Science.gov

Sample records for planted ancient woodland

  1. Ancient woodlands: modern threats.

    PubMed

    Rackham, Oliver

    2008-01-01

    This review discusses the following adverse influences on long-established forests, wood-pastures, and savannas in Europe and other continents: destruction and fragmentation; depletion; pollution and eutrophication; fire and lack of fire; excessive shade; excessive numbers of deer; invasive species and cultivars; infilling of savanna; climate change; and globalization of plant diseases. Human influences on the world's mainland forests and savannas have been pervasive throughout the Holocene, to the extent that recovering 'virgin forest' becomes a somewhat nebulous conservation objective. Present and future threats arise both from increasing human activities and from withdrawal of the human activities that have shaped forests in the past. The severity of different threats depends on so many factors, especially the properties of different plants and animals, that generalization is impossible; however, in the long term, spread of pathogens is probably the most serious threat. PMID:18771472

  2. Phytoliths in woody plants from the Miombo woodlands of Mozambique

    PubMed Central

    Mercader, Julio; Bennett, Tim; Esselmont, Chris; Simpson, Steven; Walde, Dale

    2009-01-01

    Background and Aims There are no descriptions of phytoliths produced by plants from the ‘Zambezian’ zone, where Miombo woodlands are the dominant element of the largest single phytochorion in sub-Saharan Africa. The preservation of phytoliths in fossil records of Africa makes phytoliths a tool to study early plant communities. Paleo-ethnobotanical interpretation of phytoliths relies on the comparison of ancient types with morphotypes extracted from living reference collections. Methods Phytoliths were extracted from plant samples representing 41 families, 77 genera and 90 species through sonic cleaning, dry ashing and acid treatment; and phytoliths thus extracted were quantified. For each species, an average of 216 phytoliths were counted. The percentage of each morphotype identified per species was calculated, and types were described according to the descriptors from the International Code for Phytolith Nomenclature. Phytolith assemblages were subject to discriminant analysis, cluster analysis and principal component analysis. Key Results Phytoliths were grouped into 57 morphotypes (two were articulated forms and 55 were discrete shapes), and provide a reference collection of phytolith assemblages produced by Miombo woody species. Common and unique morphotypes are described and taxonomic and grouping variables are looked into from a statistical perspective. Conclusions The first quantitative taxonomy of phytoliths from Miombos is presented here, including new types and constituting the most extensive phytolith key for any African ecoregion. Evidence is presented that local woody species are hypervariable silica producers and their phytolith morphotypes are highly polymorphic. The taxonomic significance of these phytoliths is largely poor, but there are important exceptions that include the morphotypes produced by members from >10 families and orders. The typical phytolithic signal that would allow scientists to identify ancient woodlands of

  3. Avian use of natural versus planted woodlands in eastern South Dakota, USA

    USGS Publications Warehouse

    Bakker, K.K.; Higgins, K.F.

    2003-01-01

    We compared avian use of naturally occurring and planted woodlands in eastern South Dakota, USA, to evaluate whether planted woodlands support the same avian communities as natural woodlands. A stratified cluster sample was used to randomly select 307 public areas in which to survey planted (n = 425) and natural (n = 99) woodland patches. Eighty-five species of birds were detected in eastern South Dakota woodlands, 36 of which occurred in ??? 5 of 524 patches surveyed. The probability of occurrence for 8 of 13 woodland-obligate species was significantly greater in natural woodland habitats than in planted woodland habitats. Four of these species breed in relatively high numbers in eastern South Dakota. Only one woodland-obligate occurred less frequently in natural woodlands. Probability of occurrence for 6 edge and generalist species, including the brown-headed cowbird (Molothrus ater [Boddaert]), was significantly higher in planted woodlands. The avian community of planted woodlands was dominated by edge and generalist species. The homogeneous vegetation structure typical of planted woodlands does not appear to provide the habitat characteristics needed by woodland-obligate birds. We conclude that planted woodlands do not support significant numbers of woodland-obligate species and may negatively impact grassland-nesting birds by attracting edge and generalist bird species and predators into previously treeless habitats. Planted woodlands cannot be considered equal replacement habitats for natural woodland patches when managing for nongame woodland bird species. However, the preservation and maintenance of natural woodlands is critical for woodland-obligate species diversity in the northern Great Plains.

  4. The ancient blue oak woodlands of California: longevity and hydroclimatic history

    USGS Publications Warehouse

    Stahle, D.W.; Griffin, R.D.; Meko, D.M.; Therrell, M.D.; Edmondson, J.R.; Cleaveland, M.K.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; Dettinger, M.D.; Cayan, D.R.

    2013-01-01

    Ancient blue oak trees are still widespread across the foothills of the Coast Ranges, Cascades, and Sierra Nevada in California. The most extensive tracts of intact old-growth blue oak woodland appear to survive on rugged and remote terrain in the south Coast Ranges and on the foothills west and southwest of Mt. Lassen. In our sampling of old-growth stands, most blue oak appear to have recruited to the canopy in the mid- to late-19th century. The oldest living blue oak tree sampled was over 459-years old and several dead blue oak logs had over 500 annual rings. Precipitation sensitive tree-ring chronologies up to 700-years long have been developed from old blue oak trees and logs. Annual ring-width chronologies of blue oak are strongly correlated with cool season precipitation totals, streamflow in the major rivers of California, and the estuarine water quality of San Francisco Bay. A new network of 36 blue oak chronologies records spatial anomalies in growth that arise from latitudinal changes in the mean storm track and location of landfalling atmospheric rivers. These long, climate-sensitive blue oak chronologies have been used to reconstruct hydroclimatic history in California and will help to better understand and manage water resources. The environmental history embedded in blue oak growth chronologies may help justify efforts to conserve these authentic old-growth native woodlands.

  5. Taxonomic homogenization of woodland plant communities over 70 years

    PubMed Central

    Keith, Sally A.; Newton, Adrian C.; Morecroft, Michael D.; Bealey, Clive E.; Bullock, James M.

    2009-01-01

    Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss. PMID:19625318

  6. Diversity of Woodland Communities and Plant Species along an Altitudinal Gradient in the Guancen Mountains, China

    PubMed Central

    Meng, Dongping; Zhang, Jin-Tun; Li, Min

    2012-01-01

    Study on plant diversity is the base of woodland conservation. The Guancen Mountains are the northern end of Luliang mountain range in North China. Fifty-three quadrats of 10 m × 20 m of woodland communities were randomly established along an altitudinal gradient. Data for species composition and environmental variables were measured and recorded in each quadrat. To investigate the variation of woodland communities, a Two-Way Indicator Species Analysis (TWINSPAN) and a Canonical Correspondence Analysis (CCA) were conducted, while species diversity indices were used to analyse the relationships between species diversity and environmental variables in this study. The results showed that there were eight communities of woodland vegetation; each of them had their own characteristics in composition, structure, and environment. The variation of woodland communities was significantly related to elevation and also related to slope, slope aspect, and litter thickness. The cumulative percentage variance of species-environment relation for the first three CCA axes was 93.5%. Elevation was revealed as the factor which most influenced community distribution and species diversity. Species diversity was negatively correlated with elevation, slope aspect, and litter thickness, but positively with slope. Species richness and heterogeneity increased first and then decreased but evenness decreased significantly with increasing elevation. Species diversity was correlated with slope, slope aspect, and litter thickness. PMID:22566768

  7. Mycorrhizal status of plant species in the Chaco Serrano Woodland from central Argentina.

    PubMed

    Fracchia, Sebastian; Aranda, Adriana; Gopar, Analia; Silvani, Vanesa; Fernandez, Laura; Godeas, Alicia

    2009-03-01

    We examined the mycorrhizal type of 128 plant species in two patches of native vegetation of the Chaco Serrano Woodland, central Argentina, the largest dry forest area in South America. Of the 128 plant species investigated (belonging to 111 genera in 53 families), 114 were colonized by arbuscular mycorrhizal fungi (AM), orchid mycorrhizal associations were present in the five terrestrial orchid species analyzed, one ectomycorrhiza was only present in Salix humboldtiana Willd., and 96 harbored a dark septate endophyte (DSE) association. Co-occurrence of AM and DSE was observed in 88 plant species. We determine morphological types of arbuscular mycorrhizal fungi (Arum, Paris, and intermediate AM structures) and report the mycorrhizal status in 106 new species, 12 of which are endemic to central Argentina and two, Aa achalensis Schltr. and Buddleja cordobensis Griseb., are declared to be vulnerable species. Root colonization in the Chaco Serrano Woodland is widespread and should be considered in revegetation programs due to the deterioration of this particular ecosystem. Considering the predominance of AM and DSE associations and the various potential benefits that these associations may bring to plant establishment, they should receive special attention in conservation and reforestation of these woodlands. PMID:19184128

  8. Historical ecology meets conservation and evolutionary genetics: a secondary contact zone between Carabus violaceus (Coleoptera, Carabidae) populations inhabiting ancient and recent woodlands in north-western Germany

    PubMed Central

    Matern, Andrea; Drees, Claudia; Härdtle, Werner; von Oheimb, Goddert; Assmann, Thorsten

    2011-01-01

    Abstract Only very few cases have documented that an increase in connectivity after a period of fragmentation in ecological time has had an effect on the distribution, genetic structure and morphology of stenotopic species. In this study we present an example of clinal variability in a woodland ground beetle as a result of changes in the connectivity of a landscape during the last two centuries. The study area hosts both the nominate form Carabus violaceus s. str. and the subspecies Carabus violaceus purpurascens, which is ranked as a distinct species by some authors. We studied 12 Carabus violaceus populations from a 30 km transect of ancient and recent forests in north-western Germany. We analyzed three polymorphic enzyme loci, classified the elytron sculpture and measured the shape of the aedeagus tip of the specimens. Carabus violaceus showed secondary gradients both in allozyme markers and morphometric characters in our study area. A genetic differentiation of 16% between the populations is high but lies within the range of intraspecific variability in habitat specialists of the genus Carabus. Populations had no significant deficit of heterozygotes. We found many hybrid populations in terms of morphological properties. This study highlights the conservation value of ancient woodland and the consequences of landscape connectivity and defragmentation on the genetic setting of a ground beetle. Moreover, it shows that differences in the external shape of male genitalia do not prevent gene flow within the genus Carabus. Thus, the establishment of species status should not exclusively be based on this property. PMID:21738433

  9. Declines in woodland salamander abundance associated with non-native earthworm and plant invasions.

    PubMed

    Maerz, John C; Nuzzo, Victoria A; Blossey, Bernd

    2009-08-01

    Factors that negatively affect the quality of wildlife habitat are a major concern for conservation. Non-native species invasions, in particular, are perceived as a global threat to the quality of wildlife habitat. Recent evidence indicates that some changes to understory plant communities in northern temperate forests of North America, including invasions by 3 non-native plant species, are facilitated by non-native earthworm invasion. Furthermore, non-native earthworm invasions cause a reduction in leaf litter on the forest floor, and the loss of forest leaf litter is commonly associated with declines in forest fauna, including amphibians. We conducted a mark-recapture study of woodland salamander abundance across plant invasion fronts at 10 sites to determine whether earthworm or plant invasions were associated with reduced salamander abundance. Salamander abundance declined exponentially with decreasing leaf litter volume. There was no significant relationship between invasive plant cover and salamander abundance, independent of the effects of leaf litter loss due to earthworm invasion. An analysis of selected salamander prey abundance (excluding earthworms) at 4 sites showed that prey abundance declined with declining leaf litter. The loss of leaf litter layers due to non-native earthworm invasions appears to be negatively affecting woodland salamander abundance, in part, because of declines in the abundance of small arthropods that are a stable resource for salamanders. Our results demonstrate that earthworm invasions pose a significant threat to woodland amphibian fauna in the northeastern United States, and that plant invasions are symptomatic of degraded amphibian habitat but are not necessarily drivers of habitat degradation. PMID:19236449

  10. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  11. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  12. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    NASA Astrophysics Data System (ADS)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  13. Impact and insights from ancient repetitive elements in plant genomes.

    PubMed

    Maumus, Florian; Quesneville, Hadi

    2016-04-01

    Transposable elements and other repeated sequences are predominant contributors to most plant genomes. The vast majority of repeated elements accumulate mutations to the extent of becoming anonymous sequences, also known as 'genomic dark matter' which is also thought to contribute significantly to the composition of plant genomes. This review aims to highlight recent methods and analyses suggesting that ancient repeats have profound effects on plant genome biology. PMID:26874965

  14. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama.

    PubMed

    MacFadden, Bruce J; Higgins, Pennilyn

    2004-06-01

    Middle Miocene mammals are known from approximately 15 million-year-old sediments exposed along the Panama Canal of Central America, a region that otherwise has an exceedingly poor terrestrial fossil record. These land mammals, which represent a part of the ancient terrestrial herbivore community, include an oreodont Merycochoerus matthewi, small camel-like protoceratid artiodactyl Paratoceras wardi, two horses Anchitherium clarencei and Archaeohippus sp., and two rhinos Menoceras barbouri and Floridaceras whitei. Bulk and serial carbon and oxygen isotope analyses of the tooth enamel carbonate allow reconstruction of the ancient climate and ecology of these fossil mammals. Ancient Panama had an equable climate with seasonal temperature and rainfall fluctuations less than those seen today. The middle Miocene terrestrial community consisted predominantly, or exclusively, of C3 plants, i.e., there is no evidence for C4 grasses. Statistically different mean carbon isotope values for the mammalian herbivores indicate niche partitioning of the C3 plant food resources. The range of individual carbon isotope analyses, i.e., delta13C from -15.9 to -10.1 per thousand, indicates herbivores feeding on diverse plants from different habitats with extrapolated delta13C values of -29.9 to -24.2 per thousand, possibly ranging from dense forest to more open country woodland. The ecological niches of individual mammalian herbivore species were differentiated either by diet or body size. PMID:15148598

  15. Vascular plants promote ancient peatland carbon loss with climate warming.

    PubMed

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. PMID:26730448

  16. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    PubMed Central

    2011-01-01

    Background Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Results Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. Conclusions This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives

  17. The primary control on ancient land plant diversity is climate

    SciTech Connect

    Raymond, A. . Dept. of Geology)

    1993-03-01

    Reproductive strategy and competition have been proposed as determinants of ancient land plant diversity. However climate is the primary control on modern plant productivity and diversity and may be the primary control on ancient diversity. For Silurian through Mid-Carboniferous land plants, the most profound diversity collapse and the greatest diversity increase occurred during times of global climate change. In the middle to late Frasnian, land plant diversity fell precipitously and remained low through the middle Famennian. Global warming probably triggered this event. Climate models suggest global warming at the end of Frasnian; the cosmopolitan faunas and floras of the Famennian indicate a uniform global climate. The diverse floras of the late Givetian and early Frasnian show pronounced latitudinal differentiation which disappeared after the diversity collapse. The depauperate floras of the late Frasnian--middle Famennian fall into two or three biogeographic units, each of which spans a large paleolatitudinal range. Land plant diversity remained constant during the Early Carboniferous and rose dramatically at the Mid-Carboniferous boundary at the onset of, and perhaps in response to, Southern Hemisphere glaciation. Polar glaciation contributes to ever wet, ever warm tropical climate because polar high pressure zones confine the intertropical convergence zone to a narrow latitudinal belt near the equator. As land plant diversity rose, the paleoequatorial coal belt of the Late Carboniferous became established, suggesting a correlation between increases in land plant diversity and tropical precipitation.

  18. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation patters are expected to change in the Mediterranean region within the next decades, with projected decreases in total rain fall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbustus unedo L., in Central Italy, to study...

  19. Ancient-modern concordance in Ayurvedic plants: some examples.

    PubMed Central

    Dev, S

    1999-01-01

    Ayurveda is the ancient (before 2500 b.c.) Indian system of health care and longevity. It involves a holistic view of man, his health, and illness. Ayurvedic treatment of a disease consists of salubrious use of drugs, diets, and certain practices. Medicinal preparations are invariably complex mixtures, based mostly on plant products. Around 1,250 plants are currently used in various Ayurvedic preparations. Many Indian medicinal plants have come under scientific scrutiny since the middle of the nineteenth century, although in a sporadic fashion. The first significant contribution from Ayurvedic materia medica came with the isolation of the hypertensive alkaloid from the sarpagandha plant (Rouwolfia serpentina), valued in Ayurveda for the treatment of hypertension, insomnia, and insanity. This was the first important ancient-modern concordance in Ayurvedic plants. With the gradual coming of age of chemistry and biology, disciplines central to the study of biologic activities of natural products, many Ayurvedic plants have been reinvestigated. Our work on Commiphora wightti gum-resin, valued in Ayurveda for correcting lipid disorders, has been described in some detail; based on these investigations, a modern antihyperlipoproteinemic drug is on the market in India and some other countries. There has also been concordance for a few other Ayurvedic crude drugs such as Asparagus racemosus, Cedrus deodara, and Psoralea corylifolia. Images Figure 1 Figure 2 PMID:10504143

  20. Woodland Detection.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1989-01-01

    Presents tips on nature observation during a woodland hike in the Adirondacks. Discusses engraver beetles and Dutch elm disease, birds' nests, hornets' nests, caterpillar webs, deer and bear signs, woodpecker holes, red squirrels, porcupine and beaver signs, and galls. (SV)

  1. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE PAGESBeta

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; Yepez, Enrico A.; Hudson, Patrick J.; Boutz, Amanda L.; Gehres, Nathan; Pockman, William T.; McDowell, Nate G.

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductionsmore » in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  2. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  3. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  4. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    PubMed Central

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  5. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    PubMed

    Brudvig, Lars A; Orrock, John L; Damschen, Ellen I; Collins, Cathy D; Hahn, Philip G; Mattingly, W Brett; Veldman, Joseph W; Walker, Joan L

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  6. Plant and soil surface responses to a combination of shrub removal and grazing in a shrub-encroached woodland.

    PubMed

    Daryanto, Stefani; Eldridge, David J

    2010-12-01

    Shrub encroachment into open woodland is a widespread phenomenon in semi-arid woodlands worldwide. Encroachment or woody thickening, is thought to result from overgrazing, changes in fire regimes and increased atmospheric carbon dioxide concentrations. Eighteen years after one-off shrub removal by ploughing we assessed the effects of four different land management systems resulting from two levels each of grazing (grazed, ungrazed) with and without ploughing, on the cover of landscape units, soil surface condition, diversity of understorey plants and density of shrubs. We recorded 2-7 times more patches under conventional conservation (unploughed-ungrazed) than the others treatments, and plant cover and diversity were greater on the two conservation (ungrazed) plots, irrespective of ploughing. Soils under shrubs and log mounds had greater indices of infiltration, stability and nutrients. Shrub density under the active pastoral (ploughed-grazed) treatment was two and a half times greater than that in other treatments, but results were not significant. The effects of different treatments on shrubs were largely species-specific. Overall, our results suggest that ploughing does not provide long-term control of encroaching shrubs. PMID:20696514

  7. Limits to Understory Plant Restoration Following Fuel-Reduction Treatments in a Piñon-Juniper Woodland

    NASA Astrophysics Data System (ADS)

    Redmond, Miranda D.; Zelikova, Tamara J.; Barger, Nichole N.

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments.

  8. Limits to understory plant restoration following fuel-reduction treatments in a piñon-juniper woodland.

    PubMed

    Redmond, Miranda D; Zelikova, Tamara J; Barger, Nichole N

    2014-11-01

    National fuel-reduction programs aim to reduce the risk of wildland fires to human communities and to restore forest and rangeland ecosystems to resemble their historical structure, function, and diversity. There are a number of factors, such as seed bank dynamics, post-treatment climate, and herbivory, which determine whether this latter goal may be achieved. Here, we examine the short-term (2 years) vegetation response to fuel-reduction treatments (mechanical mastication, broadcast burn, and pile burn) and seeding of native grasses on understory vegetation in an upland piñon-juniper woodland in southeast Utah. We also examine how wildlife herbivory affects the success of fuel-reduction treatments. Herbaceous cover increased in response to fuel-reduction treatments in all seeded treatments, with the broadcast burn and mastication having greater increases (234 and 160 %, respectively) in herbaceous cover than the pile burn (32 %). In the absence of seeding, herbaceous cover only increased in the broadcast burn (32 %). Notably, fuel-reduction treatments, but not seeding, strongly affected herbaceous plant composition. All fuel-reduction treatments increased the relative density of invasive species, especially in the broadcast burn, which shifted the plant community composition from one dominated by perennial graminoids to one dominated by annual forbs. Herbivory by wildlife reduced understory plant cover by over 40 % and altered plant community composition. If the primary management goal is to enhance understory cover while promoting native species abundance, our study suggests that mastication may be the most effective treatment strategy in these upland piñon-juniper woodlands. Seed applications and wildlife exclosures further enhanced herbaceous cover following fuel-reduction treatments. PMID:25064466

  9. Woodland Decomposition.

    ERIC Educational Resources Information Center

    Napier, J.

    1988-01-01

    Outlines the role of the main organisms involved in woodland decomposition and discusses some of the variables affecting the rate of nutrient cycling. Suggests practical work that may be of value to high school students either as standard practice or long-term projects. (CW)

  10. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    SciTech Connect

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; Yepez, Enrico A.; Hudson, Patrick J.; Boutz, Amanda L.; Gehres, Nathan; Pockman, William T.; McDowell, Nate G.

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be

  11. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  12. The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pinemountain mahogany woodland

    USGS Publications Warehouse

    Waitman, B.A.; Draper, T.M.; Esque, T.C.

    2009-01-01

    Post-fire seeding with grasses is a common practice for emergency rehabilitation of burned woodlands. However, most post-seeding monitoring does not address consequences to native flora. In November 2004, the US Forest Service hand-seeded triticale (Triticosecale Wittm. ex A. Camus), a sterile wheatrye hybrid, on a small burned area in the Spring Mountains of southern Nevada, United States. A monitoring project using paired plots was designed to quantify the effects of seeding triticale on density and species richness of native annual and perennial plants, cover of perennial plants, and aboveground production of annual plants. We did not find any effects of triticale seeding on annual plant species or most responses of perennial plants. However, the density of woody perennial seedlings was significantly lower 2 years after triticale was added. Although we found a smaller impact from seeding with exotic grass than other studies, quantifiable costs to native vegetation were observed. We caution against the use of non-native grass for seeding in areas with naturally low perennial recruitment. ?? IAWF 2009.

  13. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland.

    PubMed

    He, Xinhua; Bledsoe, Caroline S; Zasoski, Robert J; Southworth, Darlene; Horwath, William R

    2006-01-01

    Nitrogen transfer among plants in a California oak woodland was examined in a pulse-labeling study using 15N. The study was designed to examine N movement among plants that were mycorrhizal with ectomycorrhizas (EM), arbuscular mycorrhizas (AM), or both. Isotopically enriched N (K15NO3-) was applied to gray pine (Pinus sabiniana) foliage (donor) and traced to neighboring gray pine, blue oak (Quercus douglasii), buckbrush (Ceanothus cuneatus) and herbaceous annuals (Cynosurus echinatus, Torilis arvensis and Trifolium hirtum). After 2 wk, needles of 15N-treated pines and foliage from nearby annuals were similarly enriched, but little 15N had appeared in nontreated (receiver) pine needles, oak leaves or buckbrush foliage. After 4 wk foliar and root samples from pine, oak, buckbrush and annuals were significantly 15N-enriched, regardless of the type of mycorrhizal association. The rate of transfer during the first and second 2-wk periods was similar, and suggests that 15N could continue to be mobilized over longer times. PMID:16539611

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    PubMed Central

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability. PMID:25709807

  15. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    USGS Publications Warehouse

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  16. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.

    PubMed

    Tiley, George P; Ané, Cécile; Burleigh, J Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  17. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  18. Woody Plant Encroachment Paradox: Rivers Rebound as Degraded Grasslands Convert to Woodlands

    NASA Astrophysics Data System (ADS)

    Wilcox, B. P.; Huang, Y.

    2009-12-01

    The related phenomena of degradation and woody plant encroachment have transformed huge tracts of semiarid and subhumid rangelands. This transformation may have enormous consequences for regional water supplies, but to date few assessments have been done at scales larger than that of small catchments. Woody plant encroachment in particular is assumed to reduce groundwater recharge and, hence, baseflow to streams. For the study reported on in this paper, we analyzed the long-term (85 years) streamflow trends of four major river basins in the Edwards Plateau region of Central Texas. This region, in which springs are abundant because of the karst geology, has undergone both degradation and woody plant encroachment. We found that, contrary to common and widespread perceptions, streamflows have not been declining. In fact, the contribution of baseflow (supplied by springs and groundwater) has doubled—even though woody plant cover has expanded and rainfall amounts have remained relatively constant. We attribute this increase in springflow to a general landscape recovery that has taken place concurrent with woody plant expansion—a recovery brought about by lower grazing pressure and improved land management. Our results indicate that for drylands where the geology supports springs, it is degradation and not woody plant encroachment that leads to regional-scale declines in groundwater recharge and baseflows. Further, our results indicate that when woody plant expansion follows on the heels of degradation, it may even help reverse these declines.

  19. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mediterranean-type biome is rich in biological diversity and species endemism yet it supports large centers of human population and agriculture. Wine-grape production constitutes a major land use in this biome, and the mosaic of vines and native plant communities found in vineyard landscapes rep...

  20. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland

    PubMed Central

    Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069

  1. Woody plant encroachment paradox: Rivers rebound as degraded grasslands convert to woodlands

    NASA Astrophysics Data System (ADS)

    Wilcox, Bradford P.; Huang, Yun

    2010-04-01

    The related phenomena of degradation and woody plant encroachment have transformed huge tracts of rangelands. Woody encroachment is assumed to reduce groundwater recharge and streamflow. We analyzed the long-term (85 years) trends of four major river basins in the Edwards Plateau region of Texas. This region, in which springs are abundant because of the karst geology, has undergone degradation and woody encroachment. We found that, contrary to widespread perceptions, streamflows have not been declining. The contribution of baseflow has doubled—even though woody cover has expanded and rainfall amounts have remained constant. We attribute this increase in springflow to a landscape recovery that has taken place concurrently with woody expansion—a recovery brought about by lower grazing pressure. Our results indicate that for drylands where the geology supports springs, it is degradation and not woody encroachment that leads to regional-scale declines in groundwater recharge and streamflows.

  2. Influence of soil water repellency on seedling emergence and plant survival in a burned semi-arid woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite post-fire reseeding efforts, Pinus-Juniperus (piñon-juniper) woodlands often become invaded by annual weeds that out-compete native species, degrade ecological processes, and modify natural fire patterns. In order to develop successful post-fire restoration approaches in these communities, i...

  3. Status and limiting factors of three rare plant species in the coastal lowlands and mid-elevation woodlands of Hawai`i Volcanoes National Park

    USGS Publications Warehouse

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody

    2011-01-01

    Two endangered plant species (Portulaca sclerocarpa, `ihi mākole, and Sesbania tomentosa, `ōhai) and a species of concern (Bobea timonioides, `ahakea) native to the coastal lowlands and dry mid-elevation woodlands of Hawai`i Volcanoes National Park were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, seed germination rates in the greenhouse, presence of soil seed bank, and survival of both natural and planted seedlings. The role of rodents as fruit and seed predators was evaluated using exclosures and seed offerings in open and closed stations or cages. Rodents were excluded from randomly selected plants of P. sclerocarpa and from branches of S. tomentosa, and flower and fruit production were compared to that of adjacent unprotected plants. Tagged S. tomentosa fruit were also monitored monthly to detect rodent predation.

  4. Ancient signals: comparative genomics of green plant CDPKs

    PubMed Central

    Hamel, Louis-Philippe; Sheen, Jen; Séguin, Armand

    2014-01-01

    Calcium-dependent protein kinases (CDPKs) are multifunctional proteins combining calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this Review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently. PMID:24342084

  5. An ancient tripartite symbiosis of plants, ants and scale insects.

    PubMed

    Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

    2008-10-22

    In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16-20 million years (Myr). The prevalence of coccoids in ant-plant mutualisms suggest that they play an important role in the evolution of ant-plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7-9Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850

  6. An ancient tripartite symbiosis of plants, ants and scale insects

    PubMed Central

    Ueda, Shouhei; Quek, Swee-Peck; Itioka, Takao; Inamori, Keita; Sato, Yumiko; Murase, Kaori; Itino, Takao

    2008-01-01

    In the Asian tropics, a conspicuous radiation of Macaranga plants is inhabited by obligately associated Crematogaster ants tending Coccus (Coccidae) scale insects, forming a tripartite symbiosis. Recent phylogenetic studies have shown that the plants and the ants have been codiversifying over the past 16–20 million years (Myr). The prevalence of coccoids in ant–plant mutualisms suggest that they play an important role in the evolution of ant–plant symbioses. To determine whether the scale insects were involved in the evolutionary origin of the mutualism between Macaranga and Crematogaster, we constructed a cytochrome oxidase I (COI) gene phylogeny of the scale insects collected from myrmecophytic Macaranga and estimated their time of origin based on a COI molecular clock. The minimum age of the associated Coccus was estimated to be half that of the ants, at 7–9 Myr, suggesting that they were latecomers in the evolutionary history of the symbiosis. Crematogaster mitochondrial DNA (mtDNA) lineages did not exhibit specificity towards Coccus mtDNA lineages, and the latter was not found to be specific towards Macaranga taxa, suggesting that patterns of associations in the scale insects are dictated by opportunity rather than by specialized adaptations to host plant traits. PMID:18611850

  7. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development.

    PubMed

    Yang, Zefeng; Zhou, Yong; Huang, Jinling; Hu, Yunyun; Zhang, Enying; Xie, Zhengwen; Ma, Sijia; Gao, Yun; Song, Song; Xu, Chenwu; Liang, Guohua

    2015-04-01

    A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments. PMID:25420550

  8. The Sphagnum microbiome: new insights from an ancient plant lineage.

    PubMed

    Kostka, Joel E; Weston, David J; Glass, Jennifer B; Lilleskov, Erik A; Shaw, A Jonathan; Turetsky, Merritt R

    2016-07-01

    57 I. 57 II. 58 III. 59 IV. 59 V. 61 VI. 62 63 References 63 SUMMARY: Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed. PMID:27173909

  9. The history of the plant embryo. Terminology and visualization from ancient until modern times.

    PubMed

    Ingensiep, Hans Werner

    2004-01-01

    Since ancient times comparisons between embryonic forms of humans, animals, and plants are known. In deciphering a plant embryo and its development, one applied a specific zoomorphic terminology. Until the 17th century naturalists who studied plants were inspired by the concepts of ancient natural philosophy. Since then plant embryos are visualized by drawings and diagrammatic sketches. In the 18th century the embryo became an important issue in debates concerning theories of generation and the analogy between animal egg and vegetable seed was emphasized. Due to the cell theory and refined microscopic techniques around 1850 botanists described the 'plant embryo' as an aggregate of cells. The 20th century profited of further technical improvements, e.g. microphotography, SEM, and plant tissue culture. The spell of the word embryo integrated morphological and morphogenetic data in botany and served as a code to decipher botanic forms. The paper presents a short history of the concept of 'plant embryo' and focuses on its distinct meanings over centuries, supported by different images. PMID:16302691

  10. Drought Impacts on Ancient Maya Maize Agriculture Inferred from Isotopic Analyses of Plant Biomarkers

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2013-05-01

    There is increasing evidence suggesting that a series of droughts in the Maya lowlands of southeastern Mexico and northern Central America coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax hydrogen and carbon analyses in two lake sediment cores from the Yucatan and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change and assess drought impacts on maize agriculture In the Maya lowlands plant-wax hydrogen isotope ratios (δD) are controlled by the isotopic composition of precipitation and evapotranspiration, and are highly sensitive to changes in aridity. In this low-elevation tropical environment plant-wax carbon isotope ratios (δ13C) are largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δD would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analyses of plant-wax δD and δ13C from two lake sediment cores in the Maya lowlands indicate co-evolving changes in hydroclimate and C4 plant coverage over the past 4000 years. Compound-specific radiocarbon analyses of plant-waxes provide independent chronologies for these plant-wax stable isotope records, and plant-wax δD records developed using these chronologies agree closely with other regional records of hydroclimate change. Trends in plant-wax δD and δ13C diverge following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend

  11. Exploring the Woodland Floor

    ERIC Educational Resources Information Center

    Banner, Pat

    1974-01-01

    The article discusses the often ignored information that can be discovered by examining ground characteristics in woods and forests. Woodland cycles, the food chain, animal habitats, and nature's recycling are included. (KM)

  12. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    PubMed

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying. PMID:23160638

  13. The dynamics of functional classes of plant genes in rediploidized ancient polyploids

    PubMed Central

    2013-01-01

    Background To understand the particular evolutionary patterns of plant genomes, there is a need to systematically survey the fate of the subgenomes of polyploids fixed as whole genome duplicates, including patterns of retention of duplicate, triplicate, etc. genes. Results We measure the simultaneous dynamics of duplicate orthologous gene loss in rosids, in asterids, and in monocots, as influenced by biological functional class. This pan-angiosperm view confirms common tendencies and consistency through time for both ancient and more recent whole genome polyploidization events. Conclusions The gene loss analysis represents an assessment of post-polyploidization evolution, at the level of individual gene families within and across sister genomes. Functional analysis confirms universal trends previously reported for more recent plant polyploidy events: genes involved with regulation and responses were retained in multiple copies, while genes involved with metabolic and catalytic processes tended to lose copies, across all three groups of plants. PMID:24564814

  14. Changes in avian and plant communities of aspen woodlands over 12 years after livestock removal in the Northwestern Great Basin.

    PubMed

    Earnst, Susan L; Dobkin, David S; Ballard, Jennifer A

    2012-10-01

    Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1-3 (phase 1) and 10-12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots (stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity. PMID:22889077

  15. Changes in avian and plant communities of aspen woodlands over 12 years after livestock removal in the northwestern Great Basin

    USGS Publications Warehouse

    Earnst, Susan L.; Dobkin, David S.; Ballard, Jennifer A.

    2012-01-01

    Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots (x̄ = 2646 stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.

  16. The genome of woodland strawberry (Fragaria vesca)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The woodland strawberry, Fragaria vesca (2n=2x=14) is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (206Mb), is amenable to genetic transformation, and shares substantial sequence identity with the cultivated strawberry (F. × ananassa) as well as othe...

  17. Contrasting root associated fungi of three common oak-woodland plant species based on molecular identification: host specificity or non-specific amplification?

    PubMed

    Douhan, Greg W; Petersen, Carolyn; Bledsoe, Caroline S; Rizzo, David M

    2005-07-01

    An increasingly popular approach used to identify arbuscular mycorrhizal (AM) fungi in planta is to amplify a portion of AM fungal small subunit ribosomal DNA (SSU-rDNA) from whole root DNA extractions using the primer pair AM1-NS31, followed by cloning and sequencing. We used this approach to study the AM fungal community composition of three common oak-woodland plant species: a grass (Cynosurus echinatus), blue oak (Quercus douglasii), and a forb (Torilis arvensis). Significant diversity of AM fungi were found in the roots of C. echinatus, which is consistent with previous studies demonstrating a high degree of AM fungal diversity from the roots of various hosts. In contrast, clones from Q. douglasii and T. arvensis were primarily from non-AM fungi of diverse origins within the Ascomycota and Basidiomycota. This work demonstrates that caution must be taken when using this molecular approach to determine in planta AM fungal diversity if non-sequence based methods such as terminal restriction fragment length polymorphisms, denaturing gradient gel electrophoresis, or temperature gradient gel electrophoresis are used. PMID:15772816

  18. Using Geographical Information Systems to identify and target sites for creation and restoration of native woodlands: a case study of the Chiltern Hills, UK.

    PubMed

    Lee, John T; Bailey, Neil; Thompson, Stewart

    2002-01-01

    Rare and threatened habitats in Europe must be restored and enhanced in accordance with the European Union's Habitats and Species Directive. In the United Kingdom, conservation and expansion objectives for species and habitats are outlined in the Species Action Plans and Habitat Action Plans. Site identification for these measures has to date been ad hoc without consideration of either the existing "stock" of the natural resource or the ability of the surrounding land use to deliver the enhancement (enlargement) of a given habitat. Using a Geographical Information System, we outline a targeting system for creating new woodland in association with existing ancient woodland in the Chiltern Hills Area of Outstanding Natural Beauty. The aim was to create woodland blocks of at least 100 ha, as being of the most benefit to biodiversity. We identified existing patches of woodland between 20 and 50 ha as cores for habitat expansion and classified land use in terms of its suitability and proximity to these core areas for tree planting to meet the targets of the statutory body. Our results suggest that the targeting method employed is a useful tool for habitat restoration. PMID:11876071

  19. Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales)

    PubMed Central

    2014-01-01

    Background The aquatic flowering-plant family Hydatellaceae has a classic Gondwanan distribution, as it is found in Australia, India and New Zealand. To shed light on the biogeographic history of this apparently ancient branch of angiosperm phylogeny, we dated the family in the context of other seed-plant divergences, and evaluated its biogeography using parsimony and likelihood methods. We also explicitly tested the effect of different extinction rates on biogeographic inferences. Results We infer that the stem lineage of Hydatellaceae originated in the Lower Cretaceous; in contrast, its crown originated much more recently, in the early Miocene, with the bulk of its diversification after the onset of the Pliocene. Biogeographic reconstructions predict a mix of dispersal and vicariance events, but considerations of geological history preclude most vicariance events, besides a split at the root of the family between southern and northern clades. High extinction rates are plausible in the family, and when these are taken into account there is greater uncertainty in biogeographic inferences. Conclusions A stem origin for Hydatellaceae in the Lower Cretaceous is consistent with the initial appearance of fossils attributed to its sister clade, the water lilies. In contrast, the crown clade is young, indicating that vicariant explanations for species outside Australia are improbable. Although long-distance dispersal is likely the primary driver of biogeographic distribution in Hydatellaceae, we infer that the recent drying out of central Australia divided the family into tropical vs. subtropical/temperate clades around the beginning of the Miocene. PMID:24884487

  20. Private Woodland Owners' Perspectives on Multifunctionality in English Woodlands

    ERIC Educational Resources Information Center

    Urquhart, Julie; Courtney, Paul; Slee, Bill

    2012-01-01

    Increasing emphasis is being placed in forest policies to deliver public goods such as biodiversity, recreation, landscape and carbon sequestration, alongside timber production. In light of this, it is important to understand how woodland owners themselves perceive their role in delivering these multiple benefits. With up to 80% of woodland in…

  1. Choosing the Best Plant for the Job: A Cost-Effective Assay to Prescreen Ancient Plant Remains Destined for Shotgun Sequencing

    PubMed Central

    Wales, Nathan; Romero-Navarro, J. Alberto; Cappellini, Enrico; Gilbert, M. Thomas P

    2012-01-01

    DNA extracted from ancient plant remains almost always contains a mixture of endogenous (that is, derived from the plant) and exogenous (derived from other sources) DNA. The exogenous ‘contaminant’ DNA, chiefly derived from microorganisms, presents significant problems for shotgun sequencing. In some samples, more than 90% of the recovered sequences are exogenous, providing limited data relevant to the sample. However, other samples have far less contamination and subsequently yield much more useful data via shotgun sequencing. Given the investment required for high-throughput sequencing, whenever multiple samples are available, it is most economical to sequence the least contaminated sample. We present an assay based on quantitative real-time PCR which estimates the relative amounts of fungal and bacterial DNA in a sample in comparison to the endogenous plant DNA. Given a collection of contextually-similar ancient plant samples, this low cost assay aids in selecting the best sample for shotgun sequencing. PMID:23029156

  2. Great Basin semi-arid woodland dynamics during the late quaternary

    SciTech Connect

    Wigand, P.E.; Hemphill, M.L.; Sharpe, S.E.

    1995-09-01

    Semi-arid woodlands have dominated the middle elevations of Great Basin mountain ranges during the Holocene where subalpine woodlands prevailed during the Pleistocene. Ancient woodrat middens, and in a few cases pollen records indicate in the late Pleistocene and early Holocene woodland history lowered elevation of subalpine woodland species. After a middle Holocene retrenchment at elevations in excess of 500 meters above today, Juniper-dominated semi-arid woodland reached its late Holocene maximum areal extent during the Neoglacial (2 to 4 ka). These records, along with others indicate contracting semi-arid woodland after the Neoglacial about 1.9 ka. Desert shrub community expansion coupled with increased precariousness of wetland areas in the southern Great Basin between 1.9 and 1.5 ka coincide with shrinking wet-lands in the west-central and northern Great Basin. Coincident greater grass abundance in northern Great Basin sagebrush steppe, reaching its maximum between 1.5 and 1.2 ka, corresponds to dramatic increases in bison remains in the archaeological sites of the northern Intermontane West. Pollen and woodrat midden records indicate that this drought ended about 1.5 ka. Succeeding ameliorating conditions resulted in the sudden northward and downward expansion of pinon into areas that had been dominated by juniper during the Neoglacial. Maximum areal extent of pinon dominated semi-arid woodland in west-central Nevada was centered at 1.2 ka. This followed by 100 years the shift in dominance from juniper to pinon in southern Nevada semi-arid woodlands. Great Basin woodlands suffered from renewed severe droughts between .5 to .6 ka. Effectively wetter conditions during the {open_quotes}Little Ice Age{close_quotes} resulted in re-expansion of semi-arid woodland. Activities related to European settlement in the Great Basin have modified prehistoric factors or imposed new ones that are affecting woodland response to climate.

  3. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions?

    PubMed

    Pirie, Michael D; Litsios, Glenn; Bellstedt, Dirk U; Salamin, Nicolas; Kissling, Jonathan

    2015-06-01

    Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the 'Gondwanan vicariance' scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group. PMID:26063747

  4. Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions?

    PubMed Central

    Pirie, Michael D.; Litsios, Glenn; Bellstedt, Dirk U.; Salamin, Nicolas; Kissling, Jonathan

    2015-01-01

    Oceans, or other wide expanses of inhospitable environment, interrupt present day distributions of many plant groups. Using molecular dating techniques, generally incorporating fossil evidence, we can estimate when such distributions originated. Numerous dating analyses have recently precipitated a paradigm shift in the general explanations for the phenomenon, away from older geological causes, such as continental drift, in favour of more recent, long-distance dispersal (LDD). For example, the ‘Gondwanan vicariance’ scenario has been dismissed in various studies of Indian Ocean disjunct distributions. We used the gentian tribe Exaceae to reassess this scenario using molecular dating with minimum (fossil), maximum (geological), secondary (from wider analyses) and hypothesis-driven age constraints. Our results indicate that ancient vicariance cannot be ruled out as an explanation for the early origins of Exaceae across Africa, Madagascar and the Indian subcontinent unless a strong assumption is made about the maximum age of Gentianales. However, both the Gondwanan scenario and the available evidence suggest that there were also several, more recent, intercontinental dispersals during the diversification of the group. PMID:26063747

  5. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens

    NASA Astrophysics Data System (ADS)

    Murray, Dáithí C.; Pearson, Stuart G.; Fullagar, Richard; Chase, Brian M.; Houston, Jayne; Atchison, Jennifer; White, Nicole E.; Bellgard, Matthew I.; Clarke, Edward; Macphail, Mike; Gilbert, M. Thomas P.; Haile, James; Bunce, Michael

    2012-12-01

    The study of arid palaeoenvironments is often frustrated by the poor or non-existent preservation of plant and animal material, yet these environments are of considerable environmental importance. The analysis of pollen and macrofossils isolated from herbivore middens has been an invaluable source of information regarding past environments and the nature of ecological fluctuations within arid zones. The application of ancient DNA (aDNA) techniques to hot, arid zone middens remains unexplored. This paper attempts to retrieve and characterise aDNA from four Southern Hemisphere fossil middens; three located in hot, arid regions of Australia and one sample from South Africa's Western Cape province. The middens are dated to between 30,490 (±380) and 710 (±70) cal yr BP. The Brockman Ridge midden in this study is potentially the oldest sample from which aDNA has been successfully extracted in Australia. The application of high-throughput sequencing approaches to profile the biotic remains preserved in midden material has not been attempted to date and this study clearly demonstrates the potential of such a methodology. In addition to the taxa previously detected via macrofossil and palynological analyses, aDNA analysis identified unreported plant and animal taxa, some of which are locally extinct or endemic. The survival and preservation of DNA in hot, arid environments is a complex and poorly understood process that is both sporadic and rare, but the survival of DNA through desiccation may be important. Herbivore middens now present an important source of material for DNA metabarcoding studies of hot, arid palaeoenvironments and can potentially be used to analyse middens in these environments throughout Australia, Africa, the Americas and the Middle East.

  6. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  7. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    ScienceCinema

    Banks, Jody [Purdue University

    2013-01-22

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  8. The Genome of Selaginella: A Remnant of an Ancient Vascular Plant Lineage (JGI Seventh Annual User Meeting, 2012: Genomics of Energy and Environment)

    SciTech Connect

    Banks, Jody

    2012-03-21

    Jody Banks from Purdue University on "The Genome of Selaginella, a Remnant of an Ancient Vascular Plant Lineage" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif.

  9. An evaluation of woodland reclamation on strip-mined lands in east Texas

    NASA Astrophysics Data System (ADS)

    Gorsira, Bryan; Risenhoover, Ken L.

    1994-09-01

    We compared the composition and structural characteristics of reclaimed and native woody plant communities near Fairfield, Texas, to evaluate the effectiveness of woodland reclamation 3 11 years since establishment. Species composition, foliage density, canopy cover, and woody plant densities were recorded in plots randomly placed along transects bisecting blocks of reclaimed and native woodlands. During summer, vertical foliage densities at heights ≤2 m were similar among native and reclaimed areas. Foliage density and canopy cover declined in reclaimed blocks during winter, but remained relatively constant in native woodlands, where evergreens and vines were more common. Canopy cover was absent in reclaimed woodlands <6 years old but increased with age in 6 to 11-year-old blocks. These data indicated that approximately 27 years will be needed before trees in reclaimed blocks will achieve the stature of canopy trees in native woodlands. Reclaimed woodlands contained different woody plant species and had lower woody stem densities compared to native woodlands. On average, stem densities in reclaimed blocks were six times lower than densities in native woodlands. Comparisons with planting records indicate that survival of most commonly planted woody species was low. Only green ash (Fraxinus pennsylvanica), Russian oliver (Elaeagnus commutata), smooth sumac (Rhus glabra), and redbud (Cercis canadensis) had estimated survival rates >50%. Reclamation procedures used at Big Brown Mine (BBM) during 1981 1988 have not produced woodland habitats with vegetative characteristics comparable to premined woodlands and may not be providing the cover needed to encourage use by certain wildlife species. Procedures for improving woodland reclamation are recommended.

  10. Prescribed burning in mid and late successional juniper woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western juniper woodlands of the western United States have expanded rapidly since settlement in the late 1800’s. To recover shrub steppe and other plant communities requires that invasive junipers be controlled. We have evaluated recovery of several plant associations after combinations of junipe...

  11. The influence of woodland encroachment on runoff and erosion in sagebrush steppe systems, Great Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant co...

  12. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices

    PubMed Central

    Szpak, Paul

    2014-01-01

    Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts. PMID:25002865

  13. Re-annotation of the woodland strawberry (Fragaria vesca) genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a mo...

  14. The Influence of Encroaching Woodland on Grassland Enzymatic Activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. The assumption is that the soil microbial activity in the remain...

