Science.gov

Sample records for plants solanum tuberosum

  1. Potato (Solanum tuberosum L.).

    PubMed

    Chetty, Venkateswari J; Narváez-Vásquez, Javier; Orozco-Cárdenas, Martha L

    2015-01-01

    Agrobacterium-mediated transformation is the most common method for the incorporation of foreign genes into the genome of potato as well as many other species in the Solanaceae family. This chapter describes protocols for the genetic transformation of three species of potato: Solanum tuberosum subsp. tuberosum (Desiréé), S. tuberosum subsp. andigenum (Blue potato), and S. tuberosum subsp. andigena using internodal segments as explants. PMID:25416251

  2. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana

    PubMed Central

    Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.

    2011-01-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature. PMID:21511909

  3. Hybridization barriers between diploid Solanum tuberosum and wild Solanum raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild potato germplasm represents a unique, diverse and accessible resource for disease and pest resistance, along with useful agronomic traits that may be introgressed into the cultivated potato (Solanum tuberosum L.). Hybridization of diploid wild Solanum species with haploids (2x) of cultivated po...

  4. Hyperspectral remote sensing for advanced detection of early blight (Alternaria solani) disease in potato (Solanum tuberosum) plants

    NASA Astrophysics Data System (ADS)

    Atherton, Daniel

    Early detection of disease and insect infestation within crops and precise application of pesticides can help reduce potential production losses, reduce environmental risk, and reduce the cost of farming. The goal of this study was the advanced detection of early blight (Alternaria solani) in potato (Solanum tuberosum) plants using hyperspectral remote sensing data captured with a handheld spectroradiometer. Hyperspectral reflectance spectra were captured 10 times over five weeks from plants grown to the vegetative and tuber bulking growth stages. The spectra were analyzed using principal component analysis (PCA), spectral change (ratio) analysis, partial least squares (PLS), cluster analysis, and vegetative indices. PCA successfully distinguished more heavily diseased plants from healthy and minimally diseased plants using two principal components. Spectral change (ratio) analysis provided wavelengths (490-510, 640, 665-670, 690, 740-750, and 935 nm) most sensitive to early blight infection followed by ANOVA results indicating a highly significant difference (p < 0.0001) between disease rating group means. In the majority of the experiments, comparisons of diseased plants with healthy plants using Fisher's LSD revealed more heavily diseased plants were significantly different from healthy plants. PLS analysis demonstrated the feasibility of detecting early blight infected plants, finding four optimal factors for raw spectra with the predictor variation explained ranging from 93.4% to 94.6% and the response variation explained ranging from 42.7% to 64.7%. Cluster analysis successfully distinguished healthy plants from all diseased plants except for the most mildly diseased plants, showing clustering analysis was an effective method for detection of early blight. Analysis of the reflectance spectra using the simple ratio (SR) and the normalized difference vegetative index (NDVI) was effective at differentiating all diseased plants from healthy plants, except for the

  5. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants.

    PubMed

    Cardi, T; D'Ambrosio, E; Consoli, D; Puite, K J; Ramulu, K S

    1993-10-01

    Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested. PMID:24190212

  6. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.

    PubMed

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  7. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants

    PubMed Central

    Szalonek, Michal; Sierpien, Barbara; Rymaszewski, Wojciech; Gieczewska, Katarzyna; Garstka, Maciej; Lichocka, Malgorzata; Sass, Laszlo; Paul, Kenny; Vass, Imre; Vankova, Radomira; Dobrev, Peter; Szczesny, Pawel; Marczewski, Waldemar; Krusiewicz, Dominika; Strzelczyk-Zyta, Danuta; Hennig, Jacek; Konopka-Postupolska, Dorota

    2015-01-01

    Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress. PMID:26172952

  8. Comparative genome analysis of Solanum lycopersicum and Solanum tuberosum

    PubMed Central

    Lall, Rohit; Thomas, George; Singh, Satendra; Singh, Archana; Wadhwa, Gulshan

    2013-01-01

    Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato. PMID:24307771

  9. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions

    PubMed Central

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon’s response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  10. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    PubMed

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  11. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    EPA Science Inventory

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  12. Climate Change: Precipitation and Plant Nutrition Interactions on Potato (Solanum tuberosum L.) Yield in North-Eastern Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    formation, yield quantity of potato depended decisively on the time of year when they were experienced and the period for which they lasted. Droughts in the winter or summer half-year had much the same effect on yield. Precipitation deficiency in the winter could not be counterbalanced by average rainfall during the vegetation period, and its effect on the yield was similar to that of summer drought. It was also concluded that economic yields could not be achieved with poor N, P, K and Mg nutrient supply even with a normal quantity and distribution of rainfall. Yield was influenced by rainfall to a greater extent (Table 4) than by 0-150 kg ha-1 nitrogen and NP, NK, NPK, NPKMg combinations. Drought and over rainfall negative effects were decreased by increasing N- doses with combinations of potassium, phosphorous and magnesium from 13 to 32% (Table 5). And with the help of regression analysis it was found the polynomial correlation between rainfall and yield could be observed in the case of N: Y'=380.18-2.95x+0.0056x2, n=72, R2=0.95, NP: Y'=387.19-3.04x+0.0059x2, n=72, R2=0.96, NK: Y'=381.65-2.95x+0.0056x2, n=72, R2=0.95, NPK: Y'=390.87-3.07x+0.0060x2, n=72, R2=0.96 and NPKMg: Y'=390.45-3.06x+0.0059x2, n=72, R2=0.96 nutrition systems. The optimum yields ranges between 17-20 t ha-1 at 280-330 mm of rainfall. Acknowledgement: This study were supported by Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS), Budapest. References Johnston, A. E., 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139, 8. Kádár, I., Márton, L., Horváth, S., 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49, 291-306. Kádár, I., Szemes, I., 1994. A nyírlugosi tartamkísérlet 30 éve. MTA TAKI, Budapest, 248 p. Láng, I., 1973. Műtrágyázási tartamkísérletek homoktalajon. MTA Doktori értekezés. MTA TMB. Budapest

  13. Phosphorous uptake by potato (Solanum tuberosum L.) from biochar amended with anaerobic digested dairy manure effluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorption of plant nutrients by biochar from dairy storage lagoons and use as a supplemental fertilizer off site is a beneficial strategy to reduce nutrient contamination around dairies and supply nutrients to potato (Solanum tuberosum L.) and other crops. This research evaluated potato growth respo...

  14. Repression of Acetolactate Synthase Activity through Antisense Inhibition (Molecular and Biochemical Analysis of Transgenic Potato (Solanum tuberosum L. cv Desiree) Plants).

    PubMed Central

    Hofgen, R.; Laber, B.; Schuttke, I.; Klonus, A. K.; Streber, W.; Pohlenz, H. D.

    1995-01-01

    Acetolactate synthase (ALS), the first enzyme in the biosynthetic pathway of leucine, valine, and isoleucine, is the biochemical target of different herbicides. To investigate the effects of repression of ALS activity through antisense gene expression we cloned an ALS gene from potato (Solanum tuberosum L. cv Desiree), constructed a chimeric antisense gene under control of the cauliflower mosaic virus 35S promoter, and created transgenic potato plants through Agrobacterium tumefaciens-mediated gene transfer. Two regenerants revealed severe growth retardation and strong phenotypical effects resembling those caused by ALS-inhibiting herbicides. Antisense gene expression decreased the steady-state level of ALS mRNA in these plants and induced a corresponding decrease in ALS activity of up to 85%. This reduction was sufficient to generate plants almost inviable without amino acid supplementation. In both ALS antisense and herbicide-treated plants, we could exclude accumulation of 2-oxobutyrate and/or 2-aminobutyrate as the reason for the observed deleterious effects, but we detected elevated levels of free amino acids and imbalances in their relative proportions. Thus, antisense inhibition of ALS generated an in vivo model of herbicide action. Furthermore, expression of antisense RNA to the enzyme of interest provides a general method for validation of potential herbicide targets. PMID:12228373

  15. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    PubMed

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7. PMID:26979928

  16. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases

    PubMed Central

    Hunter, Lydia J. R.; Brockington, Samuel F.; Murphy, Alex M.; Pate, Adrienne E.; Gruden, Kristina; MacFarlane, Stuart A.; Palukaitis, Peter; Carr, John P.

    2016-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7. PMID:26979928

  17. Linkage mapping and QTL analysis of agronomic traits in tetraploid potato (Solanum tuberosum subsp. tuberosum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L) is one of the world’s most important food crops. Using a tetraploid population, we developed a linkage map using AFLP and SSR markers, and searched for QTL via interval mapping and single-marker ANOVA. QTL were detected for flower color, foliage maturity, tuber skin te...

  18. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum. PMID:25144460

  19. A reassessment of Solanum maglia in the origin of Chilean landraces of cultivated potato (Solanum tuberosum Chilotanum Group)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landrace potato cultivars of Solanum tuberosum occur in two broad geographic regions; the high Andes from western Venezuela south to northern Argentina (S. tuberosum Andigenum Group), and lowland south central Chile (S. tuberosum Chilotanum Group). Chilotanum is adapted to long days, has a 241 bp pl...

  20. The enigma of Solanum maglia in the origin of the Chilean cultivated potato, Solanum tuberosum Chilotanum group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landrace potato cultivars of Solanum tuberosum occur in two broad geographic regions; the high Andes from western Venezuela south to northern Argentina (S. tuberosum Andigenum Group), and lowland south central Chile (S. tuberosum Chilotanum Group). Chilotanum Group landraces are adapted to long days...

  1. Sucrose Metabolism in Tubers of Potato (Solanum tuberosum L.)

    PubMed Central

    Ross, H. A.; Davies, H. V.

    1992-01-01

    Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10°C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both sucrose synthase activity and the extent to which activity declined following excision were similar in all cases. However, there was significant genotypic variation in the extent to which acid invertase activity developed, with tubers accumulating the highest hexose content also developing the highest extractable activity of invertase. Similar effects were found in nondetached tubers when growing plants were maintained in total darkness for a prolonged period. Furthermore, supplying sucrose to detached tubers through the cut stolon surface prevented the decline in sucrose synthase activity. Maltose proved to be ineffective. Western blots using antibodies raised against maize sucrose synthase showed that the decline in sucrose synthase activity was associated with the loss of protein rather than the effect of endogenous inhibitors. Although there were indications that maintaining a flux of sucrose into isolated tubers could prevent the increase in acid invertase activity, the results were not conclusive. ImagesFigure 7 PMID:16668626

  2. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja.

    PubMed

    Fock, I; Collonnier, C; Purwito, A; Luisetti, J; Souvannavong, V; Vedel, F; Servaes, A; Ambroise, A; Kodja, H; Ducreux, G; Sihachakr, D

    2000-12-01

    Somatic hybrid plants were produced after protoplast electrofusion between a dihaploid potato, cv. BF15, and a wild tuber-bearing relative, Solanum phureja, with a view to transferring bacterial wilt resistance into potato lines. A total of ten putative hybrids were selected. DNA analysis using flow cytometry revealed that six were tetraploids, two mixoploids, one amphiploid and one octoploid. In the greenhouse, the putative hybrids exhibited strong vigor and were morphologically intermediate, including leaf form, flowers and tuber characteristics. The hybrid nature of the ten selected plants was confirmed by examining isoenzyme patterns for esterases and peroxidases, and analysis of RAPD and SSR markers. Analysis of chloroplast genome revealed that eight hybrids possessed chloroplast (ct) DNA of the wild species, S. phureja, and only two contained Solanum tuberosum ct type. Six hybrid clones, including five tetraploids and one amphiploid, were evaluated for resistance to bacterial wilt by using race 1 and race 3 strains of Ralstonia solanacearum, originating from Reunion Island. Inoculations were performed by an in vitro root dipping method. The cultivated potato was susceptible to both bacterial strains tested. All somatic hybrids except two were tolerant to race 1 strain, and susceptible to race 3 strain. Interestingly, the amphiploid hybrid clone showed a good tolerance to both strains. PMID:11164589

  3. Effect of ozone on indicators of leaf aging. [Solanum tuberosum

    SciTech Connect

    Yisheng Ni; Yaoren Dai; Fayek Negm; Reddy, N. Flores, H.; Arteca, R.; Pell, E. )

    1991-05-01

    Ozone (O{sub 3}) stress induces accelerated foliar senescence, as measured by a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). The authors wish to determine (1) whether the decline in rubisco is under genetic regulation and (2) what role is played by ethylene and polyamines in modulating this response. Plants of Solanum tuberosum L. cv. Norland were grown in a charcoal filtered greenhouse and treated with 0.15 {mu}1 1{sup {minus}1} O{sub 3} in continuous stirred tank reactors for 4 h. Immediately, 4 h and 20 h after O{sub 3} exposure, the fourth, seventh and tenth leaves from the apex were harvested and the tissue analyzed for ethylene emission, ethylene forming enzyme, malonyl transferase, ACC, malonyl ACC, spermine, spermidine, putrescine, ornithine decarboxylase and messenger RNA for the large and small subunits of rubisco. Ozone induced changes in most of the variables studied and the response was most evident in the younger tissue. In contrast O{sub 3} induces accelerated senescence of the oldest tissue. The relationship between O{sub 3}-induced changes in younger foliage and accelerated aging of older tissue will be the subject of further investigation.

  4. Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaluation of transgenic plants commonly carried out under controlled conditions in culture rooms and greenhouses can give valuable information about the influence of introduced genes on transgenic plant phenotype. However, an overall assessment of plant performance can only be made by testing t...

  5. Solanidine isolation from Solanum tuberosum by centrifugal partition chromatography.

    PubMed

    Attoumbré, Jacques; Giordanengo, Philippe; Baltora-Rosset, Sylvie

    2013-07-01

    The aim of this investigation was the preparative isolation of solanidine (aglycone of the two main potato glycoalkaloids: α-chaconine and α-solanine) from fresh Solanum tuberosum (cv. Pompadour) material by implementing a new preparation scheme using centrifugal partition chromatography (CPC). A setup for obtaining solanidine by hydrolysis of the glycoalkaloids found in the skin and sprouts of S. tuberosum was first developed. Then its isolation was carried out by the development of CPC conditions: the solvent system used for separation was ethyl acetate/butanol/water in the ratio 42.5:7.5:50 v/v/v, 0.6 g of crude extract were separated with a 8 mL/min flow rate of mobile phase while rotating at 2500 rpm. A run yielded 98 mg of solanidine (86.7% recovery from the crude extract) in a one-step separation. The purity of the isolated solanidine was over 98%. Thus, CPC has proven to be the method of choice to get solanidine of very high purity from S. tuberosum biomass in large quantities. PMID:23640901

  6. Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta).

    PubMed

    Baghour, M; Moreno, D A; Hernández, J; Castilla, N; Romero, L

    2001-01-01

    Three consecutive years of field experiments were carried out to investigate the effect of root temperatures induced by the application of mulches for phytoextraction of As, Ag, Cr and Sb using potato plants (roots, tubers, stems and leaflets). Four different plastic covers were used (T1: transparent polyethylene; T2: white polyethylene; T3: white and black coextruded polyethylene; and T4: black polyethylene), taking uncovered plants as control (T0). The different treatments had a significant effect on mean root temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C and T4 = 30 degrees C) and induced a significantly different response in the As, Ag, Cr and Sb phytoaccumulation. The T3 treatment gave rise to the greatest phytoaccumulation of As, Ag, Cr and Sb in the roots, leaflets and tubers. In terms of the relative distribution of the phytoaccumulated metals (with respect to the total of the plant), As accumulated mainly in the roots and leaflets whereas Ag, Cr and Sb accumulated primarily in the tubers, establishing a close relationship between biomass development of each organ and phytoaccumulation capacity of elements in response to temperature in the root zone. With regard to phytoremediation using the potato plant, it is necessary to ascertain the influence and include the control of the thermal regime of the soil to optimize the phytoextraction of pollutants. PMID:11545361

  7. Phytoextraction of Cd and Pb and physiological effects in potato plants (Solanum tuberosum var. Spunta): importance of root temperature.

    PubMed

    Baghour, M; Moreno, D A; Víllora, G; Hernández, J; Castilla, N; Romero, L

    2001-11-01

    Three consecutive years of field experiments were carried out to investigate the effect of different root-zone temperatures, induced by the application of mulches, on the concentration and accumulation of Cd and Pb and on bioindicators (chlorophylls, catalase, peroxidase and cell wall fractions) in different organs of potato plants (roots, tubers, stems, and leaflets). Four different plastic covers were employed (T1, transparent polyethylene; T2, white polyethylene; T3, white and black coextruded polyethylene, and T4, black polyethylene), using uncovered plants as the control (T0). The different treatments had a significant effect on the mean root-zone temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C, and T4 = 30 degrees C) and induced significantly different responses in the Cd and Pb concentrations and phytoaccumulation, with T2 (23 degrees C) and T3 (27 degrees C) giving high concentrations of Cd in the roots and low concentrations in other organs. In relation to Pb, T2 and T3 reached higher levels in the tubers and lower levels in the roots, stems, and leaves. In terms of phytoaccumulation, the roots and tubers were the most effective organs for Cd and Pb. On the other hand, the highest values of peroxidase and catalase activities were obtained for T3. In addition, most of the carbohydrate fractions in both the roots and the tubers were highest for T3. Meanwhile, the lowest pigment values were registered for T1 (20 degrees C). For phytoremediation, it is necessary to ascertain the relevance and control of the thermal regime of the soil to optimize the phytoextraction of pollutant elements (Cd and Pb). PMID:11714328

  8. Climate Change: Precipitation and Plant Nutrition Interactions on Potato (Solanum tuberosum L.) Yield in North-Eastern Hungary

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    It is widely well known that annual temperatures over Europe warm at a rate of between 0.1 0C decade-1 and 0.4 0C decade-1. And most of Europe gets wetter in the winter season between +1% and +4% decade-1. In summer there is a strong gradient of change between northern Europe (wetting of up to +2% decade-1) and southern Europe (drying of up to 5% decade-1). The droughts and the floods were experienced at Hungary in the early eighties as well as today. So among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problems in field potato production. The crop is demanding indicator plant of climate factors (temperature, rainfall) and soil nitrogen, phosphorus, potassium and magnesium status. This publication gives the results achieved in the period from 1962 to 2001 of a long term small- plot fertilization experiment set up on acidic sandy brown forest soil at Nyírlugos in the Nyírség region in North-Eastern Hungary. Characteristics of the experiment soil were a pH (KCl) 4.5, humus 0.5%, CEC 5-10 mgeq 100g-1 in the ploughed layer. The topsoil was poor in all four macronutrient N, P, K and Mg. The mineral fertilization experiment involved 2 (genotypes: Gülbaba and Aranyalma) x 2 (ploughed depths: 20 and 40 cm) x 16 (fertilizations: N, P, K, Mg) = 64 treatments in 8 replications, giving a total of 512 plots. The gross and net plot sizes were 10x5=50 m2 and 35.5 m2. The experimental designe was split-split-plot. The N levels were 0, 50, 100, 150 kg ha-1 year-1 and the P, K, Mg levels were 48, 150, 30 kg ha-1 year-1 P2O5, K2O, MgO in the form of 25% calcium ammonium nitrate, 18% superphosphate, 40% potassium chloride, and powdered technological magnesium sulphate. The forecrop every second year was rye. The groundwater level was at a depth of 2-3 m. From the 64 treatments, eight replications, altogether 512- experimental plots with 7 treatments and their 16 combinations are summarised of experiment period from 1962 to

  9. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cutttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell, C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cutting of potato (Solanum tuberosum) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamp (LPS/CWF). Results suggested that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  10. Breeding for resistance to early blight in potato (Solanum tuberosum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani, is a major cause of economic losses in many potato growing regions. We have identified two early blight resistant clones EB24-24 and EB24-3, which are hybrids between the cultivated (S. tuberosum) potato clone US-W4 (2x=24) ...

  11. Evidence from Solanum tuberosum in support of the dual-pathway hypothesis of aromatic biosynthesis

    SciTech Connect

    Morris, P.F.; Doong, R.L.; Jensen, R.A. )

    1989-01-01

    Key branchpoint enzymes of aromatic amino acid biosynthesis, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DS) and chorismate mutase (CM), have previously been shown to exist as separate compartmentalized isozymes in the chloroplasts and cytosol of tobacco, sorghum and spinach. Although additional examples of plants containing these isozyme pairs are accumulating, some studies in the literature report the presence of only the single plastidic DS or CM enzyme. Such apparent exceptions contradict the universality of pathway organization existing in higher plants that is implied by the dual-pathway hypothesis of aromatic biosynthesis. Since potato (Solanum tuberosum) exemplifies a case where only a single species of both DS and CM have been reported, we selected this system for further analysis. The DS-Mn and DS-Co isozyme pair, exhibiting all of the differential properties described in Nicotiana silvestris, have now been identified in S. tuberosum. Likwise, partial purification via DEAE-cellulose chromatography revealed two isozymes of CM in disks excised from tubers of S. tuberosum. The differential regulatory properties of these isozymes were comparable to the CM-1 and CM-2 isozymes of N. silvestris.

  12. Evidence from Solanum tuberosum in Support of the Dual-Pathway Hypothesis of Aromatic Biosynthesis.

    PubMed

    Morris, P F; Doong, R L; Jensen, R A

    1989-01-01

    Key branchpoint enzymes of aromatic amino acid biosynthesis, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DS) and chorismate mutase (CM), have previously been shown to exist as separate compartmentalized isozymes in the chloroplasts and cytosol of tobacco, sorghum and spinach. Although additional examples of plants containing these isozyme pairs are accumulating, some studies in the literature report the presence of only the single plastidic DS or CM enzyme. Such apparent exceptions contradict the universality of pathway organization existing in higher plants that is implied by the dual-pathway hypothesis of aromatic biosynthesis. Since potato (Solanum tuberosum) exemplifies a case where only a single species of both DS and CM have been reported, we selected this system for further analysis. The DS-Mn and DS-Co isozyme pair, exhibiting all of the differential properties described in Nicotiana silvestris, have now been identified in S. tuberosum. Likewise, partial purification via DEAE-cellulose chromatography revealed two isozymes of CM in disks excised from tubers of S. tuberosum. The differential regulatory properties of these isozymes were comparable to the CM-1 and CM-2 isozymes of N. silvestris. PMID:16666497

  13. Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum.

    PubMed

    Wyrzykowska, Anna; Pieczynski, Marcin; Szweykowska-Kulinska, Zofia

    2016-01-01

    The use of artificial microRNAs (amiRNAs) is still a relatively new technique in molecular biology with a wide range of applications in life sciences. Here, we describe the silencing of the CBP80/ABH1 gene in Solanum tuberosum with the use of amiRNA. The CBP80/ABH1 protein is part of the Cap Binding Complex (CBC), which is involved in plant responses to drought stress conditions. Transformed plants with a decreased level of CBP80/ABH1 display increased tolerance to water shortage conditions. We describe how to design amiRNA with the Web MicroRNA Designer platform in detail. Additionally, we explain how to perform all steps of a procedure aiming to obtain transgenic potato plants with the use of designed amiRNA, through callus tissue regeneration and Agrobacterium tumefaciens strain LBA4404 as a transgene carrier. PMID:26867630

  14. Molecular, cytogenetic and morphological characterization of somatic hybrids of dihaploid Solanum tuberosum and diploid S. brevidens.

    PubMed

    Pehu, E; Karp, A; Moore, K; Steele, S; Dunckley, R; Jones, M G

    1989-11-01

    Fifty-eight somatic hybrid plants, produced both by chemical (11) and electrical fusion (47) of protoplasts of dihaploid Solanum tuberosum and S. brevidens, have been analysed by molecular, cytological and morphological methods. The potentially useful euploid plants constituted 34% of the total, of which 20% were tetraploid and 14% hexaploid; the remainder were aneuploid at the tetraploid, hexaploid and octoploid levels. Analysis of chloroplast DNA showed that 55% of hybrids contained chloroplasts from S. brevidens and 45% from S. tuberosum. Hexaploids, the products of three protoplasts fusing together, were analyzed with specific DNA probes, and this revealed that nuclear genome dosages could be either 2∶1 S. tuberosum∶S. brevidens, or vice-versa. Chloroplast types of hexaploids were not influenced by nuclear genome dosage, and all six possible combinations of genome dosage and chloroplast types were found amongst tetraploids and hexaploids. To examine the morphology of the hybrid population and its possible relation to the chromosome number and chloroplast DNA type, 18 morphological characteristics were measured on greenhouse-grown plants and analyzed by principal component and canonical variate analyses. Both analyses showed that nuclear ploidy has the most prominent influence on the overall morphology of the hybrids. Differential parental genome expression in the morphology of the hybrids is discussed. These results provide useful data on the range of genetic combinations that can be expected to occur amongst somatic hybrid plants. PMID:24225831

  15. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  16. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs

    PubMed Central

    Gálvez, José Héctor; Tai, Helen H.; Lagüe, Martin; Zebarth, Bernie J.; Strömvik, Martina V.

    2016-01-01

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha−1 was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058

  17. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs.

    PubMed

    Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V

    2016-01-01

    Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058

  18. Clinostation influence on regeneration of cell wall in Solanum Tuberosum L. protoplasts

    NASA Astrophysics Data System (ADS)

    Nedukha, Elena M.; Sidorov, V. A.; Samoylov, V. M.

    1994-08-01

    Regeneration of cell walls in protoplasts was investigated using light- and electronmicroscopic methods. The protoplasts were isolated from mesophyll of Solanum tuberosum leaves and were cultivated on the horizontal low rotating clinostat (2 rpm) and in control for 10 days. Using a fluorescent method (with Calcofluor white) it was demonstrated that changes in vector gravity results in an regeneration inhibition of cell wall. With electron-microscopical and electro-cytochemical methods (staining with alcianum blue) dynamics of the regeneration of cell walls in protoplasts was studied; carbohydrate matrix of cell walls is deposited at the earliest stages of this process. The influence of microgravity on the cell wall regeneration is discussed in higher plants.

