levels. Moreover, the recombinant strain VHb(+) exhibited a higher specific oxygen uptake rate and achieved higher cell viability under oxygen limiting and non-limiting conditions compared with VHb(-) cells. Therefore, the above results suggest that intracellular expression of VHb in recombinant P. pastoris has the potential to improve cell growth and industrial enzyme production. PMID:22133436

  11. Evaluation of Pichia pastoris–Expressed Recombinant Rhoptry Protein 2 of Toxoplasma gondii for Its Application in Diagnosis of Toxoplasmosis

    PubMed Central

    Chang, Phooi Yee; Fong, Mun Yik; Nissapatorn, Veeranoot; Lau, Yee Ling

    2011-01-01

    Rhoptry protein 2 (ROP2) of Toxoplasma gondii is a rhoptry-secreted protein that plays a critical role in parasitophorous vacuole membrane formation during invasion. In previous studies, ROP2 has been shown to be efficient in triggering humoral and cell-mediated responses. High immunogenicity of ROP2 makes it a potential candidate for diagnosis and vaccination against toxoplasmosis. In this study, the ROP2 gene was cloned into pPICZα A expression vector and extracellularly expressed in the yeast Pichia pastoris, which has numerous advantages over other expression systems for eukaryotic proteins expression. The effectiveness of the secreted recombinant ROP2 as a diagnosis agent was assessed by Western Blot with 200 human serum samples. Recombinant ROP2 reacted with toxoplasmosis-positive human serum samples and yielded an overall sensitivity of 90% and specificity of 95%. However, recombinant ROP2 is a better marker for detection of IgG (91.7%) rather than IgM (80%). PMID:21896809

  12. Nucleocapsid protein N of Lelystad virus: expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies.

    PubMed Central

    Meulenberg, J J; Bende, R J; Pol, J M; Wensvoort, G; Moormann, R J

    1995-01-01

    The ORF7 gene, encoding the nucleocapsid protein N of Lelystad virus (LV), was inserted downstream of the P10 promoter into Autographa californica nuclear polyhedrosis virus (baculovirus). The resulting recombinant baculovirus, designated bac-ORF7, expressed a 15-kDa protein in insect cells. This protein was similar in size to the N protein expressed by LV in CL2621 cells when it was analyzed on sodium dodecyl sulfate-polyacrylamide gels. The N protein expressed by bac-ORF7 was immunoprecipitated with anti-ORF7 was immunoprecipitated with anti-ORF7 peptide serum, porcine convalescent-phase anti-LV serum, and N protein-specific monoclonal antibodies, indicating that this N protein had retained its native antigenic structure. The recombinant N protein was immunogenic in pigs, and the porcine antibodies raised against this protein recognized LV in an immunoperoxidase monolayer assay. However, pigs vaccinated twice with approximately 20 micrograms of N protein were not protected against a challenge with 10(5) 50% tissue culture infective doses of LV. Experimental and field sera directed against various European and North American isolates reacted with the N protein expressed by bac-ORF7 in a blocking enzyme-linked immunosorbent assay. Therefore, the recombinant N protein may be useful for developing diagnostic assays for the detection of serum antibodies directed against different isolates of LV. PMID:8574824

  13. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis.

    PubMed

    Gu, Wenliang; Xia, Qiyu; Yao, Jing; Fu, Shaoping; Guo, Jianchun; Hu, Xinwen

    2015-04-01

    Sweet plant proteins, which are safe, natural, low-calorie sweeteners, may be suitable replacements for sugars in the food and beverage industries. Mabinlin II, a sweet plant protein, shows the most pronounced heat stability and acid resistance of any of the six known types of plant sweet proteins. However, mabinlin II is difficult to extract from the Capparis masaikai plant, which is itself becoming increasingly scarce. This limits the use of naturally acquired mabinlin II. In this study, recombinant mabinlin II proteins were expressed and purified in Escherichia coli and in food-grade Lactococcus lactis. Recombinant mabinlin II proteins MBL-BH (containing the B-chains of mabinlin II downstream fused with His-tag) and MBL-ABH (containing the A- and B-chains of mabinlin II downstream fused with His-tag) were expressed in E. coli in the form of inclusion bodies. They were then purified and renatured. The refolded MBL-BH was found to be 100 times sweeter than sucrose by weight, but it was not heat-stable. Refolded MBL-ABH was neither sweet nor heat-stable. Recombinant mabinlin II proteins were secreted and expressed intracellularly in food-grade L. lactis, in which the concentrated cell samples and culture medium samples were detected using enzyme-linked immunosorbent assay and Western blotting analysis with anti-mabinlin II polyclonal antibody. This study demonstrated that the single B chain of mabinlin II has a sweet taste. The recombinant mabinlin II proteins have been successfully expressed in food-grade L. lactis, which is a crucial step in the production of mabinlin II through microorganism expression systems. PMID:25649203

  14. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    PubMed Central

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41. All fusion proteins retained the antigenic characteristics of both IFN-gamma and HIV as shown by immunoblot analysis. However, the antiviral activity of IFN-gamma could be demonstrated only for the IFN-gamma-gag fusion protein. In contrast, the attenuating activity of IFN-gamma for nude mice was retained by all of the recombinants, albeit at various rates. Unlike the antiviral activity, the attenuating activity of IFN-gamma was not species specific. Implications for the development of attenuated live recombinant vaccines for AIDS are discussed. Images PMID:1565633

  15. Purification and Characterization of Tagless Recombinant Human Elongation Factor 2 Kinase (eEF-2K) Expressed in Escherichia coli

    PubMed Central

    Abramczyk, Olga; Tavares, Clint D. J.; Devkota, Ashwini K.; Ryazanov, Alexey G.; Turk, Benjamin E.; Riggs, Austen F.; Ozpolat, Bulent; Dalby, Kevin N.

    2012-01-01

    The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His6-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ~ 85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme. PMID:21605678

  16. Antibacterial efficacy of recombinant Siganus oramin L-amino acid oxidase expressed in Pichia pastoris.

    PubMed

    Li, Ruijun; Li, Anxing

    2014-12-01

    Siganus oraminl-amino acid oxidase is a novel natural protein (named SR-LAAO) isolated from serum of the rabbitfish (S. oramin), which showed antibacterial activity against both Gram-positive and Gram-negative bacteria and had a lethal effect on the parasites Cryptocaryon irritans, Trypanosoma brucei brucei and Ichthyophthirius multifiliis. In order to test whether recombinant SR-LAAO (rSR-LAAO) produced by the eukaryotic expression system also has antimicrobial activity, the yeast Pichia pastoris was used as the expression host to obtain rSR-LAAO in vitro. Crude rSR-LAAO produced by P. pastoris integrated with the SR-LAAO gene had antibacterial activity against both Gram-positive and Gram-negative bacteria as shown by inhibition zone assay of the antibacterial spectrum on agar plates. The average diameter of the inhibition zone of crude rSR-LAAO against the Gram-positive bacteria Staphylococcus aureus and Streptococcus agalactiae was 1.040 ± 0.045 cm and 1.209 ± 0.085 cm, respectively. For the Gram-negative bacteria Aeromonas sobria, Escherichia coli, Vibrio alginolyticus, Vibrio cholera and Photobacterium damselae subsp. piscicida, the average diameter of inhibition zone was 1.291 ± 0.089 cm, 0.943 ± 0.061 cm, 0.756 ± 0.057 cm, 0.834 ± 0.023 cm and 1.211 ± 0.026 cm, respectively. These results were obtained at the logarithmic growth phase of S. agalactiae and A. sobria cell suspensions after incubation with 0.5 mg/mL crude rSR-LAAO for 24 h. The final bacterial growth rate was decreased significantly. The relative inhibition rate can reach 50% compared to crude products from P. pastoris integrated with an empty vector at the same concentration of protein. The antimicrobial activity of crude rSR-LAAO was likely associated with H2O2 formation, because its inhibition zones were disturbed significantly by catalase. Scanning electron microscopy results showed crude rSR-LAAO-treated bacterial surfaces became rough and particles were attached, cell walls were

  17. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli.

    PubMed

    Peng, Shuaiying; Chu, Zhongmei; Lu, Jianfeng; Li, Dongxiao; Wang, Yonghong; Yang, Shengli; Zhang, Yi

    2016-05-01

    The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA. PMID:26862080

  18. A dual-functional E. coli vector for expressing recombinant protein with high solubility and antigen presentation ability.

    PubMed

    Chuang, Chin-Kai; Su, Yu-Show; Fan, Chiu-Tin; Lee, Wen-Chuan; Chen, Ming-Yu

    2009-05-01

    A dual-functional Escherichia coli expression vector capable of producing soluble recombinant proteins with high immunogenicity in animals is introduced. This vector expresses polypeptides fused to a PTD-J-domain peptide. The J-domain peptide is derived from murine Hsp40 by using optimized codons for E. coli. The association of the J-domain to the nucleotide binding domain of the DnaK chaperone increases the probability that the fused polypeptide will be folded by the DnaK and hence increases the solubility of the recombinant protein. The PTD-J-domain can also enhance the immunogenicity of the fused chicken IGF-I polypeptide as well as an oligo-peptide derived from haptoglobin in rodents, possibly via the association with either the extracellular or intracellular Hsp70 proteins. PMID:19162194

  19. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    NASA Technical Reports Server (NTRS)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  20. Soluble expression and partial purification of recombinant human erythropoietin from E. coli.

    PubMed

    Jeong, Taeck-Hyun; Son, Young-Jin; Ryu, Han-Bong; Koo, Bon-Kyung; Jeong, Seung-Mi; Hoang, Phuong; Do, Bich Hang; Song, Jung-A; Chong, Seon-Ha; Robinson, Robert Charles; Choe, Han

    2014-03-01

    Human erythropoietin (hEpo) is an essential regulator of erythrocyte production that induces the division and differentiation of erythroid progenitor cells in the bone marrow into mature erythrocytes. It is widely used for the treatment of anemia resulting from chronic kidney disease, chemotherapy, and cancer-related therapies. Active hEpo, and hEpo analogs, have been purified primarily from mammalian cells, which has several disadvantages, including low yields and high production costs. Although an Escherichia coli (E. coli) expression system may provide economic production of therapeutic proteins, it has not been used for the production of recombinant hEpo (rhEpo) because it aggregates in inclusion bodies in the E. coli cytoplasm and is not modified post-translationally. We investigated the soluble overexpression of active rhEpo with various protein tags in E. coli, and found out that several tags increased the solubility of rhEpo. Among them maltose binding protein (MBP)-tagged rhEpo was purified using affinity and gel filtration columns. Non-denaturing electrophoresis and MALDI-TOF MS analysis demonstrated that the purified rhEpo had two intra-disulfide bonds identical to those of the native hEpo. An in vitro proliferation assay showed that rhEpo purified from E. coli had similar biological activity as rhEpo derived from CHO cells. Therefore, we report for the first time that active rhEpo was overexpressed as a soluble form in the cytoplasm of E. coli and purified it in simple purification steps. We hope that our results offer opportunities for progress in rhEpo therapeutics. PMID:24412408

  1. Recombinant Expression, Biophysical Characterization, and Cardiolipin-Induced Changes of Two Caenorhabditis elegans Cytochrome c Proteins

    PubMed Central

    Vincelli, Amber J.; Pottinger, Danielle S.; Zhong, Fangfang; Hanske, Jonas; Rolland, Stéphane G.; Conradt, Barbara; Pletneva, Ekaterina V.

