Sample records for plasma actuators driven

  1. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-09-01

    A two-dimensional air plasma kinetics model (16 species and 44 processes) for nanosecond discharge under atmospheric pressure was developed to reveal the spatial and temporal distribution of discharge characteristics of a surface dielectric barrier discharge (SDBD) actuator. An energy transfer model, including two channels for energy release from external power source to gas, was developed to couple plasma with hydrodynamics directly in the same dimension. The governing equations included the Poisson equation for the electric potential, continuity equations for each species, electron energy equations for electrons taking part in reactions, and Navier-Stokes equations for non-isothermal fluid. The model was validated through current-voltage profile and electron temperature obtained from experiments. Calculations for discharge characteristics as well as the responses of fluid field from tens of nanoseconds to tens of seconds were performed. Results have shown that local air is heated to 1170 K within tens of nanoseconds and then decreases to 310 K at the end of a discharge period. 30% of the total power is transferred from electric field to electrons while only 20% of this energy is then released to gas through quenching processes. 9% of the total energy is released through ion collision. A micro-shock wave is formed and propagates at the speed of sound. High local density gradient and dynamic viscosity induces vortexes which whirl the heated air downstream. The combined effects of heating convection and vortexes in repetitive pulse discharges lead to the formation of a steady jet, in agreement with experimental results.

  2. Effects of pulse polarity on nanosecond pulse driven dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Dawson, Robyn A.; Little, Jesse

    2014-01-01

    Nanosecond pulse driven dielectric barrier discharge plasma actuators are studied in quiescent air using a power supply capable of producing negative and positive polarity waveforms. High voltage pulses are applied to the exposed electrode of typical asymmetric actuator geometry. In addition to polarity, the effects of pulse amplitude, actuator length, and dielectric thickness are also investigated. Schlieren images are used to estimate the relative near surface gas heating, while electrical measurements are acquired simultaneously. Negative polarity pulses develop slightly more energy per unit length for thin dielectrics, while positive polarity is slightly higher for thick dielectrics. In most cases, the difference in per unit length energy produced by positive and negative pulses on equivalent actuators is not outside the measurement uncertainty. Negative polarity pulses are found to produce a stronger pressure wave for a given peak voltage and pulse energy across the test matrix. Results indicate that the negative polarity pulse more efficiently couples electrical energy to the near surface gas as heat. This suggests negative polarity pulses may be preferred for aerodynamic flow control applications employing this actuator arrangement.

  3. Characteristics of sheath-driven tangential flow produced by a low-current DC surface glow discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Shin, Jichul; Shajid Rahman, Mohammad

    2014-08-01

    An experimental investigation of low-speed flow actuation at near-atmospheric pressure is presented. The flow actuation is achieved via low-current ( \\lesssim 1.0 mA) continuous or pulsed DC surface glow discharge plasma. The plasma actuator, consisting of two sharp-edged nickel electrodes, produces a tangential flow in a direction from anode to cathode, and is visualized using high-speed schlieren photography. The induced flow velocity estimated via the schlieren images reaches up to 5 m/s in test cases. The actuation capability increases with pressure and electrode gap distances, and the induced flow velocity increases logarithmically with the discharge power. Pulsed DC exhibits slightly improved actuation capability with better directionality. An analytic estimation of induced flow velocity obtained based on ion momentum in the cathode sheath and gas dynamics in one-dimensional flow yields values similar to those measured.

  4. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Lockheed Martin Skunk Works, 1011 Lockheed Way, Palmdale, California 93599 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  5. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between the duty cycles of the channels increases the vortex strength. It is seen that while the vortex is barely visible at the leading edge with little strength, it grows significantly large in the streamwise direction and reaches its maximum strength around mid-chord locations while the circulation distribution shows that the bulk of the circulation is added here. The motion of the vortex along this direction illustrates a braiding phenomena that can be observed via flow visualizations. Streamwise PIV data for this configuration on a wing with a NACA 0012 airfoil is used to plot the reverse flow probability, which in turn reveals that the use of the jet vectoring actuator as a vortex generator jet does suppress separation, but the actuator tends to lose its efficacy with increasing tunnel speeds.

  6. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of light energy causes heating, which, in turn, causes thermal expansion.

  7. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  8. Study of Unsteady Flow Actuation Produced by Surface Plasma Actuator on 2-D Airfoil

    NASA Astrophysics Data System (ADS)

    Phan, Minh Khang; Shin, Jichul

    2014-10-01

    Effect of flow actuation driven by low current continuous or pulsed DC surface glow discharge plasma actuator is studied. Schlieren image of induced flow on flat plate taken at a high repetition rate reveals that the actuation is mostly initiated near the cathode. Assuming that the actuation is mostly achieved by ions in the cathode sheath region, numerical model for the source of flow actuation is obtained by analytical estimation of ion pressure force created in DC plasma sheath near the cathode and added in momentum equation as a body force term. Modeled plasma flow actuator is simulated with NACA0012 airfoil oscillating over a certain range of angle of attack (AoA) at specific reduced frequencies of airfoil. By changing actuation authority according to the change in AoA, stabilization of unsteady flow field is improved and hence steady aerodynamic performance can be maintained. Computational result shows that plasma actuation is only effective in modifying aerodynamic characteristics of separated flow. It turns out that plasma pulse frequency should be tuned for optimal performance depending on phase angle and rotating speed. The actuation authority can be parameterized by a ratio between plasma pulse frequency and reduced frequency.

  9. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  10. POWER FLOW ANALYSIS OF ELECTROSTRICTIVE ACTUATORS DRIVEN BYSWITCHMODE AMPLIFIERS

    E-print Network

    Lindner, Douglas K.

    POWER FLOW ANALYSIS OF ELECTROSTRICTIVE ACTUATORS DRIVEN BYSWITCHMODE AMPLIFIERS Gregory A. Zvonar: smart structures, smart skin, switchmode amplifiers, power flow analysis, electrostrictive actuators is within the bandwidth of the amplifier. This analysis also reveals that the electrical power flow through

  11. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  12. A vacuum-driven peristaltic micropump with valved actuation chambers

    NASA Astrophysics Data System (ADS)

    Cui, Jianguo; Pan, Tingrui

    2011-06-01

    This paper presents a simple peristaltic micropump design incorporated with valved actuation chambers and propelled by a pulsed vacuum source. The vacuum-driven peristaltic micropump offers high pumping rates, low backflow, appreciable tolerance to air bubbles, and minimal destruction to fluid contents. The pumping device, fabricated by laser micromachining and plasma bonding of three polydimethylsiloxane (PDMS) layers, includes a pneumatic network, actuation membranes, and microfluidic channels. As the key to peristaltic motion, the sequential deflection of the elastic membranes is achieved by periodic pressure waveforms (negative) traveling through the pneumatic network, provided by a vacuum source regulated by an electromagnetic valve. This configuration eliminates the complicated control logic typically required in peristaltic motion. Importantly, the valved actuation chambers substantially reduce backflow and improve the pumping rates. In addition, the pneumatic network with negative pressure provides a means to effectively remove air bubbles present in the microflow through the gas-permeable PDMS membrane, which can be highly desired in handling complex fluidic samples. Experimental characterization of the micropump performance has been conducted by controlling the resistance of the pneumatic network, the number of normally closed valves, the vacuum pressure, and the frequency of pressure pulses. A maximal flow rate of 600 µL min-1 has been optimized at the pulsed vacuum frequency of 30 Hz with a vacuum pressure of 50 kPa, which is comparable to that of compressed air-actuated peristaltic micropumps.

  13. Thrust Vectoring Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Bolitho, Michael

    2007-11-01

    Thrust vectoring flow control is demonstrated using plasma synthetic jet actuators (PSJA). The PSJA is a geometric variant of a plasma actuator, consisting of a symmetric electrode array that results in a circular region of dielectric barrier discharge plasma. Quiescent flow PIV measurements of the PSJA reveal that the flowfield on actuation resembles that of a zero-mass flux or synthetic jet that is useful for flow control, particularly separation reduction. Like synthetic jets, unsteady pulsed actuator operation results in formation of multiple vortex rings. The output jet momentum is found to be affected by the power input, actuator dimension and pulsing frequency. While increasing the input power increases the maximum jet velocity, an optimum range of pulsing frequencies and actuator dimensions are observed to exist in order to maximize jet momentum. By asymmetrically varying the plasma input parameters, such as frequency, amplitude and duty cycle, it is possible to control the jet angle. Vectoring using high frequency pusling akin to synthetic jets is more effective than vectoring by modifying steady control inputs and differences in control effectiveness are due primarily to the time scales associated with the vortex formation.

  14. Optimization of a dual acting, magnetically driven, linear actuator

    E-print Network

    Willerton, Justin Ryan

    2002-01-01

    In this study the geometry of a dual acting, magnetically driven, linear motion actuator will be optimized. This will be accomplished by modeling the system through a set of differential equations to be solved in Matlab. An ANSYS finite element...

  15. Light-driven actuation of fluids at microscale

    Microsoft Academic Search

    Mandar Deshpande; Laxman Saggere

    2004-01-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to

  16. Mechanisms of plasma actuators for hypersonic flow control

    Microsoft Academic Search

    J. S. Shang; S. T. Surzhikov; R. Kimmel; D. Gaitonde; J. Menart; J. Hayes

    2005-01-01

    A summary of recent research progress in hypersonic plasma actuators for flow control is attempted. It is found that the most effective plasma actuator is derived from an electromagnetic perturbation and amplifies by a subsequent viscous–inviscid interaction. Computational efforts using drift-diffusion theory and a simple phenomenological plasma model, as well as experiments in a hypersonic plasma channel, have shown the

  17. An arm wrestling robot driven by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Lochmatter, Patrick; Wissler, Michael

    2007-04-01

    The first arm wrestling match between a human arm and a robotic arm driven by electroactive polymers (EAP) was held at the EAPAD conference in 2005. The primary objective was to demonstrate the potential of the EAP actuator technology for applications in the field of robotics and bioengineering. The Swiss Federal Laboratories for Materials Testing and Research (Empa) was one of the three organizations participating in this competition. The robot presented by Empa was driven by a system of rolled dielectric elastomer (DE) actuators. Based on the calculated stress condition in the rolled actuator, a low number of pre-strained DE film wrappings were found to be preferential for achieving the best actuator performance. Because of the limited space inside the robot body, more than 250 rolled actuators with small diameters were arranged in two groups according to the human agonist-antagonist muscle configuration in order to achieve an arm-like bidirectional rotation movement. The robot was powered by a computer-controlled high voltage amplifier. The rotary motion of the arm was activated and deactivated electrically by corresponding actuator groups. The entire development process of the robot is presented in this paper where the design of the DE actuators is of primary interest. Although the robot lost the arm wrestling contest against the human opponent, the DE actuators have demonstrated very promising performance as artificial muscles. The scientific knowledge gained during the development process of the robot has pointed out the challenges to be addressed for future improvement in the performance of rolled dielectric elastomer actuators.

  18. Experimental damping of boundary-layer oscillations using DBD plasma actuators

    Microsoft Academic Search

    Sven Grundmann; Cameron Tropea

    2009-01-01

    In the present work artificially excited Tollmien–Schlichting waves were cancelled using plasma actuators operated both in continuous and pulsed modes. To achieve this a vibrating surface, driven by an electromagnetic turbulator, was flush-mounted in a flat plate to excite the TS waves. These were amplified by an adverse pressure gradient induced by an insert on the upper wall of the

  19. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  20. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  1. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald E.; Houser, Nicole M.; Lavoie, Philippe

    2014-01-01

    It is a known phenomenon that some dielectric materials used to construct plasma actuators degrade during operation. However, the rate at which this process occurs, to what extent, as well as a method to monitor is yet to be established. In this experimental study, it is shown that electrical measurements can be used to monitor changes in the material of the plasma actuators. The procedure we introduce for monitoring the actuators follows from the work of Kriegseis, Grundmann, and Tropea [Kriegseis et al., J. Appl. Phys. 110, 013305 (2011)], who used Lissajous figures to measure actuator power consumption and capacitance. In the present study, we quantify changes in both the power consumption and capacitance of the actuators over long operating durations. It is shown that the increase in the effective capacitance of the actuator is related to degradation (thinning) of the dielectric layer, which is accompanied by an increase in actuator power consumption. For actuators constructed from layers of Kapton® polyimide tape, these changes are self-limiting. Although the polyimide film degrades relatively quickly, the underlying adhesive layer appears to remain intact. Over time, the effective capacitance was found to increase by up to 36%, 25%, and 11% for actuators constructed with 2, 3, and 4 layers of Kapton tape, respectively. A method is presented to prevent erosion of the Kapton dielectric layer using a coating of Polydimethylsiloxane oil. It is shown the application of this treatment can delay the onset of degradation of the Kapton dielectric material.

  2. Surface charge in dielectric barrier discharge plasma actuators

    SciTech Connect

    Opaits, D. F.; Shneider, M. N.; Miles, Richard B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Likhanskii, A. V. [Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Macheret, S. O. [Lockheed Martin Aeronautics Company, Palmdale, California 93599 (United States)

    2008-07-15

    Direct measurements of the dielectric surface potential and its dynamics in asymmetric dielectric barrier discharge (DBD) plasma actuators show that the charge builds up at the dielectric surface and extends far downstream of the plasma. The surface charge persists for a long time (tens of minutes) after the driving voltage has been turned off. For a sinusoidal voltage waveform, the dielectric surface charges positively. With the voltage waveform consisting of nanosecond pulses superimposed on a dc bias, the sign of the dielectric surface charge is the same as the sign (polarity) of the bias voltage. The surface charging significantly affects DBD plasma actuator performance.

  3. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction

    NASA Astrophysics Data System (ADS)

    Sun, Quan; Cheng, Bangqin; Li, Yinghong; Cui, Wei; Yu, Yonggui; Jie, Junhun

    2013-09-01

    For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.

  4. Control of an axisymmetric subsonic air jet by plasma actuator

    Microsoft Academic Search

    N. Benard; J. Jolibois; M. Forte; G. Touchard; E. Moreau

    2007-01-01

    It is known that surface non-thermal plasma actuators have proved their efficiency for aerodynamics flow control. In this\\u000a study, a dielectric barrier discharge (DBD) is mounted on the diffuser of an axisymmetric turbulent air jet in order to control\\u000a the flow separation along a 12-degree diffuser bevel. The momentum created by the actuator is applied to separate an air flow

  5. Switching Behavior of a Plasma-Fluidic Actuator James W. Gregory*

    E-print Network

    Gregory, James W.

    features of plasma actuators and fluidic oscillators to create an actuator that decouples the actuation asymmetry across the nozzle of a fluidic oscillator. In this manner the device effectively serves as a fluid oscillator is derived from the integration of existing plasma actuators and fluidic oscillators. A. Fluidic

  6. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  7. Separation Control in a Centrifugal Bend Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Arthur, Michael; Corke, Thomas

    2011-11-01

    An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.

  8. Mechanisms of plasma actuators for hypersonic flow control

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.; Kimmel, R.; Gaitonde, D.; Menart, J.; Hayes, J.

    2005-11-01

    A summary of recent research progress in hypersonic plasma actuators for flow control is attempted. It is found that the most effective plasma actuator is derived from an electromagnetic perturbation and amplifies by a subsequent viscous-inviscid interaction. Computational efforts using drift-diffusion theory and a simple phenomenological plasma model, as well as experiments in a hypersonic plasma channel, have shown the effectiveness of using electro-aerodynamic interaction as a hypersonic flow control mechanism. In principle, the plasma actuator based on magneto-aerodynamic interaction should have an added mechanism in the Lorentz force, making it even more effective as a flow control mechanism. However, this approach also incurs additional challenges and complications due to the Hall effect. Magneto-aerodynamic interactions have also been demonstrated for separated flow control, albeit in a very limited scope. Numerical simulations based on a simple phenomenological plasma model have shown the feasibility of separated flow suppression in shock-boundary-layer interaction over a compression ramp at a hypersonic flow of Mach 14.1. The control mechanism relies on the Lorentz force to energize the retarded shear layer in the viscous interacting region, but the effectiveness of momentum transfer via inelastic collision requires further validation.

  9. Design of a high-speed, meso-scale nanopositioners driven by electromagnetic actuators

    E-print Network

    Golda, Dariusz, 1979-

    2008-01-01

    The purpose of this thesis is to generate the design and fabrication knowledge that is required to engineer high-speed, six-axis, meso-scale nanopositioners that are driven by electromagnetic actuators. When compared to ...

  10. Centrifugally driven diffusion of Iogenic plasma

    Microsoft Academic Search

    G. L. Siscoe; Danny Summers

    1981-01-01

    The plasma distribution around Io as measured by Voyager 1 displays an asymmetric discontinuity at Io's orbit that has been suggested to be the signature of centrifugally driven interchange diffusion fed by plasma derived from Io. This hypothesis is explored further and found to be valid. The particular form for the diffusion coefficient appropriate to centrifugally driven turbulence is derived.

  11. Indirect Adaptive Robust Control of Electro-Hydraulic Systems Driven by Single-Rod Hydraulic Actuator

    E-print Network

    Yao, Bin

    Indirect Adaptive Robust Control of Electro-Hydraulic Systems Driven by Single-Rod Hydraulic) of electro-hydraulic systems driven by single- rod hydraulic actuators. Unlike the tracking that the proposed IARC achieves good tracking performance and accurate parameter estimation. INTRODUCTION Electro-hydraulic

  12. Combustion stabilization using serpentine plasma actuators Chin-Cheng Wang and Subrata Roya)

    E-print Network

    Roy, Subrata

    Combustion stabilization using serpentine plasma actuators Chin-Cheng Wang and Subrata Roya 2011) This letter presents a numerical model for combustion stabilization with plasma actuators of Physics. [doi:10.1063/1.3615292] The topic of plasma assisted combustion (PAC) has been investigated

  13. Plasma Actuators for Turbomachinery Flow Control

    NASA Technical Reports Server (NTRS)

    Miles, Richard, B; Shneider, Mikhail, N.

    2012-01-01

    This report is Part I of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. The period of performance was January 1, 2007 to December 31, 2010. This report includes the project summary, a list of publications and reprints of the publications that appeared in archival journals. Part II of the final report includes a Ph.D. dissertation and is published separately as NASA/CR-2012-2172655. The research performed under this project was focused on the operation of surface dielectric barrier discharge (DBD) devices driven by high voltage, nanosecond scale pulses plus constant or time varying bias voltages. The main interest was in momentum production and the range of voltages applied eliminated significant heating effects. The approach was experimental supplemented by computational modeling. All the experiments were conducted at Princeton University. The project provided comprehensive understanding of the associated physical phenomena. Limitations on the performance of the devices for the generation of high velocity surface jets were established and various means for overcoming those limitations were proposed and tested. The major limitations included the maximum velocity limit of the jet due to electrical breakdown in air and across the dielectric, the occurrence of backward breakdown during the short pulse causing reverse thrust, the buildup of surface charge in the dielectric offsetting the forward driving potential of the bias voltage, and the interaction of the surface jet with the surface through viscous losses. It was also noted that the best performance occurred when the nanosecond pulse and the bias voltage were of opposite sign. Solutions include the development of partially conducting surface coatings, the development of a semiconductor diode inlaid surface material to suppress the backward breakdown. Extension to long discharge channels was studied and a new ozone imaging method developed for more quantitative determination of surface jet properties.