  15. The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards

    NASA Astrophysics Data System (ADS)

    Madzaric, Suzana; Aly, Adel; Ladisa, Gaetano; Calabrese, Generosa

    2014-05-01

    The effects of different soil cover management practices on plant biodiversity and soil properties in Mediterranean ancient olive orchards Madzaric S., Aly A., Ladisa G. and Calabrese G. The loss of natural plant cover due to the inappropriate soil cover management is often a decisive factor for soil degradation in Mediterranean area. This accompanied with typical climate, characterized by cool, wet winters and hot and dry summers leads to soil erosion and loss of productivity. Due to simplification of agricultural practice and to the attempt to decrease cost of production, keeping soil bare is a widespread agricultural practice in Mediterranean ancient olive orchards (AOOs). The consequences of this are degradation of soil quality and reduction of plant biodiversity. In last year's some alternative practices are proposed in order to protect soil and biodiversity. One of these practices is the "grassing" i.e. covering the soil by selected autochthonous plant species. Objectives of our study are: (1) to evaluate impact of different soil cover management practices on soil properties and plant biodiversity in AOOs and (2) to define a minimum indicators' set (Minimum Data Set - MDS) to evaluate the effectiveness of different agricultural practices in environmental performance of AOOs. A comparison was carried on considering two management systems (conventional vs. organic) and three agricultural practices: conventional with bare soil (CON), organic with soil covered by selected autochthonous species (MIX) and organic left to the native vegetation (NAT). In general a clear positive influence of organic management system was recognized. Some soil quality indicators (physical, chemical and biological) showed responsiveness in describing the effects of management system and agricultural practices on soil properties. The both approaches with vegetation cover on the soil surface (either sowing of mixture or soil left to the natural plant cover) performed better than

  16. Biodiversity effects and rates of spread of nonnative eucalypt woodlands in central California.

    PubMed

    Fork, Susanne; Woolfolk, Andrea; Akhavan, Antonia; Van Dyke, Eric; Murphy, Shirley; Candiloro, Bree; Newberry, Todd; Schreibman, Sondra; Salisbury, Joshua; Wasson, Kerstin

    2015-12-01

    Woodlands comprised of planted, nonnative trees are increasing in extent globally, while native woodlands continue to decline due to human activities. The ecological impacts of planted woodlands may include changes to the communities of understory plants and animals found among these nonnative trees relative to native woodlands, as well as invasion of adjacent habitat areas through spread beyond the originally planted areas. Eucalypts (Eucalyptus spp.) are among the most widely planted trees worldwide, and are very common in California, USA. The goals of our investigation were to compare the biological communities of nonnative eucalypt woodlands to native oak woodlands in coastal central California, and to examine whether planted eucalypt groves have increased in size over the past decades. We assessed site and habitat attributes and characterized biological communities using understory plant, ground-dwelling arthropod, amphibian, and bird communities as indicators. Degree of difference between native and nonnative woodlands depended on the indicator used. Eucalypts had significantly greater canopy height and cover, and significantly lower cover by perennial plants and species richness of arthropods than oaks. Community composition of arthropods also differed significantly between eucalypts and oaks. Eucalypts had marginally significantly deeper litter depth, lower abundance of native plants with ranges limited to western North America, and lower abundance of amphibians. In contrast to these differences, eucalypt and oak groves had very similar bird community composition, species richness, and abundance. We found no evidence of "invasional meltdown," documenting similar abundance and richness of nonnatives in eucalypt vs. oak woodlands. Our time-series analysis revealed that planted eucalypt groves increased 271% in size, on average, over six decades, invading adjacent areas. Our results inform science-based management of California woodlands, revealing that while

  17. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    PubMed

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages. PMID:19584142

  18. Comparative proteomic analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale and different monocot species.

    PubMed

    Salvato, Fernanda; Balbuena, Tiago S; Nelson, William; Rao, R Shyama Prasad; He, Ruifeng; Soderlund, Carol A; Gang, David R; Thelen, Jay J

    2015-04-01

    The rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants. In this work, we characterized the proteome of rhizome apical tips and elongation zones from different species using a GeLC-MS/MS (one-dimensional electrophoresis in combination with liquid chromatography coupled online with tandem mass spectrometry) spectral-counting proteomics strategy. Five rhizomatous grasses and an ancient species were compared to study the protein regulation in rhizomes. An average of 2200 rhizome proteins per species were confidently identified and quantified. Rhizome-characteristic proteins showed similar functional distributions across all species analyzed. The over-representation of proteins associated with central roles in cellular, metabolic, and developmental processes indicated accelerated metabolism in growing rhizomes. Moreover, 61 rhizome-characteristic proteins appeared to be regulated similarly among analyzed plants. In addition, 36 showed conserved regulation between rhizome apical tips and elongation zones across species. These proteins were preferentially expressed in rhizome tissues regardless of the species analyzed, making them interesting candidates for more detailed investigative studies about their roles in rhizome development. PMID:25716083

  19. Alkylresorcinol biosynthesis in plants: new insights from an ancient enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkylresorcinols are members of an extensive family of bioactive compounds referred to as phenolic lipids, which occur primarily in plants, fungi, and bacteria. In plants, alkylresorcinols and their derivatives are thought to serve important roles as phytoanticipins and allelochemicals, although di...

  20. Plants of the Olympic Coastal Forests: ancient knowledge of materials and medicines and future heritage.

    PubMed

    Forlines, D R; Tavenner, T; Malan, J C; Karchesy, J J

    1992-01-01

    The indigenous people of the west coast of Washington State's Olympic Peninsula have used a wide variety of forest plants for centuries to make materials and medicines. The late David Forlines shared at least eight generations of the knowledge of uses of these plants for materials and medicines with us in hopes that this information might be used 'to help science catch up with the old people.' Dyes, paints and adhesives were some of the materials made. The medicines were often administered as teas, but in some cases, fresh plant material was required. Some parallels were found to European and Chinese uses of similar species. Plants from the family Rosaceae had the greatest number of medicinal uses, but several other plant families known to contain polyphenols were also encountered. The role of polyphenols in the use of these plants is difficult to estimate because in many cases the plants have not been studied chemically. A preliminary screening indicated that many of the plants were rich in procyanidins and associated compounds. PMID:1417699

  1. Ancient Egyptian herbal wines

    PubMed Central

    McGovern, Patrick E.; Mirzoian, Armen; Hall, Gretchen R.

    2009-01-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products—specifically, herbs and tree resins—were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  2. Ancient Egyptian herbal wines.

    PubMed

    McGovern, Patrick E; Mirzoian, Armen; Hall, Gretchen R

    2009-05-01

    Chemical analyses of ancient organics absorbed into pottery jars from the beginning of advanced ancient Egyptian culture, ca. 3150 B.C., and continuing for millennia have revealed that a range of natural products--specifically, herbs and tree resins--were dispensed by grape wine. These findings provide chemical evidence for ancient Egyptian organic medicinal remedies, previously only ambiguously documented in medical papyri dating back to ca. 1850 B.C. They illustrate how humans around the world, probably for millions of years, have exploited their natural environments for effective plant remedies, whose active compounds have recently begun to be isolated by modern analytical techniques. PMID:19365069

  3. Phenolic Compounds from the Fruits of Medemia argun, a Food and Medicinal Plant of Ancient Egypt.

    PubMed

    Masullo, Milena; Hamed, Arafa I; Mahalel, Usama A; Pizza, Cosimo; Piacente, Sonia

    2016-03-01

    Medemia argun is a mysterious and little known monotypic fan palm from the Nubian Desert Oases of southern Egypt and northern Sudan. Its fruits have been found in the tombs from the 5th Dynasty (ca. 2500 BC) to Roman times (6-7th century AD), including the celebrated tomb of Tutankhamun. In ancient Egypt, the fruits of this palm were widely distributed and were highly valued, as confirmed by their frequent occurrence in offerings in the tombs. In order to elucidate the chemical composition of the phenolic fraction, phytochemical investigation of the BuOH extract of fruits was carried out to afford eight compounds (1-8), among which was the new 2,4-dihydroxy-6-methylacetophenone 2-0-β-D-glucopyranoside (1). With the aim to investigate if the high shelf life of M argun fruits could be related to the occurrence of antioxidant principles that were able to prevent oxidative reactions, the evaluation was carried out of the in vitro antioxidant activity by Trolox equivalent antioxidant capacity (TEAC) assay of the extract and isolated compounds. PMID:27169174

  4. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions

    PubMed Central

    Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue

    2016-01-01

    Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4–1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions. PMID:27149436

  5. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions.

    PubMed

    Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue

    2016-01-01

    Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4-1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions. PMID:27149436

  6. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages

    PubMed Central

    Johnson, Deborah A; Hill, Jeffrey P; Thomas, Michael A

    2006-01-01

    subfamilies of the Arabidopsis MST gene family are ancient in land plants and show differential subfamily expression and lineage-specific subfamily expansions. Patterns of gene expression in Arabidopsis and correlation of highly represented genes with best match homologs in early lineages suggests that broadly expressed genes are often highly conserved, and that most genes have more limited expression. PMID:16923188

  7. PII in higher plants: a modern role for an ancient protein.

    PubMed

    Uhrig, R Glen; Ng, Kenneth K S; Moorhead, Greg B G

    2009-09-01

    PII in prokaryotic organisms is a crucial integrator of cellular carbon, nitrogen and energy levels. In higher plants, however, its role remains significantly less clear. Previous findings suggest that PII-N-acetylglutamate kinase (NAGK) complex formation controls l-arginine biosynthesis, whereas other work implicates PII in regulating chloroplastic NO2(-) uptake. Together, these findings indicate that PII has evolved from a central metabolic role in prokaryotes towards a more specialized role in eukaryotes. Furthermore, recent genomic and bioinformatic findings reveal tissue-specific expression of PII in higher plants, with transcriptional expression patterns suggestive of a link between PII and storage protein production during seed development. This review focuses on the unique structural, biochemical and biological aspects of PII in higher plants. PMID:19720555

  8. All that is gold does not glitter? Age, taxonomy, and ancient plant DNA quality

    PubMed Central

    Choi, JinHee; Lee, HyeJi

    2015-01-01

    More than 600 herbarium samples from four distantly related groups of flowering plants were used for DNA extraction and subsequent measurements of DNA purity and concentration. We did not find any significant relation between DNA purity and the age of the sample. However, DNA yields were different between plant groups studied. We believe that there there should be no reservations about “old” samples if the goal is to extract more DNA of better purity. We argue that the older herbarium samples are the mine for the future DNA studies, and have the value not less than the “fresh” specimens. PMID:26244108

  9. All that is gold does not glitter? Age, taxonomy, and ancient plant DNA quality.

    PubMed

    Choi, JinHee; Lee, HyeJi; Shipunov, Alexey

    2015-01-01

    More than 600 herbarium samples from four distantly related groups of flowering plants were used for DNA extraction and subsequent measurements of DNA purity and concentration. We did not find any significant relation between DNA purity and the age of the sample. However, DNA yields were different between plant groups studied. We believe that there there should be no reservations about "old" samples if the goal is to extract more DNA of better purity. We argue that the older herbarium samples are the mine for the future DNA studies, and have the value not less than the "fresh" specimens. PMID:26244108

  10. Development of soil hydraulic soil properties below ancient forest, planted forest and grassland

    NASA Astrophysics Data System (ADS)

    Archer, Nicole; Otten, Wilfred; Schmidt, Sonja; Bengough, Glyn; Bonell, Mike; Shah, Nadeem

    2014-05-01

    A number of serious flood events in recent years have focused attention on flood prevention and mitigation and modelling work suggests that climate change will lead to an increase in the intensity and frequency of flood events in many areas. To understand how soil hydraulic characteristics develops in relation to facilitating the infiltration and storage of storm rainfall, a hypothetical pedogensis sequence was first developed and then tested by investigating a grassland site and four Scots pine (Pinus sylvestris) forests of different ages in the Scottish Highlands. These sites are: grassland, six and 45 year-old Scots pine plantations, remnant 300 year old individual Scots pines and a 4000 year old Caledonian Forest. The soil characteristics measured were: field saturated hydraulic conductivity (Kfs) using a constant head well permeameter, root numbers and proportion were estimated from soil pits and soil cores were taken for three different soil depths (0.06 - 0.10, 0.16 - 0.20 and 0.26 to 0.40m) for laboratory measurements to estimate organic matter, soil water release curves, macro-pores, and X - ray tomography measured pore connectivity and soil pore structure. It was observed that cutting down of the plantation increased organic matter because of the increase of dead biomass and decreased pore connectivity, which resulted in reduced hydraulic conductivity during the early years of re-afforestation. Where older trees were left, after cutting and removing younger trees; the range of OM, hydraulic conductivity, pore connectivity, and macropores remained similar to and older Scots pine plantation (45 years old). The undisturbed Ancient Caledonian remnant forest (approximately 4000 years old) was observed to have remarkably heterogeneous soil characteristics, providing extreme values of Kfs (12 to 4992 mm hr-1), OM, and macropores. Such ranges of soil characteristics were considered to be the optimum to reduce local flooding, because the soil matrix could

  11. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA

    PubMed Central

    Parducci, Laura; Väliranta, Minna; Salonen, J. Sakari; Ronkainen, Tiina; Matetovici, Irina; Fontana, Sonia L.; Eskola, Tiina; Sarala, Pertti; Suyama, Yoshihisa

    2015-01-01

    We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora. PMID:25487333

  12. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale.

    PubMed

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R; Thelen, Jay J

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  13. Large-Scale Proteome Comparative Analysis of Developing Rhizomes of the Ancient Vascular Plant Equisetum Hyemale

    PubMed Central

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R.; Thelen, Jay J.

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related

  14. Breeding bird response to juniper woodland expansion

    USGS Publications Warehouse

    Rosenstock, Steven S.; van Riper, Charles, III

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997a??1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  15. The carbon isotope composition of ancient CO2 based on higher-plant organic matter.

    PubMed

    Gröcke, Darren R

    2002-04-15

    Carbon isotope ratios in higher-plant organic matter (delta(13)C(plant)) have been shown in several studies to be closely related to the carbon isotope composition of the ocean-atmosphere carbon reservoir, and, in particular, the isotopic composition of CO(2). These studies have primarily been focused on geological intervals in which major perturbations occur in the oceanic carbon reservoir, as documented in organic carbon and carbonates phases (e.g. Permian-Triassic and Triassic-Jurassic boundary, Early Toarcian, Early Aptian, Cenomanian-Turonian boundary, Palaeocene-Eocene Thermal Maximum (PETM)). All of these events, excluding the Cenomanian-Turonian boundary, record negative carbon isotope excursions, and many authors have postulated that the cause of such excursions is the massive release of continental-margin marine gas-hydrate reservoirs (clathrates). Methane has a very negative carbon isotope composition (delta(13)C, ca. 60 per thousand ) in comparison with higher-plant and marine organic matter, and carbonate. The residence time of methane in the ocean-atmosphere reservoir is short (ca. 10 yr) and is rapidly oxidized to CO(2), causing the isotopic composition of CO(2) to become more negative from its assumed background value (delta(13)C, ca. -7 per thousand ). However, to date, only the Early Toarcian, Early Aptian and PETM are well-constrained chronometric sequences that could attribute clathrate release as a viable cause to create such rapid negative delta(13)C excursions. Notwithstanding this, the isotopic analysis of higher-plant organic matter (e.g. charcoal, wood, leaves, pollen) has the ability to (i) record the isotopic composition of palaeoatmospheric CO(2) in the geological record, (ii) correlate marine and non-marine stratigraphic successions, and (iii) confirm that oceanic carbon perturbations are not purely oceanographic in their extent and affect the entire ocean-atmosphere system. A case study from the Isle of Wight, UK, indicates that the

  16. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

    PubMed

    Izzo, Angelo A; Borrelli, Francesca; Capasso, Raffaele; Di Marzo, Vincenzo; Mechoulam, Raphael

    2009-10-01

    Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity. PMID:19729208

  17. Ancient Egypt.

    ERIC Educational Resources Information Center

    Evers, Virginia

    This four-week fourth grade social studies unit dealing with religious dimensions in ancient Egyptian culture was developed by the Public Education Religion Studies Center at Wright State University. It seeks to help students understand ancient Egypt by looking at the people, the culture, and the people's world view. The unit begins with outlines…

  18. Ancient Forests and the Tree-Ring Reconstruction of Past Climate (Ancient Forests and Dendroclimatology)

    SciTech Connect

    Stahle, David

    2003-02-12

    The original presettlement forests of North America have been dramatically altered, but thousands of unmolested ancient forests survive on remote or noncommercial terrain, including dry-site eastern hardwoods such as chestnut oak and post oak, the pinyon-juniper woodlands of the semiarid West, oak woodlands of California and in northeast Mexico, and the boreal forests of Canada and Alaska. Long tree-ring chronologies derived from these ancient forest remnants provide irreplaceable archives of environmental variability which are crucial for evaluating present and future change. Temperature sensitive tree -ring chronologies from cold treeline environments place 20th century warming into long historical perspective, and moisture sensitive tree-ring chronologies provide analogs to the decadal moisture regimes of the 20th century. These tree-ring data suggests that the 16th century megadrought was the most severe-sustained drought to impact North America in 1500 years, and had huge environmental and social impacts at the dawn of European settlement.

  19. Global hotspots in the present-day distribution of ancient animal and plant lineages.

    PubMed

    Procheş, Şerban; Ramdhani, Syd; Perera, Sandun J; Ali, Jason R; Gairola, Sanjay

    2015-01-01

    The current distribution of biotic lineages that emerged in the deep time has both theoretical and practical implications, in particular for understanding the processes that have forged present-day biodiversity and informing local and regional-scale conservation efforts. To date however, there has been no examination of such patterns globally across taxa and geological time. Here we map the diversity of selected extant seed plant and tetrapod vertebrate lineages that were already in existence either in the latest Triassic or latest Cretaceous. For Triassic-age lineages, we find concentrations in several regions - both tropical and temperate - parts of North America, Europe, East and South-east Asia, northern South America, and New Zealand. With Cretaceous-age lineages, high values are relatively uniformly distributed across the tropics, with peak the values along the Andes, in South-east Asia and Queensland, but also in the temperate Cape Mountains. These patterns result from a combination of factors, including land area, geographic isolation, climate stability and mass extinction survival ability. While the need to protect many of these lineages has been long recognised, a spatially-explicit approach is critical for understanding and maintaining the factors responsible for their persistence, and this will need to be taken forward across finer scales. PMID:26498226

  20. Global hotspots in the present-day distribution of ancient animal and plant lineages

    PubMed Central

    Procheş, Şerban; Ramdhani, Syd; Perera, Sandun J.; Ali, Jason R.; Gairola, Sanjay

    2015-01-01

    The current distribution of biotic lineages that emerged in the deep time has both theoretical and practical implications, in particular for understanding the processes that have forged present-day biodiversity and informing local and regional-scale conservation efforts. To date however, there has been no examination of such patterns globally across taxa and geological time. Here we map the diversity of selected extant seed plant and tetrapod vertebrate lineages that were already in existence either in the latest Triassic or latest Cretaceous. For Triassic-age linages, we find concentrations in several regions – both tropical and temperate – parts of North America, Europe, East and South-east Asia, northern South America, and New Zealand. With Cretaceous-age lineages, high values are relatively uniformly distributed across the tropics, with peak the values along the Andes, in South-east Asia and Queensland, but also in the temperate Cape Mountains. These patterns result from a combination of factors, including land area, geographic isolation, climate stability and mass extinction survival ability. While the need to protect many of these lineages has been long recognised, a spatially-explicit approach is critical for understanding and maintaining the factors responsible for their persistence, and this will need to be taken forward across finer scales. PMID:26498226

  1. The genome of woodland strawberry (Fragaria vesca)

    PubMed Central

    Shulaev, Vladimir; Sargent, Daniel J; Crowhurst, Ross N; Mockler, Todd C; Folkerts, Otto; Delcher, Arthur L; Jaiswal, Pankaj; Mockaitis, Keithanne; Liston, Aaron; Mane, Shrinivasrao P; Burns, Paul; Davis, Thomas M; Slovin, Janet P; Bassil, Nahla; Hellens, Roger P; Evans, Clive; Harkins, Tim; Kodira, Chinnappa; Desany, Brian; Crasta, Oswald R; Jensen, Roderick V; Allan, Andrew C; Michael, Todd P; Setubal, Joao Carlos; Celton, Jean-Marc; Rees, D Jasper G; Williams, Kelly P; Holt, Sarah H; Ruiz Rojas, Juan Jairo; Chatterjee, Mithu; Liu, Bo; Silva, Herman; Meisel, Lee; Adato, Avital; Filichkin, Sergei A; Troggio, Michela; Viola, Roberto; Ashman, Tia-Lynn; Wang, Hao; Dharmawardhana, Palitha; Elser, Justin; Raja, Rajani; Priest, Henry D; Bryant, Douglas W; Fox, Samuel E; Givan, Scott A; Wilhelm, Larry J; Naithani, Sushma; Christoffels, Alan; Salama, David Y; Carter, Jade; Girona, Elena Lopez; Zdepski, Anna; Wang, Wenqin; Kerstetter, Randall A; Schwab, Wilfried; Korban, Schuyler S; Davik, Jahn; Monfort, Amparo; Denoyes-Rothan, Beatrice; Arus, Pere; Mittler, Ron; Flinn, Barry; Aharoni, Asaph; Bennetzen, Jeffrey L; Salzberg, Steven L; Dickerman, Allan W; Velasco, Riccardo; Borodovsky, Mark; Veilleux, Richard E; Folta, Kevin M

    2012-01-01

    The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted. PMID:21186353

  2. Woodlands Grazing Issues in Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Campos, P.

    2009-04-01

    In Mediterranean basin, woodlands grazing still continue to be important commercial owners' benefits. These owners manage woodlands vegetations as if they were not at risk of degradation and declining. Frequently, no temporally grazing set-aside is taken into account to avoid overgrazing of annual and perennial vegetations. Although less common, in the northern shore of Mediterranean basin undergrazing might increase the frequency and the number of catastrophic forest fires. This under/over grazing regime occurs in the Mediterranean basin woodlands with contrasted differences on land property rights, local economies and government livestock policy incentives. Spain and Tunisia are examples of these Mediterranean livestock contrasts. Most of Spanish Mediterranean woodlands and livestock herds are large private ownerships and owners could maintain their lands and livestock herds properties on the basis of moderate cash-income compensation against land revaluation and exclusive amenity self-consumption. The later is less tangible benefit and it could include family land legacy, nature enjoyment, country stile of life development, social status and so on. In public woodlands, social and environmental goals -as they are cultural heritage, biodiversity loss mitigation, soil conservation and employment- could maintain market unprofitable woodlands operations. Last three decades Spanish Mediterranean woodlands owners have increased the livestock herds incentivized by government subsidies. As result, grazing rent is pending on the level of European Union and Spanish government livestock subsidies. In this context, Spanish Mediterranean woodlands maintain a high extensive livestock stoking population, which economy could be called fragile and environmentally unsustainable because forest degradation and over/under grazing practices. Tunisian Mediterranean woodlands are state properties and livestock grazing is practice as a free private regimen. Livestock herds are small herd

  3. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed Central

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F.

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the ‘intersection effect’). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  4. At the Crossroads: Does the Configuration of Roadside Vegetation Affect Woodland Bird Communities in Rural Landscapes?

    PubMed

    Hall, Mark; Nimmo, Dale; Bennett, Andrew F

    2016-01-01

    In agricultural regions worldwide, linear networks of vegetation such as hedges, fencerows and live fences provide habitat for plant and animal species in heavily modified landscapes. In Australia, networks of remnant native vegetation along roadsides are a distinctive feature of many rural landscapes. Here, we investigated the richness and composition of woodland-dependent bird communities in networks of eucalypt woodland vegetation along roadsides, in an agricultural region in which >80% of native woodland and forest vegetation has been cleared. We stratified sites in a) cross sections and b) linear strips of roadside vegetation, to test the influence on woodland birds of site location and configuration in the linear network (the 'intersection effect'). We also examined the influence of tree size at the site, the amount of wooded vegetation surrounding the site, and the abundance of an aggressive native species, the noisy miner Manorina melanocephala. Birds were surveyed at 26 pairs of sites (cross section or linear strip) on four occasions. A total of 66 species was recorded, including 35 woodland species. The richness of woodland bird species was influenced by site configuration, with more species present at cross sections, particularly those with larger trees (>30 cm diameter). However, the strongest influence on species richness was the relative abundance of the noisy miner. The richness of woodland birds at sites where noisy miners were abundant was ~20% of that where miners were absent. These results recognise the value of networks of roadside vegetation as habitat for woodland birds in depleted agricultural landscapes; but highlight that this value is not realised for much of this vast vegetation network because of the dominance of the noisy miner. Nevertheless, roadside vegetation is particularly important where the configuration of networks create nodes that facilitate movement. Globally, the protection, conservation and restoration of such linear

  5. Ancient Civilizations.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide includes Web sites and other resources on ancient civilizations with age levels and appropriate subject disciplines specified. Also includes CD-ROMs and software, videos, books, audios, magazines, professional resources, and a sample student assignment. (LRW)

  6. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  7. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns

    NASA Astrophysics Data System (ADS)

    Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.

    2016-06-01

    Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.

  8. Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.

    PubMed

    Prober, Suzanne M; Bissett, A; Walker, C; Wiehl, G; McIntyre, S; Tibbett, M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant-soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils. PMID:24879562

  9. [Ancientness and maturity: two complementary qualities of forest ecosystems].

    PubMed

    Cateau, Eugénie; Larrieu, Laurent; Vallauri, Daniel; Savoie, Jean-Marie; Touroult, Julien; Brustel, Hervé

    2015-01-01

    Ancientness and maturity are two major qualities of forest ecosystems. They are components of naturalness and are affected by human impact. These qualities and the associated terms are often mixed up and incorrectly used. We have carried out a synthesis in order to propose an adapted French terminology based on international literature. The topics of ancientness and maturity for biodiversity and soil characteristics are explained. This review leads us to submit different potential thresholds for ancientness and maturity. An analysis on ancientness and maturity on forest data for France leads to the conclusion that about 29% of all forests can be considered "ancient woodland", and less than 3% of the even-age forest is older than the harvesting age. PMID:25455000

  10. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2.

    PubMed

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2015-01-01

    The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant-fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant-fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort-Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort-Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2 , we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis. PMID:25230098

  11. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers

    PubMed Central

    2012-01-01

    Background Seed plants are composed of angiosperms and gymnosperms, which diverged from each other around 300 million years ago. While much light has been shed on the mechanisms and rate of genome evolution in flowering plants, such knowledge remains conspicuously meagre for the gymnosperms. Conifers are key representatives of gymnosperms and the sheer size of their genomes represents a significant challenge for characterization, sequencing and assembling. Results To gain insight into the macro-organisation and long-term evolution of the conifer genome, we developed a genetic map involving 1,801 spruce genes. We designed a statistical approach based on kernel density estimation to analyse gene density and identified seven gene-rich isochors. Groups of co-localizing genes were also found that were transcriptionally co-regulated, indicative of functional clusters. Phylogenetic analyses of 157 gene families for which at least two duplicates were mapped on the spruce genome indicated that ancient gene duplicates shared by angiosperms and gymnosperms outnumbered conifer-specific duplicates by a ratio of eight to one. Ancient duplicates were much more translocated within and among spruce chromosomes than conifer-specific duplicates, which were mostly organised in tandem arrays. Both high synteny and collinearity were also observed between the genomes of spruce and pine, two conifers that diverged more than 100 million years ago. Conclusions Taken together, these results indicate that much genomic evolution has occurred in the seed plant lineage before the split between gymnosperms and angiosperms, and that the pace of evolution of the genome macro-structure has been much slower in the gymnosperm lineage leading to extent conifers than that seen for the same period of time in flowering plants. This trend is largely congruent with the contrasted rates of diversification and morphological evolution observed between these two groups of seed plants. PMID:23102090

  12. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  13. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2

    PubMed Central

    Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia

    2015-01-01

    The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant–fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant–fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort–Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort–Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2, we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis. PMID:25230098

  14. Woodland Biology for Hundreds of Boys.

    ERIC Educational Resources Information Center

    Colman, Margaret

    1982-01-01

    Describes outdoor biology activities in a woodland area at a private boys school in England. Activities included studies of areas within the woods, winter trips, and wood and pond animals. Includes comments on preparing for and teaching the activities. (Author/JN)

  15. Energy Flow in a Woodland Ecosystem.

    ERIC Educational Resources Information Center

    Aston, T. J.

    1978-01-01

    The study of energy flow in a woodland ecosystem was attempted during a seven-day field course, using simple equipment. It is possible to quantify or estimate many of the components, and the methods used are described. Suggestions are made for maximizing education return from the available time and labor. (Author/BB)

  16. Woodland Culture Area. Native American Curriculum Series.

    ERIC Educational Resources Information Center

    Ross, Cathy; Fernandes, Roger

    One in a series of Native American instructional materials, this booklet introduces elementary students to the tribes of the woodland culture area, extending from the Mississippi River to the Atlantic Ocean and from Florida to the Great Lakes. Written in simple language, the booklet provides an overview of the regional culture, as well as,…

  17. Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade.

    PubMed

    Volkmar, U; Groth-Malonek, M; Heinrichs, J; Muhle, H; Polsakiewicz, M; Knoop, V

    2012-03-01

    Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales. PMID:21973214

  18. Ancient Egypt

    NASA Astrophysics Data System (ADS)

    Swamy, Ashwin Balegar

    This thesis involves development of an interactive GIS (Geographic Information System) based application, which gives information about the ancient history of Egypt. The astonishing architecture, the strange burial rituals and their civilization were some of the intriguing questions that motivated me towards developing this application. The application is a historical timeline starting from 3100 BC, leading up to 664 BC, focusing on the evolution of the Egyptian dynasties. The tool holds information regarding some of the famous monuments which were constructed during that era and also about the civilizations that co-existed. It also provides details about the religions followed by their kings. It also includes the languages spoken during those periods. The tool is developed using JAVA, a programing language and MOJO (Map Objects Java Objects) a product of ESRI (Environmental Science Research Institute) to create map objects, to provide geographic information. JAVA Swing is used for designing the user interface. HTML (Hyper Text Markup Language) pages are created to provide the user with more information related to the historic period. CSS (Cascade Style Sheets) and JAVA Scripts are used with HTML5 to achieve creative display of content. The tool is kept simple and easy for the user to interact with. The tool also includes pictures and videos for the user to get a feel of the historic period. The application is built to motivate people to know more about one of the prominent and ancient civilization of the Mediterranean world.

  19. Tomato Cutin Deficient 1 (CD1) and Putative Orthologs Comprise an Ancient Family of Cutin Synthase-like (CUS) Proteins that are Conserved among Land Plants

    PubMed Central

    Yeats, Trevor H.; Huang, Wenlin; Chatterjee, Subhasish; Viart, Hélène M-F.; Clausen, Mads H.; Stark, Ruth E.; Rose, Jocelyn K.C.

    2014-01-01

    Summary The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids. However, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL super-family. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors. PMID:24372802

  20. Santa Barbara microwave backscattering model for woodlands

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Day, J.; Sun, G.

    1993-01-01

    The Santa Barbara microwave backscattering model for woodland vegetation with discontinuous tree canopies is described, with an emphasis on the construction of the model from probability-weighted sub-components. The modelling approach is to treat individual tree crowns as scatterers and attenuators, using the probabilities of scattering and attenuation to compute total backscatter. Four major model components are defined: surface backscattering, crown volume scattering, multi-path interactions between crown and ground, and double-bounce trunk-ground interactions. Each component is divided into subcomponents having distinct scattering and attenuation paths. The scattering of each subcomponent is computed and weighted by the probability of its occurrence. Total backscatter from a simulated woodland stand is computed by incoherent summation of the components. Recent revisions to the model have modified the subcomponent definitions and improved the probability formulation.

  1. Ancient Bedforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    18 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows groupings of large ripple-like windblown bedforms on the floor of a large crater (larger than the image shown here) in Sinus Sabaeus, south of Schiaparelli Basin. These ripple-like features are much larger than typical wind ripples on Earth, but smaller than typical sand dunes on either planet. Like most of the other ripple-like bedforms in Sinus Sabaeus, they are probably ancient and no longer mobile. Dark streaks on the substrate between the bedforms were formed by passing dust devils. This image is located near 13.0oS, 343.7oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  2. GENERAL VIEW, MAIN ENTRANCE GATES, LOOKING SOUTH ACROSS WOODLANDS AVENUE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, MAIN ENTRANCE GATES, LOOKING SOUTH ACROSS WOODLANDS AVENUE. IN 1933, A CITY OF PHILADELPHIA LAND CONDEMNATION REQUIRED THE DEMOLITION OF AN EXISTING GATEWAY COMPLETED IN 1857 ON PLANS BY JOHN MCARTHUR, JR. PAUL CRET DESIGNED THE NEW GATES IN 1936. THEY WERE COMPLETED THE FOLLOWING YEAR AND MOVED TO THEIR PRESENT LOCATION IN 1948 AFTER ANOTHER CITY LAND CONDEMNATION. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  3. Discovering the Ancient Temperate Rainforest.

    ERIC Educational Resources Information Center

    Lindsay, Anne

    1997-01-01

    Two activities for grades 3 through 8 explore species adaptation and forestry issues in the North American rainforests. In one activity, students create imaginary species of plants or animals that are adapted for life in an ancient temperate rainforest. In the second activity, students role play groups affected by plans to log an area of the…

  4. Are molecular and isotopic patterns in modern plants representative of ancient floras? Examples from Paleocene and Eocene floras and sediments in the Bighorn Basin (WY, USA)

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.; Currano, E. D.

    2011-12-01

    In modern ecosystems, climate, biome and plant community are important predictors of carbon isotope patterns recorded in leaves, leaf waxes, and leaf terpenoids. However, it is unclear if modern carbon isotope patterns are useful analogs in the past when climate and atmospheric CO2 conditions were drastically different than today. It is also uncertain if molecular carbon isotope approaches are more robust with respect to reconstructing patterns of atmospheric δ13C compared to bulk isotope approaches. To evaluate these questions, we present a study of carbon isotope values of bulk organic matter and biomarkers for terrestrial plants (di- and triterpenoids and n-alkanes) from the late Paleocene (62 MA) to the Early Eocene Climatic Optimum (EECO; 52.6 MA) in the Bighorn Basin (WY, USA). We sampled along eight laterally extensive outcrops from the Fort Union and Willwood Formations. Each unit varies in exposure from tens of meters to eighteen kilometers. Sediment lithology includes carbonaceous mudstones, shales, and lignites with total organic carbon ranging from 0.2% to 55%. Climate during this interval, as determined from fossil leaf metrics, warmed from the cooler Paleocene (~10.5°C) to the hot Eocene (~22.2°C) with mean annual precipitation varying from 110 to 170 cm. We collected multiple samples across a laterally extensive outcrop to capture previously reported spatial variability in flora and depositional environment. Carbon isotopes of bulk organic matter, n-alkanes, and di- and triterpenoids (specific for conifers and angiosperms, respectively) were characterized. To determine if plant biomarker relationships from modern plants are applicable to ancient plants, we reconstructed carbon isotope fractionation during photosynthesis (Δleaf) from biomarker carbon isotope values (n-alkanes and terpenoids) and from δ13C values of atmospheric CO2 estimated from planktonic foraminifera. Reconstructed Δleaf values are consistent with predicted Δleaf values when

  5. As Long as it is Not My Land: Landowners and Oak Woodland Conservation in Spain and California

    NASA Astrophysics Data System (ADS)

    Huntsinger, L.; Oviedo, J. L.; Plieninger, T.

    2009-04-01

    In Spain and California, landowners have a crucial role to play in the conservation of oak woodlands. The value of environmental services from private oak woodlands used for extensive agriculture has drawn the attention of policymakers and conservationists, and policy strategies for maintenance of traditional extensive agriculture are emergent in both places. These strategies require landowner participation. Surveys of landowners in each place reveal similarities in management practices, goals, attitudes, and demographics, as well as some interesting points of divergence. Despite very different institutional and political contexts, landowner attitudes show some striking similarities. Both favor a degree of government protection of natural resources, but would prefer that this would not include regulation of activities on their own lands. With a relatively stable woodland ecologically, and a high rate of urban out-migration into woodland areas, the more visible initiatives in California today focus on landowner education, and tax relief for temporary or permanent restrictions on land conversion. Non-governmental organizations have taken an increasingly visible role in the brokering of purchased or donated land title restrictions for conservation. These programs have resulted in an apparent decline in oak harvest and some limitations on development, but have not often directly influenced regeneration or management on private lands. In contrast, with more stable patterns of population distribution and less stable woodland ecological dynamics, Spanish incentive programs approach regeneration and management issues more directly, with subsidies for oak planting and maintenance, and price advantages for the products of traditional agriculture. The results of a twenty-year longitudinal study in California show a shift towards an increasing focus on amenities by California oak woodland landowners, whether they are ranch owners with hundreds of hectares of woodland, or

  6. Vegetation community change in Atlantic oak woodlands along a nitrogen deposition gradient.

    PubMed

    Wilkins, Kayla; Aherne, Julian

    2016-09-01

    Atlantic old sessile oak woodlands are of high conservation importance in Europe, listed in the European Union (EU) Habitats Directive Annex I, and known for their rich bryophyte communities. Their conservation status ranges from unfavourable to bad across their known distribution, which is predominantly within the UK and Ireland, but also extends into Iberia and Brittany. The objectives of this study were to determine if nitrogen (N) deposition, a known driver of terrestrial biodiversity loss, was a significant predictor of community composition in old sessile oak woodlands (i.e., EU Habitats Directive Annex I class: 91A0), and to identify significant changes in individual plant species and community-level abundance (i.e., change points) along an N deposition gradient. Relevé data from 260 Irish oak woodland plots were evaluated using Canonical Correspondence Analysis (CCA) and Threshold Indicator Taxa ANalysis (TITAN). Nitrogen deposition accounted for 14% of the explainable variation in the dataset (inertia = 0.069, p < 0.005). A community scale change point of 13.2 kg N ha(-1) yr(-1) was indicated by TITAN, which falls within the current recommended critical load (CL) range for acidophilous Quercus-dominated (oak) woodlands (10-15 kg N ha(-1) yr(-1)). The results suggest that the current CL is sufficient for maintaining a core group of indicator species in old sessile oak woodlands, but many nutrient sensitive species may disappear even at the CL range minimum. PMID:27244687

  7. Plant communities of Santa Rosa Island, Channel Islands National Park

    USGS Publications Warehouse

    Clark, Ronilee A.; Halvorson, William L.; Sawdo, Andell A.; Danielsen, Karen C.

    1990-01-01

    A survey of the plant communities on Santa Rosa Island, Channel Islands National Park, was conducted from January through July 1988.  Vegetation data were collected at 296 sites using a releve technique.  The plant communities described include: grassland, coastal marsh, caliche scrub, coastal sage scrub, lupine scrub, baccharis scrub, coastal bluff scrub, coastal dune scrub, mixed chaparral, mixed woodland, torrey pine woodland, closed-cone pine woodland, island oak woodland, riparian woodland, and riparian herbaceous vegetation. The areal extent of each community was mapper on USGS 7.5' topographic maps, and digitized for GIS manipulation.

  8. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain.

    PubMed

    Powe, Neil A; Willis, Kenneth G

    2004-02-01

    Forests in Britain produce social and environmental benefits, in addition to marketable timber outputs. One such non-market benefit is the reduction in air pollution, linked to health impacts (mortality and morbidity). This study assesses the benefits of SO2 and PM10 absorption by trees in terms of extending life expectancy of the population and reducing hospital admissions. Working at a resolution of 1 km2 with woodland over 2 ha, it is estimated that, for Britain as a whole, woodland saves between 5 and 7 deaths, that would otherwise have been brought forward, and between 4 and 6 hospital admissions each year. The economic value of the health effect of woodland is estimated to be at least 900,000 pounds Sterling per year. Smaller areas of woodland, often located closer to population, sometimes strategically planted close to pollution sources, will generate additional air pollution absorption benefits to those estimated here. Researching such benefits would require more detailed data than is available at present for a national study. However, the health benefits of woodland are relatively small in comparison to other non-market forestry benefits. PMID:15160738

  9. PARTITIONING OVERSTORY AND UNDERSTORY EVAPOTRANSPIRATION IN A SEMIARID SAVANNA WOODLAND FROM THE ISOTOPIC COMPOSITION OF WATER VAPOR 1498

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative contributions of overstory and understory plant transpiration and soil evaporation to total evapotranspiration (ET) in a semiarid savanna woodland were determined from stable isotope measurements of atmospheric water vapor. The savanna overstory was dominated by the deeply rooted, wood...

  10. Photosynthetic Mechanisms and Paleoecology from Carbon Isotope Ratios in Ancient Specimens of C4 and CAM Plants.

    PubMed

    Troughton, J H; Wells, P V; Mooney, H A

    1974-08-16

    Carbon istotope ratios of modern, 10,000-year-old, and more than 40,000-year-old Atriplex confertifolia (C(4)) material from Nevada caves indicate that the C(4) photosynthetic pathway was operating in these plants over that period. Samples of a plant with crassulacean acid metabolism, Opuntia polyacantha, were also measured, and a shift in the 8(13)C value from -21.9 per mil (more than 40,000 years ago) to -13.9 per mil (10,000 years ago) was observed. This provides unique physiological evidence to support the hypothesis that the late Pleistocene pluvial climate in the region already had become drier about 10,000 years ago. PMID:17791235

  11. Ecohydrologic relationships of two juniper woodlands with different precipitation regimes

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Guldan, S. J.; Deboodt, T.; Fernald, A.; Ray, G.

    2015-12-01

    The significant expansion of juniper (Juniperus spp.) woodlands throughout the western U.S. during the last two centuries has disrupted important ecological functions and hydrologic processes. The relationships between water and vegetation distribution are highly impacted by the ongoing shift from shrub steppe and grassland to woodland-dominated landscapes. We investigated vegetation dynamics and hydrologic processes occurring in two distinct juniper landscapes with different precipitation regimes in the Intermountain West region: A winter snow-dominated (Oregon) and a summer rain-dominated with some winter precipitation (New Mexico) landscape. Results from the Oregon site showed marginal differences (1-2%) in soil moisture in treated vs untreated watersheds throughout the dry and wet seasons. In general, soil moisture was greater in the treated watershed in both seasons. Canopy cover affected soil moisture over time. Perennial grass cover was positively correlated with changes in soil moisture, whereas juniper cover was negatively correlated with changes in soil moisture. Shallow groundwater response observed in upland and valley monitoring wells indicate there are temporary hydrologic connections between upland and valley locations during the winter precipitation season. Results from the New Mexico site provided valuable information regarding timing and intensity of monsoon-driven precipitation and the rainfall threshold (5 mm/15 min) that triggers runoff. Long-term vegetation dynamics and hydrologic processes were evaluated based on pre- and post-juniper removal (70%) in three watersheds. In general, less runoff and greater forage response was observed in the treated watersheds. During rainfall events, soil moisture was less under juniper canopy compared with inter-canopy; this difference in soil moisture was intensified during high intensity, short duration rainstorms in the summer months. We found that winter snow precipitation helped recharge soil moisture

  12. Groundlayer vegetation gradients across oak woodland canopy gaps

    USGS Publications Warehouse

    Pavlovic, N.B.; Grundel, R.; Sluis, W.

    2006-01-01

    Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.

  13. SGR: an online genomic resource for the woodland strawberry

    PubMed Central

    2013-01-01

    Background Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system and an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. ×ananassa), and the extant genome exhibits synteny with other commercially important members of the Rosaceae family such as apple and peach. To provide a molecular description of floral organ and fruit development at the resolution of specific tissues and cell types, RNAs from flowers and early developmental stage fruit tissues of the inbred F. vesca line YW5AF7 were extracted and the resulting cDNA libraries sequenced using an Illumina HiSeq2000. To enable easy access as well as mining of this two-dimensional (stage and tissue) transcriptome dataset, a web-based database, the Strawberry Genomic Resource (SGR), was developed. Description SGR is a web accessible database that contains sample description, sample statistics, gene annotation, and gene expression analysis. This information can be accessed publicly from a web-based interface at http://bioinformatics.towson.edu/strawberry/Default.aspx. The SGR website provides user friendly search and browse capabilities for all the data stored in the database. Users are able to search for genes using a gene ID or description or obtain differentially expressed genes by entering different comparison parameters. Search results can be downloaded in a tabular format compatible with Microsoft excel application. Aligned reads to individual genes and exon/intron structures are displayed using the genome browser, facilitating gene re-annotation by individual users. Conclusions The SGR database was developed to facilitate dissemination and data mining of extensive floral and fruit transcriptome data in the woodland strawberry. It enables users to mine the data in different ways to study different pathways or biological processes during

  14. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages.

    PubMed

    Frank, Margaret H; Edwards, Molly B; Schultz, Eric R; McKain, Michael R; Fei, Zhangjun; Sørensen, Iben; Rose, Jocelyn K C; Scanlon, Michael J

    2015-08-01

    Shoot apical meristem (SAM) structure varies markedly within the land plants. The SAMs of many seedless vascular plants contain a conspicuous inverted, pyramidal cell called the apical cell (AC), which is unidentified in angiosperms. In this study, we use transcriptomic sequencing with precise laser microdissections of meristem subdomains to define the molecular signatures of anatomically distinct zones from the AC-type SAMs of a lycophyte (Selaginella moellendorffii) and a monilophyte (Equisetum arvense). The two model species for this study represent vascular plant lineages that diverged > 400 million yr ago. Our data comprise comprehensive molecular signatures for the distinct subdomains within AC-type SAMs, an anatomical anomaly whose functional significance has been debated in the botanical literature for over two centuries. Moreover, our data provide molecular support for distinct gene expression programs between the AC-type SAMs of Selaginella and Equisetum, as compared with the SAM transcriptome of the angiosperm maize. The results are discussed in light of the functional significance and evolutionary success of the AC-type SAM within the embryophytes. PMID:25900772

  15. The impact of Pleistocene climate change on an ancient arctic–alpine plant: multiple lineages of disparate history in Oxyria digyna

    PubMed Central

    Allen, Geraldine A; Marr, Kendrick L; McCormick, Laurie J; Hebda, Richard J

    2012-01-01

    The ranges of arctic–alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic–alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, TMRCA) ranged from ∼0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic–alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum. PMID:22822441

  16. Woodland successional phase effects vegetation recovery after prescribed fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Piñon-juniper (Pinus-Juniperus L.) woodlands have expanded into big sagebrush (Artemisia tridentata Beetle) steppe of the western United States primarily as a result of reduced fire disturbances. Prescribed fire in post-settlement piñon-juniper woodlands has been increasingly employed to restore big...

  17. Firewood, food and human niche construction: the potential role of Mesolithic hunter-gatherers in actively structuring Scotland's woodlands

    NASA Astrophysics Data System (ADS)

    Bishop, Rosie R.; Church, Mike J.; Rowley-Conwy, Peter A.

    2015-01-01

    Over the past few decades the potential role of Mesolithic hunter-gatherers in actively constructing their own niches, through the management of wild plants, has frequently been discussed. It is probable that Mesolithic hunter-gatherers systematically exploited specific woodland resources for food and fuel and influenced the 'natural' abundance or distribution of particular species within Mesolithic environments. Though there has been considerable discussion of the pollen evidence for potential small-scale human-woodland manipulation in Mesolithic Scotland, the archaeobotanical evidence for anthropogenic firewood and food selection has not been discussed in this context. This paper assesses the evidence for the active role of Mesolithic hunter-gatherer communities in systematically exploiting and managing woodlands for food and fuel in Scotland. While taphonomic factors may have impacted on the frequency of specific species in archaeobotanical assemblages, it is suggested that hunter-gatherers in Mesolithic Scotland were systematically using woodland plants, and in particular hazel and oak, for food and fuel. It is argued that the pollen evidence for woodland management is equivocal, but hints at the role of hunter-gatherers in shaping the structure of their environments, through the maintenance or creation of woodland clearings for settlement or as part of vegetation management strategies. It is proposed that Mesolithic hunter-gatherers may have actively contributed to niche construction and that the systematic use of hazel and oak as a fuel may reflect the deliberate pruning of hazel trees to increase nut-yields and the inadvertent - or perhaps deliberate - coppicing of hazel and oak during greenwood collection.