  19. Molecular and Cytological aspects of native periderm maturation in potato (Solanum tuberosum L.) tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature native periderm that exhibits resistance to excoriation (RE) is the primary defense for potato (Solanum tuberosum L.) tubers against abiotic and biotic challenges. However, little is known about the physiology of periderm maturation and associated gene expressions. In this study, periderm m...

  20. Resistance to Early Blight in Hybrids Between a Solanum Tuberosum Haploid and S Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by the foliar fungal pathogen Alternaria solani is a major cause of economic loss in many potato growing regions. Genetic resistance offers an opportunity to decrease fungicide usage while maintaining yield and quality. In this study, an early bl...

  1. Resistance to alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by the foliar fungal pathogen Alternaria solani is a major cause of economic loss in many potato growing regions. Genetic resistance offers an opportunity to decrease fungicide usage while maintaining yield and quality. In this study, an early bl...

  2. A new index to assess nitrogen dynamics in potato (Solanum tuberosum L.) production systems of Bolivia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bolivia is the poorest country in South America with over 80% of the rural population under the poverty line. Agricultural productivity is closely correlated with poverty levels across rural Bolivia. Potato (Solanum tuberosum L.) is one of the most important crops for food security in Bolivia and th...

  3. Stem-end defect in chipping potatoes (Solanum tuberosum L.) as influenced by mild environmental stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global consumption of potato (Solanum tuberosum, L.) continues to shift from fresh potatoes to value-added processed food products such as potato chips. One serious tuber quality defect of chipping potatoes is stem-end chip defect, which results in chips with dark vasculature and adjacent tissues at...

  4. Colored potatoes (Solanum tuberosum L.) dried into antioxidant-rich value-added foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colored potatoes (Solanum tuberosum L.) are a significant source of antioxidants from polyphenols, carotenoids, tocopherol and ascorbic acid. In this study, retention of total antioxidants in fresh colored potatoes and processed potato flakes prepared as potential ingredients for snack foods was stu...

  5. Foliar and tuber late blight resistance in a Solanum tuberosum potato mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar and tuber resistance to Phytophthora infestans were evaluated in a mapping population (n=94) developed between two Solanum tuberosum breeding lines, NY121 x NY115. Foliar disease severity of the progeny clones was measured by the area under the disease progress curve (AUDPC) in field tests in...

  6. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification.

    PubMed

    Krügel, Undine; Veenhoff, Liesbeth M; Langbein, Jennifer; Wiederhold, Elena; Liesche, Johannes; Friedrich, Thomas; Grimm, Bernhard; Martinoia, Enrico; Poolman, Bert; Kühn, Christina

    2008-09-01

    The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed. PMID:18790827

  7. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes including fresh market, pigmented flesh, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and inter-market ...

  8. Involvement of Potato (Solanum tuberosum L.) MKK6 in Response to Potato virus Y

    PubMed Central

    Lazar, Ana; Coll, Anna; Dobnik, David; Baebler, Špela; Bedina-Zavec, Apolonija; Žel, Jana; Gruden, Kristina

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant–pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence. PMID:25111695

  9. The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development.

    PubMed

    Pasare, Stefania A; Ducreux, Laurence J M; Morris, Wayne L; Campbell, Raymond; Sharma, Sanjeev K; Roumeliotis, Efstathios; Kohlen, Wouter; van der Krol, Sander; Bramley, Peter M; Roberts, Alison G; Fraser, Paul D; Taylor, Mark A

    2013-06-01

    · Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy. PMID:23496288

  10. Intercropping of aromatic crop Pelargonium graveolens with Solanum tuberosum for better productivity and soil health.

    PubMed

    Vermal, Rajesh Kumar; Yadav, Ajai; Verma, Ram Swaroop; Khan, Khushboo

    2014-11-01

    Farmers in hilly regions experience low production potential and resource use efficiency due to low valued crops and poorsoil health. Geranium (Pelargonium graveolens L.) is a vegetatively propagated initially slow growing, high value aromatic crop. Potato (Solanum tuberosum L.) is also vegetatively propagated high demand cash crop. A field experiment was carried out in temperate climate to investigate the influence of geranium intercropping at different row strips (1:1 and 1:2) and plant density (60 x 45, 75 x 45 and 90 x 45 cm) with potato intercrop on biomass, oil yield, monetary advantage and soil quality parameters. The row spacing 60x45cm and row strip 1:1 was found to be superior and produced 92 t ha(-1) and 14 kg ha(-1) biomass and oil yield, respectively. The row strip 1:2 intercrop earned a maximum $2107, followed by $1862 with row strip 1:1 at 60 x 45 cm plant density. Significant variations were noticed in soil organic carbon (Corg), total N (Nt), available nutrients, soil microbial biomass (Cmic) and nitrogen (Nmic) content. Maximum improvement of Corg (41.0%) and Nt (27.5%)with row strip 1:1 at 75 x 45 cm plant density. While higher soil respiration rate, Cmic, Nmic, and qCO2 was found with 1:2 row strip at 60 x 45 plant density. The buildup of Corg and Cmic potato intercrop can promote long term sustainability on productivity and soil health. PMID:25522521

  11. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    SciTech Connect

    Spychalla, J.P.; Desborough, S.L. )

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  12. Decline of rubisco activity and net photosynthesis in ozone-treated potato foliage. [Solanum tuberosum

    SciTech Connect

    Dann, M.S.; Pell, E.J.

    1987-04-01

    The effect of O/sub 3/ on rubisco activity in Solanum tuberosum L. cv Norland foliage was studied as related to oxidant-induced premature senescence. Plants, 25 days old, were exposed to O/sub 3/ increasing from 0.06 to 0.08 ..mu..1/L for 6 h/day for 4 days in a controlled environment chamber. On day 5 plants were exposed to a 6 h simulated inversion in which O/sub 3/ peaked at 0.12 /sup +/1/L. The authors measured initial and total rubisco activities and net photosynthesis of leaves at full expansion on days 0,3,5,6,9 and 12. These parameters declined in both ozone and control plants throughout the course of the experiment. O/sub 3/ exacerbated the decline and produced a significantly greater decrease following the inversion. The enhanced reduction in rubisco activity over time may be an important characteristics of ozone-induced premature senescence. Rubisco activation (initial/total activity) did not change with the treatment. The decrease in activity is most likely due to a decrease in available protein rather than a decrease in the percentage of rubisco activated in vivo.

  13. Large Scale Magnetic Separation of Solanum tuberosum Tuber Lectin from Potato Starch Waste Water

    NASA Astrophysics Data System (ADS)

    Safarik, Ivo; Horska, Katerina; Martinez, Lluis M.; Safarikova, Mirka

    2010-12-01

    A simple procedure for large scale isolation of Solanum tuberosum tuber lectin from potato starch industry waste water has been developed. The procedure employed magnetic chitosan microparticles as an affinity adsorbent. Magnetic separation was performed in a flow-through magnetic separation system. The adsorbed lectin was eluted with glycine/HCl buffer, pH 2.2. The specific activity of separated lectin increased approximately 27 times during the isolation process.

  14. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress.

    PubMed

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2014-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  15. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids.

    PubMed

    Mortimer, Cara L; Misawa, Norihiko; Ducreux, Laurence; Campbell, Raymond; Bramley, Peter M; Taylor, Mark; Fraser, Paul D

    2016-01-01

    To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4' β-oxygenase (crtW) and 3, 3' β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules. PMID:25845905

  16. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress

    PubMed Central

    Gao, Hui-Juan; Yang, Hong-Yu; Bai, Jiang-Ping; Liang, Xin-Yue; Lou, Yan; Zhang, Jun-Lian; Wang, Di; Zhang, Jin-Lin; Niu, Shu-Qi; Chen, Ying-Long

    2015-01-01

    Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. “Longshu No. 3”) plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars. PMID:25628634

  17. Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum.

    PubMed

    Leroch, Michaela; Kirchberger, Simon; Haferkamp, Ilka; Wahl, Markus; Neuhaus, H Ekkehard; Tjaden, Joachim

    2005-05-01

    Homologs of BT1 (the Brittle1 protein) are found to be phylogenetically related to the mitochondrial carrier family and appear to occur in both mono- and dicotyledonous plants. Whereas BT1 from cereals is probably involved in the transport of ADP-glucose, which is essential for starch metabolism in endosperm plastids, BT1 from a noncereal plant, Solanum tuberosum (StBT1), catalyzes an adenine nucleotide uniport when functionally integrated into the bacterial cytoplasmic membrane. Import studies into intact Escherichia coli cells harboring StBT1 revealed a narrow substrate spectrum with similar affinities for AMP, ADP, and ATP of about 300-400 mum. Transiently expressed StBT1-green fluorescent protein fusion protein in tobacco leaf protoplasts showed a plastidic localization of the StBT1. In vitro synthesized radioactively labeled StBT1 was targeted to the envelope membranes of isolated spinach chloroplasts. Furthermore, we showed by real time reverse transcription-PCR a ubiquitous expression pattern of the StBT1 in autotrophic and heterotrophic potato tissues. We therefore propose that StBT1 is a plastidic adenine nucleotide uniporter used to provide the cytosol and other compartments with adenine nucleotides exclusively synthesized inside plastids. PMID:15737999

  18. Comparison of the calystegine composition and content of potato sprouts and tubers from Solanum tuberosum Group Phureja and Solanum tuberosum Group Tuberosum.

    PubMed

    Griffiths, D Wynne; Shepherd, Tom; Stewart, Derek

    2008-07-01

    The calystegines detected in tubers from 17 Phureja ( S. tuberosum Group Phureja) lines and five Tuberosum ( S. tuberosum Group Tuberosum) cultivars were identified as the A 3 and B 2 structural types. Their concentration in whole tubers was of a similar order of magnitude in both species, as was the variability in the ratio of B 2 to A 3. On average, calystegine concentrations in the peel were about 13 times that found in the flesh for the five Tuberosum cultivars, and 4 times higher for four Phureja lines. Removal of the peel reduced the calystegine content by an average of over 50% in Tuberosum but by only 30% in Phureja, despite the latter having the greater proportion of peel. The calystegine content of sprouts was also determined for five Tuberosum cultivars and four Phureja lines and was found to include small amounts of four additional types, B 3, B 4, N 1, and X 2, in addition to the more abundant A 3 and B 2. Concentrations in the sprouts of Tuberosum were on average 100 times higher than that in the tuber flesh and 8 times higher than in the peel, whereas for Phureja, the equivalent values were 30 and 7 times higher, respectively. No correlation was found between sprout concentration and either flesh or peel calystegine concentration. PMID:18533664

  19. Infra-red Thermography for High Throughput Field Phenotyping in Solanum tuberosum

    PubMed Central

    Prashar, Ankush; Yildiz, Jane; McNicol, James W.; Bryan, Glenn J.; Jones, Hamlyn G.

    2013-01-01

    The rapid development of genomic technology has made high throughput genotyping widely accessible but the associated high throughput phenotyping is now the major limiting factor in genetic analysis of traits. This paper evaluates the use of thermal imaging for the high throughput field phenotyping of Solanum tuberosum for differences in stomatal behaviour. A large multi-replicated trial of a potato mapping population was used to investigate the consistency in genotypic rankings across different trials and across measurements made at different times of day and on different days. The results confirmed a high degree of consistency between the genotypic rankings based on relative canopy temperature on different occasions. Genotype discrimination was enhanced both through normalising data by expressing genotype temperatures as differences from image means and through the enhanced replication obtained by using overlapping images. A Monte Carlo simulation approach was used to confirm the magnitude of genotypic differences that it is possible to discriminate. The results showed a clear negative association between canopy temperature and final tuber yield for this population, when grown under ample moisture supply. We have therefore established infrared thermography as an easy, rapid and non-destructive screening method for evaluating large population trials for genetic analysis. We also envisage this approach as having great potential for evaluating plant response to stress under field conditions. PMID:23762433

  20. Invasion of Solanum tuberosum L. by Aspergillus terreus: a microscopic and proteomics insight on pathogenicity

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is one of the most harmful filamentous fungal pathogen of humans, animals and plants. Recently, researchers have discovered that A. terreus can cause foliar blight disease in potato (Solanum tuberosum L.). We used light and scanning electron microscopy, and performed proteomics analysis in an attempt to dissect the invasion process of A. terreus in this important crop. Results Microscopic study revealed that invasion of leaf tissue is marked by rapid germination of A. terreus phialidic conidia (PC) by 4 h after inoculation. By 8 h after inoculation, primary germ tubes from PC differentiated into irregular protuberance, often displayed stomata atropism, and failed to penetrate via the epidermal cells. Colonization of leaf tissues was associated with high rate of production of accessory conidia (AC). These analyses showed the occurrence of a unique opposing pattern of AC, tissue-specific and produced on melanized colonizing hyphae during the infection of leaf tissue. A significant proteome change hallmarked by differential expression of class I patatin, lipoxygenase, catalase-peroxidase complex, and cysteine proteinase inhibitor were observed during tuber colonization. These proteins are often involved in signal transduction pathways and crosstalk in pathogenic responses. Conclusion A. terreus abundantly produced AC and multipolar germinating PC to invade potato leaf tissue. Additionally, A. terreus differentially induced enzymes in potato tuber during colonization which facilitates rapid disease development. PMID:24917207

  1. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cuttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  2. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses. PMID:24215931

  3. Light spectral quality effects on the growth of potato (Solanum tuberosum L.) nodal cuttings in vitro.

    PubMed

    Wilson, D A; Weigel, R C; Wheeler, R M; Sager, J C

    1993-01-01

    The effect of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For all cultivars, stem lengths after 4 wk were longest under LPS, followed by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number of axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred with LPS or LPS/CWF lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality. PMID:11538010

  4. Transfer of U, Al and Mn in the water-soil-plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health.

    PubMed

    Neves, M O; Figueiredo, V R; Abreu, M M

    2012-02-01

    Knowledge about metals in crops, grown in contaminated soils around mine sites, is limited and concerns about exposure to hazardous elements through the consumption of contaminated foodstuff, are high. In this study a field experiment was carried out in two agricultural soils located near a former uranium mine area (Cunha Baixa, Portugal). The purpose of the study was to assess the effect of irrigation water quality on soil-potato (Solanum tuberosum L.) crop system and to evaluate if the consumption of the crop represents health risk to the local villagers. The soils were divided in two plots: one irrigated with contaminated water (U: 1.03-1.04mg/L; Al: 7.5-8.00mg/L; Mn: 4.52mg/L) and the other with uncontaminated water (U: 14-10μg/L; Al: 17-23μg/L; Mn: 2.4-5.7μg/L). After irrigation and potato growth, only soil characteristics, as salinity and total U and Mn concentrations were significantly different from those measured at the beginning of the experiment. Within the potato plants, elements were mostly translocated and concentrated in the aerial part: stems and leaves (U: 73-87%; Al: 85-96%; Mn: 85-94%), which minimize the risk of contamination of the edible tissue. In potato tubers, the highest average concentrations (121-590μg U/kg; 25-64mg Al/kg; 12-13mg Mn/kg dry weight) were registered at soil plots irrigated with contaminated water. Uranium and Al were mostly concentrated in the potato peel (88-96 and 76-85%, respectively), and Mn (67-78%) in the pulp, which reinforces the importance of removing peel to minimize human exposure. The risk analysis calculated for non-cancer health effects (hazard quotient), related only to the exposure through the consumption of this basic foodstuff, revealed safety for Cunha Baixa village residents (adults and children) even when potato crop was grown on U enriched soils and irrigated with contaminated water. PMID:22178025

  5. Isolation and characterization of a Solanum tuberosum subtilisin-like protein with caspase-3 activity (StSBTc-3).

    PubMed

    Fernández, María Belén; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2015-01-01

    Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction. PMID:25486023

  6. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  7. Growth and tuberization of potato (Solanum tuberosum L.) under continuous light

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Tibbitts, T. W.

    1986-01-01

    The growth and tuberization of potatoes (Solanum tuberosum L.) maintained for 6 weeks under four different regimes of continuous irradiance were compared to plants given 12 hours light and 12 hours dark. Treatments included: (a) continuous photosynthetic photon flux of 200 micromoles per square meter per second cool-white fluorescent (CWF); (b) continuous 400 micromoles per square meter per second CWF; (c) 12 hours 400 micromoles per square meter per second CWF plus 12 hours dim CWF at 5 micromoles per square meter per second; (d) 12 hours [400] micromoles per square meter per second CWF plus 12 hours dim incandescent (INC) at 5 micromoles per square meter per second and a control treatment of 12 hours light at 400 micromoles per square meter per second CWF and 12 hours dark. The study included five cultivars ranging from early- to late-season types: 'Norland,' 'Superior,''Norchip,' 'Russet Burbank,' and 'Kennebec,' Tuber development progressed well under continuous irradiation at 400 micromoles per square meter per second and under 12 hours irradiance and 12 hours dark, while tuber development was suppressed in all other light treatments. Continuous irradiation at 200 or 400 micromoles per square meter per second resulted in severe stunting and leaf malformation on 'Superior' and 'Kennebec' plants, but little or no injury and vigorous shoot growth in the other cultivars. No injury or stunting were apparent under 12-dim light or 12-dark treatments. Plants given 12 hours dim INC showed significantly greater stem elongation but less total biomass than plants in other treatments. The continuous light encouraged shoot growth over tuber growth but this trend was overridden by providing a high irradiance level. The variation among cultivars for tolerance to continuous lighting indicates that potato may be a useful species for photoinhibition studies.

  8. [Polymorphism of KPI-A genes from plants of the subgenus Potatoe (sect. Petota, Estolonifera and Lycopersicum) and subgenus Solanum].

    PubMed

    Krinitsyna, A A; Mel'nikova, N V; Belenikin, M S; Poltronieri, P; Santino, A; Kudriavtseva, A V; Savilova, A M; Speranskaia, A S

    2013-01-01

    Kunitz-type proteinase inhibitor proteins of group A (KPI-A) are involved in the protection of potato plants from pathogens and pests. Although sequences of large number of the KPI-A genes from different species of cultivated potato (Solanum tuberosum subsp. tuberosum) and a few genes from tomato (Solanum lycopersicum) are known to date, information about the allelic diversity of these genes in other species of the genus Solanum is lacking. In our work, the consensus sequences of the KPI-A genes were established in two species of subgenus Potatoe sect. Petota (Solanum tuberosum subsp. andigenum--5 genes and Solanum stoloniferum--2 genes) and in the subgenus Solanum (Solanum nigrum--5 genes) by amplification, cloning, sequencing and subsequent analysis. The determined sequences of KPI-A genes were 97-100% identical to known sequences of the cultivated potato of sect. Petota (cultivated potato Solanum tuberosum subsp. tuberosum) and sect. Etuberosum (S. palustre). The interspecific variability of these genes did not exceed the intraspecific variability for all studied species except Solanum lycopersicum. The distribution of highly variable and conserved sequences in the mature protein-encoding regions was uniform for all investigated KPI-A genes. However, our attempts to amplify the homologous genes using the same primers and the genomes of Solanum dulcamarum, Solanum lycopersicum and Mandragora officinarum resulted in no product formation. Phylogenetic analysis of KPI-A diversity showed that the sequences of the S. lycopersicum form independent cluster, whereas KPI-A of S. nigrum and species of sect. Etuberosum and sect. Petota are closely related and do not form species-specific subclasters. Although Solanum nigrum is resistant to all known races of economically one of the most important diseases of solanaceous plants oomycete Phytophthora infestans aminoacid sequences encoding by KPI-A genes from its genome have nearly or absolutely no differences to the same from

  9. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    PubMed

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide. PMID:19820966

  10. Root zone temperature affects the phytoextraction of Ba, Cl, Sn, Pt, and Rb using potato plants (Solanum tuberosum L. var. Spunta) in the field.

    PubMed

    Baghour, M; Moreno, D A; Víllora, G; Hernández, J; Castilla, N; Romero, L

    2002-01-01

    Three consecutive years of field experiments were conducted to investigate how different root-zone temperatures, manipulated by using different mulches, affect the phytoextraction of Ba, Cl, Sn, Pt and Rb in different organs of potato plants (roots, tubers, stems and leaves). Four different plastic covers were used (T1: transparent polyethylene; T2: white polyethylene; T3: white and black coextruded polyethylene, and T4: black polyethylene), using uncovered plants as control (T0). The different treatments had a significant effect on mean root zone temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C and T4 = 30 degrees C) and induced a significantly different response in Ba, Cl, Sn, Pt and Rb concentration and accumulation. The T3 treatment gave rise to the greatest phytoextraction of Ba, Pt, Cl and Sn in the roots, leaflets and tubers. In terms of the relative distribution of the phytoaccumulated elements (as percentage of the total within the plant), Pt and Ba accumulated mainly in the roots whereas Rb, Sn and Cl accumulated primarily in tubers, establishing a close relationship between the biomass development of each organ and phytoaccumulation capacity of metals in response to temperature in the root zone. PMID:11846271

  11. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior

  12. A Predictive Degree Day Model for the Development of Bactericera cockerelli (Hemiptera: Triozidae) Infesting Solanum tuberosum.

    PubMed

    Lewis, O M; Michels, G J; Pierson, E A; Heinz, K M

    2015-08-01

    Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of potato (Solanum tuberosum L.) that vectors the bacterium that putatively causes zebra chip disease in potatoes, 'Candidatus Liberibacter solanacearum.' Zebra chip disease is managed by controlling populations of B. cockerelli in commercial potato fields. Lacking an integrated pest management strategy, growers have resorted to an intensive chemical control program that may be leading to insecticide-resistant B. cockerelli populations in south Texas and Mexico. To initiate the development of an integrated approach of controlling B. cockerelli, we used constant temperature studies, nonlinear and linear modeling, and field sampling data to determine and validate the degree day parameters for development of B. cockerelli infesting potato. Degree day model predictions for three different B. cockerelli life stages were tested against data collected from pesticide-free plots. The model was most accurate at predicting egg-to-egg and nymph-to-nymph peaks, with less accuracy in predicting adult-to-adult peaks. It is impractical to predict first occurrence of B. cockerelli in potato plantings as adults are present as soon cotyledons break through the soil. Therefore, we suggest integrating the degree day model into current B. cockerelli management practices using a two-phase method. Phase 1 occurs from potato planting through to the first peak in a B. cockerelli field population, which is managed using current practices. Phase 2 begins with the first B. cockerelli population peak and the degree day model is initiated to predict the subsequent population peaks, thus providing growers a tool to proactively manage this pest. PMID:26314066

  13. Population Dynamics of Soil Pseudomonads in the Rhizosphere of Potato (Solanum tuberosum L.).

    PubMed

    Loper, J E; Haack, C; Schroth, M N

    1985-02-01

    Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at -0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were consistently greater than those of strain B10. In vivo growth curves on 4-cm root tip-proximal segments indicated that both strains grew at similar rates in the potato rhizosphere, but large populations of strain B10 were not maintained at 24 degrees C after 7 h, whereas those of strain B4 were maintained for at least 40 h. Although both strains grew more rapidly in the rhizosphere at 24 degrees C than at 12 degrees C, their rhizosphere populations after seed piece inoculation were generally greater at 12 or 18 degrees C, indicating that in vivo growth did not solely determine rhizosphere populations in these studies. In vitro osmotolerance of seven Pseudomonas strains (including strains B4 and B10) was correlated with their abilities to establish stable populations in the rhizosphere of potato. Stability of rhizosphere populations of the Pseudomonas strains studied here was maximized at low (i.e., 12 degrees C) soil temperatures. These results indicate that Pseudomonas strains differ in their capacity to maintain stable rhizosphere populations in association with potato. This capacity, distinct from the ability to grow in the rhizosphere, may limit the establishment of rhizosphere populations under some environmental conditions. PMID:16346729

  14. Hydrolysis of synthetic pyrophosphoric esters by an isoenzyme of apyrase from Solanum tuberosum.

    PubMed Central

    Del Campo, G; Puente, J; Valenzuela, M A; Traverso-Cori, A; Cori, O

    1977-01-01

    A highly purified isoenzyme of apyrase obtained from potatoes (Solanum tuberosum var. Pimpernel) exhibits a low specificity for the organic moiety of synthetic pyro- and triphosphates. Methyl di- and tri-phosphates were hydrolysed at higher rates than ADP and ATP, but their Km values were also higher. Steric hindrance at the carbon atom linked to the pyrophosphate chain decreases both binding and maximum rate, whereas length or polarity of the organic chain do not have systematic effects. t-Butyl diphosphate, inorganic pyrophosphate, adenosine 5'-[alpha,beta-methylene]triphosphate and adenosine 5'-[beta,gamma-methylene]triphosphate are competitive inhibitors of the hydrolysis of ATP and ADP. PMID:203267

  15. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum.

    PubMed

    van Eldik, G J; Ruiter, R K; Colla, P H; van Herpen, M M; Schrauwen, J A; Wullems, G J

    1997-03-01

    Successful sexual reproduction relies on gene products delivered by the pistil to create an environment suitable for pollen tube growth. These compounds are either produced before pollination or formed during the interactions between pistil and pollen tubes. Here we describe the pollination-enhanced expression of the cp100 gene in pistils of Solanum tuberosum. Temporal analysis of gene expression revealed an enhanced expression already one hour after pollination and lasts more than 72 h. Increase in expression also occurred after touching the stigma and was not restricted to the site of touch but spread into the style. The predicted CP100 protein shows similarity to leguminous isoflavone reductases (IFRs), but belongs to a family of IFR-like NAD(P)H-dependent oxidoreductases present in various plant species. PMID:9106515

  16. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism.