  14. Dynamic measurements of actuators driven by AlN layers

    NASA Astrophysics Data System (ADS)

    Kacperski, Jacek; Kujawinska, Malgorzata; Leon, Sergio Camacho; Nieradko, Lukasz; Jozwik, Michal; Gorecki, Christophe

    2005-09-01

    Micro-Electro-Mechanical Systems are nowadays frequently used in many fields of industry. The number of their applications increase and their functions became more complex and demanding. Therefore precise knowledge about their static (shape, deformations, stresses) and dynamic (resonance frequencies, amplitude and phase of vibration) properties is necessary. Two beam laser interferometry is one of the most popular testing methods of micromechanical elements as a non-contact, high-accurate method allowing full-field measurement. First part of the paper present microbeam actuators designed for MEMS/MOEMS applications. The proposed structures are the straight silicon microbeams formed by KOH etching of Si wafer. Aluminium nitride (AlN) thin films are promising materials for many acoustic and optic applications in MEMS field. In the proposed architecture the actuation layer is sandwiched between two metal electrodes on the top of beam. In the second part we describe the methodology of the actuator characterization. These methods applied are: stroboscopic interferometry and active interferometry (LCOS SLM is used as a reference surface in Twyman-Green interferometer). Moreover some results of FEM analysis of the sample are shown and compared with experimental results. Dynamic measurements validate the design and simulations, and provide information for optimization of the actuator manufacturing process.

  15. Optimization of a dual acting, magnetically driven, linear actuator 

    E-print Network

    Willerton, Justin Ryan

    2002-01-01

    optimization, an optimal configuration was found that increases the stroke length of the actuator from approximately 1.01 mils to 2.24 mils. However, by implementing a PID control scheme and keeping the rubber pads, with a stiffness of 2854 lb...

  16. Plasma actuators for airflow control: measurement of the non-stationary induced flow velocity

    Microsoft Academic Search

    Maxime Forte; Luc Leger; Jérôme Pons; Eric Moreau; Gérard Touchard

    2005-01-01

    This paper deals with the measurement of the instantaneous flow velocity induced by surface plasma actuators in air at atmospheric pressure. More accurately, experiments with Laser Doppler Velocimetry (LDV) are conducted with two different types of plasma actuators in order to determine the establishment time of the induced airflow. DC corona discharges and AC dielectric barrier discharges are investigated in

  17. Whistler wave driven plasma thruster

    SciTech Connect

    Bickford Hooper, E.; Stallard, B.W.; Makowski, M.A. (Lawrence Livermore National Laboratory L-637, P.O. Box 808 Livermore, CA 94550-9900 (United States))

    1993-01-20

    High density plasma can be generated by electron cyclotron resonance heating (ECRH) using whistler waves at densities for which the plasma frequency is much higher than the cyclotron frequency. This will result in a thruster operating at specific impulses of 10[sup 3]--10[sup 4] s and much higher power and thrust densities than usual for ECRH devices. As the plasma generation is by electromagnetic waves, there are no electrodes, and wall material problems are greatly eased, permitting reliable, long lifetime operation. We report on the modeling of such a thruster, including plasma flow as well as losses to an end wall and ionization. A helical antenna to couple the waves into the plasma column is analyzed, including effects of the anisotropic plasma dielectric constant. An initial experiment to test the concept is planned.

  18. Light-Driven Actuator with Shape Memory Alloy for Manipulation of Macroscopic Objects

    Microsoft Academic Search

    Hideki Okamura; Keita Yamaguchi; Ryosuke Ono

    2009-01-01

    With the aim of manipulating macroscopic objects, the possibility of improving energy conversion efficiency of light-driven actuators (LDAs) was investigated. Thermal expansion is one of the most efficient mechanisms reported so far but a rough estimation revealed that its upper limit in efficiency is ?10%. Thermodynamics suggests several percent can be achieved in theory, so by using a suitable mechanism

  19. Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic Ankush Bhatia, Subrata Roy, and Ryan Gosse

    E-print Network

    Roy, Subrata

    Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush flow velocity on momentum transfer of dielectric barrier discharge plasma actuators J. Appl. Phys. 116, 103301 (2014); 10.1063/1.4894518 Numerical simulation of a plasma actuator based on ion transport J. Appl

  20. Study of flow induced by sine wave and saw tooth plasma actuators

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Wang, Lianze; Fu, Song

    2011-11-01

    The effect of plasma actuator that uses saw-tooth or sine-wave shape electrodes on boundary layer flows is experimentally investigated. The measurement results are compared with a corresponding standard configuration (conventional design using two rectangular strip electrodes)—the actuator that produces a nearly two-dimensional horizontal wall jet upon actuation. PIV measurements are used to characterize the actuators in a quiescent chamber. Operating in a steady manner, the new actuators result in the formation of streamwise and spanwise vortices. That is to say, the new actuators render the plasma actuators inducing three-dimensional variations in the shear layer, offering significant flexibility in flow control. The affected flowfield with the new actuators is significantly larger than that with the conventional linear actuators. While the conventional linear actuators affect primarily the boundary layer flow on a scale of about 1 cm above the wall, the new actuators affect the near wall region at a significantly larger scale. This new design broadens the applicability and enhances the flow control effects and it is potentially a more efficient flow control device.

  1. Analytic model and frequency characteristics of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Zong, Hao-hua; Wu, Yun; Li, Ying-hong; Song, Hui-min; Zhang, Zhi-bo; Jia, Min

    2015-02-01

    This paper reports a novel analytic model of a plasma synthetic jet actuator (PSJA), considering both the heat transfer effect and the inertia of the throat gas. Both the whole cycle characteristics and the repetitive working process of PSJA can be predicted with this model. The frequency characteristics of a PSJA with 87 mm3 volume and different orifice diameters are investigated based on the analytic model combined with experiments. In the repetitive working mode, the actuator works initially in the transitional stage with 20 cycles and then in the dynamic balanced stage. During the transitional stage, major performance parameters of PSJA experience stepped growth, while during the dynamic balanced stage, these parameters are characterized by periodic variation. With a constant discharge energy of 6.9 mJ, there exists a saturated frequency of 4 kHz/6 kHz for an orifice diameter of 1 mm/1.5 mm, at which the time-averaged total pressure of the pulsed jet reaches a maximum. Between 0.5 mm and 1.5 mm, a larger orifice diameter leads to a higher saturated frequency due to the reduced jet duration time. As the actuation frequency increases, both the time-averaged cavity temperature and the peak jet velocity initially increase and then remain almost unchanged at 1600 K and 280 m/s, respectively. Besides, with increasing frequency, the mechanical energy incorporated in single pulsed jet, the expelled mass per pulse, and the time-averaged density in the cavity, decline in a stair stepping way, which is caused by the intermittent decrease of refresh stage duration in one period.

  2. On the Development of Localized Arc Filament Plasma Actuators for High-Speed Flow Control1

    Microsoft Academic Search

    J.-H. Kim; M. Nishihara; S. Keshav; I. V. Adamovich; M. Samimy; S. V. Gorbatov; F. V. Pliavaka

    2009-01-01

    Recently developed Localized Arc Filament Plasma Actuators (LAFPAs) have shown authority in high-speed, high Reynolds number flow control for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high voltage pulsed DC plasma generator with low energy coupling efficiency of a few percent. In the present work, a new custom-designed 8-channel pulsed RF plasma generator has been

  3. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  4. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  5. Current in wave driven plasmas

    SciTech Connect

    Karney, C.F.F.; Fisch, N.J.

    1985-06-01

    A theory for the generation of current in a toroidal plasma by radio-frequency waves is presented. The effect of an opposing electric field is included, allowing the case of time varying currents to be studied. The key quantities that characterize this regime are identified and numerically calculated. Circuit equations suitable for use in ray-tracing and transport codes are given.

  6. Tunable microlens actuated via a thermoelectrically driven liquid heat engine

    NASA Astrophysics Data System (ADS)

    Ashtiani, Alireza Ousati; Jiang, Hongrui

    2014-06-01

    We have developed a thermally actuated liquid microlens. An embedded thermoelectric element is used to actuate the liquid based heat engine. A closed-loop system is harnessed to drive and stabilize the temperature of the heat engine. Direct contact between the thermoelectric device and the water results in greatly improved, sub-second thermal rise time (0.8 s). The water based heat engine reacts to the variation in the temperature via expansion and contraction. In turn, the shape of a pinned water-oil meniscus at a lens aperture is deformed in response to the net volume change in the water, creating a tunable microlens. A method to fabricate microfluidic devices with relatively high thickness (250-750 ?m) and large length-to-depth aspect ratio (280:1) was developed and used in the process. After fabrication and thermal calibration, optical characteristic of the microlens was assessed. Back focal length of the microlens was shown to vary continuously from -19.6 mm to -6.5 mm as the temperature increased from 5 °C to 35 °C. A thin film air was further introduced to insulate the heat engine from the substrate to protect the microlens area from the temperature fluctuation of the heat engine, thus preventing the change of the refractive indices and thermally induced aberrations. Wavefront aberration measurement was conducted. Surface profile of the microlens was mapped and found to have a conical shape. Both 3-dimensional and 1-dimensional thermal models for the device structure were developed and thermal simulation of the device was performed.

  7. Force generation due to three-dimensional plasma discharge on a conical forebody using pulsed direct current actuators

    E-print Network

    Roy, Subrata

    direct current actuators Kunwar Pal Singh and Subrata Roya Computational Plasma Dynamics Laboratory Understanding the behavior of three-dimensional plasmas around a pulsed dc actuator can be useful for its efficient operation in many applications. The effect of such actuators is studied using a self

  8. Separation control using plasma actuators: application to a free turbulent jet

    Microsoft Academic Search

    A. Labergue; E. Moreau; N. Zouzou; G. Touchard

    2007-01-01

    This experimental work deals with active airflow control using non-thermal surface plasma actuators in the case of a rectangular cross section turbulent jet. A wide-angle diffuser composed of two adjustable hinged baseplates is linked at the jet exit. Two types of actuators are considered: the DC corona discharge and the dielectric barrier discharge (DBD). In both cases, an ionic wind

  9. Printed artificial cilia from liquid-crystal network actuators modularly driven by light.

    PubMed

    van Oosten, Casper L; Bastiaansen, Cees W M; Broer, Dirk J

    2009-08-01

    Polymeric microactuators are potentially useful in micromechanical systems and lab-on-a-chip systems. However, manufacturing of miniature polymeric actuators has been complicated owing to the necessity of including electrodes for actuation or using lithographic techniques for patterning. Here, we demonstrate that all-polymer microdevices can be fabricated using inkjet printing technology in combination with self-organizing liquid-crystal network actuators. We exploit the self-assembling properties of the liquid crystal to create large strain gradients, and light-driven actuation is chosen to allow simple and remote addressing. By using multiple inks, microactuators with different subunits are created that can be selectively addressed by changing the wavelength of the light. The actuators mimic the motion of natural cilia. These artificial cilia have the potential to create flow and mixing in wet environments such as lab-on-a-chip applications. The process is easily adapted for roll-to-roll fabrication, allowing for large-scale and low-cost production of miniaturized active polymer systems. PMID:19561599

  10. Printed artificial cilia from liquid-crystal network actuators modularly driven by light

    NASA Astrophysics Data System (ADS)

    van Oosten, Casper L.; Bastiaansen, Cees W. M.; Broer, Dirk J.

    2009-08-01

    Polymeric microactuators are potentially useful in micromechanical systems and lab-on-a-chip systems. However, manufacturing of miniature polymeric actuators has been complicated owing to the necessity of including electrodes for actuation or using lithographic techniques for patterning. Here, we demonstrate that all-polymer microdevices can be fabricated using inkjet printing technology in combination with self-organizing liquid-crystal network actuators. We exploit the self-assembling properties of the liquid crystal to create large strain gradients, and light-driven actuation is chosen to allow simple and remote addressing. By using multiple inks, microactuators with different subunits are created that can be selectively addressed by changing the wavelength of the light. The actuators mimic the motion of natural cilia. These artificial cilia have the potential to create flow and mixing in wet environments such as lab-on-a-chip applications. The process is easily adapted for roll-to-roll fabrication, allowing for large-scale and low-cost production of miniaturized active polymer systems.

  11. Solder self-assembled micro axial flow fan driven by a scratch drive actuator rotary motor

    Microsoft Academic Search

    Paul E. Kladitis; Ryan J. Linderman; Victor M. Bright

    2001-01-01

    This work presents the first micro-sized axial flow fan driven by a scratch drive actuator rotary motor. The eight fan blades are mass assembled using the surface tension of molten 4 mil diameter 63 Sn\\/37 Pb manufactured solder spheres. A sample size of 27 blade angles was measured with a mean assembly angle of 107.24°. The actual mean of the

  12. A new type of parts feeder driven by bimorph piezo actuator.

    PubMed

    Ting, Yung; Jar, Ho-Chin; Lin, Chung-Yi; Huang, Jeng-Shen

    2005-06-01

    A novel meander-line structure implemented with bimorph piezoelectric actuators driven by two sets of alternating current power with phase difference is developed in this article. Via the generated traveling wave, this mechanism is able to transport parts. The dynamic modeling of the structure, the driving control circuitry design, the motion trajectory analysis and the optimal transport feed rate is studied, and also verified by the practical experiment. PMID:15950032

  13. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator

    Microsoft Academic Search

    Jesse Little; Munetake Nishihara; Igor Adamovich; Mo Samimy

    2010-01-01

    Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m\\/s) is explored\\u000a using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge\\u000a can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation.

  14. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  15. The development of electrically driven mechanochemical actuators that act as artificial muscle

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.

    2009-03-01

    Ras Labs, LLC, is committed to producing a variety of electroactive smart materials and actuators that are strong, resilient, and respond quickly and repeatedly to electrical stimuli over a wide temperature range. Cryogenic and high temperature experiments (4.22 K to 137°C) were performed on the contractile electroactive materials developed by Ras Labs with very favorable results. One of the biggest challenges in developing these actuators, however, is the interface between the embedded electrodes and the electroactive material because of the pronounced movement of the electroactive material. If the electroactive material contracts very quickly, the electrode is often left behind and thus becomes detached. Preliminary experiments explored the bonding between these electroactive materials with plasma treated metals provided by the Department of Energy's Princeton Plasma Physics Laboratory (PPPL) at Princeton University. The results were encouraging, with much better bond strengths in the plasma treated metals compared to untreated controls. Plasma treatments, and other treatments to non-corrosive metal leads, were further investigated in order to improve the attachment of the embedded electrodes to the electroactive material. Surface water drop contact angle tests, modified T-peel testing, and mechanical testing were used to test metal surfaces and metal-polymer interfaces for stainless steel and titanium. X-ray photoelectron spectroscopy (XPS) was used to determine the atomic surface composition of stainless steel and titanium after various plasma treatments. Mode of failure after T-peel testing and mechanical testing was determined using scanning electron microscopy (SEM) and stereo microscopy. Nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the electroactive material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  16. Current Driven Plasma Instabilities in Layered Solid State Systems

    Microsoft Academic Search

    Jianmin Cen

    1991-01-01

    We investigate current driven plasma instabilities in layered solid state systems. Current driven plasma instabilities develop when a plasma wave gains energy from carriers in a d.c. current. Prospects of current-driven plasma instabilities are dramatically improved in the novel layered high-mobility solid state systems. These instability studies are also of practical importance from the point of view of device applications

  17. Plasma Sheath Modeling Using The Three Fluid Plasma Model

    Microsoft Academic Search

    Robert Lilly; Uri Shumlak

    2010-01-01

    There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. Accurate modeling of plasma sheath physics is of particular importance for the plasmas found in high speed flight applications. This study employs

  18. Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows

    NASA Astrophysics Data System (ADS)

    Bhatia, Ankush; Roy, Subrata; Gosse, Ryan

    2014-10-01

    A numerical study employing discontinuous Galerkin method demonstrating net surface heat reduction for a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators to inject momentum near the stagnation point. A 5 species finite rate air chemistry model completes the picture by analyzing the effect of the actuator on the flow chemistry. With low velocity near the stagnation point, the plasma actuator sufficiently modifies the fluid momentum. This results in redistribution of the integrated surface heating load on the body. Specifically, a particular configuration of normally pinching plasma actuation is predicted to reduce the surface heat flux at the stagnation point. An average reduction of 0.246% for the integrated and a maximum reduction of 7.68% are reported for the surface heat flux. The temperature contours in the fluid flow (with maximum temperature over 12 000 K) are pinched away from the stagnation point, thus resulting in reduced thermal load. Plasma actuation in this configuration also affects the species concentration distribution near the wall, in addition to the temperature gradient. The combined effect of both, thus results in an average reduction of 0.0986% and a maximum reduction of 4.04% for non-equilibrium calculations. Thus, this study successfully demonstrates the impact of sinusoidal dielectric barrier discharge plasma actuation on the reduction of thermal load on a hypersonic body.

  19. Strongly driven laser-plasma coupling

    NASA Astrophysics Data System (ADS)

    Kruer, W. L.; Campbell, E. M.; Decker, C. D.; Wilks, S. C.; Moody, J.; Orzechowski, T.; Powers, L.; Suter, L. J.; Afeyan, B. B.; Dague, N.

    1999-03-01

    An improved understanding of strongly driven laser-plasma coupling is important for optimal use of the National Ignition Facility (NIF) for both inertial fusion and for a variety of advanced applications. Such applications range from high-energy x-ray sources and high-temperature hohlraums to fast ignition and laser radiography. We discuss a novel model for the scaling of strongly driven stimulated Brillouin and Raman scattering. This model postulates an intensity-dependent correlation length associated with spatial incoherence due to filamentation and stimulated forward scattering. We first describe the model and then relate it to a variety of experiments. Particular attention is paid to high-temperature hohlraum experiments, which exhibit low to modest stimulated Brillouin scattering even though this instability is strongly driven. We also briefly discuss the strongly nonlinear interaction physics for efficient generation of high-energy electrons either by irradiating a large plasma with near quarter-critical density or by irradiating overdense targets with ultra-intense laser light.