  18. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage

    PubMed Central

    Iles, William J.D.; Barrett, Craig F.; Smith, Selena Y.; Specht, Chelsea D.

    2016-01-01

    The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths. PMID:26819846

  19. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage.

    PubMed

    Sass, Chodon; Iles, William J D; Barrett, Craig F; Smith, Selena Y; Specht, Chelsea D

    2016-01-01

    The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths. PMID:26819846

  20. Northern Seasonal Woodland Ponds: Distribution, Biota, and Ecological Linkages with the Surrounding Forest

    NASA Astrophysics Data System (ADS)

    Batzer, D.; Palik, B.

    2005-05-01

    Seasonal woodland ponds are important landscape features across much of eastern and central North America. Learning more about the ecology of these habitats is a pressing need in the US because federal protections are being reduced. Further, the fates of these habitats are not being monitored because most are too small for inclusion in the National Wetland Inventory. In our northern Minnesota study area, the distribution of seasonal woodland ponds is strongly influenced by glacial landform, with most ponds being associated with ground or end moraines. The habitats support an abundance of plants, invertebrates, and amphibians; these organisms are well adapted for the variable environments existing in ponds and they posses a durability that makes them resistant to most natural variation in conditions. Because of the small size of seasonal woodland ponds, input of plant litter and migration of invertebrates from the surrounding forest into ponds is an important ecological link. However, because ponds support an autochthonous growth of wetland trees, the relationship between ponds and the forest differs from that between streams and forests. Like eastern streams, logging of forests around ponds is a concern, but impacts of peripheral logging on theses wetlands appear less dramatic than for streams.

  1. Relationships of pinon juniper woodland expansion and climate trends in the Walker Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Donald, Jonathon

    Landscapes are in constant flux. Vegetation distributions have changed in conjunction with climate, driven by factors such as Milankovitch cycles and atmospheric composition. Until recently, these changes have occurred gradually. Human populations are altering Earth's systems, including atmospheric composition and land use. This is altering vegetation distributions at landscape scales due to changes in species potential niche, as well as current and historical alteration of their realized niche. Vegetation shifts have the potential to be more pronounced in arid and mountainous environments as resources available to plants such as soil moisture are more limiting. In the Great Basin physiographic region of the western United States, woody encroachment of pinon juniper (Pinus monophylla & Juniperus osteosperma) woodlands is well known, but the drivers of its expansion are not well understood across elevational gradients. Predominant theories of future vegetation distribution change due to a changing climate, predict that montane species will move upslope in response to increasing temperatures. In pinon juniper woodlands, the focus has been on downslope movement of woodlands into other ecosystem types. The drivers for this are typically thought to be historical land uses such as grazing and fire exclusion. However, infilling and establishment is occurring throughout its distribution and relatively little attention has been paid to woodland movement uphill. This study focuses on two mountain ranges within the Walker Lake Basin, so as to understand changes occurring along the full gradient of pinon juniper woodlands, from lower to upper treeline, on both the western and eastern side of the ranges. The overall goal of this study was to understand trends of change (increasing, decreasing canopy density) in pinon juniper woodlands and determine if these trends were related to climate change trends. Trends in both vegetation and climate were analyzed for the entire

  2. Apps for Ancient Civilizations

    ERIC Educational Resources Information Center

    Thompson, Stephanie

    2011-01-01

    This project incorporates technology and a historical emphasis on science drawn from ancient civilizations to promote a greater understanding of conceptual science. In the Apps for Ancient Civilizations project, students investigate an ancient culture to discover how people might have used science and math smartphone apps to make their lives…

  3. 77 FR 33560 - Eastern Maine Railway Company-Trackage Rights Exemption-Woodland Rail, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Surface Transportation Board Eastern Maine Railway Company--Trackage Rights Exemption-- Woodland Rail, LLC Pursuant to a written trackage rights agreement dated April 30, 2012, Woodland Rail, LLC (Woodland Rail.... The transaction includes a spur track between Woodland Junction, Me., which is engineering station...

  4. Macromoths of northwest forests and woodlands

    USGS Publications Warehouse

    Miller, Jeffrey C.; Hammond, Paul C.

    2000-01-01

    The macromoths are a group of families within the order Lepidoptera. The macromoths in the woodlands and forests of the Pacific Northwest are represented by 1,200 species in 12 families: Arctiidae, Dioptidae, Drepanidae, Epiplemidae, Geometridae, Lasiocampidae, Lymantriidae, Noctuidae, Notodontidae, Saturniidae, Sphingidae, and Thyatiridae. In addition to the macromoths, the Lepidoptera are represented by the butterflies and skippers, and the micromoths. Butterflies possess a knob at the tip of the antennae while the tip of the antennae in skippers is typically hooked. The tip of the antennae in macromoths and micromoths is tapered. The differences between macromoths and micromoths is not literally based on size as the names suggest but rather in details of the female reproductive tract and wing venation. These details are discussed and illustrated in most texts on general entomology (Borror et al. 1989) and in books about Lepidoptera (Covell 1984).

  5. Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana

    NASA Astrophysics Data System (ADS)

    Greenberg, J. P.; Guenther, A.; Harley, P.; Otter, L.; Veenendaal, E. M.; Hewitt, C. N.; James, A. E.; Owen, S. M.

    2003-07-01

    Biogenic volatile organic compound (BVOC) emissions were measured in a mopane woodland near Maun, Botswana in January-February 2001 as part of SAFARI 2000. This landscape is comprised of more than 95% of one woody plant species, Colophospermum mopane (Caesalpinaceae). Mopane woodlands extend over a broad area of southern Africa. A leaf cuvette technique was used to determine the emission capacities of the major vegetation and the temperature and light dependence of the emissions. In addition, relaxed eddy accumulation (REA) measurements of BVOC fluxes were made on a flux tower, where net CO2 emissions were also measured simultaneously. Large light-dependent emissions of terpenes (mostly α-pinene and D-limonene) were observed from the mopane woodland. The diurnal BVOC emissions were integrated and compared with the CO2 flux. Monoterpene flux exceeded 3000 μg C m-2 h-1 during the daytime period, comparable to isoprene fluxes and much higher than terpene fluxes measured in most areas. The terpene flux constituted approximately 25% of the diurnal net carbon exchange (CO2) during the experimental period. Other BVOC emissions may also contribute to the carbon exchange.

  6. Living in Heterogeneous Woodlands – Are Habitat Continuity or Quality Drivers of Genetic Variability in a Flightless Ground Beetle?

    PubMed Central

    Marcus, Tamar; Boch, Steffen; Durka, Walter; Fischer, Markus; Gossner, Martin M.; Müller, Jörg; Schöning, Ingo; Weisser, Wolfgang W.

    2015-01-01

    Although genetic diversity is one of the key components of biodiversity, its drivers are still not fully understood. While it is known that genetic diversity is affected both by environmental parameters as well as habitat history, these factors are not often tested together. Therefore, we analyzed 14 microsatellite loci in Abax parallelepipedus, a flightless, forest dwelling ground beetle, from 88 plots in two study regions in Germany. We modeled the effects of historical and environmental variables on allelic richness, and found for one of the regions, the Schorfheide-Chorin, a significant effect of the depth of the litter layer, which is a main component of habitat quality, and of the sampling effort, which serves as an inverse proxy for local population size. For the other region, the Schwäbische Alb, none of the potential drivers showed a significant effect on allelic richness. We conclude that the genetic diversity in our study species is being driven by current local population sizes via environmental variables and not by historical processes in the studied regions. This is also supported by lack of genetic differentiation between local populations sampled from ancient and from recent woodlands. We suggest that the potential effects of former fragmentation and recolonization processes have been mitigated by the large and stable local populations of Abax parallelepipedus in combination with the proximity of the ancient and recent woodlands in the studied landscapes. PMID:26641644

  7. Distribution of heavy metals in a woodland food web

    SciTech Connect

    Scharenberg, W.; Ebeling, E.

    1996-03-01

    Often investigations deal with the residue situation in contaminated areas and their effects on ecosystems, however, information are rare concerning relatively uncontaminated areas - so called {open_quotes}reference areas{close_quotes}. In such areas we can assume an insignificant influence of pollutants and we can measure the metal flux under relatively natural conditions. Since 1988 we have investigated the nutrient and energy flow as well as the metal flux in an area which is hardly influenced by anthropogenic activities besides some agro-chemical compounds. For example, the deposition and contamination of some plants is relatively low in comparison to other places in North Germany. Also the average of geological background concentrations of soil from Schleswig-Holstein are higher than soil concentrations from Bornhoeved. With this investigation we demonstrate the flux of metals through selected biotic compartments of a relatively uncontaminated woodland. Good indicators accumulating the non essential metals Cd and Pb are beetles and isopods. In contrast ground spiders, although predators, show only low metal concentrations. The essential metals Cu and Zn were relatively homogeneous in concentration in the animals. Zn showed the highest values and beetles seem to accumulate it.

  8. Woodland as working space: where is the restorative green idyll?

    PubMed

    Bingley, Amanda

    2013-08-01

    Much has been written on the beneficial, restorative qualities of 'natural' (non-built) rural or urban 'green' space, including woodland, in promoting mental and physical health when accessed for leisure, sport and education. In contrast, with the exception of rural health studies, there is relatively little debate about the health benefits of 'green space' as work place, especially in woodland and forests. In the developed world, this apparent gap in the literature may be partly due to an assumption of the forest work place as inherently healthy, and also the invisibility of a tiny percentage of the workforce now employed in forestry. However, in the UK and parts of Europe over recent years there has been a small, though significant, increase in opportunities to train and work in woodlands using traditional, sustainable management such as coppicing, and an exploration of health issues of woodland work is timely. This paper reports on findings from a secondary narrative analysis of oral history interviews selected from two phases of the Woodland Recollections Project and newsletters written by local people historically and currently engaged in coppicing and woodland work in North West England. Perceptions of healthy working in green space are examined by applying key concepts of Attention Restoration Theory (ART). Findings suggest that woodland work environments involve many counter-restorative factors that can render the 'green idyll' detrimental to health and wellbeing. To benefit from restorative elements requires drawing on a high level of specialist skills that empower individuals to manage and maintain healthy working practices in these diverse and challenging environments. PMID:23545063

  9. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry.

    PubMed

    Liu, Hong; Xie, Wei-Fa; Zhang, Ling; Valpuesta, Victoriano; Ye, Zheng-Wen; Gao, Qing-Hua; Duan, Ke

    2014-04-01

    Auxin has been regarded as the main signal molecule coordinating the growth and ripening of fruits in strawberry, the reference genomic system for Rosaceae. The mechanisms regulating auxin biosynthesis in strawberry are largely elusive. Recently, we demonstrated that two YUCCA genes are involved in flower and fruit development in cultivated strawberry. Here, we show that the woodland strawberry (Fragaria vesca L.) genome harbors nine loci for YUCCA genes and eight of them encode functional proteins. Transcription pattern in different plant organs was different for all eight FvYUCs. Functionality of the FvYUC6 gene was studied in transgenic strawberry overexpressing FvYUC6, which showed typical high-auxin phenotypes. Overexpression of FvYUC6 also delayed flowering and led to complete male sterility in F. vesca. Additionally, specific repression of FvYUC6 expression by RNA interference significantly inhibited vegetative growth and reduced plant fertility. The development of leaves, roots, flowers, and fruits was greatly affected in FvYUC6-repressed plants. Expression of a subset of auxin-responsive genes was well correlated with the changes of FvYUC6 transcript levels and free indole-3-acetic acid levels in transgenic strawberry. These observations are consistent with an important role of FvYUC6 in auxin synthesis, and support a main role of the gene product in vegetative and reproductive development in woodland strawberry. PMID:24373096

  10. Ancient Astronomy in Armenia

    NASA Astrophysics Data System (ADS)

    Parsamian, Elma S.

    2007-08-01

    The most important discovery, which enriched our knowledge of ancient astronomy in Armenia, was the complex of platforms for astronomical observations on the Small Hill of Metzamor, which may be called an ancient “observatory”. Investigations on that Hill show that the ancient inhabitants of the Armenian Highlands have left us not only pictures of celestial bodies, but a very ancient complex of platforms for observing the sky. Among the ancient monuments in Armenia there is a megalithic monument, probably, being connected with astronomy. 250km South-East of Yerevan there is a structure Zorats Kar (Karahunge) dating back to II millennium B.C. Vertical megaliths many of which are more than two meters high form stone rings resembling ancient stone monuments - henges in Great Britain and Brittany. Medieval observations of comets and novas by data in ancient Armenian manuscripts are found. In the collection of ancient Armenian manuscripts (Matenadaran) in Yerevan there are many manuscripts with information about observations of astronomical events as: solar and lunar eclipses, comets and novas, bolides and meteorites etc. in medieval Armenia.

  11. Studying Ancient History.

    ERIC Educational Resources Information Center

    Barrow, Robin

    1982-01-01

    Defends the value and relevance of the study of ancient history and classics in history curricula. The unique homogeneity of the classical period contributes to its instructional manageability. A year-long, secondary-level course on fifth-century Greece and Rome is described to illustrate effective approaches to teaching ancient history. (AM)

  12. How resilient are African woodlands to disturbance from shifting cultivation?

    PubMed

    McNicol, Iain M; Ryan, Casey M; Williams, Mathew

    2015-12-01

    Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits

  13. Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408

  14. Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun

    2013-01-01

    Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408

  15. Stop and smell the flowers: Herbaceous understory significantly contributes to woodland carbon and water fluxes in a semi-arid ecosystem 2025

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in vegetation structure in pulse-driven, water-limited systems can have important and non-linear affects on ecosystem function and biogeochemical cycling. Conversion of grasslands to woodlands in these systems through woody plant encroachment also results in greater patch heterogeneity, and ...

  16. Nest survival of clay-colored and vesper sparrows in relation to woodland edge in mixed-grass prairies

    USGS Publications Warehouse

    Grant, T.A.; Madden, E.M.; Shaffer, T.L.; Pietz, P.J.; Berkey, G.B.; Kadrmas, N.J.

    2006-01-01

    The quantity and quality of northern mixed-grass prairie continues to decline because of conversion to agriculture, invasion of woody and exotic plants, and disruption of important ecological processes that shape grasslands. Declines in grassland bird populations in North Dakota, USA, have coincided with these largely anthropogenic alterations to prairie habitat. In grasslands of north-central and northwestern North Dakota, woody plants have increased due primarily to fire suppression, extirpation of bison (Bos bison), and widescale planting of tree shelter belts. In northern grasslands, effects of woody vegetation on survival of grassland birds are poorly understood, and conclusions are based mainly on studies conducted outside the region. We examined nest survival of clay-colored sparrows (Spizella pallida) and vesper sparrows (Pooecetes gramineus) relative to the distance nests were located from aspen (Populus tremuloides,) woodland edges and relative to other habitat features near the nest. Clay-colored and vesper sparrow nest survival was higher for nests located near woodland edges, nests with greater cover of Kentucky bluegrass (Poa pratensis), and nests more concealed by vegetation. Vesper sparrow nest survival increased as the percent cover of tall shrubs near the nest increased. Based on video-camera data, the 13-lined ground squirrel (Spermophilus tridecemlineatus,) was the most common predator of sparrow eggs and young. Thirteen-lined ground squirrels were more common far from woodland edges than near, and this pattern may, in part, explain clay-colored and vesper sparrow nest survival in relation to woodland edges. In contrast to our results, studies conducted in other grassland systems generally report lower nest survival for grassland birds nesting near trees and shrubs. This disparity in results demonstrates the need to identify specific nest predators and their distributions with respect to important habitat features because these data can be

  17. Are the long-term effects of mesobrowsers on woodland dynamics substitutive or additive to those of elephants?

    NASA Astrophysics Data System (ADS)

    O'Kane, Christopher A. J.; Duffy, Kevin J.; Page, Bruce R.; Macdonald, David W.

    2011-09-01

    The large spectrum of existing literature on browser-woodland dynamics, both from savanna and temperate biomes, converges towards concluding that all browsers importantly impact woody plants. In this context a crucial question in the current debate about reintroducing elephant culling, is whether the long-term effects of elephants and mesobrowsers are similar. If the two groups impact the same woody species in the same habitats, sufficiently high biomass-densities of mesobrowsers may, following removal of elephants, continue to heavily impact earlier life-history stages of the same suite of woody plants that elephant impacted, preventing these species from maturing. Thus, as existing mature trees die from natural causes and fade from the system, a similar end-point for woodland structure and composition is achieved. We reviewed 49 years of literature on the savanna browser guild, performing a meta-analysis on the disparate data on the guild's woody plant species use (3677 records) and habitat use (894 records). Mesobrowsers' and elephants' extensive overlap in habitat use and staple woody species diet, together with evidence of their influencing each others' abundance and of their dietary separation increasing with resource depletion, implies that the two groups impact the same core woody species in the same habitats. It therefore seems probable that high biomass-density mesobrowsers may have a long-term substitutive effect to that of elephant on woodland dynamics. Consequently management wanting a particular state of savanna woodland, should consider the biomass-density of both groups, rather than just focus on the system's perceived keystone species. Such principles may also apply to temperate and other systems.

  18. Rooting patterns in the pinyon-juniper woodland

    SciTech Connect

    Foxx, T.S.; Tierney, G.D.

    1985-01-01

    An extensive bibliographical study documenting rooting patterns of native and introduced plants of the Western United States resulted in a computerized data base of over 1000 different rooting depth citations. From that data base, average rooting depths and frequencies were determined as related to species, habit, soil type, geographic region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Annual grasses were found to root within 1 m of the soil surface. Median rooting depth of other life forms was 2.0 m with a maximum rooting depth of 61 m. The various life forms had the following median and maximum rooting depths: annual forbs (median of 0.6 m, maximum of 3.0 m), biennial forms (0.8 m, 1.5 m), perennial grasses (1.1 m, 8.2 m), perennial forbs (1.1 m, 39.0 m), subshrubs and vines (1.2 m, 6.4 m), shrubs (2 m, 17.0 m), and trees (1.6 m, 61 m). In addition to the bibliographic study, 21 species common to the pinyon-juniper woodland were excavated from soils derived from volcanic tuff in Northern New Mexico. Rooting patterns and gross morphology were examined. Perennial forbs and grasses occurred within the first 30 cm of the soil surface. Roots of the overstory trees were traced to depths of 6 m and roots of shrubs to depths of 1.8 to 2.6 m. 29 refs., 2 figs., 6 tabs.

  19. Ancient DNA from the Schild site in Illinois: Implications for the Mississippian transition in the Lower Illinois River Valley.

    PubMed

    Reynolds, Austin W; Raff, Jennifer A; Bolnick, Deborah A; Cook, Della C; Kaestle, Frederika A

    2015-03-01

    Archaeologists have long debated whether rapid cultural change in the archaeological record is due to in situ developments, migration of a new group into the region, or the spread of new cultural practices into an area through existing social networks, with the local peoples adopting and adapting practices from elsewhere as they see fit (acculturation). Researchers have suggested each of these explanations for the major cultural transition that occurred at the beginning of the Mississippian period (AD 1050) across eastern North America. In this study, we used ancient DNA to test competing hypotheses of migration and acculturation for the culture change that occurred between the Late Woodland (AD 400-1050) and Mississippian (AD 1050-1500) periods in the Lower Illinois River Valley. We obtained sequences of the first hypervariable segment of the mitochondrial genome (mtDNA) from 39 individuals (17 Late Woodland, 22 Mississippian) interred in the Schild cemetery in western Illinois, and compared these lineages to ancient mtDNA lineages present at other sites in the region. Computer simulations were used to test a null hypothesis of population continuity from Late Woodland to Mississippian times at the Schild site and to investigate the possibility of gene flow from elsewhere in the region. Our results suggest that the Late Woodland to Mississippian cultural transition at Schild was not due to an influx of people from elsewhere. Instead, it is more likely that the transition to Mississippian cultural practices at this site was due to a process of acculturation. PMID:25418693

  20. Seasonal burning of juniper woodlands and spatial recovery of herbaceous vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The decrease in fire activity has been recognized as a main cause of expansion and infilling of North American woodlands. Piñon-juniper (Pinus-Juniperus L.) woodlands in the western United States have expanded in area 2 to 10-fold since the late 1800’s. Woodland control measures using chainsaws, hea...

  1. Quantifying Grassland-to-Woodland Transitions and the Implications for Carbon and Nitrogen Dynamics in the Southwest United States

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann

    2004-01-01

    Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.

  2. Beyond cool: adapting upland streams for climate change using riparian woodlands.

    PubMed

    Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J

    2016-01-01

    Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem

  3. Ancient dirt DNA

    NASA Astrophysics Data System (ADS)

    Willerslev, E.

    2007-12-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole genomic studies of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the discoveries of DNA preserved in ancient sediments, coprolites, and fossil ice (Ancient Dirt DNA). These findings promise to make possible the reconstructions of entire ecosystems through time and allow for studies of past population genetics in cases where fossils are rare. The advantages and pitfalls connected to the Ancient Dirt DNA approach will be discussed as will recently obtained data relating to Greenland environmental history, long-term bacterial survival and the first human migration into the Americas.

  4. Historic Carbon Isotopic Shifts in Pinyon Pines and Woodland Junipers are Unprecedented During the Quaternary History of These Taxa

    NASA Astrophysics Data System (ADS)

    van de Water, P. K.; Leavitt, S. W.; Betancourt, J. L.

    2003-12-01

    Packrat (Neotoma) midden macrofossil records from arid and semiarid western North America provide evidence that pinyon pines and woodland junipers have grown together for at least the past 50,000 radiocarbon years. The midden records show that this association was sustained despite large-scale changes in climate and atmospheric CO2 concentrations over the past 50 millenia. Reconstruction of physiological parameters, using 13C analysis of a select sample of pinyon pine and juniper macrofossils from radiocarbon-dated ancient packrat middens, shows distinct physical responses to these changes despite a offset between the carbon isotopic values of the two genera, with pinyon pines having consistently lower 13C values than junipers. Remarkably, analysis of historic (from herbarium sheets) and present-day (from field collections) materials from northern Arizona and the Four-Corners region indicates that the long-term offset between the carbon isotopic values of pinyon pines and woodland junipers has inverted; with the junipers now providing isotopically lighter values than the pinyon pines. This reversal began in the late 1800's to early 1900's and has widened over the past century. The inverted isotopic offsets in the historic period may be due to the unprecedented levels of carbon dioxide and other trace gases in the atmosphere.

  5. Hydrologic response of mechanical mastication in juniper woodland in Utah

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various vegetation control methods have been used to reduce juniper (Juniperus ssp.) woodland encroachment. Mechanical mastication (reducing trees to a mulch residue) has recently been used in some western states. We investigated the hydrologic impacts of rubber tire tracks from the masticating vehi...

  6. Teacher-in-Residence at the Woodland Park Zoo

    ERIC Educational Resources Information Center

    Gantert, Robert L.

    1977-01-01

    Described is a field trip program to the Woodland Park Zoological Gardens, Seattle, Washington, which includes an indoor lecture-discussion and tours of the zoological facility led by docents. An educational survey revealed that fourth graders asked the greatest number of logical animal biology questions and had the highest interest in reading…

  7. Comparative habitat use in a juniper woodland bird community

    USGS Publications Warehouse

    Pavlacky, D.C., Jr.; Anderson, S.H.

    2004-01-01

    We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

  8. Woodland Adventure for Marginalized Adolescents: Environmental Attitudes, Identity and Competence

    ERIC Educational Resources Information Center

    Hinds, Joe

    2011-01-01

    The present study was concerned with the effects of a residential woodland education program, incorporating both educational and adventure elements, on proenvironmental attitudes and aspects of well-being. Specifically, adolescent participants (N = 25) from a broad range of backgrounds, including some with challenging behavioral characteristics,…

  9. Hydrologic response to mechanical shredding in a juniper woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juniper (Juniperus spp.) woodland expansion in the western United States is thought to result in increased catastrophic wildfires throughout its range and has prompted land managers to search for effective fuel control methods. Recently, mechanical shredding (Bull Hog ®) has been used to reduce juni...

  10. 77 FR 38475 - Amendment of Class E Airspace; Woodland, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... amend controlled airspace at Woodland, CA (77 FR 23172). Interested parties were invited to participate... ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does.... 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. Sec. 71.1 0 2. The incorporation by reference in...

  11. Scott river riparian woodland revegetation demonstration project, FY 1994. Final report

    SciTech Connect

    Jopson, T.M.

    1995-04-01

    The purpose of this project was to demonstrate techniques that could lead to the successful restoration of riparian woodland along the Scott River and elsewhere at a reasonable cost. Three sites were selected for the projects on the basis of need for restoration (i.e. the lack of vegetation), the applicability of the site as a demonstration area (how typical of other areas it was), exclusionary fencing, and the willingness of the landowner to participate. Three woody plant species, black cottonwood (Populus nigra), willow (Salix sp.) and Ponderosa pine (Pinus ponderosa) were chosen for planting on the site. These species were known to occur naturally in the riparian zone of the river, were relatively easy to grow in the available time, would produce a variety of habitats when mature, and would grow tall enough to provide shade for the water.

  12. Emissions from Miombo Woodland and Dambo Grassland Savanna Fires

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2004-01-01

    Airborne measurements of trace gases and particles over and downwind of two prescribed savanna fires in Zambia are described. The measurements include profiles through the smoke plumes of condensation nucleus concentrations and normalized excess mixing ratios of particles and gases, emission factors for 42 trace gases and seven particulate species, and vertical profiles of ambient conditions. The fires were ignited in plots of miombo woodland savanna, the most prevalent savanna type in southern Africa, and dambo grassland savanna, an important enclave of miombo woodland ecosystems. Emission factors for the two fires are combined with measurements of fuel loading, combustion factors, and burned area (derived from satellite burn scar retrievals) to estimate the emissions of trace gases and particles from woodland and grassland savanna fires in Zambia and southern Africa during the dry season (May-October) of 2000. It is estimated that the emissions of CO2, CO, total hydrocarbons, nitrogen oxides (NOx as NO), sulfur dioxide (SO2), formaldehyde, methyl bromide, total particulate matter, and black carbon from woodland and grassland savanna fires during the dry season of 2000 in southern Africa contributed 12.3%, 12.6%, 5.9%, 10.3%, 7.5%, 24.2%, 2.8%, 17.5%, and 11.1%, respectively, of the average annual emissions from all types of savanna fires worldwide. In 2000 the average annual emissions of methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, and acetic acid from the use of biofuels in Zambia were comparable to or exceeded dry season emissions of these species from woodland and grassland savanna fires in Zambia.

  13. 77 FR 33560 - Woodland Rail, LLC-Acquisition and Operation Exemption-Line of Maine Central Railroad Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Surface Transportation Board Woodland Rail, LLC--Acquisition and Operation Exemption--Line of Maine Central Railroad Co. Woodland Rail, LLC (Woodland Rail), a noncarrier, has filed a verified notice of..., Canada. As Woodland Rail acknowledges in its notice, the jurisdiction of the Board only extends to...

  14. Runoff and erosion in a pinon-juniper woodland: Influence of vegetation patches

    SciTech Connect

    Reid, K.D.; Wilcox, B.P.; Breshears, D.D.; MacDonald, L.

    1999-12-01

    In many semiarid regions, runoff and erosion differ according to vegetation patch type. These differences, although hypothesized to fundamentally affect ecological processes, have been poorly quantified. In a semiarid pinion-juniper woodland [Pinus edulis Engelm. and Juniperus monosperma (Engelm) Sarg.] in northern New Mexico, the authors measured runoff and erosion from the three patch types that compose these woodlands: Canopy patches (those beneath woody plants), vegetated patched in intercanopy areas, and bare patches in intercanopy areas. The bare intercanopy patches exhibited the highest rates, followed by vegetated intercanopy patches and then by canopy patches. Large convective summer storms, though relatively infrequent, generated much of the runoff and most of the sediment; prolonged frontal storms were capable of generating considerable runoff but little sediment. A portion of the runoff and most of the sediment generated from bare intercanopy patches was redistributed down-slope, probably to adjacent vegetated intercanopy patches, demonstrating connectivity between these two patch types. Their results indicate that there are significant and important differences in runoff and sediment production from the three patch types; that bare intercanopy patches act as sources of both water and sediment for the vegetated intercanopy patches; and that the transfer of water and sediment at small scales is both frequent enough and substantial enough to be considered ecologically significant.

  15. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    SciTech Connect

    Price, K.P. . Dept. of Geography)

    1993-09-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. Correlation analysis showed that TM Band 4 (near infrared) accounted for 78% of the variability in percent trees (r=[minus] 0.88). In multiple regression, percent trees, total soil loss, and percent total nonliving cover together accounted for nearly 70% of the variability in TM Bands 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. A number of hypotheses have been advanced to explain the apparent accelerated rate of pinyon-juniper spread in the western United States. These include removal of natural plant competition by livestock overgrazing, reduction of wildfires, climatic change, and reinvasion of sites cleared of trees by 19th century settlers.

  16. Dwarfs in ancient Egypt.

    PubMed

    Kozma, Chahira

    2006-02-15

    Ancient Egypt was one of the most advanced and productive civilizations in antiquity, spanning 3000 years before the "Christian" era. Ancient Egyptians built colossal temples and magnificent tombs to honor their gods and religious leaders. Their hieroglyphic language, system of organization, and recording of events give contemporary researchers insights into their daily activities. Based on the record left by their art, the ancient Egyptians documented the presence of dwarfs in almost every facet of life. Due to the hot dry climate and natural and artificial mummification, Egypt is a major source of information on achondroplasia in the old world. The remains of dwarfs are abundant and include complete and partial skeletons. Dwarfs were employed as personal attendants, animal tenders, jewelers, and entertainers. Several high-ranking dwarfs especially from the Old Kingdom (2700-2190 BCE) achieved important status and had lavish burial places close to the pyramids. Their costly tombs in the royal cemeteries and the inscriptions on their statutes indicate their high-ranking position in Egyptian society and their close relation to the king. Some of them were Seneb, Pereniankh, Khnumhotpe, and Djeder. There were at least two dwarf gods, Ptah and Bes. The god Ptah was associated with regeneration and rejuvenation. The god Bes was a protector of sexuality, childbirth, women, and children. He was a favored deity particularly during the Greco-Roman period. His temple was recently excavated in the Baharia oasis in the middle of Egypt. The burial sites and artistic sources provide glimpses of the positions of dwarfs in daily life in ancient Egypt. Dwarfs were accepted in ancient Egypt; their recorded daily activities suggest assimilation into daily life, and their disorder was not shown as a physical handicap. Wisdom writings and moral teachings in ancient Egypt commanded respect for dwarfs and other individuals with disabilities. PMID:16380966

  17. Biomass Potentials in Different Maintenance Scenarios of Satoyama Woodlands

    NASA Astrophysics Data System (ADS)

    Terada, T.

    2012-04-01

    Woodlands near human settlements often have long histories of providing people with fuelwood and other organic materials. In Japan, these woodlands are called satoyama. While satoyama woodlands were historically coppiced to provide an essential source of fuelwood, many have been developed into residential areas as a result of the introduction of fossil fuels beginning in the 1960's. Remaining satoyamas were simply abandoned due to the loss of economic value from fuelwood. This has resulted in a loss of other satoyama-related functions such as their ecological function. In response to the abandonment of satoyamas, thousands of volunteer groups have formed since the 1990's to restore satoyama woodlands. However, in spite of the importance of grassroots volunteers, their actual activities are limited in spatial extent due to shortages of manpower, time, and maintenance skill. This suggests that more substantial incentives are necessary, if maintenance of satoyama woodlands is to be extended. This study focused on an increased attention of biomass enegy utilization from satoyama trees as a promising incentive, and estimated biomass potentials in different maintenance scenarios of satoyama woodlands through a case study site in peri-urban Tokyo. This study set four maintenance scenarios; a) ground cover removal, b) light-thinning, c) intensive-thinning, and d) rotational coppicing. Based on the scenarios, the amount of biomass obtained, bioenergy generated, and carbon reduced were estimated respectively by the combination of conducting tree measurement and applying a long-term forest dynamics estimation model. Since there is tradeoff between CO2 reduction through woodenergy utilization and CO2 fixation by standing trees, these two variables were analyzed in tandem. The scenario that produces the most woody biomass was rotational coppicing, the maintenance scenario which also mimics historical management regimes. Despite the lowest potential of CO2 fixation by standing

  18. [Psychiatry in ancient Mexico].

    PubMed

    Calderón Narváez, G

    1992-12-01

    Using studies on prehispanic and early post-conquest documents of Ancient Mexico--such as the Badianus Manuscript, also known as Libellus de Medicinalibus Indorum Herbis, and Brother Bernardino de Sahagún's famous work History of the Things of the New Spain, a description of some existing medical and psychiatric problems, and treatments Ancient Aztecs resorted to, is presented. The structure of the Aztec family, their problems with the excessive ingestion of alcoholic beverages, and the punishments native authorities had implemented in order to check alcoholism up are also described. PMID:1341125

  19. Ancient Chinese constellations

    NASA Astrophysics Data System (ADS)

    Xu, Junjun

    2011-06-01

    China, a country with a long history and a specific culture, has also a long and specific astronomy. Ancient Chinese astronomers observed the stars, named and distributed them into constellations in a very specific way, which is quite different from the current one. Around the Zodiac, stars are divided into four big regions corresponding with the four orientations, and each is related to a totem, either the Azure Dragon, the Vermilion Bird, the White Tiger or the Murky Warrior. We present a general pattern of the ancient Chinese constellations, including the four totems, their stars and their names.

  20. Effects of cattle management on oak regeneration in northern Californian Mediterranean oak woodlands.

    PubMed

    López-Sánchez, Aida; Schroeder, John; Roig, Sonia; Sobral, Mar; Dirzo, Rodolfo

    2014-01-01

    Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands. PMID:25126939

  1. Effects of Cattle Management on Oak Regeneration in Northern Californian Mediterranean Oak Woodlands

    PubMed Central

    López-Sánchez, Aida; Schroeder, John; Roig, Sonia; Sobral, Mar; Dirzo, Rodolfo

    2014-01-01

    Oak woodlands of Mediterranean ecosystems, a major component of biodiversity hotspots in Europe and North America, have undergone significant land-use change in recent centuries, including an increase in grazing intensity due to the widespread presence of cattle. Simultaneously, a decrease in oak regeneration has been observed, suggesting a link between cattle grazing intensity and limited oak regeneration. In this study we examined the effect of cattle grazing on coast live oak (Quercus agrifolia Née) regeneration in San Francisco Bay Area, California. We studied seedling, sapling and adult density of coast live oak as well as vertebrate herbivory at 8 independent sites under two grazing conditions: with cattle and wildlife presence (n = 4) and only with wildlife (n = 4). The specific questions we addressed are: i) to what extent cattle management practices affect oak density, and ii) what is the effect of rangeland management on herbivory and size of young oak plants. In areas with cattle present, we found a 50% reduction in young oak density, and plant size was smaller, suggesting that survival and growth young plants in those areas are significantly limited. In addition, the presence of cattle raised the probability and intensity of herbivory (a 1.5 and 1.8-fold difference, respectively). These results strongly suggest that the presence of cattle significantly reduced the success of young Q. agrifolia through elevated herbivory. Given the potential impact of reduced recruitment on adult populations, modifying rangeland management practices to reduce cattle grazing pressure seems to be an important intervention to maintain Mediterranean oak woodlands. PMID:25126939

  2. Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition.

    SciTech Connect

    Brudvig, Lars A.; Damschen, Ellen L.

    2010-08-13

    Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site-level characteristics, landscape factors, and land-use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site-level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red-cockaded woodpecker in the southeastern United States. Land-use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post-agricultural sites; however, understory species composition was affected by historical connectivity, but only for post-agricultural sites. The influences of management and restoration activities were only apparent once land-use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post-agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site-level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land-use history, and underscore the importance of considering land

  3. Hydrologic Vulnerability of Western US Rangelands in the Wake of Woodland Encroachment and Increasing Wildfire Activity

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.; Kormos, P. R.

    2013-12-01

    Pinyon and juniper woodlands have dramatically increased their range in the past 150 years and currently occupy more than 30 million ha of the western US. Range expansion has primarily occurred through encroachment into sagebrush rangelands. Woodland expansion and infill on western rangelands have altered the ecological structure and function of these ecosystems and have made much of the western US prone to large severe wildfires. Early-succession woodlands are now burning in large, high-severity wildfires due to heavy woody-fuel loading and extensive horizontal-to-vertical fuel connectivity. Tree infill on late-succession woodlands coupled with extreme fire weather has increased the occurrence of large, high-severity woodland fires in recent decades. We investigated the effects of woodland encroachment and burning on hydrologic vulnerability at multiple woodlands and at a sagebrush rangeland in the early stages of woodland encroachment. Artificial rainfall and overland flow simulations were paired with vegetation and soil measures to evaluate ecohydrologic ramifications of woodland encroachment and burning at multiple spatial scales and over time. Our results provide insight into the ecohydrologic consequences of landscape-scale conversion of sagebrush rangelands to woodlands and the effects of increasing wildfire across this domain in the western US.

  4. Kashaya Pomo Plants.

    ERIC Educational Resources Information Center

    Goodrich, Jennie; And Others

    The monograph describes more than 200 plants growing within the approximately 300 square miles of the original land of the Kashaya Pomo Indians, which lies along the coast of Sonoma County, California. An introduction provides information on the plant communities represented (redwood forest, mixed evergreen forest, oak woodland, Douglas fir…

  5. Woodland biodiversity management as a tool for reducing human exposure to Ixodes ricinus ticks: a preliminary study in an english woodland.

    PubMed

    Medlock, J M; Shuttleworth, H; Copley, V; Hansford, K M; Leach, S

    2012-12-01

    This paper presents preliminary findings towards developing a UK-specific approach to reducing public exposure to woodland questing Ixodes ricinus tick populations by harnessing existing biodiversity-enhancing woodland ride (i.e., linear non-wooded herbaceous habitat either side of track within woodland) management strategies. This preliminary study in an English woodland firstly assesses whether ecological and environmental factors determine presence and density of questing Ixodes ricinus along woodland rides. Secondly, it sets these findings in the context of woodland ride management guidelines in England in order to understand what impact ride management strategies might have on numbers of questing ticks and tick survival. Nymph and adult I. ricinus presence and abundance were modelled in relation to relevant microclimate and ecological parameter variables. Predictor variables for increased questing nymph abundance included ride orientation, mat depth, occurrence of bracken/bramble and animal tracks, ride/path width, and sward height. Ticks thrive in the ecotonal habitat of a woodland ride, therefore we urge woodland managers to consider the impact of their ride management on ticks and human exposure to ticks. Possible recommendations for mitigating questing I. ricinus in line with biodiversity management guidelines rides are discussed in this paper and include seasonal mowing regimes, management of mulch/mat, and bracken/bramble management through use of scalloped ride edges. PMID:23181853

  6. Beijing Ancient Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    The Beijing Ancient Observatory is now the only complete example of an observatory from the seventeenth century in the world. It is a monument to the prosperity of astronomy in traditional China. Its instruments are emblems of the encounter and amalgamation of Chinese and European Science in the seventeenth and eighteenth centuries.

  7. Ancient Egypt: History 380.

    ERIC Educational Resources Information Center

    Turk, Laraine D.

    "Ancient Egypt," an upper-division, non-required history course covering Egypt from pre-dynastic time through the Roman domination is described. General descriptive information is presented first, including the method of grading, expectation of student success rate, long-range course objectives, procedures for revising the course, major course…

  8. Ancient Egypt: Personal Perspectives.

    ERIC Educational Resources Information Center

    Wolinski, Arelene

    This teacher resource book provides information on ancient Egypt via short essays, photographs, maps, charts, and drawings. Egyptian social and religious life, including writing, art, architecture, and even the practice of mummification, is conveniently summarized for the teacher or other practitioner in a series of one to three page articles with…

  9. Creative Ventures: Ancient Civilizations.

    ERIC Educational Resources Information Center

    Stark, Rebecca

    The open-ended activities in this book are designed to extend the imagination and creativity of students and encourage students to examine their feelings and values about historic eras. Civilizations addressed include ancient Egypt, Greece, Rome, Mayan, Stonehenge, and Mesopotamia. The activities focus upon the cognitive and affective pupil…

  10. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  11. Ancient deforestation revisited.

    PubMed

    Hughes, J Donald

    2011-01-01

    The image of the classical Mediterranean environment of the Greeks and Romans had a formative influence on the art, literature, and historical perception of modern Europe and America. How closely does is this image congruent with the ancient environment as it in reality existed? In particular, how forested was the ancient Mediterranean world, was there deforestation, and if so, what were its effects? The consensus of historians, geographers, and other scholars from the mid-nineteenth century through the first three quarters of the twentieth century was that human activities had depleted the forests to a major extent and caused severe erosion. My research confirmed this general picture. Since then, revisionist historians have questioned these conclusions, maintaining instead that little environmental damage was done to forests and soils in ancient Greco-Roman times. In a reconsideration of the question, this paper looks at recent scientific work providing proxy evidence for the condition of forests at various times in ancient history. I look at three scientific methodologies, namely anthracology, palynology, and computer modeling. Each of these avenues of research offers support for the concept of forest change, both in abundance and species composition, and episodes of deforestation and erosion, and confirms my earlier work. PMID:20669043

  12. Woodland Survey of Great Britain 1971-2001

    NASA Astrophysics Data System (ADS)

    Wood, C. M.; Smart, S. M.; Bunce, R. G. H.

    2015-08-01

    The Woodland Survey of Great Britain is a unique data set, consisting of a detailed range of ecological measurements at a national scale, covering a time span of 30 years. A set of 103 woods spread across Britain were first surveyed in 1971, which were again surveyed in 2000-2003 (for convenience referred to subsequently as the "2001 survey"). Standardised methods of describing the trees, shrubs, ground flora, soils and general habitats present were used for both sets of surveys. The sample of 1648 plots spread through 103 woodland sites located across Britain makes it probably the most extensive quantitative ecological woodland survey undertaken in Britain; it is also notable for the range of sites that have been revisited after such a long interval. The data set provides a unique opportunity to explore the effects of a range of potential drivers of woodland change that operated between 1971 and 2001. The data set is available in four discrete parts, which have been assigned the following DOIs: 10.5285/4d93f9ac-68e3-49cf-8a41-4d02a7ead81a (Kirby et al., 2013b), 10.5285/d6409d40-58fe-4fa7-b7c8-71a105b965b4 (Kirby et al., 2013d), 10.5285/fb1e474d-456b-42a9-9a10-a02c35af10d2 (Kirby et al., 2013c), 10.5285 (Kirby et al., 2013a).

  13. Woodland recovery following drought-induced tree mortality across an environmental stress gradient.

    PubMed

    Redmond, Miranda D; Cobb, Neil S; Clifford, Michael J; Barger, Nichole N

    2015-10-01

    Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the

  14. Avian habitat relationships in pinyon-juniper woodland

    USGS Publications Warehouse

    Sedgwick, James A.

    1987-01-01

    Habitat relationships of breeding birds were examined in northwestern Colorado in pinyon-juniper (Pinus edulis-Juniperus osteosperma) woodland and in openings where most overstory trees had been knocked down by anchor chaining. Vegetation characteristics and physical habitat features were measured in 233 0.04-ha circular plots around singing males of 13 species of birds from 15 May to 15 July 1980. Thirteen-group discriminant function analysis ordinated bird species along three habitat dimensions described by (1) canopy height; (2) slope, shrub size, and shrub species diversity; and (3) percentage canopy cover, large tree density, distance from a habitat edge, litter cover, and green cover. Woodland, open-area, and intermediate edge species were clearly segregated along the first discriminant axis, and species' associations with shrubs, inclination, ground cover, and edges were revealed by the ordinations along the second and third discriminant axes. Two-group discriminant analyses comparing occupied and available plots identified additional and more specific habitat associations. For example, Hermit Thrushes (Catharus guttatus) were associated with mature forested habitats and forest interiors, Virginia's Warblers (Vermivora virginiae) favored steep, oak-covered draws, Rock Wrens (Salpinctes obsoletus) selected areas where percentage log cover and small tree density were high, and Dusky Flycatchers (Empidonax oberholseri) preferred shrubby slopes with scattered large trees near woodland edges.

  15. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the Land Plant Body Plan Following an Ancient Gene Duplication

    PubMed Central

    Furumizu, Chihiro; Alvarez, John Paul; Sakakibara, Keiko; Bowman, John L.

    2015-01-01

    Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical

  16. Late Pleistocene woodlands in the Bolson de Mapimi: A refugium for the Chihuahuan Desert Biota?

    NASA Astrophysics Data System (ADS)

    Van Devender, Thomas R.; Burgess, Tony L.

    1985-11-01

    Packrat middens radiocarbon dated at 12,280 ± 345 and 12,700 ± 165 yr B.P. record expansions of junipers and papershell pinyon ( Pinus remota) into the desert lowlands of Durango and Coahuila, Mexico (26° N). Extralocal trees and shrubs presently occur 24-580 km in nearly all directions including more subtropical areas to the northeast and southeast. An equable Late Wisconsin climate marked by mild winters with increased precipitation and by cool summers with reduced summer monsoons is proposed. The extensive playas of the Bolson de Mapimi probably held water at that time. The Bolson de Mapimi was not a geographical refugium unaffected by glacial climates, although many Chihuahuan Desert plants and animals probably remain in situ as members of equable woodlands. Equable climates, low extinction rates, and repeated, rapid glacial/interglacial climatic fluctuations may have been important in the evolution and accumulation of species at lower latitudes.

  17. Ecohydrologic Implications and Management of Post-fire Soil Water Repellency in Burned Pinon-Juniper Woodlands

    NASA Astrophysics Data System (ADS)

    Madsen, Matthew; Zvirzdin, Daniel; Fernelius, Kaitlynn; McMillan, Mica; Kostka, Stanley

    2014-05-01

    Erosion and weed dominance often limit the recovery of piñon-juniper woodlands of western North America after high intensity wildfires. Soil water repellency (SWR) is one factor that may promote overland flow and impede seedling establishment. In spite of these effects, the influence of post-fire SWR on site recovery is poorly understood. Our presentation summarizes data collected within studies on burned piñon-juniper woodlands that provide new insight on: 1) the spatial distribution and severity of SWR, 2) influence of SWR on soil hydrology, nitrogen cycling, and site revegetation, and 3) the suitability of soil surfactants as a post-fire restoration tool. We demonstrate how patterns of SWR are highly correlated to pre-fire woodland canopy structure. At sites where SWR is present, infiltration, soil water content, and plant establishment is significantly less than at non-hydrophobic sites. We show how newly developed soil surfactants can significantly improve ecohydrologic properties required for plant growth by overcoming SWR; thus, increasing the amount and duration of available water for seed germination and plant growth. However, the application of soil surfactants in wildfire-affected ecosystems has been limited due to logistical and economic constraints associated with the standard practice of using large quantities of irrigation water as the surfactant carrier. We have developed a potential solution to this problem by using seed coating technology to use the seed as the carrier for the delivery of soil surfactant. Through this approach, precipitation leaches the surfactant from the seed into the soil where it absorbs onto the soil particles and ameliorates water repellency within the seeds microsite. We present findings from laboratory and field evaluations of surfactant seed coatings, which provide evidence that it may be plausible for the technology to improve post-fire seeding efforts by restoring soil hydrologic function and increasing seedling

  18. Spatial partitioning of water use by herbaceous and woody lifeforms in semiarid woodlands

    SciTech Connect

    Breshears, D.D.