    PubMed

    Davies, Howard V; Shepherd, Louise V T; Burrell, Michael M; Carrari, Fernando; Urbanczyk-Wochniak, Ewa; Leisse, Andrea; Hancock, Robert D; Taylor, Mark; Viola, Roberto; Ross, Heather; McRae, Diane; Willmitzer, Lothar; Fernie, Alisdair R

    2005-07-01

    Potato plants (Solanum tuberosum L. cvs Desiree and Record) transformed with sense and antisense constructs of a cDNA encoding the potato fructokinase StFK1 exhibited altered transcription of this gene, altered amount of protein and altered enzyme activities. Measurement of the maximal catalytic activity of fructokinase revealed a 2-fold variation in leaf (from 90 to 180% of wild type activity) and either a 10- or 30-fold variation in tuber (from 10 or 30% to 300% in Record and Desiree, respectively) activity. The comparative effect of the antisense construct in leaf and tuber tissue suggests that this isoform is only a minor contributor to the total fructokinase activity in the leaf but the predominant isoform in the tuber. Antisense inhibition of the fructokinase resulted in a reduced tuber yield; however, its overexpression had no impact on this parameter. The modulation of fructokinase activity had few, consistent effects on carbohydrate levels, with the exception of a general increase in glucose content in the antisense lines, suggesting that this enzyme is not important for the control of starch synthesis. However, when metabolic fluxes were estimated, it became apparent that the transgenic lines display a marked shift in metabolism, with the rate of redistribution of radiolabel to sucrose markedly affected by the activity of fructokinase. These data suggest an important role for fructokinase, acting in concert with sucrose synthase, in maintaining a balance between sucrose synthesis and degradation by a mechanism independent of that controlled by the hexose phosphate-mediated activation of sucrose phosphate synthase. PMID:15890680

  17. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.

    PubMed

    Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

    2003-12-01

    The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants. PMID:12927022

  18. Host Status of Different Potato (Solanum tuberosum) Varieties and Hatching in Root Diffusates of Globodera ellingtonae.

    PubMed

    Zasada, Inga A; Peetz, Amy; Wade, Nadine; Navarre, Roy A; Ingham, Russ E

    2013-09-01

    Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. 'Russet Burbank,' 'Desiree,' 'Modac,' 'Norland,' 'Umatilla,' and 'Yukon Gold' were good hosts (RF > 14) for G. ellingtonae. Potato varieties 'Maris Piper,' 'Atlantic,' and 'Satina,' all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera ellingtonae hatched readily in PRD and TRD

  19. Host Status of Different Potato (Solanum tuberosum) Varieties and Hatching in Root Diffusates of Globodera ellingtonae

    PubMed Central

    Zasada, Inga A.; Peetz, Amy; Wade, Nadine; Navarre, Roy A.; Ingham, Russ E.

    2013-01-01

    Globodera ellingtonae was detected in Oregon in 2008. In order to make decisions regarding the regulation of this nematode, knowledge of its biology is required. We determined the host status of a diversity of potato (Solanum tuberosum) varieties in soil-based experiments and identified hatching stimulants in in vitro hatching assays. ‘Russet Burbank,’ ‘Desiree,’ ‘Modac,’ ‘Norland,’ ‘Umatilla,’ and ‘Yukon Gold’ were good hosts (RF > 14) for G. ellingtonae. Potato varieties ‘Maris Piper,’ ‘Atlantic,’ and ‘Satina,’ all which contain the Ro1 gene that confers resistance to G. rostochiensis, were not hosts for G. ellingtonae. In in vitro hatching assays, G. ellingtonae hatched readily in the presence of diffusates from potato (PRD) and tomato (Solanum lycopersicum; TRD). Egg hatch occurred in an average of between 87% and 90% of exposed cysts, with an average of between 144 and 164 juveniles emerging per cyst, from PRD- and TRD-treated cysts, respectively. This nematode hatched rapidly in the presence of PRD and TRD, with at least 66% of total hatch occurring by day 3 of exposure. There was no dose-response of egg hatch to concentrations of PRD or TRD ranging from 1:5 to 1:100 diffusate to water. When G. ellingtonae was exposed to root diffusates from 21 different plants, hatch occurred in 0% to 70% of exposed cysts, with an average of between 0 to 27 juveniles emerging per cyst. When root diffusate-exposed cysts were subsequently transferred to PRD to test viability, root diffusates from arugula (Eruca sativa), sudangrass (Sorghum bicolor subsp. drummondii), and common vetch (Vicia sativa) continued to inhibit egg hatch compared with the other root diffusates or water in which hatch occurred readily (60 to 182 juveniles emerging per cyst). Previously known hatching stimulants of G. rostochiensis and G. pallida, sodium metavanadate, sodium orthovanadate, and sodium thiocyanate, stimulated some egg hatch. Although, Globodera

  20. Structure of two solanum tuberosum steroidal glycoalkaloid glycosyltransferase genes and expression of their promoters in transgenic potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sgt2 gene in potato encodes a solanidine glucosyltransferase and is present as two distinct alleles expressed in cultivated potatoes. Promoter regions upstream from both steroidal glycoalkaloid biosynthetic gene alleles, Sgt2.1 and Sgt2.2, were isolated from Solanum tuberosum cv. Russet Burbank ...

  1. 4r2Host status of different potato (Solanum tuberosum) varieties and hatching in root diffusate of Globodera ellingtonae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An atypical Globodera population was detected in Oregon in 2008. As the first step towards understanding the biology of this nematode, cysts were exposed to a range of root diffusates. The Globodera population hatched readily in the presence of diffusates from potato (Solanum tuberosum; PRD) and t...

  2. Large-scale shifts in potato (Solanum tuberosum) tuber physiology occur following infection by ‘Candidatus Liberibacter solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zebra chip disease (ZC), putatively caused by ‘Candidatus Liberibacter solanacearum’ (Lso), is an emerging threat to worldwide potato (Solanum tuberosum) production. The disease renders infected tubers unmarketable due to increased browning symptoms when tubers are cut or fried. Potato tubers exhibi...

  3. Transport and Sorting of the Solanum tuberosum Sucrose Transporter SUT1 Is Affected by Posttranslational Modification[W

    PubMed Central

    Krügel, Undine; Veenhoff, Liesbeth M.; Langbein, Jennifer; Wiederhold, Elena; Liesche, Johannes; Friedrich, Thomas; Grimm, Bernhard; Martinoia, Enrico; Poolman, Bert; Kühn, Christina

    2008-01-01

    The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed. PMID:18790827

  4. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum).

    PubMed

    Chaouachi, Maher; El Malki, Redouane; Berard, Aurélie; Romaniuk, Marcel; Laval, Valérie; Brunel, Dominique; Bertheau, Yves

    2008-03-26

    The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis. PMID:18303841

  5. Lipid and oxylipin profiles during aging and sprout development in potato tubers (Solanum tuberosum L.).

    PubMed

    Fauconnier, Marie Laure; Welti, Ruth; Blée, Elizabeth; Marlier, Michel

    2003-07-21

    Potato tubers (Solanum tuberosum L. cv Bintje) were stored at 20 degrees C for 210 days without desprouting to study the lipoxygenase pathway during aging. After 15 days of storage, potato tubers sprouted, while after 45-60 days, apical dominance was lost and multiple sprouts developed. Analysis of the fatty acid hydroperoxides (HPOs) revealed that 9-S-hydroperoxide of linoleic acid (9-HPOD) was the main oxylipin formed. Between 45 and 60 days of storage, increases in the levels of 9-HPOD and colneleic acid were observed. Analysis of phospholipids and galactolipids by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that a decrease in the levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), digalactosyldiacylglycerol (DGDG), and monogalactosyldiacylglycerol (MGDG) occurred between 0 and 45 days of aging. The decrease in the amount of linoleic acid in complex lipids correlates well with the amount of 9-HPOD and colneleic acid produced. PMID:12880871

  6. Hypoxic stress inhibits multiple aspects of the potato tuber wound response. [Solanum tuberosum L

    SciTech Connect

    Butler, W.; Cook, L.; Vayda, M.E. )

    1990-05-01

    Potato (Solanum tuberosum L.) tubers subjected to wounding under hypoxic stress do not synthesize RNA species that are induced in response to wounding in aerobic conditions. Further, wound-response proteins fail to be synthesized when wounded tubers are transferred to hypoxic conditions although messenger RNAs which encode them persist for many hours after transfer. Hypoxic stress also prevents the incorporation of ({sup 3}H)thymidine by wounded tubers that occurs in aerobic conditions. In contrast, hypoxic tubers accumulate and translate transcripts of genes whose products are involved in anaerobic metabolism whether or not they are wounded. Both the hypoxic response and the aerobic wound response preclude the synthesis of proteins encoded by messenger RNAs which accumulated during the tuberization process and which can be translated in vitro. Finally, wounding elicits the degradation of a subset of these tuberization-associated transcripts. These data indicate a complex and precise regulation of gene expression at several levels of macromolecular synthesis.

  7. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase.

    PubMed

    Auslender, Evgenia L; Dorion, Sonia; Dumont, Sébastien; Rivoal, Jean

    2015-06-01

    The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates. PMID:25573389

  8. Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions.

    PubMed

    Schilling, Stephan; Stenzel, Irene; von Bohlen, Alex; Wermann, Michael; Schulz, Katrin; Demuth, Hans-Ulrich; Wasternack, Claus

    2007-02-01

    Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 10(5)- to 10(6)-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed. PMID:17261077

  9. Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum.

    PubMed

    Hardigan, Michael A; Crisovan, Emily; Hamilton, John P; Kim, Jeongwoon; Laimbeer, Parker; Leisner, Courtney P; Manrique-Carpintero, Norma C; Newton, Linsey; Pham, Gina M; Vaillancourt, Brieanne; Yang, Xueming; Zeng, Zixian; Douches, David S; Jiang, Jiming; Veilleux, Richard E; Buell, C Robin

    2016-02-01

    Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways. PMID:26772996

  10. Molecular cloning and characterization of cDNAs encoding hemoglobin from wheat (Triticum aestivum) and potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2003-06-11

    Hemoglobins (Hbs) are heme proteins encountered in all five kingdoms of living organisms. In plants, two different classes of Hbs have been identified: nonsymbiotic (class I) from both monocot and dicot species and symbiotic (class II) Hbs from nitrogen-fixing plants. This work reports the cloning and analysis of three nonsymbiotic Hb genes from wheat (Triticum aestivum) and potato (Solanum tuberosum). The Hb cDNAs were amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using consensus oligonucleotide primers for nonsymbiotic Hbs.A wheat Hb cDNA (TaHb1) was isolated and shows a very high similarity to nonsymbiotic Hbs from Hordeum vulgare (98%) and Zea mays (83%). Another wheat Hb cDNA, designated TaHb2, exhibited strong similarity to truncated bacterial Hbs, the so-called 2-on-2 Hbs. In addition, a third Hb was cloned from potato, StHb. Expression analysis by RT-PCR demonstrated a very high expression level of the TaHb1 gene only in wheat roots. In contrast, the other wheat hemoglobin gene, TaHb2, was demonstrated to be constitutively expressed although differences in expression level in different tissues were observed. The expression of the TaHb1 gene is induced in wheat roots exposed to microaerobic conditions. The potato Hb gene, StHb, was highly expressed in roots and also in tubers and stem tissue although at much reduced levels. PMID:12787929

  11. Characterization and Transcriptional Profile of Genes Involved in Glycoalkaloid Biosynthesis in New Varieties of Solanum tuberosum L.

    PubMed

    Mariot, Roberta Fogliatto; de Oliveira, Luisa Abruzzi; Voorhuijzen, Marleen M; Staats, Martijn; Hutten, Ronald C B; van Dijk, Jeroen P; Kok, Esther J; Frazzon, Jeverson

    2016-02-01

    Before commercial release, new potato (Solanum tuberosum) varieties must be evaluated for content of toxic compounds such as glycoalkaloids (GAs), which are potent poisons. GA biosynthesis proceeds via the cholesterol pathway to α-chaconine and α-solanine. The goal of this study was to evaluate the relationship between total glycoalkaloid (TGA) content and the expression of GAME, SGT1, and SGT3 genes in potato tubers. TGA content was measured by HPLC-MS, and reverse transcription quantitative polymerase chain reactions were performed to determine the relative expression of GAME, SGT1, and SGT3 genes. We searched for cis-elements of the transcription start site using the PlantPAN database. There was a relationship between TGA content and the relative expression of GAME, SGT1, and SGT3 genes in potato tubers. Putative promoter regions showed the presence of several cis-elements related to biotic and abiotic stresses and light. These findings provide an important step toward understanding TGA regulation and variation in potato tubers. PMID:26768994

  12. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  13. Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola).

    PubMed

    Mattinen, Maija-Liisa; Filpponen, Ilari; Järvinen, Riikka; Li, Bin; Kallio, Heikki; Lehtinen, Pekka; Argyropoulos, Dimitris

    2009-10-28

    Suberin is present in the underground parts of vegetables and in the bark of trees. Characterization of suberin and the structure of its polyphenolic component have been hampered by insolubility of the polymers. Thus, enzymatically isolated and extractive free suberin enriched fraction from potato, Solanum tuberosum var. Nikola, and the chemically further fractionated phenolics were characterized in solid state by FTIR, DSC, and elemental analysis to identify the groups and to verify success of isolation. For MW and quantitative determination of the groups, polymers were solubilized in ionic liquid derivatized and analyzed by GPC and (31)P NMR. Suberin enriched fraction, MW = ca. 44 x 10(3) g/mol, is a mixture of carbohydrates and polyesters of aliphatic long chain hydroxy fatty acids and diacids linked via ester bonds to the phenolics, MW = ca. 27 x 10(3) g/mol, formed by guaiacyl- and p-hydroxyphenyl structures. Phenolics in peels may be important sources of antioxidants for various applications. PMID:19785417

  14. Antioxidant, antimicrobial and anti-proliferative activities of Solanum tuberosum L. var. Vitelotte.

    PubMed

    Bontempo, Paola; Carafa, Vincenzo; Grassi, Roberto; Basile, Adriana; Tenore, Gian Carlo; Formisano, Carmen; Rigano, Daniela; Altucci, Lucia

    2013-05-01

    Solanum tuberosum L. var. Vitelotte is a potato variety widely used for human consumption. The pigments responsible for its attractive color belong to the class of anthocyanins. The objectives of this study were to characterize and measure the concentration of anthocyanins in pigmented potatoes and to evaluate their antioxidant and antimicrobial activities and their anti-proliferative effects in solid and hematological cancer cell lines. Anthocyanins exert anti-bacterial activity against different bacterial strains and a slight activity against three fungal strains. The Gram-positive bacterium Staphylococcus aureus and the fungus Rhyzoctonia solani were the most affected microorganisms. Antioxidant activities were evaluated by DPPH and FRAP methods; the extract showed a higher reducing capability than anti-radical activity. Moreover, we found that in different cancer cell models the anthocyanins cause inhibition of proliferation and apoptosis in a dose dependent manner. These biological activities are likely due to the high content of malvidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside and petunidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside. PMID:23313609

  15. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. PMID:25819317

  16. Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum).

    PubMed

    Handa, M; Guidotti, G

    1996-01-26

    A soluble ATP-diphosphohydrolase (apyrase, EC 3.6.1.5) has been purified from potato tubers. Solanum tuberosum, to a specific activity of 10,000 mumol P(i)/mg/min. The cDNA corresponding to the potato apyrase has been isolated and termed RROP1. The deduced amino acid sequence contains a putative signal sequence, two hydrophobic regions at the carboxy terminus, two potential Asn-linked glycosylation sites, and four regions in the amino-terminal half that we term ACR (apyrase conserved regions) 1-4 that are highly conserved in known apyrases and related enzymes; garden pea nucleoside triphosphatase, Toxoplasma gondii nucleoside triphosphate hydrolases, and Saccharomyces cerevisiae golgi guanosine diphosphatase. A yeast 71.9-kDa hypothetical protein on chromosome V, a Caenorhabditis elegans hypothetical 61.3-kDa protein on chromosome III, and human CD39, a lymphoid cell activation antigen, also share the conserved ACR regions, but their ability to hydrolyze nucleotides has not been assessed. PMID:8579614

  17. The subunit structure of potato tuber ADPglucose pyrophosphorylase. [Solanum tuberosum L

    SciTech Connect

    Okita, T.W.; Nakata, P.A.; Anderson, J.M. ); Sowokinos, J. ); Morell, M.; Preiss, J. )

    1990-06-01

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.

  18. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  19. Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation.

    PubMed

    Soares, Ivanesa G M; Silva, Edvane B; Amaral, Ademir J; Machado, Erilane C L; Silva, Josenilda M

    2016-06-01

    This work evaluated the effects of ionizing radiation on the physico-chemical and sensory characteristics of the potato cultivar Ágata (Solanum tuberosum L.), including budding and deterioration, with the end goal of increasing shelf life. For this, four groups of samples were harvested at the maturation stage. Three of them were separately exposed to a Co-60 source, receiving respective doses of 0.10, 0.15 and 2.00 kGy, while the non-irradiated group was kept as a control. All samples were stored for 35 days at 24 °C (± 2) and at 39% relative humidity. The following aspects were evaluated: budding, rot, loss of weight, texture, flesh color, moisture, external and internal appearance, aroma, soluble solids, titratable acidity, vitamin C, protein, starch and glucose. The results indicated that 0.15 kGy was the most effective dose to reduce sprouting and post-harvest losses, under the conditions studied. PMID:27276382

  20. Purification of a polyphenol oxidase isoform from potato (Solanum tuberosum) tubers.

    PubMed

    Marri, Costanza; Frazzoli, Alessandra; Hochkoeppler, Alejandro; Poggi, Valeria

    2003-08-01

    A different expression pattern of polyphenol oxidases has been observed during storage in cultivars of potato (Solanum tuberosum L.) featuring different length of dormancy: a short-dormant cultivar showed, at the end of the dormancy, both the highest polyphenol oxidase activity and the largest number of enzyme isoforms. An isoform of polyphenol oxidase isolated at the end of the physiological dormancy from a short-dormant cultivar has been purified to homogeneity by means of column chromatography on phenyl Sepharose and on Superdex 200. The purification factor has been determined equal to 88, and the molecular mass of the purified isoform has been estimated to be 69 and 340 kDa by SDS polyacrylamide gel electrophoresis and gel filtration on Superdex 200, respectively, indicating this PPO isoform as a multimer. The corresponding zymogram features a diffused single band at the cathodic region of the gel and the pI of this polyphenol oxidase has been calculated equal to 6.5. PMID:12877914

  1. Polyphenol oxidase expression in potato (Solanum tuberosum) tubers inhibited to sprouting by treatment with iodine atmosphere.

    PubMed

    Eolini, Francesco; Hochkoeppler, Alejandro; Credi, Andrea; Rodríguez, Antonio Gonzàlez Vara Y; Poggi, Valeria

    2004-08-01

    Iodine-saturated atmosphere was found to inhibit the sprouting of potato (Solanum tuberosum L.) tubers. The iodine concentration in tuber tissues increased as a function of exposure length, and the onset of inhibition of sprouting was found to depend on tubers genotype. During the time-course of the treatment, the transcription of polyphenol oxidases (EC 1.10.3.1 and EC 1.14.18.1) was undetectable in tuber peel, whereas in bud tissues featured an increase, followed by a decrease occurring simultaneously with the suppression of sprouting. The treatment of tubers with iodine strongly affected the expression of polyphenol oxidases at the transcriptional level. Polyphenol oxidase activity in buds poorly reflected the corresponding level of transcription; similarly, little differences were found among the enzyme isoforms expressed in buds as a function of length of exposure to iodine. These findings suggest that the induction of polyphenol oxidases mRNAs transcription could probe the inhibition of sprouting by iodine. PMID:15587701

  2. Characterization of Solanum tuberosum Multicystatin and the Significance of Core Domains[C

    PubMed Central

    Green, Abigail R.; Nissen, Mark S.; Kumar, G.N. Mohan; Knowles, N. Richard; Kang, ChulHee

    2013-01-01

    Potato (Solanum tuberosum) multicystatin (PMC) is a unique cystatin composed of eight repeating units, each capable of inhibiting cysteine proteases. PMC is a composite of several cystatins linked by trypsin-sensitive (serine protease) domains and undergoes transitions between soluble and crystalline forms. However, the significance and the regulatory mechanism or mechanisms governing these transitions are not clearly established. Here, we report the 2.2-Å crystal structure of the trypsin-resistant PMC core consisting of the fifth, sixth, and seventh domains. The observed interdomain interaction explains PMC’s resistance to trypsin and pH-dependent solubility/aggregation. Under acidic pH, weakening of the interdomain interactions exposes individual domains, resulting in not only depolymerization of the crystalline form but also exposure of cystatin domains for inhibition of cysteine proteases. This in turn allows serine protease–mediated fragmentation of PMC, producing ∼10-kD domains with intact inhibitory capacity and faster diffusion, thus enhancing PMC’s inhibitory ability toward cysteine proteases. The crystal structure, light-scattering experiments, isothermal titration calorimetry, and site-directed mutagenesis confirmed the critical role of pH and N-terminal residues in these dynamic transitions between monomer/polymer of PMC. Our data support a notion that the pH-dependent structural regulation of PMC has defense-related implications in tuber physiology via its ability to regulate protein catabolism. PMID:24363310

  3. Patatin, the tuber storage protein of potato (Solanum tuberosum L.), exhibits antioxidant activity in vitro.

    PubMed

    Liu, Yen-Wenn; Han, Chuan-Hsiao; Lee, Mei-Hsien; Hsu, Feng-Lin; Hou, Wen-Chi

    2003-07-16

    The potato (Solanum tuberosum L.) tuber storage protein, patatin, was purified to homogeneity with a molecular mass of 45 kDa. The purified patatin showed antioxidant or antiradical activity by a series of in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (half-inhibition concentration, IC(50), was 0.582 mg/mL) scavenging activity assays, anti-human low-density lipoprotein peroxidation tests, and protections against hydroxyl radical-mediated DNA damages and peroxynitrite-mediated dihydrorhodamine 123 oxidations. Using electron paramagnetic resonance (EPR) spectrometry for hydroxyl radical detections, it was found that the intensities of the EPR signal were decreased by the increased amounts of patatin added (IC(50) was 0.775 mg/mL). Through modifications of patatin by iodoacetamide or N-bromosuccinimide, it was found that the antiradical activities of modified patatin against DPPH or hydroxyl radicals were decreased. It was suggested that cysteine and tryptophan residues in patatin might contribute to its antioxidant activities against radicals. PMID:12848515

  4. Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.).

    PubMed

    Grunenfelder, Laura A; Knowles, Lisa O; Hiller, Larry K; Knowles, N Richard

    2006-08-01

    Chlorophyll and glycoalkaloid synthesis in potato (Solanum tuberosum L.) tubers occur in direct response to light. The two processes are concurrent, but independent. Color photographic indices to subjectively grade fresh market potatoes for the extent of greening were developed under lighting conditions consistent with those of retail markets. Total glycoalkaloid (TGA) and chlorophyll accumulation for four cultivars were determined over the respective greening scales, thus calibrating the scales for TGA content. On average, TGA concentrations in complete longitudinal sections of tubers (flesh samples) were highest in Dark Red Norland followed by Russet Norkotah, Yukon Gold, and White Rose. TGA concentrations of flesh samples of White Rose and Yukon Gold tubers were somewhat variable and did not increase in direct proportion to greening level and chlorophyll content, particularly at higher levels of greening. TGA concentrations in Dark Red Norland and Russet Norkotah tubers were highly correlated (P < or = 0.001) with greening level and chlorophyll concentrations. When averaged over greening levels, skin samples contained 3.4- to 6.8-fold higher concentrations of TGAs than flesh samples, depending on the cultivar. The TGA concentration in periderm samples ranged from 37 to 160 mg/100 g of dry wt. Regardless of greening level, concentrations of TGAs in the flesh samples (including attached periderm) remained within limits presumed safe for human consumption. Discrimination of greened tubers on the basis of perceived glycoalkaloid toxicity is likely unfounded for the cultivars and greening levels studied. PMID:16881686

  5. Metabolic Biosynthesis of Potato (Solanum tuberosum l.) Antioxidants and Implications for Human Health.

    PubMed

    Lovat, Christie; Nassar, Atef M K; Kubow, Stan; Li, Xiu-Qing; Donnelly, Danielle J

    2016-10-25

    Potato (Solanum tuberosum L.) is common, affordable, readily stored, easily prepared for consumption, and nutritious. For these reasons, potato has become one of the top five crops consumed worldwide. Consequently, it is important to understand its contribution to both our daily and long-term health. Potato is one of the most important sources of antioxidants in the human diet. As such, it supports the antioxidant defense network in our bodies that reduces cellular and tissue toxicities that result from free radical-induced protein, lipid, carbohydrate, and DNA damage. In this way, potato antioxidants may reduce the risk for cancers, cardiovascular diseases, diabetes, and even radiation damage. A better understanding of these components of potato is needed by the food industry, health professionals, and consumers. This review provides referenced summaries of all of the antioxidant groups present in potato tubers and updated schematics including genetic regulation for the major antioxidant biosynthesis pathways. This review complements current knowledge on the role of potato in human health. We hope it will provide impetus toward breeding efforts to develop cultivars with increased antioxidant capacity as 'functional foods' and encourage potato consumers and processors to work toward preservation of antioxidant capacity in cooked potato and potato products. PMID:25674927

  6. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis. PMID:27039890

  7. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System

    PubMed Central

    Butler, Nathaniel M.; Atkins, Paul A.; Voytas, Daniel F.; Douches, David S.

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3–60% per transformation and from 0–29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87–100%. This

  8. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.