  20. The development of electrically driven mechanochemical actuators that act as artificial muscle

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Meixler, Lewis; Harper, Don; Park, Kimun

    2008-03-01

    Ras Labs, LLC, is committed to producing a variety of electroresponsive smart materials that are strong, resilient, and respond quickly and repeatedly to electrical stimuli. By effectively combining the synthetic expertise of Ras Labs with the plasma expertise of the Princeton University Plasma Physics Laboratory (PPPL), Ras Labs is actively developing superior electroresponsive materials and actuators. One of the biggest challenges is the interface between the embedded electric electrodes and the electroresponsive material because of the pronounced movement of the electroresponsive material. If the electroresponsive material moves very quickly, the electric lead is often left behind and thus becomes detached. Preliminary experiments explored the bonding between these electroresponsive materials with plasma treated metals provided by PPPL. The results were encouraging, with much better bond strengths in the plasma treated metals compared to the untreated control. Ras Labs expanded upon improving the attachment of the embedded electric leads to the electroresponsive materials in these actuators using plasma treatment and other treatments to non-corrosive metal leads at PPPL. Water drop contact angle tests were performed on plasma treated stainless steel and titanium. The strength of the metal-polymer interface was determined at TRI/Princeton using modified T-peel tests on samples of electroresponsive material sandwiched between plasma treated stainless steel and titanium foils. Based on the water drop contact angle tests and the T-peel tests, nitrogen plasma treatment of titanium produced the best metal-polymer interface. Metallic plasma treatment allowed for the embedded electric leads and the electroresponsive material to work and move as a unit, with no detachment, by significantly improving the interface between the electric leads and the electroresponsive material.

  1. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications.

    PubMed

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-01-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3?s), powerful (>100?MPa output stress, 7.5 × 10(5)?N kg(-1) unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators. PMID:25826443

  2. Bio-inspired Polymer Composite Actuator and Generator Driven by Water Gradients

    PubMed Central

    Ma, Mingming; Guo, Liang; Anderson, Daniel G.; Langer, Robert

    2013-01-01

    Here we describe the development of a water-responsive polymer film; combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 MPa, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ?0.3 Hz, with a peak voltage of ?1.0 V. The electrical energy is stored in capacitors that could power micro- and nano-electronic devices. PMID:23307738

  3. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    PubMed Central

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-01-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3?s), powerful (>100?MPa output stress, 7.5 × 105?N kg?1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators. PMID:25826443

  4. Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Greisheim (Germany)

    2011-07-01

    A new procedure of determining the time resolved capacitance of a plasma actuator during operation is introduced, representing a simple diagnostic tool that provides insight into the phenomenological behavior of plasma actuators. The procedure is demonstrated by presenting example correlations between consumed electrical energy, size of the plasma region, and the operating voltage. It is shown that the capacitance of a plasma actuator is considerably increased by the presence of the plasma; hence a system that has previously been impedance matched can be considerably de-tuned when varying the operating voltage of the actuator. Such information is fundamental for any attempts to increase the energy efficiency of plasma-actuator systems. A combined analysis of the capacitance, light emission, size of the plasma region, force production, and power consumption is presented.

  5. Design of Servo-Driven Actuators for Spanwise-Varying Control of a Backward-Facing Step Flow

    NASA Astrophysics Data System (ADS)

    Schostek, Marc; Sigurdson, Lorenz

    2012-11-01

    For an experimental study of a forced backward-facing step water flow the design of 16 piston actuators was necessary. The 16 actuators connect to manifolds to force the flow at the step edge through many more actuation ports. The 16 actuators allowed for variant forcing in the spanwise direction with a resolution of 0.5 times the step height h. They are capable of producing unique perturbation waveforms of forcing velocity amplitudes 0 driven actuator system will be discussed. Support from NSERC Grant 41747 is gratefully acknowledged.

  6. Laterally-actuated inside-driven RF MEMS switches fabricated by a SOG process

    NASA Astrophysics Data System (ADS)

    Wang, Li-Feng; Han, Lei; Tang, Jie-Ying; Huang, Qing-An

    2015-06-01

    This paper presents two RF MEMS switches, both of them are laterally-actuated and inside-driven. One is the push–pull type switch controlled by only one actuation signal, and the other is the low voltage three-state switch actuated by rhombic structures. To fabricate RF MEMS switches, the silicon on glass (SOG) based microwave transmission line is redesigned, and an electroplated gold layer is added to the standard SOG process flow. The measured insertion loss and isolation of the push–pull type switch at 6?GHz are??0.28?dB and??38.4?dB, respectively, and its measured pull-in voltage is 57?V. The measured insertion loss and isolation of the low voltage three-state switch at 6?GHz are??0.77?dB and??53?dB, respectively, and the measured pull-in voltage is only 15?V. Preliminary lifetime tests show the lifetimes of both switches exceed the magnitude of 107 cycles.

  7. Noise control of subsonic cavity flows using plasma actuated receptive channels

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnob; Roy, Subrata

    2014-12-01

    We introduce a passive receptive rectangular channel at the trailing edge of an open rectangular cavity to reduce the acoustic tones generated due to coherent shear layer impingement. The channel is numerically tested at Mach 0.3 using an unsteady three-dimensional large eddy simulation. Results show reduction in pressure fluctuations in the cavity due to which sound pressure levels are suppressed. Two linear dielectric barrier discharge plasma actuators are placed inside the channel to enhance the flow through it. Specifically, acoustic suppression of 7?dB was obtained for Mach 0.3 flow with the plasma actuated channel. Also, the drag coefficient for the cavity reduced by over three folds for the channel and over eight folds for the plasma actuated channel. Such a channel can be useful in noise and drag reduction for various applications, including weapons bay, landing gear and branched piping systems.

  8. Chitosan: a novel platform in proton-driven DNA strand rearrangement actuation.

    PubMed

    Lee, Dami; Singha, Kaushik; Jang, Mi-Kyeong; Nah, Jae-Woon; Park, In-Kyu; Kim, Won Jong

    2009-04-01

    Nanometre-scaled DNA machine based on molecular recognition properties of DNA has now become a powerful tool in nanodevices, miniaturized structure, and nanofabrication. The common principle behind designing a DNA nanomachine is DNA strand exchange or rearrangement, which is solely controlled by the stabilization through associative and dissociative forces arising from base pair interaction of DNA molecules. Thus, highly effective DNA reaction actuator will make DNA nanomachine more flexible, controllable, and powerful device. Here, we report the novel polymer-mediated platform in proton-driven DNA strand rearrangement actuation. This cationic low molecular weight water-soluble chitosan (LMWSC) exhibited pH-dependent complexation with oligodeoxynucleotides (ODN). It formed complex with ODN only at low pH and accelerated the DNA strand exchange (or rearrangement) reaction between dsDNA and its complementary ssDNA at pH 5.0. However, no complexation was observed between LMWSC and ODN at neutral pH. We assume that at physiological pH, LMWSC is not protonated enough for formation of complex with ODN. Therefore, it can not diminish the electrostatic repulsion among the negatively charged DNA strands of the three-stranded intermediate formed during the strand exchange reaction. In contrast, LMWSC becomes positively charged at acidic pH, and it stabilizes the three-stranded intermediate by spreading out the accumulated counter-ions and increasing the entropy of the system. This fascinating observation prompted us to believe that this intelligent proton-driven DNA reaction actuator has a potential for the precise control of DNA nanomachine and would be applied for operating and controlling nanoscaled machine. PMID:19396376

  9. Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators BIN YAO{*. FANPING BU{ and GEORGE T. C. CHIU{

    E-print Network

    Yao, Bin

    Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators BIN control of electro-hydraulic servo-systems driven by double-rod hydraulic actuators. The dynamics of hydraulic systems are highly non-linear and the system may be subjected to non- smooth and discontinuous non

  10. Current-Driven Filament Instabilities in Relativistic Plasmas. Final report

    SciTech Connect

    Chuang Ren

    2013-02-13

    This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

  11. Development and Application Plasma Actuators for High Reynolds Number and High Speed Jet Control

    NASA Astrophysics Data System (ADS)

    Samimy, M.; Adamovich, I.; Webb, B.; Kastner, J.; Hileman, J.

    2003-11-01

    Active control of high Reynolds number and high speed jets requires actuators of large bandwidth and amplitude. To meet such a requirement a new plasma actuator termed localized arc filament plasma actuator (LAFPA) has been developed. The actuator, which is located close to the exit of the nozzle and flush mounted with the inner surface of the nozzle, can produce strong localized perturbations of various frequencies (up to 100 kHz) at any pressure (high or low) and flow speed (subsonic or supersonic). Several actuators can be distributed around the nozzle exit to generate streamwise vortices, mimicking tabs/chevrons, or can be phase-locked to force various azimuthal instabilities of the jet. The mechanism by which these actuators affect the flow is localized heating. Up to two LAFPAs have been used in jets of Mach numbers 0.9 and 1.3 and Reynolds numbers a million with encouraging results. Work is in progress to distribute and use four to eight LAFPAs to force the jet.

  12. Phase effect on flow control for dielectric barrier plasma actuators

    SciTech Connect

    Singh, K. P.; Roy, Subrata [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States)

    2006-07-03

    Active control of flow has a wide range of applications. Specifically, mitigation of detachment due to the weakly ionized gas flow past a flat plate at an angle of attack is studied using two asymmetric sets of electrode pairs kept at a phase lag. The equations governing the dynamics of electrons, helium ions, and neutrals are solved self-consistently with charge-Poisson equation. The electrodynamic forces produced by two actuators largely depend on the relative phase between the potentials applied to rf electrodes and distance between them. A suitable phase and an optimum distance exist between two actuators for effective separation control.

  13. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  14. Refinement, validation, and implementation of lumped circuit element model for single dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Mertz, Benjamin E.

    Single dielectric barrier discharge (SDBD) plasma actuators have been applied to a wide variety of aerodynamic flow control applications ranging from stall suppression of airfoils at high angles of attack to reducing tip leakage in jet engine turbine blades. With increased interest in applying plasma actuators to various engineering problems comes the need for an efficient model of the actuators that can be used in a CFD simulation. Prior to the current work, a model was developed that captured many of the spatial and temporal dynamics of the actuator by using circuits consisting of resistors and capacitors to model the plasma and dielectric material. In the current work, this model was refined by casting the governing equations in terms of a generalized coordinate system so that it can be applied to curved surfaces, the grid dependence of the model was eliminated, and the method of applying this model as a boundary condition to the electrostatic equations to calculate the body forces generated by the actuator was studied. This new formulation of the lumped circuit element model was then validated against various experimental observations including force vector orientation needed to produce observed induced flow, the scaling of the force with input voltage, and the directivity patterns and pressure time-series from acoustic measurements. The model was also implemented in a flow solver for the case of an impulsively started actuator on a flat plate and compared to experimental data found in literature. Finally, the utility of the model was demonstrated by simulating the use of actuators for flow control of the flow over a circular cylinder and a modified blunt trailing edge wind turbine blade.

  15. Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.

    2006-01-01

    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are similar in both small GDTL and larger NASA jets. However, the actuation authority seems to fall short in the larger jet at higher Mach numbers, resulting in decreased amplitude response compared to the small jet, which is attributed at this point to the lack of sufficient number of actuators. The preliminary results seem also to suggest that amplitude of actuation tones is similar in both the small and larger jets.

  16. TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan

    E-print Network

    Oak Ridge National Laboratory

    849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T and hydraulic transmission (Figure 2). Engine power is transferred to the i A Free-Piston Stirling Engine prime- of the diaphragms, and corresponding displace- resonant -refrigerant compressor through a ment of oil

  17. American Institute of Aeronautics and Astronautics Physics Based Analysis of Horseshoe Plasma Actuator for Improving

    E-print Network

    Roy, Subrata

    Dynamics Laboratory and Test Facility Mechanical and Aerospace Engineering Department University of Florida, Gainesville, FL 32611-6300 We numerically test horseshoe plasma actuator for film cooling enhancement in gas thermal stresses due to hot effluent gases from the combustion chamber. The problem worsens

  18. Airfoil Roll Control by Bang-Bang Optimal Control Method with Plasma Actuators

    E-print Network

    Huang, Xun

    Airfoil Roll Control by Bang-Bang Optimal Control Method with Plasma Actuators Qingkai Wei 1 Peking, 100871, People's Republic of China The bang-bang optimal control method was proposed for glow discharge-induced roll moments can be rejected. Hence, the proposed bang-bang control method is a promising candidate

  19. American Institute of Aeronautics and Astronautics Novel Multi-Barrier Plasma Actuators for Increased Thrust

    E-print Network

    Roy, Subrata

    American Institute of Aeronautics and Astronautics 1 Novel Multi-Barrier Plasma Actuators by the American Institute of Aeronautics and Astronautics, Inc., with permission. #12;American Institute of Aeronautics and Astronautics 2 and 1-20 kHz, respectively. Such a high potential difference weakly ionizes

  20. American Institute of Aeronautics and Astronautics Induced Flow from Serpentine Plasma Actuators Acting in

    E-print Network

    Roy, Subrata

    American Institute of Aeronautics and Astronautics 1 Induced Flow from Serpentine Plasma Actuators-957 Copyright © 2011 by the Authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. #12;American Institute of Aeronautics and Astronautics 2 Figure 1. Generic (standard) linear

  1. Force approximation for a plasma actuator operating in atmospheric air Kunwar Pal Singh and Subrata Roya

    E-print Network

    Roy, Subrata

    Force approximation for a plasma actuator operating in atmospheric air Kunwar Pal Singh and Subrata and numerically tested for air. The magnitude of approximated force increases with the fourth power relationship between force production and air pressure was found. Pavon et al.3 investigated different bulk

  2. A Numerical Model of Plasma-Actuator Effects in Flow-Induced Noise Control

    Microsoft Academic Search

    Ed Peers; Xun Huang; Xinfu Luo

    2009-01-01

    In this paper, a computational model was developed to model the potential of plasma actuators to reduce flow-induced noise. The model consisted of a viscous flow solver to compute the flow field and a Ffowcs Williams and Hawkings acoustic solver to predict the far-field noise radiation. A velocity-inlet boundary condition was used to model the induced velocity effect of plasma

  3. A tunable millimeter-wave phase shifter driven by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Araromi, O. A.; Romano, P.; Rosset, S.; Perruisseau-Carrier, J.; Shea, H. R.

    2014-03-01

    We present the successful operation of the first dielectric elastomer actuator (DEA) driven tunable millimeter-wave phase shifter. The development of dynamically reconfigurable microwave/millimeter-wave (MW/MMW) antenna devices is becoming a prime need in the field of telecommunications and sensing. The real time updating of antenna characteristics such as coverage or operation frequency is particularly desired. However, in many circumstances currently available technologies suffer from high EM losses, increased complexity and cost. Conversely, reconfigurable devices based on DEAs offer low complexity, low electromagnetic (EM) losses and analogue operation. Our tunable phase shifter consists of metallic strips suspended a fixed distance above a coplanar waveguide (CPW) by planar DEAs. The planar actuators displace the metallic strips (10 mm in length) in-plane by 500 ?m, modifying the EM field distribution, resulting in the desired phase shift. The demanding spacing (50 +/-5 ?m between CPW and metallic strips) and parallel alignment criteria required for optimal device operation are successfully met in our device design and validated using bespoke methods. Our current device, approximately 60 mm x 60 mm in planar dimensions, meets the displacement requirements and we observe a considerable phase shift (~95° at 25 GHz) closely matching numerical simulations. Moreover, our device achieves state of the art performance in terms of phase shift per EM loss ~235°/dB (35 GHz), significantly out performing other phase shifter technologies, such as MMIC phase shifters.

  4. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  5. Active Control of Natural Tollmien-Schlichting Waves using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Kotsonis, Marios; Krishan Shukla, Ram; Probsting, Stefan

    2013-11-01

    An experimental study is performed on active control of boundary layer instabilities developing on a NACA 0012 airfoil. A closed-loop control system has been implemented using the filtered-x Least Mean Squares adaptive algorithm based on Finite Impulse Response filters. Surface mounted microphones are used as sensors. The controller drives a Dielectric Barrier Discharge plasma actuator placed along the span of the airfoil. In contrast to the conventional sinusoidal signal, the actuator is powered using a continuously adapted signal selected by the controller in order to damp the incoming wavetrain of TS waves. High speed 2-component Particle Image Velocimetry is used to characterize the flow in the vicinity of the actuator. Several cases are tested using both open-loop and closed-loop actuation. Tested freestream velocities range from 17 to 25 m / s at chord Reynolds of 0.22 to 0.33 million respectively. Results indicate the suppression of the tonal component of unstable TS waves with closed-loop actuation. Amplitude reduction of approximately 50 % is achieved for freestream velocity of 17 m / s while significant suppression is maintained for higher velocities. In the case of open-loop control, the actuator is operated using non-adapted single-frequency sinusoidal signal.

  6. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    Microsoft Academic Search

    J.-H. Kim; M. Nishihara; I. V. Adamovich; M. Samimy; S. V. Gorbatov; F. V. Pliavaka

    2010-01-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed\\u000a and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage\\u000a pulsed DC plasma generator with low energy coupling efficiency of 5–10%. In the present work, a new custom-designed 8-channel\\u000a pulsed radio frequency (RF) plasma generator has

  7. Effect of external flow velocity on momentum transfer of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Pereira, Ricardo; Ragni, Daniele; Kotsonis, Marios

    2014-09-01

    An experimental study is performed towards identifying cross-talk effects between DBD plasma actuators and external flow. An actuator is positioned in a boundary layer operated in a range of free stream velocities from 0 to 60 m/s, and tested both in counter-flow and co-flow forcing configurations. Electrical measurements are used for estimating the power consumption and the discharge formation is visualized using a CCD camera. The actuator's force is measured using a sensitive load cell. Results show the power consumption is constant for different flow velocities and actuator configurations. The plasma light emission is constant for co-flow forcing but shows a trend of increasing intensity with counter-flow forcing for increasing free stream velocities. The measured force is constant for free stream velocities larger than 20 m/s, with same magnitude and opposite direction for the counter-flow and co-flow configurations. In quiescent conditions, the measured force is smaller due to the change in wall shear force by the induced wall-jet. An analytical model is presented to estimate the influence of external flow on the actuator force. It is based on conservation of momentum through the ion-neutral collisional process while including the contribution of the wall shear force. Satisfactory agreement is found between the prediction of the model and experimental data at different external flow velocities.