    1993-12-31

    Ecological studies of soil moisture, plant water uptake, and community composition in semiarid regions have focused on differences with depth in the soil profile, yet there are many reasons to expect that moisture also varies with the presence or absence of woody vegetation. Plant and soil moisture relationships for three dominant species in a semiarid woodland, Bouteloua gracilis, Juniperus monosperma, and Pinus edulis, were studied for 1.5 years. Soil moisture varied by type of plant cover as well as by depth. Plant water potential and conductance differed among species and was related to spatial variability in soil moisture. Water potential for blue grama was most correlated with soil moisture in the 0-15 cm layer of intercanopies; juniper water potential was highly correlated with soil moisture in the 0-15 cm layer beneath tree canopies of either species, and pinyon water potential was only weakly correlated with soil moisture in the 15-30 cm depth interval beneath pinyons. Pinyons had consistently greater maximum conductance rates than junipers, even though pinyon conductance was more sensitive to reductions in soil moisture. The results from this study indicate that horizontal differences in the soil moisture profile associated with type of plant cover may be as important as differences in depth for predicting plant-water relationships. A simple model was hypothesized for predicting community composition of three lifeforms: Herbaceous plants, shallow-rooted woody plants, and deeper-rooted woody plants. Distributions of roots of each lifeform and plant-available water were defined with respect to four soil compartments that distinguish upper vs. lower and canopy vs. intercanopy soil regions. The model predicts that multiple combinations of herbaceous and woody biomass can exist at a site and was qualitatively consistent with field data from a climatic gradient.

  19. [Vertical distribution characteristics of N2O emission in tea garden and its adjacent woodland].

    PubMed

    Fan, Li-chao; Han, Wen-yan; Li, Xin; Li, Zhi-xin

    2015-09-01

    In this study, we determined the vertical distribution of N2O emission rates in tea soils and its adjacent woodland soils. The results showed that total nitrogen contents, N2O fluxes and cumulative emissions in the tea garden and woodland decreased with the increasing depth of the soil layer, and their average values were greater in tea garden than in woodland. Generally, pH, soil water soluble organic nitrogen (WSON), soil microbial biomass nitrogen (MBN), NO(3-)-N and NH(4+)-N contents had a downward trend with the increasing depth of soil layer. The WSON, MBN, NO(3-)-N and NH(4+)-N contents from each soil layer were greater in tea garden than in woodland, but the pH value in tea garden was lower than that in woodland. The N2O emission rate was significantly positively related with TN, MBN and NH(4+)-N contents, but not with pH value. The N2O emission rate was significantly correlated with WSON content in woodland, but not in tea garden. The N20 emission rate was significantly correlated with NO(3-)-N concentration in tea garden, but not in woodland. WSON/TN and N2O-N/SMBN were averagely greater than in tea garden in woodland, and SMBN/TN was opposite. These results indicated that tea soil was not conducive to accumulate nitrogen pool, maintain soil quality and its sustainable use compared to woodland. PMID:26785543

  20. Discovering the Ancient Maya From Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2007-01-01

    The Peten region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use o f limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  1. Discovering the Ancient Maya from Space

    NASA Technical Reports Server (NTRS)

    Sever, T. L.

    2008-01-01

    The Pet6n region of northern Guatemala contains some of the most significant Mayan archeological sites in Latin America. It was in this region that the Maya civilization began, flourished, and abruptly disappeared. Remote sensing technology is helping to locate and map ancient Maya sites that are threatened today by accelerating deforestation and looting. Thematic Mapper, IKONOS, and QuickBird satellite, and airborne STAR-3i and AIRSAR radar data, combined with Global Positioning System (GPS) technology, are successfully detecting ancient Maya features such as sites, roadways, canals, and water reservoirs. Satellite imagery is also being used to map the bajos, which are seasonally flooded swamps that cover over 40% of the land surface. Through the use of various airborne and satellite sensor systems we have been able to detect and map ancient causeways, temples, reservoirs, and land forms, and locate these features on the ground through GPS technology. Recently, we have discovered that there is a strong relationship between a tropical forest vegetation signature in satellite imagery and the location of archeological sites. We believe that the use of limestone and lime plasters in ancient Maya construction affects the moisture, nutrition, and plant species of the surface vegetation. We have mapped these vegetation signatures in the imagery and verified through field survey that they are indicative of archeological sites. Through the use of remote sensing and GIS technology it is possible to identify unrecorded archeological features in a dense tropical forest environment and monitor these cultural features for their protection.

  2. Carbon, Nitrogen, and Phosphorus Increase in Soil Physical Fractions Following Vegetation Change from Grassland to Woodland

    NASA Astrophysics Data System (ADS)

    Kantola, I. B.; Boutton, T. W.; Filley, T. R.; Hallmark, C. T.

    2009-12-01

    Woody plant encroachment has been pervasive in grass-dominated ecosystems around the world during the past century due to livestock grazing, fire suppression, and/or changes in climate and atmospheric chemistry. In the Rio Grande Plains of Texas, subtropical thorn woodlands dominated by N-fixing tree legumes have largely replaced grasslands. This dramatic land cover change has increased above- and belowground primary productivity and accelerated rates of biogeochemical processes in the soil. The purpose of this study was to assess the impact of this grassland to woodland transition on C, N, and P concentrations in soil physical fractions that differ in turnover rates. Soil samples (0-10 cm) were collected in remnant grasslands and near the centers of woody plant clusters ranging in age from 15 to 90 yrs in a subtropical savanna parkland in southern Texas. Soils were fractionated by wet sieving into five size and density classes: un-sieved whole soil, free light fraction (density <1 g/cm3), macroaggregates (>250 µm), microaggregates (53-250 µm), and free silt and clay (<53 µm). C and N concentrations in each of the fractions were determined by elemental analysis, and total P concentrations were determined by alkaline oxidation and sulfuric acid digestion coupled with ascorbic acid colorimetry. C, N, and P concentrations in whole soil were 2-3X greater in woody clusters than in grasslands. In addition, C, N, and P concentrations all increased linearly with time following woody plant invasion in all fractions except free silt and clay. Most of the newly accrued C, N, and P was in the relatively more labile light fractions and macroaggregates. C:P and N:P ratios increased following woody encroachment, indicating carbon and nitrogen accumulated at a faster rate than phosphorus. Since N and P are generally the most limiting nutrients in terrestrial ecosystems, increased stores of these elements are likely to alter rates of microbial processes, plant-microbe and plant-plant

  3. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  4. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  5. Ancient Chinese Astronomical Technologies

    NASA Astrophysics Data System (ADS)

    Walsh, Jennifer Robin

    2004-05-01

    I am interested in the astronomical advances of the Ancient Chinese in measuring the solar day. Their development of gnomon & ruler, sundial, and water clock apparatuses enabled Chinese astronomers to measure the annual solar orbit and solar day more precisely than their contemporaries. I have built one of each of these devices to use in collecting data from Olympia, Washington. I will measure the solar day in the Pacific Northwest following the methodology of the ancient Chinese. I will compare with my data, the available historical Chinese astronomical records and current records from the United States Naval Observatory Master Clock. I seek to understand how ancient Chinese investigations into solar patterns enabled them to make accurate predictions about the movement of the celestial sphere and planets, and to develop analytic tests of their theories. Mayall, R. Newton; Sundials: their construction and use. Dover Publications 2000 North, John; The Norton History of Astronomy and Cosmology W.W. Norton& Co. 1995 Zhentao Xu, David W. Pankenier, Yaotiao Jiang; East Asian archaeoastronomy : historical records of astronomical observations of China, Japan and Korea Published on behalf of the Earth Space Institute by Gordon and Breach Science Publishers, c2000

  6. Traditional food and herbal uses of wild plants in the ancient South-Slavic diaspora of Mundimitar/Montemitro (Southern Italy)

    PubMed Central

    2012-01-01

    Background In Europe, only a limited number of cross-cultural comparative field studies or meta-analyses have been focused on the dynamics through which folk plant knowledge changes over space and time, while a few studies have contributed to the understanding of how plant uses change among newcomers. Nevertheless, ethnic minority groups and/or linguistic “isles” in Southern and Eastern Europe may provide wonderful arenas for understanding the various factors that influence changes in plant uses. Methods A field ethnobotanical study was carried out in Mundimitar (Montemitro in Italian), a village of approx. 450 inhabitants, located in the Molise region of South-Eastern Italy. Mundimitar is a South-Slavic community, composed of the descendants of people who migrated to the area during the first half of the 14th century, probably from the lower Neretva valley (Dalmatia and Herzegovina regions). Eighteen key informants (average age: 63.7) were selected using the snowball sampling technique and participated in in-depth interviews regarding their Traditional Knowledge (TK) of the local flora. Results Although TK on wild plants is eroded in Montemitro among the youngest generations, fifty-seven taxa (including two cultivated species, which were included due to their unusual uses) were quoted by the study participants. Half of the taxa have correspondence in the Croatian and Herzegovinian folk botanical nomenclature, and the other half with South-Italian folk plant names. A remarkable link to the wild vegetable uses recorded in Dalmatia is evident. A comparison of the collected data with the previous ethnobotanical data of the Molise region and of the entire Italian Peninsula pointed out a few uses that have not been recorded in Italy thus far: the culinary use of boiled black bryony (Tamus communis) shoots in sauces and also on pasta; the use of squirting cucumber ( Ecballium elaterium) juice for treating malaria in humans; the aerial parts of the elderberry tree

  7. Suicide in ancient Greece.

    PubMed

    Laios, K; Tsoukalas, G; Kontaxaki, M-I; Karamanou, M; Androutsos, G

    2014-01-01

    The theme of suicide appears several times in ancient Greek literature. However, each such reference acquires special significance depending on the field from which it originates. Most of the information found in mythology, but the suicide in a mythological tale, although in terms of motivation and mental situation of heroes may be in imitation of similar incidents of real life, in fact is linked with the principles of the ancient Greek religion. In ancient drama and mainly in tragedies suicide conduces to the tragic hypostasis of the heroes and to the evolution of the plot and also is a tool in order to be presented the ideas of poets for the relations of the gods, the relation among gods and men and the relation among the men. In ancient Greek philosophy there were the deniers of suicide, who were more concerned about the impact of suicide on society and also these who accepted it, recognizing the right of the individual to put an end to his life, in order to avoid personal misfortunes. Real suicides will be found mostly from historical sources, but most of them concern leading figures of the ancient world. Closer to the problem of suicide in the everyday life of antiquity are ancient Greek medicines, who studied the phenomenon more general without references to specific incidents. Doctors did not approve in principal the suicide and dealt with it as insane behavior in the development of the mental diseases, of melancholia and mania. They considered that the discrepancy of humors in the organ of logic in the human body will cause malfunction, which will lead to the absurdity and consequently to suicide, either due to excessive concentration of black bile in melancholia or due to yellow bile in mania. They believed that greater risk to commit suicide had women, young people and the elderly. As therapy they used the drugs of their time with the intention to induce calm and repression in the ill person, therefore they mainly used mandragora. In general, we would say

  8. Invertible canopy reflectance modeling of vegetation structure in semiarid woodland

    NASA Technical Reports Server (NTRS)

    Franklin, Janet; Strahler, Alan H.

    1988-01-01

    The Li-Strahler canopy reflectance model, driven by Landsat Thematic Mapper (TM) data, provided regional estimates of tree size and density in two bioclimatic zones in West Africa. This model exploits tree geometry in an inversion technique to predict average tree size and density from reflectance data using a few simple parameters measured in the field (spatial pattern, shape, and size distribution of trees) and in the imagery (spectral signatures of scene components). The model was tested in sparse woodland and wooded grassland in the Sahelian and Sudanian bioclimatic zones in West Africa.

  9. Energy-conserving site design: case study, The Woodlands, Texas

    SciTech Connect

    Swanson, M

    1980-03-01

    The Woodlands is a HUD Title VII New Town located north of Houston. It includes 22,000 acres and the plan for the new town consists of 6 residential villages, a town center called the Metro Center and several additional tracts, such as the Trade Center for larger-scale industrial use. Each village is to be structured around one large and several supporting neighborhood centers. Ultimate population is planned to be 150,000. Included in this report are sections on background, team structure and organization, methodological considerations, the conventional and energy-conserving plan, constraints to implementation, and general conclusions and next phases.

  10. Causes and consequences of tree mortality in Piñon-Juniper woodlands. Introducing an ecosystem scale rainfall manipulation.

    NASA Astrophysics Data System (ADS)

    Yepez, E. A.; Elliot, J.; White, S. A.; Plaut, J. A.; McDowell, N. G.; Pockman, W. T.

    2007-05-01

    Tree mortality as a consequence of drought is widespread worldwide. In Piñon-Juniper woodlands of the semiarid North American Southwest this phenomenon is patent but the consequences for the functioning of these ecosystems remain largely unknown. Although several factors have been proposed to explain tree mortality following drought (e.g. plant desiccation, bark beetle attack), no substantial experimental evidence has been produced to give mechanistic explanations for the occurrence of these events, nor for the potential effects on the ecosystem carbon and water cycles following this rapid landscape transformation. In this work, we introduce a plant-to-ecosystem rainfall manipulation experiment in Piñon-Juniper woodlands at the Sevilleta LTER in central New Mexico, USA. The goal of our study is to understand the causes (plant-level) and consequences (ecosystem-level) of tree mortality and/or survival following experimental drought in these woodlands. Framed in hydraulic concepts involving the soil-plant-atmosphere continuum, we are investigating how Pinus edulis and Juniperus monosperma would respond to treatments of rainfall diversion and addition in replicated (n=3) 1600 m2 plots. Within this experimental framework, we are first describing the hydraulic architecture of both species to predict plant allocation patterns (e.g. root vs. leaf area) and assess tree-level water transport capacity and/or failure. We believe that a thorough understanding of the tree hydraulic characteristics controlling transpiration will allow us to make robust predictions about the likelihood of plant death or survival during drought episodes and concomitant effects on the ecosystem rain use efficiency. Pre-treatment results (summer-fall 2006) indicate that transpiration rates per unit of leaf area were highly sensitive to variation in hydraulic conductance in the soil and plants and varied according to the contrasting vulnerabilities to xylem cavitation between P. edulis and J

  11. Hydrologic vulnerability of western US rangelands in the wake of woodland encroachment and increasing wildfire activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinyon and juniper woodlands have dramatically increased their range in the past 150 years and currently occupy more than 30 million ha of the western US. Range expansion has primarily occurred through encroachment into sagebrush rangelands. Woodland expansion and infill on western rangelands have a...

  12. 75 FR 44853 - Woodlands Bank, Bluffton, SC; Notice of Appointment of Receiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Office of Thrift Supervision Woodlands Bank, Bluffton, SC; Notice of Appointment of Receiver Notice is... Receiver for Woodlands Bank, Bluffton, South Carolina (OTS No. 08464), as of July 16, 2010. Dated: July...

  13. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... (75 FR 49524). Workers at the subject firm are engaged in employment related to the production of... Employment and Training Administration Woodland Mills Corporation Mill Spring, NC; Notice of Revised... of Woodland Mills Corporation, Mill Spring, North Carolina, to apply for Trade Adjustment...

  14. Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinus-Juniperus L. (Piñon- juniper) woodlands have expanded into Artemisia tridentata Beetle (big sagebrush) steppe of the western United States primarily as a result of reduced fire disturbances. Woodland control measures, including prescribed fire, have been increasingly employed to restore sagebr...

  15. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    PubMed

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. PMID:26568202

  16. Gnomons in Ancient China

    NASA Astrophysics Data System (ADS)

    Li, Geng

    Gnomon shadow measurement was one of the most fundamental astronomical observations in ancient China. It was crucial for calendar making, which constituted an important aspect of imperial governance. A painted stick discovered from a prehistoric (2300 BC) astronomical site of Taosi (see Chap. 201, "Taosi Observatory", 10.1007/978-1-4614-6141-8_215") is the oldest gnomon known of China. From second century BC onward, gnomon shadow measurements have been essential part of calendrical practice. Various historical measurements are discussed in this chapter.

  17. [Sexuality in Ancient Egypt].

    PubMed

    Androutsos, G; Marketos, S

    1994-10-01

    The present article explores the sexuality in ancient Egypt. In particular in this article are presented the ways of concubinage (marriage, concubinage, adultery), the incest, loves of the pharaohs and of the common people, the freedom of choice in garments, the status of the hetairas and of the whores, the sexual perversions (male and female homosexuality, necrophilia, sodomism, bestiality, rape, masturbation, exhibitionism), the operations of the genitals (circumcision, excision, castration) and finally the level of knowledge in gynaecology, fertility, contraception and obstetrics that even today demands our admiration. PMID:7858632

  18. Urology in ancient India

    PubMed Central

    Das, Sakti

    2007-01-01

    The practice of medical and surgical measures in the management of urological ailments prevailed in ancient India from the Vedic era around 3000 BC. Subsequently in the Samhita period, the two stalwarts - Charaka in medicine and Susruta in surgery elevated the art of medicine in India to unprecedented heights. Their elaboration of the etiopathological hypothesis and the medical and surgical treatments of various urological disorders of unparalleled ingenuity still remain valid to some extent in our contemporary understanding. The new generation of accomplished Indian urologists should humbly venerate the legacy of the illustrious pioneers in urology of our motherland. PMID:19675749

  19. Ancient human DNA.

    PubMed

    Kirsanow, Karola; Burger, Joachim

    2012-01-20

    The contribution of palaeogenetic data to the study of various aspects of hominin biology and evolution has been significant, and has the potential to increase substantially with the widespread implementation of next generation sequencing techniques. Here we discuss the present state-of-the-art of ancient human DNA analysis and the characteristics of hominin aDNA that make sequence validation particularly complex. A brief overview of the development of anthropological palaeogenetic analysis is given to illustrate the technical challenges motivating recent technological advancements. PMID:22169595

  20. Deep Sequencing of RNA from Ancient Maize Kernels

    PubMed Central

    Rasmussen, Morten; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Alquezar-Planas, David E.; Penfield, Steven; Brown, Terence A.; Vielle-Calzada, Jean-Philippe; Montiel, Rafael; Jørgensen, Tina; Odegaard, Nancy; Jacobs, Michael; Arriaza, Bernardo; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Willerslev, Eske; Gilbert, M. Thomas P.

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited – perhaps due to dogma associated with the fragility of RNA. We hypothesize that seeds offer a plausible refuge for long-term RNA survival, due to the fundamental role of RNA during seed germination. Using RNA-Seq on cDNA synthesized from nucleic acid extracts, we validate this hypothesis through demonstration of partial transcriptomal recovery from two sources of ancient maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication. PMID:23326310

  1. 76 FR 59670 - Woodland Pulp, LLC; Notice of Intent To File License Application, Filing of Pre-Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Energy Regulatory Commission Woodland Pulp, LLC; Notice of Intent To File License Application, Filing of... Process. b. Project No.: 2492-012. c. Dated Filed: February 28, 2011. d. Submitted By: Woodland Pulp, LLC... Regulations. h. Potential Applicant Contact: Jay Beaudoin, Woodland Pulp, LLC, 144 Main Street,...

  2. Effects of a Major Tree Invader on Urban Woodland Arthropods

    PubMed Central

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  3. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    PubMed

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  4. Ancient celtic horns

    NASA Astrophysics Data System (ADS)

    Campbell, Murray

    2002-11-01

    There is considerable evidence from iconographic and documentary sources that musical lip-reed instruments were important in the early celtic communities of Scotland and Ireland. In recent years several studies have been undertaken with the aim of gaining a better understanding of the musical nature of these ancient horns, and of their place in the life and culture of the time. A valuable source of tangible evidence is to be found in the archaeological remains deposited across Scotland and the whole of Ireland. A project is now under way, under the auspices of the Kilmartin House Trust and the general direction of John Purser, which has brought together an international team of musicians, craftsmen, archaeologists, musicologists and physicists with the aim of analyzing ancient musical artifacts, reconstructing some of the original instruments, and analyzing the sounds they produce. This paper describes acoustical studies carried out on a number of recent reconstructions of wooden and bronze instruments, and discusses the role of acoustics in this type of investigation. [Work supported by Sciart and EPSRC.

  5. Communication Media in Ancient Cultures.

    ERIC Educational Resources Information Center

    Jabusch, David M.

    Interest in early means of communication and in the uses and kinds of media that existed in ancient cultures is starting to grow among communication scholars. Conversation analysis of these cultures is obviously impossible, so that the emphasis must rest with material cultural artifacts. Many ancient cultures used non-verbal codes for dyadic…

  6. Ancient Chinese Literature Reveals Pathways of Eggplant Domestication

    PubMed Central

    Wang, Jin-Xiu; Gao, Tian-Gang; Knapp, Sandra

    2008-01-01

    Background and Aims Changes in key traits occurring during the processes of plant domestication have long been subjects of debate. Only in the case of genetic analysis or with extensive plant remains can specific sets of changes be documented. Historical details of the plant domestication processes are rare and other evidence of morphological change can be difficult to obtain, especially for those vegetables that lack a substantial body of archaeological data. Botanical records chronicled in the ancient literature of established ancient civilizations, such as that of China, are invaluable resources for the study and understanding of the process of plant domestication. Here, the considerable body of ancient Chinese literature is used to explore the domestication process that has occurred with the eggplant (Solanum melongena), an important vegetable in Old World. Methods Information about eggplant domestication in the ancient Chinese literature was retrieved using a variety of methods. The information obtained was then sorted by taxon, examined and taxonomic identifications verified. Key Results It was found that the earliest record of the eggplant documented in ancient Chinese literature was in a work from 59 bc. As far as is known, this is the earliest reliable and accurately dated record of eggplant in cultivation. The analysis reveals that the process of domestication of the eggplant in China involved three principal aspects of fruit quality: size, shape and taste. These traits were actively and gradually selected; fruit size changed from small to large, taste changed from not palatable to what was termed at the time sweetish, and that over time, a wider variety of fruit shapes was cultivated. Conclusions The results indicate that, in addition to data gleaned from archaeology and genetics, evidence as to changes in key traits occurring during the process of plant domestication and selective forces responsible for these changes can be traced through the ancient

  7. Tamil merchant in ancient Mesopotamia.

    PubMed

    Palanichamy, Malliya Gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  8. Tamil Merchant in Ancient Mesopotamia

    PubMed Central

    Palanichamy, Malliya gounder; Mitra, Bikash; Debnath, Monojit; Agrawal, Suraksha; Chaudhuri, Tapas Kumar; Zhang, Ya-Ping

    2014-01-01

    Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade. PMID:25299580

  9. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  10. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  11. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes.

    PubMed Central

    Jacobs, Bonnie F

    2004-01-01

    Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa. PMID:15519973

  12. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca

    PubMed Central

    Waters, Erica M.; Watson, Maxine A.

    2015-01-01

    Studies of clonal plant foraging generally focus on growth responses to patch quality once rooted. Here we explore the possibility of true plant foraging; the ability to detect and respond to patch resource status prior to rooting. Two greenhouse experiments were conducted to investigate the morphological changes that occur when individual daughter ramets of Fragaria vesca (woodland strawberry) were exposed to air above live (non-sterilized) or dead (sterilized) substrates. Contact between daughter ramets and substrate was prohibited. Daughter ramet root biomass was significantly larger over live versus dead substrate. Root:shoot ratio also increased over live substrate, a morphological response we interpret as indicative of active nutrient foraging. Daughter ramet root biomass was positively correlated with mother ramet size over live but not dead substrate. Given the choice between a live versus a dead substrate, primary stolons extended preferentially toward live substrates. We conclude that exposure to live substrate drives positive nutrient foraging responses in F. vesca. We propose that volatiles emitted from the substrates might be effecting the morphological changes that occur during true nutrient foraging. PMID:26483826

  13. Under-utilisation of organic wastes during brownfield regeneration to community woodland: tackling the barriers.

    PubMed

    Ashwood, Francis E; Doick, Kieron J; Atkinson, Gail E; Chenoweth, Jonathan

    2014-01-01

    The regeneration of brownfield land to greenspace is a governmental policy objective of many European countries. Healthy vegetation establishment and growth is an essential component of successful greenspace establishment, and research has shown that a planting medium of an appropriate standard for supporting vegetation can be created through amendment of soil-forming materials with organic wastes. However, failed regeneration projects suggest that barriers may exist that prevent the use of suitable quality soil materials. The aim of this research was to identify barriers to the use of organic wastes for improving soil materials for brownfield regeneration to community woodland. We conducted interviews with a range of professionals experienced in regeneration to greenspace, and used content analysis on interview transcripts. A diverse set of barriers was revealed, including a low technical awareness among some professional groups of how to improve soil quality, coupled with a low awareness of the published technical guidance. Other barriers include regulatory and project management issues, which influence the timings and economics of raising brownfield soil quality. We highlight areas in which future efforts may be focused to improve the quality of planting media used in land regeneration. Such effort will improve the sustainability of greenspaces created and complement effective management of organic waste streams. PMID:24293070

  14. Monitoring vegetation dynamics and carbon stock density in miombo woodlands

    PubMed Central

    2013-01-01

    Background The United Nation’s Program for Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to reduce the 20% contribution to global emissions of greenhouse gases from the forest sector, offering a financial value of the carbon stored in forests as an incentive for local communities. The pre-requisite for the setup of a participatory REDD + Program is the monitoring, reporting and verification (MRV) of baseline carbon stocks and their changes over time. In this study, we investigated miombo woodland’s dynamics in terms of composition, structure and biomass over a 4-year period (2005–2009), and the Carbon Stock Density (CSD) for the year 2009. The study was conducted in the Niassa National Reserve (NNR) in northern Mozambique, which is the 14th largest protected area in the world. Results Mean tree density distributed across 79 species increased slightly between 2005 and 2009, respectively, from 548 to 587 trees ha-1. Julbernardia globiflora (Benth.) was the most important species in this area [importance value index (IVI2005= 61 and IVI2009 = 54)]. The woodlands presented an inverted J-shaped diametric curve, with 69% of the individuals representing the young cohort. Woody biomass had a net increase of 3 Mg ha-1 with the highest growth observed in Dyplorhynchus condilocarpon (Müll.Arg.) Pichon (0.54 Mg ha-1). J. globiflora had a net decrease in biomass of 0.09 Mg ha-1. Total CSD density was estimated at ca. 67 MgC ha-1 ± 24.85 with soils (average 34.72 ± 17.93 MgC ha-1) and woody vegetation (average 29.8 MgC ha-1 ± 13.07) representing the major carbon pools. The results point to a relatively stable ecosystem, but they call for the need to refocus management activities. Conclusions The miombo woodlands in NNR are representative of the woodlands in the eco-region in terms of vegetation structure and composition. They experienced net increase in woody biomass, a considerable recruitment level and low

  15. Saproxylic beetles of the Po plain woodlands, Italy

    PubMed Central

    Bogliani, Giuseppe

    2014-01-01

    Abstract Forest ecosystems play an important role for the conservation of biodiversity, and for the protection of ecological processes. The Po plain woodlands which once covered the whole Plain, today are reduced in isolated highly threatened remnants by modern intensive agriculture. These close to natural floodplain forests are one of the most scarce and endangered ecosystems in Europe. Saproxylic species represent a major part of biodiversity of woodlands. The saproxylic insects are considered one of the most reliable bio-indicators of high-quality mature woodlands and have a very important role in regard to the protection and monitoring of forest biodiversity due to their highly specific living environments. As a result of the dramatic reduction of mature forests and the decreased availability of deadwood most of the saproxylic communities are greatly diminishing. The study was conducted in the Ticino Valley Regional Park and the aim is to contribute to the expansion of knowledge on the saproxylic beetles of Lombardy. We investigated 6 sampling sites belonging to alluvial and riparian mixed forests. For each forest we selected 12 trees. For beetles’ collection we used two different traps: Eclector Traps and Trunk Window Traps (total of 72 traps and 864 samples collected). We determined 4.387 beetles from 87 saproxylic species belonging to 21 families. Of these species 51 were not included in the previous checklist of the Park. By comparing the two different techniques used for catching saproxylic beetles, we found a significantly high difference in species richness between Window Traps (WT) and Eclector Traps (ET) with a higher number of species captured in the Window Traps. However, the combined use of two different types of traps significantly expanded the spectrum of insects captured Among the species reported as Least Concern in the IUCN Red List, we found interesting species such as the Elateridae Calambus bipustulats, the Eucnemidae Melasis buprestoides

  16. Characterization of Ancient Tripitaka

    NASA Astrophysics Data System (ADS)

    Gong, Y. X.; Geng, L.; Gong, D. C.

    2015-08-01

    Tripitaka is the world's most comprehensive version of Buddhist sutra. There are limited numbers of Tripitaka currently preserved, most of them present various patterns of degradation. As little is known about the materials and crafts used in Tripitaka, it appeared necessary to identify them, and to further define adapted conservation treatment. In this work, a study concerning the paper source and dyestuff of the Tripitaka from approximate 16th century was carried out using fiber analysis and thin-layer chromatography (TLC). The results proved that the papers were mainly made from hemp or bark of mulberry tree, and indigo was used for colorizing the paper. At the end, we provide with suggestions for protecting and restoring the ancient Tripitaka.

  17. Ancient Chinese Sundials

    NASA Astrophysics Data System (ADS)

    Deng, Kehui

    Timekeeping was essential in the agricultural society of ancient China. The use of sundials for timekeeping was associated with the use of the gnomon, which had its origin in remote antiquity. This chapter studies three sundials (guiyi 晷仪) from the Qin and Han dynasties, the shorter shadow plane sundial (duanying ping yi 短影平仪) invented by Yuan Chong in the Sui Dynasty, and the sundial chart (guiyingtu 晷影图) invented by Zeng Minxing in the Southern Song dynasty. This chapter also introduces Guo Shoujing's hemispherical sundial (yang yi 仰仪). A circular stone sundial discovered at the Small Wild Goose Pagoda in Xi'an is also mentioned. It is dated from the Sui and Tang dynasties. A brief survey of sundials from the Qing dynasty shows various types of sundials.

  18. Burns treatment in ancient times.

    PubMed

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques. PMID:23888738

  19. Consequences of canopy spatial arrangement in a semiarid woodland for near-ground solar radiation and soil moisture

    SciTech Connect

    Breshears, D.D.; Barnes, F.J.; Rich, P.M.

    1995-06-01

    Canopies of woody plants have been shown to modify the solar radiation and soil moisture patterns beneath them relative to intercanopy locations. However, the role of canopy spatial arrangement in modifying soil moisture patterns has not been investigated. We investigated the consequences of canopy spatial arrangement for soil moisture through time using an index of solar radiation in a pinyon-juniper woodland in northern New Mexico. Solar radiation indices were obtained using hemispherical photographs; soil moisture was measured using time-domain reflectometry (both were measured every 1 m along a 100 m transect). We tested for (1) spatial autocorrelation in soil moisture, (2) spatial autocorrelation in near-ground solar radiation patterns, and (3) relationships between solar radiation and soil moisture. We found spatial autocorrelation for both of the variables individually and correlation between the two variables. The results indicate that soil moisture patterns are modified by canopy spatial arrangement and vary along a continuum of openness, from canopy to intercanopy locations. These findings have implications for calculating water balance within and across woodland sites.

  20. Not all kinds of revegetation are created equal: revegetation type influences bird assemblages in threatened Australian woodland ecosystems.

    PubMed

    Lindenmayer, David B; Northrop-Mackie, Amanda R; Montague-Drake, Rebecca; Crane, Mason; Michael, Damian; Okada, Sachiko; Gibbons, Philip

    2012-01-01

    The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity.Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined. PMID:22493698

  1. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Filley, Timothy R.; Boutton, Thomas W.; Liao, Julia D.; Jastrow, Julie D.; Gamblin, David E.

    2008-09-01

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  2. Not All Kinds of Revegetation Are Created Equal: Revegetation Type Influences Bird Assemblages in Threatened Australian Woodland Ecosystems

    PubMed Central

    Lindenmayer, David B.; Northrop-Mackie, Amanda R.; Montague-Drake, Rebecca; Crane, Mason; Michael, Damian; Okada, Sachiko; Gibbons, Philip

    2012-01-01

    The value for biodiversity of large intact areas of native vegetation is well established. The biodiversity value of regrowth vegetation is also increasingly recognised worldwide. However, there can be different kinds of revegetation that have different origins. Are there differences in the richness and composition of biotic communities in different kinds of revegetation? The answer remains unknown or poorly known in many ecosystems. We examined the conservation value of different kinds of revegetation through a comparative study of birds in 193 sites surveyed over ten years in four growth types located in semi-cleared agricultural areas of south-eastern Australia. These growth types were resprout regrowth, seedling regrowth, plantings, and old growth. Our investigation produced several key findings: (1) Marked differences in the bird assemblages of plantings, resprout regrowth, seedling regrowth, and old growth. (2) Differences in the number of species detected significantly more often in the different growth types; 29 species for plantings, 25 for seedling regrowth, 20 for resprout regrowth, and 15 for old growth. (3) Many bird species of conservation concern were significantly more often recorded in resprout regrowth, seedling regrowth or plantings but no species of conservation concern were recorded most often in old growth. We suggest that differences in bird occurrence among different growth types are likely to be strongly associated with growth-type differences in stand structural complexity. Our findings suggest a range of vegetation growth types are likely to be required in a given farmland area to support the diverse array of bird species that have the potential to occur in Australian temperate woodland ecosystems. Our results also highlight the inherent conservation value of regrowth woodland and suggest that current policies which allow it to be cleared or thinned need to be carefully re-examined. PMID:22493698

  3. Chemical changes to nonagrregtaed particulate soil organic matter following grassland-to woodland transition ina subtropical savanna.

    SciTech Connect

    Filley, T. R.; Boutton, T. W.; Liao, J. D.; Jastrow, J. D.; Gamblin, D. E.; Biosciences Division; Purdue Univ.; Texas A&M

    2008-07-19

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  4. Surveying woodland raptors by broadcast of conspecific vocalizations

    USGS Publications Warehouse

    Mosher, J.A.; Fuller, M.R.; Kopeny, M.

    1990-01-01

    We surveyed for raptors in forests on study areas in five of the eastern United States. For Cooper's Hawks (Accipiter cooperi), Red-shouldered Hawks (Buteo lineatus), and Barred Owls (Strix varia) the contact rates obtained by broadcasting taped vocalizations of conspecifics along roads were significantly greater than contact rates obtained by only looking and listening from the roadside. Broad-winged Hawks (B. platypterus) were detected only after their calls were broadcast. Most raptors were detected within 10 min of the beginning of the broadcasts. Red-tailed Hawks (B. jamaicensis) and Goshawks (A. gentilis) nested infrequently on our study areas, and we were unable to increase detections of these species. Generally, point count transects along woodland roads, from which conspecific vocalizations were broadcast, resulted in higher species specific detection rates than when walking, driving continuously, or only looking and listening for raptors at roadside stops.

  5. Evaporation from Banksia woodland on a groundwater mound

    NASA Astrophysics Data System (ADS)

    Farrington, P.; Greenwood, E. A. N.; Bartle, G. A.; Beresford, J. D.; Watson, G. D.

    1989-01-01

    Annual evaporation from a site within a Banksia woodland on a groundwater mound near Perth, Western Australia, was estimated from measurements of daily evaporation by ventilated chambers on fourteen occasions during a 12-month period. The total evaporation for this period was estimated to be 666 mm (77% of annual rainfall). About two-thirds of the total evaporation came from the ground flora, one-fifth from Banksia trees, and the remainder from the tall shrub Adenanthos cygnorum. Depth to water table, which ranged from 4 to 12 m over the site, had little effect on total evaporation. This work suggests that regular reduction in ground flora foliage, for example, by controlled burning could increase recharge.

  6. Food, dietetics and nutrition in ancient India.

    PubMed

    Manyam, B V

    1995-01-01

    In pre-agricultural era, entire mankind consumed meat as early man was a hunter. Possibly he ate from plants sources which grew in the wilderness. With the advent of agriculture as an outcome of civilization, man acquired the ability to cultivate what he wanted, as by now he was influenced to some extent by the selection of the food that he wanted to eat. All this ultimately led to him taking to vegeterianism, which probably did not occur until approximately 1500 B.C. It is tried in this study to examine the concept of nutrition, balanced diet, appetite, food etiquette, food sanitation and food poisoning etc. in ancient India. PMID:11618846

  7. Soil Phosphatase Activity and Plant-available Phosphorus Increase Following Grassland Invasion by N-fixing Tree Legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. These woodlands are dominated by N-fixing tree legumes which are...

  8. Astronomy in the Ancient Caucasus

    NASA Astrophysics Data System (ADS)

    Simonia, Irakli; Jijelava, Badri

    This chapter discusses the role of recurrent heavenly phenomena in the formation of ancient cultural traditions. Artifacts bearing witness to astronomical and calendrical practices in the ancient Caucasus are described and we analyze the significance of the "boats of the sun" petroglyphs at Gobustan in Azerbaijan, the solar station at Abuli in Georgia, and the "sky dial" at Carahunge in Armenia. Similarities and differences between the ancient cultures of the region are discussed. Finally, we present the results of the latest field research and new facts and hypotheses.

  9. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  10. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  11. Ancient Astronomy in Ukraine

    NASA Astrophysics Data System (ADS)

    Artemenko, Tatyana G.; Vavilova, Iryna B.

    2007-08-01

    Astronomical culture and research have long-standing traditions in Ukraine. The first signs of astronomical knowledge were found in archaeological excavations and records. The most ancient find (dated as 15,000 B.C.) is a mammoth tusk with a fretwork image of a table of lunar phases found in the Poltava region. The so-called Trypillya culture (dated 4,000 - 3,000 B.C) had numerous examples of ornaments at the howls, distaffs, wheels and other everyday articles with symbolic images of zodiac constellations, and vessel-calendars indicating the vernal/autumnal equinoxes and the motion of the Sun. Some of such unique exhibits stored at the National Museum of History of Ukraine will be described in details in this paper. For example, the vessel calendar dating by IV century of our era (from village Romashki, Kyiv region). This image was interpreted by B. Rybakov as an agricultural calendar from May to August (time of harvesting). Most of exhibits of Museum were founded by archaeologist Vikenty Khvoyko and presented by him to Museum in 1905. Description and pictures of vessels and cups from Chernyahiv, Trypillya IV century B.C. with the Solar signs and tusk of the mammoth from Kyrilovska parking with notches interpreted as a calendar as well as tree-storied pictures of vessel from Trypillya interpreted as a “vertical cross section of the world” in dynamics will be also given. Another unique historical record relates to the times of the powerful state of the Kievan Rus' (X- XIII centuries), when astronomical observations were conducted mainly in cloisters. For example, the authors of the Lavrentievska chronicle describe the solar eclipses of the years 1064, 1091, and 1115 A.D. and the lunar eclipses of 1161 A.D. At that times some natural cataclysms have been connected with eclipses that, for example, was described in “The Word about Igor's shelf” by Nestor Letopisec. Thus, facts discussed in paper pointed out once more that astronomy is one of the most ancient

  12. [Ancient Egyptian Odontology].

    PubMed

    Berghult, B

    1999-01-01

    In ancient Egypt during the reign of Pharaoh Djoser, circa 2650 BC, the Step Pyramid was constructed by Imhotep. He was later worshiped as the God of Medicine. One of his contemporaries was the powerful writer Hesy who is reproduced on a panel showing a rebus of a swallow, a tusk and an arrow. He is therefore looked upon as being the first depicted odontologist. The art of writing begun in Egypt in about 3100 BC and the medical texts we know from different papyri were copied with hieratic signs around 1900-1100 BC. One of the most famous is the Papyrus Ebers. It was purchased by professor Ebers on a research travel to Luxor in 1873. Two years later a beautiful facsimile in color was published and the best translation came in 1958 in German. The text includes 870 remedies and some of them are related to teeth and oral troubles like pain in the mouth, gingivitis, periodontitis and cavities in the teeth. The most common oral pain was probably pulpitis caused by extreme attrition due to the high consumption of bread contaminated with soil and/or quern minerals. Another text is the Papyrus Edwin Smith with four surgical cases of dental interest. The "toothworms" that were presumed to bring about decayed teeth have not been identified in the medical texts. It was not until 1889 W.D. Miller presented a scientific explanation that cavities were caused by bacteria. In spite of extensive research only a few evidence of prosthetic and invasive treatments have been found and these dental artifacts have probably been made post mortem. Some of the 150 identified doctors were associated with treatments of disorders of the mouth. The stele of Seneb from Sa'is during the 26th dynasty of Psamtik, 664-525 BC, shows a young man who probably was a dental healer well known to Pharaoh and his court. Clement of Alexandria mentions circa 200 AD that the written knowledge of the old Egyptians was gathered in 42 collections of papyri. Number 37-42 contained the medical writings. The

  13. Ancient Astronomical Monuments of Athens

    NASA Astrophysics Data System (ADS)

    Theodossiou, E.; Manimanis, V. N.

    2010-07-01

    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  14. Astronomical Significance of Ancient Monuments

    NASA Astrophysics Data System (ADS)

    Simonia, I.

    2011-06-01

    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  15. Hunting for Ancient Rocky Shores.

    ERIC Educational Resources Information Center

    Johnson, Markes E.

    1988-01-01

    Promotes the study of ancient rocky shores by showing how they can be recognized and what directions future research may follow. A bibliography of previous research articles, arranged by geologic period, is provided in the appendix to this paper. (CW)

  16. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    Appendix II of The Woodlands Metro Center Energy Study near Houston consists of the following: Metro Center Program, Conventional Plan Building Prototypes and Detail Parcel Analysis, Energy Plan Building Prototypes, and Energy Plan Detail Parcel Analysis.

  17. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  18. Will elevated CO2 alter fuel characteristics and flammability of eucalypt woodlands?

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Resco, Victor; Boer, Matthias; Bradstock, Ross; Sawyer, Robert

    2016-04-01

    Rising atmospheric CO2 may enhance forest productivity via CO2 fertilisation and increased soil moisture associated with water savings, potentially resulting in increased woody plant abundance i.e. woody thickening. Changes to vegetation structure via woody thickening, as well as changes to vegetation properties (e.g. leaf characteristics and moisture content), may have important implications for ecosystem flammability and fire regimes. Understanding how elevated CO2 alters flammability and fire regimes will have implications for ecosystem dynamics, particularly carbon sequestration and emissions. We present data from Free Air CO2 Enrichment (EucFACE) and whole tree growth chamber (WTC) experiments to assess the effect of elevated CO2 on fuel properties and flammability of eucalypt woodlands. Experiments involved ambient (˜400 ppm) and elevated CO2treatments, with elevated treatments being +150 ppm and +240 ppm at EucFACE and the WTCs respectively. We examined the response of vegetation parameters known to influence ecosystem flammability, namely (i) understorey vegetation characteristics (ii) understorey fuel moisture and (iii) leaf flammability. Understorey growth experiments at EucFACE using seedlings of two common woody species (Hakea sericia, Eucalyptus tereticornis) indicate that elevated CO2 did not influence stem and leaf biomass, height or crown dimensions of seedlings after 12 months exposure to experimental treatments. Temporal changes to understorey live fuel moisture were assessed at EucFACE over an 18 month period using time lapse cameras. Understorey vegetation greenness was measured daily from digital photos using the green chromatic coordinate (GCC), an index that is highly correlated with live fuel moisture (R2 = 0.90). GCC and rates of greening and browning were not affected by elevated CO2, though they were highly responsive to soil moisture availability and temperature. This suggests that there is limited potential for elevated CO2 to alter

  19. Conversion of woodlands changes soil related ecosystem services in Subsaharan Africa

    NASA Astrophysics Data System (ADS)

    Groengroeft, Alexander; Landschreiber, Lars; Luther-Mosebach, Jona; Masamba, Wellington; Zimmermann, Ibo; Eschenbach, Annette

    2015-04-01

    In remote areas of Subsaharan Africa, growing population, changes in consumption patterns and increasing global influences are leading to a strong pressure on the land resources. Smallholders convert woodlands by fire, grazing and clearing in different intensities thus changing soil properties and their ecosystem functioning. As the extraction of ecosystem services forms the basis of local wellbeing for many communities, the role of soils in providing ecosystem services is of high importance. Since 2010, "The Future Okavango" project investigates the quantification of ecosystem functions and services at four core research sites along the Okavango river basin (Angola, Namibia, Botswana, see http://www.future-okavango.org/). These research sites have an extent of 100 km2 each. Within our subproject the soil functions underlying ecosystem services are studied: The amount and spatial variation of soil nutrient reserves in woodland and their changes by land use activities, the water storage function as a basis for plant growth, and their effect on groundwater recharge and the carbon storage function. The scientific framework consists of four major parts including soil survey and mapping, lab analysis, field measurements and modeling approaches on different scales. A detailed soil survey leads to a measure of the spatial distribution, extent and heterogeneity of soil types for each research site. For generalization purposes, geomorphological and pedological characteristics are merged to derive landscape units. These landscape units have been overlaid by recent land use types to stratify the research site for subsequent soil sampling. On the basis of field and laboratory analysis, spatial distribution of soil properties as well as boundaries between neighboring landscape units are derived. The parameters analysed describe properties according to grain size distribution, organic carbon content, saturated and unsaturated hydraulic conductivity as well as pore space

  20. Baseline tritium concentrations in soils and vegetation: The Tshirege woodland site at TA-54

    SciTech Connect

    Fresquez, P.R.

    1998-09-01

    In compliance with Department of Energy (DOE) Order 5400.1, a preoperational environmental survey was conducted for the Tshirege woodland site--an experimental area managed by the Earth and Environmental Science Group (EES-15)--where radioactive tritium ({sup 3}H) will be injected ten cm deep in and around the base of pinyon (Pinus edulis) and one-seeded juniper (Juniperus monosperma) trees during the summer of 1990. The site is located at the lower end of Canada del Buey close to the intersection of Pajarito and State Road 4. Baseline values of {sup 3}H were measured in soil and plant samples from five locations immediately surrounding the study area. Mean values of {sup 3}H in soils collected from the 0--5 and 25--30 cm depths were 1.24 ({+-}0.22) and 1.08 ({+-}0.41) pCi mL{sup {minus}1}, respectively. Pinyon needles averaged 1.68 ({+-}0.18) pCi mL{sup {minus}1} and blue grama grass (Bouteloua gracilis) averaged 1.16 ({+-}0.95) pCi mL{sup {minus}1}.

  1. Understanding patterns of water use in a subtropical woodland using stable isotopes

    NASA Astrophysics Data System (ADS)

    Grierson, Pauline; Page, Gerald; Skrzypek, Grzegorz; Dogramaci, Shawan; Luccitti, Samuel; O'Donnell, Alison

    2015-04-01

    Vegetation structure in the arid subtropics is often highly variable across the landscape, reflecting at least in part the high spatial and temporal heterogeneity of rainfall, groundwater and soil moisture. Here, we investigated how patterns of water uptake by trees and shrubs differed across landscape positions in the Pilbara region of northwest Australia and assessed the responsiveness of trees and shrubs to large (cyclonic) rainfall events. We sampled water stable isotope compositions of xylem, soil, rain and groundwater as well as soil water content and root distributions of eucalypt and mulga woodlands in the Pilbara region over three years. Based on the 18O results, we found that the sampled plant taxa (mulga, Eucalyptus victrix) were using water originally derived from a large rainfall event (Cyclone Heidi), both at lowland and upland sites. Trees and shrubs such as mulga were accessing shallow soil water of meteoric origin. Eucalyptus victrix accessed water deeper in the profile (8-10 m) as surface soils dried out. Mulga appeared to store water for many months after the recharge event. This ability to take up and likely store a large proportion of shallow soil water after rainfall is a key feature enabling mulga to survive through the period of greatest water demand and to acclimate to the spatiotemporal changes to water conditions in the soil profile. Alternatively, episodic cyclonic recharge maintains deep soil and groundwater resources that maintain deeper-rooted species such as E. victrix throughout the prolonged drought periods.

  2. Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Duval, B. D.; Dijkstra, P.; Johnson, D. W.; Ketterer, M. E.; Stiling, P.; Cheng, W.; Millman, J.; Hartley, A.; Stover, D. B.