    PubMed

    Butler, Nathaniel M; Atkins, Paul A; Voytas, Daniel F; Douches, David S

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration

  9. The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis

    PubMed Central

    Gyetvai, Gabor; Sønderkær, Mads; Göbel, Ulrike; Basekow, Rico; Ballvora, Agim; Imhoff, Maren; Kersten, Birgit; Nielsen, Kåre-Lehman; Gebhardt, Christiane

    2012-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is the most important disease of potato (Solanum tuberosum). Understanding the molecular basis of resistance and susceptibility to late blight is therefore highly relevant for developing resistant cultivars, either by marker-assissted selection or by transgenic approaches. Specific P. infestans races having the Avr1 effector gene trigger a hypersensitive resistance response in potato plants carrying the R1 resistance gene (incompatible interaction) and cause disease in plants lacking R1 (compatible interaction). The transcriptomes of the compatible and incompatible interaction were captured by DeepSAGE analysis of 44 biological samples comprising five genotypes, differing only by the presence or absence of the R1 transgene, three infection time points and three biological replicates. 30.859 unique 21 base pair sequence tags were obtained, one third of which did not match any known potato transcript sequence. Two third of the tags were expressed at low frequency (<10 tag counts/million). 20.470 unitags matched to approximately twelve thousand potato transcribed genes. Tag frequencies were compared between compatible and incompatible interactions over the infection time course and between compatible and incompatible genotypes. Transcriptional changes were more numerous in compatible than in incompatible interactions. In contrast to incompatible interactions, transcriptional changes in the compatible interaction were observed predominantly for multigene families encoding defense response genes and genes functional in photosynthesis and CO2 fixation. Numerous transcriptional differences were also observed between near isogenic genotypes prior to infection with P. infestans. Our DeepSAGE transcriptome analysis uncovered novel candidate genes for plant host pathogen interactions, examples of which are discussed with respect to possible function. PMID:22328937

  10. The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs.

    PubMed

    Grandellis, Carolina; Giammaria, Verónica; Bialer, Magalí; Santin, Franco; Lin, Tian; Hannapel, David J; Ulloa, Rita M

    2012-12-01

    Calcium-dependent protein kinases (CDPKs) are key components of calcium regulated signaling cascades in plants. In this work, isoform StCDPK3 from Solanum tuberosum was studied and fully described. StCDPK3 encodes a 63 kDa protein with an N-terminal variable domain (NTV), rich in prolines and glutamines, which presents myristoylation and palmitoylation consensus sites and a PEST sequence indicative of rapid protein degradation. StCDPK3 gene (circa 11 kb) is localized in chromosome 3, shares the eight exons and seven introns structure with other isoforms from subgroup IIa and contains an additional intron in the 5'UTR region. StCDPK3 expression is ubiquitous being transcripts more abundant in early elongating stolons (ES), leaves and roots, however isoform specific antibodies only detected the protein in leaf particulate extracts. The recombinant 6xHis-StCDPK3 is an active kinase that differs in its kinetic parameters and calcium requirements from StCDPK1 and 2 isoforms. In vitro, StCDPK3 undergoes autophosphorylation regardless of the addition of calcium. The StCDPK3 promoter region (circa 1,800 bp) was subcloned by genome walking and fused to GUS. Light and ABRE responsive elements were identified in the promoter region as well as elements associated to expression in roots. StCDPK3 expression was enhanced by ABA while GA decreased it. Potato transgenic lines harboring StCDPK3 promoter∷GUS construct were generated by Agrobacterium tumefaciens mediated plant transformation. Promoter activity was detected in leaves, root tips and branching points, early ES, tuber eyes and developing sprouts indicating that StCDPK3 is expressed in actively growing organs. PMID:22922879

  11. Gene Expression Changes in Phosphorus Deficient Potato (Solanum tuberosum L.) Leaves and the Potential for Diagnostic Gene Expression Markers

    PubMed Central

    Hammond, John P.; Broadley, Martin R.; Bowen, Helen C.; Spracklen, William P.; Hayden, Rory M.; White, Philip J.

    2011-01-01

    Background There are compelling economic and environmental reasons to reduce our reliance on inorganic phosphate (Pi) fertilisers. Better management of Pi fertiliser applications is one option to improve the efficiency of Pi fertiliser use, whilst maintaining crop yields. Application rates of Pi fertilisers are traditionally determined from analyses of soil or plant tissues. Alternatively, diagnostic genes with altered expression under Pi limiting conditions that suggest a physiological requirement for Pi fertilisation, could be used to manage Pifertiliser applications, and might be more precise than indirect measurements of soil or tissue samples. Results We grew potato (Solanum tuberosum L.) plants hydroponically, under glasshouse conditions, to control their nutrient status accurately. Samples of total leaf RNA taken periodically after Pi was removed from the nutrient solution were labelled and hybridised to potato oligonucleotide arrays. A total of 1,659 genes were significantly differentially expressed following Pi withdrawal. These included genes that encode proteins involved in lipid, protein, and carbohydrate metabolism, characteristic of Pi deficient leaves and included potential novel roles for genes encoding patatin like proteins in potatoes. The array data were analysed using a support vector machine algorithm to identify groups of genes that could predict the Pi status of the crop. These groups of diagnostic genes were tested using field grown potatoes that had either been fertilised or unfertilised. A group of 200 genes could correctly predict the Pi status of field grown potatoes. Conclusions This paper provides a proof-of-concept demonstration for using microarrays and class prediction tools to predict the Pi status of a field grown potato crop. There is potential to develop this technology for other biotic and abiotic stresses in field grown crops. Ultimately, a better understanding of crop stresses may improve our management of the crop, improving

  12. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    PubMed

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  13. Selection of Reference Genes for Transcriptional Analysis of Edible Tubers of Potato (Solanum tuberosum L.)

    PubMed Central

    Voorhuijzen, Marleen M.; Staats, Martijn; Hutten, Ronald C. B.; Van Dijk, Jeroen P.; Kok, Esther; Frazzon, Jeverson

    2015-01-01

    Potato (Solanum tuberosum) yield has increased dramatically over the last 50 years and this has been achieved by a combination of improved agronomy and biotechnology efforts. Gene studies are taking place to improve new qualities and develop new cultivars. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a bench-marking analytical tool for gene expression analysis, but its accuracy is highly dependent on a reliable normalization strategy of an invariant reference genes. For this reason, the goal of this work was to select and validate reference genes for transcriptional analysis of edible tubers of potato. To do so, RT-qPCR primers were designed for ten genes with relatively stable expression in potato tubers as observed in RNA-Seq experiments. Primers were designed across exon boundaries to avoid genomic DNA contamination. Differences were observed in the ranking of candidate genes identified by geNorm, NormFinder and BestKeeper algorithms. The ranks determined by geNorm and NormFinder were very similar and for all samples the most stable candidates were C2, exocyst complex component sec3 (SEC3) and ATCUL3/ATCUL3A/CUL3/CUL3A (CUL3A). According to BestKeeper, the importin alpha and ubiquitin-associated/ts-n genes were the most stable. Three genes were selected as reference genes for potato edible tubers in RT-qPCR studies. The first one, called C2, was selected in common by NormFinder and geNorm, the second one is SEC3, selected by NormFinder, and the third one is CUL3A, selected by geNorm. Appropriate reference genes identified in this work will help to improve the accuracy of gene expression quantification analyses by taking into account differences that may be observed in RNA quality or reverse transcription efficiency across the samples. PMID:25830330

  14. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.).

    PubMed

    Massa, Alicia N; Manrique-Carpintero, Norma C; Coombs, Joseph J; Zarka, Daniel G; Boone, Anne E; Kirk, William W; Hackett, Christine A; Bryan, Glenn J; Douches, David S

    2015-11-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  15. Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)

    PubMed Central

    Massa, Alicia N.; Manrique-Carpintero, Norma C.; Coombs, Joseph J.; Zarka, Daniel G.; Boone, Anne E.; Kirk, William W.; Hackett, Christine A.; Bryan, Glenn J.; Douches, David S.

    2015-01-01

    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications. PMID:26374597

  16. [Allelic state of the molecular marker for the golden nematode (Globodera rostochiensis) resistance gene H1 among Ukrainian and world cultivars of potato (Solanum tuberosum ssp. tuberosum)].

    PubMed

    Karelov, A V; Pilipenko, L A; Kozub, N A; Bondus, R A; Borzykh, A U; Sozinov, I A; Blium, Ia B; Sozinov, A A

    2013-01-01

    The purpose of our investigation was determination of allelic state of the H1 resistance gene against the pathotypes Ro1 and Ro4 of golden potato cyst nematode (Globodera rostochiensis) among Ukrainian and world potato (Solanum tuberosum ssp. tuberosum) cultivars. The allelic condition of the TG689 marker was determined by PCR with DNA samples isolated from tubers of potato and primers, one pair of which flanks the allele-specific region and the other one was used for the control of DNA quality. Among analyzed 77 potato cultivars the allele of marker associated with the H1-type resistance was found in 74% of Ukrainian and 90% foreign ones although some of those cultivars proved to be susceptible to the golden potato nematode in field. The obtained data confirm the presence of H1-resistance against golden nematode pathotypes Ro1 and Ro4 among the Ukrainian potato cultivars and efficiency of the used marker within the accuracy that has been declared by its authors. PMID:24228497

  17. Acclimation of photosynthesis to elevated CO sub 2 in five C sub 3 species. [Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, Brassica oleracea

    SciTech Connect

    Sage, R.F. ); Sharkey, T.D. ); Seemann, J.R. )

    1989-02-01

    The effect of long-term (weeks to months) CO{sub 2} enhancement on (a) the gas-exchange characteristics, (b) the content and activation state of ribulose-1,5-bisphosphate carboxylase (rubisco), and (c) leaf nitrogen, chlorophyll, and dry weight per area were studied in five C{sub 3} species (Chenopodium album, Phaseolus vulgaris, Solanum tuberosum, Solanum melongena, and Brassica oleracea) grown at CO{sub 2} partial pressures of 300 or 900 to 1000 microbars. Long-term exposure to elevated CO{sub 2} affected the CO{sub 2} response of photosynthesis in one of three ways: (a) the initial slope of the CO{sub 2} response was unaffected, but the photosynthetic rate at high CO{sub 2} increased (S. tuberosum); (b) the initial slope decreased but the CO{sub 2}-saturated rate of photosynthesis decreased (B. oleracea, S. melongena). In all five species, growth at high CO{sub 2} increased the extent to which photosynthesis was stimulated following a decrease in the partial pressure of O{sub 2} or an increase in measurement CO{sub 2} above 600 microbars. This stimulation indicates that a limitation on photosynthesis by the capacity to regenerate orthophosphate was reduced or absent after acclimation to high CO{sub 2}. Leaf nitrogen per area either increased (S. tuberosum, S. melongena) or was little changed by CO{sub 2} enhancement. The content of rubisco was lower in only two of the fives species, yet its activation state was 19% to 48% lower in all five species following long-term exposure to high CO{sub 2}. These results indicate that during growth in CO{sub 2}-enriched air, leaf rubisco content remains in excess of that required to support the observed photosynthetic rates.

  18. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern.

    PubMed

    Delaplace, Pierre; Fauconnier, Marie-Laure; Sergeant, Kjell; Dierick, Jean-François; Oufir, Mouhssin; van der Wal, Froukje; America, Antoine H P; Renaut, Jenny; Hausman, Jean-François; du Jardin, Patrick

    2009-01-01

    During post-harvest storage, potato tubers age as they undergo an evolution of their physiological state influencing their sprouting pattern. In the present study, physiological and biochemical approaches were combined to provide new insights on potato (Solanum tuberosum L. cv. Désirée) tuber ageing. An increase in the physiological age index (PAI) value from 0.14 to 0.83 occurred during storage at 4 degrees C over 270 d. Using this reference frame, a proteomic approach was followed based on two-dimensional electrophoresis. In the experimental conditions of this study, a marked proteolysis of patatin occurred after the PAI reached a value of 0.6. In parallel, several glycolytic enzymes were up-regulated and cellular components influencing protein conformation and the response to stress were altered. The equilibrium between the 20S and 26S forms of the proteasome was modified, the 20S form that recycles oxidized proteins being up-regulated. Two proteins belonging to the cytoskeleton were also differentially expressed during ageing. As most of these changes are also observed in an oxidative stress context, an approach focused on antioxidant compounds and enzymes as well as oxidative damage on polyunsaturated fatty acids and proteins was conducted. All the changes observed during ageing seemed to allow the potato tubers to maintain their radical scavenging activity until the end of the storage period as no accumulation of oxidative damage was observed. These data are interpreted considering the impact of reactive oxygen species on the development and the behaviour of other plant systems undergoing ageing or senescence processes. PMID:19204031

  19. Farmyard Manure and Fertilizer Effects on Seed Potato (Solanum tuberosum L.) Yield in Green House Production

    NASA Astrophysics Data System (ADS)

    László, M.

    2009-04-01

    fertilizer (18.0 g pot-1) with a hard effect (57%). Our results are shown that it was possible developing of the seed potato production under tropical greenhouse conditions by optimalised soil-organic matter-fertilizer system. This datas should be as indicators to sustainable field potato advisory systems. Keywords: potato (Solanum tuberosum L.), greenhouse, latossolo vermelho soil, farmyard manure, burnt rice straw, 4N:14P:8K fertilizer, sustainability, yield Introducáo: Importância e situação actual em produção da batata no Brazíl A batata é atualmente uma das hortaliças de maior importância no Brasíl (Márton 2000a., 2000b.) com um cultivo annual médio de 173.000 ha e uma produção de 2600000 t. A produtividade médio nacional é de 15 t ha-1, muito baixa se considerar que é possivel a obtenção de rendimentos acima de 40 t ha-1. Observa- se também, que existe variação no produtividade entre regiões e estados. E importante como fonte de alimento pelo seu alto valor nutricional a quantidade produzida muito superior por unidade de área a tempo, se comparada com diversas outras culturas (László 2000b., 2000c.). Os estados que tradicionalmente produzem batata em maior ou menor escala são indicados em seguente: Pernambuco, Ceará, Sergipe, Goiás, Mato Grosso, Mato Grosso do Sul, Rondonia e Acre. Os plantios predominantes são o das águas e das secas, sendo o de inverno bem menos expressivo, pois poucas áreas permitem o seu cultivo, na maioria dos casos necessitando- se de irrigação. Considerando as três épocas de plantio e diferentes condições climaticas brasileiras, podemos definir de um modo geral o plantio de batata no Brasíl da seguinte maneira: Nordeste e Centro- Oeste- plantio de inverno, Sudeste- plantio das águas, secas e inverno, Sul- plantio das aguas, secas e inverno. Sendo este último em áreas muito limitadas. Dentre as hortaliças a batata é uma das culturas mais estudadas actualmente. Os principais problemas que afetam a

  20. Characterization of broad spectrum Potato virus Y resistance in a Solanum tuberosum ssp. andigena-derived population and select breeding clones using molecular markers, grafting, and field inoculations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato virus Y causes yield loss in potato and PVY necrotic strains can result in loss of quality due to tissue necrosis in infected tubers The Ryadg gene from Solanum tuberosum ssp. andigena has been shown to provide resistance PVYO and PVYN/NTN strains and is useful in breeding for resistance to...

  1. First report of ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-A associated with a disease of potato (Solanum tuberosum) in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symptoms of little leaf, witches’-broom, and abnormally small and deformed potatoes, suggestive of possible phytoplasmal infection, were observed in diseased potato (Solanum tuberosum var. Hannibal arba Kestrel) in the Vilnius region of Lithuania. DNA extracted from symptomatic leaves and shoots we...

  2. Farmyard Manure and Fertilizer Effects on Seed Potato (Solanum tuberosum L.) Yield in Green House Production

    NASA Astrophysics Data System (ADS)

    László, M.

    2009-04-01

    crescentes dosagens de 0 e 18.0 grama vaso-1 diminuiram a produção assima de 250% em médio da duas misturas. 12. Numero de tuberculos 0-20 mm e 20 mm- por planta com os manejos de 0 e 18.0 grama vaso-1 foi possível aumentar em media 200% sobre a mistura padrão. Os manejo de 18.0 grama de adubo vaso-1 já causaram importante diminuição em relação caso a absoluto controle. 13. Numero total de tuberculos por planta entre manejos foi melhor a dosagem de 7.2 grama vaso-1 adubo complexo 4N:14P:8K comparando da mistura padrão. Nos verificamos-se que a mistura padrão sempre deu menor rasultados do que as outras misturas (i.e.: 1 e 2). Entre as misturas 1 e 2 a melhor foi a número 2. (80% latossolo vermelho novo, 10% palha de arroz queimado, 10% esterco de curral). Com esta mistura e com relação a mistura padrão, foi possível aumentar o número de tuberculos 0-20 mm com 77%. No caso do adubação, verificamos que grande quantidades de adubo acima de 7.2 grama vaso-1, de modo rigoroso diminuiu a produção de batata-semente pré- básica. Este fato deve ser considerado para a eleição das dosagens de adubos. Deve-se indicar o caso de número de tuberculos acima 20 mm-, onde em relação mistura padrão foi possivel aumentar em média 73% os resultados. Reconhecimento: Esta pesquisa foi apoio da Empresa Brasileira de Pesquisa Agropecuaria- Centro Nacional de Pesquisas de Hortaliças, Brasília-DF e Centro Pesquisa de Solo e Agroquímica do Academia Húngara de Ciências, Budapest References Kádár I-Márton L.-Horváth S. 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49: 291-306. Kurnik E.-Németh T.-Márton L.-Radimszki L. 2001. Effects of a new environment friendly deep fertilization system on a limy chernozem soil parameters. Agrochemistry and Soil Science. Budapest. In press László M. 2000. Nutrition of potato (Solanum tuberosum L.) on Hungary on a chernozem soil. Acta Agronomica Óváriensis. 42: 81

  3. Subsurface irrigation of potato crop (Solanum tuberosum ssp. Andigena) in Suka Kollus with different drainage systems

    NASA Astrophysics Data System (ADS)

    Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José

    2016-04-01

    Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1

  4. Reduction of the plastidial phosphorylase in potato (Solanum tuberosum L.) reveals impact on storage starch structure during growth at low temperature.

    PubMed

    Orawetz, Tom; Malinova, Irina; Orzechowski, Slawomir; Fettke, Joerg

    2016-03-01

    Tubers of potato (Solanum tuberosum L.), one of the most important crops, are a prominent example for an efficient production of storage starch. Nevertheless, the synthesis of this storage starch is not completely understood. The plastidial phosphorylase (Pho1; EC 2.4.1.1) catalyzes the reversible transfer of glucosyl residues from glucose-1-phosphate to the non-reducing end of α-glucans with the release of orthophosphate. Thus, the enzyme is in principle able to act during starch synthesis. However, so far under normal growth conditions no alterations in tuber starch metabolism were observed. Based on analyses of other species and also from in vitro experiments with potato tuber slices it was supposed, that Pho1 has a stronger impact on starch metabolism, when plants grow under low temperature conditions. Therefore, we analyzed the starch content, granule size, as well as the internal structure of starch granules isolated from potato plants grown under low temperatures. Besides wild type, transgenic potato plants with a strong reduction in the Pho1 activity were analyzed. No significant alterations in starch content and granule size were detected. In contrast, when plants were cultivated at low temperatures the chain length distributions of the starch granules were altered. Thus, the granules contained more short glucan chains. That was not observed in the transgenic plants, revealing that Pho1 in wild type is involved in the formation of the short glucan chains, at least at low temperatures. PMID:26828405

  5. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    Nowadays potato (Solanum tuberosum L.) is a more important throughout the world between field crops. As potato is such a potassium demanding crop, it is particularly important that the potassium fertilizers used should be correctly balanced. Applying the adequate quantity of balanced K- fertilizer is the first requirement for achieving optimum yield and doing so will result in potatoes of acceptable quality. Potato potassium nutrition has been studied at the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS)- Experiment Station, Nagyhörcsök (chernozem soil) in a long term field experiment designed to determine NPK- nutrient requirements. The method of the experiment was 43 mixed factorial design with 64 treatments in 2 repetitions with 128 plots. The residual effects of K- levels brought about by build- up fertilization were studied. Potato were planted in 1978. The experimental dates were estimated by multivariate analysis of variance (MANOVA). On the basis of foliar analysis at early flowering about 4.5 to 5.0% K in dry matter proved to be satisfactory for obtaining maximum yield (32.6 t/ha). The yields increased by 22%, 34%, and 38% at 124-140, 141-168 and 169-208 ppm soil AL- K2O rates, respectively. The tubers concentrated much N 19% and less P 81% than potassium. Results for tuber maximum uptake of potassium reached a maximum about 130 days after planting. The improvement of the K supply of the soil increased yield and induced low concentrations of numerous microelements on leaves considered to be important. Key words: Potato (Solanum tuberosum L.), chernozem soil, potassium, yield Introduction Potato is an important food crop, more particularly in the temperate zone, especially in Europe and Asia. Between 1981 and 1995, in spite of an 18% decrease in cultivated area production increased by 13% because the average yield increased from 11.0 to 15.1 t/ha. Potato is a soil nutrients demanding crop

  6. Alternative oxidase of potato is an integral membrane protein synthesized de novo during aging of tuber slices. [Solanum tuberosum

    SciTech Connect

    Hiser, C.; McIntosh, L. )

    1990-05-01

    The rise in alternative respiratory capacity upon aging of potato (Solanum tuberosum) tuber slices is correlated with changes in mitochondrial membrane protein composition and a requirement for cytoplasmic protein synthesis. However, the lack of an antibody specific to the alternative oxidase has, until recently, prevented examination of the alternative oxidase protein(s) itself. We have employed a monoclonal antibody raised against the Sauromatum guttatum alternative oxidase to investigate developmental changes in the alternative pathway of aging potato slice mitochondria and to characterize the potato alternative oxidase by one- and two-dimensional gel electrophoresis. The relative levels of a 36 kilodalton protein parallel the rise in alternative path capacity. A plausible interpretation is that this alternative oxidase protein is synthesized de novo during aging of potato slices.

  7. Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum.

    PubMed

    Komaraiah, P; Reddy, G V; Reddy, P Srinivas; Raghavendra, A S; Ramakrishna, S V; Reddanna, P

    2003-04-01

    Potato (Solanum tuberosum) hairy root cultures, established by infecting potato tuber discs with Agrobacterium rhizogenes, were used as a model system for the production of antimicrobial sesquiterpenes and lipoxygenase (LOX) metabolites. Of the four sesquiterpene phytoalexins (rishitin, lubimin, phytuberin and phytuberol) detected in elicitor-treated hairy root cultures, rishitin (213 micrograms g-1 dry wt) was the most predominant followed by lubimin (171 micrograms g-1 dry wt). The elicitors also induced LOX activity (25-fold increase) and LOX metabolites, mainly 9-hydroxyoctadecadienoic acid and 9-hydroxyoctadecatrienoic acid, in potato hairy root cultures. The combination of fungal elicitor plus cyclodextrin was the most effective elicitor treatment, followed by methyl jasmonate plus cyclodextrin in inducing sesquiterpenes and LOX metabolites. PMID:12882150

  8. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea. PMID:25772466

  9. Genome Reduction Uncovers a Large Dispensable Genome and Adaptive Role for Copy Number Variation in Asexually Propagated Solanum tuberosum[OPEN

    PubMed Central

    Hardigan, Michael A.; Crisovan, Emily; Hamilton, John P.; Laimbeer, Parker; Leisner, Courtney P.; Manrique-Carpintero, Norma C.; Newton, Linsey; Pham, Gina M.; Vaillancourt, Brieanne; Zeng, Zixian; Jiang, Jiming

    2016-01-01

    Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways. PMID:26772996

  10. A Medicago truncatula H+-pyrophosphatase gene, MtVP1, improves sucrose accumulation and anthocyanin biosynthesis in potato (Solanum tuberosum L.).

    PubMed

    Wang, J W; Wang, H Q; Xiang, W W; Chai, T Y

    2014-01-01

    We recently cloned MtVP1, a type I vacuolar-type H(+)-translocating inorganic pyrophosphatase from Medicago truncatula. In the present study, we investigated the cellular location and the function of this H(+)-PPase in Arabidopsis and potato (Solanum tuberosum L.). An MtVP1::enhanced green fluorescent protein fusion was constructed, which localized to the plasma membrane of onion epidermal cells. Transgenic Arabidopsis thaliana overexpressing MtVP1 had more robust root systems and redder shoots than wild-type (WT) plants under conditions of cold stress. Furthermore, overexpression of MtVP1 in potato accelerated the formation and growth of vegetative organs. The tuber buds and stem base of transgenic potatoes became redder than those of WT plants, but flowering was delayed by approximately half a month. Interestingly, anthocyanin biosynthesis was promoted in transgenic Arabidopsis seedlings and potato tuber buds. The sucrose concentration of transgenic potato tubers and tuber buds was enhanced compared with that of WT plants. Furthermore, sucrose concentration in tubers was higher than that in tuber buds. Although there was no direct evidence to support Fuglsang's hypothetical model regarding the effects of H(+)-PPase on sucrose phloem loading, we speculated that sucrose concentration was increased in tuber buds owing to the increased concentration in tubers. Therefore, overexpressed MtVP1 enhanced sucrose accumulation of source organs, which might enhance sucrose transport to sink organs, thus affecting anthocyanin biosynthesis. PMID:24854441

  11. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    Nowadays potato (Solanum tuberosum L.) is a more important throughout the world between field crops. As potato is such a potassium demanding crop, it is particularly important that the potassium fertilizers used should be correctly balanced. Applying the adequate quantity of balanced K- fertilizer is the first requirement for achieving optimum yield and doing so will result in potatoes of acceptable quality. Potato potassium nutrition has been studied at the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences (RISSAC-HAS)- Experiment Station, Nagyhörcsök (chernozem soil) in a long term field experiment designed to determine NPK- nutrient requirements. The method of the experiment was 43 mixed factorial design with 64 treatments in 2 repetitions with 128 plots. The residual effects of K- levels brought about by build- up fertilization were studied. Potato were planted in 1978. The experimental dates were estimated by multivariate analysis of variance (MANOVA). On the basis of foliar analysis at early flowering about 4.5 to 5.0% K in dry matter proved to be satisfactory for obtaining maximum yield (32.6 t/ha). The yields increased by 22%, 34%, and 38% at 124-140, 141-168 and 169-208 ppm soil AL- K2O rates, respectively. The tubers concentrated much N 19% and less P 81% than potassium. Results for tuber maximum uptake of potassium reached a maximum about 130 days after planting. The improvement of the K supply of the soil increased yield and induced low concentrations of numerous microelements on leaves considered to be important. Key words: Potato (Solanum tuberosum L.), chernozem soil, potassium, yield Introduction Potato is an important food crop, more particularly in the temperate zone, especially in Europe and Asia. Between 1981 and 1995, in spite of an 18% decrease in cultivated area production increased by 13% because the average yield increased from 11.0 to 15.1 t/ha. Potato is a soil nutrients demanding crop

  12. In silico insights into protein-protein interactions and folding dynamics of the saposin-like domain of Solanum tuberosum aspartic protease.