  8. Separation Control from the Flap of a High-Lift Airfoil Using DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Little, Jesse; Nishihara, Munetake; Adamovich, Igor; Samimy, Mo

    2008-11-01

    Control of separation from the flap of a high-lift airfoil using a single dielectric barrier discharge (DBD) plasma actuator has been investigated experimentally. This project is motivated by the desire to replace existing multi-element flap configurations with a single simple flap to allow more efficient high-lift generation. The results show that a single DBD plasma actuator located at the flap shoulder can increase or reduce the size of the time-averaged separation bubble over the flap depending on the frequency of actuation. In the latter case, the lift on the airfoil is increased due to improved circulation around the model, but it does not result in full reattachment on the deflected flap. These findings are consistent with previous research on high-lift airfoil configurations. The work will be expanded by exploring the effect of multiple actuators as well as their geometry and location on the size and structure of the separated region over the flap. This portion of the work will be done with an emphasis on optimizing the relative phase of each actuator and its effect on the separated flow region.

  9. Plasma Dynamics Group Aerospace & Energetics Research Program

    E-print Network

    Shumlak, Uri

    renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. This expanded study employs the three-fluid (electrons, ions, neutrals) plasma model

  10. Pulse-driven magnetostatic micro-actuator array based on ultrasoft elastomeric membranes for active surface applications

    NASA Astrophysics Data System (ADS)

    Streque, J.; Talbi, A.; Pernod, P.; Preobrazhensky, V.

    2012-09-01

    An array of pulse-driven magnetostatic micro-actuators with 2 mm pitch is proposed for highly deformable active surfaces. A wide range of applications can benefit from such devices, from droplet manipulation and active flow control to tactile display, for which this device was initially designed. This design ensures robustness, ease of fabrication and mass production compatibility. The device is composed of an array of 4 × 4 highly resistant elastomeric membranes achieved using microfabrication techniques. The magnetostatic actuation system is based on the interaction between a miniature coil and a SmCo micro-magnet. This mechanism was optimized by the finite-element method, leading to the introduction of different ferromagnetic circuits. Mechanical characterizations were achieved by laser interferometry. The micro-actuators can be used either in continuous mode or in pulse mode, allowing wide bandwidth, from dc to 1.5 kHz, and vibration amplitudes up to 150 ?m for instantaneous forces of 30 mN. The device has good actuation homogeneity with ±20% amplitude variations between its actuators; low crosstalk (<5%) was also demonstrated. Finally, an improved actuation design benefiting from electroplated NiFe thin films is proposed and characterized, increasing performances (forces and displacements) by 50%.

  11. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  12. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce [Electrical and Computer Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada)

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  13. Pushing the Limits: Strongly-Driven Laser Plasma Coupling

    NASA Astrophysics Data System (ADS)

    Kruer, William L.; Campbell, E. Michael; Decker, Christopher D.; Wilks, Scott C.; Moody, John D.; Orzechowski, Thaddeus J.; Suter, Laurance J.; Afeyan, Bedros B.; Dague, N.

    1998-11-01

    An improved understanding of strongly-driven laser plasma coupling is important for a variety of advanced applications. We discuss a novel model for the scaling of strongly-driven stimulated Brillouin and Raman scattering. This model postulates an intensity-dependent correlation length associated with spatial incoherence due to filamentation and stimulated forward scattering. Particular attention is paid to high temperature hohlraum experiments, which exhibited low to modest stimulated Brillouin scattering even though this instability was very strongly driven.

  14. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied. It is seen that hydrogen ions cause a reduction in particle floating potential, thereby lowering the ion impaction energies. The hydrogen ion current is also effective in delivering increased number of atomic H radicals to the particle surface, which are known to promote particle crystallization. The work therefore sheds light on the ways in which trace amount of hydrogen gas participates in silicon nanoparticle crystallization in argon silane plasma.

  15. GeV plasma accelerators driven in waveguides

    SciTech Connect

    Hooker, S.M.; Brunetti, E.; Esarey, E.; Gallacher, J.G.; Geddes,C.G.R.; Gonsalves, A.J.; Jaroszynski, D.A.; Kamperidis, C.; Kneip, S.; Krushelnick, K.; Leemans, W.P.; Mangles, S.P.D.; Murphy, C.D.; Nagler,B.; Najmudin, Z.; Nakamura, K.; Norreys, P.A.; Panasenko, D.; Rowlands-Rees, T.P.; Schroeder, C.B.; Toth, Cs.; Trines, R.

    2007-11-01

    During the last few years laser-driven plasma acceleratorshave been shown to generate quasi-monoenergetic electron beams withenergies up to several hundred MeV. Extending the output energy oflaser-driven plasma accelerators to the GeV range requires operation atplasma densities an order of magnitude lower, i.e. 1018 cm-3, andincreasing the distance over which acceleration is maintained from a fewmillimetres to a few tens of millimetres. One approach for achieving thisis to guide the driving laser pulse in the plasma channel formed in agas-filled capillary discharge waveguide. We present transverseinterferometric measurements of the evolution of the plasma channelformed and compare these measurements with models of the capillarydischarge. We describe in detail experiments performed at LawrenceBerkeley National Laboratory and at Rutherford Appleton Laboratory inwhich plasma accelerators were driven within this type of waveguide togenerate quasimonoenergetic electron beams with energies up to 1GeV.

  16. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  17. Robust vibration control at critical resonant modes using indirect-driven self-sensing actuation in mechatronic systems.

    PubMed

    Hong, Fan; Pang, Chee Khiang

    2012-11-01

    This paper presents an improved indirect-driven self-sensing actuation circuit for robust vibration control of piezoelectrically-actuated flexible structures in mechatronic systems. The circuit acts as a high-pass filter and provides better self-sensing strain signals with wider sensing bandwidth and higher signal-to-noise ratio. An adaptive non-model-based control is used to compensate for the structural vibrations using the strain signals from the circuit. The proposed scheme is implemented in a PZT-actuated suspension of a commercial dual-stage hard disk drive. Experimental results show improvements of 50% and 75% in the vibration suppression at 5.4kHz and 21kHz respectively, compared to the conventional PI control. PMID:22766225

  18. Fabrication and characterization of laterally-driven piezoelectric bimorph MEMS actuator with sol-gel-based high-aspect-ratio PZT structure

    NASA Astrophysics Data System (ADS)

    Yoshida, Shinya; Wang, Nan; Kumano, Masafumi; Kawai, Yusuke; Tanaka, Shuji; Esashi, Masayoshi

    2013-06-01

    This paper reports on the fabrication and characterization of a novel laterally-driven piezoelectric bimorph micro electro mechanical systems actuator with high aspect-ratio (AR) lead-zirconate-titanate (PZT) structures. The PZT structures (AR=8) sandwiched with Pt sidewall electrodes were fabricated by a nanocomposite sol-gel process with micromachined silicon templates. A single-cantilever-type lateral bimorph actuator was successfully fabricated, and no initial vertical bending was observed, even on a 500 µm long actuator. A lateral displacement of 10 µm was obtained in bimorph actuation at driving voltages of +25 V/-5 V. Then the piezoelectric property of the PZT structure was characterized from the actuator's performance. The lateral piezoelectric actuator has a variety of potential applications as a replacement for electrostatic comb drive actuators occupying a large area.

  19. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Correale, G.; Michelis, T.; Ragni, D.; Kotsonis, M.; Scarano, F.

    2014-03-01

    An experimental investigation of the working principles of a nanosecond-pulsed dielectric barrier discharge (ns-DBD) plasma actuator has been conducted. Special emphasis is given on the thermal effects accompanying the rapid deposition of energy associated with this kind of actuation. A ns-DBD plasma actuator has been operated in quiescent air conditions as well as in a flat plate laminar boundary layer, with external flow velocity of 5 and 10 m s-1. Schlieren imaging and particle image velocimetry have been used to characterize the actuation. Additionally, the back-current shunt technique has been used for current measurements, from which energy input (per pulse) is calculated. Cases of 10-, 20- and 50-pulse bursts are tested. Schlieren imaging in still air conditions shows the formation of a high-temperature region in the vicinity of the discharge volume. The spatial extent of the visible ‘hot spot’ depends upon the number of pulses within the burst, following a power law. Schlieren imaging of the span-wise effect of the plasma actuator reveals weak compression waves originating from the loci of discharge filaments. The thermal ‘hot spots’ exhibit significant three-dimensionality. Particle image velocimetry is used to measure the velocity field resulting from the ns-DBDs acting on a laminar boundary layer. The disturbance leads to formation of a Tollmien-Schlichting wave train, with spectral content in good agreement with linear stability theory. It is observed that the group length of the wave train is proportional to the number of pulses within the burst.

  20. 44th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 912, 2006, Reno, NV On Plasma Synthetic Jet Actuators

    E-print Network

    Jacob, Jamey

    that dictates the performance efficiency of the fluidic device.2,3 Plasma actuators can be readily employed­9 They are commonly produced by using an oscillating diaphragm mounted in a cavity that is embedded flush

  1. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Han, Menghu; Li, Jun; Liang, Hua; Niu, Zhongguo; Zhao, Guangyin

    2015-06-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. supported by National Natural Science Foundation of China (Nos. 51276197, 51207169 and 51336011)

  2. Low voltage driven piggy-back actuator of hard disk drives

    Microsoft Academic Search

    I. Naniwa; S. Nakamura; S. Saegusa; K. Sato

    1999-01-01

    Fine positioning by a piggy-back actuator is essential in order to increase the recording density of hard disk drives (HDDs). We therefore developed a piggy-back actuator that generates a 1.4-?m displacement at 5 V. This displacement is twice as large as that of the usual piggy-back actuators. This actuator satisfies all requirements for HDDs including track density of 30 kilotracks

  3. Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators

    NASA Astrophysics Data System (ADS)

    Dörr, P. C.; Kloker, M. J.

    2015-07-01

    The applicability of dielectric barrier discharge plasma actuators for controlling the crossflow-vortex-induced laminar breakdown in a three-dimensional swept-wing-type boundary-layer flow is investigated using direct numerical simulation. Similar to the classical application of suction at the wall the aim is to modify the quasi two-dimensional base flow and to weaken primary crossflow (CF) instability, mainly due to a reduction of the basic CF. Not only localised volumetric forcing by plasma actuators but also CF counter-blowing and spots with a moving wall are investigated to identify effective fundamental mechanisms. It is found that counter blowing always results in partial blockage of the flow and eventually increased CF velocity, whereas moving-wall spots can slightly reduce the CF and the amplitude of crossflow vortices. Using discrete volumetric forcing a significant attenuation even of finite-amplitude crossflow vortices and thus a distinct transition delay is achieved.

  4. Instability wave control in turbulent jet by acoustical and plasma actuators

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Belyaev, I. V.; Faranosov, G. A.; Kopiev, V. A.; Ostrikov, N. N.; Zaytsev, M. Yu.; Akishev, Yu. S.; Grushin, M. E.; Trushkin, N. I.; Bityurin, V. A.; Klimov, A. I.; Moralev, I. A.; Kossyi, I. A.; Berezhetskaya, N. K.; Taktakishvili, M. I.

    2015-06-01

    It was recently demonstrated by direct experiment in subsonic jets that an instability wave in jet shear layer generated by pure-tone acoustic excitation could be suppressed by another acoustic excitation, which generates an instability wave with the same properties. It was suggested that instability waves could be generated by any oscillating field near the nozzle exit. This paper presents the results of experimental investigations of instability wave suppression by other types of periodic excitation. Three types of plasma actuators are considered: (i) high-frequency (HF) dielectric barrier discharge (DBD); (ii) slipping discharge; and (iii) corona discharge. Control authority of the plasma actuators over instability waves is demonstrated. For high-speed hot jets where instability waves are the dominant noise source, instability wave control is equivalent to noise control.

  5. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    Microsoft Academic Search

    A. J. Kelly; R. G. Jahn; E. Y. Choueiri

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of

  6. Numerical Investigation and Feasibility Study of a PZT-driven Micro-valve Pulsed-jet Actuator

    Microsoft Academic Search

    K. L. Kudar; P. W. Carpenter

    2007-01-01

    A micro-valve pulsed-jet vortex-generator driven by piezoelectric actuation was successfully modelled numerically to determine\\u000a the feasibility of such a design. This includes: modelling the dynamic motion of a unimorph cantilever and the fluid-structure\\u000a interaction occurring between the unimorph and the fluid flowing over such a structure; the unsteady developing channel flow\\u000a that would occur through the outlet orifice was also

  7. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations of actuator geometry in the supersonic base flow determined that inclined cavity and normal cavity actuators positioned on the base near the base edge could produce significant disturbances in the shear layer. The disturbances were able to be tracked in time with phase-locked schlieren imaging and particle image velocimetry (PIV). The final set of flow control experiments were therefore performed with an eight-actuator base using the inclined cavity actuator geometry. The actuators were able to cause moderate influences on the axisymmetric shear layer velocity profile and base pressure. The most substantial changes to the shear layer and base pressure were noted for the highest current and duty cycle tests. At 1 A and 20% duty cycle, the base pressure was reduced by 3.5%. Similar changes were noted for all modes and a range of frequencies from about 10-30 kHz. Increases in duty cycle between 4% and 20% caused a nearly linear decrease in base pressure. Analysis of the shear layer velocity profiles acquired through PIV show a local thickening of the shear layer in the region of the disturbances caused by the actuator. A slight increase in thickness was also observed away from the disturbance. Disturbances were able to be tracked at all frequencies and translated along the shear layer at a convective velocity of 430 +/- 20 m/s. A fairly clear trend of increasing velocity disturbance amplitude correlating to increasing base pressure changes was noted. Moreover, the ability of the disturbances to stay well organized further down the shear layer also appears to be a significant factor in the actuators' effect on base pressure. Consistent with these observations, it appears that increased duty cycle causes increased shear layer disturbance amplitudes. The use of PIV has enabled substantial insight to be gained into the effects of the actuators on the ensemble-averaged flow field and on the variability of the instantaneous flow field with and without control. A sensitive bimodal recirculation region behavior was found in the no-control flow field tha

  8. Shockwave—boundary layer interaction control by plasma aerodynamic actuation: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Sun, Quan; Cui, Wei; Li, Ying-Hong; Cheng, Bang-Qin; Jin, Di; Li, Jun

    2014-07-01

    The potential of controlling shockwave—boundary layer interactions (SWBLIs) in air by plasma aerodynamic actuation is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.

  9. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nishihara, M.; Adamovich, I. V.; Samimy, M.; Gorbatov, S. V.; Pliavaka, F. V.

    2010-08-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow control authority similar to pulsed DC actuators, with a significantly reduced power budget.

  10. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGESBeta

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more »from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  11. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGESBeta

    Shin, Young-Min [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  12. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  13. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  14. Separation control using plasma actuators: application to a free turbulent jet

    NASA Astrophysics Data System (ADS)

    Labergue, A.; Moreau, E.; Zouzou, N.; Touchard, G.

    2007-02-01

    This experimental work deals with active airflow control using non-thermal surface plasma actuators in the case of a rectangular cross section turbulent jet. A wide-angle diffuser composed of two adjustable hinged baseplates is linked at the jet exit. Two types of actuators are considered: the DC corona discharge and the dielectric barrier discharge (DBD). In both cases, an ionic wind with a velocity of several m s-1 is generated tangentially to the wall surface. Thus, this induced aerodynamic effect is applied in order to create the separation along the lower hinged baseplate. The effects of both actuators on the flow separation are measured by means of particle image velocimetry for velocity up to 30 m s-1. The main results show that the DBD seems more efficient than the DC corona discharge but the effect decreases with the jet velocity. However, in increasing the discharge frequency up to 1500 Hz, it is possible to separate a 30 m s-1 jet. Finally, by reducing the actuators' length in the spanwise direction, results lead to a visualization of the three-dimensional effects on the separation along the lower hinged baseplate.

  15. Plasma synthetic jet actuator: electrical and optical analysis of the discharge

    NASA Astrophysics Data System (ADS)

    Belinger, A.; Naudé, N.; Cambronne, J. P.; Caruana, D.

    2014-08-01

    Active flow control is based on the development of robust actuators which are reliable, small and easy to integrate. A promising actuator referred to as plasma synthetic jet actuator produces a synthetic jet with high exhaust velocities and holds the promise of enabling high-speed flows. With this high velocity jet, it is possible to reduce fluid phenomena such as transition and turbulence, thus making it possible to increase an aircraft's performance whilst at the same time reducing its environmental impact. This high velocity jet is produced by a pulsed discharge in a microcavity. In this paper, we focus on the properties of the discharge in order to understand the functioning of the actuator. In the first part an electrical description of the discharge in presented. Afterwards, optical measurements (optical emission spectroscopy and ICCD photograph) enable the determination of temperature, volume and duration of the discharge. At the end of the paper we present an electrical model of the discharge, which can be obtained both from electrical measurements and from macroscopic properties of the discharge (temperature, volume). This electrical model can easily be included in electrical simulation software.

  16. Simulation of an asymmetric single dielectric barrier plasma actuator

    SciTech Connect

    Singh, K.P.; Roy, Subrata [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States)

    2005-10-15

    Continuity equations governing electron and ion density are solved with Poisson's equation to obtain spatial and temporal profiles of electron density, ion density, and voltage. The motion of electrons and ions results in charge separation and generation of an electrostatic electric field. Electron deposition downstream of the overlap region of the electrode results in formation of a virtual negative electrode that always attracts the charge separation. The value of charge separation e(n{sub i}-n{sub e}) and the force per volume F=e(n{sub i}-n{sub e})E have been obtained near the dielectric surface for the 50th cycle. Domain integration of the force F=e(n{sub i}-n{sub e})E has been obtained for different plasma densities, frequencies, and rf voltage wave forms. The time average of the x force is positive and the y force is negative over the domain; therefore there is an average net force on the plasma in the positive x and negative y directions. This will result in a moving wave of plasma over the dielectric surface in the positive x direction, which can find application in flow control.

  17. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  18. Dynamics of Lane Formation in Driven Binary Complex Plasmas

    SciTech Connect

    Suetterlin, K. R.; Ivlev, A. V.; Raeth, C.; Thomas, H. M.; Rubin-Zuzic, M.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Wysocki, A.; Loewen, H. [Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Goedheer, W. J. [FOM-Institute for Plasma Physics Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F. [Joint Institute for High Temperatures, 125412 Moscow (Russian Federation)

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.