    2013-01-01

    Cytochrome c (cyt c) is one of the most widely studied biomolecules, but not much is known about this protein from nematodes. Recombinant expression of C. elegans CYC-2.1 and CYC-2.2 allowed for detailed characterization of their structural features, redox properties, stabilities, and interactions with cardiolipin (CL)-containing liposomes. Using a variety of spectroscopic tools, we show that CYC-2.1 and CYC-2.2 adopt a globular α-helical fold with His/Met heme ligation. The longer CYC-2.2 has a lower thermodynamic stability than CYC-2.1 and lacks His residues to misligate to the heme in the protein’s denatured state. Both C. elegans proteins bind to CL-containing liposomes and these interactions promote the proteins’ peroxidase activity but to a much greater degree for CYC-2.2. Dye-to-heme distance distributions from time-resolved FRET in bimane-labeled CYC-2.1 and CYC-2.2 revealed similar populations of extended and compact conformers for CL-bound proteins, suggesting that their distinct peroxidase activities in the presence of CL arise from differences in the local heme environments for the two polypeptide ensembles. Without inhibition from His misligation, a less stable and more prone to unfolding CYC-2.2 allows for better access of substrates to the heme and thus exhibits higher peroxidase activity. Similar features of the conformational ensembles of CYC-2.1 and CYC-2.2 to those of mammalian cyt c suggest that C. elegans proteins, particularly the former, could serve as useful models for examining the mechanism of cyt c-CL interactions in live organisms. PMID:23282202

  2. Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Gorshkova, Inna; Gawrisch, Klaus; Yeliseev, Alexei A.

    2013-01-01

    Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA- resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4 -coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2. PMID:23777860

  3. Recombinant Measles Virus Vaccine Expressing the Nipah Virus Glycoprotein Protects against Lethal Nipah Virus Challenge

    PubMed Central

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans. PMID:23516477

  4. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    PubMed

    Yoneda, Misako; Georges-Courbot, Marie-Claude; Ikeda, Fusako; Ishii, Miho; Nagata, Noriyo; Jacquot, Frederic; Raoul, Hervé; Sato, Hiroki; Kai, Chieko

    2013-01-01

    Nipah virus (NiV) is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G). Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi). Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans. PMID:23516477

  5. [Relation of Lac promotor and the expression of cholera toxin subunit B gene in recombinant Escherichia coli MM2].

    PubMed

    Fang, H; Zhao, S; Yu, G; Ma, Q

    1997-08-01

    Effects of different carbon sources including glucose, lactate and acetate and IPTG induction on the expression of ctb gene, which is on the downstream of lac promotor, in recombinant Escherichia coli MM2 were studied. In medium YC were added 0.048mol/L glucose, 0.102mol/L lactate or 0.167mol/L acetate which separately produce the same energy in the condition of complete oxidization. Addition of glucose largely decreased the expression level of ctb gene because of decrease of pH during culture process. Addition of lactate increased the expression level of ctb gene by 1.15 fold and did not inhibit the growth of MM2 strain. Addition of acetate increasd the expression level of ctb gene by 0.97 fold and inhibited the growth of MM2 strain. Induction by IPTG at different time and different concentration did not increase the expression level of ctb gene, so the lac promotor had no or a little influence upon the expression of ctb gene in recombinant MM2 strain. PMID:9863203

  6. Construction and immunogenicity of a recombinant pseudorabies virus co-expressing porcine circovirus type 2 capsid protein and interleukin 18.

    PubMed

    Zheng, Lan-lan; Guo, Xiao-qing; Zhu, Qian-lei; Chao, An-jun; Fu, Peng-fei; Wei, Zhan-yong; Wang, Shu-juan; Chen, Hong-ying; Cui, Bao-an

    2015-04-01

    A novel recombinant pseudorabies virus (PRV) expressing porcine circovirus type 2 (PCV2) capsid protein and IL-18 was constructed. The PCV2 open reading frame 2 (ORF2) and porcine IL-18 genes were amplified by PCR and then inserted into the PRV transfer vector (pG) to produce a recombinant plasmid (pGO18). Plasmid pGO18 was transfected into porcine kidney cell (PK15) pre-infected with PRV HB98 vaccine strain to generate a recombinant virus. The recombinant virus PRV-ORF2-IL18 was purified by green fluorescent plaque purification and the inserts were confirmed by PCR, enzyme digestion, sequencing, and Western blot. The humoral and cellular responses induced by the recombinant virus were assessed in mice. Mice (n=10) were immunized with PRV-ORF2-IL18, PRV-ORF2, PRV HB98, or inactivated PCV2. PRV-ORF2-IL18 elicited high titers of ELISA and serum neutralizing antibodies and strong cell-mediated immune responses in mice as indicated by anti-PCV2 ELISA, PRV-neutralizing assay, PCV2 specific lymphocyte proliferation assay, CD3(+), CD4(+) and CD8(+) T lymphocytes analysis, respectively. And PRV-ORF2-IL18 immunization protected mice against a lethal challenge of a virulent PRV Fa strain and significantly reduced the amount of PCV2 viremia. These results suggest an adjuvant effect of IL-18 on cellular immune responses. The recombinant virus might be an attractive candidate vaccine for preventing PCV2 and PRV infections in pigs. PMID:25701744

  7. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli.

    PubMed

    Chiang, Chung-Jen; Chen, Hong-Chen; Chao, Yun-Peng; Tzen, Jason T C

    2005-06-15

    Nattokinase, a serine protease, and pronattokinase, when expressed in Escherichia coli, formed insoluble aggregates without enzymatic activity. For functional expression and purification, nattokinase or pronattokinase was first overexpressed in E. coli as an insoluble recombinant protein linked to the C terminus of oleosin, a structural protein of seed oil bodies, by an intein fragment. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and the insoluble recombinant protein thus formed. Soluble nattokinase was subsequently released through self-splicing of intein induced by temperature alteration, with the remaining oleosin-intein residing in oil bodies and the leading propeptide of pronattokinase, when present, spontaneously cleaved in the process. Active nattokinase with fibrinolytic activity was harvested by concentrating the supernatant. Nattokinase released from oleosin-intein-pronattokinase exhibited 5 times higher activity than that released from oleosin-intein-nattokinase, although the production yields were similar in both cases. Furthermore, active nattokinase could be harvested in the same system by fusing pronattokinase to the N terminus of oleosin via a different intein linker, with self-splicing induced by 1,4-dithiothreitol. These results have shown a great potential of this system for bacterial expression and purification of functional recombinant proteins. PMID:15941319

  8. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    SciTech Connect

    Albariño, César G. Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  9. Pilot-scale cultivation of wall-deficient transgenic Chlamydomonas reinhardtii strains expressing recombinant proteins in the chloroplast.

    PubMed

    Zedler, Julie A Z; Gangl, Doris; Guerra, Tiago; Santos, Edgar; Verdelho, Vitor V; Robinson, Colin

    2016-08-01

    Microalgae have emerged as potentially powerful platforms for the production of recombinant proteins and high-value products. Chlamydomonas reinhardtii is a potentially important host species due to the range of genetic tools that have been developed for this unicellular green alga. Transformation of the chloroplast genome offers important advantages over nuclear transformation, and a wide range of recombinant proteins have now been expressed in the chloroplasts of C. reinhardtii strains. This is often done in cell wall-deficient mutants that are easier to transform. However, only a single study has reported growth data for C. reinhardtii grown at pilot scale, and the growth of cell wall-deficient strains has not been reported at all. Here, we report the first pilot-scale growth study for transgenic, cell wall-deficient C. reinhardtii strains. Strains expressing a cytochrome P450 (CYP79A1) or bifunctional diterpene synthase (cis-abienol synthase, TPS4) were grown for 7 days under mixotrophic conditions in a Tris-acetate-phosphate medium. The strains reached dry cell weights of 0.3 g/L within 3-4 days with stable expression levels of the recombinant proteins during the whole upscaling process. The strains proved to be generally robust, despite the cell wall-deficient phenotype, but grew poorly under phototrophic conditions. The data indicate that cell wall-deficient strains may be highly amenable for transformation and suitable for commercial-scale operations under mixotrophic growth regimes. PMID:26969037

  10. Recombinant expression of a GH12 β-glucanase carrying its own signal peptide from Stachybotrys atra in yeast and filamentous fungi.

    PubMed

    Picart, Pere; Orejas, Margarita; Pastor, F I Javier

    2016-08-01

    The β-glucanase Cel12A gene from Stachybotrys atra has been cloned and heterologously expressed in Aspergillus nidulans and Saccharomyces cerevisiae. The recombinant strains constructed, contained the exonic sequence of cel12A including its own signal peptide coding sequence. SDS-PAGE and zymography revealed that recombinant Cel12A has a molecular mass of 24 kDa which agrees with that deduced from its amino acid sequence, indicating that it is expressed in the non-glycosylated active form. Recombinant A. nidulans showed about eightfold greater activity yield than S. cerevisiae recombinant strain, namely 0.71 and 0.09 β-glucanase Units/ml of culture, respectively. In both host strains most of the activity was secreted to the extracellular media, evidencing the functionality of Cel12A signal peptide in yeast and fungi. This novel signal peptide might facilitate the expression and efficient secretion of other recombinant proteins difficult to secrete. PMID:27339304

  11. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  12. Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature.