    PubMed

    De Moura, Dref C; Bryksa, Brian C; Yada, Rickey Y

    2014-01-01

    The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family. PMID:25188221

  13. In Silico Insights into Protein-Protein Interactions and Folding Dynamics of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease

    PubMed Central

    De Moura, Dref C.; Bryksa, Brian C.; Yada, Rickey Y.

    2014-01-01

    The plant-specific insert is an approximately 100-residue domain found exclusively within the C-terminal lobe of some plant aspartic proteases. Structurally, this domain is a member of the saposin-like protein family, and is involved in plant pathogen defense as well as vacuolar targeting of the parent protease molecule. Similar to other members of the saposin-like protein family, most notably saposins A and C, the recently resolved crystal structure of potato (Solanum tuberosum) plant-specific insert has been shown to exist in a substrate-bound open conformation in which the plant-specific insert oligomerizes to form homodimers. In addition to the open structure, a closed conformation also exists having the classic saposin fold of the saposin-like protein family as observed in the crystal structure of barley (Hordeum vulgare L.) plant-specific insert. In the present study, the mechanisms of tertiary and quaternary conformation changes of potato plant-specific insert were investigated in silico as a function of pH. Umbrella sampling and determination of the free energy change of dissociation of the plant-specific insert homodimer revealed that increasing the pH of the system to near physiological levels reduced the free energy barrier to dissociation. Furthermore, principal component analysis was used to characterize conformational changes at both acidic and neutral pH. The results indicated that the plant-specific insert may adopt a tertiary structure similar to the characteristic saposin fold and suggest a potential new structural motif among saposin-like proteins. To our knowledge, this acidified PSI structure presents the first example of an alternative saposin-fold motif for any member of the large and diverse SAPLIP family. PMID:25188221

  14. Rate-Limiting Late Blight Resistance Conferred by the RB Gene in Solanum tuberosum Transgenic Lines Does Not Impact Yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight of potato, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, is one of the most devastating plant pathogens of potato. A major late blight resistance gene, called RB, was previously identified in the wild potato species Solanum bulbocastanum and has been integrated ...

  15. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.).

    PubMed

    Finkers-Tomczak, Anna; Bakker, Erin; de Boer, Jan; van der Vossen, Edwin; Achenbach, Ute; Golas, Tomasz; Suryaningrat, Suwardi; Smant, Geert; Bakker, Jaap; Goverse, Aska

    2011-02-01

    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene. PMID:21049265

  16. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis

    PubMed Central

    Gosset, Virginie; Harmel, Nicolas; Göbel, Cornelia; Francis, Frédéric; Haubruge, Eric; Wathelet, Jean-Paul; du Jardin, Patrick; Feussner, Ivo; Fauconnier, Marie-Laure

    2009-01-01

    Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted. PMID:19221142

  17. Effect of Potato (Solanum tuberosum L.) Cropping Systems on Soil and Nutrient Losses Through Runoff in a Humic Nitisol, Kenya

    NASA Astrophysics Data System (ADS)

    Nyawade, Shadrack; Charles, Gachene; Karanja, Nancy; Elmar, Schulte-Geldermann

    2016-04-01

    Soil erosion has been identified as one of the major causes of soil productivity decline in the potato growing areas of East African Highlands. Potato establishes a protective soil cover only at about 45-60 days after planting and does not yield sufficient surface mulch upon harvest which leaves the soil bare at the critical times when rainfall intensities are usually high thus exposes soil to erosion. A field study was carried out using runoff plots during the short and long rainy seasons of 2014/15 respectively at the University of Nairobi Upper Kabete Farm, Kenya. The objectives were to assess the effect of soil surface roughness and potato cropping systems on soil loss and runoff, to determine the effect of erosion on nutrient enrichment ratio and to evaluate the soil organic matter fraction most susceptible to soil erosion. The treatments comprised of Bare Soil (T1); Potato + Garden Pea (Pisum sativa) (T2); Potato + Climbing Bean (Phaseolus vulgaris) (T3); Potato + Dolichos (Lablab purpureus) (T4) and Sole Potato (Solanum tuberosum L.) (T5). The amount of soil loss and runoff recorded in each event differed significantly between treatments (p<0.05) and were consistently highest in T1 and lowest in T4. Mean cumulative soil loss reduced by 6.4, 13.3 and 24.4 t ha-1from T2, T3 and T4 respectively compared to sole potato plots (T5), while mean cumulative runoff reduced by 8.5, 17.1 and 28.3 mm from T2, T3 and T4 respectively when compared with the sole potato plots (T5) indicating that T4 plots provided the most effective cover in reducing soil loss and runoff. Regression analyses revealed that both runoff and soil loss related significantly with surface roughness and percent cover (R2=0.83 and 0.73 respectively, p<0.05). Statistically significant linear dependence of runoff and soil loss on surface roughness and crop cover was found in T4 (p<0.05) indicating that this system was highly effective in minimizing soil loss and runoff. Enrichment ratio was on average

  18. Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries.

    PubMed

    Hirsch, Candice N; Hirsch, Cory D; Felcher, Kimberly; Coombs, Joseph; Zarka, Dan; Van Deynze, Allen; De Jong, Walter; Veilleux, Richard E; Jansky, Shelley; Bethke, Paul; Douches, David S; Buell, C Robin

    2013-06-01

    Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and intermarket class crosses and introgressions of wild and cultivated Solanum relatives. To retrospectively explore the effects of potato breeding at the genome level, we used 8303 single-nucleotide polymorphism markers to genotype a 250-line diversity panel composed of wild species, genetic stocks, and cultivated potato lines with release dates ranging from 1857 to 2011. Population structure analysis revealed four subpopulations within the panel, with cultivated potato lines grouping together and separate from wild species and genetic stocks. With pairwise kinship estimates clear separation between potato market classes was observed. Modern breeding efforts have scarcely changed the percentage of heterozygous loci or the frequency of homozygous, single-dose, and duplex loci on a genome level, despite concerted efforts by breeders. In contrast, clear selection in less than 50 years of breeding was observed for alleles in biosynthetic pathways important for market class-specific traits such as pigmentation and carbohydrate composition. Although improvement and diversification for distinct market classes was observed through whole-genome analysis of historic and current potato lines, an increased rate of gain from selection will be required to meet growing global food demands and challenges due to climate change. Understanding the genetic basis of diversification and trait improvement will allow for more rapid genome-guided improvement of potato in future breeding efforts. PMID:23589519

  19. Retrospective View of North American Potato (Solanum tuberosum L.) Breeding in the 20th and 21st Centuries

    PubMed Central

    Hirsch, Candice N.; Hirsch, Cory D.; Felcher, Kimberly; Coombs, Joseph; Zarka, Dan; Van Deynze, Allen; De Jong, Walter; Veilleux, Richard E.; Jansky, Shelley; Bethke, Paul; Douches, David S.; Buell, C. Robin

    2013-01-01

    Cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid, has been bred for distinct market classes, including fresh market, pigmented, and processing varieties. Breeding efforts have relied on phenotypic selection of populations developed from intra- and intermarket class crosses and introgressions of wild and cultivated Solanum relatives. To retrospectively explore the effects of potato breeding at the genome level, we used 8303 single-nucleotide polymorphism markers to genotype a 250-line diversity panel composed of wild species, genetic stocks, and cultivated potato lines with release dates ranging from 1857 to 2011. Population structure analysis revealed four subpopulations within the panel, with cultivated potato lines grouping together and separate from wild species and genetic stocks. With pairwise kinship estimates clear separation between potato market classes was observed. Modern breeding efforts have scarcely changed the percentage of heterozygous loci or the frequency of homozygous, single-dose, and duplex loci on a genome level, despite concerted efforts by breeders. In contrast, clear selection in less than 50 years of breeding was observed for alleles in biosynthetic pathways important for market class-specific traits such as pigmentation and carbohydrate composition. Although improvement and diversification for distinct market classes was observed through whole-genome analysis of historic and current potato lines, an increased rate of gain from selection will be required to meet growing global food demands and challenges due to climate change. Understanding the genetic basis of diversification and trait improvement will allow for more rapid genome-guided improvement of potato in future breeding efforts. PMID:23589519

  20. Effect of irradiance, sucrose, and CO2 concentration on the growth of potato (Solanum tuberosum L.) in vitro

    NASA Technical Reports Server (NTRS)

    Yorio, Neil C.; Wheeler, Raymond M.; Weigel, Russell C.

    1995-01-01

    Growth measurements were taken of potato plantlets (Solanum tuberosum L.) cvs. Norland (NL), Denali (DN), and Kennebec (KN), grown in vitro. Studies were conducted in a growth chamber, with nodal explants grown for 21 days on Murashige and Skoog salts with either 0, 1, 2, or 3% sucrose and capped with loose-fitted Magenta 2-way caps that allowed approximately 2.25 air exchanges/hour. Plantlets were exposed to either 100 or 300 micro mol/sq m/s photosynthetic photon flux (PPF), and the growth chamber was maintained at either 400 or 4000 micro mol/mol CO2. Regardless of PPF, all cvs. that were grown at 4000 micro mol/mol CO2 showed significant increases in total plantlet dry weight (TDW) and shoot length (SL) when sucrose was omitted from the media, indicating an autotrophic response. At 400 micro mol/mol CO2, all cvs. showed an increase in TDW and SL with increasing sucrose under both PPF levels. Within any sucrose treatment, the highest TDW for all cvs. resulted from 300 micro mol/sq m/s PPF and 4000 micro mol/mol CO2 At 4000 micro mol/mol CO2, TDW showed no further increase with sucrose levels above 1% for cvs. NL and DN at both PPF levels, suggesting that sucrose levels greater than 1% may hinder growth when CO2 enrichment is used.

  1. Curdlan β-1,3-glucooligosaccharides induce the defense responses against Phytophthora infestans infection of potato (Solanum tuberosum L. cv. McCain G1) leaf cells.

    PubMed

    Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong

    2014-01-01

    Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H₂O₂ and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually. PMID:24816730

  2. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.).

    PubMed

    Hanif, Muhammad Kashif; Hameed, Sohail; Imran, Asma; Naqqash, Tahir; Shahid, Muhammad; Van Elsas, Jan D

    2015-01-01

    Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006655) was isolated from potato (Solanum tuberosum L.) rhizosphere and characterized for potato plant growth promoting potential. The strain utilized both Ca-phosphate and Na-phytate in vitro and produced 6.48 μg mL(-1) indole-3-acetic acid in tryptophan supplemented medium. P-solubilization after 240 h was 66.4 μg mL(-1) alongwith the production of 19.3 μg mL(-1) gluconic acid and 5.3 μg mL(-1) malic acid. The extracellular phytase activity was higher (4.3 × 10(-10) kat mg(-1) protein) than the cell-associated phytase activity (1.6 × 10(-10) kat mg(-1) protein). B. subtilis strain KPS-11 utilized 40 carbon sources and showed resistance against 20 chemicals in GENIII micro-plate system demonstrating its metabolic potential. Phytase-encoding gene β-propeller (BPP) showed 92% amino acid similarity to BPP from B. subtilis (accession no.WP_014114128.1) and 83% structural similarity to BPP from B. subtilis (accession no 3AMR_A). Potato inoculation with B. subtilis strain KPS-11 increased the root/shoot length and root/shoot weight of potato as compared to non-inoculated control plants. Moreover, rifampicin-resistant derivative of KPS-11 were able to survive in the rhizosphere and on the roots of potato up to 60 days showing its colonization potential. The study indicates that B. subtilis strain KPS-11 can be a potential candidate for development of potato inoculum in P-deficient soils. PMID:26106383

  3. Curdlan β-1,3-Glucooligosaccharides Induce the Defense Responses against Phytophthora infestans Infection of Potato (Solanum tuberosum L. cv. McCain G1) Leaf Cells

    PubMed Central

    Li, Jing; Zhu, Li; Lu, Guangxing; Zhan, Xiao-Bei; Lin, Chi-Chung; Zheng, Zhi-Yong

    2014-01-01

    Activation of the innate immune system before the invasion of pathogens is a promising way to improve the resistance of plant against infection while reducing the use of agricultural chemicals. Although several elicitors were used to induce the resistance of potato plant to microbial pathogen infection, the role of curdlan oligosaccharide (CurdO) has not been established. In the current study, the defense responses were investigated at biochemical and proteomic levels to elucidate the elicitation effect of CurdOs in foliar tissues of potato (Solanum tuberosum L. cv. McCain G1). The results indicate that the CurdOs exhibit activation effect on the early- and late-defense responses in potato leaves. In addition, glucopentaose was proved to be the shortest active curdlan molecule based on the accumulation of H2O2 and salicylic acid and the activities of phenylalanine amino-lyase, β-1,3-glucanase and chitinase. The 2D-PAGE analysis reveals that CurdOs activate the integrated response reactions in potato cells, as a number of proteins with various functions are up-regulated including disease/defense, metabolism, transcription, and cell structure. The pathogenesis assay shows that the ratio of lesion area of potato leaf decreased from 15.82%±5.44% to 7.79%±3.03% when the plants were treated with CurdOs 1 day before the infection of Phytophthora infestans. Furthermore, the results on potato yield and induction reactions indicate that the defense responses induced by CurdOs lasted for short period of time but disappeared gradually. PMID:24816730

  4. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.)

    PubMed Central

    Hanif, Muhammad Kashif; Hameed, Sohail; Imran, Asma; Naqqash, Tahir; Shahid, Muhammad; Van Elsas, Jan D.

    2015-01-01

    Phosphate-solubilizing and phytate-mineralizing bacteria collectively termed as phosphobacteria provide a sustainable approach for managing P-deficiency in agricultural soils by supplying inexpensive phosphate to plants. A phosphobacterium Bacillus subtilis strain KPS-11 (Genbank accession no. KP006655) was isolated from potato (Solanum tuberosum L.) rhizosphere and characterized for potato plant growth promoting potential. The strain utilized both Ca-phosphate and Na-phytate in vitro and produced 6.48 μg mL-1 indole-3-acetic acid in tryptophan supplemented medium. P-solubilization after 240 h was 66.4 μg mL-1 alongwith the production of 19.3 μg mL-1 gluconic acid and 5.3 μg mL-1 malic acid. The extracellular phytase activity was higher (4.3 × 10-10 kat mg-1 protein) than the cell-associated phytase activity (1.6 × 10-10 kat mg-1 protein). B. subtilis strain KPS-11 utilized 40 carbon sources and showed resistance against 20 chemicals in GENIII micro-plate system demonstrating its metabolic potential. Phytase-encoding gene β-propeller (BPP) showed 92% amino acid similarity to BPP from B. subtilis (accession no.WP_014114128.1) and 83% structural similarity to BPP from B. subtilis (accession no 3AMR_A). Potato inoculation with B. subtilis strain KPS-11 increased the root/shoot length and root/shoot weight of potato as compared to non-inoculated control plants. Moreover, rifampicin-resistant derivative of KPS-11 were able to survive in the rhizosphere and on the roots of potato up to 60 days showing its colonization potential. The study indicates that B. subtilis strain KPS-11 can be a potential candidate for development of potato inoculum in P-deficient soils. PMID:26106383

  5. Detection of a quantitative trait locus for both foliage and tuber resistance to late blight [Phytophthora infestans (Mont.) de Bary] on chromosome 4 of a dihaploid potato clone (Solanum tuberosum subsp. tuberosum).

    PubMed

    Bradshaw, John E; Hackett, Christine A; Lowe, Robert; McLean, Karen; Stewart, Helen E; Tierney, Irene; Vilaro, Marco D R; Bryan, Glenn J

    2006-09-01

    Linkage analysis, Kruskal-Wallis analysis, interval mapping and graphical genotyping were performed on a potato diploid backcross family comprising 120 clones segregating for resistance to late blight. A hybrid between the Solanum tuberosum dihaploid clone PDH247 and the long-day-adapted S. phureja clone DB226(70) had been crossed to DB226(70) to produce the backcross family. Eighteen AFLP primer combinations provided 186 and 123 informative maternal and paternal markers respectively, with 63 markers in common to both parents. Eleven microsatellite (SSR) markers proved useful for identifying chromosomes. Linkage maps of both backcross parents were constructed. The results of a Kruskal-Wallis analysis, interval mapping and graphical genotyping were all consistent with a QTL or QTLs for blight resistance between two AFLP markers 30 cM apart on chromosome 4, which was identified by a microsatellite marker. The simplest explanation of the results is a single QTL with an allele from the dihaploid parent conferring resistance to race 1, 4 of P. infestans in the foliage in the glasshouse and to race 1, 2, 3, 4, 6, 7 in the foliage in the field and in tubers from glasshouse raised plants. The QTL was of large effect, and explained 78 and 51% of the variation in phenotypic scores for foliage blight in the glasshouse and field respectively, as well as 27% of the variation in tuber blight. Graphical genotyping and the differences in blight scores between the parental clones showed that all of the foliage blight resistance is accounted for by chromosome 4, whereas undetected QTLs for tuber resistance probably exist on other chromosomes. Graphical genotyping also explained the lack of precision in mapping the QTL(s) in terms of lack of appropriate recombinant chromosomes. PMID:16845519

  6. Suberin of potato (Solanum tuberosum var. Nikola): comparison of the effect of cutinase CcCut1 with chemical depolymerization.

    PubMed

    Järvinen, Riikka; Silvestre, Armando J D; Holopainen, Ulla; Kaimainen, Mika; Nyyssölä, Antti; Gil, Ana M; Pascoal Neto, Carlos; Lehtinen, Pekka; Buchert, Johanna; Kallio, Heikki

    2009-10-14

    Chemical and enzymatic depolymerizations of suberin isolated from potato peel ( Solanum tuberosum var. Nikola) were performed under various conditions. Enzymatic hydrolysis with cutinase CcCut1 and chemical methanolysis with NaOMe of suberin yielded monomeric fragments, which were identified as TMS derivatives with GC-MS and GC-FID. The solid, hydrolysis-resistant residues were analyzed with solid state (13)C CPMAS NMR, FT-IR, and microscopic methods. Methanolysis released more CHCl(3)-soluble material than the cutinase treatment when determined gravimetrically. Interestingly, cutinase-catalyzed hydrolysis produced higher proportions of aliphatic monomers than hydrolysis with the NaOMe procedure when analyzed by GC in the form of TMS derivatives. Monomers released by the two methods were mainly alpha,omega-dioic acids and omega-hydroxy acids, but the ratios of the detected monomers were different, at 40.0 and 32.7% for methanolysis and 64.6 and 8.2% for cutinase, respectively. Thus, cutinase CcCut1 showed higher activity toward ester bonds of alpha,omega-dioic acids than toward the bonds of omega-hydroxy acids. The most abundant monomeric compounds were octadec-9-ene-1,18-dioic acid and 18-hydroxyoctadec-9-enoic acid, which accounted for ca. 37 and 28% of all monomers, respectively. The results of the analyses of the chemical and enzymatic hydrolysis products were supported by the spectroscopic analyses with FT-IR and CPMAS (13)C NMR together with the analysis of the microstructures of the hydrolysis residues by light and confocal microscopy. PMID:19739639

  7. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) rotation.

    PubMed

    Haile-Mariam, S; Collins, H P; Higgins, S S

    2008-01-01

    Intensive agriculture and increased N fertilizer use have contributed to elevated emissions of the greenhouse gases carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In this study, the exchange of CO(2), N(2)O, and CH(4) between a Quincy fine sand (mixed, mesic Xeric Torripsamments) soil and atmosphere was measured in a sweet corn (Zea mays L.)-sweet corn-potato (Solanum tuberosum L.) rotation during the 2005 and 2006 growing seasons under irrigation in eastern Washington. Gas samples were collected using static chambers installed in the second-year sweet corn and potato plots under conventional tillage or reduced tillage. Total emissions of CO(2)-C from sweet corn integrated over the season were 2071 and 1684 kg CO(2)-C ha(-1) for the 2005 and 2006 growing seasons, respectively. For the same period, CO(2) emissions from potato plots were 1571 and 1256 kg of CO(2)-C ha(-1). Cumulative CO(2) fluxes from sweet corn and potato fields were 17 and 13 times higher, respectively, than adjacent non-irrigated, native shrub steppe vegetation (NV). Nitrous oxide losses accounted for 0.5% (0.55 kg N ha(-1)) of the applied fertilizer (112 kg N ha(-1)) in corn and 0.3% (0.59 kg N ha(-1)) of the 224 kg N ha(-1) applied fertilizer. Sweet corn and potato plots, on average, absorbed 1.7 g CH(4)-C ha(-1) d(-1) and 2.3 g CH(4)-C ha(-1) d(-1), respectively. The global warming potential contributions from NV, corn, and potato fields were 459, 7843, and 6028 kg CO(2)-equivalents ha(-1), respectively, for the 2005 growing season and were 14% lower in 2006. PMID:18453396

  8. Role for Ca/sup 2 +/ in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. [Solanum tuberosum

    SciTech Connect

    Zook, M.N.; Rush, J.S.; Kuc, J.A.

    1987-06-01

    Calcium and strontium ions enhanced rishitin but not lubimin accumulation in tuber tissue of potato (Solanum tuberosum cv Kennebec) treated with arachidonic acid (AA). The same cations in the presence of poly-L-lysine (PL) enhanced the accumulation of lubimin more than rishitin. In contrast, Mg/sup 2 +/ did not affect AA-elicited rishitin and lubimin accumulation and inhibited the accumulation of these compounds following application of PL. AA-elicited potato tuber tissue remained sensitive to the stimulatory effects of Ca/sup 2 +/ and Sr/sup 2 +/ up to 24 h after application of AA, but PL-elicited tuber tissue was sensitive to Ca/sup 2 +/ and Sr/sup 2 +/ for only 6 hours after PL application. Etyleneglycol-bis (..beta..-aminoethyl ether)-N,N'-tetraacetic acid and La/sup 3 +/ both inhibited rishitin and lubimin accumulation elicited by AA. The inhibition by either agent was overcome by the addition of Ca/sup 2 +/. Calcium was more effective in overcoming lanthanum inhibition when applied simultaneously than when applied 12 hours later. Lanthanum was only effective in inhibiting rishitin and lubimin accumulation when applied within 3 hours of the application of AA. Inhibition of phytoalexin accumulation was greater when La/sup 3 +/ was greater when La/sup 3 +/ was applied simultaneously with AA compared to La/sup 3 +/ application after AA aplication to discs. These observations suggest that the mobilization of calcium may play a central regulatory role in the expression of phytoalexin accumulation following elicitation in potato tissue.

  9. SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (Solanum tuberosum L.)

    PubMed Central

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-01-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  10. The development of a high-yield recombinant protein bioreactor through RNAi induced knockdown of ATP/ADP transporter in Solanum tuberosum.

    PubMed

    Tremblay, Reynald; Diao, Hong; Hüner, Norm; Jevnikar, Anthony M; Ma, Shengwu

    2011-10-20

    There is an increased need for high-yield protein production platforms to meet growing demand. Tuber-based production in Solanum tuberosum offers several advantages, including high biomass yield, although protein concentration is typically low. In this work, we investigated the question whether minor interruption of starch biosynthesis can have a positive effect on tuber protein content and/or tuber biomass, as previous work suggested that partial obstruction of starch synthesis had variable effects on tuber yield. To this end, we used a RNAi approach to knock down ATP/ADP transporter and obtained a large number of transgenic lines for screening of lines with improved tuber protein content and/or tuber biomass. The initial screening was based on tuber biomass because of its relative simplicity. We identified a line, riAATP1-10, with minor (less than 15%) reduction in starch, that had a nearly 30% increase in biomass compared to wild-type, producing both more and larger tubers with altered morphological features compared to wild-type. riAATP1-10 tubers have a higher concentration of soluble protein compared to wild-type tubers, with nearly 50% more soluble protein. We assessed the suitability of this line as a new bioreactor by expressing a human scFv, reaching over 0.5% of total soluble protein, a 2-fold increase over the highest accumulating line in a wild-type background. Together with increased biomass and increased levels in total protein content, foreign protein expression in riAATP1-10 line would translate into a nearly 4-fold increase in recombinant protein yield per plant. Our results indicate that riAATP1-10 line provides an improved expression system for production of foreign proteins. PMID:21864587

  11. Comparative Analysis of Short- and Long-Term Changes in Gene Expression Caused by Low Water Potential in Potato (Solanum tuberosum) Cell-Suspension Cultures.

    PubMed Central

    Leone, A.; Costa, A.; Tucci, M.; Grillo, S.