  19. Dynamics of lane formation in driven binary complex plasmas.

    PubMed

    Sütterlin, K R; Wysocki, A; Ivlev, A V; Räth, C; Thomas, H M; Rubin-Zuzic, M; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F; Morfill, G E; Löwen, H

    2009-02-27

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems. PMID:19257747

  20. A micropump driven by continuous electrowetting actuation for low voltage and low power operations

    Microsoft Academic Search

    Kwang-Seok Yun; Il-Joo Cho; Jong-Uk Bu; Geun-Ho Kim; Young-Sam Jeon; Chang-Jin Kim; E. Yoon

    2001-01-01

    In this paper we first report a micropump actuated by continuous electrowetting (CEW). We have used the surface-tension-induced motion of a mercury drop in the microchannel filled with an electrolyte as actuation energy. We have fabricated the CEW actuator, silicone rubber pumping membranes and copper flap check valves, and have demonstrated actual liquid pumping up to 63 ?l\\/min at the

  1. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C. [Institute of Fluid Mechanics and Aerodynamics, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany); Grundmann, S. [Center of Smart Interfaces, Technische Universitaet Darmstadt, Flughafenstr. 19, D-64347 Griesheim (Germany)

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  2. Current driven instability in collisional dusty plasmas

    Microsoft Academic Search

    B. P. Pandey; S. V. Vladimirov; A. Samarian

    2009-01-01

    The current driven electromagnetic instability in a collisional, magnetized, dusty medium is considered in the present work. It is shown that in the presence of the magnetic field aligned current, the low-frequency waves in the medium can become unstable if the ratio of the current to the ambient field is larger than the light speed times the wave number. The

  3. Resonant control of structural vibration using charge-driven piezoelectric actuators

    Microsoft Academic Search

    S. O. Reza Moheimani; Benjamin J. G. Vautier

    2005-01-01

    Driving piezoelectric actuators by charge, or current rather than voltage is known to significantly reduce the hysteretic nature of these actuators. Although this feature of piezoelectric transducers has been known to the researchers for some time, still voltage amplifiers are being used as the main driving mechanism for piezoelectric devices. This is due to the perceived difficulty in building charge\\/current

  4. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  5. Proposed method for high-speed plasma density measurement in proton-driven plasma wakefield acceleration

    SciTech Connect

    Tarkeshian, R.; Reimann, O.; Muggli, P. [Max-Planck-Institut fuer Physik, 80805 Munich (Germany)

    2012-12-21

    Recently a proton-bunch-driven plasma wakefield acceleration experiment using the CERN-SPS beam was proposed. Different types of plasma cells are under study, especially laser ionization, plasma discharge, and helicon sources. One of the key parameters is the spatial uniformity of the plasma density profile along the cell that has to be within < 1% of the nominal density (6 Multiplication-Sign 10{sup 14} cm{sup -3}). Here a setup based on a photomixing concept is proposed to measure the plasma cut-off frequency and determine the plasma density.

  6. Current driven instability in collisional dusty plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Vladimirov, S. V.; Samarian, A.

    2009-11-01

    The current driven electromagnetic instability in a collisional, magnetized, dusty medium is considered in the present work. It is shown that in the presence of the magnetic field aligned current, the low-frequency waves in the medium can become unstable if the ratio of the current to the ambient field is larger than the light speed times the wave number. The growth rate of the instability depends upon the ratio of the Alfvén to the dust cyclotron frequency as well as on the ratio of the current density J to the dust charge density Zend, where Z is the number of electronic charge on the grain, e is the electron charge, and nd is the dust number density. The typical growth rate of this instability is on the order of Alfvén frequency which compares favorably with the electrostatic, cross-field current driven, Farley-Buneman instability and thus could play an important role in the Earth's ionosphere.

  7. Eigenmode response to driven magnetic reconnection in a collisionless plasma

    E-print Network

    Egedal, Jan

    Eigenmode response to driven magnetic reconnection in a collisionless plasma J. Egedal, W. Fox on the global dynamics of the systems in which it occurs. By way of examples, reconnection con- trols that the thermal electrons are trapped electrostatically within the ion diffusion region. Thus, the reconnection

  8. Note: Background Oriented Schlieren as a diagnostics for airflow control by plasma actuators.

    PubMed

    Biganzoli, I; Capone, C; Barni, R; Riccardi, C

    2015-02-01

    Background Oriented Schlieren (BOS) is an optical technique sensitive to the first spatial derivative of the refractive index inside a light-transmitting medium. Compared to other Schlieren-like techniques, BOS is more versatile and allows to capture bi-dimensional gradients rather than just one spatial component. We propose to adopt BOS for studying the capabilities of surface dielectric barrier discharges to work like plasma actuators in flow control applications. The characteristics of the BOS we implemented at this purpose are discussed, together with few results concerning the ionic wind produced by the discharge in absence of an external airflow. PMID:25725896

  9. Simulation of Laser Pulse Driven Terahertz Generation in Inhomogeneous Plasmas

    NASA Astrophysics Data System (ADS)

    Miao, Chenlong; Palastro, John; Antonsen, Thomas

    2014-10-01

    Intense, short laser pulses propagating through plasma generate THz radiation. Full format PIC simulations and theoretical analysis are conducted to investigate two mechanisms of ponderomotively driven THz radiation: transition radiation, and slow wave phase matching enabled by corrugated plasma channels. The first mechanism occurs as a laser pulse crosses a plasma boundary and is analogous to transition radiation emitted by charged particle beams. The THz radiation resulting from this transition radiation mechanism (TRM) is characterized by conical emission and a broad spectrum with the maximum frequency occurring near the plasma frequency. The second mechanism occurs in axially periodic plasma channels. These channels support electromagnetic modes with slow wave (Floquet-type) dispersion, which can be phase matched to the ponderomotive current. The slow wave phase-matched radiation (SWPM) is characterized by lateral emission and a coherent spectrum with sharp modes at frequencies associated with the channel. Supported by US DoE.

  10. Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode

    NASA Astrophysics Data System (ADS)

    Joussot, R.; Leroy, A.; Weber, R.; Rabat, H.; Loyer, S.; Hong, D.

    2013-03-01

    Plasma morphology and airflow induced by a dielectric barrier discharge (DBD) actuator, whose exposed electrode geometry is designed with a serrated configuration, are investigated in quiescent air and compared with a DBD actuator consisting of electrodes designed with a standard linear strip configuration. ICCD imaging, electrical measurements and three-component laser Doppler velocimetry were carried out to compare various features of these two actuators. With the serrated configuration, ICCD images of the discharge show that streamers are bent, whereas with the linear configuration they are straight. These curved streamers induce a three-dimensional flow topology, which is confirmed by friction line visualization and velocity measurements. Whereas a two-dimensional wall-jet is induced with the linear configuration, a transverse velocity component is measured with the serrated configuration, implying the creation of spanwise-periodic vorticity. Phase-averaged velocity measurements allow the temporal variation of this transverse velocity to be highlighted. On both sides of a tooth, it has qualitatively the same variation as the longitudinal velocity with respect to the negative or positive half-cycles of the high voltage signal. Moreover, with the same electrical operating parameters, the measured longitudinal velocity was higher, particularly at the tips.

  11. Current driven instability in collisional dusty plasmas

    SciTech Connect

    Pandey, B. P. [Department of Physics, Macquarie University, Sydney, New South Wales 2109 (Australia); Vladimirov, S. V.; Samarian, A. [Complex Systems, School of Physics, University of Sydney, New South Wales 2006 (Australia)

    2009-11-15

    The current driven electromagnetic instability in a collisional, magnetized, dusty medium is considered in the present work. It is shown that in the presence of the magnetic field aligned current, the low-frequency waves in the medium can become unstable if the ratio of the current to the ambient field is larger than the light speed times the wave number. The growth rate of the instability depends upon the ratio of the Alfven to the dust cyclotron frequency as well as on the ratio of the current density J to the dust charge density Zen{sub d}, where Z is the number of electronic charge on the grain, e is the electron charge, and n{sub d} is the dust number density. The typical growth rate of this instability is on the order of Alfven frequency which compares favorably with the electrostatic, cross-field current driven, Farley-Buneman instability and thus could play an important role in the Earth's ionosphere.

  12. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  13. Design and analysis of hydraulically driven actuation system For a parabolic solar trough

    E-print Network

    Popovi?, Katarina, S.B. Massachusetts Institute of Technology

    2013-01-01

    This thesis documents Katarina Popovic's contribution to the design of hydraulic cylinder actuation system for day to day solar trough sun tracking, a semester long project within 2.752 Development of Mechanical Products ...

  14. Fabrication of a bubble-driven arrayed actuator for a tactile display

    NASA Astrophysics Data System (ADS)

    Shikida, Mitsuhiro; Imamura, Tsubasa; Ukai, Shinji; Miyaji, Takaaki; Sato, Kazuo

    2008-06-01

    A chip-sized arrayed actuator device has been developed for application to a tactile display. Each actuator uses a liquid-vapour phase change to drive a microneedle that stimulates receptors in a finger in contact with the array. The actuators have a flexible diaphragm structure and a bottom plate bonded together to create a cavity between them. A microneedle and a microheater are formed on the diaphragm and plate of each actuator, respectively. The sealed cavity is filled with an operating liquid. Activating the heater and generating bubbles, which is similar to the process of a thermal ink jet, increase the pressure in the cavity. As a result, the flexible membrane deforms and it drives the needle upwards to stimulate receptors. Microelectromechanical systems technologies are used to fabricate the three components of the actuators, which are manually assembled to form a 3 × 3 arrayed actuator device. The total size of the device is 15 × 15 × 1 mm. The device performance is experimentally evaluated and a large needle displacement (61 µm) is obtained with an input energy of 457 mJ.

  15. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Venkateswaran; Raja, Laxminarayan L.; Clemens, Noel T.

    2012-07-01

    A pulsed-plasma jet actuator is used to control the unsteady motion of the separation shock of a shock wave/boundary layer interaction formed by a compression ramp in a Mach 3 flow. The actuator is based on a plasma-generated synthetic jet and is configured as an array of three jets that can be injected normal to the cross-flow, pitched, or pitched and skewed. The typical peak jet exit velocity of the actuators is about 300 m/s and the pulsing frequencies are a few kilohertz. A study of the interaction between the pulsed-plasma jets and the shock/boundary layer interaction was performed in a time-resolved manner using 10 kHz schlieren imaging. When the actuator, pulsed at StL ? 0.04 (f = 2 kHz), was injected into the upstream boundary layer, the separation shock responded to the plasma jet by executing a rapid upstream motion followed by a gradual downstream recovery motion. Schlieren movies of the interaction showed that the separation shock unsteadiness was locked to the pulsing frequency of the actuator, with amplitude of about one boundary layer thickness. Wall-pressure measurements made under the intermittent region showed about a 30% decrease in the overall magnitude of the pressure fluctuations in the low-frequency band associated with unsteady large-scale motion of the separated flow. Furthermore, by increasing the pulsing frequency to 3.3 kHz, the amplitude of the separation shock oscillation was reduced to less than half the boundary layer thickness. Investigation into the effect of the actuator location on the shock wave/boundary layer interaction (SWBLI) showed qualitatively and quantitatively that the actuator placed upstream of the separation shock caused significant modification to the SWBLI unsteadiness, whereas injection from inside the separation bubble did not cause a noticeable effect.

  16. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Astrophysics Data System (ADS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-07-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  17. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  18. Flow-field characterization of DBD plasma actuators as discrete roughness elements for laminar flow control

    NASA Astrophysics Data System (ADS)

    Craig, S. A.; Humble, R. A.; Hofferth, J. W.; Saric, W. S.

    2011-11-01

    For many years there has been an evolving interest in controlling boundary layer transition on swept-wings. With an appropriate distribution of spanwise-periodic discrete roughness elements (DRE), subcritical wavelengths can be excited which supersede the growth of the most-amplified wavelength, thereby delaying the crossflow-dominated laminar-turbulent transition. To elucidate the physics of annular DBD plasma actuators for potential use as DRE and facilitate effective design, they are studied under quiescent flow conditions using particle image velocimetry a photomultiplier tube (PMT) and a high-speed camera. A complex flow-field is generated by a single aperture that describes a three-dimensional torus accompanied by a downward, wall-normal jet region. The flow-field is sensitive to aperture size and applied voltage. For arrayed actuators, the tori contract dramatically due to the interaction with vortices from adjacent apertures. A PMT in conjunction with a high-speed camera were used to observe the light intensity from the bulk plasma at high temporal resolution and visualize the individual discharge events. Supported by the NASA/AFOSR National Center for Hypersonic Laminar-Turbulent Transition Research.

  19. Reduced-order modeling of high-speed jets controlled by arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Sinha, Aniruddha; Serrani, Andrea; Samimy, Mo

    2013-02-01

    Arc filament plasma actuators applied to high-speed and high Reynolds number jets have demonstrated significant mixing enhancement when operated near the jet column mode (JCM) frequency. A feedback-oriented reduced-order model is developed for this flow from experimental data. The existent toolkit of stochastic estimation, proper orthogonal decomposition, and Galerkin projection is adapted to yield a 35-dimensional model for the unforced jet. Explicit inclusion of a "shift mode" stabilizes the model. The short-term predictive capability of instantaneous flow fields is found to degrade beyond a single flow time step, but this horizon may be adequate for feedback control. Statistical results from long-term simulations agree well with experimental observations. The model of the unforced jet is augmented to incorporate the effects of plasma actuation. Periodic forcing is modeled as a deterministic pressure wave specified on the inflow boundary of the modeling domain. Simulations of the forced model capture the nonlinear response that leads to optimal mixing enhancement in a small range of frequencies near the JCM.

  20. Observations of velocity shear driven plasma turbulence

    NASA Technical Reports Server (NTRS)

    Kintner, P. M., Jr.

    1976-01-01

    Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.

  1. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas

    SciTech Connect

    Toi, K. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Todo, Yasushi [National Institute for Fusion Science, Toki, Japan

    2011-01-01

    Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs that exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.

  2. Laser-driven instabilities in long scalelength plasmas, 2

    SciTech Connect

    Kruer, W.L.

    1988-07-28

    There is considerable interest in the interaction of intense laser light with plasmas characterized by a long density scale length. Such plasmas are created in laser fusion applications when targets are irradiated by long shaped pulses of intense laser light. The preferred absorption process is inverse bremsstrahlung, which is simply collisional absorption. However, a hot plasma also supports waves, which correspond to density fluctuations and their self-consistent electric fields. Excitation of these waves can lead to scattering of the laser light and/or to absorption into an undesirable component of energetic electrons which preheat the fuel capsule. A variety of plasma instabilities can be driven by intense laser light in long scale-length plasmas. Most of these instabilities can be represented as the resonant decay of the incident light wave into two other waves. If we neglect self-generated magnetic fields, the plasma will support light waves, electron plasma waves, and ion acoustic waves. Various combinations are apparent. Decay into electron and ion waves takes place near the critical density, where the electron plasma frequency equals the laser light frequency. Decay into two electron plasma waves occurs near .25 n{sub cr}. The analogous process involving a scattered light wave plus an ion sound wave can be operative throughout the underdense plasma. Another possible instability is due to long wavelength density modulations which can enhance perturbations in the radial intensity profile of the laser beam. In order to delineate the regimes of efficient coupling, it is important to characterize these various processes. Instabilities which operate in the plasma with density .25 n{sub cr} are a particular concern, since collisional absorption can be quite effective at higher densities. 64 refs., 7 figs.

  3. Current driven instabilities of an electromagnetically accelerated plasma

    NASA Technical Reports Server (NTRS)

    Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1988-01-01

    A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.

  4. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Accelerator Physics Center (APC), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510 (United States)

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25?}m{sup ?3} and 1.6?×?10{sup 28?}m{sup ?3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ?20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?{sub p} to 0.6 ?{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  5. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  6. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    Microsoft Academic Search

    Bruce R. Kusse; David A. Hammer

    2007-01-01

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA\\/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to

  7. Spin-Gradient-Driven Light Amplification in a Quantum Plasma

    NASA Astrophysics Data System (ADS)

    Braun, Stefanie; Asenjo, Felipe A.; Mahajan, Swadesh M.

    2012-10-01

    It is shown that the gradient “free-energy” contained in equilibrium spin vorticity can cause electromagnetic modes, in particular the light wave, to go unstable in a spin quantum plasma of mobile electrons embedded in a neutralizing ion background. For densities characteristic of both the solid state and very high density astrophysical systems, the growth rates are sufficiently high to overcome the expected collisional damping. Preliminary results suggest a powerful spin-inhomogeneity driven mechanism for stimulating light amplification.

  8. Photostrictive actuators

    Microsoft Academic Search

    K. Uchino; P. Poosanaas; K. Tonooka

    2001-01-01

    Photostrictive materials, exhibiting light-induced strains, are of interest for future generation wireless remote control photo-actuators, micro-actuators, and micro-sensors applications. (Pb, La)(Zr, Ti) O3 (PLZT) ceramics doped with WO3 exhibit large photostriction under uniform illumination of nearultraviolet light. Using a bimorph configuration, a photo-driven relay and a micro walking device have been demonstrated. However, for the fabrication of these devices, higher

  9. Photostrictive actuators

    Microsoft Academic Search

    Patcharin Poosanaas; Kazuhiko Tonooka; Kenji Uchino

    2000-01-01

    Photostrictive materials, exhibiting light induced strain, are of interest for future generation wireless remote control photo-actuators, micro-actuators, and micro-sensors applications. (Pb, La)(Zr, Ti) O3 (PLZT) ceramics doped with WO3 exhibit large photostriction under uniform illumination of near-ultraviolet light. Using a bimorph configuration, a photo-driven relay and a micro walking device have been demonstrated. However, for the fabrication of these devices,

  10. Transition to chaos in a driven dusty plasma

    SciTech Connect

    Sheridan, T. E.; Theisen, W. L. [Department of Physics and Astronomy, Ohio Northern University, Ada, Ohio 45810 (United States)

    2010-01-15

    Dynamical chaos has previously been observed experimentally in a driven dusty plasma with three particles [T. E. Sheridan, Phys. Plasmas 12, 080701 (2005)]. In the present work, the transition to chaos in this system is studied as a function of the amplitude of a periodic driving force for two different driving frequencies f{sub d}. It is found that the system follows a quasiperiodic route to chaos. The dusty plasma's center-of-mass modes are driven by the first harmonic of f{sub d} and lock to the driving force for small driving amplitudes. The breathing mode is driven by the second harmonic of f{sub d} and shows asymmetric spectral features indicating quasiperiodic dynamics for intermediate driving amplitudes. For large driving forces both the center-of-mass and breathing modes are entrained and a region of low-dimensional chaotic dynamics due to a resonance overlap is observed. In the chaotic regime the correlation dimension and Lyapunov exponent are found to increase with the driving force.

  11. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-11-04

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  12. Experimental study of driven magnetic relaxation in a laboratory plasma

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Tang, X. Z.