    PubMed Central

    Villaverde, A; Benito, A; Viaplana, E; Cubarsi, R

    1993-01-01

    The expression at different temperatures of the lacZ gene, which is controlled by the lambda pL and pR tandem promoters and the cI857 temperature-sensitive repressor, was studied in Escherichia coli continuous cultures. At temperatures between 30 and 42 degrees C, beta-galactosidase activity behaved according to an exponential equation. By inducing a culture at a temperature within this range, predefined, nearly constant submaximal levels of gene expression and recombinant product yield can be obtained. PMID:8250569

  13. A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express.

    PubMed

    Belval, Lorène; Marquette, Arnaud; Mestre, Pere; Piron, Marie-Christine; Demangeat, Gérard; Merdinoglu, Didier; Chich, Jean-François

    2015-05-01

    A frequent problem of recombinant protein production is their insolubility. To address this issue, engineered Escherichiacoli strains like Arctic Express that produce an exogenous chaperone facilitating protein folding, have been designed. A drawback is the frequent contamination of the protein by chaperones. A simple method, using urea at a sub-denaturing concentration, allows unbinding of Cpn60 from expressed protein. This method was successfully used to purify 2 proteins, an enzyme and a viral protein. The enzyme was fully active. The nature of interaction forces between enzyme and Cpn60 was investigated. The method is likely applicable to purify other proteins. PMID:25655203

  14. High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: effect of lac operator.

    PubMed

    Nie, Yao; Yan, Wei; Xu, Yan; Chen, Wen Bo; Mu, Xiao Qing; Wang, Xinye; Xiao, Rong

    2013-01-01

    Pullulanase plays an important role in specific hydrolysis of branch points in amylopectin and is generally employed as an important enzyme in starch-processing industry. So far, however, the production level of pullulanase is still somewhat low from wide-type strains and even heterologous expression systems. Here the gene encoding Bacillus naganoensis pullulanase was amplified and cloned. For expression of the protein, two recombinant systems, Escherichia coli BL21(DE3)/pET-20b(+)-pul and E. coli BL21(DE3)/pET-22b(+)-pul, were constructed, both bearing T7 promoter and signal peptide sequence, but different in the existance of lac operator and lacI gene encoding lac repressor. Recombinant pullulanase was initially expressed with the activity of up to 14 U/mL by E. coli BL21(DE3)/pET-20b(+)-pul with IPTG induction in LB medium, but its expression level reduced continually with the extension of cryopreservation time and basal expression was observed. However, E. coli BL21(DE3)/pET-22b(+)-pul , involving lac operator downstream of T7 promoter to regulate foreign gene transcription, exhibited pullulanase activity consistently without detected basal expression. By investigating the effect of lac operator, basal expression of foreign protein was found to cause expression instability and negative effect on production of target protein. Thus double-repression strategy was proposed that lac operators in both chromosome and plasmid were bound with lac repressor to repress T7 RNA polymerase synthesis and target protein expression before induction. Consequently, the total activity of pullulanase was remarkably increased to 580 U/mL with auto-induction by lac operator-involved E. coli BL21(DE3)/pET-22b(+)-pul. When adding 0.6% glycine in culture, the extracellular production of pullulanase was significantly improved with the extracellular activity of 502 U/mL, which is a relatively higher level achieved to date for extracellular production of pullulanase. The successful

  15. High-Level Expression of Bacillus naganoensis Pullulanase from Recombinant Escherichia coli with Auto-Induction: Effect of lac Operator

    PubMed Central

    Xu, Yan; Chen, Wen Bo; Mu, Xiao Qing; Wang, Xinye; Xiao, Rong

    2013-01-01

    Pullulanase plays an important role in specific hydrolysis of branch points in amylopectin and is generally employed as an important enzyme in starch-processing industry. So far, however, the production level of pullulanase is still somewhat low from wide-type strains and even heterologous expression systems. Here the gene encoding Bacillus naganoensis pullulanase was amplified and cloned. For expression of the protein, two recombinant systems, Escherichia coli BL21(DE3)/pET-20b(+)-pul and E. coli BL21(DE3)/pET-22b(+)-pul, were constructed, both bearing T7 promoter and signal peptide sequence, but different in the existance of lac operator and lacI gene encoding lac repressor. Recombinant pullulanase was initially expressed with the activity of up to 14 U/mL by E. coli BL21(DE3)/pET-20b(+)-pul with IPTG induction in LB medium, but its expression level reduced continually with the extension of cryopreservation time and basal expression was observed. However, E. coli BL21(DE3)/pET-22b(+)-pul , involving lac operator downstream of T7 promoter to regulate foreign gene transcription, exhibited pullulanase activity consistently without detected basal expression. By investigating the effect of lac operator, basal expression of foreign protein was found to cause expression instability and negative effect on production of target protein. Thus double-repression strategy was proposed that lac operators in both chromosome and plasmid were bound with lac repressor to repress T7 RNA polymerase synthesis and target protein expression before induction. Consequently, the total activity of pullulanase was remarkably increased to 580 U/mL with auto-induction by lac operator-involved E. coli BL21(DE3)/pET-22b(+)-pul. When adding 0.6% glycine in culture, the extracellular production of pullulanase was significantly improved with the extracellular activity of 502 U/mL, which is a relatively higher level achieved to date for extracellular production of pullulanase. The successful

  16. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications. PMID:27414784

  17. Extracellular expression and efficient purification of a functional recombinant Volvariella volvacea immunomodulatory protein (FIP-vvo) using Pichia pastoris system.

    PubMed

    Sun, Xilin; Huang, Wei; Xiao, Sijia; Liang, Chongyang; Zhang, Shuqin; Liu, Zhiyi; Sun, Fei

    2014-02-01

    The fungal immunomodulatory proteins (FIPs) are a new protein family identified from several edible and medical mushrooms and play an important role in antitumor, anti-allergy and immunomodulating activities. A gene encoding the FIP-vvo was cloned from the mycelia of Volvariella volvacea and recombinant expressed in the Pichia pastoris expression system. SDS-PAGE, amino acid composition and circular dichroism analyses of the recombinant FIP-vvo (reFIP-vvo) indicated that the gene was correctly and successfully expressed. In vitro assays of biological activities revealed that the reFIP-vvo exhibited similar immunomodulating capacities as native form. The reFIP-vvo significantly stimulated the proliferation of mouse spleen lymphocytes and apparently enhanced the expression level of IFN-γ released from the mouse splenocytes. Taken together, the FIP-vvo gene from V. volvacea has been integrated into the yeast genome and expressed effectively at a high level (about 410mg/L), it was capable of agglutinating sheep and rat red blood cells. The reFIP-vvo possessed very similar biological activities to native FIPs, suggesting its potential application as a food supplement or immunomodulating agent in pharmaceuticals and even medical studies. PMID:24262209

  18. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    PubMed

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs. PMID:24631626

  19. Construction of recombinant pEGFP-N1-hPer2 plasmid and its expression in osteosarcoma cells

    PubMed Central

    CHENG, ANYUAN; ZHANG, YAN; MEI, HONGJUN; FANG, SHUO; JI, PENG; YANG, JIAN; YU, LING; GUO, WEICHUN

    2016-01-01

    The aim of this study was to construct the eukaryotic expression vector pEGFP-N1-hPer2 and assess its expression in the human osteosarcoma cell line MG63. Total mRNA was extracted from human osteosarcoma MG63 cells, the human period 2 (hPer2) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the pEGFP-N1 vector, then the recombinant pEGFP-N1-hPer2 plasmid was constructed and transfected into MG63 cells using Lipofectamine 2000. The expression of hPer2 in MG63 cells was measured by quantitative RT-PCR and western blot analysis. The accurate construction of pEGFP-N1-hPer2 was verified by double enzyme digestion and DNA sequencing. hPer2 gene expression in the transfected cells was assessed by RT-qPCR and western blot analysis. In conclusion, the recombinant pEGFP-N1-hPer2 plasmid was constructed successfully, and expressed effectively in MG63 cells. PMID:27073550

  20. Cloning, secretory expression and characterization of recombinant β-mannanase from Bacillus circulans NT 6.7.

    PubMed

    Piwpankaew, Yotthachai; Sakulsirirat, Supa; Nitisinprasert, Sunee; Nguyen, Thu-Ha; Haltrich, Dietmar; Keawsompong, Suttipun

    2014-01-01

    The mannanase gene of B. circulans NT 6.7 was cloned and expressed in an Escherichia coli expression system. The B. circulans NT 6.7 mannanase gene consists of 1,083 nucleotides encoding a 360-amino acid residue long polypeptide, belonging to glycoside hydrolase family 26. The full-length mannanase gene including its native signal sequence was cloned into the vector pET21d and expressed in E. coli BL21 (DE3). β-Mannanase activities in the culture supernatant and crude cell extract were 37.10 and 515 U per ml, respectively, with most of the activity in the cell extract attributed to the periplasmic fraction. In contrast, expression of mannanase was much lower when using the B. circulans NT 6.7 mannanase gene without its signal sequence. The optimum temperature of recombinant β-mannanase activity was 50°C and the optimum pH was 6.0. The enzyme was very specific for β-mannan substrates with a preference for galactomannan. Hydrolysis products of locust bean gum were various mannooligosaccharides including mannohexaose, mannopentaose, mannotetraose, mannotriose and mannobiose, while mannose could not be detected. In conclusion, this expression system is efficient for the secretory production of recombinant β-mannanase from B. circulans NT 6.7, which shows good characteristics for various applications. PMID:25157333

  1. Expression, subcellular localization, and enzyme activity of a recombinant human extra-cellular superoxide dismutase in tobacco (Nicotiana benthamiana L.).

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Lee, Weontae; Kim, Tae-Yoon; Kim, Woo Taek

    2016-03-01

    Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells. PMID:26611610

  2. Comparative Evaluation of Recombinant Protein Production in Different Biofactories: The Green Perspective

    PubMed Central

    Capaldi, Stefano

    2014-01-01

    In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms. PMID:24745008

  3. Profiling highly conserved microrna expression in recombinant IgG-producing and parental Chinese hamster ovary cells.

    PubMed

    Lin, Nan; Davis, Angela; Bahr, Scott; Borgschulte, Trissa; Achtien, Katherine; Kayser, Kevin

    2011-07-01

    MicroRNAs (miRNAs) play important roles in global gene regulation. Researchers in recombinant protein production have proposed miRNAs as biomarkers and cell engineering targets. However, miRNA expression remains understudied in Chinese Hamster Ovary cells, one of the most commonly used host cell systems for therapeutic protein production. To profile highly conserved miRNA expression, we used the miRCURY™ miRNA array for screening miRNAs in CHO cells. The selection criteria for further miRNA profiling included positive hybridization signals and experimentally validated predicted regulatory targets. On the basis of screening, we selected 16 miRNAs for quantitative RT-PCR profiling. We profiled miR expression in parental CHO DG44 and CHO K1 cell lines as well as four recombinant DG44-derived CHO lines producing a recombinant human IgG. We observed that miR-221 and miR-222 were significantly downregulated in all IgG-producing cell lines when compared with parental DG44, whereas miR-125b was significantly downregulated in one IgG-producing line. In another IgG-producing line, miR-19a was significantly upregulated. miRNA expression was also profiled in two of these lines that were amplified by stepwise increase of methotrexate. In both amplified cell lines, let-7b and miR-221 were significantly downregulated. In parental CHO K1, let-7b, miR-15b, and miR-17 were significantly downregulated when compared with DG44. The results reported here are the first steps toward profiling highly conserved miRNAs and studying the clonal difference in miRNA expression in CHO cells and may shed light on using miRNAs in cell engineering. PMID:21692195

  4. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. PMID:25743073

  5. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    PubMed Central

    2012-01-01

    Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in

  6. [Recombinant cephalosporin-acid synthesase: optimisation of expression in E.coli cells, immobilisation and application for biocatalytic cefazolin synthesis].