    1994-01-01

    To dissect the cellular response to water stress and compare changes induced as a generalized response with those involved in tolerance/acclimation mechanisms, we analyzed changes in two-dimensional electrophoretic patterns of in vivo [35S]methionine-labeled polypeptides of cultured potato (Solanum tuberosum) cells after gradual and long exposure to polyethylene glycol (PEG)- mediated low water potential versus those induced in cells abruptly exposed to the same stress intensity. Protein synthesis was not inhibited by gradual stress imposition, and the expression of 17 proteins was induced in adapted cells. Some polypeptides were inducible under mild stress conditions (5% PEG) and accumulated further when cells were exposed to a higher stress intensity (10 and 20% PEG). The synthesis of another set of polypeptides was up-regulated only when more severe water-stress conditions were applied, suggesting that plant cells were able to monitor different levels of stress intensity and modulate gene expression accordingly. In contrast, in potato cells abruptly exposed to 20% PEG, protein synthesis was strongly inhibited. Nevertheless, a large set of polypeptides was identified whose expression was increased. Most of these polypeptides were not induced in adapted cells, but many of them were common to those observed in abscisic acid (ABA)-treated cells. These data, along with the finding that cellular ABA content increased in PEG-shocked cells but not in PEG-adapted cells, suggested that this hormone is mainly involved in the rapid response to stress rather than long-term adaptation. A further group of proteins included those induced after long exposure to both water stress and shock. Western blot analysis revealed that osmotin was one protein belonging to this common group. This class may represent induced proteins that accumulate specifically in response to low water potential and that are putatively involved in the maintenance of cellular homeostasis under prolonged

  12. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    PubMed

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-10-01

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. PMID:25081979

  13. Examining the molecular interaction between potato (Solanum tuberosum) and Colorado potato beetle Leptinotarsa decemlineata (Say)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle (CPB) is a leading pest of solanaceous plants; however, little is known about its molecular interaction with the potato plant. Using the 11,421 EST array solanaceae microarray profiling services at TIGR, we have identified genes that are differentially expressed in potato leav...

  14. A case for crop wild relative preservation and utilization in potato (Solanum tuberosum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental degradation and climate change pose a threat to global food security. Crop wild relatives (CWR) provide a critical resource to address food security needs by providing genetic diversity for crop improvement, leading to increased plasticity and productivity. However, plant breeders have...

  15. Pyramiding rice cystatin genes (OCI and OCII) in potato (Solanum tuberosum L cv. Jelica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major advances being used in current biotechnology to improve disease and pest control is the introduction of more than one beneficial gene into transgenic plants. Proteinase inhibitors oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine prote...

  16. Accumulation and localization of cadmium in potato (Solanum tuberosum) under different soil Cd levels.

    PubMed

    Chen, Zhifan; Zhao, Ye; Gu, Lei; Wang, Shuifeng; Li, Yongliang; Dong, Fangli

    2014-06-01

    Phytoavailability and uptake mechanism of Cd in edible plant tissues grown on metal polluted agricultural soils has become a growing concern worldwide. Uptake, transport, accumulation and localization of cadmium in potato organs under different soil Cd levels were investigated using inductively-coupled plasma mass spectrometry and energy dispersive X-ray microanalysis. Results indicated that Cd contents in potato organs increased with increasing soil Cd concentrations, and the order of Cd contents in different organs was leaves > stems/roots > tubers. Root-to-stem Cd translocation coefficients ranged from 0.89 to 1.81. Cd localization in potato tissues suggested that leaves and stems should be the main compartment of Cd storage and uptake. Although low concentrations of Cd migrated from the root to tuber, Cd accumulation in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be closely evaluated due to its potential to present health risks. PMID:24682567

  17. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases.

    PubMed

    Butler, Nathaniel M; Baltes, Nicholas J; Voytas, Daniel F; Douches, David S

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  18. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  19. Wounding Induces One of Two Isoenzymes of 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase in Solanum tuberosum L. 1

    PubMed Central

    Muday, Gloria K.; Herrmann, Klaus M.

    1992-01-01

    Potato (Solanum tuberosum L.) tubers contain two isoenzymes of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15), the enzyme that catalyzes the first step of aromatic amino acid biosynthesis. One of the isoenzymes is specifically activated by Mn2+, and the other requires Co2+, Mg2+, or another divalent cation for activity. Monospecific polyclonal antibodies against the Mn2+-activated isoenzyme do not cross-react with the other isoenzyme. Wounding of potato tubers induces the Mn2+-activated form but not the other. We conclude that two different genes encode two different isoenzymes that catalyze the first step in the shikimate pathway. ImagesFigure 1 PMID:16668667

  20. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity

    PubMed Central

    Provan, J.; Powell, W; Dewar, H.; Bryan, G.; Machray, G. C.; Waugh, R.

    1999-01-01

    We have used the polymorphic chloroplast (cp) and nuclear simple sequence repeats (SSRs) to analyse levels of cytoplasmic and nuclear diversity in the gene pool of the European cultivated potato (Solanum tuberosum ssp. tuberosum). Primers designed from the complete chloroplast sequence of tobacco (Nicotiana tabacum) were used to amplify polymorphic products in a range of potato cultivars. Combining the data from seven polymorphic cpSSR loci gave 26 haplotypes, one of which (haplotype A) accounted for 151 out of the 178 individuals studied and corresponded to the T-type cytoplasm previously identified in cultivated potatoes using chloroplast restriction fragment length polymorphism analysis. Phylogenetic and diversity analyses of the relationships between cpSSR haplotypes confirmed much higher levels of cytoplasmic diversity outwith the T-type group. Diversity levels at eight nuclear SSR loci, however, were not significantly different between cytoplasmic groups, suggesting a severe maternal bottleneck in the evolution of the modern cultivated potato. These results highlight the importance in quantifying levels of cytoplasmic as well as nuclear diversity and confirm the need for a change in breeding practices to increase levels of non-T-type cytoplasm in the cultivated gene pool, thus helping reduce problems associated with pollen sterility. This may be facilitated by germplasm analysis using cpSSRs, which will allow efficient selection of diverse cytoplasm donors.

  1. Solanum tuberosum (Potato)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is the fourth most important food crop worldwide, with high value as a balanced and nutritious food. It is one of the world’s most productive crops. Wild potatoes are native from the southwestern United States to south-central Chile, with centers of species diversity in central Mexico and in ...

  2. Effects of planting configuration and in-row plant spacing on photosynthetic active radiation interception for three irrigated potato cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research studies have evaluated the production of potatoes (Solanum tuberosum L.) grown in conventional and bed planting configurations. However, intercepted photosynthetically active radiation (PAR) from these planting configurations has not been quantified. A study conducted in 2008 and 2009 quant...

  3. A cytogenetic and phenotypic characterization of somatic hybrid plants obtained after fusion of two different dihaploid clones of potato (Solatium tuberosum L.).

    PubMed

    Waara, S; Pijnacker, L; Ferwerda, M A; Wallin, A; Eriksson, T

    1992-12-01

    Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected. PMID:24197462

  4. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species. PMID:26260485

  5. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3. PMID:26284309

  6. Climate Change and Potassium Effects Under Different N-Fertilization Input on Potato (Solanum tuberosum L.) Yield in a Long Term Field Experiment

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    achieved with poor N, P, K and Mg nutrient supply even with a normal quantity and distribution of rainfall. Yield was influenced by rainfall to a greater extent (Table 4) than by 150 kg ha-1 potassium combinations (NK, NPK, NPKMg). Drought and over rainfall negative effects were decreased by increasing N- doses with combinations of potassium, phosphorous and magnesium from 13 to 32% (Table 5 and 6). With the help of regression analysis it was found the polynomial correlation between rainfall and yield could be observed in the case of NK (Y'=381.65-2.95x+0.0056x2, n=72, R2=0.95), NPK (Y'=390.87-3.07x+0.0060x2, n=72, R2=0.96) and NPKMg (Y'=390.45-3.06x+0.0059x2, n=72, R2=0.96) nutrition systems. The optimum yield ranges between 17-20 t ha-1 at 280-330 mm of rainfall. From 1962 to 1979 the weather was highly variable, with particularly frequent droughts and over rainfall resulting in yield losses of 13 to 32 percentin in this period. Thus it is important to analyse the consequences of possible future climate change on crop in Hungary. REFERENCES A.E. Johnston. 2000. Some aspects of nitrogen use efficiency in arable agriculture. K. Scogs-o. Lantbr. Akad. Tidskr. 139: 8. Kádár, I-Márton, L.-Horváth, S. 2000. Mineral fertilisation of potato (Solanum tuberosum L.) on calcareous chernozem soil. Plant Production. 49: 291-306. László, M. 2000. Nutrition of potato (Solanum tuberosum L.) on Hungary on a chernozem soil. Acta Agronomica Óváriensis. 42: 81-93. László, M. 2001a. Climate change and N, P, K, Mg fertilization effects on potato (Solanum tuberosum L.) yield and quality. EAPR. Hamburg. In press László, M. 2001b. Year and N- fertilizer effect on winter rye (Secale cereale L.) yield in a long term field experiment. XLIII. Georgikon Days. University of Veszprém. Keszthely László, M.-Imre, K.-Jose, E.M. 2000a. Effects of Crotalaria juncea L. and Crotalaria spectabilis ROTH. on soil fertility and soil conservation in Hungary. Acta Agronomica Óváriensis. 42: 99

  7. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant.

    PubMed

    Grausem, B; Widemann, E; Verdier, G; Nosbüsch, D; Aubert, Y; Beisson, F; Schreiber, L; Franke, R; Pinot, F

    2014-09-01

    Cutin and suberin represent lipophilic polymers forming plant/environment interfaces in leaves and roots. Despite recent progress in Arabidopsis, there is still a lack on information concerning cutin and suberin synthesis, especially in crops. Based on sequence homology, we isolated two cDNA clones of new cytochrome P450s, CYP77A19 and CYP77A20 from potato tubers (Solanum tuberosum). Both enzymes hydroxylated lauric acid (C12:0) on position ω-1 to ω-5. They oxidized fatty acids with chain length ranging from C12 to C18 and catalysed hydroxylation of 16-hydroxypalmitic acid leading to dihydroxypalmitic (DHP) acids, the major C16 cutin and suberin monomers. CYP77A19 also produced epoxides from linoleic acid (C18:2). Exploration of expression pattern in potato by RT-qPCR revealed the presence of transcripts in all tissues tested with the highest expression in the seed compared with leaves. Water stress enhanced their expression level in roots but not in leaves. Application of methyl jasmonate specifically induced CYP77A19 expression. Expression of either gene in the Arabidopsis null mutant cyp77a6-1 defective in flower cutin restored petal cuticular impermeability. Nanoridges were also observed in CYP77A20-expressing lines. However, only very low levels of the major flower cutin monomer 10,16-dihydroxypalmitate and no C18 epoxy monomers were found in the cutin of the complemented lines. PMID:24520956

  8. Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.

    PubMed

    Neves, O; Abreu, M M

    2009-11-01

    The knowledge of uranium concentration, in the products entering the human diet is of extreme importance because of their chemical hazard to health. Controlled field experiments with potatoes, beans and lettuce (Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.) were carried out in a contaminated soil used by local farmers located near a closed Portuguese uranium mine (Cunha Baixa, Mangualde). The soil with high average uranium levels (64-252 mg/kg) was divided in two plots, and irrigated with non-contaminated and uranium-contaminated water (<20 and >900 microg/L). Uranium maximum average concentration in the edible vegetables parts (mg/kg fresh weight) ranged in the following order: lettuce (234 microg/kg) > green bean (30 microg/kg) > potatoes without peel (4 microg/kg). Although uranium in soil, irrigation water and vegetables was high, the assessment of the health risk based on hazard quotient indicates that consumption of these vegetables does not represent potential adverse (no carcinogenic) effects for a local inhabitant during lifetime. PMID:19590953

  9. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions.

    PubMed

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25-5 d on 1.0 × MS medium containing 0.25 mg L(-1) GA3 + 1 mg L(-1) NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L(-1) NAA + 0.25 mg L(-1) GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  10. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development.

    PubMed

    Gao, Junpeng; Cao, Xiaoli; Shi, Shandang; Ma, Yuling; Wang, Kai; Liu, Shengjie; Chen, Dan; Chen, Qin; Ma, Haoli

    2016-03-01

    The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes. PMID:26869512

  11. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802.

    PubMed

    Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan

    2010-02-01

    Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3. PMID:19882336

  12. Combination of the Auxins NAA, IBA, and IAA with GA3 Improves the Commercial Seed-Tuber Production of Potato (Solanum tuberosum L.) under In Vitro Conditions

    PubMed Central

    Kumlay, Ahmet Metin

    2014-01-01

    The study compared the effects of 1.0 × MS medium containing various concentrations of α-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA), alone or in combination with gibberellic acid (GA3) in micropropagation of three potato (Solanum tuberosum L.) cultivars Pasinler, Granola, and Caspar using binodal stem cuttings. The results testified improved regeneration on 1.0 × MS medium containing variants of NAA, IAA, and IBA plus GA3 on all cultivars. The minimum days to shoot induction on three cultivars ranged 4.25–5 d on 1.0 × MS medium containing 0.25 mg L−1  GA3 + 1 mg L−1 NAA. The longest shoots (11.8 cm), maximum number of nodes (13.50), and maximum number of leaves (11.00) were recorded on cv. Caspar on 1.0 × MS medium containing 1 mg L−1  NAA + 0.25 mg L−1 GA3. The minimum time to root induction (12.25 d) was noted on cv. Pasinler on the same medium. All of the regenerated shoots could be easily rooted. The results showed that the combined effect of various concentrations of NAA, IAA, and IBA plus GA3 was more pronounced compared to the auxins used alone. The results of this research are of significant importance for potato breeders. PMID:25028654

  13. Efeito do Solo do Materias Organicos E do Adubo Formula 4N:14P:8K Para Producao DA Batata (Solanum tuberosum L.) Semente Pre-Basica no Casa de Vegetacao

    NASA Astrophysics Data System (ADS)

    László, Márton

    2010-05-01

    hard effect (57%). Our results are shown that it was possible developing of the seed potato production under tropical greenhouse conditions by optimalised soil-organic matter-fertilizer system. This datas should be as indicators to sustainable field potato advisory systems. Keywords: potato (Solanum tuberosum L.), greenhouse, latossolo vermelho soil, farmyard manure, burnt rice straw, 4N:14P:8K fertilizer, sustainability, yield RESUMO A batata é atualmente uma das hortaliças de maior importância no Brasíl. Nos conduzirémos os três experimentos para aumentár-se do produção e produtividade da batata (Solanum tuberosum L.) semente pré- básica no casa de vegetação da Brazília-DF, no Empresa Brasileira de Pesquisa Agropecuaria- Centro Nacional de Pesquisas de Hortaliças no 1990. Os três experimentos (latossolo vermelho novo x esterco de curral x palha de arroz queimado, latossolo vermelho novo x adubo 4:14:8 NPK, latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK) no casa de vegetação foram conduzidos com total 29 combinações, no 5-5-3 repetições com total parcelas de 116. Os resultados foram submetidos a analise de variáncia, ANOVA e MANOVA. Nossos principal resultados estam apresentándo abaixo. 1. A mistura de 80% latossolo vermelho novo, 10% palha de arroz queimado e 10% de esterco de curral, apresentou os maiores valores para numero de tuberculos com 0-20 mm, peso total de tuberculos com 0-20 mm e peso total de tuberculos por vaso. 2. Há um efeito grande crescente das doses de 4N:14P:8K nos caracteres observados. 3. Analise-se do latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK experimento os resultados apresentárám-se que entre nas misturas também foi melhor a 80% latossolo vermelho novo, 10% palha de arroz queimado, 10% esterco de curral. Examinando-se 15 fatores, entre 11 casos afirmou-se a mistura como para melhor que a outra mistura. Nossos resultados

  14. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.

    PubMed

    Zuno-Floriano, Fabiola G; Miller, Marion G; Aldana-Madrid, Maria L; Hengel, Matt J; Gaikwad, Nilesh W; Tolstikov, Vladimir; Contreras-Cortés, Ana G

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  15. Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    PubMed Central

    Zuno-Floriano, Fabiola G.; Miller, Marion G.; Aldana-Madrid, Maria L.; Hengel, Matt J.; Gaikwad, Nilesh W.; Tolstikov, Vladimir; Contreras-Cortés, Ana G.

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  16. Identification of actively filling sucrose sinks. [Solanum tuberosum; Phaseolus lunatus; Manihot esculenta; Liquidambar styraciflua L. ; Carya illinoinensis

    SciTech Connect

    Sung, Shijean S.; Xu, Dianpeng; Black C.C. )

    1989-04-01

    Certain actively filling plant sucrose sinks such as a seed, a tuber, or a root can be identified by measuring the uridine diphosphate and pyrophosphate-dependent metabolism of sucrose. Sucrolysis in both active and quiescent sucrose sinks was tested and sucrose synthase was found to be the predominant sucrose breakdown activity. Sucrolysis via invertases was low and secondary in both types of sinks. Sucrose synthase activity dropped markedly, greater than fivefold, in quiescent sinks. The test are consistent with the hypothesis that the sucrose filling activity, i.e. the sink strength, of these plant sinks can be measured by testing the uridine diphosphate and pyrophosphate-dependent breakdown of sucrose. Measuring the initial reactions of sucrolysis shows much promise for use in agriculture crop and tree improvement research as a biochemical test for sink strength.

  17. Genome-wide survey and expression analysis of the amino acid transporter superfamily in potato (Solanum tuberosum L.).

    PubMed

    Ma, Haoli; Cao, Xiaoli; Shi, Shandang; Li, Silu; Gao, Junpeng; Ma, Yuling; Zhao, Qin; Chen, Qin

    2016-10-01

    Amino acid transporters (AATs) are integral membrane proteins responsible for the transmembrane transport of amino acids and play important roles in various physiological processes of plants. However, there has not yet been a genome-wide overview of the StAAT gene family to date and only StAAP1 has been previously studied in potato. In this paper, a total of 72 StAATs were identified using a series of bioinformatics searches and classified into 12 subfamilies based on their phylogenetic relationship with known Arabidopsis and rice AATs. Chromosomal localization revealed their distribution on all 12 chromosomes. Nearly one-third of StAAT genes (23 of 72) were derived from gene duplication, among which tandem duplication made the greatest contribution to the expansion of the StAAT family. Motif analysis showed that the same subfamily had similar conserved motifs in both numbers and varieties. Moreover, high-throughput sequencing data was used to analyze the expression patterns of StAAT genes and was verified by quantitative real-time RT-PCR. The expression of StAAT genes exhibited both abundant and tissue-specific expression patterns, which might be connected to their functional roles in long- and short-distance transport. This study provided a comprehensive survey of the StAAT gene family, and could serve as a theoretical foundation for the further functional identification and utilization of family members. PMID:27289266

  18. Control of enzymatic browning in potato (Solanum tuberosum L.) by sense and antisense RNA from tomato polyphenol oxidase.

    PubMed

    Coetzer, C; Corsini, D; Love, S; Pavek, J; Tumer, N

    2001-02-01

    Polyphenol oxidase (PPO) activity of Russet Burbank potato was inhibited by sense and antisense PPO RNAs expressed from a tomato PPO cDNA under the control of the 35S promoter from the cauliflower mosaic virus. Transgenic Russet Burbank potato plants from 37 different lines were grown in the field. PPO activity and the level of enzymatic browning were measured in the tubers harvested from the field. Of the tubers from 28 transgenic lines that were sampled, tubers from 5 lines exhibited reduced browning. The level of PPO activity correlated with the reduction in enzymatic browning in these lines. These results indicate that expression of tomato PPO RNA in sense or antisense orientation inhibits PPO activity and enzymatic browning in the major commercial potato cultivar. Expression of tomato PPO RNA in sense orientation led to the greatest decrease in PPO activity and enzymatic browning, possibly due to cosuppression. These results suggest that expression of closely related heterologous genes can be used to prevent enzymatic browning in a wide variety of food crops without the application of various food additives. PMID:11262007

  19. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster

    PubMed Central

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  20. Solanum tuberosum and Lycopersicon esculentum Leaf Extracts and Single Metabolites Affect Development and Reproduction of Drosophila melanogaster.

    PubMed

    Ventrella, Emanuela; Adamski, Zbigniew; Chudzińska, Ewa; Miądowicz-Kobielska, Mariola; Marciniak, Paweł; Büyükgüzel, Ender; Büyükgüzel, Kemal; Erdem, Meltem; Falabella, Patrizia; Scrano, Laura; Bufo, Sabino Aurelio

    2016-01-01

    Glycoalkaloids are secondary metabolites commonly found in Solanaceae plants. They have anti-bacterial, anti-fungal and insecticidal activities. In the present study we examine the effects of potato and tomato leaf extracts and their main components, the glycoalkaloids α-solanine, α-chaconine and α-tomatine, on development and reproduction of Drosophila melanogaster wild-type flies at different stages. Parental generation was exposed to five different concentrations of tested substances. The effects were examined also on the next, non-exposed generation. In the first (exposed) generation, addition of each extract reduced the number of organisms reaching the pupal and imaginal stages. Parent insects exposed to extracts and metabolites individually applied showed faster development. However, the effect was weaker in case of single metabolites than in case of exposure to extracts. An increase of developmental rate was also observed in the next, non-exposed generation. The imagoes of both generations exposed to extracts and pure metabolites showed some anomalies in body size and malformations, such as deformed wings and abdomens, smaller black abdominal zone. Our results further support the current idea that Solanaceae can be an impressive source of molecules, which could efficaciously be used in crop protection, as natural extract or in formulation of single pure metabolites in sustainable agriculture. PMID:27213896

  1. Extensive Variation in Fried Chip Color and Tuber Composition in Cold-Stored Tubers of Wild Potato (Solanum) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold-induced sweetening and browning in the Maillard reaction have driven extensive research in the areas of plant physiology, biochemistry, and food science in Solanum tuberosum. To date, research in these areas excluded wild relatives of potato. This is the first assessment of cold-stored tuber c...

  2. Solanum tuberosum L. cv Jayoung Epidermis Extract Inhibits Mite Antigen-Induced Atopic Dermatitis in NC/Nga Mice by Regulating the Th1/Th2 Balance and Expression of Filaggrin.

    PubMed

    Yang, Gabsik; Cheon, Se-Yun; Chung, Kyung-Sook; Lee, Sung-Jin; Hong, Chul-Hee; Lee, Kyung-Tae; Jang, Dae-Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; An, Hyo-Jin

    2015-09-01

    Solanum tuberosum L. cv Jayoung (JY) is a potato with dark purple flesh and contains substantial amounts of polyphenols. In this study, we evaluated the therapeutic effects of S. tuberosum L. cv JY in a mouse model of Dermatophagoides farinae body (Dfb)-induced atopic dermatitis (AD). The ethanol extract of the peel of JY (EPJ) ameliorated Dfb-induced dermatitis severity, serum levels of immunoglobulin E (IgE) and thymus and activation-regulated chemokine. Histological analysis of the skin also revealed that EPJ treatment significantly decreased mast cell infiltration. The suppression of dermatitis by EPJ treatment was accompanied by a decrease in the skin levels of type 2 helper T-cell cytokines such as interleukin (IL)-4, IL-5, and IL-13. The induction of thymic stromal lymphopoietin, which leads to a systemic Th2 response, was also decreased in the skin by EPJ. Nuclear translocation of nuclear factor-κB p65 was decreased by EPJ in Dfb-induced NC/Nga mice. The protein expression of filaggrin in the AD-like skin lesions was restored by EPJ treatment. These results suggested that EPJ may be a potential therapeutic tool for the treatment of AD. PMID:26102094

  3. Solanum malacoxylon: a toxic plant which affects animal calcium metabolism.

    PubMed

    Boland, R L

    1988-12-01

    The "enteque seco" is a disease of calcinosis, i.e., pathological deposition of calcium phosphate in soft tissues, which occurs in grazing cattle in Argentina and is of considerable economic importance. The ingestion of leaves of Solanum malacoxylon has been identified as the cause of the disease. Hypercalcemia and/or hyperphosphatemia and mineralization of the cardiovascular and pulmonary systems are usually seen in bovines or experimental animals exposed to this plant. The symptoms of the disease resemble those of vitamin D intoxication. In agreement with these observations, a glycoside derivative of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D in animals, has been identified as the toxic principle of S. malacoxylon. Glycoside conjugates of its precursors, 25-hydroxyvitamin D3 and vitamin D3, may also be present. Recent studies indicate that the plant factor is modified in the rumen of bovines through cleavage of the glycosidic linkage and further conversion of the released 1,25(OH)2D3 to a more polar metabolite, possibly 1,24,25-trihydroxyvitamin D3. Excess free 1,25(OH)2D3 may alter extracellular and intracellular Ca homeostasis in intoxicated animals through a receptor-mediated mechanism and activation of membrane Ca channels. In addition, 1,24,25(OH)3D3 may potentiate the effects of 1,25(OH)2D3 on intestinal Ca transport. PMID:3077267

  4. Efeito do Solo do Materias Organicos E do Adubo Formula 4N:14P:8K Para Producao DA Batata (Solanum tuberosum L.) Semente Pre-Basica no Casa de Vegetacao

    NASA Astrophysics Data System (ADS)

    László, Márton

    2010-05-01

    hard effect (57%). Our results are shown that it was possible developing of the seed potato production under tropical greenhouse conditions by optimalised soil-organic matter-fertilizer system. This datas should be as indicators to sustainable field potato advisory systems. Keywords: potato (Solanum tuberosum L.), greenhouse, latossolo vermelho soil, farmyard manure, burnt rice straw, 4N:14P:8K fertilizer, sustainability, yield RESUMO A batata é atualmente uma das hortaliças de maior importância no Brasíl. Nos conduzirémos os três experimentos para aumentár-se do produção e produtividade da batata (Solanum tuberosum L.) semente pré- básica no casa de vegetação da Brazília-DF, no Empresa Brasileira de Pesquisa Agropecuaria- Centro Nacional de Pesquisas de Hortaliças no 1990. Os três experimentos (latossolo vermelho novo x esterco de curral x palha de arroz queimado, latossolo vermelho novo x adubo 4:14:8 NPK, latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK) no casa de vegetação foram conduzidos com total 29 combinações, no 5-5-3 repetições com total parcelas de 116. Os resultados foram submetidos a analise de variáncia, ANOVA e MANOVA. Nossos principal resultados estam apresentándo abaixo. 1. A mistura de 80% latossolo vermelho novo, 10% palha de arroz queimado e 10% de esterco de curral, apresentou os maiores valores para numero de tuberculos com 0-20 mm, peso total de tuberculos com 0-20 mm e peso total de tuberculos por vaso. 2. Há um efeito grande crescente das doses de 4N:14P:8K nos caracteres observados. 3. Analise-se do latossolo vermelho novo x esterco de curral x palha de arroz queimado x adubo 4:14:8 NPK experimento os resultados apresentárám-se que entre nas misturas também foi melhor a 80% latossolo vermelho novo, 10% palha de arroz queimado, 10% esterco de curral. Examinando-se 15 fatores, entre 11 casos afirmou-se a mistura como para melhor que a outra mistura. Nossos resultados

  5. Evaluation of In-Row Plant Spacing and Planting Configuration for Three Irrigated Potato Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research studies have shown that planting potatoes (Solanum tuberosum L.) in a bed configuration can improve water movement into the potato root zone. However, plant spacing recommendations are needed for potatoes planted in a bed configuration. This study was conducted to evaluate the effect of i...