    2014-06-01

    Rising atmospheric CO2 concentrations may alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 years of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light or nutrients in shaping the response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on nonsymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response of N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.

  3. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland.

    PubMed

    Hasegawa, Shun; Macdonald, Catriona A; Power, Sally A

    2016-04-01

    Free-air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)-limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18-month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P-limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (-0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability - particularly for phosphate - in P-limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C-accumulation under future predicted CO2 concentrations. PMID:26546164

  4. Ancient lakes on Mars?

    NASA Technical Reports Server (NTRS)

    Goldspiel, J. M.; Squyres, S. W.

    1989-01-01

    The valley systems in Mars' ancient cratered terrain provide strong evidence for a warmer and wetter climate very early in planetary history. The valley systems in some instances debouch into closed depressions that could have acted as local ponding basins for the flow. A survey of the Martian equatorial region shows that numerous local depressions at the confluence of valley systems exist. These depressions (approximately 100 km) typically are characterized by many valleys flowing into them and few or none flowing out. If ponding did take place, these basin would have contained lakes for some period during Mars' early warmer epoch. Although the collection basins are numerous, location of ones that have not suffered significant subsequent geologic modification is difficult. Some morphologic features suggest that volcanic lavas may have filled them subsequent to any early fluvial activity. Two detailed maps of valley systems and local ponding basins in USGC 1:2,000,000 subquadrangles were completed and a third is in progress. The completed regions are in Mare Tyrrhenum (MC-22 SW) and Margarifter Sinus (MC-19 SE), and the region in progress is in Iapygia (MC-21 NW). On the maps, the valley systems and interpreted margins of ponding basins are indicated. The depressions are of interest for two reasons. First, the depressions were surely the sites in which the materials eroded from the valleys were deposited. Such sediments could preserve important information about the physical conditions at the time of deposition. Second, the sediments could preserve evidence of water-atmosphere interactions during the early period of the Martian climate. Atmospheric carbon dioxide would dissolve in water, and solid carbonate minerals would tend to precipitate out to form carbonate sedimentary deposits. Formation of carbonates in this manner might account for some of the CO2 lost from the early more dense atmosphere.

  5. Special article: mandragora: anesthetic of the ancients.

    PubMed

    Chidiac, Elie J; Kaddoum, Romeo N; Fuleihan, Samir F

    2012-12-01

    Initial attempts at surgical anesthesia began many centuries ago, with the plants of antiquity. The mandragora, or mandrake, was used as a sedative and to induce pain relief for surgical procedures. It has been depicted in tablets and friezes since the 16th century before the common era (BCE) and used for its sedative effects by Hannibal (second century BCE) against his enemies. The Romans used the mandrake for surgery. The Arabs translated the scientific work of the Ancients and expanded on their knowledge. They developed the Spongia Somnifera, which contained the juice of the mandrake plant. After the fall of the Islamic cities of Europe to the Christians, scientific work was translated into Latin and the Spongia Somnifera was used in Europe until the discovery of the use of ether for surgical anesthesia. PMID:22584550

  6. Role of vegetation in modulating rainfall interception and soil water flux in ecosystems under transition from grassland to woodland

    NASA Astrophysics Data System (ADS)

    Zou, Chris; Will, Rodney; Stebler, Elaine; Qiao, Lei

    2014-05-01

    Vegetation exerts strong control on the hydrological budget by shielding the soil from rainfall through interception and modulating water transmission in the soil by altering soil properties and rooting zone water extraction. Therefore, a change in vegetation alters the water cycle by a combination of a passive, rainfall redistribution mechanism controlled by the physical dimensions of vegetation and active, water extracting processes resulting from physiological attributes of different plants. As a result, the role of vegetation on the water cycle is likely to change where vegetation is under transition such as in the southern Great Plains of USA due to woody plant encroachment. However, it remains largely unknown how this physiognomic transformation from herbaceous cover to woody canopy alters rainfall influx, soil water transmission and efflux from the soil profile and consequently alters historic patterns of runoff and groundwater recharge. This knowledge is critical for both water resource and ecosystem management. We conducted a comprehensive, 5-year study involving direct quantification of throughfall and stemflow for grassland and encroached juniper woodland (Juniperus virginiana), water efflux through transpiration using an improved Granier thermal dissipation method (trees) and ET chamber (grassland), soil moisture storage and dynamics (capacitance probe) and streamflow (small catchment). We calibrated a prevailing hydrological model (SWAT) based on observed data to simulate potential change in runoff and recharge for the Cimarron River basin (study site located within this basin) under various phases of grassland to woodland transition. Our results show that juniper encroachment reduces throughfall reaching the soil surface compared with grassland under moderate grazing. The evergreen junipers transpired water year-round including fall and winter when the warm season grasses were senescent. As a result, soil water content and soil water storage on the

  7. Non-equilibrium hillslope dynamics and irreversible landscape changes at a shifting pinyon-juniper woodland ecotone

    NASA Astrophysics Data System (ADS)

    McAuliffe, Joseph R.; McFadden, Leslie D.; Roberts, Leah M.; Wawrzyniec, Tim F.; Scuderi, Louis A.; Meyer, Grant A.; King, Matthew P.

    2014-11-01

    Pinyon-juniper woodlands of the western United States frequently exist within topographically complex landscapes where varied slope aspect yields substantial, local microclimate variation. Vegetation composition and cover typically change markedly along the gradient of relatively mesic northern aspects to more xeric southern aspects. Ecohydrological processes including precipitation runoff, soil moisture storage, and erosion are strongly influenced by vegetation. In certain cases, reduction of plant cover may set self-enhancing feedbacks in motion that lead to further declines of both vegetation and soils, and in some cases, replacement of woodlands with more xerophytic vegetation. The first place such change is likely to occur is in the ecotone between the drier southern aspects and moister north aspects. We studied vegetation, soils, and soil erosion in two small (1-2 ha) drainage basins in northeastern Arizona where pinyon-juniper woodlands occupy northern aspects, grading to shrub-dominated vegetation on more xeric southern aspects. Mapping of soil thickness, use of tree-root exposure to measure long-term soil erosion rates, and data on tree mortality and establishment indicate that the ecotone between woodland and more xerophytic vegetation has apparently been shifting for centuries, with a reduction in woodland vegetation. Erosion rates on xeric aspects ranged from 14 to 23 cm per century in one basin and as much as 60 cm per century in the other basin. In contrast, mesic aspects showed either no net soil losses over the last several centuries or rates significantly less than on the xeric aspects. Exposure of small roots (< 5 mm diameter) of cliff rose (Purshia stansburiana) directly overlying bare bedrock surfaces indicates that the process of denudation is ongoing and probably expanding in ecotonal areas. Mesic and xeric aspects exemplify "conserving" vs. "non-conserving" ecohydrologic systems in terms of their capacities to retain water and soils. The

  8. Early-winter diet of woodland caribou in relation to snow accumulation, Selkirk Mountains, British Columbia, Canada

    USGS Publications Warehouse

    Rominger, Eric M.; Oldemeyer, John L.

    1990-01-01

    Woodland caribou (Rangifer tarandus caribou) in the southern Selkirk Mountains of British Columbia shift from a diet of primarily vascular taxa during snow-free months to an arboreal lichen – conifer diet during late winter. We present evidence that caribou diets, during the early-winter transition period, are influenced by snow accumulation rates. Caribou shift to an arboreal lichen – conifer diet earlier during winters of rapid snow accumulation and forage extensively on myrtle boxwood (Pachistima myrsinites), an evergreen shrub, and other vascular plants during years of slower snow accumulation. The role of coniferous forage in early-winter food habits is examined. Forest management strategies can be developed to provide habitat that will enable caribou to forage in response to varying snow accumulation rates.

  9. Wetland plant waxes from Olduvai Gorge, Tanzania

    NASA Astrophysics Data System (ADS)

    Tamalavage, A.; Magill, C. R.; Barboni, D.; Ashley, G. M.; Freeman, K. H.

    2013-12-01

    Olduvai Gorge, northern Tanzania, exposes a Plio-Pleistocene sedimentary record that includes lake and lake-margin sediments and fossil remains of ancient plants and early humans. There are rich paleontological and cultural records at Olduvai Gorge that include thousands of vertebrate fossils and stone tools. Previous studies of plant biomarkers in lake sediments from Olduvai Gorge reveal repeated, abrupt changes in landscape dominance by woodland or grassland vegetation during the early Pleistocene, about 1.8 million years ago. However, the reconstruction of wetland vegetation in the past is limited by a dearth of published lipid signatures for modern wetland species. Here, we present lipid and isotopic data for leaf tissues from eight modern plants (i.e., sedge and Typha species) living in wetlands near Olduvai Gorge. Trends in values for molecular and leaf δ13C and average chain length (ACL) of n-alkanes in plant tissues are similar to values for underlying soils. Compound-specific δ13C values for n-alkanes C25 to C33 range between -36.4 to -23.1‰ for C3 plants and -22.3 to -19.5‰ for C4 plants. Fractionation factors between leaf and lipids, ɛ29 and ɛ33, fall within the range reported in the literature, but they differ more widely within a single plant. For C3 plants, the average difference between ɛ29 and ɛ33 is 6.5 ‰, and the difference between ɛ29 and ɛ33 for C4 plants is less than 2‰. Both plant types show a parabolic relationship between chain length and δ13C values, in which C29 typically has the most depleted value, and typically shift by 3-5‰ between alkane homologs. This pattern has not been previously reported, and could be unique for sedge lipids. If so, these data help constrain the application of plant wax biomarkers from sedges for paleo-vegetation reconstruction in paleoclimate studies and at archaeological sites.

  10. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca.

    PubMed

    Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue

    2015-01-01

    Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli. PMID:26442049

  11. Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca

    PubMed Central

    Hu, Yang; Han, Yong-Tao; Wei, Wei; Li, Ya-Juan; Zhang, Kai; Gao, Yu-Rong; Zhao, Feng-Li; Feng, Jia-Yue

    2015-01-01

    Heat shock transcription factors (Hsfs) are known to play dominant roles in plant responses to heat, as well as other abiotic or biotic stress stimuli. While the strawberry is an economically important fruit plant, little is known about the Hsf family in the strawberry. To explore the functions of strawberry Hsfs in abiotic and biotic stress responses, this study identified 17 Hsf genes (FvHsfs) in a wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) and isolated 14 of these genes. Phylogenetic analysis divided the strawberry FvHsfs genes into three main groups. The evolutionary and structural analyses revealed that the FvHsf family is conserved. The promoter sequences of the FvHsf genes contain upstream regulatory elements corresponding to different stress stimuli. In addition, 14 FvHsf-GFP fusion proteins showed differential subcellular localization in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 17 FvHsf genes in wild diploid woodland strawberries under various conditions, including abiotic stresses (heat, cold, drought, and salt), biotic stress (powdery mildew infection), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). Fifteen of the seventeen FvHsf genes exhibited distinct changes on the transcriptional level during heat treatment. Of these 15 FvHsfs, 8 FvHsfs also exhibited distinct responses to other stimuli on the transcriptional level, indicating versatile roles in the response to abiotic and biotic stresses. Taken together, the present work may provide the basis for further studies to dissect FvHsf function in response to stress stimuli. PMID:26442049

  12. Root water compensation sustains transpiration rates in an Australian woodland

    NASA Astrophysics Data System (ADS)

    Verma, Parikshit; Loheide, Steven P.; Eamus, Derek; Daly, Edoardo

    2014-12-01

    We apply a model of root-water uptake to a woodland in Australia to examine the regulation of transpiration by root water compensation (i.e., the ability of roots to regulate root water uptake from different parts of the soil profile depending on local moisture availability). We model soil water movement using the Richards equation and water flow in the xylem with Darcy's equation. These two equations are coupled by a term that governs the exchange of water between soil and root xylem as a function of the difference in water potential between the two. The model is able to reproduce measured diurnal patterns of sap flux and results in leaf water potentials that are consistent with field observations. The model shows that root water compensation is a key process to allow for sustained rates of transpiration across several months. Scenarios with different root depths showed the importance of having a root system deeper than about 2 m to achieve the measured transpiration rates without reducing the leaf water potential to levels inconsistent with field measurements. The model suggests that the presence of more than 5 % of the root system below 0.6 m allows trees to maintain sustained transpiration rates keeping leaf water potential levels within the range observed in the field. According to the model, a large contribution to transpiration in dry periods was provided by the roots below 0.3 m, even though the percentage of roots at these depths was less than 40 % in all scenarios.

  13. Reactive nitrogen oxides and ozone above a taiga woodland

    NASA Technical Reports Server (NTRS)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.

    1994-01-01

    Measurements of reactive nitrogen oxides (NO(x) and NO(y)) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NO(x), and NO(y) and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO(x) and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NO(x) to NO(y) were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  14. Reactive nitrogen oxides and ozone above a taiga woodland

    NASA Astrophysics Data System (ADS)

    Bakwin, Peter S.; Jacob, Daniel J.; Wofsy, Steven C.; Munger, J. William; Daube, Bruce C.; Bradshaw, John D.; Sandholm, Scott T.; Talbot, Robert W.; Singh, Hanwant B.; Gregory, Gerald L.; Blake, Donald R.

    1994-01-01

    Measurements of reactive nitrogen oxides (NOx and NOy) and ozone (O3) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Artie Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O3 were strongly modulated by the synoptic scale meteorology that brought air from various source regions to the site. Industrial pollution from the Great Lakes region of the U.S. and Canada appears to be a major source for periodic elevation of NOx, NOy and O3. We find that NO/NO2 ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NOx and O3, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO2, at the taiga site. Ratios of NOx to NOy were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3 A. This is probably the result of high PAN levels and suppressed formation of HNO3 from NO2 due to high levels of biogenic hydrocarbons at the ABLE 3B site.

  15. Impact of a prescribed fire on soil water repellency in a Banksia woodland (Western Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Miller, Ben; Tangney, Ryan; Miller, Russell; González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; Zavala, Lorena M.; Jordán, Antonio

    2016-04-01

    , Wittkuhn RS, McCaw L, Grierson PF. 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires - evidence from 50 years of active fire management in sw australian forests. Forest Ecology and Management 259: 132-142. DOI: 10.1016/j.foreco.2009.10.005. Burrows ND, McCaw WL. 1990. Fuel characteristics and bushfire control in banksia low woodlands in western australia. Journal of Environmental Management 31: 229-236. DOI: 10.1016/S0301-4797(05)80036-2. Jordán A, Gordillo-Rivero AJ, García-Moreno J, Zavala LM, Granged AJP, Gil J, Neto-Paixão HM. 2014. Post-fire evolution of water repellency and aggregate stability in Mediterranean calcareous soils: A 6-year study. Catena 118:115-123. DOI: 10.1016/j.catena.2014.02.001. Lozano E, Jiménez-Pinilla P, Mataix-Solera J, Arcenegui V, Bárcenas GM, González-Pérez JA, García-Orenes F, Torres MP, Mataix-Beneyto J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 207-208:212-220. DOI: 10.1016/j.geoderma.2013.05.021. Muñoz-Rojas M, Erickson TE, Martini D, Dixon KW, Merritt DJ. 2016. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecological Indicators 63:14-22. DOI: 10.1016/j.ecolind.2015.11.038. Zavala LM, Jordán A, Gil J, Bellinfante N, Pain C. 2009. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire. Earth Surface Processes and Landforms 34: 1522-1532. DOI: 10.1002/esp.1837.

  16. Floral Transcriptomes in Woodland Strawberry Uncover Developing Receptacle and Anther Gene Networks.

    PubMed

    Hollender, Courtney A; Kang, Chunying; Darwish, Omar; Geretz, Aviva; Matthews, Benjamin F; Slovin, Janet; Alkharouf, Nadim; Liu, Zhongchi

    2014-05-14

    Flowers are reproductive organs and precursors to fruits and seeds. While the basic tenets of the ABCE model of flower development are conserved in angiosperms, different flowering plants exhibit different and sometimes unique characteristics. A distinct feature of strawberry (Fragaria spp.) flowers is the development of several hundreds of individual apocarpous (unfused) carpels. These individual carpels are arranged in a spiral pattern on the subtending stem tip, the receptacle. Therefore, the receptacle is an integral part of the strawberry flower and is of significant agronomic importance, being the precursor to strawberry fruit. Taking advantage of next-generation sequencing and laser capture microdissection, we generated different tissue- and stage-transcriptomic profiling of woodland strawberry (Fragaria vesca) flower development. Using pairwise comparisons and weighted gene coexpression network analysis, we identified modules of coexpressed genes and hub genes of tissue-specific networks. Of particular importance is the discovery of a developing receptacle-specific module exhibiting similar molecular features to those of young floral meristems. The strawberry homologs of a number of meristem regulators, including LOST MERISTEM and WUSCHEL, are identified as hub genes operating in the developing receptacle network. Furthermore, almost 25% of the F-box genes in the genome are transiently induced in developing anthers at the meiosis stage, indicating active protein degradation. Together, this work provides important insights into the molecular networks underlying strawberry's unique reproductive developmental processes. This extensive floral transcriptome data set is publicly available and can be readily queried at the project Web site, serving as an important genomic resource for the plant biology research community. PMID:24828307

  17. Neonatal medicine in ancient art.

    PubMed

    Yurdakök, Murat

    2010-01-01

    There are a limited number of artistic objects from ancient times with particular importance in neonatal medicine. The best examples are figurines from ancient Egypt of Isis nursing Horus, showing the importance of breastfeeding. The earliest images of the human fetus were made by the Olmecs in Mexico around 1200- 400 BCE. One of the earliest representations of congenital anomalies is a figurine of diencephalic twins thought to be the goddess of Anatolia, dated to around 6500 BCE. In addition to these figurines, three sets of twins in the ancient world have medical importance, and Renaissance artists often used them as a subject for their paintings: "direct suckling animals" (Romulus and Remus), "heteropaternal superfecundation" (mother: Leda, fathers: Zeus, the king of the Olympian gods, and Leda's husband, Tyndareus), and "twin-to-twin transfusion" in monozygotic twins (Jacob and Esau). PMID:20560265

  18. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  19. Night Blindness and Ancient Remedy

    PubMed Central

    Al Binali, H.A. Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  20. Night blindness and ancient remedy.

    PubMed

    Al Binali, H A Hajar

    2014-01-01

    The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A. PMID:25774260

  1. Five-year dynamics and carbon stock of vegetation in miombo woodlands of Niassa National Reserve, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Matos, C. N.

    2011-12-01

    Niassa National Reserve (NNR) incorporates one of the most pristine miombo woodlands in southern Africa. It provides habitat to several plant and animal species and is home for ca. 40,000 people who depend on forest resources to sustain their livelihoods. Anthropogenic fires have been considered a major concern for the management of this large conservation area. This study investigates the dynamics of ecosystem vegetation and carbon stock across a fire-gradient in NNR. Fifty sampling plots established in 2004 were measured in 2005 and 2009 for growth of adult, ingrowth (individuals entering the 5 cm class of diameter at breast height), mortality and carbon stocks in woody, shrubby and grass vegetation and soils. We found 62 species for a total of 2172 individuals, which represents an increase in order of 5% from 2005. About 72% of the species had an increase in biomass during the five-year period, while 28% showed a decrease in biomass. The latter was a result of damage and mortality by fires and elephants. In general the ingrowth is low (between 0 and 3%) as well as the mortality which varied between -9.25% and 0.25%. The average carbon stock in the various compartments of the ecosystem are: soils (34.7 ± 17.93), Trees (62 MgC/ha ± 30.94), Dead trees (164 MgC/ha ± 259.95), grass (4.47 MgC/ha ± 3.51), Litter (0.12 MgC/ha ± 0.07), Shrubs (0.04 MgC/ha ± 0.03). This gives a total carbon stock of 127.6 mgC/ha ± 126.06. These results indicate that NNR is still a stable ecosystem in which the rates of mortality are low and mainly caused by fires and elephants. The ingrowth and growth seems to be enough to guarantee reposition of vegetation stocks in this ecosystem. The carbon stock is similar to other areas of miombo woodlands in the region. This is an indication that miombo in NNR is still function as a sink of carbon. This associated with the fact that NNR is one of the largest conservation areas of miombo in the world, makes the reserve an important area to

  2. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

    PubMed Central

    Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L

    2013-01-01

    Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224

  3. Reactive nitrogen oxides and ozone above a taiga woodland

    SciTech Connect

    Bakwin, P.S.; Jacob, D.J.; Wofsy, S.C.; Munger, J.W.; Daube, B.C.; Bradshaw, J.D.; Sandholm, S.T.; Talbot, R.W.; Singh, H.B.; Gregory, G.L.

    1994-01-20

    Measurements of reactive nitrogen oxides (NO{sub x} and NO{sub y}) and ozone (O{sub 3}) were made in the planetary boundary layer (PBL) above a taiga woodland in northern Quebec, Canada, during June-August, 1990, as part of NASA Arctic Boundary Layer Expedition (ABLE) 3B. Levels of nitrogen oxides and O{sub 3} were strongly modulated by the synoptic scale meteorology that brought air from various regions to the site. Industrial pollution from the Great Lakes region of the US and Canada appears to be a major source for periodic elevation of NO{sub x}, NO{sub y} and O{sub 3}. We find that NO/NO{sub 2} ratios at this site at midday were approximately 50% those expected from a simple photochemical steady state between NO{sub x} and O{sub 3}, in contrast to our earlier results from the ABLE 3A tundra site. The difference between the taiga and tundra sites is likely due to much larger emissions of biogenic hydrocarbons (particularly isoprene) from the taiga vegetation. Hydrocarbon photooxidation leads to relatively rapid production of peroxy radicals, which convert NO to NO{sub 2}, at the taiga site. Ratios of NO{sub x} to NO{sub y} were typically 2-3 times higher in the PBL during ABLE 3B than during ABLE 3A. This is probably the result of high PAN levels and suppressed formation of HNO{sub 3} from NO{sub 2} due to high levels of biogenic hydrocarbons at the ABLE 3B site. 36 refs., 7 figs., 3 tabs.

  4. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of

  5. Woodland fragmentation affects space use of Eurasian red squirrels

    NASA Astrophysics Data System (ADS)

    Verbeylen, Goedele; Wauters, Lucas A.; De Bruyn, Luc; Matthysen, Erik

    2009-01-01

    When habitats become fragmented, variation in patch size and quality are expected to impose changes on the spacing pattern and social organization of animal populations. General theory predicts different possible responses including shrinking home ranges (fission response), increasing range overlap (fusion) and incorporation of multiple patches in the home range (expansion response) as fragmentation increases. We studied space use and social organization in a metapopulation of red squirrels ( Sciurus vulgaris) in 15 woodland fragments differing in size and tree species composition. Home ranges and core areas of males were larger than females, and fragmentation had different and complex effects on the spacing pattern of both sexes. In food-supplemented patches, high densities led to increased intra-sexual overlap. In linear-shaped patches, squirrels used smaller home ranges and core areas and had lower male-male and male-female overlap levels, independent of patch quality or size. Home range and core area size of males increased with patch size, and male core areas overlapped extensively those of other males and females. Hence males seemed to show a fission response only in some patches. In contrast, home range and core area size of females was not related with patch size, but decreased with habitat quality, supporting predictions of a fusion response and intra-sexual defense of food-based core areas. Hence, where patch size and shape strongly affected space use of male red squirrels, social organization of females was only affected in small, food-supplemented patches, suggesting that the basic spatio-social organization of adult females is very resistant to fragmentation.

  6. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  7. Ecosystem services from southern African woodlands and their future under global change.

    PubMed

    Ryan, Casey M; Pritchard, Rose; McNicol, Iain; Owen, Matthew; Fisher, Janet A; Lehmann, Caroline

    2016-09-19

    Miombo and mopane woodlands are the dominant land cover in southern Africa. Ecosystem services from these woodlands support the livelihoods of 100 M rural people and 50 M urban dwellers, and others beyond the region. Provisioning services contribute $9 ± 2 billion yr(-1) to rural livelihoods; 76% of energy used in the region is derived from woodlands; and traded woodfuels have an annual value of $780 M. Woodlands support much of the region's agriculture through transfers of nutrients to fields and shifting cultivation. Woodlands store 18-24 PgC carbon, and harbour a unique and diverse flora and fauna that provides spiritual succour and attracts tourists. Longstanding processes that will impact service provision are the expansion of croplands (0.1 M km(2); 2000-2014), harvesting of woodfuels (93 M tonnes yr(-1)) and changing access arrangements. Novel, exogenous changes include large-scale land acquisitions (0.07 M km(2); 2000-2015), climate change and rising CO2 The net ecological response to these changes is poorly constrained, as they act in different directions, and differentially on trees and grasses, leading to uncertainty in future service provision. Land-use change and socio-political dynamics are likely to be dominant forces of change in the short term, but important land-use dynamics remain unquantified.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502377

  8. Detection of soil erosion with Thematic Mapper (TM) satellite data within Pinyon-Juniper woodlands

    NASA Technical Reports Server (NTRS)

    Price, Kevin Paul

    1987-01-01

    Pinyon-Juniper woodlands dominate approximately 24.3 million hectares (60 million acres) in the western United States. The overall objective was to test the sensitivity of the LANDSAT Thematic Mapper (TM) spectral data for detecting varying degrees of soil erosion within the Pinyon-Juniper woodlands. A second objective was to assess the potential of the spectral data for assigning the Universal Soil Loss Equation (USLE) crop management (C) factor values to varying cover types within the woodland. Thematic Mapper digital data for June 2, 1984 on channels 2, 3, 4, and 5 were used. Digital data analysis was performed using the ELAS software package. Best results were achieved using CLUS, an unsupervised clustering algorithm. Fifteen of the 40 Pinyon-Juniper signatures were identified as being relatively pure Pinyon-Juniper woodland. Final analysis resulted in the grouping of the 15 signatures into three major groups. Ten study sites were selected from each of the three groups and located on the ground. At each site the following field measurements were taken: percent tree canopy and percent understory cover, soil texture, total soil loss, and soil erosion rate estimates. A technique for measuring soil erosion within Pinyon-Juniper woodlands was developed. A theoretical model of site degradation after Pinyon-Juniper invasion is presented.

  9. Hydrology and ecology of pinyon-juniper woodlands: Conceptual framework and field studies

    SciTech Connect

    Wilcox, B.P.; Breshears, D.D.

    1994-09-01

    Pinyon-juniper woodlands represent an important ecosystem in the semiarid western United States. Concern over the sustainability of, and management approaches for, these woodlands is increasing. As in other semiarid environments, water dynamics and vegetation patterns in pinyon-juniper woodlands are highly interrelated. An understanding of these relationships can aid in evaluating various management strategies. In this paper we describe a conceptual framework designed to increase our understanding of water and vegetation in pinyon-juniper woodlands. The framework comprises five different scales, at each of which the landscape is divided into {open_quotes}functional units{close_quotes} on the basis of hydrologic characteristics. The hydrologic behavior of each unit and the connections between units are being evaluated using an extensive network of hydrological and ecological field studies on the Pajarito Plateau in northern New Mexico. Data from these studies, coupled with application of the conceptual model, have led to the development of a number of hypotheses concerning the interrelationships of water and vegetation in pinyon-juniper woodlands.

  10. Acupuncture: From Ancient Practice to Modern Science

    MedlinePlus

    ... Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / Winter 2009 Table of Contents For ... of Progress / Acupuncture From Ancient Practice to Modern Science / Low Back Pain and CAM / Time to Talk / ...

  11. Hortus malabaricus and the ethnoiatrical knowledge of ancient malabar.

    PubMed

    Manilal, K S

    1984-10-01

    Hortus Malabaricus is the oldest important printed book on Indian medicinal plants. The 1(st) of its 12 volumes was published in 1678 from Amsterdam this book, written by H.A. Van Rheede is perhaps the only authentic record of the ethnoiatrical knowledge of ancient Malabar, available to us today. Several hundred medicinal plants which were successful used by the Ayurvedic physiclans of 17(th) century are described in this, along with their medicinal powers and methods of application. The identity of many of the plants described has not yet been accurately established, which would be of considerable interest to ayurveda. PMID:22557457

  12. HORTUS MALABARICUS AND THE ETHNOIATRICAL KNOWLEDGE OF ANCIENT MALABAR

    PubMed Central

    Manilal, K.S.

    1984-01-01

    Hortus Malabaricus is the oldest important printed book on Indian medicinal plants. The 1st of its 12 volumes was published in 1678 from Amsterdam this book, written by H.A. Van Rheede is perhaps the only authentic record of the ethnoiatrical knowledge of ancient Malabar, available to us today. Several hundred medicinal plants which were successful used by the Ayurvedic physiclans of 17th century are described in this, along with their medicinal powers and methods of application. The identity of many of the plants described has not yet been accurately established, which would be of considerable interest to ayurveda. PMID:22557457

  13. Drinking habits in ancient India

    PubMed Central

    Somasundaram, Ottilingam; Raghavan, D. Vijaya; Murthy, A. G. Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113

  14. Retroflex Endings in Ancient Chinese

    ERIC Educational Resources Information Center

    Hashimoto, Mantaro J.

    1973-01-01

    Reconstruction of Ancient Chinese retroflex endings (syllable-final consonants) based on internal phonological evidence in Modern Chinese. Paper read at the December 1972 meeting of the Kukeo Hakhoe (The National Language Association of Korea); research supported by the Social Science Research Council, Committee for Korean Studies. (RS)

  15. Ancient India: The Asiatic Ethiopians.

    ERIC Educational Resources Information Center

    Scott, Carolyn McPherson

    This curriculum unit was developed by a participant in the 1993 Fulbright-Hays Program "India: Continuity and Change." The unit attempts to place India in the "picture frame" of the ancient world as a part of a whole, not as a separate entity. Reading materials enable students to draw broader general conclusions based on the facts presented. The…

  16. Drinking habits in ancient India.

    PubMed

    Somasundaram, Ottilingam; Raghavan, D Vijaya; Murthy, A G Tejus

    2016-01-01

    Consumption of one or other form of intoxicating substances has been present throughout the history of the world. This article traces such use in the Indian subcontinent, both in North and South India. References to the use of intoxicants are to be found in the Vedas, the Great Epics, and the ancient Tamil literature. PMID:26985113

  17. Ancient medicine--a review.

    PubMed

    Zuskin, Eugenija; Lipozencić, Jasna; Pucarin-Cvetković, Jasna; Mustajbegović, Jadranka; Schachter, Neil; Mucić-Pucić, Branka; Neralić-Meniga, Inja

    2008-01-01

    Different aspects of medicine and/or healing in several societies are presented. In the ancient times as well as today medicine has been closely related to magic, science and religion. Various ancient societies and cultures had developed different views of medicine. It was believed that a human being has two bodies: a visible body that belongs to the earth and an invisible body of heaven. In the earliest prehistoric days, a different kind of medicine was practiced in countries such as Egypt, Greece, Rome, Mesopotamia, India, Tibet, China, and others. In those countries, "medicine people" practiced medicine from the magic to modern physical practices. Medicine was magical and mythological, and diseases were attributed mostly to the supernatural forces. The foundation of modern medicine can be traced back to ancient Greeks. Tibetan culture, for instance, even today, combines spiritual and practical medicine. Chinese medicine developed as a concept of yin and yang, acupuncture and acupressure, and it has even been used in the modern medicine. During medieval Europe, major universities and medical schools were established. In the ancient time, before hospitals had developed, patients were treated mostly in temples. PMID:18812066

  18. The ancient art of memory.

    PubMed

    Hobson, Allan

    2013-12-01

    Revision of Freud's theory requires a new way of seeking dream meaning. With the idea of elaborative encoding, Sue Llewellyn has provided a method of dream interpretation that takes into account both modern sleep science and the ancient art of memory. Her synthesis is elegant and compelling. But is her hypothesis testable? PMID:24304762

  19. Ancient and Modern Coins Unit Plans.

    ERIC Educational Resources Information Center

    United States Mint (Dept. of Treasury), Washington, DC.

    Ancient times comes to life when a student can hold in his/her hand or read about an artifact, such as a coin of the Greek or Roman era. Students are familiar with coins, and this commonality helps them understand the similarities and differences between their lives and times in ancient Greece or Rome. Many symbols on the ancient coins can be…

  20. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation

    NASA Astrophysics Data System (ADS)

    Breecker, Daniel O.; Payne, Ashley E.; Quade, Jay; Banner, Jay L.; Ball, Carolyn E.; Meyer, Kyle W.; Cowan, Brian D.

    2012-11-01

    We measured concentrations and stable carbon isotope compositions of carbon dioxide in the atmospheres of three caves in central Texas and one cave in southern Arizona in order to identify CO2 sources and sinks. The vegetation above the caves studied is either savannah (two caves, above which vegetation has been minimally disturbed) or discrete patches of grassland and woodland (two caves, above which vegetation has been highly disturbed). We tested two hypotheses concerning CO2 in the cave atmospheres: (1) cave ventilation by tropospheric air is the primary sink for CO2 and (2) CO2 is primarily derived from the deepest rooting plants growing above the caves. Within caves, we monitored CO2 at individual locations on monthly and daily time-scales and measured CO2 along transects with increasing distance from the cave entrances. We also measured CO2 in the pore spaces of soils under grasses and trees above each of the caves. We calculated δ13C values of respired CO2 (δ13Cr) for all gas samples using measured δ13C values and CO2 concentrations. We then identified the sources of cave CO2 by comparing cave-air and soil CO2δ13Cr values. At all locations in each Texas cave, CO2 concentrations were highest (lowest) and δ13C values were lowest (highest) during the summer (winter). Cave-air CO2 concentrations consistently increased and δ13C values consistently decreased with distance from the cave entrances. Similar but smaller magnitude seasonal variations in CO2 concentrations occurred in the Arizona cave and no seasonal or spatial variation in the δ13C of cave-air CO2 was observed. The mean δ13Cr values of CO2 in soils under grass were 3.5-4.5‰ higher than the δ13Cr values of CO2 in soils under trees. In the caves under savannah, mean δ13Cr values of cave-air CO2 (-24‰ in both caves) were within 1‰ of the mean δ13Cr values of CO2 in soils under trees. In caves covered by large, contiguous areas of grassland, the δ13Cr values of cave-air CO2 were similar

  1. Timberland and woodland resources of central and west Oklahoma. Forest Service resource bulletin

    SciTech Connect

    Rosson, J.F.

    1995-09-01

    The first forest survey of 44 central and west Oklahoma counties shows 1,338,100 acres of timberland and 908,700 acres of woodland. Total live-tree volume was 1,476.8 million cubic feet (cubic feet), 65 percent of which was in timberland. Post oak is the predominant species, making up 20 percent of live-tree volume on timberland and 75 percent of live-tree volume on woodland. There were 2,865 million board feet (fbm) of sawtimber, 76 percent of which was in timberland. Net growth for growing stock was 18.7 and 7.6 million cubic feed/year for timberland and woodland, respectively.

  2. Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland

    NASA Astrophysics Data System (ADS)

    Sun, Wu; Maseyk, Kadmiel; Lett, Céline; Seibt, Ulli

    2016-02-01

    Carbonyl sulfide (COS) is a promising tracer for partitioning terrestrial photosynthesis and respiration from net carbon fluxes, based on its daytime co-uptake alongside CO2 through leaf stomata. Because ecosystem COS fluxes are the sum of plant and soil fluxes, using COS as a photosynthesis tracer requires accurate knowledge of soil COS fluxes. At an oak woodland in Southern California, we monitored below-canopy surface (soil + litter) COS and CO2 fluxes for 40 days using chambers and laser spectroscopy. We also measured litter fluxes separately and used a depth-resolved diffusion-reaction model to quantify the role of litter uptake in surface COS fluxes. Soil and litter were primarily COS sinks, and mean surface COS uptake was small (˜1 pmol m-2 s-1). After rainfall, uptake rates were higher (6-8 pmol m-2 s-1), and litter contributed a significant fraction (up to 90%) to surface fluxes. We observed rapid concurrent increases in COS uptake and CO2 efflux following the onset of rain. The patterns were similar to the Birch effect widely documented for soils; however, both COS and CO2 flux increases originated mainly in the litter. The synchronous COS-CO2 litter Birch effect indicates that it results from a rapid increase in litter microbial activity after rainfall. We expect that the drying-rewetting cycles typical for mediterranean and other semiarid ecosystems create a pronounced seasonality in surface COS fluxes. Our results highlight that litter uptake is an important component of surface COS exchange that needs to be taken into account in ecosystem COS budgets and model simulations.

  3. Anchor chaining’s influence on soil hydrology and seeding success in burned piñon-juniper woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broadcast seeding is one of the most commonly used rehabilitation treatments for the restoration of burned piñon (Pinus ssp.) and juniper (Juniperus spp.) woodlands, but the success rate of this treatment is notoriously low. In piñon-juniper woodlands, post-fire soil water repellency can impair rese...

  4. Indigenous Cultural Self-Representation and Its Internal Critiques: A Case Study of the Woodland Cultural Centre, Canada

    ERIC Educational Resources Information Center

    Nakamura, Naohiro

    2014-01-01

    This research report discusses Indigenous cultural representation and its internal critiques, based on the case study of an Indigenous-run museum, the Woodland Cultural Centre, in Canada. Since its establishment in 1972, the Woodland Cultural Centre has strived to promote Indigenous culture, especially First Nations art, and has challenged the…

  5. Habitat fragmentation impacts mobility in a common and widespread woodland butterfly: do sexes respond differently?

    PubMed Central

    2012-01-01

    Background Theory predicts a nonlinear response of dispersal evolution to habitat fragmentation. First, dispersal will be favoured in line with both decreasing area of habitat patches and increasing inter-patch distances. Next, once these inter-patch distances exceed a critical threshold, dispersal will be counter-selected, unless essential resources no longer co-occur in compact patches but are differently scattered; colonization of empty habitat patches or rescue of declining populations are then increasingly overruled by dispersal costs like mortality risks and loss of time and energy. However, to date, most empirical studies mainly document an increase of dispersal associated with habitat fragmentation. We analyzed dispersal kernels for males and females of the common, widespread woodland butterfly Pararge aegeria in highly fragmented landscape, and for males in landscapes that differed in their degree of habitat fragmentation. Results The male and female probabilities of moving were considerably lower in the highly fragmented landscapes compared to the male probability of moving in fragmented agricultural and deciduous oak woodland landscapes. We also investigated whether, and to what extent, daily dispersal distance in the highly fragmented landscape was influenced by a set of landscape variables for both males and females, including distance to the nearest woodland, area of the nearest woodland, patch area and abundance of individuals in the patch. We found that daily movement distance decreased with increasing distance to the nearest woodland in both males and females. Daily distances flown by males were related to the area of the woodland capture site, whereas no such effect was observed for females. Conclusion Overall, mobility was strongly reduced in the highly fragmented landscape, and varied considerably among landscapes with different spatial resource distributions. We interpret the results relative to different cost-benefit ratios of movements in

  6. The shape of things to come: woodland herb niche contraction begins during recruitment in mesic forest microhabitat

    PubMed Central

    Warren, Robert J.; Bradford, Mark A.

    2011-01-01

    Natural abundance is shaped by the abiotic requirements and biotic interactions that shape a species' niche, yet these influences are rarely decoupled. Moreover, most plant mortality occurs during early life stages, making seed recruitment critical in structuring plant populations. We find that natural abundance of two woodland herbs, Hexastylis arifolia and Hepatica nobilis, peaks at intermediate resource levels, a pattern probably formed by concurrent abiotic and biotic interactions. To determine how this abundance patterning reflects intrinsic physiological optima and extrinsic biotic interactions, we translocate adults and seeds to novel locations across experimentally extended abiotic gradients. These experiments indicate that the plant distributions probably reflect biotic interactions as much as physiological requirements, and that adult abundance provides a poor indication of the underlying niche requirements. The positive response exhibited by adult transplants in the wettest conditions is offset by increased fungal attack on buried seeds consistent with peak natural abundance where soil moisture is intermediate. This contraction of niche space is best described by Connell's model—species are limited by physiological tolerances where resources are low and biotic interactions where resources are high. PMID:20961900

  7. Population trends of woodland birds from the North American Breeding Bird Survey

    USGS Publications Warehouse

    Peterjohn, B.G.; Sauer, J.R.

    1994-01-01

    Population trends of woodland birds were summarized from BBS data over 1966-1991, 1966-1979, and 1982-1991. For the entire woodland bird assemblage, increasing species outnumbered decreasing species in all regions except central North America during 1966-1991. However, the proportion of decreasing species increased in most regions during the 19821991 interval. This population trend was most apparent for Neotropical migrants with 15 increasing and 2 decreasing species during 1966-1979 but only 4 increasing and 16 decreasing species during 1980-1991. Short-distance migrants and permanent residents had nearly equal numbers of increasing and decreasing species during both intervals.

  8. Old-growth definition for western juniper woodlands: Texas ashe juniper dominated or codominated communities. Forest Service general technical report

    SciTech Connect

    Diamond, D.D.

    1997-09-01

    Ashe juniper dominated or codominated woodlands are extensive within the Edwards Plateu in Texas. Almost all contemporary woodlands are the result of various disturbances, especially grazing and fire suppression. Old-growth examples are rare. Several different geomorphic situations once supported natural Ashe juniper communities with different dynamics and composition. These included mesic slopes and canyon systems, shallow-soiled uplands (hardscrabble), and deeper-soiled uplants. The most extensive and most diverse woodlands were in canyon systems, where Ashe juniper shared dominance with a diversity of oaks and other broad-leaved trees, Drier upland woodlands were less diverse, with live oak, shin oak, and Vasey oak variously important. Ashe junipr woodlands harbor a diverse biota, including rare and endemic species, and, thus, preservation of representative old-growth examples is an important conservation concern.

  9. Interannual trends in water use efficiency in declining riparian woodlands

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Riddle, J. D.; Piégay, H.; Teece, M.; Trémelo, M.

    2012-12-01

    Riparian ecosystems in water limited regions are under stress worldwide from flow regulation, land use and climate change. We analyzed tree-ring growth and stable carbon isotope geochemistry in pioneer trees to identify shifts in riparian tree water use as it affects forest condition. We cored individuals of Populus nigra, a riparian species that is vulnerable to changes in local groundwater levels, at floodplain sites along the Drôme River, in the Mediterranean-climate zone of southern France, to analyze the relative ecological impacts of in-stream gravel mining and climate-induced flow reductions on tree growth, crown dieback, and ecohydrological function. Regime Shift Detection analysis of site chronologies showed a divergent pattern among sites, with four sites maintaining stable growth and three others with sharply declining trends in growth to less than 30 cm2 basal area increment (BAI) in all recent years. At sites with stable growth, there was a negative relationship between growth and δ13C (slope = -0.37 to -0.55, p<0.01), indicating that the highest growth occurred when water was abundant. At declining sites, there was a positive relationship between growth and δ13C (slope = 0.33 to 0.52, p<0.01). These trends suggest that the highest water stress occurred in high growth years, and is consistent with limited groundwater capacity. Trees with the greatest crown dieback evident from low-altitude aerial photos had the greatest increase in water use efficiency. Growth declines and increased 13C enrichment were initiated in years of meteorological droughts that occurred after (but never prior to) the mining period, and were spatially distributed to suggest local bedrock controls on soil depth. The combined results indicate that these semi-arid riparian woodlands are vulnerable to multiple physical drivers, but that the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach

  10. Global Biodiversity and the Ancient Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Rothman, D. H.

    2001-05-01

    Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable carbon isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks, and therefore an increasing flux of carbon from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic carbon isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that global biodiversity grows with global biomass, the conservation of carbon shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of carbon while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.

  11. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK.

    PubMed

    Ryan, Jennifer L; Lynam, Philippa; Heal, Kate V; Palmer, Sheila M

    2012-11-15

    Acidification can result in the mobilisation and release of toxic inorganic monomeric aluminium (Al) species from soils into aquatic ecosystems. Although it is well-established that conifer trees enhance acidic atmospheric deposition and exacerbate soil and water acidification, the effect of broad-leaved woodland on soil and water acidification is less clear. This study investigated the effect of broadleaf woodland cover on the acid-base chemistry and Al species present in stream water, and processes controlling these in the acid-sensitive area around Loch Katrine, in the central Highlands, Scotland, UK, where broadleaf woodland expansion is occurring. A nested sampling approach was used to identify 22 stream sampling locations, in sub-catchments of 3.2-61 ha area and 0-45% broadleaf woodland cover. In addition, soils sampled from 68 locations were analysed to assess the influence of: (i) broadleaf woodland cover on soil characteristics and (ii) soil characteristics on stream water chemistry. Stream water pH was negatively correlated with sub-catchment % woodland cover, indicating that woodland cover is enhancing stream water acidification. Concentrations of all stream water Al species (monomeric total, organic and inorganic) were positively correlated with % woodland cover, although not significantly, but were below levels that are toxic to fish. Soil depth, O horizon depth and soil chemistry, particularly of the A horizon, appeared to be the dominant controls on stream water chemistry rather than woodland cover. There were significant differences in soil acid-base chemistry, with significantly lower O horizon pH and A horizon base saturation and higher A horizon exchangeable Al in the wooded catchments compared to the control. This is evidence that the mobile anion effect is already occurring in the study catchments and suggests that stream water acidification arising from broadleaf woodland expansion could occur, especially where tree density is high and acid

  12. Empirical foundations of atomism in ancient Greek philosophy

    NASA Astrophysics Data System (ADS)

    Sakkopoulos, Sotirios A.; Vitoratos, Evagelos G.

    1996-07-01

    The way by which ancient Greek philosophers came to the concept of atom is presented. The concept of atom, a great creation of the human mind, gave a direct, modern-like explanation of the world, at times in which the huge amount of experimental and theoretical information of today was not available. This lack proved not an impossible obstacle for ancient Greek atomistic philosophers. The continuous regeneration, which makes Nature seem eternal, the physiology of nourishment, the orderly growth and decay of humans, animals and plants, the spreading of a sent, the evaporation and condensation of water, the wearing out of a pavement by the steps of passers-by etc., led philosophers to the concept of atoms. Similar experiences can be appealed to in teaching the concept today. Nevertheless, the concept of atom was not conceived in the same way in all ancient philosophical schools. The struggle to understand Nature, brought forth brilliant ideas and intuitions, which are directly connected to modern aspects of atomic theory, like the atomicity of time and the symmetries of the world of elementary particles. Teachers today can, with benefit to their students, retrace the ancient steps to atomic theory.

  13. Ancient DNA and human history

    PubMed Central

    Slatkin, Montgomery; Racimo, Fernando

    2016-01-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  14. Molecular analysis of ancient caries

    PubMed Central

    Simón, Marc; Montiel, Rafael; Smerling, Andrea; Solórzano, Eduvigis; Díaz, Nancy; Álvarez-Sandoval, Brenda A.; Jiménez-Marín, Andrea R.; Malgosa, Assumpció

    2014-01-01

    An 84 base pair sequence of the Streptococcus mutans virulence factor, known as dextranase, has been obtained from 10 individuals from the Bronze Age to the Modern Era in Europe and from before and after the colonization in America. Modern samples show four polymorphic sites that have not been found in the ancient samples studied so far. The nucleotide and haplotype diversity of this region have increased over time, which could be reflecting the footprint of a population expansion. While this segment has apparently evolved according to neutral evolution, we have been able to detect one site that is under positive selection pressure both in present and past populations. This study is a first step to study the evolution of this microorganism, analysed using direct evidence obtained from ancient remains. PMID:25056622

  15. Ancient DNA and human history.

    PubMed

    Slatkin, Montgomery; Racimo, Fernando

    2016-06-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  16. Ancient Celestial Spheres from Greece

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    2006-08-01

    We present several ancient celestial spheres from the 8th century B.C. found throughout Greece, mainly in Thessaly, at the temple of Itonia Athena, but also in Olympia and other places. These celestial spheres have an axis, equator and several meridians and they have several markings with the symbol of stars (today's symbol for the Sun) $\\odot$. Such instruments could have been used to measure the time, the latitude of a location, or the coordinates of stars.