    PubMed

    Eldarov, M A; Sklyarenko, A V; Dumina, M V; Medvedeva, N V; Jgoun, A A; Satarova, J E; Sidorenko, A I; Emperian, A S; Yarotsky, S V

    2015-01-01

    Cephalosporin acid synthetase (CASA) is responsible for specific to synthesis of cephalosporin-acids, its expression in Escherichia coli cells is accompanied by accumulation of unprocessed insoluble precursor. In order to optimize conditions of recombinant CASA production we have studied the effects of several parameters of strain cultivation, including growth media composition, temperature, and inoculation dose. Also plasmids for production of CASA variants with the signal sequence of Erwinia carotovora L-asparaginase (ansCASA) and "leaderless" CASA were created in search of more efficient expression constructs. Removal of the N-terminal secretion signal sequence reduced the production of functionally active CASA more than 10-fold and inhibited strain growth. Insertion of the L-asparaginase signal sequence increased the specific enzyme activity in the resultant recombinant strain. The ansCASA producing strain was used to develop the method of immobilization of the recombinant enzyme on an epoxy-activated macroporous acrylic support. The resultant biocatalyst performed effective synthesis of cefazolin from 3-[(5-methyl-1,3,4-thiadiazol-2-il)-thiomethyl]-7- aminocephalosporanic acid (MMTD-7-ACA) and methyl ester of 1(H)-tetrazolilacetic acid (МETzAA), under mild conditions a transformation level of MMTD-7-ACA to cefazolin of 95% is reached. PMID:26539875

  7. Expression and purification of a new recombinant camel hepcidin able to promote the degradation of the iron exporter ferroportin1.

    PubMed

    Boumaiza, Mohamed; Jaouen, Maryse; Deschemin, Jean-Christophe; Ezzine, Aymen; Ben Khalaf, Noureddine; Vaulont, Sophie; Marzouki, Mohamed Nèjib; Sari, Marie Agnès

    2015-11-01

    Hepcidin, a 25-amino-acid and highly disulfide bonded antimicrobial peptide, is the central regulator of iron homeostasis. This hormone is expressed in response to iron and inflammation and interacts with ferroportin1 (FPN1), the only known iron exporter in vertebrates, inducing its internalization and degradation. Thus, the export of iron from cells to plasma will be significantly diminished. Thereby, hepcidin has become the target of intense research studies due to its profound biomedical significance. This study describes the functional expression of recombinant camel hepcidin in Escherichia coli. Biologically active recombinant camel hepcidin was obtained thanks to the production of a hepcidin-thioredoxin fusion protein (TRX-HepcD) and a purified camel hepcidin, with an extra methionine at the N-terminus, was obtained after enterokinase cleavage of the fusion protein. Presence of the four disulfide bridges was verified using MALDI-ToF spectrometry. The recombinant camel hepcidin was compared to related synthetic bioactive peptides, including human hepcidin, and was found equally able to promote ferroportin degradation of mouse macrophages. Furthermore, camel hepcidins exhibits a high capacity to inhibit the growth of Leishmania major promastigotes. These results proved that production of functional camel hepcidin can be achieved in E. coli, this is a major interest for the production of cysteine rich peptides or proteins that can be purified under their functional form without the need of a refolding process. PMID:26169129

  8. Visualization of feline calicivirus replication in real-time with recombinant viruses engineered to express fluorescent reporter proteins.

    PubMed

    Abente, Eugenio J; Sosnovtsev, Stanislav V; Bok, Karin; Green, Kim Y

    2010-04-25

    Caliciviruses are non-enveloped, icosahedral viruses with a single-stranded, positive sense RNA genome. Transposon-mediated insertional mutagenesis was used to insert a transprimer sequence into random sites of an infectious full-length cDNA clone of the feline calicivirus (FCV) genome. A site in the LC gene (encoding the capsid leader protein) of the FCV genome was identified that could tolerate foreign insertions, and two viable recombinant FCV variants expressing LC fused either to AcGFP, or DsRedFP were recovered. The effects of the insertions on LC processing, RNA replication, and stability of the viral genome were analyzed, and the progression of a calicivirus single infection and co-infection were captured by real-time imaging fluorescent microscopy. The ability to engineer viable recombinant caliciviruses expressing foreign markers enables new approaches to investigate virus and host cell interactions, as well as studies of viral recombination, one of the driving forces of calicivirus evolution. PMID:20137802

  9. Biocatalytic properties of a recombinant Fusarium proliferatum lactonase with significantly enhanced production by optimal expression in Escherichia coli.

    PubMed

    Chen, Bing; Fan, Li-Qiang; Xu, Jian-He; Zhao, Jian; Zhang, Xian; Ouyang, Li-Ming

    2010-10-01

    The levo-lactonase gene of Fusarium proliferatum ECU2002 (EC3.1.1.25) was cloned and expressed in Escherichia coli JM109 (DE3) for biocatalytic resolution of industrially important chiral lactones, including DL-pantoyl lactone which was a key precursor to calcium D-pantothenate. By increasing the biomass concentration and lowering the inducer (isopropyl-beta-D-thiogalactoside) concentration and induction temperature, the lactonase production was significantly enhanced up to 20 kU/L, which was 20 times higher than that of wild-type strain F. proliferatum ECU2002. The recombinant Fusarium lactonase was purified using immobilized metal affinity chromatography, and its SDS-PAGE revealed a molecular mass of 50 kDa for the recombinant protein, suggesting that the enzyme was a simplex protein. Furthermore, biocatalytic properties of the recombinant lactonase were investigated, including kinetic parameters, additive's effect, and substrate specificity. The results reported in this paper provide a feasible method to make the whole cells of E. coli JM109 (DE3) expressing lactonase gene to be a highly efficient and easy-to-make biocatalyst for asymmetric synthesis of chiral compounds. PMID:19876606

  10. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. PMID:25448590

  11. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease.

    PubMed

    Tsou, Yueh-Liang; Lin, Yi-Wen; Shao, Hsiao-Yun; Yu, Shu-Ling; Wu, Shang-Rung; Lin, Hsiao-Yu; Liu, Chia-Chyi; Huang, Chieh; Chong, Pele; Chow, Yen-Hung

    2015-04-01

    Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune

  12. Recombinant Adeno-Vaccine Expressing Enterovirus 71-Like Particles against Hand, Foot, and Mouth Disease

    PubMed Central

    Tsou, Yueh-Liang; Lin, Yi-Wen; Shao, Hsiao-Yun; Yu, Shu-Ling; Wu, Shang-Rung; Lin, Hsiao-Yu; Liu, Chia-Chyi; Huang, Chieh; Chong, Pele; Chow, Yen-Hung

    2015-01-01

    Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune

  13. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins

    PubMed Central

    Bredenbeek, Peter J.; Molenkamp, Richard; Spaan, Willy J.M.; Deubel, Vincent; Marianneau, Phillippe; Salvato, Maria S.; Moshkoff, Dmitry; Zapata, Juan; Tikhonov, Ilia; Patterson, Jean; Carrion, Ricardo; Ticer, Anysha; Brasky, Kathleen; Lukashevich, Igor S.

    2006-01-01

    The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa. PMID:16412488

  14. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins.

    PubMed

    Bredenbeek, Peter J; Molenkamp, Richard; Spaan, Willy J M; Deubel, Vincent; Marianneau, Phillippe; Salvato, Maria S; Moshkoff, Dmitry; Zapata, Juan; Tikhonov, Ilia; Patterson, Jean; Carrion, Ricardo; Ticer, Anysha; Brasky, Kathleen; Lukashevich, Igor S

    2006-02-20

    The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa. PMID:16412488

  15. Production of recombinant allergens in plants

    PubMed Central

    2010-01-01

    A large percentage of allergenic proteins are of plant origin. Hence, plant-based expression systems are considered ideal for the recombinant production of certain allergens. First attempts to establish production of plant-derived allergens in plants focused on transient expression in Nicotiana benthamiana infected with recombinant viral vectors. Accordingly, allergens from birch and mugwort pollen, as well as from apple have been expressed in plants. Production of house dust mite allergens has been achieved by Agrobacterium-mediated transformation of tobacco plants. Beside the use of plants as production systems, other approaches have focused on the development of edible vaccines expressing allergens or epitopes thereof, which bypasses the need of allergen purification. The potential of this approach has been convincingly demonstrated for transgenic rice seeds expressing seven dominant human T cell epitopes derived from Japanese cedar pollen allergens. Parallel to efforts in developing recombinant-based diagnostic and therapeutic reagents, different gene-silencing approaches have been used to decrease the expression of allergenic proteins in allergen sources. In this way hypoallergenic ryegrass, soybean, rice, apple, and tomato were developed. PMID:21258627

  16. Recombinant Expression of a Novel Fungal Immunomodulatory Protein with Human Tumor Cell Antiproliferative Activity from Nectria haematococca

    PubMed Central

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  17. Construction of Recombinant Baculoviruses Expressing Infectious Bursal Disease Virus Main Protective Antigen and Their Immune Effects on Chickens.