  6. Factors influencing plant regeneration from seedling explants of Hairy nightshade (Solanum sarrachoides)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A good model plant to investigate plant – pathogen interactions would be easy to grow, have a short life cycle, be a natural host of many pathogens, and be easy to manipulate genetically. Hairy nightshade (Solanum sarrachoides) is a ubiquitous, fast growing weed that produces copious amounts of see...

  7. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease.

    PubMed

    Mosquera, Teresa; Alvarez, Maria Fernanda; Jiménez-Gómez, José M; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane

    2016-01-01

    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis

  8. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

    PubMed Central

    Jiménez-Gómez, José M.; Muktar, Meki Shehabu; Paulo, Maria João; Steinemann, Sebastian; Li, Jinquan; Draffehn, Astrid; Hofmann, Andrea; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Walkemeier, Birgit; Gebhardt, Christiane

    2016-01-01

    The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis

  9. Impact of host plant connectivity, crop border and patch size on adult Colorado potato beetle retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...

  10. Solanum stipuloideum Rusby, the correct name for Solanum circaeifolium Bitter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum L. section Petota Dumort., which includes the cultivated potato (S. tuberosum L.) and its wild relatives, has been the subject of intensive taxonomic research in the last 25 years. The last comprehensive taxonomic treatment by Hawkes in 1990 recognized seven cultivated and 225 wild species, ...

  11. Resistance of Wild Solanum Accessions to Aphids and Other Potato Pests in Quebec Field Conditions

    PubMed Central

    Fréchette, B.; Bejan, M.; Lucas, É.; Giordanengo, P.; Vincent, C.

    2010-01-01

    Two experiments were done to determine the susceptibility of six wild potato accessions to the aphids Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and Myzus persicae (Sulzer). Densities of aphid colonies were compared between caged Solanum pinnatisectum Dunal (Solanales: Solanaceae), S. polyadenium Greenmam, S. tarijense Hawkes, S. infundibuliforme Philippi, S. oplocense Hawkes, and S. stoloniferum Schlechted and Bouché, and the commercially cultivated potato plant S. tuberosum L. cv. Désirée. Moreover the susceptibility of S. polyadenium and S. tarijense to the Colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera: Chrlysomelidae), the potato flea beetle Epitrix cucumeris (Harris), and the potato leafhopper Empoasca fabae (Harris) (Hemiptera: Cicadellidae) was compared to that of S. tuberosum cv. Désirée in the field. Results indicated that S. polyadenium and S. tarijense were more resistant to M. persicae than S. pinnatisectum and the commercially cultivated S. tuberosum cv. Désirée. Solanum polyadenium was more resistant to aphids than S. tarijense in 2004, but not in 2005. Moreover, S. polyadenium and S. tarijense were more resistant than S. tuberosum cv. Désirée to L. decemlineata, E. cucumeris and E. fabae. PMID:21054161

  12. Potato defense against Colorado potato beetle Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato (Solanum tuberosum) by Colorado potato beetle infestation and regurgitant treatment of

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle is the leading pest of solanaceous plants, however little is known about the interaction of this beetle with the potato plant. Using the 11,421 EST solanaceae microarry profiling services at TIGR we have begun investigating the genes that are differentially expressed by infest...

  13. Novel inter-series hybrids in Solanum, section Petota.

    PubMed

    Dinu, I I; Hayes, R J; Kynast, R G; Phillips, R L; Thill, C A

    2005-02-01

    Sexual hybrids between distantly related Solanum species can undergo endosperm failure, a post-zygotic barrier in inter-species hybridizations. This barrier is explained by the endosperm balance number (EBN) hypothesis, which states that parents must have corresponding EBNs for viable seed formation. Tests for inter-crossability were made involving the Mexican species Solanum pinnatisectum Dunal. (series Pinnatisecta, ApiApi, 1EBN), autotetraploids of this species, Solanum verrucosum Schlechtd. (series Tuberosa, AA, 2EBN), haploids (2x, 2EBN) of the South American S. tuberosum L. (series Tuberosa, A1A1A2A2, 4EBN), and F2 haploid-species hybrids with South American species (AA, 2EBN) S. berthaultii Hawkes, S. sparsipilum (Bitter.) Juz. and Bukasov and S. chacoense Bitter. The development of hybrid endosperms was investigated for these combinations by confocal microscopy with regard to cell-division timing and tissue collapse. Novel sexual diploid (AApi) and triploid (AApiApi) inter-series hybrids were generated from S. verrucosum x S. pinnatisectum crosses by using post-pollination applications of auxin. F1 embryos were rescued in vitro. The hybrid status of recovered plants was verified by microsatellite marker analysis, and the ploidy was determined by chromosome counting. The application of phytohormones in inter-ploidy S. pinnatisectum x S. tuberosum crosses, however, did not delay endosperm collapse, and embryos were not formed. Other diploid, 1EBN species tested in remote hybridizations with Group Tuberosum were S. cardiophyllum Lindl., S. trifidum Correll, and S. tarnii Hawkes and Hjert., series Pinnatisecta, and S. bulbocastanum Dunal., series Bulbocastana. Based on the analysis of post-zygotic reproductive barriers among isolated species of section Petota, we propose strategies to overcome such incompatibilities. PMID:15517147

  14. Combined effects of CO2 enrichment, changes in diurnal light level and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato plants (Solanum tuberosum L. cv Kennebec) were grown in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers. Drought treatments were imposed at post-tuber initiation stage to assess water stress effects on leaf metabolites, and interactions with enriched CO2 concentrati...

  15. Electrochemical Determination of Low Molecular Mass Thiols Content in Potatoes (Solanum tuberosum) Cultivated in the Presence of Various Sulphur Forms and Infected by Late Blight (Phytophora infestans)

    PubMed Central

    Ryant, Pavel; Dolezelova, Eva; Fabrik, Ivo; Baloun, Jiri; Adam, Vojtech; Babula, Petr; Kizek, Rene

    2008-01-01

    In the present paper potato plants were cultivated in the presence of ammonium sulphate or elemental sulphur supplementation into the soil to reveal the effects of different sulphur forms on content of nitrogen, phosphorus, potassium, calcium, magnesium and sulphur, and yield of tubers. During the investigation of the influence of different sulphur forms on yield of potato tubers we did not observe significant changes. Average weight of tubers of control plants per one experimental pot was 355 g. Application of sulphur in both forms resulted in moderate potato tubers weight reduction per one experimental pot compared to control group; average value ranged from 320 to 350 g per one experimental pot. Further we treated the plants with two different supplementation of sulphur with cadmium(II) ions (4 mg of cadmium(II) acetate per kilogram of the soil). The significantly lowest cadmium content (p < 0.05) was determined in tissues of plants treated with the highest dosage of elemental sulphur (0.64 mg Cd/kg) compared to control plants (0.82 mg Cd/kg). We also aimed our attention on the cadmium content in proteins, lipids or soluble carbohydrates and ash. Application of sulphate as well as elemental sulphur resulted in significant cadmium content reduction in lipid fraction compared to control plants. In addition to this we quantified content of low molecular mass thiols in potatoes tissues. To determine the thiols content we employed differential pulse voltammetry Brdicka reaction. After twelve days of the treatment enhancing of thiols level was observed in all experimental groups regardless to applied sulphur form and its concentration. Finally we evaluated the effect of sulphur supplementation on Phytophora infestans infection of potato plants.

  16. Multiple copies of genes encoding XEGIPs and EDGPs are harbored in an 85kB region of potato genome(Solanum tuberosum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The XEGIPs (xyloglucan-specific endoglucanase inhibitor protein) and their closest homologues, the EDGPs (extracellular dermal glycoproteins) have been reported in a limited number of plants, principally Solanaceous ones. One function of XEGIP is limiting pathogen attack by interfering with family 1...

  17. Ethylene in the atmosphere of commercial potato (Solanum tuberosum) storage bins and potential effects on tuber respiration rate and fried chip color

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Careful storage management is required to maintain post-harvest potato tuber quality. The plant growth regulator ethylene has well documented effects on potato tuber respiration rate, fried product color, and sprouting, but data on the amount of ethylene present in ventilated potato storages and how...

  18. Modulation of the cellulose content of tuber cell walls by antisense expression of different potato (Solanum tuberosum L.) CesA clones.

    PubMed

    Oomen, Ronald J F J; Tzitzikas, Emmanouil N; Bakx, Edwin J; Straatman-Engelen, Irma; Bush, Maxwell S; McCann, Maureen C; Schols, Henk A; Visser, Richard G F; Vincken, Jean-Paul

    2004-03-01

    Four potato cellulose synthase (CesA) homologs (StCesA1, 2, 3 and 4) were isolated by screening a cDNA library made from developing tubers. Based on sequence comparisons and the fact that all four potato cDNAs were isolated from this single cDNA-library, all four StCesA clones are likely to play a role in primary cell wall biosynthesis. Several constructs were generated to modulate cellulose levels in potato plants in which the granule-bound starch synthase promoter was used to target the modification to the tubers. The StCesA3 was used for up- and down-regulation of the cellulose levels by sense (SE-StCesA3) and antisense (AS-StCesA3) expression of the complete cDNA. Additionally, the class-specific regions (CSR) of all four potato cellulose synthase genes were used for specific down-regulation (antisense) of the corresponding CesA genes (csr1, 2, 3 and 4). None of the transformants showed an overt developmental phenotype. Sections of tubers were screened for altered cell wall structure by Fourier Transform Infrared microspectroscopy (FTIR) and exploratory Principal Component Analysis (PCA), and those plants discriminating from WT plants were analysed for cellulose content and monosaccharide composition. Several transgenic lines were obtained with mainly decreased levels of cellulose. These results show that the cellulose content in potato tubers can be reduced down to 40% of the WT level without affecting normal plant development, and that constructs based on the CSR alone are specific and sufficient to down-regulate cellulose biosynthesis. PMID:15003416

  19. Glycoalkaloids of wild and cultivated Solanum: effects on specialist and generalist insect herbivores.

    PubMed

    Altesor, Paula; García, Álvaro; Font, Elizabeth; Rodríguez-Haralambides, Alejandra; Vilaró, Francisco; Oesterheld, Martín; Soler, Roxina; González, Andrés

    2014-06-01

    Plant domestication by selective breeding may reduce plant chemical defense in favor of growth. However, few studies have simultaneously studied the defensive chemistry of cultivated plants and their wild congeners in connection to herbivore susceptibility. We compared the constitutive glycoalkaloids (GAs) of cultivated potato, Solanum tuberosum, and a wild congener, S. commersonii, by liquid chromatography coupled to mass spectrometry. We also determined the major herbivores present on the two species in field plots, and tested their preference for the plants and their isolated GAs in two-choice bioassays. Solanum commersonii had a different GA profile and higher concentrations than S. tuberosum. In the field, S. tuberosum was mostly attacked by the generalist aphids Myzus persicae and Macrosiphum euphorbiae, and by the specialist flea beetle Epitrix argentinensis. In contrast, the most common herbivore on S. commersonii was the specialist sawfly Tequus sp. Defoliation levels were higher on the wild species, probably due to the chewing feeding behavior of Tequus sp. As seen in the field, M. persicae and E. argentinensis preferred leaf disks of the cultivated plant, while Tequus sp. preferred those of the wild one. Congruently, GAs from S. commersonii were avoided by M. persicae and preferred by Tequus sp. The potato aphid performed well on both species and was not deterred by S. commersonii GAs. These observations suggest that different GA profiles explain the feeding preferences of the different herbivores, and that domestication has altered the defensive capacity of S. tuberosum. However, the wild relative is still subject to severe defoliation by a specialist herbivore that may cue on the GAs. PMID:24863489

  20. Steroidal glycoalkaloids in Solanum chacoense.

    PubMed

    Mweetwa, Alice M; Hunter, Danielle; Poe, Rebecca; Harich, Kim C; Ginzberg, Idit; Veilleux, Richard E; Tokuhisa, James G

    2012-03-01

    Potato (Solanum tuberosum L.), a domesticated species that is the fourth most important world agricultural commodity, requires significant management to minimize the effects of herbivore and pathogen damage on crop yield. A wild relative, Solanum chacoense Bitt., has been of interest to plant breeders because it produces an abundance of novel steroidal glycoalkaloid compounds, leptines and leptinines, which are particularly effective deterrents of herbivory by the Colorado potato beetle (Leptinotarsa decemlineata Say). Biochemical approaches were used in this study to investigate the formation and accumulation of SGAs in S. chacoense. SGA contents were determined in various organs at different stages of organ maturity during a time course of plant development. Leptines and leptinines were the main contributors to the increased levels in SGA concentration measured in the aerial versus the subterranean organs of S. chacoense accession 8380-1. Leptines were not detected in aboveground stolons until the stage where shoots had formed mature chlorophyllous leaves. To gain insights into SGA biosynthesis, the abundance of SGAs and steady-state transcripts of genes coding for enzymes of the central terpene and SGA-specific pathways in various plant organs at anthesis were compared. For two genes of primary terpene metabolism, transcript and SGA abundances were correlated, although with some discrepancies. For genes associated with SGA biosynthesis, transcripts were not detected in some tissues containing SGAs; however these transcripts were detected in the progenitor tissues, indicating the possibility that under our standard growth conditions, SGA biosynthesis is largely limited to highly proliferative tissues such as shoot, root and floral meristems. PMID:22217745

  1. Intraspecific competition facilitates the evolution of tolerance to insect damage in the perennial plant Solanum carolinense.

    PubMed

    McNutt, David W; Halpern, Stacey L; Barrows, Kahaili; Underwood, Nora

    2012-12-01

    Tolerance to herbivory (the degree to which plants maintain fitness after damage) is a key component of plant defense, so understanding how natural selection and evolutionary constraints act on tolerance traits is important to general theories of plant-herbivore interactions. These factors may be affected by plant competition, which often interacts with damage to influence trait expression and fitness. However, few studies have manipulated competitor density to examine the evolutionary effects of competition on tolerance. In this study, we tested whether intraspecific competition affects four aspects of the evolution of tolerance to herbivory in the perennial plant Solanum carolinense: phenotypic expression, expression of genetic variation, the adaptive value of tolerance, and costs of tolerance. We manipulated insect damage and intraspecific competition for clonal lines of S. carolinense in a greenhouse experiment, and measured tolerance in terms of sexual and asexual fitness components. Compared to plants growing at low density, plants growing at high density had greater expression of and genetic variation in tolerance, and experienced greater fitness benefits from tolerance when damaged. Tolerance was not costly for plants growing at either density, and only plants growing at low density benefited from tolerance when undamaged, perhaps due to greater intrinsic growth rates of more tolerant genotypes. These results suggest that competition is likely to facilitate the evolution of tolerance in S. carolinense, and perhaps in other plants that regularly experience competition, while spatio-temporal variation in density may maintain genetic variation in tolerance. PMID:22684886

  2. The Single Andigenum Origin of Neo-Tuberosum Potato Materials is not Supported by Microsatellite and Plastid Marker Analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neo-Tuberosum refers to cultivated potato adapted to long-day tuberization and a syndrome of related morphological and physiological traits, developed by intercrossing and selection of short-day adapted potatoes of the Solanum tuberosum Andigenum Group, native from the Andes of western Venezuela to ...

  3. Shoot tip cryopreservation of Solanum tuberosum germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid nitrogen storage of vegetatively-propagated germplasm collections is the most economic and reliable long-term preservation method for many of these collections. Over the past 11 years, the USDA-ARS National Center for Genetic Resources Preservation (NCGRP) cryopreserved over 100 different pot...

  4. Abiotically-induced plant morphological changes and host-range expansion in quarantine evaluations of candidate weed biocontrol agents: the case study Conchyloctenia hybrida (Coleoptera: Chrysomelidae).

    PubMed

    Ghebremariam, Tsedal T; Krüger, Kerstin; Reinhardt, Carl F; Robbertse, Petrus J

    2014-10-01

    Plant morphological changes mediated by growth conditions are linked to changes in host preference of herbivores. Understanding how these morphological changes influence herbivore feeding is critical in the interpretation of results of host evaluation of candidate weed biocontrol agents in quarantine and improvement of the evaluation system. We determined the effect of plant growth conditions on leaf trichomes and host choice of Conchyloctenia hybrida Boheman, an insect adapted to the removal of trichomes before feeding. The study included four Solanum species: Solanum lichtensteinii Willdenow (natural host of C. hybrida), Solanum mauritianum Scopoli, Solanum melongena L., and Solanum tuberosum L.. Plants were grown in either full sun, shade, a glasshouse, or in a growth-chamber. Plants grown in full sun had a higher leaf trichome density than those in shade or controlled environments. S. mauritianum had the highest trichome density and thickness of trichome layer. In a multiple-choice test using excised leaves, feeding by C. hybrida was higher on Solanum plants grown in the controlled environment as compared with full sun. Trichome removal from leaf surfaces of plants grown in full sun, using adhesive tape, was effective for S. lichtensteinii, S. mauritianum, and S. melongena, but not S. tuberosum. Leaf consumption by C. hybrida increased significantly where manual trichome removal using adhesive tape was effective. Structurally, leaves of S. tuberosum have simple trichomes with basal cells sunken into the mesophyll tissue. When using forceps to remove trichomes of S. tuberosum, mesophyll and vascular tissue remained attached to the trichomes. Generally, the type, density, and mat-thickness of leaf trichomes determined feeding by C. hybrida, but varied with plant species and growth conditions. PMID:25259692

  5. Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR's) on medicinal plant Solanum viarum seedlings.

    PubMed

    Hemashenpagam, N; Selvaraj, T

    2011-09-01

    A green house nursery study was conducted to assess the interaction between arbuscular mycorrhizal (AM) fungus, Glomus aggregatum and some plant growth promoting rhizomicrooganisms (PGPR's), Bacillus coagulans and Trichoderma harzianum, in soil and their consequent effect on growth, nutrition and content of secondary metabolities of Solanum viarum seedlings. Triple inoculation of G. aggregatum+B. coagulans+T. harzainum with Solanum viarum in a green house nursery study resulted in maximum plant biomass (plant height 105 cm and plant dry weight 12.17 g), P, Fe, Zn, Cu and Mn and secondary metabolities [total phenols (129.6 microg g(-1) f.wt.), orthodihydroxy phenols (90.6 microg g(-1) f.wt.), flavonoids (3.94 microg g(-1) f.wt.), alkaloids (5.05 microg g(-1) f.wt.), saponins (5.05 microg g(-1) f.wt.) and tannins (0.324 microg g(-1) f.wt.)] of S. viarum seedlings. The mycorrhizal root colonization and spore numbers in the root zone soil of the inoculated plants increased. The enzyme activity namely acid phosphatase (53.44 microg PNP g(-1) soil), alkaline phosphatase (40.95 microg PNP g(-1) soil) and dehydrogenase (475.5 microg PNP g(-1) soil) and total population of B. coagulans (12.5x10(4) g(-1)) and T. harzianum (12.4 x 10(4) g(-1)), in the root zone soil was found high in the triple inoculation with G. aggregatum+B. coagulans+T. harzianum that proved to be the best microbial consortium. PMID:22319872

  6. Zebrafish bioassay-guided microfractionation identifies anticonvulsant steroid glycosides from the Philippine medicinal plant Solanum torvum.

    PubMed

    Challal, Soura; Buenafe, Olivia E M; Queiroz, Emerson F; Maljevic, Snezana; Marcourt, Laurence; Bock, Merle; Kloeti, Werner; Dayrit, Fabian M; Harvey, Alan L; Lerche, Holger; Esguerra, Camila V; de Witte, Peter A M; Wolfender, Jean-Luc; Crawford, Alexander D

    2014-10-15

    Medicinal plants used for the treatment of epilepsy are potentially a valuable source of novel antiepileptic small molecules. To identify anticonvulsant secondary metabolites, we performed an in vivo, zebrafish-based screen of medicinal plants used in Southeast Asia for the treatment of seizures. Solanum torvum Sw. (Solanaceae) was identified as having significant anticonvulsant activity in zebrafish larvae with seizures induced by the GABAA antagonist pentylenetetrazol (PTZ). This finding correlates well with the ethnomedical use of this plant in the Philippines, where a water decoction of S. torvum leaves is used to treat epileptic seizures. HPLC microfractionation of the bioactive crude extract, in combination with the in vivo zebrafish seizure assay, enabled the rapid localization of several bioactive compounds that were partially identified online by UHPLC-TOF-MS as steroid glycosides. Targeted isolation of the active constituents from the methanolic extract enabled the complete de novo structure identification of the six main bioactive compounds that were also present in the traditional preparation. To partially mimic the in vivo metabolism of these triterpene glycosides, their common aglycone was generated by acid hydrolysis. The isolated molecules exhibited significant anticonvulsant activity in zebrafish seizure assays. These results underscore the potential of zebrafish bioassay-guided microfractionation to rapidly identify novel bioactive small molecules of natural origin. PMID:25127088

  7. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  8. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  9. Life history parameters of the biocontrol agent Gratiana spadicea (Chrysomelidae), reared on the natural host plant Solanum sisymbriifolium and the non-target crop Solanum melongena (Solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gratiana spadicea (Klug), a leaf-feeding tortoise beetle native to South America, was released in South Africa for the biological control of Solanum sisymbriifolium Lamarck (wild tomato), despite its ability to develop on cultivated eggplant (Solanum melongena L.) during laboratory host-specificity ...

  10. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato)

    PubMed Central

    2013-01-01

    Background Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. Conclusions Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas

  11. New evidence of similarity between human and plant steroid metabolism: 5alpha-reductase activity in Solanum malacoxylon.

    PubMed

    Rosati, Fabiana; Danza, Giovanna; Guarna, Antonio; Cini, Nicoletta; Racchi, Milvia Luisa; Serio, Mario

    2003-01-01

    The physiological role of steroid hormones in humans is well known, and the metabolic pathway and mechanisms of action are almost completely elucidated. The role of plant steroid hormones, brassinosteroids, is less known, but an increasing amount of data on brassinosteroid biosynthesis is showing unexpected similarities between human and plant steroid metabolic pathways. Here we focus our attention on the enzyme 5alpha-reductase (5alphaR) for which a plant ortholog of the mammalian system, DET2, was recently described in Arabidopsis thaliana. We demonstrate that campestenone, the natural substrate of DET2, is reduced to 5alpha-campestanone by both human 5alphaR isozymes but with different affinities. Solanum malacoxylon, which is a calcinogenic plant very active in the biosynthesis of vitamin D-like molecules and sterols, was used to study 5alphaR activity. Leaves and calli were chosen as examples of differentiated and undifferentiated tissues, respectively. Two separate 5alphaR activities were found in calli and leaves of Solanum using campestenone as substrate. The use of progesterone allowed the detection of both activities in calli. Support for the existence of two 5alphaR isozymes in S. malacoxylon was provided by the differential actions of inhibitors of the human 5alphaR in calli and leaves. The evidence for the presence of two isozymes in different plant tissues extends the analogies between plant and mammalian steroid metabolic pathways. PMID:12488348

  12. Taxonomy of cultivated potatoes (solanum section petota: solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  13. Taxonomy of Cultivated Potatoes (Solanum section Petota: Solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  14. Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds.

    PubMed

    Villarreal, M L; Muñoz, J

    1991-01-01

    A tissue culture method is described for micropropagation and callus formation from Solanum chrysotricum axillary bud explants in Murashige and Skoog's (MS) medium, supplemented with various growth regulators. Induction of rooted plants were initiated only when indol-3 acetic acid (IAA) was present as an auxin in combination with either of two cytokinins: kinetin (KN) or benzyladenine (BA); however, the combination of IAA (0.1 mg.lt.-1) + BA (0.2 mg.lt.-1) was found to be best suited for morphogenesis purposes. Alternatively, callus tissue formation was influenced in presence of naphthalene acetic acid; which in combination with kinetin (NAA 0.1 mg.lt.-1 + KN 0.2 mg.lt.-1) exhibit the best response studied. The plant material obtained by this procedure is proposed for pharmacological and chemical studies of this important antimycotic plant remedy. PMID:1819987

  15. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles.