  17. Psychiatric Thoughts in Ancient India*

    PubMed Central

    Abhyankar, Ravi

    2015-01-01

    A review of the literature regarding psychiatric thoughts in ancient India is attempted. Besides interesting reading, many of the concepts are still relevant and can be used in day-to-day practice especially towards healthy and happy living. Certain concepts are surprisingly contemporary and valid today. They can be used in psychotherapy and counselling and for promoting mental health. However, the description and classification of mental illness is not in tune with modern psychiatry. PMID:25838724

  18. Ancient medicine: the patient's perspective.

    PubMed

    Geller, Mark J

    2004-01-01

    A number of previously unpublished therapeutic recipes from cuneiform tablets in Berlin (Pergamon Museum) and London (British Museum) list symptoms describing urinary tract disfunction. In addition to presenting extracts from this material, the present article discusses the roles of physician as apothecary or exorcist in ancient texts from Babylonia. This involves technical medical knowledge vs. "bed-side manner", taking into account the psychological effects of drug therapy and diagnosis. PMID:15372427

  19. Nanoscience of an ancient pigment.

    PubMed

    Johnson-McDaniel, Darrah; Barrett, Christopher A; Sharafi, Asma; Salguero, Tina T

    2013-02-01

    We describe monolayer nanosheets of calcium copper tetrasilicate, CaCuSi(4)O(10), which have strong near-IR luminescence and are amenable to solution processing methods. The facile exfoliation of bulk CaCuSi(4)O(10) into nanosheets is especially surprising in view of the long history of this material as the colored component of Egyptian blue, a well-known pigment from ancient times. PMID:23215240

  20. The ancient lunar core dynamo.

    PubMed

    Runcorn, S K

    1978-02-17

    Lunar paleomagnetism provides evidence for the existence of an ancient lunar magnetic field generated in an iron core. Paleointensity experiments give a surface field of 1.3 gauss, 4.0 x 10(9) years ago, subsequently decreasing exponentially. Thermodynamic arguments give a minimum value of the heat source in the core at that time: known sources, radioactive and other, are quantitatively implausible, and it is suggested that superheavy elements were present in the early moon. PMID:17836293

  1. Orthopedic surgery in ancient Egypt

    PubMed Central

    Blomstedt, Patric

    2014-01-01

    Background — Ancient Egypt might be considered the cradle of medicine. The modern literature is, however, sometimes rather too enthusiastic regarding the procedures that are attributed an Egyptian origin. I briefly present and analyze the claims regarding orthopedic surgery in Egypt, what was actually done by the Egyptians, and what may have been incorrectly ascribed to them. Methods — I reviewed the original sources and also the modern literature regarding surgery in ancient Egypt, concentrating especially on orthopedic surgery. Results — As is well known, both literary sources and the archaeological/osteological material bear witness to treatment of various fractures. The Egyptian painting, often claimed to depict the reduction of a dislocated shoulder according to Kocher’s method, is, however, open to interpretation. Therapeutic amputations are never depicted or mentioned in the literary sources, while the specimens suggested to demonstrate such amputations are not convincing. Interpretation — The ancient Egyptians certainly treated fractures of various kinds, and with varying degrees of success. Concerning the reductions of dislocated joints and therapeutic amputations, there is no clear evidence for the existence of such procedures. It would, however, be surprising if dislocations were not treated, even though they have not left traces in the surviving sources. Concerning amputations, the general level of Egyptian surgery makes it unlikely that limb amputations were done, even if they may possibly have been performed under extraordinary circumstances. PMID:25140982

  2. Analysis of Ancient DNA in Microbial Ecology.

    PubMed

    Gorgé, Olivier; Bennett, E Andrew; Massilani, Diyendo; Daligault, Julien; Pruvost, Melanie; Geigl, Eva-Maria; Grange, Thierry

    2016-01-01

    The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia. These spectacular results have been attained despite the degradation of DNA after the death of the host, which results in very short DNA molecules that become increasingly damaged, only low quantities of which remain. The low quantity of ancient DNA molecules renders their analysis difficult and prone to contamination with modern DNA molecules, in particular via contamination from the reagents used in DNA purification and downstream analysis steps. Finally, the rare ancient molecules are diluted in environmental DNA originating from the soil microorganisms that colonize bones and teeth. Thus, ancient skeletal remains can share DNA profiles with environmental samples and identifying ancient microbial genomes among the more recent, presently poorly characterized, environmental microbiome is particularly challenging. Here, we describe the methods developed and/or in use in our laboratory to produce reliable and reproducible paleogenomic results from ancient skeletal remains that can be used to identify the presence of ancient microbiota. PMID:26791510

  3. Vegetation and groundcover influences on hydrology and erosion in pinyon and juniper woodland communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinyon (Pinus spp.) and juniper (Juniperus spp.) woodlands have expanded 10-fold in the last 130 years and now occupy nearly 20 million ha of sagebrush (Artemisia spp.) shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlan...

  4. Moccasins into Slippers: Woodlands Indian Hats, Bags, and Shoes in Tradition and Transformation.

    ERIC Educational Resources Information Center

    Phillips, Ruth B.

    1990-01-01

    In the mid-nineteenth century, an abrupt transformation occurred in textiles and other art forms of northeastern Woodlands Indians. Trade, tourism, and survival needs sparked changes in materials used and garment types produced, as well as substitution of a new vocabulary of floral imagery for "pagan" iconographic traditions. (SV)

  5. Art from the American Indians of the Plains and Woodlands Regions.

    ERIC Educational Resources Information Center

    Braaten, Ann W.; Ellingson, Susan Pierson

    1992-01-01

    Presents two elementary school level lessons in art education based on the art and culture of American Indians from the Plains and Woodlands regions. Includes objectives, instructional strategies, and evaluation suggestions for each lesson. Provides four color prints of American Indian artifacts used in the lessons. (CFR)

  6. Soil morphology of canopy and intercanopy sites in a pinon-Juniper woodland

    SciTech Connect

    Davenport, D.W.; Wilcox, B.P.; Breshear, D.D.

    1996-11-01

    Pinon-juniper woodlands in the semiarid western USA have expanded as much as fivefold during the last 150 yr, often accompanied by losses of understory vegetation and increasing soil erosion. We conducted this study to determine the differences in soil morphology between canopy and intercanopy locations within a pinon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodland with uniform parent material, topography, and climate. The woodland studied, located near Los Alamos, NM, has a mean tree age of 135 yr. We examined soil morphology by augering 135 profiles in a square grid pattern and comparing soils under pinon and juniper canopies with intercanopy soils. Only two of the 17 morphological properties compared showed significant differences. The B horizons make up a slightly greater proportion of total profile thickness in intercanopy soils, and there are higher percentages of coarse fragments in the lower portions of canopy soil profiles. Canopy soils have lower mean pH and higher mean organic C than intercanopy soils. Regression analysis showed that most soil properties did not closely correspond with tree size, but total soil thickness and B horizon thickness are significantly greater under the largest pinon trees, and soil reaction is lower under the largest juniper trees. Our findings suggest that during the period in which pinon-juniper woodlands have been expanding, the trees have had only minor effects on soil morphology. 36 refs., 4 figs., 4 tabs.

  7. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    USGS Publications Warehouse

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  8. Woodland Wisdom: Tribal Colleges Take Action to Improve Community Health Across America.

    ERIC Educational Resources Information Center

    Tribal College Journal, 2001

    2001-01-01

    Describes the Woodlands Wisdom Project, a collaborative effort of six tribal colleges and the University of Minnesota that addresses the special health and nutrition issues faced by Native Americans, who suffer from a high incidence diet-related diseases. The project's goals include creating more American Indian dieticians and developing new…

  9. Hydrologic impacts of woodland encroachment and tree removal in Great Basin sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive woodland expansion in the Great Basin has generated concern regarding the ecological impacts of tree encroachment on sagebrush (Artemisia spp.) rangelands. This study used rainfall and concentrated flow experiments and measures of vegetation, ground cover, and soils at three sites to inve...

  10. Utilizing NAIP imagery to estimate tree cover and biomass in pinyon and juniper woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land managers need to be able to rapidly assess and monitor fuels in pinyon and juniper (PJ) woodlands. Geospatial technologies, particularly remote sensing, could potentially be used in these ecosystems to better understand the spatial distribution of fuels and monitor PJ expansion at a scale nece...

  11. INTRASEASONAL VARIATION IN WATER AND CARBON DIOXIDE FLUX COMPONENTS IN A SEMIARID RIPARIAN WOODLAND 1874

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated how the distribution of precipitation over a growing season influenced the interaction between the carbon and water cycles of a semiarid riparian woodland dominated by mesquite trees (Prosopis velutina). We found that in this ecosystem where the trees access groundwater, gross ecosys...

  12. Influence of Prescribed Fire on Ecosystem Biomass, Carbon, and Nitrogen in a Pinyon Juniper Woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinyon and juniper woodland encroachment associated with climate change and land use history in the Great Basin is thought to provide offsets for carbon emissions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long ...

  13. LEAF, BRANCH, STAND & LANDSCAPE SCALE MEASUREMENTS OF VOLATILE ORGANIC COMPOUND FLUXES FROM U.S. WOODLANDS

    EPA Science Inventory

    Natural volatile organic compounds (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were us...

  14. 75 FR 49524 - Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Federal Register on July 7, 2010 (75 FR 39049). Workers are engaged in employment related to the... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Woodland Mills Corporation, Mill Spring, NC; Notice of...

  15. Guild Structure and Diversity of Insects from Saltcedar Woodlands in Xinjiang, West China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects and mites on saltcedar shrubs were surveyed over the season in two different sized woodlands, Fukang (larger) and Hutubi (smaller), in the Northern Xinjiang, west China. There were approximately 100 species in 50 families and seven guilds were established according to the trophical level an...

  16. Argan woodlands in South Morocco as an area of conflict between degradation and sustainable land use

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Mario; Kagermeier, Andreas; Ries, Johannes B.

    2016-04-01

    The Argan woodlands are endemic for South Morocco and prone to degradation through expanding and intensifying agriculture and overgrazing. Unvegetated areas extend further due to degradation of soil and vegetation. Here infiltration is less than on vegetated areas, while runoff and soil erosion increase. The sale of the highly valuable oil, gained from the seeds of the argan tree, can be seen as an economic alternative for the region and a chance of survival for the argan woodlands. With the introduction of women's cooperatives for the production and sale of the oil, the Gesellschaft für Technische Zusammenarbeit (GTZ, Association for Technical Cooperation) hoped to halt argan degradation from 1995 to 2002. The effects of this approach shall be studied in a proposed DFG-project. The erosion gradient between soils under canopy cover and intertree areas in varying stages of degradation will be at the center of the analysis. Insight into onsite and offsite degradation shall be gained through the measurement of runoff and erosion rates, which lead to rill and gully erosion downslope. Measurements of soil chemical and physical properties might also help indicate when an argan woodland can be classified as natural. Furthermore to be studied are the effects of the new found value of the Argan woodlands among the local population with focus on regional tourism and a possible reduction of grazing pressure. Sustainable soil management in combination with the needs of the local population is essential for a sustainable land use in the region.

  17. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  18. Curriculum Helps Families Discuss and Plan for Future of Their Woodland or Farm

    ERIC Educational Resources Information Center

    Withrow-Robinson, Brad; Sisock, Mary; Watkins, Susan

    2012-01-01

    Succession planning is an important step for families owning woodlands and farms that wish to maintain the character of the land and continue the families' connection to it. We introduce Ties to the Land, an educational curriculum that helps families communicate more effectively about the fate of their land and how to transition to future…

  19. Mapping decadal land cover changes in the woodlands of north eastern Namibia using the Landsat satellite archive (1975-2014)

    NASA Astrophysics Data System (ADS)

    Wingate, Vladimir; Phinn, Stuart; Kuhn, Nikolaus

    2016-04-01

    Woodland savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to intensive land uses. This study investigates the land cover changes over 108,038 km2 in NE Namibia using multi-sensor Landsat imagery, at decadal intervals from 1975 to 2014, with a post-classification change detection method and supervised Regression Tree classifiers. We discuss likely impacts of land tenure and reforms over the past four decades on changes in land use and land cover. These included losses, gains and exchanges between predominant land cover classes. Exchanges comprised logical conversions between woodland and agricultural classes, implying woodland clearing for arable farming, cropland abandonment and vegetation succession. The dominant change was a reduction in the area of the woodland class due to the expansion of the agricultural class, specifically, small-scale cereal and pastoral production. Woodland area decreased from 90% of the study area in 1975 to 83% in 2014, while cleared land increased from 9% to 14%. We found that the main land cover changes are conversion from woodland to agricultural and urban land uses, driven by urban expansion and woodland clearing for subsistence-based agriculture and pastoralism.

  20. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    PubMed

    Ikin, Karen; Barton, Philip S; Stirnemann, Ingrid A; Stein, John R; Michael, Damian; Crane, Mason; Okada, Sachiko; Lindenmayer, David B

    2014-01-01

    Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km(2)) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities. PMID:24830684

  1. Multi-Scale Associations between Vegetation Cover and Woodland Bird Communities across a Large Agricultural Region

    PubMed Central

    Ikin, Karen; Barton, Philip S.; Stirnemann, Ingrid A.; Stein, John R.; Michael, Damian; Crane, Mason; Okada, Sachiko; Lindenmayer, David B.

    2014-01-01

    Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities. PMID:24830684

  2. Rapidly eroding piñon-juniper woodlands in New Mexico: response to slash treatment.

    PubMed

    Hastings, Brian K; Smith, Freeman M; Jacobs, Brian F

    2003-01-01

    The piñon (Pinus edulis Engelm.)-juniper [Juniperus monosperma (Engelm.) Sarg.] woodlands of Bandelier National Monument are experiencing accelerated erosion. Earlier studies suggest that causes of these rapidly eroding woodlands are related to an unprecedented rapid transition of ponderosa pine (Pinus ponderosa C. Lawson) savanna to piñon-juniper woodlands as a result of cumulative historical effects of overgrazing, fire suppression, and severe drought. To study the effectiveness of slash treatment in reducing accelerated erosion, we used sediment check dams to quantify sediment yield from twelve paired microwatersheds (300-1100 m2) within an existing paired water-shed study. Six of the twelve microwatersheds were located in a 41-ha (treatment) watershed with scattered slash treatment, whereas six microwatersheds were located in an adjacent 35-ha untreated (control) watershed. The primary purpose of our research was to quantify the rates of sediment yield between the treated and control microwatersheds. Sediment yield was measured from 15 individual storms during the months of June-September (2000 and 2001). In response to slash treatment, mean seasonal sediment yield for 2000 equaled 2.99 Mg/ha in the control vs. 0.03 Mg/ha in the treatment and 2.07 Mg/ha in the control vs. 0.07 Mg/ha in the treatment in 2001. The practice of slash treatment demonstrates efficacy in reducing erosion in degraded piñon-juniper woodlands by encouraging herbaceous recovery. Our data show that slash treatment increases total ground cover (slash and herbaceous growth) beyond a potential erosion threshold. Restored piñon-juniper woodlands, as the result of slash treatment, provide a forest structure similar to pre-grazing and pre-fire suppression conditions and decrease catastrophic fire hazard. PMID:12931884

  3. What Drives the Phenology of Carbon Exchange in an Australian Temperate Woodland?

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Resco de Dios, V.; Cleverly, J. R.; Isaac, P. R.; Renchon, A.; Barton, C. V.; Boer, M. M.; Tissue, D.; Maier, C.

    2015-12-01

    Temperate, broadleaved evergreen woodlands dominated by Eucalyptus species are adapted to a wide range of moisture conditions. However, these ecosystems can be susceptible to extremes of environmental stress, including droughts and heat waves. We evaluated climatic drivers of carbon and water exchange using eddy covariance techniques for over two years in a dry sclerophyll woodland near Sydney, Australia. We found that the strongest net C uptake by this ecosystem occurred during the winter months (June through August), and that precipitation and minimum air temperature were the most important environmental drivers of net uptake. Ecosystem respiration was highest during summer as soil drought was alleviated by frequent thunderstorm events, and lowest during winter due to drier soil and cooler temperatures. Gross primary production was independent of surface soil moisture but was constrained by high VPD during summer. Highest water and light use efficiencies for GPP were observed during winter. This study demonstrates the importance of strong stomatal regulation of dry Eucalyptus woodlands in limiting summer uptake, and warm-season rain in enhancing soil organic matter decomposition, leading to net C losses during summer. The temporal patterns of CO2 fluxes in this mild temperate forest are unusual in comparison to other temperate forests. By persisting through unfavourable conditions and growing in response to favourable conditions during any season, the phenology of C dynamics in temperate sclerophyll woodlands can resemble that of drier ecosystems. The climatic drivers of net C uptake by these woodlands should be considered for evaluating vulnerability to extreme climate events that might limit their productivity as well as ecosystem C storage.

  4. Terrestrial hydrological controls on land surface phenology of African savannas and woodlands

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Wood, Eric F.; Medvigy, David; Kimball, John; Pan, Ming; Caylor, Kelly K.; Sheffield, Justin; Xu, Xiangtao; Jones, Matthew O.

    2014-08-01

    This paper presents a continental-scale phenological analysis of African savannas and woodlands. We apply an array of synergistic vegetation and hydrological data records from satellite remote sensing and model simulations to explore the influence of rainy season timing and duration on regional land surface phenology and ecosystem structure. We find that (i) the rainy season onset precedes and is an effective predictor of the growing season onset in African grasslands. (ii) African woodlands generally have early green-up before rainy season onset and have a variable delayed senescence period after the rainy season, with this delay correlated nonlinearly with tree fraction. These woodland responses suggest their complex water use mechanisms (either from potential groundwater use by relatively deep roots or stem-water reserve) to maintain dry season activity. (iii) We empirically find that the rainy season length has strong nonlinear impacts on tree fractional cover in the annual rainfall range from 600 to 1800 mm/yr, which may lend some support to the previous modeling study that given the same amount of total rainfall to the tree fraction may first increase with the lengthening of rainy season until reaching an "optimal rainy season length," after which tree fraction decreases with the further lengthening of rainy season. This nonlinear response is resulted from compound mechanisms of hydrological cycle, fire, and other factors. We conclude that African savannas and deciduous woodlands have distinctive responses in their phenology and ecosystem functioning to rainy season. Further research is needed to address interaction between groundwater and tropical woodland as well as to explicitly consider the ecological significance of rainy season length under climate change.

  5. Woodland Dynamics at the Northern Range Periphery: A Challenge for Protected Area Management in a Changing World

    PubMed Central

    Powell, Scott L.; Hansen, Andrew J.; Rodhouse, Thomas J.; Garrett, Lisa K.; Betancourt, Julio L.; Dicus, Gordon H.; Lonneker, Meghan K.

    2013-01-01

    Managers of protected natural areas increasingly are confronted with novel ecological conditions and conflicting objectives to preserve the past while fostering resilience for an uncertain future. This dilemma may be pronounced at range peripheries where rates of change are accelerated and ongoing invasions often are perceived as threats to local ecosystems. We provide an example from City of Rocks National Reserve (CIRO) in southern Idaho, positioned at the northern range periphery of pinyon-juniper (P-J) woodland. Reserve managers are concerned about P-J woodland encroachment into adjacent sagebrush steppe, but the rates and biophysical variability of encroachment are not well documented and management options are not well understood. We quantified the rate and extent of woodland change between 1950 and 2009 based on a random sample of aerial photo interpretation plots distributed across biophysical gradients. Our study revealed that woodland cover remained at approximately 20% of the study area over the 59-year period. In the absence of disturbance, P-J woodlands exhibited the highest rate of increase among vegetation types at 0.37% yr−1. Overall, late-successional P-J stands increased in area by over 100% through the process of densification (infilling). However, wildfires during the period resulted in a net decrease of woody evergreen vegetation, particularly among early and mid-successional P-J stands. Elevated wildfire risk associated with expanding novel annual grasslands and drought is likely to continue to be a fundamental driver of change in CIRO woodlands. Because P-J woodlands contribute to regional biodiversity and may contract at trailing edges with global warming, CIRO may become important to P-J woodland conservation in the future. Our study provides a widely applicable toolset for assessing woodland ecotone dynamics that can help managers reconcile the competing demands to maintain historical fidelity and contribute meaningfully to the U

  6. Woodland dynamics at the northern range periphery: a challenge for protected area management in a changing world.

    PubMed

    Powell, Scott L; Hansen, Andrew J; Rodhouse, Thomas J; Garrett, Lisa K; Betancourt, Julio L; Dicus, Gordon H; Lonneker, Meghan K

    2013-01-01

    Managers of protected natural areas increasingly are confronted with novel ecological conditions and conflicting objectives to preserve the past while fostering resilience for an uncertain future. This dilemma may be pronounced at range peripheries where rates of change are accelerated and ongoing invasions often are perceived as threats to local ecosystems. We provide an example from City of Rocks National Reserve (CIRO) in southern Idaho, positioned at the northern range periphery of pinyon-juniper (P-J) woodland. Reserve managers are concerned about P-J woodland encroachment into adjacent sagebrush steppe, but the rates and biophysical variability of encroachment are not well documented and management options are not well understood. We quantified the rate and extent of woodland change between 1950 and 2009 based on a random sample of aerial photo interpretation plots distributed across biophysical gradients. Our study revealed that woodland cover remained at approximately 20% of the study area over the 59-year period. In the absence of disturbance, P-J woodlands exhibited the highest rate of increase among vegetation types at 0.37% yr(-1). Overall, late-successional P-J stands increased in area by over 100% through the process of densification (infilling). However, wildfires during the period resulted in a net decrease of woody evergreen vegetation, particularly among early and mid-successional P-J stands. Elevated wildfire risk associated with expanding novel annual grasslands and drought is likely to continue to be a fundamental driver of change in CIRO woodlands. Because P-J woodlands contribute to regional biodiversity and may contract at trailing edges with global warming, CIRO may become important to P-J woodland conservation in the future. Our study provides a widely applicable toolset for assessing woodland ecotone dynamics that can help managers reconcile the competing demands to maintain historical fidelity and contribute meaningfully to the U

  7. Assessing ecosystem function of a Piñon-Juniper woodland using a time series of high resolution satellite imagery and eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Eitel, J.; Vierling, L. A.; Schulthess, U.; Litvak, M. E.

    2011-12-01

    Combining recent advancements in satellite remote sensing with current eddy covariance measurement networks is a powerful way to improve our understanding of ecosystem processes. Remote sensing of semi-arid ecosystems requires temporal coverage sufficient to capture discrete responses in productivity as a result of stochastic patterns of precipitation, and adequate spatial resolution to monitor the patchwork of ecosystem heterogeneity. Eddy-covariance towers continuously measure ecosystem-atmosphere carbon and water exchange. However, even with ancillary data regarding phenologic patterns of the region, tower measurements are unable to inform us about differential response from the collection of plant functional types present within the measured tower footprint. We therefore tested the integration of eddy covariance data with a time series of high resolution (5 meter) RapidEye satellite images collected from late 2009 through mid 2011 over a 49 x 49 km area of piñon-juniper (PJ) woodland south of Mountainair, NM that includes two eddy covariance towers. One tower is in intact PJ woodland and the second tower is in a 200 m x 200 m section of PJ woodland in which all piñon >7 cm dbh (~1600 trees) were girdled to simulate the widespread piñon mortality that occurred throughout the SW in 2002. Due to the high spatial and temporal variability in soil moisture and sparse canopy cover at these sites (maximum LAI is ~ 2.1 and 1.8 in the control and girdled sites, respectively), we used site-specific lab based soil moisture reflectance curves to correct for moisture driven variability in soil reflectance. We used three vegetation indices to compare the phenological patterns of specific plant functional types at both tower sites: the traditional vegetation indices NDVI and MSAVI2, as well as a red-edge (690-730 nm) index NDRE which has demonstrated ability to remotely sense plant stress. We combine these remotely-sensed phenological patterns with the flux tower

  8. Dental indicators of ancient dietary patterns: dental analysis in archaeology.

    PubMed

    Forshaw, R

    2014-05-01

    What can the study of ancient teeth tell us about the dietary habits of our ancestors? Diet plays a prominent role in the organisation and evolution of human cultures and an increasingly diverse array of analytical techniques are available to help reconstruct diet in ancient populations. Dental palaeopathology is particularly important as it can provide direct evidence of the type of diet an individual consumed during life. Heavy occlusal tooth wear is the most frequent condition recognisable and an examination of both macro and microscopic patterns of wear can establish the differences between the hard fibrous diet typical of a hunter-gatherer, and a diet primarily consisting of softer plant foods consumed by an agriculturist. The distributions of trace elements and stable isotopes in food webs make it possible to use them as natural tracers of foodstuffs. Through a consideration of photosynthetic pathways, the ratios of the different stable isotopes of carbon and nitrogen can determine which specific groups of plants and animals were dominant in the food chains of various populations - a fact that has been used to trace the spread of agriculture in ancient civilisations. PMID:24809573

  9. Wood energy and preservation of woodlands in semi-arid developing countries. The case of Dodoma region, Tanzania

    SciTech Connect

    Allen, J.C.

    1985-01-01

    At present little land and labour resources are expended on energy production, but the woodlands in Dodoma are disappearing, causing villagers to save time by switching from fuelwood collected on foot to charcoal shipped in by truck. Results of a linear program show that if the costs of growing the wood for charcoal are counted the switch to charcoal saves time only in areas where population is relatively dense and natural woodland remote. Woodland preservation in Dodoma will require more plantations, increased plantation productivity, improved efficiency of charcoal kilns or stoves and ultimately a switch to some other fuel than wood.

  10. Richness and Cover of Nontimber Economic Plants along Altitude in Temperate Himalayan Forest-Use Types

    PubMed Central

    Tariq, Akash; Adnan, Muhammad; AbdElsalam, Naser M.; Fouad, Hassan; Hussain, Kamran; Ullah, Ahsan

    2014-01-01

    Pakistani Himalaya stretches over a wide range of altitudinal gradients and supports high diversity of medicinal plants that are an important source for rural livelihood. Altitudinal effects on ground vegetation have already been indicated but ground vegetation is also under severe threat of grazing and over collection. The present study investigated the effect of altitude on medicinal plants abundance in both old-growth and derived woodland forests. Each of the five line transects was selected in old-growth and derived woodland forests. Each line transect consisted of four plots distributed at four altitudinal levels (2200, 2300, 2400, and 2500 m asl). Species richness under derived woodland had shown strong negative correlation (r = −0.95) with altitude while it was found to be nonsignificant under old-growth. Cover of most of the species such as Veronica laxa (r = −0.95, P ≤ 0.05) had shown significant negative correlation with altitude under derived woodland. Cover abundance of some species like Valeriana jatamansi and Viola canescens has also shown significant negative correlation under old-growth forest. Derived woodland can decrease the cover abundance of valuable medicinal plants towards extension at higher altitudes. Thus, protection of the derived woodland could serve as a tool for the improvement of rural livelihood and ecological restoration. PMID:25032237

  11. The Protection of China's Ancient Cities from Flood Damage.

    PubMed

    Qingzhou, W

    1989-09-01

    Over many centuries, the repeated and serious flooding of many of China's ancient cities has led to the development of various measures to mitigate the impact of floods. These have included structural measures, such as the construction of walls, dams and dykes, with tree planting for soil consolidation; installation of drainage systems and water storage capacity; the raising of settlement levels and the strengthening of building materials. Non-structural measures include warning systems and planning for emergency evacuation. Urban planning and architectural design have evolved to reduce flood damage, and government officials have been appointed with specific responsibilities for managing the flood control systems. In view of the serious consequences of modern neglect of these well-tried methods, this paper examines China's historical experience of flooding and demonstrates its continuing relevance for today. A brief historical survey is followed by a detailed discussion of various flood prevention measures. The paper is illustrated by city plans from ancient local chronicles. PMID:20958678

  12. Ancient Chinese Astronomy - An Overview

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.

  13. [Ancient history of Indian pharmacy].

    PubMed

    Okuda, Jun; Natsume, Yohko

    2010-01-01

    The study of the ancient history of Indian medicine has recently been revived due to the publication of polyglot translations. However, little is known of ancient Indian pharmacy. Archaeological evidence suggests the Indus people lived a settled life approximately in 2500 B.C. Their cities were enjoying the cleanest and most hygienic daily life with elaborate civic sanitation systems. The whole conception shows a remarkable concern for health. Then, the early Aryans invaded India about 1500 B.C. and the Vedic age started. The Rgveda texts contain the hymns for Soma and those for herbs. The term Ayurveda (i.e., science of life) is found in some old versions of both Ramāyana and Mahābhārata and in the Atharvaveda. Suśruta had the credit of making a breakthrough in the field of surgery. The Ayurveda, a work on internal medicine, gives the following transmission of sages: Brahmā-->Daksa-->Prajāpati-->Aśivinau-->Indra-->Caraka. On the other hand, the Suśruta-samhitā, which deals mainly with surgical medicine, explains it as follows; Indra-->Dhanvantari-->Suśruta Both Caraka and Suśruta were medical doctors as well as pharmacists, so they studied more than 1000 herbs thoroughly. The Ayurveda had been used by his devotees for medical purposes. It eventually spread over Asia with the advanced evolution of Buddhism. PMID:21032887

  14. An Effective Method for Detecting Potential Woodland Vernal Pools Using High-Resolution LiDAR Data and Aerial Imagery

    EPA Science Inventory

    Effective conservation of woodland vernal pools – important components of regional amphibian diversity and ecosystem services – depends on locating and mapping these pools accurately. Current methods for identifying potential vernal pools are primarily based on visual interpretat...

  15. [Study the restoration technology of concentrated application-natural diffusion about amendments of acidified soil of hilly woodland].

    PubMed

    Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong

    2013-01-01

    Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest. PMID:23487954

  16. Promoting Interest in Plant Biology with Biographies of Plant Hunters.

    ERIC Educational Resources Information Center

    Daisey, Peggy

    1996-01-01

    Describes the use of biographical stories to promote student interest in plant biology. Discusses plant hunters of various time periods, including ancient, middle ages, renaissance, colonial Americas, and 18th and 19th centuries; women plant hunters of the 1800s and early 1900s; and modern plant hunters. Discusses classroom strategies for the…

  17. Magnetite biomineralization and ancient life on Mars.

    PubMed

    Frankel, R B; Buseck, P R

    2000-04-01

    Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate. PMID:10742183

  18. Women--Sex Objects in Ancient Egypt.

    ERIC Educational Resources Information Center

    Mutimer, Brian T. P.

    Although it has been said that the women in Ancient Egypt enjoyed a reasonable state of social and professional equality with men, this paper presents an alternate theory--that women were second-class citizens whose physical prowess was secondary to their role as sex objects. It appears that men and women in Ancient Egypt often participated in the…

  19. Attitudes Toward Deviant Sex in Ancient Mesopotamia

    ERIC Educational Resources Information Center

    Bullough, Vern L.

    1971-01-01

    The article concludes that the whole question of sexual life in ancient Mesopotamia is difficult to reconstruct and fraught with many uncertainties. Nevertheless, it seems certain that the ancient Mesopotamians had fewer prohibitions against sex than our own civilization, and regarded as acceptable many practices which later societies condemned.…

  20. Charcoal production in the Mopane woodlands of Mozambique: what are the trade-offs with other ecosystem services?

    PubMed

    Woollen, Emily; Ryan, Casey M; Baumert, Sophia; Vollmer, Frank; Grundy, Isla; Fisher, Janet; Fernando, Jone; Luz, Ana; Ribeiro, Natasha; Lisboa, Sá N

    2016-09-19

    African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. PMID:27502380

  1. Species-specific adaptations explain resilience of herbaceous understorey to increased precipitation variability in a Mediterranean oak woodland.

    PubMed

    Jongen, Marjan; Hellmann, Christine; Unger, Stephan

    2015-10-01

    To date, the implications of the predicted greater intra-annual variability and extremes in precipitation on ecosystem functioning have received little attention. This study presents results on leaf-level physiological responses of five species covering the functional groups grasses, forbs, and legumes in the understorey of a Mediterranean oak woodland, with increasing precipitation variability, without altering total annual precipitation inputs. Although extending the dry period between precipitation events from 3 to 6 weeks led to increased soil moisture deficit, overall treatment effects on photosynthetic performance were not observed in the studied species. This resilience to prolonged water stress was explained by different physiological and morphological strategies to withstand periods below the wilting point, that is, isohydric behavior in Agrostis, Rumex, and Tuberaria, leaf succulence in Rumex, and taproots in Tolpis. In addition, quick recovery upon irrigation events and species-specific adaptations of water-use efficiency with longer dry periods and larger precipitation events contributed to the observed resilience in productivity of the annual plant community. Although none of the species exhibited a change in cover with increasing precipitation variability, leaf physiology of the legume Ornithopus exhibited signs of sensitivity to moisture deficit, which may have implications for the agricultural practice of seeding legume-rich mixtures in Mediterranean grassland-type systems. This highlights the need for long-term precipitation manipulation experiments to capture possible directional changes in species composition and seed bank development, which can subsequently affect ecosystem state and functioning. PMID:26664676

  2. Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry).

    PubMed

    Rohloff, Jens; Kopka, Joachim; Erban, Alexander; Winge, Per; Wilson, Robert C; Bones, Atle M; Davik, Jahn; Randall, Stephen K; Alsheikh, Muath K

    2012-05-01

    Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vescaL.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype. PMID:22370221

  3. Nitrogen inputs and losses in response to chronic CO2 exposure in a sub-tropical oak woodland

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Duval, B. D.; Dijkstra, P.; Johnson, D. W.; Ketterer, M. E.; Stiling, P.; Cheng, W.; Millman, J.; Hartley, A.; Stover, D. B.

    2014-01-01

    Rising atmospheric CO2 concentrations could alter the nitrogen (N) content of ecosystems by changing N inputs and N losses, but responses vary in field experiments, possibly because multiple mechanisms are at play. We measured N fixation and N losses in a subtropical oak woodland exposed to 11 yr of elevated atmospheric CO2 concentrations. We also explored the role of herbivory, carbon limitation, and competition for light and nutrients in shaping response of N fixation to elevated CO2. Elevated CO2 did not significantly alter gaseous N losses, but lower recovery and deeper distribution in the soil of a long-term 15N tracer indicated that elevated CO2 increased leaching losses. Elevated CO2 had no effect on asymbiotic N fixation, and had a transient effect on symbiotic N fixation by the dominant legume. Elevated CO2 tended to reduce soil and plant concentrations of iron, molybdenum, phosphorus, and vanadium, nutrients essential for N fixation. Competition for nutrients and herbivory likely contributed to the declining response N fixation to elevated CO2. These results indicate that positive responses of N fixation to elevated CO2 may be transient, and that chronic exposure to elevated CO2 can increase N leaching. Models that assume increased fixation or reduced N losses with elevated CO2 may overestimate future N accumulation in the biosphere.

  4. Carbon and nitrogen cycle dynamics during forest regrowth in the dry tropical Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, Marc; Melillo, Jerry; Mustard, John; Neill, Christopher; Nyadzi, Gerson

    2015-04-01

    Extensive regions of dry tropical forests, such as the Miombo woodlands of sub-Saharan Africa, are experiencing high rates of both deforestation and forest regrowth on abandoned agricultural lands. Changes in the cycles of key elements such as carbon (C) and nitrogen (N) in the regrowing woodlands are not well understood. This study examines the plant and soil C and N dynamics along a chronosequence of regrowing Miombo woodland sites in western Tanzania following abandonment from cultivation. Our primary goals were to address two questions: (1) what are the timescales over which aboveground tree C stocks recover and soil mineral N stocks change during regrowth; (2) when, and/or to what degree, do tree C stocks and soil mineral N reach conditions of mature forests at decadal timescales? We established a chronosequence of 18 sites ranging in age from 3 to >40 years since abandonment. At each site, we conducted tree surveys and made measurements to quantify the aboveground tree C stocks using multiple sets of Miombo-specific allometric equations. In addition, we sampled soils at each site to a depth of 100 cm, and determined total and mineral N standing stocks. We also conducted short-term soil incubations to determine nitrogen mineralization potentials for the surface soils at each site. Aboveground tree C stocks ranged from 0.4 ± 0.1 Mg C ha-1 for 3-4 year sites (n = 3) to 27.2 ± 5.2 Mg C ha-1 (n = 3) for 30-40 year sites, and were 44.5 ± 7.4 Mg C ha-1 for mature forest sites (n = 6) . Annualized rates of aboveground tree C stock changes (0.68 - 0.89 Mg C ha-1 yr-1) were comparable to the few published for Miombo forests. However, tree C stocks of regrowth sites between 10 - 24 years (5.2 ± 1.1 Mg C ha -1 (n=3)) were much lower than those reported at similarly aged sites in other comparable studies. Across this study's chronosequence, only the regrowth sites older than three decades (30-40 year sites) had C stocks approaching those of mature forests. Further

  5. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  6. Partitioning water and carbon fluxes in a Mediterranean oak woodland using stable oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra; Silva, Filipe Costa e.; Pereira, Joao; Werner, Christiane

    2014-05-01

    Water is a key factor driving ecosystem productivity, especially in water-limited ecosystems. A separation of the component fluxes is needed to gain a functional understanding on the development of net ecosystem water fluxes and their coupling with biogeochemical cycles. Oxygen isotope signatures are valuable tracers for water movements within the ecosystem because of the distinct isotopic compositions of water in soil and vegetation. In the past, determination of isotopic signatures of evaporative or transpirational fluxes has been challenging since measurements of water vapor isotopes were difficult to obtain using cold-trap methods, delivering data with low time resolution. Recent developments in laser spectroscopy now enable direct high frequency measurements of the isotopic composition of atmospheric water vapor (δv), evapotranspiration (δET), and its components and allow validations of common modeling approaches for estimating δE and δT based on Craig and Gordon (1965). Here, a novel approach was used, combining a custom build flow-through gas-exchange branch chamber with a Cavity Ring-Down Spectrometer in a Mediteranean cork-oak woodland where two vegetation layers respond differently to drought: oak-trees (Quercus suber L.) avoid drought due to their access to ground water while herbaceous plants survive the summer as seeds. We aimed at 1) testing the Craig and Gordon equation for soil evaporation against directly measured δE and 2) quantifying the role of non-steady-state transpiration under natural conditions. Thirdly, we used this approach to quantify the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year and disentangle how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of

  7. AmeriFlux US-Mpj Mountainair Pinyon-Juniper Woodland

    SciTech Connect

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Mpj Mountainair Pinyon-Juniper Woodland. Site Description - The Pinon Juniper site is located in Deer Canyon Preserve in central New Mexico. It is situated on an extensive mesa at an elevation of 2100m. The predominant tree species are Pinus edulis and Juniperus monosperma with an understory composed of the C4 perennial grass Bouteloua gracilis.

  8. Natural resources and decentralization: the use of forests and woodlands in development

    SciTech Connect

    Newman, J.L.

    1982-01-01

    In recent years international development assistance has begun to emphasize a decentralized approach as a result of trying to provide Basic Needs to the ''poorest of the poor.'' The various resources of forests and woodlands are seen as providing such opportunities to many lesser developed countries (LDC) because at present they often tend to be under-utilized as well as renewable. Potential options are explored for true forest dwellers, forest fringe settlers, and villagers in essentially nonwooded areas.

  9. Relative importance of perch and facilitative effects on nucleation in tropical woodland in Malawi

    NASA Astrophysics Data System (ADS)

    Fujita, Tomohiro

    2016-01-01

    Individual trees in open vegetation such as woodlands can act as "nuclei" for the colonization of forest tree species, which consequently lead to the formation of forest patches. This phenomenon is known as nucleation. The mechanism of nucleation is generally attributed to two factors: trees provide perches for frugivores that increase seed deposition (perch effect), and tree crowns ameliorate environmental conditions, which improves seedling establishment (facilitative effect). Few studies have attempted to distinguish the relative importance of these two factors. In this study, I separated these two effects in a woodland in northern Malawi. I chose Ficus natalensis as a potential nuclei tree because large individuals of this species are commonly located at the center of forest patches within open woodland at the study site. I monitored several environmental variables, seedling survival, seedling composition, and seed rain at three microsites: under F. natalensis, under Brachystegia floribunda (a dominant woodland species), and in open sites. Both tree species provided similar favorable conditions for the establishment of forest species compared to open sites. Thus, the survival of forest tree seedlings under F. natalensis and B. floribunda was similar, and substantially higher than seedling survival in open sites. However, communities of naturally occurring seedlings differed significantly between F. natalensis and B. floribunda. These results indicate that the facilitative effect alone cannot explain the nucleation pattern. I attribute this result to the perch effect of F. natalensis because the forest seedling species recorded under F. natalensis reportedly have small, brightly colored diaspores, which are indicative of dispersal by birds. Seed deposition of forest species under F. natalensis was significantly higher than that under B. floribunda or in open sites. My findings reinforce the idea that trees will lead to nucleation when they enhance seed

  10. Sacred psychiatry in ancient Greece

    PubMed Central

    2014-01-01

    From the ancient times, there are three basic approaches for the interpretation of the different psychic phenomena: the organic, the psychological, and the sacred approach. The sacred approach forms the primordial foundation for any psychopathological development, innate to the prelogical human mind. Until the second millennium B.C., the Great Mother ruled the Universe and shamans cured the different mental disorders. But, around 1500 B.C., the predominance of the Hellenic civilization over the Pelasgic brought great changes in the theological and psychopathological fields. The Hellenes eliminated the cult of the Great Mother and worshiped Dias, a male deity, the father of gods and humans. With the Father's help and divinatory powers, the warrior-hero made diagnoses and found the right therapies for mental illness; in this way, sacerdotal psychiatry was born. PMID:24725988

  11. Ancient aqueous sedimentation on Mars

    NASA Technical Reports Server (NTRS)

    Goldspiel, Jules M.; Squyres, Steven W.

    1991-01-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters.

  12. Archimedes: Accelerator Reveals Ancient Text

    SciTech Connect

    Bergmann, Uwe

    2004-02-24

    Archimedes (287-212 BC), who is famous for shouting 'Eureka' (I found it) is considered one of the most brilliant thinkers of all times. The 10th-century parchment document known as the 'Archimedes Palimpsest' is the unique source for two of the great Greek's treatises. Some of the writings, hidden under gold forgeries, have recently been revealed at the Stanford Synchrotron Radiation Laboratory at SLAC. An intense x-ray beam produced in a particle accelerator causes the iron in original ink, which has been partly erased and covered, to send out a fluorescence glow. A detector records the signal and a digital image showing the ancient writings is produced. Please join us in this fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to a particle accelerator in Menlo Park.

  13. Ancient legacy of cranial surgery.

    PubMed

    Ghannaee Arani, Mohammad; Fakharian, Esmaeil; Sarbandi, Fahimeh

    2012-01-01

    Cranial injury, as it is known today, is not a new concern of modern medicine. On stepping on the earth, the man was in reality encountered with various types of injuries, particularly those of a cranial nature. Leading a life, whether wild or civilized, has always been associated with injuries for human race from the very beginning of birth. Therefore, managing cases of this type has gradually forced him to establish and fix strategies and approaches to handle the dilemma. This study is thus focused on tracing the first documented traumatized cranial cases ever reported, ranging from those trials attributed to our ancient predecessors to the identical examples in the present time. PMID:24396747

  14. Ancient aqueous sedimentation on Mars

    SciTech Connect

    Goldspiel, J.M.; Squyres, S.W. )

    1991-02-01

    Viking orbiter images are presently used to calculate approximate volumes for the inflow valleys of the ancient cratered terrain of Mars; a sediment-transport model is then used to conservatively estimate the amount of water required for the removal of this volume of debris from the valleys. The results obtained for four basins with well-developed inflow networks indicate basin sediment thicknesses of the order of tens to hundreds of meters. The calculations further suggest that the quantity of water required to transport the sediment is greater than that which could be produced by a single discharge of the associated aquifer, unless the material of the Martian highlands was very fine-grained and noncohesive to depths of hundreds of meters. 48 refs.

  15. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    PubMed

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. PMID:26160662

  16. Differential responses to woodland character and landscape context by cryptic bats in urban environments.

    PubMed

    Lintott, Paul R; Bunnefeld, Nils; Minderman, Jeroen; Fuentes-Montemayor, Elisa; Mayhew, Rebekah J; Olley, Lena; Park, Kirsty J

    2015-01-01

    Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes. PMID:25978034

  17. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.; Mitra, Siddhartha; Fischer, J.; Buckley, P.A.; Verret, F.; Underwood, H.B.; Buckley, F.G.

    2004-01-01

    Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.

  18. Differential Responses to Woodland Character and Landscape Context by Cryptic Bats in Urban Environments

    PubMed Central

    Lintott, Paul R.; Bunnefeld, Nils; Minderman, Jeroen; Fuentes-Montemayor, Elisa; Mayhew, Rebekah J.; Olley, Lena; Park, Kirsty J.

    2015-01-01

    Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes. PMID:25978034

  19. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect

    Not Available

    1980-03-01

    The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

  20. Changes to oak woodland stand structure and ground flora composition caused by thinning and burning

    USGS Publications Warehouse

    Kinkead, Carter O.; Kabrick, John M.; Stambaugh, Michael C.; Grabner, Keith W.

    2013-01-01

    Our objective was to quantify the cumulative effects of prescribed burning and thinning on forest stocking and species composition at a woodland restoration experiment site in the Ozark Highlands of Missouri. Our study used four treatments (burn, harvest, harvest and burn, control) on three slope position and aspect combinations (south, north, ridge) replicated in three complete blocks. Harvested stands were thinned from below to 40 percent residual stocking. Two prescribed fires were applied to both burn and harvest-burn treatment units in a 5-year period. Results reflect changes that have taken place over a 6-year period, from pretreatment conditions to 1 year after the last fire. In this period, there was a 10-percent reduction in the stocking in burned stands compared to control and a 6-percent reduction in harvested and burned stands compared to harvested stands. Compared to the control, percentage ground cover of woodland indicators was seven times greater in burned stands, six times greater in harvested stands, and 22 percent greater in harvested and burned stands. Th ere was no significant (P > 0.05) interaction between aspect and treatment on stocking or ground flora cover. Th is study indicated that silvicultural treatments do achieve various goals that are common to managers who aim to restore woodland communities.

  1. HIV thrives in ancient traditions.

    PubMed

    Shreedhar, J

    1995-01-01

    Participation in ancient traditions is facilitating the current spread of HIV through India. For most of the year, Koovagam is a typical Indian village. Each April on the night of the full moon, however, the Chittirai-Pournami festival is held in Koovagam, a celebration in homage to Aravan during which up to 2000 pilgrims from across the country engage in thousands of acts of unprotected sexual intercourse. Aravan is a man depicted in a Hindu tale who asked to experience sexual bliss before being sacrificed to the gods. To fulfill this last wish, the god Krishna is said to have assumed the form of a beautiful woman and had sexual intercourse with Aravan. Many of the festival participants are hijras, eunuchs and transsexuals who sell sex for a living. Hijras may be accompanied by men who serve as their sex partners and bodyguards. Surveys suggest that one-third of the 10,000 hijras in New Delhi may be infected with HIV. Other participants are known as dangas, men who are either married or single and appear to lead strictly heterosexual lives throughout the year except during the Chittirai-Pournami festival when they dress as women and sell sex to other men attending the festival. The panthis comprise another group of participants and tend to be either single or married men who attend the festival to have sex with the hijras and dangas for fees up to ten rupees, approximately US$0.50, per sexual encounter. Prostitution within the devadasi sect and the sale of young, virgin girls in the state of Andhra Pradesh to the highest male bidders are other examples of how ancient traditions are facilitating the current spread of HIV in India. PMID:12319989

  2. Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects.