    PubMed

    Ge, Jingping; An, Qi; Song, Shanshan; Gao, Dongni; Ping, Wenxiang

    2015-01-01

    In order to overcome the limitations of conventional vaccines for infectious bursal disease virus (IBDV), we constructed recombinant dual expression system baculoviruses with VP2 and VP2/4/3, the main protective antigens of IBDV. We compared the immune effects of the baculoviruses in avian cells and detected their control effects on chickens with infectious bursal disease. We used Western blot analysis to measure VP2 protein and VP2/4/3 polyprotein expression in avian cells infected using the Bac-to-Bac baculovirus expression system. The recombinant baculoviruses were used to vaccinate specific pathogen-free chickens, which produced specific protective antibodies and strong cellular immune responses. The results of the virus challenge experiment revealed that the protective efficiency of VP2 and VP2/4/3 virus vaccines were 95.8% and 100%, respectively, both of which were higher than the vaccine group (87.5%), and significantly higher than the control group (50%). The results demonstrated that the immune effect of BV-S-ITRs-VP2/4/3 was superior to that of BV-S-ITRs-VP2. Compared with traditional attenuated vaccine and genetically engineered live vector vaccine, the dual expression viral vector vaccine has good bio-safety. The results of this study provide a foundation for the further development of poultry vaccines, in addition to providing a useful reference for developing non-replicating live vaccines against other viral diseases. PMID:26167907

  18. Construction of Recombinant Baculoviruses Expressing Infectious Bursal Disease Virus Main Protective Antigen and Their Immune Effects on Chickens

    PubMed Central

    Song, Shanshan; Gao, Dongni; Ping, Wenxiang

    2015-01-01

    In order to overcome the limitations of conventional vaccines for infectious bursal disease virus (IBDV), we constructed recombinant dual expression system baculoviruses with VP2 and VP2/4/3, the main protective antigens of IBDV. We compared the immune effects of the baculoviruses in avian cells and detected their control effects on chickens with infectious bursal disease. We used Western blot analysis to measure VP2 protein and VP2/4/3 polyprotein expression in avian cells infected using the Bac-to-Bac baculovirus expression system. The recombinant baculoviruses were used to vaccinate specific pathogen-free chickens, which produced specific protective antibodies and strong cellular immune responses. The results of the virus challenge experiment revealed that the protective efficiency of VP2 and VP2/4/3 virus vaccines were 95.8% and 100%, respectively, both of which were higher than the vaccine group (87.5%), and significantly higher than the control group (50%). The results demonstrated that the immune effect of BV-S-ITRs-VP2/4/3 was superior to that of BV-S-ITRs-VP2. Compared with traditional attenuated vaccine and genetically engineered live vector vaccine, the dual expression viral vector vaccine has good bio-safety. The results of this study provide a foundation for the further development of poultry vaccines, in addition to providing a useful reference for developing non-replicating live vaccines against other viral diseases. PMID:26167907

  19. Recombinant expression of a novel fungal immunomodulatory protein with human tumor cell antiproliferative activity from Nectria haematococca.

    PubMed

    Li, Shuying; Nie, Ying; Ding, Yang; Shi, Lijun; Tang, Xuanming

    2014-01-01

    To our best knowledge, all of the fungal immunomodulatory proteins (FIPs) have been successfully extracted and identified in Basidomycetes, with only the exception of FIP from ascomycete Nectria haematococca (FIP-nha) discovered through homology alignment most recently. In this work, a gene encoding FIP-nha was synthesized and recombinantly expressed in an Escherichia coli expression system. SDS-PAGE and MALDI-MS analyses of recombinant FIP-nha (rFIP-nha) indicated that the gene was successfully expressed. The yield of the bioactive FIP-nha protein was 42.7 mg/L. In vitro assays of biological activity indicated that the rFIP-nha caused hemagglutination of human and rabbit red blood cells, significantly stimulated mouse spleen lymphocyte proliferation, and enhanced expression of interleukin-2 (IL-2) released from mouse splenocytes, revealing a strong antitumor effect against HL60, HepG2 and MGC823. Through this work, we constructed a rapid and efficient method of FIP production, and suggested that FIP-nha is a valuable candidate for use in future medical care and pharmaceutical products. PMID:25272229

  20. Induction of robust immunity response in mice by dual-expression-system-based recombinant baculovirus expressing the capsid protein of porcine circovirus type 2

    PubMed Central

    2013-01-01

    Background Porcine circovirus type 2 (PCV2) is associated with post-weaning multisystemic wasting syndrome (PMWS), an emerging swine disease that causes progressive weight loss, dyspnea, tachypnea, anemia, jaundice, and diarrhea in piglets. Although baculovirus is an enveloped virus that infects insects in nature, it has emerged as a vaccine vector, and we used it to develop a novel candidate vaccine for a preventive or therapeutic strategy to control PCV2 infections. Methods Immunoblotting analysis of recombinant baculovirus and immunofluorescent staining of baculovirus-infected cells were followed using anti-ORF2 monoclonal antibodies. The BALB/c mice were immunized intramuscularly with this baculovirus. The titers of antibodies were mensurated with a Cap-protein-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The IFN-γ response in splenocytes harvested from immunized mice was measured by ELISA. Student's t-test was used to compare immune responses of different groups. Results In this study, we successfully constructed a dual-expression-system-based recombinant baculovirus BV-GD-ORF2, which can display the PCV2 capsid (Cap) protein and VSV-G protein on the viral envelope and also expressing Cap protein on transduced mammalian cells, thereby functioning as both a subunit and a DNA vaccine. After infection, the Cap protein was expressed and displayed on the viral surface, as demonstrated with an indirect fluorescence assay and immunoblotting. The vaccination of mice with recombinant baculovirus BV-GD-ORF2 successfully induced robust Cap-protein-specific humoral and cellular immune responses. Conclusions Our findings collectively demonstrate that the recombinant baculovirus BV-GD-ORF2 is a potential vaccine against PCV2 infections. PMID:24161107

  1. Expression and characterization of biologically active human hepatocyte growth factor (HGF) by insect cells infected with HGF-recombinant baculovirus.

    PubMed

    Yee, C J; DeFrances, M C; Bell, A; Bowen, W; Petersen, B; Michalopoulos, G K; Zarnegar, R

    1993-08-10

    A cDNA containing the entire coding sequence of human hepatocyte growth factor (HGF) [also known as scatter factor (SF)] was inserted into the genome of Autographa california nuclear polyhedrosis virus (baculovirus) adjacent to the polyhedrin promoter by homologous recombination. Insect cells (Spodoptera frugiperda) infected with the recombinant virus secrete relatively high levels (3-8 mg/L) of biologically active HGF into the culture medium. The recombinant HGF induces pronounced morphological changes and scattering of primary cultures of rat, mouse, and human hepatocytes within 24 h after plating and stimulates DNA synthesis in these cells with the same magnitude as native HGF derived from human placenta or rabbit serum. The human recombinant HGF produced by the insect cells is N-glycosylated, binds to heparin like native HGF, and is recognized by polyclonal antiserums raised against human or rabbit HGF as assessed by immunoblot, ELISA, and immunoneutralization experiments. Metabolic radiolabeling with L-[35S]methionine (pulse-chase experiments) as well as Western blot analysis indicates that the recombinant HGF is synthesized and secreted by the infected insect cells as the unprocessed single-chain form (pro-HGF) when the cells are cultured in serum-free medium. However, when the infected insect cells are cultured in insect culture medium (Grace's medium) containing fetal bovine serum, the secreted HGF is present mainly in the mature heterodimeric form. Addition of serum to the baculovirus-expressed single-chain [125I]HGF in a cell-free system results in conversion to the heterodimeric two-chain form, and the activation is prevented by the serine protease inhibitor PMSF. Incubation of 125I-labeled pro-HGF with rat liver or spleen extracts resulted in conversion of pro-HGF to the heterodimeric two-chain form. A truncated form of HGF containing the N-terminal portion of HGF (kringles 1-3) was also produced in the same expression system. This deleted HGF, by

  2. Chloroplast-targeted expression of recombinant crystal-protein gene in cotton: an unconventional combat with resistant pests.

    PubMed

    Kiani, Sarfraz; Mohamed, Bahaeldeen Babiker; Shehzad, Kamran; Jamal, Adil; Shahid, Muhammad Naveed; Shahid, Ahmad Ali; Husnain, Tayyab

    2013-07-10

    Plants transformed with single Bt gene are liable to develop insect resistance and this has already been reported in a number of studies carried out around the world where Bt cotton was cultivated on commercial scale. Later, it was envisaged to transform plants with more than one Bt genes in order to combat with resistant larvae. This approach seems valid as various Bt genes possess different binding domains which could delay the likely hazards of insect resistance against a particular Bt toxin. But it is difficult under field conditions to develop homozygous plants expressing all Bt genes equally after many generations without undergoing recombination effects. A number of researches claiming to transform plants from three to seven transgenes in a single plant were reported during the last decade but none has yet applied for patent of homozygous transgenic lines. A better strategy might be to use hybrid-Bt gene(s) modified for improved lectin-binding domains to boost Bt receptor sites in insect midgut. These recombinant-Bt gene(s) would express different lectin domains in a single polypeptide and it is relatively easy to develop homozygous transgenic lines under field conditions. Enhanced chloroplast-localized expression of hybrid-Bt gene would leave no room for insects to develop resistance. We devised and successfully applied this strategy in cotton (Gossypium hirsutum) and data up to T3 generation showed that our transgenic cotton plants were displaying enhanced chloroplast-targeted Cry1Ac-RB expression. Laboratory and field bioassays gave promising results against American bollworm (Heliothis armigera), pink bollworm (Pictinophora scutigera) and fall armyworm (Spodoptera frugiperda) that otherwise, were reported to have evolved resistance against Cry1Ac toxin. Elevated levels of hybrid-Bt toxin were confirmed by ELISA of chloroplast-enriched protein samples extracted from leaves of transgenic cotton lines. While, localization of recombinant Cry1Ac-RB protein in

  3. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  4. Expression and response surface optimization of the recovery and purification of recombinant D-galactose dehydrogenase from Pseudomonas fluorescens.

    PubMed

    Azar, Shadi Rokhsartalab; Naiebi, Raika; Homami, Ameneh; Akbari, Zahra; Kianmehr, Anvarsadat; Mahdizadehdehosta, Rahman; Najafzadeh, Faezeh

    2015-02-01

    The enzyme D-galactose dehydrogenase (GalDH) has been used in diagnostic kits to screen blood serum of neonates for galactosemia. It is also a significant tool for the measurement of β-D-galactose, α-D-galactose and lactose as well. In this study, response surface methodology (RSM) was used to identify the suitable conditions for recovery of recombinant GalDH from Pseudomonas fluorescens in aqueous two-phase systems (ATPS). The identified GalDH gene was amplified by PCR and confirmed by further cloning and sequencing. E. coli BL-21 (DE3) containing the GalDH gene on a plasmid (pET28aGDH) was used to express and purify the recombinant enzyme. The polyethylene glycol (PEG) and ammonium sulfate concentrations and pH value were selected as variables to analyze purification of GalDH. To build mathematical models, RSM with a central composite design was applied based on the conditions for the highest separation. The recombinant GalDH enzyme was expressed after induction with IPTG. It showed NAD'-dependent dehydrogenase activity towards D-Galactose. According to the RSM modeling, an optimal ATPS was composed of PEG-2000 14.0% (w/w) and ammonium sulfate 12.0% (w/w) at pH 7.5. Under these conditions, GalDH preferentially concentrated in the top PEG-rich phase. The enzyme activity, purification factor (PF) and recovery (R) were 1400 U/ml, 60.0% and 270.0%, respectively. The PEG and salt concentrations were found to have significant effect on the recovery of enzyme. Briefly, our data showed that RSM could be an appropriate tool to define the best ATPS for recombinant P. fluorescens GalDH recovery. PMID:26040113