    PubMed

    Zhang, Hui; Mallik, Azim; Zeng, Ren Sen

    2013-02-01

    Intercropping and rotating banana (Musa spp.) with Chinese chive (Allium tuberosum Rottler) has been used as an effective method to control Panama disease (Fusarium wilt) of banana in South China. However, the underlying mechanism is unknown. In this study, we used aqueous leachates and volatiles from Chinese chive to evaluate their antimicrobial activity on Fusarium oxysporum f. sp. cubense race 4 (FOC), the causal agent of Panama disease in banana, and identified the antifungal compounds. Both leaf and root leachates of Chinese chive displayed strong inhibition against FOC, but the concentrated leachates showed lower inhibition than the original leachates. In a sealed system volatiles emitted from the leaves and roots of Chinese chive inhibited mycelial growth of FOC. Volatile compounds emitted from the intact growing roots mimicking natural environment inhibited spore germination of FOC. We identified five volatiles including 2-methyl-2-pentenal and four organosulfur compounds (dimethyl trisulfide, dimethyl disulfide, dipropyl disulfide, and dipropyl trisulfide) from the leaves and roots of Chinese chive. All these compounds exhibited inhibitory effects on FOC, but 2-methyl-2-pentenal and dimethyl trisulfide showed stronger inhibition than the other three compounds. 2-Methyl-2-pentenal at 50-100 μl/l completely inhibited the mycelial growth of FOC. Our results demonstrate that antifungal volatiles released from Chinese chive help control Panama disease in banana. We conclude that intercropping and rotating banana with Chinese chive can control Panama disease and increase cropland biodiversity. PMID:23355016

  16. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    PubMed Central

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A.; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M.; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  17. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities.

    PubMed

    Griffin, Sharoon; Tittikpina, Nassifatou Koko; Al-Marby, Adel; Alkhayer, Reem; Denezhkin, Polina; Witek, Karolina; Gbogbo, Koffi Apeti; Batawila, Komlan; Duval, Raphaël Emmanuel; Nasim, Muhammad Jawad; Awadh-Ali, Nasser A; Kirsch, Gilbert; Chaimbault, Patrick; Schäfer, Karl-Herbert; Keck, Cornelia M; Handzlik, Jadwiga; Jacob, Claus

    2016-01-01

    Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude "waste" plant materials for specific practical applications, especially-but not exclusively-in developing countries lacking a more sophisticated industrial infrastructure. PMID:27104554

  18. Leaf Anatomy and Photochemical Behaviour of Solanum lycopersicum L. Plants from Seeds Irradiated with Low-LET Ionising Radiation

    PubMed Central

    De Micco, V.; Paradiso, R.; Aronne, G.; De Pascale, S.; Quarto, M.; Arena, C.

    2014-01-01

    Plants can be exposed to ionising radiation not only in Space but also on Earth, due to specific technological applications or after nuclear disasters. The response of plants to ionising radiation depends on radiation quality/quantity and/or plant characteristics. In this paper, we analyse some growth traits, leaf anatomy, and ecophysiological features of plants of Solanum lycopersicum L. “Microtom” grown from seeds irradiated with increasing doses of X-rays (0.3, 10, 20, 50, and 100 Gy). Both juvenile and compound leaves from plants developed from irradiated and control seeds were analysed through light and epifluorescence microscopy. Digital image analysis allowed quantifying anatomical parameters to detect the occurrence of signs of structural damage. Fluorescence parameters and total photosynthetic pigment content were analysed to evaluate the functioning of the photosynthetic machinery. Radiation did not affect percentage and rate of seed germination. Plants from irradiated seeds accomplished the crop cycle and showed a more compact habitus. Dose-depended tendencies of variations occurred in phenolic content, while other leaf anatomical parameters did not show distinct trends after irradiation. The sporadic perturbations of leaf structure, observed during the vegetative phase, after high levels of radiation were not so severe as to induce any significant alterations in photosynthetic efficiency. PMID:24883400

  19. Co-Planting Cd Contaminated Field Using Hyperaccumulator Solanum Nigrum L. Through Interplant with Low Accumulation Welsh Onion.

    PubMed

    Wang, Siqi; Wei, Shuhe; Ji, Dandan; Bai, Jiayi

    2015-01-01

    Monoculture and intercrop of hyperaccumulator Solanum nigrum L. with low accumulation Welsh onion Renbentieganchongwang were conducted. The results showed that the remove ratio of S. nigrum to Cd was about 7% in intercrop plot when top soil (0-20 cm) Cd concentration was 0.45-0.62 mg kg(-1), which did not significantly impact the yield of low accumulation Welsh onion compared to the monoculture. The consistency of remove ratio in practice and theory indicated the remediation of S. nigrum to Cd was significant. The Cd concentration and yield of Welsh onion were not affected by the growth of S. nigrum either in intercrop plot. The Cd concentration in edible parts of Welsh onion was available either. In short, inter-planting hyperaccumulator with low accumulation crop could normally remediate contaminated soil and produce crop (obtain economic benefit), which may be one practical pathway of phytoremediating heavy metal contaminated soil in the future. PMID:25581317

  20. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.

    PubMed

    Martínez-Andújar, Cristina; Ghanem, Michel Edmond; Albacete, Alfonso; Pérez-Alfocea, Francisco

    2013-05-01

    Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively. PMID:23394787

  1. The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to elicit cell death, and requires Wx(3-6)D/E motifs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effect...

  2. Taxonomic Treatment of Solanum Section Petota (Wild Potatoes) in Catálogo de Plantas Vasculares del Cono Sur (Argentina, Chile, Paraguay, Uruguay, y sur del Brasil)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum section Petota (Solanaceae), which includes the cultivated potato (Solanum tuberosum) and its wild relatives, contains over 150 wild species distributed from the southwestern U.S.A. (38°N) to central Argentina and adjacent Chile (41°S). This catalog includes all species from the Southern Con...

  3. Polyphenols from Eriosema tuberosum.

    PubMed

    Ma, W G; Fuzzati, N; Li, Q S; Yang, C R; Stoeckli-Evans, H; Hostettmann, K

    1995-07-01

    A dichloromethane extract of the roots of Eriosema tuberosum exhibited antifungal activity against Cladosporium cucumerinum and Candida albicans using TLC bioautography. Bioassay-directed fractionation led to the isolation of four new compounds, eriosemaones A-D, together with a known compound, flemichin-D, as the active constituents. Three inactive polyphenols were also isolated after methylation, together with one new chromone, eriosematin. Structures were determined by spectroscopic analysis and from chemical evidence. PMID:7662271

  4. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba.

    PubMed

    Austruy, A; Wanat, N; Moussard, C; Vernay, P; Joussein, E; Ledoigt, G; Hitmi, A

    2013-04-01

    In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species. PMID:23321366

  5. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.

    PubMed

    Djebali, Wahbi; Gallusci, Philippe; Polge, Cécile; Boulila, Latifa; Galtier, Nathalie; Raymond, Philippe; Chaibi, Wided; Brouquisse, Renaud

    2008-02-01

    The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants. PMID:17952456

  6. Size of tuber propagule influences injury of 'Kennebec' potato plants by constant light

    NASA Technical Reports Server (NTRS)

    Cushman, K. E.; Tibbitts, T. W.

    1996-01-01

    Chlorosis and necrotic spotting develop on the foliage of particular cultivars of potato (Solanum tuberosum L.) when grown under constant light. 'Kennebec', a cultivar severely injured by constant light when propagated from tissue-cultured plantlets, also was injured when plants were propagated from small tuber pieces (approximately 1 g). However, plants did not develop injury when propagated from large tuber pieces (approximately 100 g). Plants from large tuber pieces grew more rapidly than plants from small tuber pieces. The role of plant vigor and carbohydrate translocation in controlling injury development is discussed.

  7. Insect Eggs Can Enhance Wound Response in Plants: A Study System of Tomato Solanum lycopersicum L. and Helicoverpa zea Boddie

    PubMed Central

    Kim, Jinwon; Tooker, John F.; Luthe, Dawn S.; De Moraes, Consuelo M.; Felton, Gary W.

    2012-01-01

    Insect oviposition on plants frequently precedes herbivory. Accumulating evidence indicates that plants recognize insect oviposition and elicit direct or indirect defenses to reduce the pressure of future herbivory. Most of the oviposition-triggered plant defenses described thus far remove eggs or keep them away from the host plant or their desirable feeding sites. Here, we report induction of antiherbivore defense by insect oviposition which targets newly hatched larvae, not the eggs, in the system of tomato Solanum lycopersicum L., and tomato fruitworm moth Helicoverpa zea Boddie. When tomato plants were oviposited by H. zea moths, pin2, a highly inducible gene encoding protease inhibitor2, which is a representative defense protein against herbivorous arthropods, was expressed at significantly higher level at the oviposition site than surrounding tissues, and expression decreased with distance away from the site of oviposition. Moreover, more eggs resulted in higher pin2 expression in leaves, and both fertilized and unfertilized eggs induced pin2 expression. Notably, when quantified daily following deposition of eggs, pin2 expression at the oviposition site was highest just before the emergence of larvae. Furthermore, H. zea oviposition primed the wound-induced increase of pin2 transcription and a burst of jasmonic acid (JA); tomato plants previously exposed to H. zea oviposition showed significantly stronger induction of pin2 and higher production of JA upon subsequent simulated herbivory than without oviposition. Our results suggest that tomato plants recognize H. zea oviposition as a signal of impending future herbivory and induce defenses to prepare for this herbivory by newly hatched neonate larvae. PMID:22616005

  8. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress.

    PubMed

    Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro

    2016-01-01

    Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts. PMID:27602039

  9. Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress

    PubMed Central

    Catola, Stefano; Kaidala Ganesha, Srikanta Dani; Calamai, Luca; Loreto, Francesco; Ranieri, Annamaria; Centritto, Mauro

    2016-01-01

    Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts. PMID:27602039

  10. Molecular characterization and Phylogenetic analysis of 16S rRNA from a new Candidatus Liberibacter strain associated with Zebra chip disease of Potato (Solanum tuberosum L.) and the potato psyllid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The full-length 16S rRNA gene region of a new Candidatus Liberibacter strain was PCR amplified from tubers of potato plants showing Zebra Chip (ZC) disease symptoms and also from the potato psyllid [Bactericera (= Paratrioza) cockerelli Sulc], the presumptive vector of the ZC disease causal agent. ...

  11. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    NASA Astrophysics Data System (ADS)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  12. Treatment of hypercholesterolemia: screening of Solanum macrocarpon Linn (Solanaceae) as a medicinal plant in Benin

    PubMed Central

    Dougnon, Tamègnon Victorien; Bankolé, Honoré Sourou; Klotoé, Jean Robert; Sènou, Maximin; Fah, Lauris; Koudokpon, Hornel; Akpovi, Casimir; Dougnon, Tossou Jacques; Addo, Phyllis; Loko, Frédéric; Boko, Michel

    2014-01-01

    Objective: Hypercholesterolemia is the greatest risk factor for cardiovascular diseases. The present study is conducted to evaluate the lipid lowering activity of leaves and fruits of Solanum macrocarpon, a vegetable, on Wistar rats experimentally rendered hypercholesterolemic by Triton X-100. Materials and Methods: The leaves and fruits were administered (p.o.) for 7 days to rats at doses of 400 and 800 mg/kg of body weight. Atorvastatin was used as reference treatment drug. The data were analyzed by the Brown-Forsythe ANOVA, Dunnett’s T3 multiple comparison test, and Dunnett’s t test. All tests were done at the 5% significance level. Results: Administration of S. macrocarpon (fruits as well as leaves) resulted in a statistically significant decrease in total cholesterol, LDL-cholesterol, VLDL-cholesterol, and triglycerides in the treated groups compared with the untreated hypercholesterolemic group, regardless of the administrated doses. A significant increase in HDL-cholesterol was observed in the treated groups. Hepatic disorders due to the Triton have been corrected by S. macrocarpon. Conclusions: This vegetable effectively suppresses experimental hypercholesterolemia in Wistar rats, suggesting a protective role in cardiovascular diseases. Its use by individuals at risk should be promoted. PMID:25050314

  13. Diel changes in nitrogen and carbon resource status and use for growth in young plants of tomato (Solanum lycopersicum)

    PubMed Central

    Huanosto Magaña, Ruth; Adamowicz, Stéphane; Pagès, Loïc

    2009-01-01

    Background and Aims Modellers often define growth as the development of plant structures from endogenous resources, thus making a distinction between structural (WS) and total (W) dry biomass, the latter being the sum of WS and the weight of storage compounds. In this study, short-term C and N reserves were characterized experimentally (forms, organ distribution, time changes) in relation to light and nutrition signals, and organ structural growth in response to reserve levels was evaluated. Methods Tomato plants (Solanum lycopersicum) were grown hydroponically in a growth room with a 12-h photoperiod and an adequate supply of NO3− (3 mol m−3). Three experiments were carried out 18 d after sowing: [NO3−] was either maintained at 3 mol m−3, changed to 0·02 mol m−3 or to 0 mol m−3. Plants were sampled periodically throughout the light/dark cycles over 24–48 h. Organ WS was calculated from W together with the amount of different compounds that act as C and N resources, i.e. non-structural carbohydrates and carboxylates, nitrate and free amino acids. Key Results With adequate nutrition, carbohydrates accumulated in leaves during light periods, when photosynthesis exceeded growth needs, but decreased at night when these sugars are the main source of C for growth. At the end of the night, carbohydrates were still high enough to fuel full-rate growth, as WS increased at a near constant rate throughout the light/dark cycle. When nitrate levels were restricted, C reserves increased, but [NO3−] decreased progressively in stems, which contain most of the plant N reserves, and rapidly in leaves and roots. This resulted in a rapid restriction of structural growth. Conclusions Periodic darkness did not restrict growth because sufficient carbohydrate reserves accumulated during the light period. Structural growth, however, was very responsive to NO3− nutrition, because N reserves were mostly located in stems, which have limited nitrate reduction capacity. PMID

  14. Does secondary plant metabolism provide a mechanism for plant defenses in the tropical soda apple Solanum viarum (Solanales: Solanaceae) against the beet armyworm Spodoptera exigua and southern armyworm S. eridania?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival assays were conducted with beet armyworm Spodoptera exigua and southern armyworm S. eridania with tropical soda apple Solanum viarum a relative of tomato. In addition, polyphenol oxidase (PPO) enzyme assays were conducted to determine if secondary plant defense compounds are being produce...

  15. Breeding for Early Blight Resistance in Potato Using the Wild Species Solanum Raphanifolium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight of potato (Solanum tuberosum L.), caused by Alternaria solani is a major cause of economic losses in many potato growing regions. Growers are interested in the development of potato cultivars with resistance to early blight as a means to decrease usage of fungicide applications. Using w...

  16. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes.

    PubMed

    Ramesh, Kumar Ramagoni; Hemalatha, R; Vijayendra, Chary Anchoju; Arshi, Uz Zaman Syed; Dushyant, Singh Baghel; Dinesh, Kumar Bharadwaj

    2016-01-15

    Eggplant is the third most important Solanaceae crop after tomato and potato, particularly in India and China. A transcriptome analysis of eggplant's fruit was performed to study genes involved in medicinal importance and allergies. Illumina HiSeq 2000 system generated 89,763,638 raw reads (~18 Gb) from eggplant. High quality reads (59,039,694) obtained after trimming process, were assembled into a total of 149,224 non redundant set of transcripts. Out of 80,482 annotated sequences of eggplant fruit (BLASTx results against nr-green plant database), 40,752 transcripts showed significant similarity with predicted proteins of Solanum tuberosum (51%) followed by Solanum lycopersicum (34%) and other sequenced plant genomes. With BLASTx top hit analysis against existing allergens, a total of 1986 homologous allergen sequences were found, which had >37% similarity with 48 different allergens existing in the database. From the 48 putative allergens, 526 B-cell linear epitopes were identified using BepiPred linear epitope prediction tool. Transcript sequences generated from this study can be used to map epitopes of monoclonal antibodies and polyclonal sera from patients. With the support of this whole transcriptome catalogue of eggplant fruit, complete list of genes can be predicted based on which secondary structures of proteins may be modeled. PMID:26424595

  17. A binomial sequential sampling plan for Bactericera cockerelli (Hemiptera: Triozidae) in Solanum lycopersicum (Solanales: Solanacea).

    PubMed

    Prager, Sean M; Butler, Casey D; Trumble, John T

    2014-04-01

    The tomato-potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of many solanaceous plants, including tomato (Solanum lycopersicum L.) and potato (Solanum tuberosum L.). In tomato, feeding by nymphs is associated with "psyllid yellows." B. cockerelli also vectors "Candidatus Liberibacter psyllaurous," an infectious bacterium that causes "vein greening" disease. Decisions about management action are much more effective when guided by robust sampling. However, there are few previous studies of potato psyllid spatial distribution in tomato fields, and no published sequential sampling plans for the pest in tomato. We studied B. cockerelli in various tomato fields in California and used these data to generate a sequential sampling plan. We found that juvenile B. cockerelli in tomato fields exhibit an edge effect, an aggregated distribution, and individuals are primarily located on the bottom of leaves. Psyllids were concentrated in the upper segments of plants, but this changed over time. Finally, we present three binominal sequential sampling plans for managing tomato psyllids in tomato fields. These plans differed from both those for bell pepper (Capsicum annum L.) and potato, indicating that B. cockerelli needs to be sampled using crop-specific sampling plans. PMID:24772568

  18. Within plant distribution of Potato Virus Y in hairy nightshade (Solanum sarrachoides): an inoculum source affecting PVY aphid transmission.

    PubMed

    Cervantes, Felix A; Alvarez, Juan M

    2011-08-01

    Potato virus Y (PVY) is vectored by several potato-colonizing and non-colonizing aphid species in a non-persistent manner and has a wide host range. It occurs naturally in several plant families. Myzus persicae and Macrosiphum euphorbiae are the most efficient potato-colonizing aphid vectors of PVY. Rhopalosiphum padi, a cereal aphid that migrates in large numbers through potato fields during the middle of the growing season, does not colonize potato plants but can transmit PVY. Hairy nightshade, Solanum sarrachoides, a prevalent annual solanaceous weed in the Pacific Northwest (PNW) of the United States, is an alternative host for PVY and a preferred host for M. persicae and M. euphorbiae. Hence, hairy nightshade plants might play an important role as an inoculum source in the epidemiology of PVY. We looked at titre accumulation and distribution of PVY(O), PVY(N:O) and PVY(NTN) in S. sarrachoides and potato after aphid inoculation with M. persicae and studied the transmission of PVY(O) and PVY(NTN), by M. persicae, M. euphorbiae and R. padi from hairy nightshade to potato plants. Virus titre at different positions on the plant was similar in S. sarrachoides and potato plants with strains PVY(O) and PVY(N:O). Titres of PVY(NTN) were similar in S. sarrachoides and potato but differences in titre were observed at different positions within the plant depending on the plant phenology. Percentage transmission of PVY(NTN) by M. persicae and M. euphorbiae was twice as high (46 and 34%, respectively) from hairy nightshade to potato than from potato to potato (20 and 14%). Percentage transmission of PVY(O) by M. persicae and M. euphorbiae was not affected by the inoculum source. No effect of the inoculum source was observed in the transmission of either PVY strain by R. padi. These results show that hairy nightshade may be an equal or better virus reservoir than potato and thus, important in the epidemiology of PVY. PMID:21601597

  19. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  20. Genome sequence of a divergent Colombian isolate of potato virus V (PVV) infecting Solanum phureja.

    PubMed

    Gutiérrez, P; Mesa, H Jaramillo; Marín Montoya, M

    2016-03-01

    Deep sequencing analysis of the transcriptome of a Solanum phureja cv. Criolla Colombia plant with symptoms typical of a virus disease revealed an infection with potato virus V (PVV). The PVV-phureja genome comprises 9904 nt, exhibits 83% nucleotide identity with currently fully sequenced PVV isolates and contains one large ORF that codes for a polyprotein of 3065 residues flanked by 5' and 3' UTR of 217 and 448 nt, respectively. Phylogenetic analysis of the PVV-phureja polyprotein indicates that it is divergent with respect to most PVV isolates. This is the first complete PVV genome of an isolate infecting a host different to S. tuberosum and, to this date, the only one from the South American Andes. PMID:26982467

  1. Preemergence herbicides forpotential use in potato (Solanum tuberosum) production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials were conducted in 2009 and 2010 near Paterson, WA and Ontario, OR to evaluate weed control and potato tolerance to preemergence applied pyroxasulfone, saflufenacil, and KSU12800 herbicides. Pyroxasulfone at 0.09 to 0.15 kg ai ha-1 and saflufenacil at 0.05 to 0.07 kg ha-1 applied PRE alo...

  2. Potato (Solanum tuberosum) response to simulated glyphosate drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated glyphosate drift on 'Ranger Russet' potato injury, shikimic acid accumulation, and tuber yield. Glyphosate was applied at 8.5-, 54-, 107-, 215-, and 423 g ae ha-1; which corresponds to 0.01, 0.0...

  3. Sensory evaluation of pigmented flesh potatoes (Solanum tuberosum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigmented potato cultivars were ranked by a consumer panel for overall acceptance, and acceptance of aroma, appear- ance, and flavor. Potatoes were analyzed for total phenolics, anthocyanins and carotenoids. Concentrations of total phenolics in yellow and purple potato cultivars were 2-fold greate...

  4. [RNA-silencing of anionic peroxidase gene decreases the potato plant resistance to Phytophthora infestans (Mont.) de Bary].

    PubMed

    Sorokan', A V; Kuluev, B R; Burkhanova, G F; Maksimov, I V

    2014-01-01

    Transformed potato (Solanum tuberosum L.) plants expressing the antisense-fragment of M21334 gene were estimated. In transgenic plants the decrease of anionic isoperoxidase pI - 3.5 activity was detected. So, the data testify that M21334 gene encodes this isoperoxidase. Decrease of lignin accumulation and dramatic decline of resistance of transgenic potato plants to the late blight agent Phytophthora infestans emphasize an importance of isoperoxidase pI - 3.5 in defense reaction against late blight. PMID:25842867

  5. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum).

    PubMed

    Knapp, Sandra; Vorontsova, Maria S

    2013-01-01

    A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  6. From introduced American weed to Cape Verde Islands endemic: the case of Solanum rigidum Lam. (Solanaceae, Solanum subgenus Leptostemonum)

    PubMed Central

    Knapp, Sandra; Vorontsova, Maria S.

    2013-01-01

    Abstract A Solanum species long considered an American introduction to the Cape Verde Islands off the west coast of Africa is identified as Solanum rigidum, a member of the Eggplant clade of Old World spiny solanums (Solanum subgenus Leptostemonum) and is probably endemic to the Cape Verde Islands. Collections of this species from the Caribbean are likely to have been introduced from the Cape Verde Islands on slave ships. We discuss the complex nomenclatural history of this plant and provide a detailed description, illustration and distribution map. The preliminary conservation status of Solanum rigidum is Least Concern, but needs to be reassessed in light of its endemic rather than introduced status. PMID:24198710

  7. Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory

    PubMed Central

    Tanigaki, Yusuke; Higashi, Takanobu; Takayama, Kotaro; Nagano, Atsushi J.; Honjo, Mie N.; Fukuda, Hirokazu

    2015-01-01

    In plant factories, measurements of plant conditions are necessary at an early stage of growth to predict harvest times of high value-added crops. Moreover, harvest qualities depend largely on environmental stresses that elicit plant hormone responses. However, the complexities of plant hormone networks have not been characterized under nonstress conditions. In the present study, we determined temporal expression profiles of all genes and then focused on plant hormone pathways using RNA-Seq analyses of gene expression in tomato leaves every 2 h for 48 h. In these experiments, temporally expressed genes were found in the hormone synthesis pathways for salicylic acid, abscisic acid, ethylene, and jasmonic acid. The timing of CAB expression 1 (TOC1) and abscisic acid insensitive 1 (ABA1) and open stomata 1 (OST1) control gating stomata. In this study, compare with tomato and Arabidopsis thaliana, expression patterns of TOC1 have similarity. In contrast, expression patterns of tomato ABI1 and OST1 had expression peak at different time. These findings suggest that the regulation of gating stomata does not depend predominantly on TOC1 and significantly reflects the extracellular environment. The present data provide new insights into relationships between temporally expressed plant hormone-related genes and clock genes under normal sunlight conditions. PMID:26624004

  8. Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory.

    PubMed

    Tanigaki, Yusuke; Higashi, Takanobu; Takayama, Kotaro; Nagano, Atsushi J; Honjo, Mie N; Fukuda, Hirokazu

    2015-01-01

    In plant factories, measurements of plant conditions are necessary at an early stage of growth to predict harvest times of high value-added crops. Moreover, harvest qualities depend largely on environmental stresses that elicit plant hormone responses. However, the complexities of plant hormone networks have not been characterized under nonstress conditions. In the present study, we determined temporal expression profiles of all genes and then focused on plant hormone pathways using RNA-Seq analyses of gene expression in tomato leaves every 2 h for 48 h. In these experiments, temporally expressed genes were found in the hormone synthesis pathways for salicylic acid, abscisic acid, ethylene, and jasmonic acid. The timing of CAB expression 1 (TOC1) and abscisic acid insensitive 1 (ABA1) and open stomata 1 (OST1) control gating stomata. In this study, compare with tomato and Arabidopsis thaliana, expression patterns of TOC1 have similarity. In contrast, expression patterns of tomato ABI1 and OST1 had expression peak at different time. These findings suggest that the regulation of gating stomata does not depend predominantly on TOC1 and significantly reflects the extracellular environment. The present data provide new insights into relationships between temporally expressed plant hormone-related genes and clock genes under normal sunlight conditions. PMID:26624004

  9. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia. PMID:26728726

  10. Late blight and early blight resistance from Solanum hougasii introgressed into Solanum tuberosum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by Phytophthora infestans, and early blight, incited by Alternaria solani,are the two most widely occurring foliar diseases of potato in the U.S. Resistance to both diseases is necessary if growers are to reduce fungicide applications. Field resistance to late blight has previous...