    2008-11-01

    The Driven Relaxation Experiment (DRX) has been built at LANL to investigate the possibility of exploiting resonances in the nonlinear force-free equation [1] to optimize magnetic flux amplification and current multiplication for driven-relaxed spheromak-like plasmas, and to explore the application of these ideas to plasma astrophysics problems [2]. It is also our goal to see whether relaxed states with ?> ?1 can be formed and sustained. The experiment uses a planar magnetized coaxial gun (100--180 kA, 1--7 mWb) to generate driven- relaxed plasmas within a cylindrical flux-conserving boundary (0.9 m diameter). Unique features of DRX include high ?gun up to 3?1, and a continuously adjustable boundary elongation. The gun is powered by a 3- stage capacitor bank to form (10 kV, 500 ?F) and sustain (5 kV, 8 mF) the plasma for up to 500 ?s, corresponding to >10 Sweet-Parker times which allows the plasma to reach a quasi-steady-state. The primary diagnostic is a 48- channel 2D magnetic probe array that will map out a poloidal cross-section of the magnetic field configuration at one toroidal position. The full equilibrium magnetic field will be constructed using a combination of the experimental data and a nonlinear force-free equilibrium solver. We will present details of the experimental setup and the first experimental data. Supported by LANL LDRD. [1] Tang & Boozer, PRL 94, 225004 (2005); PRL 98, 175001 (2007) [2] Tang, ApJ 679, 1000 (2008).

  13. Florida Center for Advanced Aero-Propulsion (FCAAP) Annual Technical Symposium 2010 Three-dimensional Modeling of Microscale Plasma Actuators

    E-print Network

    Roy, Subrata

    are solved to predict complicated flow structures inside a small channel induced by micron size actuators, the eight-species air chemistry model is also being augmented with the Landau-Teller vibrational relaxation plasma gas interaction, non-equilibrium air chemistry, micropump 1 Introduction Over the last decade

  14. Trapped Electron Mode Turbulence Driven Intrinsic Rotation in Tokamak Plasmas

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Zakharov, L. E.; Diamond, P. H. [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)] [University of California, San Diego, La Jolla, California 92093 (United States)

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k{sub ||} symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L{sub T{sub e}} and R/L{sub n{sub e}} for the trapped electron mode.

  15. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    E-print Network

    Mauel, Michael E.

    Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic) Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic electrostatic dipole vortex [3] that transports mass, energy, and charge [4]. The centrifugally driven

  16. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    SciTech Connect

    Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin; Lin, Guey-Lin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Noble, Robert J.; /SLAC; Sydora, Richard; /Alberta U.

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.

  17. Micro robot system with moving micro-car driven by electrostatic comb-drive actuators

    Microsoft Academic Search

    Phuc Hong Pham; Lam Bao Dang; Hung Ngoc Vu

    2010-01-01

    This paper describes a silicon micro robot system (MRS) that is capable of driving micro-cars in different directions based\\u000a on a ratchet mechanism and electrostatic comb-drive actuators. Lateral movement of the ratchet racks makes the micro-car move\\u000a in the perpendicular direction with different velocities. Based on MEMS technology, the MRS described in this article was\\u000a fabricated from a silicon on

  18. Tunable microlens actuated via a thermoelectrically driven liquid heat engine Alireza Ousati Ashtiani and Hongrui Jiang

    E-print Network

    Jiang, Hongrui

    ://scitation.aip.org/termsconditions. Downloaded to ] IP: 128.104.78.175 On: Thu, 07 Aug 2014 16:04:07 #12;Tunable microlens actuated via-loop system is harnessed to drive and stabi- lize the temperature of the heat engine. Direct contact between, the shape of a pinned water-oil meniscus at a lens aperture is deformed in response to the net volume change

  19. Surface and bulk- micromachined two-dimensional scanner driven by angular vertical comb actuators

    Microsoft Academic Search

    Wibool Piyawattanametha; Pamela R. Patterson; Dooyoung Hah; Hiroshi Toshiyoshi; Ming C. Wu

    2005-01-01

    In this paper, we present the design, fabrication, and measurements of a two-dimensional (2-D) optical scanner with electrostatic angular vertical comb (AVC) actuators. The scanner is realized by combining a foundry-based surface-micromachining process (Multi-User MEMS Processes-MUMPs) with a three-mask deep-reactive ion-etching (DRIE) postfabrication process. The surface-micromachining provides versatile mechanical design and electrical interconnect while the bulk micromachining offers high-aspect ratio

  20. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap

    NASA Astrophysics Data System (ADS)

    Feng, Li-Hao; Jukes, Timothy N.; Choi, Kwing-So; Wang, Jin-Jun

    2012-06-01

    Flow control study of a NACA 0012 airfoil with a Gurney flap was carried out in a wind tunnel, where it was demonstrated that a dielectric-barrier-discharge (DBD) plasma actuator attached to the flap could increase the lift further, but with a small drag penalty. Time-resolved PIV measurements of the near-wake region indicated that the plasma forcing shifted the wake downwards, reducing its recirculation length. Analysis of wake vortex dynamics suggested that the plasma actuator initially amplified the lower wake shear layer by adding momentum along the downstream surface of the Gurney flap. This enhanced mutual entrainment between the upper and lower wake vortices, leading to an increase in lift on the airfoil.

  1. Real-time thickness measurement of biological tissues using a microfabricated magnetically-driven lens actuator.

    PubMed

    Mansoor, Hadi; Zeng, Haishan; Chiao, Mu

    2011-08-01

    A fiber optic confocal catheter with a micro scanning lens was developed for real-time and non-contact thickness measurement of biological tissue. The catheter has an outer diameter and rigid length of 4.75 mm and 30 mm respectively and is suitable for endoscopic applications. The catheter incorporates a lens actuator that is fabricated using microelectromechanical systems (MEMS) technology. The lens is mounted on a folded flexure made of nickel and is actuated by magnetic field. Thickness measurements are performed by positioning the catheter in front of the tissue and actuating the lens scanner in the out-of-plane direction. A single-mode optical fiber (SMF) is used to deliver a 785 nm laser beam to the tissue and relay back the reflected light from the tissue to a photomultiplier tube (PMT). When the focal point of the scanning lens passes tissue boundaries, intensity peaks are detected in the reflecting signal. Tissue thickness is calculated using its index of refraction and the lens displacement between intensity peaks. The utility of the confocal catheter was demonstrated by measuring the cornea and skin thicknesses of a mouse. Measurement uncertainty of 8.86 µm within 95% confidence interval has been achieved. PMID:21468630

  2. Plasma-Based Mixing Actuation in Airflow, Quantitated by Probe Breakdown Fluorescence

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey; Firsov, Alexander; Shurupov, Michail; Yarantsev, Dmitry; Ohio State University Team; JIHT RAS Team

    2013-09-01

    Effective mixing of fuel and oxidizer in air-breathing engine at compressible conditions is an essential problem of high-speed combustion due to short residence time of gas mixture in the combustor of limited length. The effect of the mixing actuation by plasma is observed because of the gasdynamic instability arisen after the long filamentary discharge of submicrosecond duration generated along the contact zone of two co-flown gases. The work is focused on detail consideration of the mechanism of gas instability, promoted by plasma, on effect of the discharge specific localization, and on diagnostics development for qualitative and quantitative estimation of the mixing efficiency. The dynamics of relative concentration of gas components is examined quantitatively by means of Probe Discharge Breakdown Fluorescence (PBF). In this method an optical emission spectra of weak filamentary high-voltage nanosecond probe discharge are collected from local zone of interest in airflow. The first measurements of the mixing efficiency in vicinity of wall-injected secondary gas are presented. It is shown that the method of PBF could deliver experimental data on state of the two-component medium with <1 mcs and <5 mm of time and spatial resolution, correspondingly. Effective mixing of fuel and oxidizer in air-breathing engine at compressible conditions is an essential problem of high-speed combustion due to short residence time of gas mixture in the combustor of limited length. The effect of the mixing actuation by plasma is observed because of the gasdynamic instability arisen after the long filamentary discharge of submicrosecond duration generated along the contact zone of two co-flown gases. The work is focused on detail consideration of the mechanism of gas instability, promoted by plasma, on effect of the discharge specific localization, and on diagnostics development for qualitative and quantitative estimation of the mixing efficiency. The dynamics of relative concentration of gas components is examined quantitatively by means of Probe Discharge Breakdown Fluorescence (PBF). In this method an optical emission spectra of weak filamentary high-voltage nanosecond probe discharge are collected from local zone of interest in airflow. The first measurements of the mixing efficiency in vicinity of wall-injected secondary gas are presented. It is shown that the method of PBF could deliver experimental data on state of the two-component medium with <1 mcs and <5 mm of time and spatial resolution, correspondingly. Funded by AFOSR under Dr Chiping Li supervision

  3. Rubber gas actuator driven by hydrogen storage alloy for in-pipe inspection mobile robot with flexible structure

    Microsoft Academic Search

    Toshio FUKUDA; Hidemi HOSOKAI; Masahiro UEMURA

    1989-01-01

    The authors describe rubber actuators using a hydrogen storage alloy for an in-pipe inspection robot, which is capable of moving inside pipelines with inner diameter as small as 2 in. Rubber actuators with both stretching and shrinking capability are shown for realization of such a robot. The proposed robot uses twelve actuators, including six kinds of independently controlled actuators, so

  4. The Nonlinear Landau Damping Rate of a Driven Plasma Wave

    SciTech Connect

    Benisti, D; Strozzi, D J; Gremillet, L; Morice, O

    2009-08-04

    In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

  5. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  6. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Séguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York, 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York, 14623 (United States)

    2013-05-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. Séguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser-irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of ?210 ?m throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  7. A compact and continuously driven supersonic plasma and neutral sourcea)

    NASA Astrophysics Data System (ADS)

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y.; Hirose, A.

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  8. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGESBeta

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; et al

    2013-01-01

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S#2;eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of #2;210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and densitymore »profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  9. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGESBeta

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-01-01

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S#2;eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of #2;210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  10. A compact and continuously driven supersonic plasma and neutral source.

    PubMed

    Asai, T; Itagaki, H; Numasawa, H; Terashima, Y; Hirano, Y; Hirose, A

    2010-10-01

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved. PMID:21033984

  11. A compact and continuously driven supersonic plasma and neutral source

    SciTech Connect

    Asai, T.; Itagaki, H.; Numasawa, H.; Terashima, Y.; Hirano, Y. [Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308 (Japan); Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2010-10-15

    A compact and repetitively driven plasma source has been developed by utilizing a magnetized coaxial plasma gun (MCPG) for diagnostics requiring deep penetration of a large amount of neutral flux. The system consists of a MCPG 95mm in length with a DN16 ConFlat connection port and an insulated gate bipolar transistor (IGBT) inverter power unit. The power supply consists of an array of eight IGBT units and is able to switch the discharge on and off at up to 10 kV and 600 A with a maximum repetitive frequency of 10 kHz. Multiple short duration discharge pulses maximize acceleration efficiency of the plasmoid. In the case of a 10 kHz operating frequency, helium-plasmoids in the velocity range of 20 km/s can be achieved.

  12. Electron temperature gradient driven instability in the tokamak boundary plasma

    SciTech Connect

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-12-15

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t{sup {minus}1/2}e{sup {gamma}mt}.

  13. Spherically symmetric simulation of plasma liner driven magnetoinertial fusion

    SciTech Connect

    Samulyak, Roman [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794 (United States); Computational Science Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Parks, Paul [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Wu Lingling [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794 (United States)

    2010-09-15

    Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.

  14. Betatron radiation from a beam driven plasma source

    SciTech Connect

    Litos, M.; Corde, S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-12-21

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 Multiplication-Sign 10{sup 10} electrons, 20 Multiplication-Sign 20{mu}m{sup 2} spot, 20 - 100{mu}m length, 20GeV energy) when sent into a plasma source with a nominal density of {approx} 1 Multiplication-Sign 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 Multiplication-Sign 35cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  15. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  16. Photostrictive actuator

    Microsoft Academic Search

    K. Uchino

    1990-01-01

    It has been demonstrated that PLZT ceramics exhibit large photostriction under optical irradiation, and are applicable to photostrictive actuators. Photo-driven relays and micro-walking machines have been developed, which are designed to start moving under irradiation and have neither electric lead wires nor electric circuits

  17. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, ?(x), (b) the poloidal flux profile together with the normalized pressure parameter, ?N, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  18. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Sc?rer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin, S Mangles, L O Silva, R Fonseca and P A Norreys Electro-optic shocks from blowout laser wakefields D F Gordon, A Ting, M H Helle, D Kaganovich and B Hafizi Onset of self-steepening of intense laser pulses in plasmas J Vieira, F Fiúza, L O Silva, M Tzoufras and W B Mori Analysis of laser wakefield dynamics in capillary tubes N E Andreev, K Cassou, F Wojda, G Genoud, M Burza, O Lundh, A Persson, B Cros, V E Fortov and C-G Wahlstrom Characterization of the beam loading effects in a laser plasma accelerator C Rechatin, J Faure, X Davoine, O Lundh, J Lim, A Ben-Ismaïl, F Burgy, A Tafzi, A Lifschitz, E Lefebvre and V Malka Energy gain scaling with plasma length and density in the plasma wakefield accelerator P Muggli, I Blumenfeld, C E Clayton, F J Decker, M J Hogan, C Huang, R Ischebeck, R H Iverson, C Joshi, T Katsouleas, N Kirby, W Lu, K A Marsh, W B Mori, E Oz, R H Siemann, D R Walz and M Zhou Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021-1023Wcm-2 Lu-Le Yu, Han Xu, Wei-Min Wang, Zheng-Ming Sheng, Bai-Fei Shen, Wei Yu and Jie Zhang Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses D C Carroll, O Tresca, R Prasad, L Romagnani, P S Foster, P Gallegos, S Ter-Avetisyan, J S Green, M J V Streeter, N Dover, C A J Palmer, C M Brenner, F H Cameron, K E Quinn, J Schreiber, A P L Robinson, T Baeva, M N Quinn, X H Yuan, Z Najmudin, M Zepf, D Neely, M Borghesi and P McKenna Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse S Y Kalmykov, S A Yi, A Beck, A F Lifschitz, X Davoine, E Lefebvre, A Pukhov, V Khudik, G Shvets, S A Reed, P Dong, X Wang, D Du, S Bedacht, R Zgadzaj, W Henderson, A Bernstein, G Dyer, M Martinez, E Gaul, T Ditmire and M C Downer Effects of laser prepulses on laser-induced proton generation D Batani, R Jafer, M Veltcheva, R Dezulian, O Lundh, F Lindau, A Persson, K Osvay, C-G Wahlström, D C Carroll, P McKenna, A Flacco and V Malka Proton accelerati

  19. Omnidirectional Actuation of Magnetically Driven Microtool for Cutting of Oocyte in a Chip

    Microsoft Academic Search

    Naoki Inomata; Takehito Mizunuma; Yoko Yamanishi; Fumihito Arai

    2011-01-01

    In this paper, we developed and fabricated a magnet- ically driven microtool (MMT) and installed it on a microfluidic chip for use in the enucleation of oocytes. The fabricated tool is much smaller than a conventional mechanical micromanipulator used for cell manipulation. We succeeded in driving this MMT in two degrees of freedom—in the X -a ndY -directions. The MMT

  20. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    E-print Network

    Geddes, Cameron Guy Robinson

    Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams C. B. Schroeder, E of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator-charge force of a charged particle beam. Laser-driven plasma accelerators (LPAs) were first proposed in 1979

  1. Stochastic electron motion driven by space plasma waves

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2014-01-01

    Stochastic motion of relativistic electrons under conditions of the nonlinear resonance interaction of particles with space plasma waves is studied. Particular attention is given to the problem of the stability and variability of the Earth's radiation belts. It is found that the interaction between whistler-mode waves and radiation-belt electrons is likely to involve the same mechanism that is responsible for the dynamical balance between the accelerating process and relativistic electron precipitation events. We have also considered the efficiency of the mechanism of stochastic surfing acceleration of cosmic electrons at the supernova remnant shock front, and the accelerating process driven by a Langmuir wave packet in producing cosmic ray electrons. The dynamics of cosmic electrons is formulated in terms of a dissipative map involving the effect of synchrotron emission. We present analytical and numerical methods for studying Hamiltonian chaos and dissipative strange attractors, and for determining the heating extent and energy spectra.

  2. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  3. Pulsed radiobiology with laser-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  4. Large-scale solvent driven actuation of polyelectrolyte multilayers based on modulation of dynamic secondary interactions.

    PubMed

    Gu, Yuanqing; Huang, Xiayun; Wiener, Clinton G; Vogt, Bryan D; Zacharia, Nicole S

    2015-01-28

    Polyelectrolyte multilayers (PEMs), assembled from weak polyelectrolytes, have often been proposed for use as smart or responsive materials. However, such response to chemical stimuli has been limited to aqueous environments with variations in ionic strength or pH. In this work, a large in magnitude and reversible transition in both the swelling/shrinking and the viscoelastic behavior of branched polyethylenimine/poly(acrylic acid) multilayers was realized in response to exposure with various polar organic solvents (e.g., ethanol, dimethyl sulfoxide, and tetrahydrofuran). The swelling of the PEM decreases with an addition of organic content in the organic solvent/water mixture, and the film contracts without dissolution in pure organic solvent. This large response is due to both the change in dielectric constant of the medium surrounding the film as well as an increase in hydrophobic interactions within the film. The deswelling and shrinking behavior in organic solvent significantly enhances its elasticity, resulting in a stepwise transition from an initially liquid-like film swollen in pure water to a rigid solid in pure organic solvents. This unique and recoverable transition in the swelling/shrinking behaviors and the rheological performances of weak polyelectrolyte multilayer film in organic solvents is much larger than changes due to ionic strength or pH, and it enables large scale actuation of a freestanding PEM. The current study opens a critical pathway toward the development of smart artificial materials. PMID:25539141

  5. Transient chaos and crisis phenomena in butterfly valves driven by solenoid actuators

    NASA Astrophysics Data System (ADS)

    Naseradinmousavi, Peiman; Nataraj, C.

    2012-11-01

    Chilled water systems used in the industry and on board ships are critical for safe and reliable operation. It is hence important to understand the fundamental physics of these systems. This paper focuses in particular on a critical part of the automation system, namely, actuators and valves that are used in so-called "smart valve" systems. The system is strongly nonlinear, and necessitates a nonlinear dynamic analysis to be able to predict all critical phenomena that affect effective operation and efficient design. The derived mathematical model includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a broad parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses; this is characterized using Lyapunov exponents and power spectra. Knowledge and avoidance of these dangerous regimes is necessary for successful and safe operation.

  6. MTF Driven by Plasma Liner Dynamically Formed by the Merging of Plasma Jets: An Overview

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    One approach for standoff delivery of the momentum flux for compressing the target in MTF consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid (Figure 1). A 3-year experiment (PLX-1) to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets is described. An overview showing how this 3-year project (PLX-1) fits into the program plan at the national and international level for realizing MTF for energy and propulsion is discussed. Assuming that there will be a parallel program in demonstrating and establishing the underlying physics principles of MTF using whatever liner is appropriate (e.g. a solid liner) with a goal of demonstrating breakeven by 2010, the current research effort at NASA MSFC attempts to complement such a program by addressing the issues of practical embodiment of MTF for propulsion. Successful conclusion of PLX-1 will be followed by a Physics Feasibility Experiment (PLX-2) for the Plasma Liner Driven MTF.