    PubMed

    Yoshida, Kentaro; Sasaki, Eriko; Kamoun, Sophien

    2015-01-01

    The application of DNA sequencing technology to the study of ancient DNA has enabled the reconstruction of past epidemics from genomes of historically important plant-associated microbes. Recently, the genome sequences of the potato late blight pathogen Phytophthora infestans were analyzed from 19th century herbarium specimens. These herbarium samples originated from infected potatoes collected during and after the Irish potato famine. Herbaria have therefore great potential to help elucidate past epidemics of crops, date the emergence of pathogens, and inform about past pathogen population dynamics. DNA preservation in herbarium samples was unexpectedly good, raising the possibility of a whole new research area in plant and microbial genomics. However, the recovered DNA can be extremely fragmented resulting in specific challenges in reconstructing genome sequences. Here we review some of the challenges in computational analyses of ancient DNA from herbarium samples. We also applied the recently developed linkage method to haplotype reconstruction of diploid or polyploid genomes from fragmented ancient DNA. PMID:26442080

  3. Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects

    PubMed Central

    Yoshida, Kentaro; Sasaki, Eriko; Kamoun, Sophien

    2015-01-01

    The application of DNA sequencing technology to the study of ancient DNA has enabled the reconstruction of past epidemics from genomes of historically important plant-associated microbes. Recently, the genome sequences of the potato late blight pathogen Phytophthora infestans were analyzed from 19th century herbarium specimens. These herbarium samples originated from infected potatoes collected during and after the Irish potato famine. Herbaria have therefore great potential to help elucidate past epidemics of crops, date the emergence of pathogens, and inform about past pathogen population dynamics. DNA preservation in herbarium samples was unexpectedly good, raising the possibility of a whole new research area in plant and microbial genomics. However, the recovered DNA can be extremely fragmented resulting in specific challenges in reconstructing genome sequences. Here we review some of the challenges in computational analyses of ancient DNA from herbarium samples. We also applied the recently developed linkage method to haplotype reconstruction of diploid or polyploid genomes from fragmented ancient DNA. PMID:26442080

  4. Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland

    NASA Astrophysics Data System (ADS)

    Dubbert, Maren; Mosena, Alexander; Piayda, Arndt; Cuntz, Matthias; Correia, Alexandra Cristina; Pereira, Joao Santos; Werner, Christiane

    2014-08-01

    Facilitation and competition between different vegetation layers may have a large impact on small-scale vegetation development. We propose that this should not only influence overall herbaceous layer yield but also species distribution and understory longevity, and hence the ecosystems carbon uptake capacity especially during spring. We analyzed the effects of trees on microclimate and soil properties (water and nitrate content) as well as the development of an herbaceous community layer regarding species composition, aboveground biomass and net water and carbon fluxes in a cork-oak woodland in Portugal, between April and November 2011. The presence of trees caused a significant reduction in photosynthetic active radiation of 35 mol m-2 d-1 and in soil temperature of 5 °C from April to October. At the same time differences in species composition between experimental plots located in open areas and directly below trees could be observed: species composition and abundance of functional groups became increasingly different between locations from mid April onwards. During late spring drought adapted native forbs had significantly higher cover and biomass in the open area while cover and biomass of grasses and nitrogen fixing forbs was highest under the trees. Further, evapotranspiration and net carbon exchange decreased significantly stronger under the tree crowns compared to the open during late spring and the die back of herbaceous plants occurred earlier and faster under trees. This was most likely caused by interspecific competition for water between trees and herbaceous plants, despite the more favorable microclimate conditions under the trees during the onset of summer drought.

  5. Temporally-limited herbaceous plants significantly contribute to semi-arid woodland ecohydrological fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study of the ephemeral components of ecosystems is often overlooked, yet can be important to our understanding of their ecology, how they affect and interact with biotic and abiotic controls of carbon and water cycling, and to improve our estimates of the components of ecohydrological fluxes given s...

  6. Historical mapping reveals causes and temporal patterns of woodland contraction in Austur-Skaftafellssýsla from the 12th century AD to present

    NASA Astrophysics Data System (ADS)

    Sigurmundsson, Friðþór S.; Gísladóttir, Guðrún; Erlendsson, Egill; Þorbjarnarson, Höskuldur

    2016-04-01

    Land-cover changes in Iceland over the last millennium encompass birch (Betula pubescens) woodland depletion and extensive soil erosion. Yet few studies have focused on spatial change of birch woodland coverage in Iceland over centuries and why and how the woodland depletion took place. The main objectives of this study are: (1) to map the woodland distribution today in Austur-Skaftafellssýsla (3041 km2) in southern Iceland; (2) to map woodland holdings over a period of 900 years from eleventh. AD 1100 to the early 20th century; (3) explain the relative impacts of socio-economic and natural forces on woodland cover over this period. We use a combined approach of historical reconstruction from diverse written archives, GIS techniques and field work. The woodland in Austur-Skaftafellssýsla now covers 73.2 km2 (2.5% of the study area). The woodland holdings, 44 in total, are regularly listed in the church inventories from 1179 to 1570 and are owned by the church. In the first complete register for the district in 1641 the woodland holdings were 73, owned and used by 58 estates, and distributed across Austur-Skaftafellssýsla. All the main patches of woodland remain today, with the exception of four minor woodlands which were exhausted near the end of the 19th century. The woodland was used for firewood and charcoal making as well as grazing during the study period but, crucially, in most cases only one estate had authority over each holding, none were commons. The main driving force behind the development of woodlands was socio-economic, rather than natural, where the form of ownership was fundamental for the fate of the woodland. Harsh climate and volcanism were not directly responsible for woodland depletion. The latter half of the 19th century was the period of greatest woodland loss. This period coincides with considerable expansion in livestock numbers, especially sheep and associated all year around grazing, at a time when the Little Ice Age culminated in

  7. Physiological evidence that anthropogenic woodlots can substitute for native riparian woodlands as stopover habitat for migrant birds.

    PubMed

    Liu, Ming; Swanson, David L

    2014-01-01

    The ability to find sufficient high-quality stopover habitat is a crucial factor for successful migration for woodland migrant birds. Woodland habitats are scarce in the Northern Prairie region of North America, and natural woodlands have been greatly reduced concurrent with the appearance of small anthropogenic woodlands on the landscape. Landbird migrants use both natural and anthropogenic woodlands in this region as stopover habitats, but the relative quality of these two habitats is unknown. We assessed the relative habitat quality of the two habitats by comparing body mass (Mb) and plasma metabolites associated with fattening (triglycerides [TRIG]) or fat catabolism (β-hydroxybutyrate [BUTY], glycerol [GLYC]) in individual species, taxa, and foraging guilds of migrating woodland birds during both spring and fall migrations. The only significant difference in Mb between birds in the two habitats occurred for fall yellow-rumped warblers (Setophaga coronata), where Mb was 8% greater in corridors than in woodlots. No significant between-habitat differences occurred for plasma TRIG at either season. Significant between-habitat differences for plasma BUTY occurred only for ruby-crowned kinglets (Regulus calendula; 61% higher in corridors) in fall. Plasma GLYC differed significantly between habitats for a few groups, including vireos (190% higher in woodlots), warbling vireos (Vireo gilvus; 263% higher in woodlots), and Nashville warblers (Oreothlypis ruficapilla; 226% higher in woodlots) in fall. The few significant differences and absence of a consistent direction of variation in Mb and plasma metabolites suggests similar stopover habitat quality in these two habitat types. Thus, during migration through the Northern Prairie region anthropogenic woodlots can, at least partially, substitute as stopover habitat for lost and degraded native riparian habitats for woodland birds. PMID:24457932

  8. Interaction between fires and elephants in relation to vegetation structure and composition of miombo woodlands in northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, Natasha Sofia

    Miombo woodlands represent one of the most important dry deciduous ecosystems in southern Africa. They provide goods and services for over 80% of the population in the sub-continent. The ecology of this important ecosystem is strongly defined by the trio climate-fire-herbivory. Thus, miombo woodlands have a key role in the regional, and the global, energy, water and carbon balances. Niassa Reserve located in northern Mozambique, embodies the largest and most pristine conservation area of miombo woodlands in the region. It was left abandoned for almost twenty years of armed conflict in Mozambique. Currently it has the lowest human population and the highest density of elephants within miombo woodlands in the country. Fires occur every year within Niassa Reserve. Thus, Niassa Reserve represents a key area to investigate the relationships between vegetation and environmental drivers, a crucial question in miombo woodlands. The goal of this study is to contribute to the understanding of the vegetation dynamics in relation to rainfall, fire and herbivory by elephants. To accomplish this goal, I used an innovative approach within miombo woodlands that couples field and remote sensing data. Field data collection aimed to gather information on woody species composition, structure and production (measured as biomass and leaf area index). Production data was used to calibrate remote sensing data and address large-scale variations in woody vegetation production. The results from this study indicate that there is a gradient of decreasing fire frequency, elephant density and rainfall and increasing woody production from east to west of Niassa Reserve. There is also a varied species composition along the same direction. These results provide information for ecological models predicting ecosystem dynamics under environmental changing conditions. Regionally, this study contributes to the understanding of the fundamental functioning of miombo woodlands and the associated driving

  9. Vascular medicine and surgery in ancient Egypt.

    PubMed

    Barr, Justin

    2014-07-01

    Lauded alike by ancient civilizations and modern society, pharaonic Egyptian medicine remains an object of fascination today. This article discusses its surprisingly sophisticated understanding of a cardiovascular system. The term "cardiovascular system," however, carries assumptions and meanings to a modern audience, especially readers of this journal, which simply do not apply when considering ancient conceptions of the heart and vessels. For lack of better language, this article will use "cardiovascular" and similar terms while recognizing the anachronistic inaccuracy. After briefly summarizing ancient Egyptian medicine generally, it will review the anatomy, pathology, and treatment of the vasculature. The practice of mummification in ancient Egypt provides a unique opportunity for paleopathology, and the conclusion will explore evidence of arterial disease from a modern scientific perspective. PMID:24970660

  10. Ancient Dry Spells Offer Clues About Drought

    NASA Video Gallery

    New research indicates that the ancient Mesoamerican civilizations of the Mayans and Aztecs amplified droughts in the Yucatán and southern Mexico by clearing rainforests to make room for pastures ...

  11. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  12. Introducing Textual Criticisn to Ancient History Students

    ERIC Educational Resources Information Center

    Whitehorne, J. E. G.

    1975-01-01

    Describes an experiment made to illustrate to Ancient History students the value of textual criticism and the problems involved in transmitting a text through the centuries by means of imperfectly copied and preserved manuscripts. (CHK)

  13. Ancient history of flatfish research

    NASA Astrophysics Data System (ADS)

    Berghahn, Rüdiger; Bennema, Floris Pieter

    2013-01-01

    Owing to both their special appearance and behavior flatfish have attracted the special attention of people since ages. The first records of humans having been in touch with flatfish date back to the Stone Age about 15,000 years B.C. Detailed descriptions were already given in the classical antiquity and were taken up 1400 years later in the Renaissance by the first ichthyologists, encyclopédists, and also by practical men. This was more than 200 years before a number of common flatfish species were given their scientific names by Linnaeus in 1758. Besides morphology, remarkable and sometimes amusing naturalistic observations and figures are bequeathed. Ancient history of flatfish research is still a wide and open array. Examples are presented how the yield of information and interpretation from these times increases with interdisciplinary cooperation including archeologists, zoologists, ichthyologists, historians, art historians, fisheries and fishery biologist. The timeline of this contribution ends with the start of modern fishery research at the end of the 19th century in the course of the rapidly increasing exploitation of fish stocks.

  14. Ancient technology in contemporary surgery.

    PubMed

    Buck, B A

    1982-03-01

    Archaeologists have shown that ancient man developed the ability to produce cutting blades of an extreme degree of sharpness from volcanic glass. The finest of these prismatic blades were produced in Mesoamerica about 2,500 years ago. The technique of production of these blades was rediscovered 12 years ago by Dr. Don Crabtree, who suggested possible uses for the blades in modern surgery. Blades produced by Dr. Crabtree have been used in experimental microsurgery with excellent results. Animal experiments have shown the tensile strength of obsidian produced wounds to be equal to or greater than that of wounds produced by steel scalpels after 14 days of healing. We have been able to demonstrate neither flaking of glass blades into the wounds nor any foreign body reaction in healed wounds. Skin incisions in human patients have likewise healed well without complications. The prismatic glass blade is infinitely sharper than a honed steel edge, and these blades can be produced in a wide variety of shapes and sizes. It is therefore suggested that this type of blade may find an appropriate use in special areas of modern surgery. PMID:7046256

  15. Rethinking the Ancient Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  16. Ancient Admixture in Human History

    PubMed Central

    Patterson, Nick; Moorjani, Priya; Luo, Yontao; Mallick, Swapan; Rohland, Nadin; Zhan, Yiping; Genschoreck, Teri; Webster, Teresa; Reich, David

    2012-01-01

    Population mixture is an important process in biology. We present a suite of methods for learning about population mixtures, implemented in a software package called ADMIXTOOLS, that support formal tests for whether mixture occurred and make it possible to infer proportions and dates of mixture. We also describe the development of a new single nucleotide polymorphism (SNP) array consisting of 629,433 sites with clearly documented ascertainment that was specifically designed for population genetic analyses and that we genotyped in 934 individuals from 53 diverse populations. To illustrate the methods, we give a number of examples that provide new insights about the history of human admixture. The most striking finding is a clear signal of admixture into northern Europe, with one ancestral population related to present-day Basques and Sardinians and the other related to present-day populations of northeast Asia and the Americas. This likely reflects a history of admixture between Neolithic migrants and the indigenous Mesolithic population of Europe, consistent with recent analyses of ancient bones from Sweden and the sequencing of the genome of the Tyrolean “Iceman.” PMID:22960212

  17. [Metallurgic drugs in ancient Japan].

    PubMed

    Sugiyama, S

    2001-01-01

    Advancements in metallurgic and pharmaceutical chemistry in ancient Japan were made by people like Mangan-Shonin, who combined elements from Shinto, Buddhism, and Taoism to take advantage of technologies brought by Chinese and Korean immigrants. The Shonin himself, though it may be considered a wild speculation, could well be such an immigrant. Along with the immigrants, the Shonin established government-subsidized temples (Jingu-ji, Jogaku-ji) throughout the country under sponsorship by the Imperial Court for the purpose of raising funds through private donations. Research and educational activities conducted in these temples ultimately resulted in a well-established body of chemical engineers who could excavate chemical substances as well as alter their natures. According to a list of regional products (Sasaki,19) 1972) up to the 14th century, these chemical substances and their derivative products included iron from the Hitachi region, cast metal from Shimotsuke, swords from Sagami, face powder (lead carbonate) from Ise, mercury, and gold. PMID:11776993

  18. Ancient origin of mast cells.

    PubMed

    Wong, G William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K; Satoh, Nori; Stevens, Richard L

    2014-08-22

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  19. Health assessment for Woodlands Route 72 Dump, Woodland Township, Burlington County, New Jersey, Region 2. Cerclis No. NJD980505879. Preliminary report

    SciTech Connect

    Not Available

    1989-01-19

    The Woodland Route 72 Dump site is on the National Priorities List. The approximately 12-acre site operated during the early 1950s until 1962. Wastes were either buried or burned. The major environmental contamination on-site consists of benzoic acid (64 ppm), dibenzofuran (5.3 ppm), bis(2-ethylhexyl)phthalate (460 ppm), 1,4-dichlorobenzene (3.7 ppm), DDT (1,400 ppm), barium (606 ppm). chromium (1,504 ppm), lead (1,532 ppm), nickel (415 ppm), and mercury (2.3 ppm) in surface waste. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water and soil.

  20. Health assessment for Woodland Route 532 Dump, Woodland Township, Burlington County, New Jersey, Region 2. CERCLIS No. NJD980505887. Preliminary report

    SciTech Connect

    Not Available

    1988-11-15

    The Woodland Route 532 Dump site is on the National Priorities List. The 35-acre facility was used by several chemical manufacturers in the 1950s and early 1960s for open burning, dumping, and burial of drummed chemical wastes. On-site contamination consists of pentachlorophenol (182 ppb) in ground water. Although air sampling has not been conducted, it was reported that levels of chemicals in the air were judged by investigators to pose a respiratory hazard during site-invasive sampling procedures. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contact with surface materials on-site.

  1. Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta-analysis.

    PubMed

    McCary, Matthew A; Mores, Robin; Farfan, Monica A; Wise, David H

    2016-03-01

    Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta-analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure. PMID:26757702

  2. Alternative medicine in ancient and medieval history.

    PubMed

    Prioreschi, P

    2000-10-01

    The author, in an attempt to clarify whether the rise of alternative medicine is a phenomenon characteristic of our time or whether it existed in the past as well, has identified at least three alternative medicines, which developed in ancient Rome, ancient India and in the medieval Islamic world. The circumstances leading to the development of alternative medicine in the past and in our time are discussed and compared. PMID:11000060

  3. Habitat-related variation in infestation of lizards and rodents with Ixodes ticks in dense woodlands in Mendocino County, California.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Lane, Robert S

    2004-01-01

    During the spring and early summer of 2002, we examined the relative importance of Borrelia-refractory lizards (Sceloporus occidentalis, Elgaria spp.) versus potential Borrelia burgdorferi sensu lato (s.l.)-reservoirs (rodents) as hosts for Ixodes pacificus immatures in 14 woodland areas (six oak, five mixed oak/Douglas fir, and three redwood/tanoak areas) distributed throughout Mendocino County, California. Lizards were estimated to serve as hosts for 93-98% of all larvae and > or =99.6% of all nymphs infesting lizards or rodents in oak woodlands and oak/Douglas fir sites in the southern part of the county. In redwood/tanoak woodlands and oak/Douglas fir sites in northern Mendocino County, the contribution of rodents to larval feedings reached 36-69% but lizards still accounted for 94-100% of nymphal bloodmeals. From late April to mid-June, I. pacificus larvae were recovered from 95 to 96% of lizards and dusky-footed woodrats (Neotoma fuscipes) and from 59% of Peromyscus spp. mice. In contrast, 99% of lizards but few woodrats (15%) and none of the mice were infested by nymphs. Comparisons of tick loads for 19 lizard-Peromyscus spp. mouse pairings, where the lizard and mouse were captured within 10m of each other, revealed that the lizards harbored 36 times more larvae and >190 times more nymphs than the mice. In oak woodlands, loads of I. pacificus larvae decreased from late April/early May to late June for S. occidentalis lizards but increased for Peromyscus spp. mice. We conclude that the relative utilization of Borrelia-refractory lizards, as compared to rodents, by I. pacificus larvae was far higher in dry oak woodlands than in moister habitats such as redwood/tanoak and oak/Douglas fir woodlands in northern Mendocino County. Non-lizard-infesting potential enzootic vectors of B. burgdorferi s.l. (I. angustus and I. spinipalpis) were recorded from rodents in three of six oak woodland areas, two of five oak/Douglas fir woodland areas, and two of three redwood

  4. Using Ancient Samples in Projection Analysis

    PubMed Central

    Yang, Melinda A.; Slatkin, Montgomery

    2015-01-01

    Projection analysis is a tool that extracts information from the joint allele frequency spectrum to better understand the relationship between two populations. In projection analysis, a test genome is compared to a set of genomes from a reference population. The projection’s shape depends on the historical relationship of the test genome’s population to the reference population. Here, we explore in greater depth the effects on the projection when ancient samples are included in the analysis. First, we conduct a series of simulations in which the ancient sample is directly ancestral to a present-day population (one-population model), or the ancient sample is ancestral to a sister population that diverged before the time of sampling (two-population model). We find that there are characteristic differences between the projections for the one-population and two-population models, which indicate that the projection can be used to determine whether a test genome is directly ancestral to a present-day population or not. Second, we compute projections for several published ancient genomes. We compare two Neanderthals and three ancient human genomes to European, Han Chinese and Yoruba reference panels. We use a previously constructed demographic model and insert these five ancient genomes to assess how well the observed projections are recovered. PMID:26546309

  5. Using Ancient Samples in Projection Analysis.

    PubMed

    Yang, Melinda A; Slatkin, Montgomery

    2016-01-01

    Projection analysis is a tool that extracts information from the joint allele frequency spectrum to better understand the relationship between two populations. In projection analysis, a test genome is compared to a set of genomes from a reference population. The projection's shape depends on the historical relationship of the test genome's population to the reference population. Here, we explore in greater depth the effects on the projection when ancient samples are included in the analysis. First, we conduct a series of simulations in which the ancient sample is directly ancestral to a present-day population (one-population model), or the ancient sample is ancestral to a sister population that diverged before the time of sampling (two-population model). We find that there are characteristic differences between the projections for the one-population and two-population models, which indicate that the projection can be used to determine whether a test genome is directly ancestral to a present-day population or not. Second, we compute projections for several published ancient genomes. We compare two Neanderthals and three ancient human genomes to European, Han Chinese and Yoruba reference panels. We use a previously constructed demographic model and insert these five ancient genomes to assess how well the observed projections are recovered. PMID:26546309

  6. Transnasal excerebration surgery in ancient Egypt.

    PubMed

    Fanous, Andrew A; Couldwell, William T

    2012-04-01

    Ancient Egyptians were pioneers in many fields, including medicine and surgery. Our modern knowledge of anatomy, pathology, and surgical techniques stems from discoveries and observations made by Egyptian physicians and embalmers. In the realm of neurosurgery, ancient Egyptians were the first to elucidate cerebral and cranial anatomy, the first to describe evidence for the role of the spinal cord in the transmission of information from the brain to the extremities, and the first to invent surgical techniques such as trepanning and stitching. In addition, the transnasal approach to skull base and intracranial structures was first devised by Egyptian embalmers to excerebrate the cranial vault during mummification. In this historical vignette, the authors examine paleoradiological and other evidence from ancient Egyptian skulls and mummies of all periods, from the Old Kingdom to Greco-Roman Egypt, to shed light on the development of transnasal surgery in this ancient civilization. The authors confirm earlier observations concerning the laterality of this technique, suggesting that ancient Egyptian excerebration techniques penetrated the skull base mostly on the left side. They also suggest that the original technique used to access the skull base in ancient Egypt was a transethmoidal one, which later evolved to follow a transsphenoidal route similar to the one used today to gain access to pituitary lesions. PMID:22224784

  7. Horsetails Are Ancient Polyploids: Evidence from Equisetum giganteum.

    PubMed

    Vanneste, Kevin; Sterck, Lieven; Myburg, Alexander Andrew; Van de Peer, Yves; Mizrachi, Eshchar

    2015-06-01

    Horsetails represent an enigmatic clade within the land plants. Despite consisting only of one genus (Equisetum) that contains 15 species, they are thought to represent the oldest extant genus within the vascular plants dating back possibly as far as the Triassic. Horsetails have retained several ancient features and are also characterized by a particularly high chromosome count (n = 108). Whole-genome duplications (WGDs) have been uncovered in many angiosperm clades and have been associated with the success of angiosperms, both in terms of species richness and biomass dominance, but remain understudied in nonangiosperm clades. Here, we report unambiguous evidence of an ancient WGD in the fern lineage, based on sequencing and de novo assembly of an expressed gene catalog (transcriptome) from the giant horsetail (Equisetum giganteum). We demonstrate that horsetails underwent an independent paleopolyploidy during the Late Cretaceous prior to the diversification of the genus but did not experience any recent polyploidizations that could account for their high chromosome number. We also discuss the specific retention of genes following the WGD and how this may be linked to their long-term survival. PMID:26002871

  8. Ancient WGD events as drivers of key innovations in angiosperms.

    PubMed

    Soltis, Pamela S; Soltis, Douglas E

    2016-04-01

    Polyploidy, or whole-genome duplication (WGD), is a ubiquitous feature of plant genomes, contributing to variation in both genome size and gene content. Although polyploidy has occurred in all major clades of land plants, it is most frequent in angiosperms. Following a WGD in the common ancestor of all extant angiosperms, a complex pattern of both ancient and recent polyploidy is evident across angiosperm phylogeny. In several cases, ancient WGDs are associated with increased rates of species diversification. For example, a WGD in the common ancestor of Asteraceae, the largest family of angiosperms with ∼25000 species, is statistically linked to a shift in species diversification; several other old WGDs are followed by increased diversification after a 'lag' of up to three nodes. WGD may thus lead to a genomic combination that generates evolutionary novelty and may serve as a catalyst for diversification. In this paper, we explore possible links between WGD, the origin of novelty, and key innovations and propose a research path forward. PMID:27064530

  9. Horsetails Are Ancient Polyploids: Evidence from Equisetum giganteum[OPEN

    PubMed Central

    Vanneste, Kevin; Sterck, Lieven; Myburg, Alexander Andrew; Van de Peer, Yves; Mizrachi, Eshchar

    2015-01-01

    Horsetails represent an enigmatic clade within the land plants. Despite consisting only of one genus (Equisetum) that contains 15 species, they are thought to represent the oldest extant genus within the vascular plants dating back possibly as far as the Triassic. Horsetails have retained several ancient features and are also characterized by a particularly high chromosome count (n = 108). Whole-genome duplications (WGDs) have been uncovered in many angiosperm clades and have been associated with the success of angiosperms, both in terms of species richness and biomass dominance, but remain understudied in nonangiosperm clades. Here, we report unambiguous evidence of an ancient WGD in the fern linage, based on sequencing and de novo assembly of an expressed gene catalog (transcriptome) from the giant horsetail (Equisetum giganteum). We demonstrate that horsetails underwent an independent paleopolyploidy during the Late Cretaceous prior to the diversification of the genus but did not experience any recent polyploidizations that could account for their high chromosome number. We also discuss the specific retention of genes following the WGD and how this may be linked to their long-term survival. PMID:26002871

  10. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  11. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    PubMed

    Bennett, Victoria A; Doerr, Veronica A J; Doerr, Erik D; Manning, Adrian D; Lindenmayer, David B; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly when

  12. Burning in Banksia Woodlands: How Does the Fire-Free Period Influence Reptile Communities?

    PubMed Central

    Valentine, Leonie E.; Reaveley, Alice; Johnson, Brent; Fisher, Rebecca; Wilson, Barbara A.

    2012-01-01

    Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8–12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats. PMID:22496806

  13. Habitat Selection and Post-Release Movement of Reintroduced Brown Treecreeper Individuals in Restored Temperate Woodland

    PubMed Central

    Bennett, Victoria A.; Doerr, Veronica A. J.; Doerr, Erik D.; Manning, Adrian D.; Lindenmayer, David B.; Yoon, Hwan-Jin

    2012-01-01

    It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual’s dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes) influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals) of the brown treecreeper (Climacteris picumnus) into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual’s gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species’ requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides), which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals, particularly

  14. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for mediterranean evergreen woodlands

    NASA Astrophysics Data System (ADS)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2011-11-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.

  15. Western gray squirrel (Rodentia: Sciuridae): a primary reservoir host of Borrelia burgdorferi in Californian oak woodlands?

    PubMed

    Lane, Robert S; Mun, Jeomhee; Eisen, Rebecca J; Eisen, Lars

    2005-05-01

    In California, dense woodlands have been recognized as important biotopes where humans are exposed to the nymphal stage of the western blacklegged tick, Ixodes pacificus Cooley & Kohls, the primary vector of the Lyme disease spirochete Borrelia burgdorferi sensu stricto (s.s.), in the far-western United States. To identify the principal reservoir host(s) of this spirochete, and of closely related spirochetes in the B. burgdorferi sensu lato (s.l.) complex, in dense woodlands in Mendocino County, California, approximately 50 species of birds and mammals, including wood rats and kangaroo rats, were evaluated as potential hosts for vector ticks and borreliae in 2002 and 2003. Although polymerase chain reaction (PCR) and sequencing analyses revealed that many vertebrate species had been exposed to one or more members of the B. burgdorferi s.l. spirochetal complex, only the western gray squirrel, Sciurus griseus, fulfilled the major criteria for a reservoir host of B. burgdorferi s.s. Ear-punch biopsies from eight of 10 squirrels collected from five separate woodlands were PCR-positive for B. burgdorferi s.s., 47% of I. pacificus larvae (n = 64) and 31% of nymphs (n = 49) removed from squirrels contained B. burgdorferi s.l., and the engorgement status of I. pacificus larvae was associated positively with acquisition of spirochetes. Overall, 83 and 100% of the amplicons sequenced from PCR-positive I. pacificus larvae and nymphs, respectively, were identified as B. burgdorferi s.s, Among the five remaining positive I. pacificus larvae, three contained B. bissettii and two had uncharacterized B. burgdorferi s.l. Borrelia burgdorferi s.s. was detected in one of five larvae and zero of two nymphs of the Pacific Coast tick, Dermacentor occidentalis Marx, that likewise had been removed from squirrels. The rickettsial agent of human anaplasmosis, Anaplasma phagocytophilum, was detected in the blood or ear biopsies of two squirrels and in one (1.6%) of 64 I. pacificus larvae and

  16. Oak woodlands and forests fire consortium: A regional view of fire science sharing

    USGS Publications Warehouse

    Grabner, Keith W.; Stambaugh, Michael C.; Marschall, Joseph M.; Abadir, Erin R.

    2013-01-01

    The Joint Fire Science Program established 14 regional fire science knowledge exchange consortia to improve the delivery of fire science information and communication among fire managers and researchers. Consortia were developed regionally to ensure that fire science information is tailored to meet regional needs. In this paper, emphasis was placed on the Oak Woodlands and Forests Fire Consortium to provide an inside view of how one regional consortium is organized and its experiences in sharing fire science through various social media, conference, and workshop-based fire science events.

  17. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  18. Role of microbes associated with organic and inorganic substrates in phosphorus spiralling in a woodland stream

    SciTech Connect

    Elwood, J.W.; Newbold, J.D.; O'Neill, R.V.; Stark, R.W.; Singley, P.T.

    1980-01-01

    Laboratory and field experiments were conducted to determine if nutrient spiralling is primarily a biological process. The experiments were conducted to examine the role of microbial uptake and abiotic sorption onto organic and inorganic substrates in the uptake of PO/sub 4/-P in Walker Branch, a small, first-order woodland stream in east Tennessee, to estimate the total, microbial, and adsorptive pool sizes of exchangeable phosphorus associated with five particulate organic matter from this stream, and to measure the turnover rate of PO/sub 4/-P by live and sterile inorganic substrates in Walker Branch.

  19. Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding.

    PubMed

    Gismondi, Angelo; Rolfo, Mario Federico; Leonardi, Donatella; Rickards, Olga; Canini, Antonella

    2012-07-01

    The analysis of ancient DNA (aDNA) provides archaeologists and anthropologists with innovative, scientific and accurate data to study and understand the past. In this work, ancient seeds, found in the "Mora Cavorso" archaeological site (Latium, Central Italy), were analyzed to increase information about Italian Neolithic populations (plant use, agriculture, diet, trades, customs and ecology). We performed morphological and genetic techniques to identify fossil botanical species. In particular, this study also suggests and emphasizes the use of DNA barcode method for ancient plant sample analysis. Scanning electron microscope (SEM) observations showed seed compact structure and irregular surface but they did not permit a precise nor empirical classification: so, a molecular approach was necessary. DNA was extracted from ancient seeds and then it was used, as template, for PCR amplifications of standardized barcode genes. Although aDNA could be highly degraded by the time, successful PCR products were obtained, sequenced and compared to nucleotide sequence databases. Positive outcomes (supported by morphological comparison with modern seeds, geographical distribution and historical data) indicated that seeds could be identified as belonging to two plant species: Olea europaea L. and Cornus mas L. PMID:22847014

  20. Photooxidation and Microbial Processing of Ancient and Modern Dissolved Organic Carbon in the Kolyma River, Siberia.

    NASA Astrophysics Data System (ADS)

    Behnke, M. I.; Mann, P. J.; Schade, J. D.; Spawn, S.; Zimov, N.

    2015-12-01

    Permafrost soils in northern high latitudes store large quantities of organic carbon that have remained frozen for thousands of years. As global temperatures increase, permafrost deposits have begun to thaw, releasing previously stored ancient carbon to streams and rivers in the form of dissolved organic carbon (DOC). Newly mobilized DOC is then subjected to processing by photooxidation and microbial metabolism. Permafrost-derived DOC is highly bioavailable directly upon release relative to modern DOC derived from plants and surface active layer soils. Our objectives were to assess the interaction of photodegradation and microbial processing, and to quantify any light priming effect on the microbial consumption of both ancient and modern sourced DOC pools. We exposed sterilized mixtures of ancient and modern DOC to ambient sunlight for six days, and then inoculated mixtures (0, 1, 10, 25, 50 & 100% ancient DOC) with microbes from both modern and ancient water sources. After inoculation, samples were incubated in the dark for five days. We measured biological oxygen demand, changes in absorbance, and DOC concentrations to quantify microbial consumption of DOC and identify shifts in DOC composition and biolability. We found evidence of photobleaching during irradiation (decreasing S275-295, increasing slope ratio, and decreasing SUVA254). Once inoculated, mixtures with more ancient DOC showed initially increased microbial respiration compared to mixtures with primarily modern DOC. During the first 24 hours, the light-exposed mixture with 50% ancient DOC showed 47.6% more oxygen consumption than did the dark 50% mixture, while the purely modern DOC showed 11.5% greater oxygen consumption after light exposure. After 5 days, the modern light priming was comparable to the 50% mixture (31.2% compared to 20.5%, respectively). Our results indicate that natural photoexposure of both modern and newly released DOC increases microbial processing rates over non photo-exposed DOC.

  1. Niger household energy project: Promoting rural fuelwood markets and village management of natural woodlands. World Bank Technical Paper No. 362

    SciTech Connect

    Foley, G.; Floor, W.; Madon, G.; Lawali, E.M.; Montagne, P.

    1997-05-01

    A radical new strategy for dealing with the problems of energy and the environment in the Sahel is being implemented in Niger. Rather than have urban wood traders go into the countryside to cut the wood and truck it back to the cities, the government is giving village communities control over their natural woodlands in return for a commitment to manage the woodlands and the production of fuelwood sustainability. This paper details the rationale, history, and prospects of this innovative energy strategy. It describes local physical and socioeconomic conditions, with particular attention to the `tiger bush` that forms much of Niger`s natural woodland. If the strategy can be expanded, it will have potential for replication over much of the Sahel and other countries in Sub-Saharan Africa.

  2. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  3. History through Art and Architecture: Ancient Greek Architecture [and] Ancient Greek Sculpture. Teacher's Manual.

    ERIC Educational Resources Information Center

    Campbell, Ann

    This document consists of two teaching manuals designed to accompany a commercially-available "multicultural, interdisciplinary video program," consisting of four still videotape programs (72 minutes, 226 frames), one teaching poster, and these two manuals. "Teacher's Manual: Ancient Greek Architecture" covers: "Ancient Greek Architecture 1,"…

  4. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland.

    PubMed

    Cerasoli, Sofia; Costa E Silva, Filipe; Silva, João M N

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types. PMID:26449349

  5. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    PubMed

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. PMID:27105420

  6. Influence of tree canopy on N₂ fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands.

    PubMed

    Carranca, C; Castro, I V; Figueiredo, N; Redondo, R; Rodrigues, A R F; Saraiva, I; Maricato, R; Madeira, M A V

    2015-02-15

    Symbiotic N2 fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N2 fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. (15)N technique was used for determination of N2 fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N2 fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha(-1)yr(-1)). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N2 fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54-72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N2 fixation capacity increased from about 0.10 kg N ha(-1) per day in the autumn-winter period to 0.15 kg N ha(-1) per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. PMID:25460942

  7. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2016-06-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus ( Cistus salviifolius) and ulex ( Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence ( ΔF/ Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  8. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland

    NASA Astrophysics Data System (ADS)

    Cerasoli, Sofia; Costa e Silva, Filipe; Silva, João M. N.

    2015-10-01

    The application of spectral vegetation indices for the purpose of vegetation monitoring and modeling increased largely in recent years. Nonetheless, the interpretation of biophysical properties of vegetation through their spectral signature is still a challenging task. This is particularly true in Mediterranean oak forest characterized by a high spatial and temporal heterogeneity. In this study, the temporal dynamics of vegetation indices expected to be related with green biomass and photosynthetic efficiency were compared for the canopy of trees, the herbaceous layer, and two shrub species: cistus (Cistus salviifolius) and ulex (Ulex airensis). coexisting in a cork oak woodland. All indices were calculated from in situ measurements with a FieldSpec3 spectroradiometer (ASD Inc., Boulder, USA). Large differences emerged in the temporal trends and in the correlation between climate and vegetation indices. The relationship between spectral indices and temperature, radiation, and vapor pressure deficit for cork oak was opposite to that observed for the herbaceous layer and cistus. No correlation was observed between rainfall and vegetation indices in cork oak and ulex, but in the herbaceous layer and in the cistus, significant correlations were found. The analysis of spectral vegetation indices with fraction of absorbed PAR (fPAR) and quantum yield of chlorophyll fluorescence (ΔF/Fm') evidenced strongest relationships with the indices Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI)512, respectively. Our results, while confirms the ability of spectral vegetation indices to represent temporal dynamics of biophysical properties of vegetation, evidence the importance to consider ecosystem composition for a correct ecological interpretation of results when the spatial resolution of observations includes different plant functional types.

  9. Re-inventing ancient human DNA.

    PubMed

    Knapp, Michael; Lalueza-Fox, Carles; Hofreiter, Michael

    2015-01-01

    For a long time, the analysis of ancient human DNA represented one of the most controversial disciplines in an already controversial field of research. Scepticism in this field was only matched by the long-lasting controversy over the authenticity of ancient pathogen DNA. This ambiguous view on ancient human DNA had a dichotomous root. On the one hand, the interest in ancient human DNA is great because such studies touch on the history and evolution of our own species. On the other hand, because these studies are dealing with samples from our own species, results are easily compromised by contamination of the experiments with modern human DNA, which is ubiquitous in the environment. Consequently, some of the most disputed studies published - apart maybe from early reports on million year old dinosaur or amber DNA - reported DNA analyses from human subfossil remains. However, the development of so-called next- or second-generation sequencing (SGS) in 2005 and the technological advances associated with it have generated new confidence in the genetic study of ancient human remains. The ability to sequence shorter DNA fragments than with PCR amplification coupled to traditional Sanger sequencing, along with very high sequencing throughput have both reduced the risk of sequencing modern contamination and provided tools to evaluate the authenticity of DNA sequence data. The field is now rapidly developing, providing unprecedented insights into the evolution of our own species and past human population dynamics as well as the evolution and history of human pathogens and epidemics. Here, we review how recent technological improvements have rapidly transformed ancient human DNA research from a highly controversial subject to a central component of modern anthropological research. We also discuss potential future directions of ancient human DNA research. PMID:25937886

  10. New interpretation of the ancient constellations

    NASA Astrophysics Data System (ADS)

    Dementev, M. S.

    New method of study of the ancient constellations and mythes is discussed. It is based on the comparison of two maps - the sky and the Earth. The Stellar map is built in an equatorial system of coordinates, the geografic map - in the Mercator's projection and of the same scale. The former map is put on the laster one. The constellation of Pleiades (seven daughter of Atlant) is placed on the meridian of Atlant (Western coast of Africa). If the Stellar map is constructed for a epoch J-3000 (3000 years up to B.C.) then we could found the following. The constellations Andromeda (the daughter of the Ethiopian tsar), Cetus, Perseus and Cassiopeia (mother of Andromeda) are projected on the centre, south and west of Ancient Ethiopia and Mediterranean Sea, respectively. That is all the constellations fall to the places, where events described in mythes occured. A constellation Cepheus (Arabian name is "Burning") covers the Caucasus. Possibly, before a epoch J-1000 this group of stars was connected with Prometheus. It is known Prometheus was chained to the Caucasian rock because of stealing of a fire. Ancient Chineses divided the sky in other way. They called "The Heavenly Town" the area of sky consisting of stars in Herculis, Aquilae and Ophiuchi. Parts of the mentioned constellation were called as a provinces in Ancient China. If the Heavenly Town locate near the Ancient China then the Greek constellations (Andromeda, Perseus and Cetus) will appear over Africa. Three important conclusions follow from this: (i) the geography of the Earth is reflected on the sky; (ii) the ancient astronomers were investigating a connection between the sky and Earth; (iii) the ancient peoples exchanged by the information about a construction of the world.

  11. [The textual research on the related names of ancient health-care drinks].

    PubMed

    Su, Nuo

    2009-03-01

    There are many kinds of related names of ancient health-care drinks such as tea, tea soup, herb soup, soup, boiled water, thirsty water and cold decoction etc. Following textual research on each connotation of all kinds of names, they have the same aspects as well as different special contents. Among them, the tea soup is some kind of health-care and curative drink, mainly containing tea with other plant decoctions; not only referring to the drinking tea, but also the decoction drunk as tea. The 'tea soup can mostly reflect the original meaning of ancient health-care drinks, and also accord with the understanding of current health-care drinks, thus comprehensively and exactly summarize the content of ancient health-care drinks. PMID:19824369

  12. Developing a model framework for predicting effects of woody expansion and fire on ecosystem carbon and nitrogen in a pinyon juniper woodland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sagebrush-steppe ecosystems are one of the most threatened ecosystems in North America due to woodland expansion, wildfire, and exotic annual grass invasion. Some scientists and policy makers have suggested that woodland expansion will lead to increased carbon (C) storage on the landscape. To assess...

  13. Land Change in Eastern Mediterranean Wood-Pasture Landscapes: The Case of Deciduous Oak Woodlands in Lesvos (Greece)

    NASA Astrophysics Data System (ADS)

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9 %. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.

  14. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania

    PubMed Central

    Shirima, Deo D.; Pfeifer, Marion; Platts, Philip J.; Totland, Ørjan; Moe, Stein R.

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental

  15. Land change in eastern Mediterranean wood-pasture landscapes: the case of deciduous oak woodlands in Lesvos (Greece).

    PubMed

    Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias

    2015-07-01

    In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high--especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9%. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats. PMID:25877458

  16. Diagnosis and management of retroperitoneal ancient schwannomas

    PubMed Central

    Choudry, Haroon A; Nikfarjam, Mehrdad; Liang, John J; Kimchi, Eric T; Conter, Robert; Gusani, Niraj J; Staveley-O'Carroll, Kevin F

    2009-01-01

    Background Ancient schwannomas are degenerate peripheral nerve sheath tumors that very rarely occur in the retroperitoneum. They generally reach large proportions before producing symptoms due to mass effect. We describe three cases of retroperitoneal ancient schwannomas and discuss the diagnosis and management of these tumors. Case presentations Three female patients with retroperitoneal ancient schwannomas were reviewed. One patient presented with several weeks of upper abdominal pain and lower chest discomfort, whereas back pain and leg pain with associated weakness were predominant symptoms in the remaining two. Abdominal imaging findings demonstrated heterogeneous masses in the retroperitoneum with demarcated margins, concerning for malignancy. The patients successfully had radical excision of their tumors. Histological examination showed encapsulated tumors that displayed alternating areas of dense cellularity and areas of myxoid matrix consistent with a diagnosis of ancient schwannoma. Conclusion A diagnosis of ancient schwannoma should be entertained for any heterogeneous, well encapsulated mass in the retroperitoneum. In these cases less radical surgical resection should be considered as malignant transformation of these tumors is extremely rare and recurrence is uncommon following excision. PMID:19187535

  17. The Ancient Martian Climate System

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    2014-01-01

    Today Mars is a cold, dry, desert planet. The atmosphere is thin and liquid water is not stable. But there is evidence that very early in its history it was warmer and wetter. Since Mariner 9 first detected fluvial features on its ancient terrains researchers have been trying to understand what climatic conditions could have permitted liquid water to flow on the surface. Though the evidence is compelling, the problem is not yet solved. The main issue is coping with the faint young sun. During the period when warmer conditions prevailed 3.5-3.8 Gy the sun's luminosity was approximately 25% less than it is today. How can we explain the presence of liquid water on the surface of Mars under such conditions? A similar problem exists for Earth, which would have frozen over under a faint sun even though the evidence suggests otherwise. Attempts to solve the "Faint Young Sun Paradox" rely on greenhouse warming from an atmosphere with a different mass and composition than we see today. This is true for both Mars and Earth. However, it is not a straightforward solution. Any greenhouse theory must (a) produce the warming and rainfall needed, (b) have a plausible source for the gases required, (c) be sustainable, and (d) explain how the atmosphere evolved to its present state. These are challenging requirements and judging from the literature they have yet to be met. In this talk I will review the large and growing body of work on the early Mars climate system. I will take a holistic approach that involves many disciplines since our goal is to present an integrated view that touches on each of the requirements listed in the preceding paragraph. I will begin with the observational evidence, which comes from the geology, mineralogy, and isotopic data. Each of the data sets presents a consistent picture of a warmer and wetter past with a thicker atmosphere. How much warmer and wetter and how much thicker is a matter of debate, but conditions then were certainly different than

  18. Soil water repellency as a vegetation-driven strategy for soil moisture sequestration in Banksia woodlands (Western Australia)

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Zavala, Lorena M.; Stevens, Jason; Jordán, Antonio

    2016-04-01

    Water repellency is a property of some soils that inhibits or delays the rainwater infiltration. When a surface or subsurface soil horizon is water repellent, water is retained for periods of time that vary according to the severity of hydrophobicity, soil moisture and other parameters. Water repellency is caused by hydrophobic organic substances released by plant residues, roots or soil microorganisms. Certain abiotic agents, like fire, can increase the severity of soil water repellency in certain cases. Under water-repellent conditions, water can infiltrate only when the pressure of the water column is high enough or when macropores allow it. These macropores may be formed by galleries excavated by animals, dead roots or gaps between aggregate or rock fragments. Banksia plants have a dimorphic root morphology. Proteoid roots are formed by clusters of densely compacted short lateral rootlets that radiate from the parent root. These clusters spread just some centimeters below the soil surface constituting a thick dense sheet of roots and are known to secrete large amounts of organic acids and phenolics to increase the uptake of P and other minerals. In contrast, the parent root penetrates soil deeply, reaching the water table. Sandy soils below banksia woodlands from Western Australia coastal dunes show a characteristic vertical distribution of water repellency. We observed that the first soil layer (just some millimeters of depth) was formed by a wettable sand particles transported by wind, covering a wettable or subcritically water-repellent subsurface layer (0-20 cm). A second soil layer (20-40 cm) was formed by a severely water-repellent layer with aggregates bulked by dominant banksia proteoid roots. Below this layer, soil water repellency decreased with depth until soil material rendered wettable at depths between 40 and 80 cm under field conditions. It is hypothesized that banksia roots are capable of inducing soil water repellency, causing the occurrence of

  19. Avian community responses to juniper woodland structure and thinning treatments on the Colorado Plateau

    USGS Publications Warehouse

    Crow, Claire; van Riper, Charles, III

    2011-01-01

    We also studied responses of breeding birds to mechanical reduction of pinyon-juniper woodlands scattered across sagebrush steppe in 11 control and 9 treatment plots at Grand Staircase-Escalante National Monument, Utah, in 2005 and 2006. We surveyed birds in 3.1-ha (7.6-acre) plots during the breeding season before and following treatment. Thinning in April 2006 removed a mean of 92 percent (standard error = 6.4 percent) of the live trees from treatment plots. Two of 14 species, Gray Vireo (Vireo vicinior) and Brown-headed Cowbird (Molothrus ater), were not detected after thinning. Shrub-nesting birds, including sagebrush specialist Brewer's Sparrow (Spizella breweri), increased in relative abundance in treatment areas compared to controls. However, some species may exhibit a time lag in response, and further changes in community composition and abundance could result. Our findings lend support to the concept that multiple small-scale fuels-reduction treatments, applied over the landscape, may provide the variety of successional stages needed to support a full assemblage of avian species in pinyon-juniper woodlands on the Colorado Plateau. Limiting scale and increasing precision of fuels-reduction projects in pinyon-juniper vegetation communities may maximize the benefits of management to both the pinyon-juniper and sagebrush steppe avian communities. We conclude that small-scale fuels-reduction treatments can benefit many bird species while reducing fire risk and restoring an ecological balance.