  5. Expression and immunogenicity of recombinant glycoprotein D of herpes simplex virus 1 in Drosophila S2 cells.

    PubMed

    Mao, Hongyan; Zhao, Xiaofei; Zhu, Hongjuan; Guo, Jingxia; Ma, Zhenghai

    2016-05-18

    Herpes simplex virus type 1 (HSV-1) is responsible for cold sores in the general population, but also contributes to the development of other more serious diseases in some circumstances. The viral glycoprotein D (gD) is essential for virus entry into host cells. In the present study, the Drosophila melanogaster Schneider 2 (S2) expression system (DES) was evaluated for the expression of recombinant gD1. The DNA sequences encoding the full-length gD1 (369aa, FLgD1) and a truncated gD1 form corresponding to the ectodomain (314aa, EgD1) were cloned into S2 expression vector pMT/BiP/V5-HisA to generate pMT-EgD1 and pMT-FLgD1, respectively. Two forms of gD1 gene were fitted with a hexahistidine tag to facilitate their purification. Cell populations expressing the highest gD1 levels were selected by using a limiting dilution assay. Western blot, flow cytometry (FACS), and confocal immunofluoresence assay demonstrated that the full-length form is restrained in the lipid membranes of the cell and the ectodomain form is secreted into the medium. Recombinant ectodomain gD1 was scaled up and purified from the culture medium using nickel nitrilotriacetic acid affinity chromatography, and a maximum production level of 56.8 mg/L of recombinant gD1 was obtained in a shake-flask culture of S2 cells after induction with 5 µM CdCl2 for 4 days. Mice were then immunized with recombinant purified gD1 and produced high titers of antibody measured by enzyme-linked immunosorbent assay (ELISA; 1:5,120,000) as well as high plaque neutralization titer (1:320). Overall, the data indicated that stable expression in S2 cells is a practical way of synthesizing gD1 for use in structural and functional studies in the further study. PMID:26835587

  6. Chinese Hamster Ovary (CHO) Host Cell Engineering to Increase Sialylation of Recombinant Therapeutic Proteins by Modulating Sialyltransferase Expression

    PubMed Central

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R.; George, Henry J.; Brooks, Jeanne; Kayser, Kevin J.; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio-better” protein therapeutics and cell culture vaccine production. PMID:25641927

  7. Recombinant Newcastle disease virus expressing IL15 demonstrates promising antitumor efficiency in melanoma model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant Newcastle Disease Virus (rNDV) has shown oncolytic therapeutic effect in preclinical studies. Previous data indicate that rNDV carrying IL2 has shown promise in cancer therapy. Due to the significant side effects of IL2, IL15 has been introduced into cancer therapy. A number of studies h...

  8. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey L.; Mackett, Michael; Moss, Bernard

    1983-04-01

    Potential live vaccines against hepatitis B virus have been produced. The coding sequence for hepatitis B virus surface antigen (HBsAg) has been inserted into the vaccinia virus genome under control of vaccinia virus early promoters. Cells infected with these vaccinia virus recombinants synthesize and excrete HBsAg and vaccinated rabbits rapidly produce antibodies to HBsAg.

  9. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    NASA Astrophysics Data System (ADS)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  10. S2 expressed from recombinant virus confers broad protection against infectious bronchitis virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that overexposing the IBV (infectious bronchitis virus) S2 to the chicken immune system by means of a vectored vaccine, followed by boost with whole virus, protects chickens against IBV showing dissimilar S1. We developed recombinant Newcastle disease virus (NDV) LaSota (...

  11. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus.

    PubMed

    Bastos, Reginaldo G; Dellagostin, Odir A; Barletta, Raúl G; Doster, Allan R; Nelson, Eric; Osorio, Fernando A

    2002-11-22

    Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice. PMID:12443659

  12. Co-expression of ferrochelatase allows for complete heme incorporation into recombinant proteins produced in E. coli

    PubMed Central

    Sudhamsu, Jawahar; Kabir, Mariam; Airola, Michael V.; Patel, Bhumit A.; Yeh, Syun-Ru; Rousseau, Dennis L.; Crane, Brian R.

    2010-01-01

    Over-expression of heme binding proteins in E. coli often results in sub-optimal heme incorporation and the amount of heme-bound protein produced usually varies with the protein of interest. Complete heme incorporation is important for biochemical characterization, spectroscopy, structural studies, and for the production of homogeneous commercial proteins with high activity. We have determined that recombinant proteins expressed in E. coli often contain less than a full complement of heme because they rather are partially incorporated with free-base porphyrin. Porphyrin-incorporated proteins have similar spectral characteristics as the desired heme-loaded targets, and thus are difficult to detect, even in purified samples. We present a straightforward and inexpensive solution to this problem that involves the co-expression of native ferrochelatase with the protein of interest. The method is shown to be effective for proteins that contain either Cys- or His- ligated hemes. PMID:20303407

  13. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  14. Highly efficient immunodiagnosis of Large cardamom chirke virus using the polyclonal antiserum against Escherichia coli expressed recombinant coat protein.

    PubMed

    Vijayanandraj, S; Yogita, M; Das, Amrita; Ghosh, Amalendu; Mandal, Bikash

    2013-09-01

    Large cardamom chirke virus (LCCV), genus Macluravirus, family Potyviridae is an important constrain in large cardamom production in India. Purification of LCCV from large cardamom tissues is difficult and therefore immunodiagnostic reagents are not available. In the present study, we have successfully expressed coat protein (CP) gene of LCCV in Escherichia coli. The purification of expressed protein by Ni-NTA affinity chromatography was inefficient due to precipitation of protein during renaturation. We have optimized a simple, inexpensive and efficient method for purification of the expressed CP through gel extraction with 5 % SDS followed by renaturation in Milli-Q water, which resulted in high yield (4.7 mg/ml) and good quality of the protein. A higher titer (1:256,000) polyclonal antibody (PAb) to the recombinant CP was produced, which strongly recognized LCCV in crude leaf extract and showed minimal background reaction with the healthy leaf extract in enzyme linked immunosorbent assay (ELISA) and dot immunobinding assay (DIBA). The sensitivities of the ELISA and DIBA were 5 and 0.1 ng of expressed protein, respectively. Both the ELISA and DIBA were validated with 100 % accuracy in detecting LCCV in field samples. The PAb differentiated Cardamom mosaic virus, another close relative of LCCV. Our study is first to report highly efficient immunodiagnosis with PAb to E. coli expressed recombinant CP of a virus under the genus Macluravirus. The antigen expression construct and PAb developed in the present study will be useful in production of virus free planting materials of large cardamom. PMID:24426280

  15. High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli

    PubMed Central

    Saez, Natalie J.; Nozach, Hervé; Blemont, Marilyne; Vincentelli, Renaud

    2014-01-01

    Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive

  16. Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins.

    PubMed

    Im, Young Bin; Jung, Myunghwan; Shin, Min-Kyoung; Kim, Suk; Yoo, Han Sang

    2016-01-01

    Brucellosis is a clinically and economically important disease. Therefore, eradication programs of the disease have been implemented in several countries. One hurdle in these programs is the detection of infected animals at the early stage. Although the protein antigens as diagnostic antigens have recently received attention, the exact mechanisms at the beginning of immune responses are not yet known. Therefore, genes encoding five B. abortus cellular proteins were cloned and the expressed recombinant proteins were purified. The expression of several cytokine genes (IL-1β, IL-4, IL-6, IL-12p40, IFN-γ, TNF-α, and iNOS) was analyzed in bovine peripheral blood mononuclear cells (bPBMC) after stimulation with the recombinant proteins. Three apoptosis-related genes, Bax, Bcl-2, and TLR4, were also included in the analysis to find out the adverse effects of the proteins to the cells. Each protein induced different patterns of cytokine expression depending on the stimulation time and antigen dose. Expression of IL-6, IL-12p40, and IFN-γ was induced with all of the proteins while IL-1β, IL-4, TNF-α, and iNOS gene expression was not. Expression of apoptosis-related genes was not altered except TLR4. These results suggest that the cellular antigens of B. abortus induce both humoral and cellular immunity via the production of IL-6, IL-12p40, and IFN-γ in bPBMC without exerting any adverse effects on the cells. PMID:26864657

  17. Efficiency of Membrane Protein Expression Following Infection with Recombinant Adenovirus of Polarized Non-Transformed Human Retinal Pigment Epithelial Cells.

    PubMed

    Müller, Claudia; Blenkinsop, Timothy A; Stern, Jeffrey H; Finnemann, Silvia C

    2016-01-01

    Transient expression of exogenous proteins facilitates studies of molecular mechanisms and utility for transplantation of retinal pigment epithelial (RPE) cells in culture. Here, we compared expression of the membrane protein β5 integrin-GFP (β5-GFP) in two recently established models of differentiated human RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with recombinant adenovirus or transfection with DNA in liposomes. We varied viral titer and duration of virus incubation and examined β5-GFP and the tight junction marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells expressed β5-GFP after liposome-mediated transfection. The percentage of cells with detectable β5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. Decreasing virus titer two-fold did not alter the fraction of cells expressing β5-GFP but increased variability of β5-GFP level among cells. In cells with low expression levels, β5-GFP localized mostly to the apical plasma membrane like endogenous αvβ5 integrin. In cells with high expression levels, β5-GFP localized to the cytoplasm in addition to the apical surface suggesting accumulation in trafficking compartments. Altogether, adenovirus delivery yields efficient exogenous membrane protein expression of correct polarity in differentiated human RPE cells in culture. PMID:26427482

  18. High-level soluble expression of a bacterial N-acyl-d-glucosamine 2-epimerase in recombinant Escherichia coli.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Groher, Anna; Castiglione, Kathrin

    2015-07-01

    N-Acyl-d-glucosamine 2-epimerase (AGE) is an important enzyme for the biocatalytic synthesis of N-acetylneuraminic acid (Neu5Ac). Due to the wide range of biological applications of Neu5Ac and its derivatives, there has been great interest in its large-scale synthesis. Thus, suitable strategies for achieving high-level production of soluble AGE are needed. Several AGEs from various organisms have been recombinantly expressed in Escherichia coli. However, the soluble expression level was consistently low with an excessive formation of inclusion bodies. In this study, the effects of different solubility-enhancement tags, expression temperatures, chaperones and host strains on the soluble expression of the AGE from the freshwater cyanobacterium Anabaena variabilis ATCC 29413 (AvaAGE) were examined. The optimum combination of tag, expression temperature, co-expression of chaperones and host strain (His6-tag, 37°C, GroEL/GroES, E. coli BL21(DE3)) led to a 264-fold improvement of the volumetric epimerase activity, a measure of the soluble expression, compared to the starting conditions (His6-maltose-binding protein-tag, 20°C, without chaperones, E. coli BL21(DE3)). A maximum yield of 22.5mg isolated AvaAGE per liter shake flask culture was obtained. PMID:25804337

  19. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region

    SciTech Connect

    Kane, W.H.; Devore-Carter, D.; Ortel, T.L. )

    1990-07-24

    Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 {plus minus} 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 {plus minus} 0.012 to 0.124 {plus minus} 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 {plus minus} 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1,800 {plus minus} 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1,700-2,000 units/mg. Immunoprecipitation of ({sup 35}S)methionine-labeled rHFV revealed a single high molecular mass component. Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. The authors have also expressed a mutant, rHFV-des-B{sub 811-1441}, that lacks a large portion of the highly glycosylated connecting region that is present in factor V. This mutant constitutively expressed 38 {plus minus} 7% of the activity of the RVV-V-activated protein. These results suggest that one of the functions of the large connecting region in factor V is to inhibit constitutive procoagulant activity.