  7. Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui

    2007-01-01

    This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.

  8. Observation of Forward Shocks and Stagnated Ejecta Driven by High-Energy-Density Plasma Flow

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Glendinning, S. G.; Estabrook, Kent; Remington, B. A.; McCray, Richard; Wallace, R. J.; Suter, L. J.; Smith, T. B.; Carroll, J. J., III; London, R. A.; Liang, E.

    1998-09-01

    Laboratory studies of hydrodynamic effects driven by a flowing, expanding plasma of high-energy density and high Mach number are reported. The flowing plasma is the ejecta from matter accelerated and heated by an ablative shock. X-ray backlighting diagnoses the structure produced when this plasma impacts low-density foam. We observe the forward shock driven into the foam and the stagnated ejecta which drives a reverse shock into the flow.

  9. Inductive inhibition of cold-plasma stabilization of curvature-driven modes in finite-length plasmas

    Microsoft Academic Search

    G. E. Guest; R. L. Miller; M. Z. Caponi

    1986-01-01

    A modified quasistatic theory that incorporates inductive effects in earlier electrostatic models connects the conventional electrostatic and magnetohydrodynamic (MHD) pictures of line tying by cold plasma. The modified theory predicts that curvature-driven flute modes in mirror-confined plasmas can be stabilized by moderate concentrations of cold plasma if the beta of the hot, mirror-confined plasma is less than a critical value.

  10. Development and characterization of plasma actuators for high-speed jet control

    Microsoft Academic Search

    M. Samimy; I. Adamovich; B. Webb; J. Kastner; J. Hileman; S. Keshav; P. Palm

    2004-01-01

    Active control of high Reynolds number and high-speed jets has been hampered due to the lack of suitable actuators. Some of the attributes that would make an actuator suitable for such flows are: high amplitude and bandwidth; small size for distribution around the jet; phase-locking ability for jet azimuthal mode forcing; and sufficient ruggedness for hot jets. We have been

  11. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it has to be tested at 12.4 atm for takeoff, and 6 atm for cruise conditions. If it is to be placed at the low-pressure turbine, it has to be tested at 0.5 and 0.2 atm, respectively. These results have implications for the feasibility and design of DBD plasma actuators for jet engine flow control applications. In addition, the distributions of unit Reynolds number, Mach number, and velocity along the engine are provided. The engine models are non-proprietary and this information can be used for evaluation of other types of actuators and for other purposes.

  12. Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Molina, M. A.; Rivarola, C. R.; Miras, M. C.; Lescano, D.; Barbero, C. A.

    2011-06-01

    Macroporous hydrogels irreversibly absorb solid nanoparticles from aqueous dispersions. A nanocomposite is made using a macroporous thermosensitive hydrogel (poly(N-isopropylacrylamide-co-(2-acrylamido-2-methyl propane sulfonic acid)) (poly(NIPAm-co-AMPS)) and conductive polymer (polyaniline, PANI) nanoparticles (PANI NPs). Macroporous gels of poly(NIPAm-co-AMPS) were made by a cryogelation technique. NPs of PANI were produced by precipitation polymerization. It is found that PANI NPs are easily absorbed into the macroporous hydrogels while conventional non-porous hydrogels do not incorporate NPs. It is shown that PANI NPs, dispersed in water, absorb NIR laser light or microwave radiation, increasing their temperature. Upon irradiation of the nanocomposite with microwaves or NIR laser light, the PANI NPs heat up and induce the phase transition of the thermosensitive hydrogel matrix and the internal solution is released. Other nano-objects, such as gold nanorods and PANI nanofibers, are also easily incorporated into the macroporous gel. The resulting nanocomposites also suffer a phase transition upon irradiation with electromagnetic waves. The results suggest that, using a thermosensitive matrix and conducting nanoparticles, mechanical/chemical actuators driven at a distance by electromagnetic radiation can be built. The sensitivity of the nanocomposite to electromagnetic radiation can be modulated by the pH, depending on the nature of the incorporated nanoparticles. Additionally, it is possible to make systems which absorb either NIR or microwaves or both.

  13. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  14. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments

    E-print Network

    Fox, W.

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ? ? 20 laser-produced plasma experiments. ...

  15. Anomalous resistivity of current-driven isothermal plasmas due to phase space structuring

    Microsoft Academic Search

    Jörg Büchner; Nina Elkina

    2006-01-01

    The anomalous electric resistivity of collisionless plasmas is an important issue in the physics of hot plasmas, e.g., in the context of auroral particle acceleration and of reconnection in the solar corona. The linear stability theory of isothermal current driven space plasmas predicts an ion-acoustic instability if the relative drift velocity of the current carrying particles exceeds a certain threshold,

  16. Current-driven plasma instabilities in solid-state layered systems with a grating

    Microsoft Academic Search

    K. Kempa; P. Bakshi; H. Xie; W. L. Schaich

    1993-01-01

    We have investigated the effects of a grating on current-driven plasma instabilities in layered solid-state systems. By quenching the excess momentum of the plasma mode the grating makes it possible to convert the plasma wave energy into the electromagnetic radiation. We show that a grating can also play an active role by modifying an existing instability, or even generating an

  17. Current-less solar wind driven dust acoustic instability in cometary plasma

    NASA Astrophysics Data System (ADS)

    Vranjes, J.

    2011-08-01

    A quantitative analysis is presented of the dust acoustic wave instability driven by the solar and stellar winds. This is a current-less kinetic instability which develops in permeating plasmas, i.e.., when one quasi-neutral electron-ion wind plasma in its propagation penetrates through another quasi-neutral plasma which contains dust, electrons, and ions.

  18. OpticalSpectroscopy of Plasma in High Power MicrowavePulse ShorteningExperiments Driven

    E-print Network

    this interpretation. Experiments involving RF plasma cleaning of the coaxial cavity are planned. *Researchsupported3P09 3P10 OpticalSpectroscopy of Plasma in High Power MicrowavePulse ShorteningExperiments Driven been performed to characterize the undesired plasma in a multi-megawatt coaxial gyrotron

  19. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  20. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.

  1. Amplitude saturation effect of a laser-driven plasma beat-wave on electron accelerations

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Singh, Mamta; Suk, H.

    2015-06-01

    A large-amplitude plasma beat-wave driven by two lasers (differing in frequencies equal to the plasma frequency) can accelerate the plasma electrons to a higher energy level. As the plasma beat-wave grows, it becomes susceptible to oscillating two-stream instability. The decayed sideband plasma wave couples with the pump wave to divert its energy by the instability, and saturates it. The saturated amplitude of the plasma beat-wave traps the electrons more effectively to accelerate them to higher energy. The saturation of plasma beat-wave amplitude is shown to have a significant effect in an electron energy gain.

  2. Observation of a current-driven plasma instability at the outer zone-plasma sheet boundary.

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Fredricks, R. W.; Russell, C. T.; Kivelson, M.; Neugebauer, M.; Chappell, C. R.

    1973-01-01

    Several spacecraft experimenters have reported on the detection of large temporal variations in trapped electron fluxes near L = 5 to 6 at midlatitudes in the night hemisphere. In this report we describe in detail the particle, wave, and field changes measured when Ogo 5 traversed an outer-zone trapping boundary of this type on September 7, 1968. It is shown that thermal proton concentrations and E greater than 50-keV electron fluxes abruptly decreased when electrons with (1-4) keV mean energy were detected. It is also shown that currents flowed along the average geomagnetic field direction near the plasma boundaries and that these were accompanied by intense VLF electrostatic waves. It is proposed that turbulent resistivity produced by current-driven plasma instabilities allows parallel dc electric fields to develop along this boundary.

  3. Nonlinear frequency coupling in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    Waskoenig, J.; Gans, T. [Centre for Plasma Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2010-05-03

    Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.

  4. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-08-15

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  5. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    SciTech Connect

    Ogino, Yousuke; Sawada, Keisuke [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan); Center for Research Strategy and Support, Tohoku University, Sendai 980-8579 (Japan)

    2008-04-28

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies.

  6. Effects of finite plasma pressure on centrifugally driven convection in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hill, T. W.

    2011-12-01

    We have previously shown simulation results for centrifugally driven plasma convection in Saturn's inner magnetosphere, using the Rice Convection Model, including a continuously active distributed plasma source, and effects of the Coriolis force and the pickup current. These simulations result in a quasi-steady state, in which fast, narrow inflow channels alternate with slower, wider outflow channels, consistent with Cassini Plasma Spectrometer observations. Comparison of different plasma source models indicates that the inner plasma source distribution is a key element in determining the plasma convection pattern. Previous simulations, however, did not include the effects of finite plasma pressure and the associated gradient-curvature drift. We will investigate here the effects of finite plasma pressure and gradient-curvature drift by giving the cold plasma a finite temperature. We will also add a source of hot tenuous plasma at the outer simulation boundary in an attempt to simulate the injection/dispersion events observed by Cassini.

  7. Nonlinear Envelope Equation and Nonlinear Landau Damping Rate for a Driven Electron Plasma Wave

    Microsoft Academic Search

    Didier Bénisti; Olivier Morice; Laurent Gremillet; David J. Strozzi

    2011-01-01

    In this article, we provide a theoretical description and calculate the nonlinear frequency shift, group velocity, and collionless damping rate, ?, of a driven electron plasma wave (EPW). All these quantities, whose physical content will be discussed, are identified as terms of an envelope equation allowing one to predict how efficiently an EPW may be externally driven. This envelope equation

  8. Enhanced Design of Turbo-jet LPT by Separation Control Using Phased Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Corke, Thomas C.; Thomas, Flint O.

    2003-01-01

    This work deals with the documentation and control of flow separation that occurs over turbine blades in the low-pressure turbine stage at low Reynolds numbers that exist at high altitude cruise. We utilize a specially constructed linear cascade that is designed to study the flow field over a generic LPT cascade consisting of Pratt & Whitney 'Pak B' shaped blades. This facility was constructed under a previous one-year NASA Glenn RC initiative. The center blade in the cascade is instrumented to measure the surface pressure coefficient distribution. Optical access allows two-component LDV measurement for boundary layer profiles. Experimental conditions have been chosen to give a range of chord Reynolds numbers from 10 to 100K, and a range of free-stream turbulence levels from u'/U(sub infinity)= 0.08 to 3 percent. The surface pressure measurements were used to define a region of separation and reattachment that depend on the free-stream conditions. The location of separation was found to be relatively insensitive to the experimental conditions. However, reattachment location was very sensitive to the turbulence level and Reynolds number. Excellent agreement was found between the measured pressure distributions and predictions from Euler and RANS simulations. Two-component LDV measurements are presently underway to document the mean and fluctuating velocity components in the boundary layer over the center blade for the range of experimental conditions. The fabrication of the plasma actuator is underway. These are designed to produce either streamwise vortices, or a downstream-directed wall jet. A precursor experiment for the former approach was performed with an array of vortex generators placed just upstream of the separation line. These led to reattachment except for the lowest Reynolds number. Progress has also been made on the proposed concept for a laterally moving wake. This involved constructing a smaller wind tunnel and molding an array of symmetric airfoils to form an array. Following its development, it will be scaled up and used to introduce lateral moving wakes upstream up the Pak-B cascade.

  9. Query-driven Analysis of Plasma-based Particle Acceleration Data Oliver Rubel

    E-print Network

    Query-driven Analysis of Plasma-based Particle Acceleration Data Oliver R¨ubel LBNL Cameron G. R=high, blue=low). ABSTRACT Plasma-based particle accelerators can produce and sustain thou- sands of times to the problem of the growing size and cost of conventional particle accelerators. There is a pressing need

  10. Numerical study of plasma formation from aluminum rods driven by megaampere currents

    Microsoft Academic Search

    M. A. Angelova; V. Makhin; B. S. Bauer; I. R. Lindemuth; R. E. Siemon

    2009-01-01

    Summary form only given. Recent aluminum rod experiments driven by 1-MA Zebra generator at University of Nevada, Reno (UNR) have provided a benchmark for magnetohydrodynamic (MHD) modeling. The innovative 'hourglass' and 'barbell' load geometries used in the experiments made it possible to distinguish between plasma formation due to Ohmic heating, which can be studied numerically utilizing MHD codes, and plasma

  11. Growth rate reduction of the curvature-driven flute instability by plasma blanket line tying

    Microsoft Academic Search

    David Segal

    1983-01-01

    The effect of an annular, line-tied blanket, on the curvature-driven flute in a magnetic mirror is considered. The blanket is assumed to be line tied to a thermoionically emitting annular end plate. Reduction of the flute growth rate is computed as function of Larmor radius, blanket radius, and axial plasma conductance through either an external plasma or mirror sheath. It

  12. Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P. Leemans

    E-print Network

    Geddes, Cameron Guy Robinson

    plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulsesPhysics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV

  13. Dust-acoustic filamentation of a current-driven dusty plasma

    Microsoft Academic Search

    S. M. Khorashadizadeh; A. R. Niknam; T. Haghtalab

    2011-01-01

    The thermal motion effect of charged particles in the filamentation of a current-driven dusty plasma in the dust-acoustic frequency region is investigated by using the Lorentz transformed conductivity of the dusty plasma components and the total dielectric permittivity tensor of the dusty plasma in the laboratory frame. Obtaining the dispersion relation for dust-acoustic waves and considering the filamentation instability, the

  14. A traveling wave-driven, inductively coupled large area plasma source for flat panel processing

    Microsoft Academic Search

    Yaoxi Wu

    2000-01-01

    For large area micro-processing, a large area plasma source with low pressure, high density and high uniformity is required. Radio frequency (rf), inductively coupled plasma systems driven at 13.56 MHz are known for their capabilities in generating a high plasma density under low pressure, and for their independent control of ion flux and ion-bombarding energy, which are essential for the

  15. Stratification-driven instabilities with bi-kappa distribution functions in the Io plasma torus

    Microsoft Academic Search

    N. André; K. M. Ferrière

    2008-01-01

    We extend our previous studies on plasma transport in the fast rotating magnetosphere of Jupiter. The present study uses a new kinetic Io plasma torus model in order to test the local stability criteria against stratification-driven low-frequency modes in this environment. Compared to the model used in our previous application, the new model introduces bi-kappa velocity distributions and plasma pressure

  16. Active flow separation control using synthetic jet actuators 

    E-print Network

    Rao, Preetham P

    2000-01-01

    The use of synthetic jet actuators for controlling the boundary layer flow and flow separation over a wing is investigated. A theory for the optimum design of actuators using motors is developed. A motor driven synthetic jet actuator is built...

  17. Active flow separation control using synthetic jet actuators

    E-print Network

    Rao, Preetham P

    2000-01-01

    The use of synthetic jet actuators for controlling the boundary layer flow and flow separation over a wing is investigated. A theory for the optimum design of actuators using motors is developed. A motor driven synthetic jet actuator is built...

  18. Laser-driven instabilities in long scalelength plasmas, 2

    Microsoft Academic Search

    Kruer

    1988-01-01

    There is considerable interest in the interaction of intense laser light with plasmas characterized by a long density scale length. Such plasmas are created in laser fusion applications when targets are irradiated by long shaped pulses of intense laser light. The preferred absorption process is inverse bremsstrahlung, which is simply collisional absorption. However, a hot plasma also supports waves, which

  19. Time-resolved measurements of plasma-induced momentum in air and nitrogen under dielectric barrier discharge actuation

    SciTech Connect

    Leonov, Sergey [Joint Institute for High Temperature, RAS, Moscow 125412 (Russian Federation); Opaits, Dmitry; Miles, Richard [Princeton University, Princeton, New Jersey 08544 (United States); Soloviev, Victor [Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow Region 141700 (Russian Federation)

    2010-11-15

    There has been much recent interest in boundary layer (BL) actuation by offset surface dielectric barrier discharges (SDBD). These discharges either act directly on the gas momentum through the mechanism of charge separation or they increase the flow stability through the creation of disturbances to the BL at a particular frequency. The objective of the work reported here is to clarify the physical mechanism of plasma-flow interaction. Two problems are considered in detail: the exact spatial/temporal distribution of the plasma-related force, and the specific role of negative ions in the net force budget. The experiments were made with an offset electrode configuration of SDBD at voltage amplitude U{<=}12 kV and frequency f=0.02-2 kHz. The main data were obtained by time-resolved Pitot tube pressure measurements in air and nitrogen at atmospheric pressure. Three main features of SDBD behavior were considered. First, the strong inhomogeneity in the spatial distribution of the plasma-induced flow were detected. Second, the principal role of negative ions in plasma-induced flow generation was established. Third, the two types of gas disturbances were observed: the thermal effect and momentum transfer effect (ion wind). To explain the aforementioned features of SDBD behavior in air and nitrogen the results of numerical simulation have been used.

  20. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke [Department of Aeronautics and Space Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasoh, Akihiro [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  1. Observation of Magnetically Driven Flows in Arched Plasma Structures

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Stenson, E.

    2012-12-01

    Highly reproducible MHD plasmas having morphology and dynamics similar to solar corona loops are created in a laboratory experiment at Caltech. Detailed quantitative measurements using color-coded plasmas (see picture below) reveal high-speed plasma flows [1] from both footpoints of a solar-like arched magnetic flux tube. These flows result in bulk plasma transport into the flux tube and persistent axial collimation even as the flux tube lengthens and kinks. The flows are in agreement with the predictions of hoop force and collimation models involving fundamental MHD forces [2]. These forces are expected to drive plasma acceleration in other open flux configurations with arched geometries, such as those found on the solar surface. Supported by USDOE, NSF, and AFOSR. [1] E. V. Stenson and P. M. Bellan, Physical Review Letters (in press). [2] P. M. Bellan, Physics of Plasmas 10 Pt 2, 1999 (2003).

  2. Study of Plasma Liner Driven Magnetized Target Fusion via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V. [SUNY Stony Brook; Parks, Paul [General Atomics

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  3. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka, Hamamatsu, 432-8561 Shizuoka (Japan); Tanaka, Kensaku; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo (Japan); Nomura, Satoshi; Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583 Chiba (Japan)

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  4. Characteristics of a Direct Current-driven plasma jet operated in open air

    SciTech Connect

    Li, Xuechen; Bao, Wenting [College of Physics Science and Technology, Hebei University, Baoding 071002 (China) [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Key Laboratory of Photo-Electronics Information Materials of Hebei Province, Baoding 071002 (China); Di, Cong; Jia, Pengying [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)] [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2013-09-30

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  5. Current driven instabilities of an electromagnetically accelerated plasma

    Microsoft Academic Search

    A. J. Kelly; R. G. Jahn; E. Y. Choueiri

    1988-01-01

    Quantitative measurements of the plasma instability that strongly affects the efficiency and lifetime of electromagnetic plasma accelerators were obtained. Experimental results are presented for the dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries of accelerators. The measured critical wave parameters are found to agree well with theoretical predictions. A kinetic theoretical model was used to study current

  6. Modeling of high-explosive driven plasma compression opening switches

    Microsoft Academic Search

    A. E. Greene; I. R. Lindemuth; J. H. Goforth

    1986-01-01

    The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this

  7. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Haghtalab, T.; Khorashadizadeh, S. M.