  20. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.

    1993-01-01

    Multispectral measurements collected by Landsat Thematic Mapper (TM) were correlated with field measurements, direct soil loss estimates, and Universal Soil Loss Equation (USLE) estimates to determine the sensitivity of TM data to varying degrees of soil erosion in pinyon-juniper woodland in central Utah. TM data were also evaluated as a predictor of the USLE Crop Management C factor for pinyon-juniper woodlands. TM spectral data were consistently better predictors of soil erosion factors than any combination of field factors. TM data were more sensitive to vegetation variations than the USLE C factor. USLE estimates showed low annual rates of erosion which varied little among the study sites. Direct measurements of rate of soil loss using the SEDIMENT (Soil Erosion DIrect measureMENT) technique, indicated high and varying rates of soil loss among the sites since tree establishment. Erosion estimates from the USLE and SEDIMENT methods suggest that erosion rates have been severe in the past, but because significant amounts of soil have already been eroded, and the surface is now armored by rock debris, present erosion rates are lower. Indicators of accelerated erosion were still present on all sites, however, suggesting that the USLE underestimated erosion within the study area.

  1. Ecohydrological controls on soil moisture and hydraulic conductivity within a pinyon-juniper woodland

    USGS Publications Warehouse

    Lebron, I.; Madsen, M.D.; Chandler, D.G.; Robinson, D.A.; Wendroth, O.; Belnap, J.

    2007-01-01

    The impact of pinyon-juniper woodland encroachment on rangeland ecosystems is often associated with a reduction of streamflow and recharge and an increase in soil erosion. The objective of this study is to investigate vegetational control on seasonal soil hydrologic properties along a 15-m transect in pinyon-juniper woodland with biocrust. We demonstrate that the juniper tree controls soil water content (SWC) patterns directly under the canopy via interception, and beyond the canopy via shading in a preferred orientation, opposite to the prevailing wind direction. The juniper also controls the SWC and unsaturated hydraulic conductivity measured close to water saturation (K(h)) under the canopy by the creation of soil water repellency due to needle drop. We use this information to refine the hydrologic functional unit (HFU) concept into three interacting hydrologic units: canopy patches, intercanopy patches, and a transitional unit formed by intercanopy patches in the rain shadow of the juniper tree. Spatial autoregressive state-space models show the close relationship between K(h) close to soil water saturation and SWC at medium and low levels, integrating a number of influences on hydraulic conductivity. Copyright 2007 by the American Geophysical Union.

  2. Mapping forest stand complexity for woodland caribou habitat assessment using multispectral airborne imagery

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Hu, B.; Woods, M.

    2014-11-01

    The decline of the woodland caribou population is a result of their habitat loss. To conserve the habitat of the woodland caribou and protect it from extinction, it is critical to accurately characterize and monitor its habitat. Conventionally, products derived from low to medium spatial resolution remote sensing data, such as land cover classification and vegetation indices are used for wildlife habitat assessment. These products fail to provide information on the structure complexities of forest canopies which reflect important characteristics of caribou's habitats. Recent studies have employed the LiDAR system (Light Detection And Ranging) to directly retrieve the three dimensional forest attributes. Although promising results have been achieved, the acquisition cost of LiDAR data is very high. In this study, utilizing the very high spatial resolution imagery in characterizing the structural development the of forest canopies was exploited. A stand based image texture analysis was performed to predict forest succession stages. The results were demonstrated to be consistent with those derived from LiDAR data.

  3. Tree size and understory phytomass production in a western Juniper woodland

    SciTech Connect

    Vaitkus, M.R.; Eddleman, L.E. )

    1991-09-01

    Understory phytomass production in a western juniper (Juniperus occidentalis) woodland was examined relative to tree size in central Oregon in 1983 and 1984. Vegetation was sampled in two zones, the canopy zone (beneath the canopy) and the intercanopy zone (the space between canopies), on two adjacent sites - a lower slope site with shallow soil and an upper slope site with deeper soil. Sampling was stratified into three tree size classes. Individual species production was significantly affected by tree size and location relative to tree canopy. Production of bottlebrush squirreltail, bluebunch wheatgrass, cheatgrass, miscellaneous annual grasses, perennial forbs, and annual forbs increased with increasing tree size. Sandberg bluegrass production was greater in the intercanopy than the canopy zone, while production of bottlebrush squirreltail, bluebunch wheatgrass, miscellaneous annual grasses, and both perennial and annual forbs was greater in the canopy zone. Production of cheatgrass was determined by the interaction of tree size and zone. Phytomass relationships were expressed to a greater degree on the upper slope site, where total production exceeded that of the lower slope site by approximately 50% the second year of the study. Individual trees appear to exert a great influence on associated vegetation as western juniper woodlands progress from the seedling (tree establishment) phase to closed stands of mature trees. Original community dominants appear to be spatially segregated beneath tree canopies and associated with large trees, while formerly less common species, such as cheatgrass, come to dominate the entire site.

  4. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  5. The Influence of Rainfall, Vegetation, Elephants and People on Fire Frequency of Miombo Woodlands, Northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H. H.; Swap, R. J.

    2008-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  6. The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H.; Swap, R.

    2007-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  7. Woody encroachment and forest degradation in sub-Saharan Africa's woodlands and savannas 1982–2006

    PubMed Central

    Mitchard, Edward T. A.; Flintrop, Clara M.

    2013-01-01

    We review the literature and find 16 studies from across Africa's savannas and woodlands where woody encroachment dominates. These small-scale studies are supplemented by an analysis of long-term continent-wide satellite data, specifically the Normalized Difference Vegetation Index (NDVI) time series from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset. Using dry-season data to separate the tree and grass signals, we find 4.0% of non-rainforest woody vegetation in sub-Saharan Africa (excluding West Africa) significantly increased in NDVI from 1982 to 2006, whereas 3.52% decreased. The increases in NDVI were found predominantly to the north of the Congo Basin, with decreases concentrated in the Miombo woodland belt. We hypothesize that areas of increasing dry-season NDVI are undergoing woody encroachment, but the coarse resolution of the study and uncertain relationship between NDVI and woody cover mean that the results should be interpreted with caution; certainly, these results do not contradict studies finding widespread deforestation throughout the continent. However, woody encroachment could be widespread, and warrants further investigation as it has important consequences for the global carbon cycle and land–climate interactions. PMID:23878342

  8. Seasonal variations in methane and nitrous oxide emissions factors in northern Australian savanna woodlands

    NASA Astrophysics Data System (ADS)

    Meyer, C. P.(Mick); Cook, Garry; Reisen, Fabienne; Russell-Smith, Jeremy; Maier, Stefan; Schatz, Jon; Yates, Cameron; Watt, Felicity

    2010-05-01

    Burning of savannas and grasslands consumes more than one third of the total annual biomass burning globally. In Australia, savanna fires emit annually from 2% to 4% of Australia's greenhouse gas emissions. This has led to efforts to reduce savanna burning emissions through early season prescribed burning. These programs aim to change the fire seasonality from predominantly high intensity late season fires which are characterized by low levels of patchiness and high burning efficiencies to early-season fires characterized by low intensity, a high degree of patchiness and low burning efficiency. The result is a net reduction in fire area and associated carbon emissions. Mitigation of greenhouse gas emissions is predicated on there being little change in methane (CH4) or nitrous oxide (N2O) emission factors (EFs) as the fire season progresses, however, recent analysis of the emission characteristics of African savanna fires by Korontzi et al., indicates CH4-EF, in particular, could decline substantially as the fire season progresses. If this also occurs in Australian savanna woodlands, then the current mitigation strategy could be ineffective. To address the issue a series of field campaigns were undertaken in the savanna woodlands of Western Arnhem land, Australia to quantify the variability in CH4 and N2O EFs throughout the fire season. This study compared CH4 and N2O EFs measured in smoke sampled from prescribed burning in late June/early July with those from late season fires in early October. It concentrated on the two major vegetation classes in Western Arnhemland; eucalypt open woodland, in which the fuel is composed predominantly tree leaf-litter supplemented by senescent native Sorghum, and sandstone heaths which are dominated by Spinifex hummocks. There were no significant differences in CH4 EFs between early or late season fires, however there were substantial differences between vegetation classes. The woodland emitted 0.3% of fuel carbon as CH4 compared

  9. Wilderness and woodland ranchers in California: A total income case study of public grazing permits and their impacts on conservation

    NASA Astrophysics Data System (ADS)

    Oviedo Pro, J. L.; Huntsinger, L.; Campos, P.; Caparros, A.

    2009-04-01

    Mediterranean woodlands in California are managed as agro-silvo-pastoral systems producing a number of commercial products as well as a huge variety of environmental services, including private amenities for the landowner. In many parts of the woodlands, grazing on government owned (public) lands has traditionally had an important role in private ranching. In recent decades the risk of conversion to alternative uses (such as urban development or vineyards) has threatened these woodlands due to the increasing opportunity costs of capital. Understanding the economy of these woodlands and the potential effects of public grazing policies on the total income perceived by the landowner is crucial when considering strategies attempting to slow or stop land use change. However, traditional cash-flow analyses are lacking crucial information needed to understand all the elements that have an important role in the economic decisions that landowners make about their woodlands. For more than half a century, the use of public lands by private ranchers has been one of the most controversial debates in the American west. Wilderness conservationist groups have denounced grazing as destructive and argue for the removal of any kind of livestock. Ranchers have fought for their right to hold public grazing leases, arguing that they are crucial for the continuity of private ranching and consequently for the conservation of extensive rangeland habitat that otherwise could be converted to alternative uses. In this study, we apply the Agroforestry Accounting System (AAS) methodology to a California oak woodland case study to estimate the total private income generated in an accounting period. The presented case study is characterized by a household economy with self-employed labour and with part of the grazing dependent on public land leases. The AAS methodology extends traditional cash-flow analysis in order to estimate the total private income that would accurately explain the woodland

  10. The ancient Chinese notes on hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Zwahlen, François; Wang, Yanxin

    2011-08-01

    The ancient Chinese notes on hydrogeology are summarized and interpreted, along with records of some related matters, like groundwater exploration and utilization, karst springs, water circulation, water conservation and saline-land transformation, mine drainage, and environmental hydrogeology. The report focuses only on the earliest recorded notes, mostly up until the Han Dynasty (206 BC - AD 25). Besides the references cited, the discussion in this report is based mainly on archaeological material, the preserved written classic literature, and some assumptions and/or conclusions that have been handed down in legends to later ages. Although most material relates to ancient China, the lessons learned may have practical significance worldwide. Compared to other contemporary parts of the world, ancient China, without doubt, took the lead in the field of groundwater hydrology. The great achievements and experience of the Chinese ancestors should provide motivation and inspiration for hydrogeologists to carry out their scientific research and exploration passionately and actively.

  11. Palaeoparasitology - Human Parasites in Ancient Material.

    PubMed

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando

    2015-01-01

    Parasite finds in ancient material launched a new field of science: palaeoparasitology. Ever since the pioneering studies, parasites were identified in archaeological and palaeontological remains, some preserved for millions of years by fossilization. However, the palaeoparasitological record consists mainly of parasites found specifically in human archaeological material, preserved in ancient occupation sites, from prehistory until closer to 2015. The results include some helminth intestinal parasites still commonly found in 2015, such as Ascaris lumbricoides, Trichuris trichiura and hookworms, besides others such as Amoebidae and Giardia intestinalis, as well as viruses, bacteria, fungi and arthropods. These parasites as a whole provide important data on health, diet, climate and living conditions among ancient populations. This chapter describes the principal findings and their importance for knowledge on the origin and dispersal of infectious diseases. PMID:26597072

  12. Did the ancient egyptians discover Algol?

    NASA Astrophysics Data System (ADS)

    Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.

    2013-02-01

    Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).

  13. Twins in Ancient Greece: a synopsis.

    PubMed

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality. PMID:26135766

  14. Current therapies and the ancient East.

    PubMed

    MacHovec, F J

    1984-01-01

    Current therapies, their theories and techniques ebb and flow in popularity, but there is a residue of basic principles and practices which remain. Much of this useful residue has been present in ancient Eastern religions and philosophies. This article compares the content of several current theories of individual, group, and family therapies to seed ideas in ancient Taoist, Zen, Confucian, yoga, and Buddhist source materials. Gestalt, existential, psychoanalytic, transactional analysis, cognitive-behavioral and family therapy concepts are traced to these ancient precursors. Illustrative examples are presented such as satori (flash of insight), koans (insight riddles), parables, yanas (exercises), rituals, and written teachings. The article concludes with the Four Noble Truths and the 8-fold path of Buddhism, given 2500 years ago but very timely to contemporary problems of life adjustment and a useful guide to counseling and therapy. PMID:6711713

  15. The practice of dentistry in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-05-01

    This paper addresses the questions of whether a dental profession existed in ancient Egypt and if it did then considers whether these practitioners were operative dental surgeons as we know them today or whether they were pharmacists. Evidence from hieroglyphic inscriptions, from the dentitions of the surviving mummified and skeletal remains, and from ancient documents and artefacts are examined. The conclusion would suggest that operative dental treatment if it did exist at all was extremely limited. The dental treatment that appears to have been provided was mainly restricted to pharmaceutical preparations that were either applied to the gingival and mucosal tissues or used as mouthwashes, and these at best may only have provided some short term relief. It seems apparent that many ancient Egyptians suffered from widespread and painful dental disease, which the available treatments can have done relatively little to alleviate. PMID:19424250

  16. Ancient and Modern Hydrology: The Common Ground

    NASA Astrophysics Data System (ADS)

    Dagan, G.

    2005-12-01

    The archeological site of Tzipori (near Nazareth) in Israel contains a beautiful ancient mosaic that depicts the Nile in an allegoric manner. One of the striking details is a Nilometer, a graded pillar that was used in order to measure the Nile level. These data were used by ancient hydrologists in order to predict the Nile regime during the coming season. In turn, these assessments provided the Pharaoh administration with the basis for taxation of the peasant population. These historical findings render Hydrology as one of the oldest technical professions. Furthermore, a few features of ancient hydrology characterize the modern one also: it is a quantitative discipline, it has an applied nature, it makes prediction under uncertainty and it is intertwined with economical and social considerations. The presentation is focused on these analogies and mainly with the need to cope with uncertainty, with emphasis on the novel and distinctive features of stochastic modeling of subsurface flow and transport.

  17. The ancient lunar crust, Apollo 17 region

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1992-01-01

    The Apollo 17 highland collection is dominated by fragment-laden melt rocks, generally thought to represent impact melt from the Serenitatis basin-forming impact. Fortunately for our understanding of the lunar crust, the melt rocks contain unmelted clasts of preexisting rocks. Similar ancient rocks are also found in the regolith; most are probably clasts eroded out of melt rocks. The ancient rocks can be divided into groups by age, composition, and history. Oldest are plutonic igneous rocks, representing the magmatic components of the ancient crust. The younger are granulitic breccias, which are thoroughly recrystallized rocks of diverse parentages. The youngest are KREEPy basalts and felsites, products of relatively evolved magmas. Some characteristics of each group are given.

  18. Integrated Syntenic and Phylogenomic Analyses Reveal an Ancient Genome Duplication in Monocots[W

    PubMed Central

    Jiao, Yuannian; Li, Jingping; Tang, Haibao; Paterson, Andrew H.

    2014-01-01

    Unraveling widespread polyploidy events throughout plant evolution is a necessity for inferring the impacts of whole-genome duplication (WGD) on speciation, functional innovations, and to guide identification of true orthologs in divergent taxa. Here, we employed an integrated syntenic and phylogenomic analyses to reveal an ancient WGD that shaped the genomes of all commelinid monocots, including grasses, bromeliads, bananas (Musa acuminata), ginger, palms, and other plants of fundamental, agricultural, and/or horticultural interest. First, comprehensive phylogenomic analyses revealed 1421 putative gene families that retained ancient duplication shared by Musa (Zingiberales) and grass (Poales) genomes, indicating an ancient WGD in monocots. Intergenomic synteny blocks of Musa and Oryza were investigated, and 30 blocks were shown to be duplicated before Musa-Oryza divergence an estimated 120 to 150 million years ago. Synteny comparisons of four monocot (rice [Oryza sativa], sorghum [Sorghum bicolor], banana, and oil palm [Elaeis guineensis]) and two eudicot (grape [Vitis vinifera] and sacred lotus [Nelumbo nucifera]) genomes also support this additional WGD in monocots, herein called Tau (τ). Integrating synteny and phylogenomic comparisons achieves better resolution of ancient polyploidy events than either approach individually, a principle that is exemplified in the disambiguation of a WGD series of rho (ρ)-sigma (σ)-tau (τ) in the grass lineages that echoes the alpha (α)-beta (β)-gamma (γ) series previously revealed in the Arabidopsis thaliana lineage. PMID:25082857

  19. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots.

    PubMed

    Jiao, Yuannian; Li, Jingping; Tang, Haibao; Paterson, Andrew H

    2014-07-01

    Unraveling widespread polyploidy events throughout plant evolution is a necessity for inferring the impacts of whole-genome duplication (WGD) on speciation, functional innovations, and to guide identification of true orthologs in divergent taxa. Here, we employed an integrated syntenic and phylogenomic analyses to reveal an ancient WGD that shaped the genomes of all commelinid monocots, including grasses, bromeliads, bananas (Musa acuminata), ginger, palms, and other plants of fundamental, agricultural, and/or horticultural interest. First, comprehensive phylogenomic analyses revealed 1421 putative gene families that retained ancient duplication shared by Musa (Zingiberales) and grass (Poales) genomes, indicating an ancient WGD in monocots. Intergenomic synteny blocks of Musa and Oryza were investigated, and 30 blocks were shown to be duplicated before Musa-Oryza divergence an estimated 120 to 150 million years ago. Synteny comparisons of four monocot (rice [Oryza sativa], sorghum [Sorghum bicolor], banana, and oil palm [Elaeis guineensis]) and two eudicot (grape [Vitis vinifera] and sacred lotus [Nelumbo nucifera]) genomes also support this additional WGD in monocots, herein called Tau (τ). Integrating synteny and phylogenomic comparisons achieves better resolution of ancient polyploidy events than either approach individually, a principle that is exemplified in the disambiguation of a WGD series of rho (ρ)-sigma (σ)-tau (τ) in the grass lineages that echoes the alpha (α)-beta (β)-gamma (γ) series previously revealed in the Arabidopsis thaliana lineage. PMID:25082857

  20. Phylogeographical Analysis of mtDNA Data Indicates Postglacial Expansion from Multiple Glacial Refugia in Woodland Caribou (Rangifer tarandus caribou)

    PubMed Central

    Klütsch, Cornelya F. C.; Manseau, Micheline; Wilson, Paul J.

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  1. Utilizing national agriculture imagery program data to estimate tree cover and biomass of pinyon and juniper woodlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the encroachment of pinyon (Pinus ssp.) and juniper (Juniperus ssp.) (P-J) woodlands into sagebrush steppe communities, there is an increasing interest in rapid, accurate, and inexpensive quantification methods to estimate tree canopy cover and aboveground biomass over large landscapes. The o...

  2. Short-term effects of tree removal on infiltration, runoff, and erosion in woodland-encroached sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land owners and managers across the western United States are increasingly searching for methods to evaluate and mitigate the effects of woodland encroachment on sagebrush steppe ecosystems. We used small-plot rainfall simulations (0.5 m2) and measures of vegetation, ground cover, and soils to inve...

  3. Dogwood Borer (Lepidoptera: Sesiidae) Abundance and Seasonal Flight Activity in Apple Orchards, Urban Landscapes and Woodlands in Five Eastern States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative abundance and seasonal flight activity of dogwood borer, Synanthedon scitula Harris (Lepidoptera: Sesiidae) was measured using weekly records from traps baited with its sex pheromone and deployed in apple orchards, urban landscapes and native woodland sites in New York, West Virginia, V...

  4. Effigy mound sites as cultural landscapes: A geophysical spatial analysis of two Late Woodland sites in southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Kaufmann, Kira E.

    This dissertation is a spatial analysis of a class of sacred sites known as Effigy Mounds during the Late Woodland period in southeast Wisconsin, circa A.D. 700--1100. Effigy Mounds are earthworks in the shape of animals, conical, linear, or geometric shapes. The research is focused on the upper Rock River Drainage in southern Wisconsin, a region where Effigy Mounds are very common. Although there are many theories concerning the meanings of Effigy Mounds, there is no cohesive description of Effigy Mounds as landscape elements and their function in the use of space by Late Woodland people. This research connects cultural and cognitive aspects of Native American cosmology with physical manifestations on the landscape. Effigy Mounds are examined from ideological and physical perspectives that are not mutually exclusive. Effigy Mounds are viewed as signifiers with multiple levels of function and meaning including sacred space, territorial markers, and mechanisms of social control and cohesion. Investigation at two Late Woodland Effigy Mound sites, Indian Mounds County Park in Jefferson County and Nitschke Mounds County Park in Dodge County, shows that landscape utilization varied significantly within and among Effigy Mound sites. An alternative model to understand Late Woodland Effigy Mound sites as ritual landscapes explores these features, their distribution across space, and the connection to internal site structures by synthesizing multidisciplinary data from historical ethnographic accounts, previous archaeological surveys, and new geophysical data. This multidisciplinary approach provides an example applicable to other landscape studies.

  5. Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia

    NASA Astrophysics Data System (ADS)

    Eldridge, David J.

    1999-05-01

    The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens ( Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the

  6. Records of solar eclipse observations in ancient China

    NASA Astrophysics Data System (ADS)

    Han, Yanben; Qiao, Qiyuan

    2009-11-01

    Like ancient people at other places of the world, the ancient Chinese lived in awe of the Sun. As they felt solar eclipses extremely significant events, they closely observed the occurrence of solar eclipse. Ancient astronomers further realized very early that solar eclipses were one of the important astronomical phenomena to revise and improve the ancient calendar. Interestingly, ancient emperors regarded solar eclipses as warnings from heaven that might affect the stability of their throne. Consequently, observing and recording solar eclipses became official, which dated far back to ancient China when numerous relevant descriptions were recorded in historical books. These records contribute substantially to China as an ancient civilization, as well as to the research of the long-term variation of the rotation rate of the Earth during >2000 years before the 17th century. This paper briefly reviews the perception, observations and recording of solar eclipses by ancient Chinese astronomers.

  7. Rosa damascena as holy ancient herb with novel applications.

    PubMed

    Mahboubi, Mohaddese

    2016-01-01

    Rosa damascena as an ornamental plant is commonly known as "Gole Mohammadi" in Iran. Iranian people have been called this plant, the flower of Prophet "Mohammad". R. damascena is traditionally used for treatment of abdominal and chest pains, strengthening the heart, menstrual bleeding, digestive problems and constipation. This paper reviews the ethnopharmacology, phytochemistry and pharmaceutical investigations on R. damascena. All relevant databases and local books on ethnopharmacology of R. damascena were probed without limitation up to 31st March 2015 and the results of these studies were collected and reviewed. R. damascena has an important position in Iranian traditional medicine. It is economically a valuable plant with therapeutic applications in modern medicine. The antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-diabetic and anti-depressant properties of R. damascena have been confirmed. Citronellol and geraniol as the main components of R. damascena essential oil are responsible for pharmacological activities. Overall, R. damascena as holy ancient plant with modern pharmacological investigations should be more investigated as traditional uses in large preclinical and clinical studies. PMID:26870673

  8. Rosa damascena as holy ancient herb with novel applications

    PubMed Central

    Mahboubi, Mohaddese

    2015-01-01

    Rosa damascena as an ornamental plant is commonly known as “Gole Mohammadi” in Iran. Iranian people have been called this plant, the flower of Prophet “Mohammad”. R. damascena is traditionally used for treatment of abdominal and chest pains, strengthening the heart, menstrual bleeding, digestive problems and constipation. This paper reviews the ethnopharmacology, phytochemistry and pharmaceutical investigations on R. damascena. All relevant databases and local books on ethnopharmacology of R. damascena were probed without limitation up to 31st March 2015 and the results of these studies were collected and reviewed. R. damascena has an important position in Iranian traditional medicine. It is economically a valuable plant with therapeutic applications in modern medicine. The antimicrobial, antioxidant, analgesic, anti-inflammatory, anti-diabetic and anti-depressant properties of R. damascena have been confirmed. Citronellol and geraniol as the main components of R. damascena essential oil are responsible for pharmacological activities. Overall, R. damascena as holy ancient plant with modern pharmacological investigations should be more investigated as traditional uses in large preclinical and clinical studies. PMID:26870673

  9. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    PubMed

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. PMID:26646258

  10. Animal foraging as a mechanism for sediment movement and soil nutrient development: Evidence from the semi-arid Australian woodlands and the Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Eldridge, David J.; Koen, Terry B.; Killgore, Aaron; Huang, Niki; Whitford, Walter G.

    2012-07-01

    An emerging area of interest in geomorphology over the past two decades has been the effects of biota on ecosystem processes. We examined the roles of a range of vertebrates on soil disturbance in two markedly different environments, the semi-arid woodland of eastern Australia and a Chihuahuan Desert grassland-shrubland in the south-western United States. Foraging pits of soil-disturbing vertebrates varied markedly from small scratchings of heteromyid (mainly Dipodomys spp.) rodents (1.8 × 10- 4 m3) to deep (1.0 × 10- 2 m3) excavations of the burrowing bettong (Bettongia leuseur) and greater bilby (Macrotis lagotis). Vertebrates moved substantial volumes of soil in both environments, and activity was highly temporally and spatially variable. At large spatial scales, soil disturbance by echidnas (Tachyglossus aculeatus) and Gould's sand goannas (Varanus gouldii) was substantially greater in communities dominated by shrubs, and where domestic livestock had been excluded. Heteromyid rodents tended to excavate more foraging pits in coarse-textured vegetation communities (both grasslands and shrublands). In both environments, foraging was concentrated close to perennial plants such as grass tussocks and tree canopies rather than in the interspaces. Foraging pits of Chihuahuan desert animals tended to be higher in labile carbon and support greater levels of infiltration, though this was plant community-dependent. Overall our results indicate that animal foraging is an important geomorphic mechanism capable of mobilizing substantial volumes of soil in arid and semi-arid environments and with potential effects on soil function.

  11. Hydrology in a California oak woodland watershed: a 17-year study

    NASA Astrophysics Data System (ADS)

    Lewis, D.; Singer, M. J.; Dahlgren, R. A.; Tate, K. W.

    2000-12-01

    The western foothills of the Sierra-Nevada are some of the most rapidly developing lands in California. Use of these lands includes vineyards, retirement and family home construction, livestock grazing, and fuelwood harvesting. These many uses require varying levels of woodland conversion and oak tree removal that alters the nutrient cycling, wildlife habitat and hydrology of these watersheds. There is little long-term hydrologic data to help determine the impact of these land use changes on water yield or quality. To fill this gap, precipitation and stream flow data were collected for 17 years in a 103 ha California oak woodland watershed, from which oaks were removed from 14% of the land area. These data were combined with measured potential evapotranspiration (PET) to develop a simple water balance and to investigate changes in water yield from oak removal. Hydrologic data included continuous stage height records from a three-foot Parshall flume and a one-foot 90° V-notch weir. Rainfall measurements were made using a tipping bucket rain gage. Average annual rainfall, runoff, and estimated evapotranspiration (ET) for the 17 years were 708, 344, and 364 mm, respectively. In this Mediterranean climate, ET is less dependent upon rainfall than is runoff because the majority of precipitation coincides with the period of lowest PET. Mean annual baseflow depth was 24 mm ranging between 15 and 40 mm. Depth of baseflow was more strongly associated with the annual rainfall than with rainfall from previous years, indicating that changes in soil moisture storage approaches zero on an annual time-scale. Effective depth for watershed soils was calculated to be 217 mm. Potential soil water storage between bedrock and the top of the clay-rich subsoil (Bt Horizon) was 52 mm. This quantity accounts for summer ET and stream baseflow. A weakly significant difference between the pre- and post-harvest mean monthly effective rainfall was observed, indicating that oak removal, from

  12. High spatial resolution remote sensing imagery improves GPP predictions in disturbed, semi-arid woodlands

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Eitel, J.; Vierling, L. A.; Schulthess, U.; Litvak, M. E.

    2012-12-01

    Climate across the globe is changing and consequently the productivity of terrestrial vegetation is changing with it. Gross primary productivity (GPP) is an integral part of the carbon cycle, yet challenging to measure everywhere, all the time. Efforts to estimate GPP in the context of climate change are becoming continually more salient of the need for models sensitive to the heterogeneous nature of drought and pest induced disturbance. Given the increased availability of high spatial resolution remotely sensed imagery, their use in ecosystem scale GPP estimation is becoming increasingly viable. We used a simple linear model with inputs derived from RapidEye time series data (5 meter spatial resolution) as compared to MODIS inputs (250 meter spatial resolution) to estimate GPP in intact and girdled PJ woodland to simulate drought and pest induced disturbance. An area equal to the MODIS pixels measured was aggregated using RapidEye data centered on the flux towers for comparison purposes. We generated four model runs, two using only MODIS or RapidEye spectral vegetation indices (VIs) and two using MODIS and RapidEye VIs combined at both the control and disturbed tower site. Our results suggest that for undisturbed regions, MODIS derived VIs perform better than the higher spatial resolution RapidEye VIs when a moisture sensitive index is incorporated into the model (RMSE of 17.51for MODIS vs. 22.71 for RapidEye). Modeling GPP in disturbed regions however benefits from the inclusion of high spatial resolution data (RMSE of 14.83 for MODIS vs. 14.70 for RapidEye). This discrepancy may have to do with the disparate scale of a MODIS pixel and the size of the tower fetch. Our results suggest that the best source of VI's for the modeling GPP in semi-arid woodlands depends on the level of disturbance in the landscape. Given that the rate and extent of drought and insect induced mortality events in terrestrial forests are projected to increase with our changing climate

  13. Growing season boundary layer climate and surface exchanges in a subarctic lichen woodland

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, David R.; Moore, Kathleen E.

    1994-01-01

    Between June and August 1990, observations were made at two surface micrometeorological towers near Schefferville Quebec (54 deg 52 min N, 66 deg 40.5 min W), one in a fen and one in the subarctic lichen woodland, and at four surface climatological stations. Data from these surface stations were supplemented by regular radiosonde launches. Supporting measurements of radiative components and soil temperatures allowed heat and moisture balances to be obtained at two sites. The overall surface meteorological experiment design and results of micrometeorological observations made on a 30-m tower in the lichen woodland are presented here. Seasonal variation in the heat and water vapor transport characteristics illustrate the marked effect of the late summer climatological shift in air mass type. During the first half of the summer, average valley sidewalls only 100 m high are sufficient to channel winds along the valley in the entire convective boundary layer. Channeling effects at the surface, known for some time at the long-term climate station in Schefferville, are observed both at ridge top and in the valley, possibly the response of the flow to the NW-SE orientation of valleys in the region. Diurnal surface temperature amplitude at ridge top (approximately equal to 10 C) was found to be half that observed in the valley. Relatively large differences in precipitation among these stations and the climatological station at Schefferville airport were observed and attributed to the local topography. Eddy correlation observations of the heat, moisture and momentum transports were obtained from a 30-m tower above a sparse (approximately equal to 616 stems/ha) black spruce lichen woodland. Properties of the turbulent surface boundary layer agree well with previous wind tunnel studies over idealized rough surfaces. Daytime Bowen ratios of 2.5-3 are larger than those reported in previous studies. Surface layer flux data quality was assessed by looking at the surface layer heat

  14. Montsechia, an ancient aquatic angiosperm.

    PubMed

    Gomez, Bernard; Daviero-Gomez, Véronique; Coiffard, Clément; Martín-Closas, Carles; Dilcher, David L

    2015-09-01

    The early diversification of angiosperms in diverse ecological niches is poorly understood. Some have proposed an origin in a darkened forest habitat and others an open aquatic or near aquatic habitat. The research presented here centers on Montsechia vidalii, first recovered from lithographic limestone deposits in the Pyrenees of Spain more than 100 y ago. This fossil material has been poorly understood and misinterpreted in the past. Now, based upon the study of more than 1,000 carefully prepared specimens, a detailed analysis of Montsechia is presented. The morphology and anatomy of the plant, including aspects of its reproduction, suggest that Montsechia is sister to Ceratophyllum (whenever cladistic analyses are made with or without a backbone). Montsechia was an aquatic angiosperm living and reproducing below the surface of the water, similar to Ceratophyllum. Montsechia is Barremian in age, raising questions about the very early divergence of the Ceratophyllum clade compared with its position as sister to eudicots in many cladistic analyses. Lower Cretaceous aquatic angiosperms, such as Archaefructus and Montsechia, open the possibility that aquatic plants were locally common at a very early stage of angiosperm evolution and that aquatic habitats may have played a major role in the diversification of some early angiosperm lineages. PMID:26283347

  15. Montsechia, an ancient aquatic angiosperm

    PubMed Central

    Gomez, Bernard; Daviero-Gomez, Véronique; Coiffard, Clément; Martín-Closas, Carles; Dilcher, David L.

    2015-01-01

    The early diversification of angiosperms in diverse ecological niches is poorly understood. Some have proposed an origin in a darkened forest habitat and others an open aquatic or near aquatic habitat. The research presented here centers on Montsechia vidalii, first recovered from lithographic limestone deposits in the Pyrenees of Spain more than 100 y ago. This fossil material has been poorly understood and misinterpreted in the past. Now, based upon the study of more than 1,000 carefully prepared specimens, a detailed analysis of Montsechia is presented. The morphology and anatomy of the plant, including aspects of its reproduction, suggest that Montsechia is sister to Ceratophyllum (whenever cladistic analyses are made with or without a backbone). Montsechia was an aquatic angiosperm living and reproducing below the surface of the water, similar to Ceratophyllum. Montsechia is Barremian in age, raising questions about the very early divergence of the Ceratophyllum clade compared with its position as sister to eudicots in many cladistic analyses. Lower Cretaceous aquatic angiosperms, such as Archaefructus and Montsechia, open the possibility that aquatic plants were locally common at a very early stage of angiosperm evolution and that aquatic habitats may have played a major role in the diversification of some early angiosperm lineages. PMID:26283347

  16. Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Kelley, David H.; Milone, Eugene F.

    Exploring Ancient Skies uses modern science to examine ancient astronomy throughout the World, that is, to use the methods of archaeology and insights of modern astronomy explore how astronomy was practiced before the invention of the telescope. It thus reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World, particularly Mesoamerica, putting the ancient astronomical materials into their archaeological and cultural contexts.

  17. Something old, something new: auxin and strigolactone interact in the ancient mycorrhizal symbiosis.

    PubMed

    Foo, Eloise

    2013-04-01

    Arbuscular mycorrhizal symbiosis, formed between more than 80% of land plants and fungi from the phylum Glomeromycota, is an ancient association that is believed to have evolved as plants moved onto land more than 400 mya. Similarly ancient, the plant hormones auxin and strigolactone are thought to have been present in the plant lineage since before the divergence of the bryophytes in the case of auxin and before the colonisation of land in the case of strigolactones. The discovery of auxin in the 1930s predates the discovery of strigolactones as a plant hormone in 2008 by over 70 y. Recent studies in pea suggest that these two signals may interact to regulate mycorrhizal symbiosis. Furthermore, the first quantitative studies are presented that show that low auxin content of the root is correlated with low strigolactone production, an interaction that has implications for how these plant hormones regulate several developmental programs including shoot branching, secondary growth and root development. With recent advances in our understanding of auxin and strigolactone biosynthesis, together with the discovery of the fungal signals that activate the plant host, the stage is set for real breakthroughs in our understanding of the interactions between plant and fungal signals in mycorrhizal symbiosis. PMID:23333973

  18. Engaging with Peri-Urban Woodlands in England: The Contribution to People’s Health and Well-Being and Implications for Future Management

    PubMed Central

    O’Brien, Liz; Morris, Jake; Stewart, Amy

    2014-01-01

    In this paper we engage with debates concerning people and their contact with the natural environment as part of everyday life drawing on Irwin’s ideas of co-construction and Gibson’s theory of affordances. We focus on peri-urban woodlands in England as important places where people can interact with nature for health and well-being. Qualitative data were collected in situ via walks in the woods, focus group discussions and photo elicitation, with a sample of 49 people. These methods provide rich data on the wide range of meanings associated with woodlands that can have a perceived impact on people’s health and well-being. The findings link to contemporary debates about health, well-being and ecosystem services. We explore the inter-play between attributes of the physical environment and the range of facilities provided to enable access, social interactions and the benefits people attribute to their woodland experiences. We conclude that peri-urban woodlands can clearly contribute to self-reported health and well-being in multiple ways, and that organized activities can be important for those who face barriers to accessing woodlands. A strong message emerging from the research is the opportunity afforded by woodlands for social connections with others, as well as the provision of a range of sensory benefits and opportunities to observe and enjoy seasonal change in woodlands. Mental restoration via connection with nature also emerged as important, confirming previous research. PMID:24927035

  19. Myths and Gods of Ancient Mexico.

    ERIC Educational Resources Information Center

    Rascon, Vincent P.

    Intended to help Americans of Mexican descent understand their rich cultural heritage, this portfolio contains 12 full-color drawings of the myths and gods of the Olmecs and Toltecs of Ancient Mexico. These original drawings are by Vincent P. Rascon. Information captions in English and Spanish are given for each drawing which is printed on heavy…

  20. Planetary science: Traces of ancient lunar water

    NASA Astrophysics Data System (ADS)

    Hauri, Erik H.

    2013-03-01

    The presence of water in lunar volcanic rocks has been attributed to delivery after the Moon formed. Water detected in rocks from the ancient lunar highlands suggests that the Moon already contained water early in its history, and poses more challenges for the giant impact theory of Moon formation.

  1. Microscopical Examination of Ancient Silver Coins

    SciTech Connect

    Pistofidis, N.; Vourlias, G.; Pavlidou, El.; Stergioudis, G.; Polychroniadis, E. K.; Dilo, T.; Prifti, I.; Bilani, O.; Civici, N.; Stamati, F.; Gjongecaj, Sh.

    2007-04-23

    The microstructure of three silver coins of the IIId century B.C. from the Illyrian king Monounios, the ancient Greek city of Dyrrachion and of Korkyra was studied with XRF and microscopy. From this investigation it turned out that these coins have different chemical composition and microstructure that imply different minting method.

  2. Defining Astrology in Ancient and Classical History

    NASA Astrophysics Data System (ADS)

    Campion, Nicholas

    2015-05-01

    Astrology in the ancient and classical worlds can be partly defined by its role, and partly by the way in which scholars spoke about it. The problem is complicated by the fact that the word is Greek - it has no Babylonian or Egyptian cognates - and even in Greece it was interchangeable with its cousin, 'astronomy'. Yet if we are to understand the role of the sky, stars and planets in culture, debates about the nature of ancient astrology, by both classical and modern scholars, must be taken into account. This talk will consider modern scholars' typologies of ancient astrology, together with ancient debates from Cicero in the 1st century BC, to Plotinus (204/5-270 AD) and Isidore of Seville (c. 560 - 4 April 636). It will consider the implications for our understanding of astronomy's role in culture, and conclude that in the classical period astrology may be best understood through its diversity and allegiance to competing philosophies, and that its functions were therefore similarly varied.

  3. Technologies Old and New: Teaching Ancient Navigation.

    ERIC Educational Resources Information Center

    Spalding, Simon

    1995-01-01

    One educator presents maritime history to students using technologies available to ancient seafarers. Techniques include dead reckoning, the sandglass, the magnetic compass, celestial navigation, and various navigation techniques of precontact Polynesia that depended upon oral transmission of knowledge. The paper notes differences between…

  4. Ancient DNA analysis of dental calculus.

    PubMed

    Weyrich, Laura S; Dobney, Keith; Cooper, Alan

    2015-02-01

    Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine. PMID:25476244

  5. Modern Views of Ancient Solar Observatories

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Cornucopia, G. B.

    2004-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. The event emphasizes the study of the Sun and its effects on the Earth and the rest of the Solar System. Sun-Earth Day 2004 will emphasize the June 8th Transit of Venus as a theme. For 2005 the highlight will be the study of the Sun by ancient cultures and how that relates to contemporary solar knowledge. There are many examples of ancient solar observatories around the world, but some of the best are found in National Parks. SECEF has been working with Chaco Culture National Historical Park in New Mexico to do a webcast showing knowledge about the Sun by the Chacoan people that is evident in the park. The Sun Dagger and other pictographs as well as Chaco building alignments indicate the influence of the Sun in the lives of this people. The cooperative planning for this event by NASA and the National Park Service (NPS) will be discussed. Other events emphasizing ancient observatories in other locations are also planned for the future. The partnership between SECEF and NPS is not limited to ancient observatories, however. The influence of the Sun on our daily lives is an appropriate topic for many parks and the possibilities for solar exhibits, daytime astronomy sessions, scientist lectures, etc. will be discussed as well.

  6. Ancient Pyramids Help Students Learn Math Concepts

    ERIC Educational Resources Information Center

    Smith, Courtney D.; Stump, Amanda M.; Lazaros, Edward J.

    2010-01-01

    This article presents an activity that allows students to use mathematics and critical-thinking skills to emulate processes used by the ancient Egyptians to prepare the site for the Pyramids of Giza. To accomplish this, they use three different methods. First, they create a square using only simple technological tools that were available to the…

  7. Isolation of gelatin from ancient bones.

    PubMed

    SINEX, F M; FARIS, B

    1959-04-10

    The isolation and characterization of gelatin from 12,000-year-old deer antlers is described. Use of gelatin from ancient bones for carbon-14 dating may improve the accuracy of the dating procedure because gelatin is not likely to be contaminated by extraneous carbon. PMID:13646631

  8. LD Students and the Ancient Mariner.

    ERIC Educational Resources Information Center

    Cohen, Barbara L.

    1988-01-01

    Synectics, the making of analogies, was used with learning disabled high school seniors to provide them with a creative process that aids in developing a deeper understanding of literature. After studying Coleridge's "Rime of the Ancient Mariner," the students completed a six-step process and produced a short writing assignment. (VW)

  9. Unlocking the Mysteries of Ancient Egypt.

    ERIC Educational Resources Information Center

    Riechers, Maggie

    1995-01-01

    Describes the work of Egyptologist William Murnane who is recording the ritual scenes and inscriptions of a great columned hall from the days of the pharaohs. The 134 columns, covered with divine imagery and hieroglyphic inscriptions represent an unpublished religious text. Briefly discusses ancient Egyptian culture. Includes several photographs…

  10. Communication Arts in the Ancient World.

    ERIC Educational Resources Information Center

    Havelock, Eric A., Ed.; Hershbell, Jackson P., Ed.

    Intended for both classicists and nonclassicists, this volume explores the beginnings of literacy in ancient Greece and Rome and examines the effects of written communication on these cultures. The nine articles, written by classical scholars and educators in the field of communication, discuss the following: the superiority of the alphabet over…

  11. Women of Ancient Greece: Participating in Sport?

    ERIC Educational Resources Information Center

    Mills, Brett D.

    Based on evidence obtained from Greek literature and artifacts, this paper examines the extent to which women in ancient Greece participated in physical activity, sports, and games. Homer's "Odyssey" describes women playing ball and driving chariots; vases dating back to 700-675 B.C. portray women driving light chariots in a procession; a girl…

  12. The Study of Women in Ancient Society.

    ERIC Educational Resources Information Center

    Moscovich, M. James

    1982-01-01

    Presents ideas for teaching about the roles of women in ancient Greek and Roman societies for undergraduate history and sociology classes. The discussion covers the roots of misogyny in Western culture, parallels between mythologies and sociocultural patterns, and the legal status of women in antiquity. (AM)

  13. The Challenges of Qualitatively Coding Ancient Texts

    ERIC Educational Resources Information Center

    Slingerland, Edward; Chudek, Maciej

    2012-01-01

    We respond to several important and valid concerns about our study ("The Prevalence of Folk Dualism in Early China," "Cognitive Science" 35: 997-1007) by Klein and Klein, defending our interpretation of our data. We also argue that, despite the undeniable challenges involved in qualitatively coding texts from ancient cultures, the standard tools…

  14. Dental health and disease in ancient Egypt.

    PubMed

    Forshaw, R J

    2009-04-25

    In ancient Egypt the exceptionally dry climate together with the unique burial customs has resulted in the survival of large numbers of well-preserved skeletal and mummified remains. Examinations of these remains together with an analysis of the surviving documentary, archaeological and ethnographic evidence has enabled a detailed picture of the dental health of these ancient people to be revealed, perhaps more so than for any other civilisation in antiquity. In this, the first of two articles, the dental pathological conditions that afflicted the ancient Egyptians is considered. The commonest finding is that of tooth wear, which was often so excessive that it resulted in pulpal exposure. Multiple abscesses were frequently seen, but caries was not a significant problem. Overall the findings indicate that the various pathological conditions and non-pathological abnormalities of teeth evident in dentitions in the twenty-first century were also manifest in ancient Egypt, although the incidences of these conditions varies considerably between the civilisations. PMID:19396207

  15. Genomic correlates of atherosclerosis in ancient humans.

    PubMed

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world. PMID:25667090

  16. Ancient whole grain gluten-free flatbreads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA food guide recommends that at least ½ of all the grains eaten should be whole grains. The FDA allows food Health Claim labels for food containing 51% whole gains and 11 g of dietary fiber. This is the only report demonstrating innovative ancient whole grain gluten-free (no yeast or chemical...

  17. The Roots of Science in Ancient China.

    ERIC Educational Resources Information Center

    Fisher, Arthur

    1982-01-01

    A 45-year-old research project (culminating in the multivolume "Science and Civilization in China") is examining major scientific innovations in ancient China and attempting to explain why, although the Chinese gained a technological edge in the past, they did not make the forward leap into modern science. (JN)

  18. Watermarking ancient documents based on wavelet packets

    NASA Astrophysics Data System (ADS)

    Maatouk, Med Neji; Jedidi, Ola; Essoukri Ben Amara, Najoua

    2009-01-01

    The ancient documents present an important part of our individual and collective memory. In addition to their preservation, the digitization of these documents may offer users a great number of services like remote look-up and browsing rare documents. However, the documents, digitally formed, are likely to be modified or pirated. Therefore, we need to develop techniques of protecting images stemming from ancient documents. Watermarking figures to be one of the promising solutions. Nevertheless, the performance of watermarking procedure depends on being neither too robust nor too invisible. Thus, choosing the insertion field or mode as well as the carrier points of the signature is decisive. We propose in this work a method of watermarking images stemming from ancient documents based on wavelet packet decomposition. The insertion is carried out into the maximum amplitude ratio being in the best base of decomposition, which is determined beforehand according to a criterion on entropy. This work is part of a project of digitizing ancient documents in cooperation with the National Library of Tunis (BNT).

  19. Tapping Ancient Roots: Plaited Paper Baskets

    ERIC Educational Resources Information Center

    Patrick, Jane

    2011-01-01

    With ancient roots, basket making has been practiced since the earliest civilizations, and according to textile experts, probably pre-dates pottery. This is partly conjecture since few baskets remain. It is through evidence found in clay impressions that the earliest baskets reveal themselves. Basically, basketry construction is like flat weaving.…

  20. Precursors of Vocational Psychology in Ancient Civilizations.

    ERIC Educational Resources Information Center

    Dumont, Frank; Carson, Andrew D.

    1995-01-01

    Examines philosophical theories produced by two ancient civilizations (Eastern Mediterranean and Chinese) for applications to an applied psychology of work. Includes analysis of Egyptians, Semites, and Greeks, with a special emphasis on Plato. Suggests that many basic elements of vocational psychology were present during the first millennium B.C.…