  20. Characterization of two truncated forms of xylanase recombinantly expressed by Lactobacillus reuteri with an introduced rumen fungal xylanase gene.

    PubMed

    Cheng, Hsueh-Ling; Hu, Chun-Yi; Lin, Shiou-Hua; Wang, Jing-Ya; Liu, Je-Ruei; Chen, Yo-Chia

    2014-10-01

    The xylanase R8 gene (xynR8) from uncultured rumen fungi was cloned and successfully expressed in Lactobacillus reuteri. A xylanase activity of 132.1 U/mL was found in the broth of L. reuteri R8, the transformant containing pNZ3004 vector with xynR8 gene insertion. Two distinct forms of recombinant xylanase with different hydrophobicities and molecular weights were found in the broth after purification. According to the results of Western blotting, only the T7-tag, fused in the N-terminus of XynR8, could be bound to the expressed proteins, which indicated that the C-terminus of XynR8 had been truncated. These results, combined with tryptic digestion and mass spectrometry analyses, allow us to attribute the two xylanase forms to an optional cleavage of C-terminal sequences, and XynR8A, a 13 amino acid residues truncated form, and XynR8B, a 22 amino acid residues truncated form, were the main products in the extracellular fraction of L. reuteri R8. The specific activities of XynR8A and R8B were 1028 and 395 U/mg protein. Both forms of recombinant xylanase displayed a typical endoxylanase activity when they were reacted with xylan, but XynR8A demonstrated a better specific activity, catalytic efficiency and thermostability than XynR8B according to the results of enzyme characterization. These changes in enzyme properties were highly possibly caused by the present of the β-sheet in the C-terminal undeleted fragment of XynR8A. This study demonstrates that modified forms with different enzyme properties could be produced when a gene was recombinantly expressed by a L. reuteri transformant. PMID:25152410

  1. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    SciTech Connect

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  2. Enhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen

    PubMed Central

    Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G.; Rafati, Sima

    2014-01-01

    Background Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Methodology/Principal Findings Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. Conclusion/Significance The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis. PMID:24675711

  3. Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice.

    PubMed

    Rosberg-Cody, Eva; Stanton, Catherine; O'Mahony, Liam; Wall, Rebecca; Shanahan, Fergus; Quigley, Eamonn M; Fitzgerald, Gerald F; Ross, R Paul

    2011-02-01

    We have previously demonstrated that oral administration of a metabolically active Bifidobacterium breve strain, with ability to form cis-9, trans-11 conjugated linoleic acid (CLA), resulted in modulation of the fatty acid composition of the host, including significantly elevated concentrations of c9, t11 CLA and omega-3 (n-3) fatty acids in liver and adipose tissue. In this study, we investigated whether a recombinant lactobacillus expressing linoleic acid isomerase (responsible for production of t10, c12 CLA) from Propionibacterium acnes (PAI) could influence the fatty acid composition of different tissues in a mouse model. Linoleic-acid-supplemented diets (2 %, w/w) were fed in combination with either a recombinant t10, c12 CLA-producing Lactobacillus paracasei NFBC 338 (Lb338), or an isogenic (vector-containing) control strain, to BALB/c mice for 8 weeks. A third group of mice received linoleic acid alone (2 %, w/w). Tissue fatty acid composition was assessed by GLC at the end of the trial. Ingestion of the strain expressing linoleic acid isomerase was associated with a 4-fold increase (P<0.001) in t10, c12 CLA in adipose tissues of the mice when compared with mice that received the isogenic non-CLA-producing strain. The livers of the mice that received the recombinant CLA-producing Lb338 also contained a 2.5-fold (albeit not significantly) higher concentration of t10, c12 CLA, compared to the control group. These data demonstrate that a single gene (encoding linoleic acid isomerase) expressed in an intestinal microbe can influence the fatty acid composition of host fat. PMID:21178166

  4. Recombinant expression, purification and preliminary biophysical and structural studies of C-terminal carbohydrate recognition domain from human galectin-4.

    PubMed

    Rustiguel, Joane K; Kumagai, Patricia S; Dias-Baruffi, Marcelo; Costa-Filho, Antonio J; Nonato, Maria Cristina

    2016-02-01

    Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities. PMID:26432949

  5. Limitations in the process of transcription and translation inhibit recombinant human chorionic gonadotropin expression in CHO cells.

    PubMed

    Liu, Yang; Yi, Xiaoping; Zhuang, Yingping; Zhang, Siliang

    2015-06-20

    Human chorionic gonadotropin (hCG) is a glycoprotein hormone that exists as a heterodimer with a α subunit and β subunit assembled together with disulfide bridges. This hormone plays an important role in the detection of ovulation induction and in the treatment of certain diseases that cause female infertility. The effects of transcription, subunit expression, assembling and secretion on recombinant hCG expression in CHO cells were studied using stable high-producing and low-producing cell lines generated by the FLP-In™ system. The results indicated that the mRNA and polypeptide levels of the β subunit were always higher than those of the α subunit. Further study confirmed that the differences were caused by the transcription rate rather than by mRNA stability. In the high-producing cell lines, there was obvious transcription level limitation of the α subunit in contrast to the β subunit. In addition, there was obvious limitation of the synthetic steps from mRNA to polypeptide for both the α subunit and the β subunit, especially the β subunit. Significant limitations of the assembly and secretion levels were not observed in this research. This study presents a research methodology for double subunit protein expression and provides valuable evidence for the enhancement of recombinant hCG productivity. PMID:25529346

  6. A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism.

    PubMed

    Johnston, I C; ter Meulen, V; Schneider-Schaulies, J; Schneider-Schaulies, S

    1999-08-01

    Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism. PMID:10400788

  7. High yield exogenous protein HPL production in the Bombyx mori silk gland provides novel insight into recombinant expression systems

    PubMed Central

    Wang, Huan; Wang, Lu; Wang, Yulong; Tao, Hui; Yin, Weimin; SiMa, Yanghu; Wang, Yujun; Xu, Shiqing

    2015-01-01

    The silk gland of Bombyx mori (BmSG) has gained significant attention by dint of superior synthesis and secretion of proteins. However, the application of BmSG bioreactor is still a controversial issue because of low yields of recombinant proteins. Here, a 3057 bp full-length coding sequence of Hpl was designed and transformed into the silkworm genome, and then the mutant (Hpl/Hpl) with specific expression of Hpl in posterior BmSG (BmPSG) was obtained. In the mutants, the transcription level of Fib-L and P25, and corresponding encoding proteins, did not decrease. However, the mRNA level of Fib-H was reduced by 71.1%, and Fib-H protein in the secreted fibroin was decreased from 91.86% to 71.01%. The mRNA level of Hpl was 0.73% and 0.74% of Fib-H and Fib-L, respectively, while HPL protein accounted for 18.85% of fibroin and 15.46% of the total amount of secreted silk protein. The exogenous protein was therefore very efficiently translated and secreted. Further analysis of differentially expressed gene (DEG) was carried out in the BmPSG cells and 891 DEGs were detected, of which 208 genes were related to protein metabolism. Reduced expression of endogenous silk proteins in the BmPSG could effectively improve the production efficiency of recombinant exogenous proteins. PMID:26370318

  8. High-yield bacterial expression and structural characterization of recombinant human insulin-like growth factor binding protein-2

    PubMed Central

    Swain, Monalisa; Slomiany, Mark G.; Rosenzweig, Steven A.; Atreya, Hanudatta S.

    2010-01-01

    The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-IR). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1–6; 22–31 kDa) that via high affinity binding to the IGFs (KD ~ 300–700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in E. coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP. PMID:20541521

  9. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccine strain) expressing the rabies virus glycoprotein in cattle.

    PubMed

    Aspden, Kate; van Dijk, Alberdina A; Bingham, John; Cox, Dermot; Passmore, Jo-Ann; Williamson, Anna-Lise

    2002-06-21

    Rabies virus (RV) readily infects cattle and causes a fatal neurological disease. A stable vaccine, which does not require the maintenance of a cold chain and that is administered once to elicit lifelong immunity to rabies would be advantageous. The present study describes the construction of a live recombinant lumpy skin disease virus (LSDV) vaccine, expressing the glycoprotein of rabies virus (RG) and assessment of its ability to generate a humoral and cellular immune response against rabies virus in cattle. Cattle inoculated with the recombinant virus (rLSDV-RG) developed humoral immunity that was demonstrated in ELISA and neutralisation assays to RV. High titres of up to 1513IU/ml of RV neutralising antibodies were induced. In addition, peripheral blood mononuclear cells from rLSDV-RG-immunised animals demonstrated the ability to proliferate in response to stimulation with inactivated RV, whereas the animal vaccinated with wild type LSDV did not. This recombinant vaccine candidate thus has the potential to be used in ruminants as a cost-effective vaccine against both lumpy skin disease (LSD) and rabies. PMID:12034095

  10. Producing Recombinant Adeno-Associated Virus in Foster Cells: Overcoming Production Limitations Using a Baculovirus–Insect Cell Expression Strategy

    PubMed Central

    Virag, Tamas; Cecchini, Sylvain

    2009-01-01

    Abstract Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells. PMID:19604040

  11. Hepatitis B virus large surface protein is not secreted but is immunogenic when selectively expressed by recombinant vaccinia virus.

    PubMed Central

    Cheng, K C; Smith, G L; Moss, B

    1986-01-01

    The envelope region of the hepatitis B virus (HBV) genome contains an open reading frame that begins upstream of the major surface protein gene. The two minor proteins that are initiated within this pre-s segment are immunogenic and may be involved in virus attachment to hepatocytes. We have constructed a recombinant vaccinia virus that contains the predicted coding segment for the large surface protein (LS) under control of a vaccinia virus that contains the predicted coding segment for the large surface protein (LS) under control of a vaccinia virus promoter. Cells infected with the recombinant virus synthesized HBV polypeptides of 39 and 42 kilodaltons, corresponding to the unglycosylated and glycosylated forms of LS, respectively. The presence of pre-s epitopes in the 39- and 42-kilodalton polypeptides was demonstrated by binding of antibody prepared against a synthetic peptide. Synthesis of the 42-kilodalton species was specifically inhibited by tunicamycin, suggesting that it is N-glycosylated. Despite apparent glycosylation, LS was not secreted into the medium of infected cells. Nevertheless, rabbits vaccinated with the purified recombinant virus made antibodies that recognized s and pre-s epitopes. Antibody to the NH2 terminus of LS appeared before or simultaneously with antibody that bound to the major surface protein. The additional immunogenicity provided by expression of LS may be advantageous for the development of an HBV vaccine. Images PMID:2430108

  12. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    PubMed

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection. PMID:9191864

  13. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3) for Detection of Human Malaria

    PubMed Central

    2016-01-01

    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection. PMID:27391270

  14. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry. PMID:26178068

  15. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3) for Detection of Human Malaria.

    PubMed

    De Silva, Jeremy Ryan; Lau, Yee-Ling; Fong, Mun-Yik

    2016-01-01

    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection. PMID:27391270

  16. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    PubMed

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. PMID:26988122

  17. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  18. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  19. Expression and purification of recombinant antibody formats and antibody fusion proteins.

    PubMed

    Siegemund, Martin; Richter, Fabian; Seifert, Oliver; Unverdorben, Felix; Kontermann, Roland E

    2014-01-01

    In the laboratory-scale production of antibody fragments or antibody fusion proteins, it is often difficult to keep track on the most suitable affinity tags for protein purification from either prokaryotic or eukaryotic host systems. Here, we describe how such recombinant proteins derived from Escherichia coli lysates as well as HEK293 cell culture supernatants are purified by IMAC and by different affinity chromatography methods based on fusions to FLAG-tag, Strep-tag, and Fc domains. PMID:24515473

  20. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. PMID:27105777

  1. Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum.

    PubMed

    Oh, Young Hoon; Choi, Jae Woo; Kim, Eun Young; Song, Bong Keun; Jeong, Ki Jun; Park, Kyungmoon; Kim, Il-Kwon; Woo, Han Min; Lee, Seung Hwan; Park, Si Jae

    2015-08-01

    Corynebacterium glutamicum is an important microorganism in the biochemical industry for the production of various platform chemicals. However, despite its importance, a limited number of studies have been conducted on how to constitute gene expression cassettes in engineered C. glutamicum to obtain desired amounts of the target products. Therefore, in this study, six expression cassettes for the expression of the second lysine decarboxylase of Escherichia coli, LdcC, were constructed using six synthetic promoters with different strengths and were examined in C. glutamicum for the production of cadaverine. Among six expression cassettes, the expression of the E. coli ldcC gene under the PH30 promoter supported the highest production of cadaverine in flask and fed-batch cultivations. A fed-batch fermentation of recombinant C. glutamicum expressing E. coli ldcC gene under the PH30 promoter resulted in the production of 40.91 g/L of cadaverine in 64 h. This report is expected to contribute toward developing engineered C. glutamicum strains to have desired features. PMID:26047931

  2. Combination of FACS and homologous recombination for the generation of stable and high-expression engineered cell lines.

    PubMed

    Shi, Lei; Chen, Xuesi; Tang, Wenying; Li, Zhenyi; Liu, Jin; Gao, Feng; Sang, Jianli

    2014-01-01

    Traditionally, cell line generation requires several months and involves screening of over several hundred cell clones for high productivity before dozens are selected as candidate cell lines. Here, we have designed a new strategy for the generation of stable and high-expression cell lines by combining homologous recombination (HR) and fluorescence-activated cell sorting (FACS). High expression was indicated by the expression of secreted green fluorescent protein (SEGFP). Parental cell lines with the highest expression of SEGFP were then selected by FACS and identified by stability analysis. Consequently, HR vectors were constructed using the cassette for SEGFP as the HR region. After transfecting the HR vector, the cells with negative SEGFP expression were enriched by FACS. The complete exchange between SEGFP and target gene (TNFR-Fc) cassettes was demonstrated by DNA analysis. Compared with the traditional method, by integrating the cassette containing the gene of interest into the pre-selected site, the highest producing cells secreted a more than 8-fold higher titer of target protein. Hence, this new strategy can be applied to isolated stable cell lines with desirable expression of any gene of interest. The stable cell lines can rapidly produce proteins for researching protein structure and function and are even applicable in drug discovery. PMID:24646904

  3. Human recombinant erythropoietin does not promote cancer growth in presence of functional receptors expressed in cancer cells.

    PubMed

    Belda-Iniesta, Cristóbal; Perona, Rosario; Carpeño, Javier de Castro; Cejas, Paloma; Casado, Enrique; Manguan-García, Cristina; Ibanez de Caceres, Inmaculada; Sanchez-Perez, Isabel; Andreu, Francisco Bernabeu; Ferreira, Javier Alves; Aguilera, Alfredo; de la Peña, Javier; Perez-Sánchez, Elia; Madero, Rosario; Feliu, Jaime; Sereno, María; González-Barón, Manuel

    2007-10-01

    Human recombinant erythropoietin (hrEPO) therapy might be associated with tumor progression and death. This effect has been suggested to be secondary to rhEPO binding to its receptor (EPOR) expressed on cancer cells. However, there are several concerns about EPOR functionality when expressed on cancer cells. In this paper we have provided evidence that EPOR expressed in cancer cells could be implicated in proliferation events because a transfection of EPOR siRNA to EPOR-expressing bladder cancer cells resulted in a marked reduction in cell growth. However, these cell lines do not grow in the presence of hrEPO. Furthermore, bladder cancer patients that expressed EPOR in tumor samples had a reduced survival in absence of rhEPO treatment. Therefore, EPOR is implicated in bladder cancer growth but this effect appears to be independent from rhEPO supplementation. Reports which suggest that rhEPO promotes cancer growth due to the expression of EPOR in cancer cells must be observed with caution since in the presence of functional EPOR rhEPO does not promote growth. PMID:17938574

  4. A novel expression vector, designated as pHisJM, for producing recombinant His-fusion proteins.

    PubMed

    Masuda, Junko; Takayama, Eiji; Satoh, Ayano; Kojima-Aikawa, Kyoko; Suzuki, Kimihiro; Matsumoto, Isamu

    2004-10-01

    Compared to glutathione S -transferase (GST), tagging with hexahistidine residues (His) has several merits: low levels of toxicity and immunogenicity, a smaller size and no electric charge. We have constructed a novel expression vector, designated as pHisJM (EMBL/GenBank/DDJB accession no. AB116367), for producing recombinant His-fusion proteins. This vector was constructed by replacing GST and multiple cloning site (MCS) cassettes in pGEX-5X-3 with those of hexahistidine and MCS derived from pRSET C vector. Human annexin IV (Anx IV) was used as target protein. His-Anx IV fusion protein was expressed using pHisJM and gave a 40 kDa band when immuno-stained with anti-His mAb or anti-Anx IV mAb as predicted. To compare expression efficiency, a Anx IV cDNA inserted-pHisJM or pGEX-5X-3 was transformed into Escherichia coli DH5alpha, JM109, BL21 and BL21(DE3). Using pHisJM, Anx IV protein was highly expressed in all cell strains. In addition to the merits of using His-tag, pHisJM has several advantages: 1) it has high expression efficiency; 2) it can be used in any Escherichia coli strain; and 3) it can be used in a single strain of Escherichia coli in all steps from plasmid construction to the expression of the target gene. PMID:15604794

  5. High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension.

    PubMed

    Subedi, Ganesh P; Johnson, Roy W; Moniz, Heather A; Moremen, Kelley W; Barb, Adam

    2015-01-01

    The art of producing recombinant proteins with complex post-translational modifications represents a major challenge for studies of structure and function. The rapid establishment and high recovery from transiently-transfected mammalian cell lines addresses this barrier and is an effective means of expressing proteins that are naturally channeled through the ER and Golgi-mediated secretory pathway. Here is one protocol for protein expression using the human HEK293F and HEK293S cell lines transfected with a mammalian expression vector designed for high protein yields. The applicability of this system is demonstrated using three representative glycoproteins that expressed with yields between 95-120 mg of purified protein recovered per liter of culture. These proteins are the human FcγRIIIa and the rat α2-6 sialyltransferase, ST6GalI, both expressed with an N-terminal GFP fusion, as well as the unmodified human immunoglobulin G1 Fc. This robust system utilizes a serum-free medium that is adaptable for expression of isotopically enriched proteins and carbohydrates for structural studies using mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, the composition of the N-glycan can be tuned by adding a small molecule to prevent certain glycan modifications in a manner that does not reduce yield. PMID:26779721

  6. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  7. Expression of Recombinant Human Insulin-like Growth Factor Type 1 (rhIGF-1) in Escherichia coli

    PubMed Central

    Iranpoor, Hamidreza; Omidinia, Eskandar; Vatankhah, Venus; Gharanjik, Vahid; Shahbazi, Majid

    2015-01-01

    Background: Human insulin-like growth factor type 1 (hIGF-1) is a protein consisting of 70 amino acids (MW=7.6 kDa) and mainly synthesized by liver. Mecasermin (Trade name INCRELEX) is the synthetic form of the protein which is used as an effective treatment for particular disorders such as short stature, type 1 and 2 diabetes, and wound healing. Current study was aimed to investigate the expression of human insulin-like growth factor type1 in Escherichia coli (E. coli) BL21 (DE3) expression system in order to produce an active recombinant form of the protein. Methods: For the purpose of the study, firstly codon optimization was done for hIGF-1 gene, using bioinformatics databases. Then, the gene was synthesized and inserted in pET-24a vector by a cutting strategy included NdeI and BamHI-HF enzymes. In the next step, gene was run in agarose gel and purified. The constructed expression cassette was transformed into E. coli BL21 (DE3) cells through CaCl 2 heat shock method. Identification and confirmation of the transformed colonies were performed using screening PCR method. Synthesis of hIGF-1 was induced by IPTG. The expression in induced strains was analyzed by SDS-PAGE and western blotting techniques. Confirmation of cloning and IGF-1 expression cassette was carried out through genetic engineering procedures. Results: Analysis of transformed E. coli strain with SDS-PAGE and western blotting techniques confirmed that gene was expressed in host cells. Molecular weight of the expressed protein was estimated to be 7.6 kDa. Conclusion: hIGF-1 expression cassette for cloning and expression in E. coli was designed and the protein of interest was successfully induced and identified. In addition, E. coli BL21 (DE3) can be used as a suitable host for production of recombin