    2011-11-01

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  8. A Laboratory Study of Asymmetric Magnetic Reconnection in Strongly-Driven Plasmas

    DOE PAGESBeta

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.J.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  9. Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments

    Microsoft Academic Search

    Robert L. Merlinoa

    Dust acoustic waves DAWs are spontaneously excited in dusty plasmas produced in dc and rf discharge plasmas over a wide range of plasma and dust conditions. A common feature of these plasmas is the presence of an ion drift relative to the dust, which is driven by an electric field, Eo in the discharge. Using a three fluid model of

  10. Current-driven solitons and shocks in plasmas having non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Shan, S. Ali; Saleem, H.

    2014-01-01

    The current-driven electrostatic solitons and shocks are investigated in flowing plasmas having stationary dust and non-Maxwellian electrons. The propagation of solar wind parallel to the external magnetic field in the boundary regions of dusty magnetospheres of planets can give rise to drift type unstable electrostatic waves and nonlinear structures even if density is homogeneous. These waves can be produced in laboratory plasma experiments as well. Here the theoretical model is applied to Saturn's magnetosphere.

  11. Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning.

    PubMed

    Wang, Li; Zhao, Yue; Liu, Chunyang; Gong, Weimin; Guo, Hongchen

    2013-05-01

    Strongly adsorbed N atoms inhibit the ammonia decomposition reaction rate. Plasma-driven catalysis can solve this problem and increase the ammonia conversion from 7.8% to 99.9%. (15)NH(3) isotope tracing and optical emission spectroscopy show that gas-phase active species (NH(3)*, NH?) in the plasma zone facilitate the desorption step by an Eley-Rideal (E-R) interaction. PMID:23546416

  12. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGESBeta

    Rosenberg, M.? J.; Li, C.? K.; Fox, W.; Zylstra, A.? B.; Stoeckl, C.; Séguin, F.? H.; Frenje, J.? A.; Petrasso, R.? D.

    2015-05-01

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ? ? 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet ~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early inmore »time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less

  13. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments.

    PubMed

    Rosenberg, M J; Li, C K; Fox, W; Zylstra, A B; Stoeckl, C; Séguin, F H; Frenje, J A; Petrasso, R D

    2015-05-22

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ??20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}?20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime. PMID:26047236

  14. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Zylstra, A. B.; Stoeckl, C.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.

    2015-05-01

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ? ?20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet˜20 VA ) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.

  15. Slowing of magnetic reconnection concurrent with weakening plasma inflows and increasing collisionality in strongly-driven laser-plasma experiments

    DOE PAGESBeta

    Rosenberg, M.? J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.; Li, C.? K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.; Fox, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Zylstra, A.? B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.; Stoeckl, C. [University of Rochester, Rochester, NY (United States). Laboratory for Laser Energetics.; Séguin, F.? H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.; Frenje, J.? A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.; Petrasso, R.? D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center.

    2015-05-01

    An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ? ? 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (Vjet ~ 20VA) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.

  16. Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments

    E-print Network

    Merlino, Robert L.

    analysis.3 A fluid treatment of the current-driven DA instability in a collisional dusty plasma was carriedDust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty 2009 Dust acoustic waves DAWs are spontaneously excited in dusty plasmas produced in dc and rf

  17. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/?{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  18. Photostrictive actuators -new perspective-

    Microsoft Academic Search

    K. Uchino; P. Poosanaas; K. Tonooka

    2001-01-01

    Photostrictive materials, exhibiting light-induced strains, are of interest for future generation wireless remote control photo-actuators, micro-actuators, and micro-sensors applications. (Pb, La)(Zr, Ti) O3 (PLZT) ceramics doped with WO3 exhibit large photostriction under uniform illumination of near-ultraviolet light. Using a bimorph configuration, a photo-driven relay and a micro walking device have been demonstrated. However, for the fabrication of these devices, higher

  19. SHEAR-DRIVEN INSTABILITIES IN HALL-MAGNETOHYDRODYNAMIC PLASMAS

    SciTech Connect

    Bejarano, Cecilia; Gomez, Daniel O. [Instituto de Astronomia y Fisica del Espacio (Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires), Ciudad Universitaria, 1428 C.A.B.A., Buenos Aires (Argentina); Brandenburg, Axel, E-mail: cbejarano@iafe.uba.ar, E-mail: gomez@iafe.uba.ar, E-mail: brandenb@nordita.org [NORDITA, AlbaNova University Center, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2011-08-20

    The large-scale dynamics of plasmas is well described within the framework of magnetohydrodynamics (MHD). However, whenever the ion density of the plasma becomes sufficiently low, the Hall effect is likely to become important. The role of the Hall effect has been studied in several astrophysical plasma processes, such as magnetic reconnection, magnetic dynamo, MHD turbulence, or MHD instabilities. In particular, the development of small-scale instabilities is essential to understand the transport properties in a number of astrophysical plasmas. The magneto-rotational instability (MRI), which takes place in differentially rotating accretion disks embedded in relatively weak magnetic fields, is just one example. The influence of the large-scale velocity flows on small-scale instabilities is often approximated by a linear shear flow. In this paper, we quantitatively study the role of the Hall effect on plasmas embedded in large-scale shear flows. More precisely, we show that an instability develops when the Hall effect is present, which we therefore term as the Hall magneto-shear instability. As a particular case, we recover the so-called MRI and quantitatively assess the role of the Hall effect on its development and evolution.

  20. Laser-driven plasma waves in capillary tubes

    SciTech Connect

    Wojda, F.; Cassou, K.; Cros, B. [Laboratoire Physique Gaz et Plasmas, CNRS-Universite Paris-Sud 11, F-91405 Orsay Cedex (France); Genoud, G.; Burza, M.; Glinec, Y.; Lundh, O.; Persson, A.; Wahlstroem, C.-G. [Department of Physics, Lund University, P.O. Box 118, S-22100 Lund (Sweden); Vieux, G.; Brunetti, E.; Shanks, R. P.; Jaroszynski, D. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Andreev, N. E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2009-12-15

    The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift--measured as a function of filling pressure, capillary tube length, and incident laser energy - is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.

  1. Rayleigh-Taylor instability driven nonlinear vortices in dusty plasmas

    SciTech Connect

    Veeresha, B.M.; Das, Amita; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2005-04-15

    The low frequency stability of a dusty plasma with a nonuniform mass and charge distribution of the dust component is studied. It is shown that the inverse stratification of the dust mass density in a gravitational field may lead to a Rayleigh-Taylor-like instability. In the nonlinear regime this instability can produce an incompressible flow pattern of spontaneously rotating dust plasma fluid. This result can have potential applications in the interpretation of vortical patterns observed in laboratory experiments as well as in a variety of astrophysical situations where the generation and sustenance of angular momentum are important issues.

  2. Ion temperature gradient driven mode in presence of transverse velocity shear in magnetized plasmas

    SciTech Connect

    Chakrabarti, Nikhil; Rasmussen, Jens Juul; Michelsen, Poul [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Association EURATOM-Riso National Laboratory, Optics and Plasma Research, OPL-128 Riso, P.O. Box 49, DK 4000 Roskilde (Denmark)

    2005-07-15

    The effect of sheared poloidal flow on the toroidal branch of the ion temperature gradient driven mode of magnetized nonuniform plasma is studied. A novel 'nonmodal' calculation is used to analyze the problem. It is shown that the transverse shear flow considerably reduced the growth of the instability. A small but finite amount of viscosity and/or diffusion enhanced the stabilization process.

  3. Preliminary experimental design and theoretical investigation of a plasma implosion driven mass accelerator

    Microsoft Academic Search

    D. A. Tidman; S. A. Goldstein

    1981-01-01

    The basic idea that motivated this research effort is the prospect that a series of time z-pinch plasma implosions could be used to sequentially propel a projectile to high velocities. Such a process would provide a new type of electrically driven gun with the potential for achieving projectile velocities well above those attainable by chemical guns. The concept in its

  4. Transition from plasma-to Kerr-driven laser filamentation P. Bjot1,2

    E-print Network

    Boyer, Edmond

    , the HOKE can ensure self-defocusing in filaments and balance Kerr self-focusing [10], in place] or the HOKE [10], which balance the Kerr self-focusing in the same intensity range. Furthermore the electronTransition from plasma- to Kerr-driven laser filamentation P. Béjot1,2 , E. Hertz1 , J. Kasparian2

  5. Nonlinear saturation of laser driven plasma beat wave by oscillating two-stream instability

    E-print Network

    Singh, Kunwar Pal

    Nonlinear saturation of laser driven plasma beat wave by oscillating two-stream instability D. N susceptible to oscillating two-stream instability producing shorter wavelength Langmuir wave sidebands by oscillating two-stream instability and saturate it. © 2004 American Institute of Physics. [DOI: 10

  6. Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State

    Microsoft Academic Search

    J. Edwards; K. T. Lorenz; B. A. Remington; S. Pollaine; J. Colvin; D. Braun; B. F. Lasinski; D. Reisman; J. M. McNaney; J. A. Greenough; R. Wallace; H. Louis; D. Kalantar

    2004-01-01

    A new method for shockless compression and acceleration of solid materials is presented. A plasma reservoir pressurized by a laser-driven shock unloads across a vacuum gap and piles up against an Al sample thus providing the drive. The rear surface velocity of the Al was measured with a line VISAR, and used to infer load histories. These peaked between ˜0.14

  7. Sawtooth oscillations in a damped/driven cryogenic electron plasma: Experiment and theory

    E-print Network

    California at San Diego, University of

    Sawtooth oscillations in a damped/driven cryogenic electron plasma: Experiment and theory B. P Measurements have been made of nonlinear sawtooth oscillations of the displacement of a magnetized electron column in a cryogenic, cylindrical trap. First reported 7 years ago, these oscillations occur when

  8. Visualization of Shock Wave Driven by Millimeter Wave Plasma in a Parabolic Thruster

    SciTech Connect

    Yamaguchi, Toshikazu; Shimada, Yutaka; Shiraishi, Yuya; Shibata, Teppei; Komurasaki, Kimiya [Department of Advanced Energy, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8561 (Japan); Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi [Plasma Heating Technology Group, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki, 311-0193 (Japan); Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-05-06

    By focusing a high-power millimeter wave beam generated by a 170 GHz gyrotron, a breakdown occurred and a shock wave was driven by plasma heated by following microwave energy. The shock wave and the plasma around a focal point of a parabolic thruster were visualized by a shadowgraph method, and a transition of structures between the shock wave and the plasma was observed. There was a threshold local power density to make the transition, and the propagation velocity at the transition was around 800 m/s.

  9. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect

    Idomura, Yasuhiro [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan)] [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan); Nakata, Motoki [Japan Atomic Energy Agency, Obuchi-Omotedate 2-166, Rokkasho, Kamikita, Aomori 039-3212 (Japan)] [Japan Atomic Energy Agency, Obuchi-Omotedate 2-166, Rokkasho, Kamikita, Aomori 039-3212 (Japan)

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient ?f simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  10. Dust-acoustic filamentation of a current-driven dusty plasma

    NASA Astrophysics Data System (ADS)

    Khorashadizadeh, S. M.; Niknam, A. R.; Haghtalab, T.

    2011-06-01

    The thermal motion effect of charged particles in the filamentation of a current-driven dusty plasma in the dust-acoustic frequency region is investigated by using the Lorentz transformed conductivity of the dusty plasma components and the total dielectric permittivity tensor of the dusty plasma in the laboratory frame. Obtaining the dispersion relation for dust-acoustic waves and considering the filamentation instability, the establishment time of the filamentation structure and the instability development threshold are derived. Moreover, it is shown that the current layer divides into separate current filaments.

  11. Dust-acoustic filamentation of a current-driven dusty plasma

    SciTech Connect

    Khorashadizadeh, S. M.; Haghtalab, T. [Physics Department, Birjand University, Birjand, 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran, 19839-63113 (Iran, Islamic Republic of)

    2011-06-15

    The thermal motion effect of charged particles in the filamentation of a current-driven dusty plasma in the dust-acoustic frequency region is investigated by using the Lorentz transformed conductivity of the dusty plasma components and the total dielectric permittivity tensor of the dusty plasma in the laboratory frame. Obtaining the dispersion relation for dust-acoustic waves and considering the filamentation instability, the establishment time of the filamentation structure and the instability development threshold are derived. Moreover, it is shown that the current layer divides into separate current filaments.

  12. Actuators for Active Flow Control

    NASA Astrophysics Data System (ADS)

    Cattafesta, Louis N., III; Sheplak, Mark

    2011-01-01

    Actuators are transducers that convert an electrical signal to a desired physical quantity. Active flow control actuators modify a flow by providing an electronically controllable disturbance. The field of active flow control has witnessed explosive growth in the variety of actuators, which is a testament to both the importance and challenges associated with actuator design. This review provides a framework for the discussion of actuator specifications, characteristics, selection, design, and classification for aeronautical applications. Actuator fundamentals are discussed, and various popular actuator types used in low-to-moderate speed flows are then described, including fluidic, moving object/surface, and plasma actuators. We attempt to highlight the strengths and inevitable drawbacks of each and highlight potential future research directions.

  13. Evaluation of the efficiency of micro plasma actuator for active flow control , , 113-8656 7-3-1, E-mail: okouti@thtlab.t.u-tokyo.ac.jp

    E-print Network

    Kasagi, Nobuhide

    ) Fig. 1 . Göksel (6) , 10 µm 100 µm 1 mm 5 mm , 3 4 mm , , Fig. 1 Structure and geometrical parameters mm Fig. 2 MEMS fabrication process of plasma actuator. Fig. 3 Present micro plasma actuator (W = 1 mm). C 30 m C 270V/m MEMS Fig. 2 C Fig. 3 Fig. 4 5 × 50 cm2 LDV 488 nm 514.5 nm 75 × 76 × 640 (m3 ) 1 m

  14. Alfvénic instabilities driven by runaways in fusion plasmas

    SciTech Connect

    Fülöp, T. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Newton, S. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2014-08-15

    Runaway particles can be produced in plasmas with large electric fields. Here, we address the possibility that such runaway ions and electrons excite Alfvénic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions.

  15. A Laboratory Study of Asymmetric Magnetic Reconnection in Strongly-Driven Plasmas

    DOE PAGESBeta

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.J.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely-directed field lines collide. In most natural circumstances the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. Additionally, the regime of strongly-driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed experiments to probe reconnection in asymmetric, strongly-driven, laser-generated plasmas. Here we show that, in this strongly-drivenmore »system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. Additionally, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.« less

  16. Alfvén wave coupled with flow-driven fluid instability in interpenetrating plasmas

    NASA Astrophysics Data System (ADS)

    Vranjes, J.

    2015-05-01

    The Alfvén wave is analyzed in case of one quasineutral plasma propagating with some constant speed v0 through another static quasineutral plasma. A dispersion equation is derived describing the Alfvén wave coupled with the flow driven mode ? = k v 0 and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvén waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvén speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvén wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvén wave. This means that well-known stochastic heating by the Alfvén wave may work, and this should additionally support the potential role of the Alfvén wave in the coronal heating.

  17. Study of electromagnetic instabilities driven by ion temperature gradient and parallel sheared flows in high-? plasmas

    NASA Astrophysics Data System (ADS)

    Gao, Zhe; Dong, J. Q.; Liu, G. J.; Ying, C. T.

    2001-09-01

    The local electromagnetic modes driven by ion temperature gradient (ITG) and parallel sheared flows, including parallel velocity shear (PVS) of ions and plasma current, are studied for any ? (plasma pressure/magnetic pressure) plasma. It is shown that a finite ? not only weakens the driving mechanism directly but also reverses the effect of the current on the modes from weakly destabilizing to stabilizing. However, the local kinetic ITG-PVS modes are unstable in a high-? plasma with a parallel sheared ion flow (positive or negative). The plasma current and current gradient make nearly opposite contributions to the modes. As ?i (the parameter for ion temperature gradient) increases, the effects of the current and current gradient are weakened and then reversed.

  18. A New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma 2

    E-print Network

    Sadykova, S P; Samkharadze, T G

    2015-01-01

    We propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma.

  19. Phenotype-Driven Plasma Biobanking Strategies and Methods

    PubMed Central

    Bowton, Erica A.; Collier, Sarah P.; Wang, Xiaoming; Sutcliffe, Cara B.; Van Driest, Sara L.; Couch, Lindsay J.; Herrera, Miguel; Jerome, Rebecca N.; Slebos, Robbert J. C.; Alborn, William E.; Liebler, Daniel C.; McNaughton, Candace D.; Mernaugh, Ray L.; Wells, Quinn S.; Brown, Nancy J.; Roden, Dan M.; Pulley, Jill M.

    2015-01-01

    Biobank development and integration with clinical data from electronic medical record (EMR) databases have enabled recent strides in genomic research and personalized medicine. BioVU, Vanderbilt’s DNA biorepository linked to de-identified clinical EMRs, has proven fruitful in its capacity to extensively appeal to numerous areas of biomedical and clinical research, supporting the discovery of genotype-phenotype interactions. Expanding on experiences in BioVU creation and development, we have recently embarked on a parallel effort to collect plasma in addition to DNA from blood specimens leftover after routine clinical testing at Vanderbilt. This initiative offers expanded utility of BioVU by combining proteomic and metabolomic approaches with genomics and/or clinical outcomes, widening the breadth for potential research and subsequent future impact on clinical care. Here, we describe the considerations and components involved in implementing a plasma biobank program from a feasibility assessment through pilot sample collection. PMID:26110578

  20. Current driven ion electrostatic waves in a magnetized collisional plasma

    Microsoft Academic Search

    J E Willett; C D Crowder

    1981-01-01

    The stability of ion electrostatic waves propagating at arbitrary angles with respect to a uniform, static magnetic field is studied in a collisional, fully ionized plasma carrying a field-aligned current. It is shown that for arbitrary values of the ratio of ion-cyclotron frequency omega ci to ion-acoustic wave frequency omega a, instability may result from normally dissipative terms such as

  1. Current driven ion electrostatic waves in a magnetized collisional plasma

    Microsoft Academic Search

    J. E. Willett; C. D. Crowder

    1981-01-01

    The stability of ion electrostatic waves propagating at arbitrary angles with respect to a uniform, static magnetic field is studied in a collisional, fully ionized plasma carrying a field-aligned current. It is shown that for arbitrary values of the ratio of ion-cyclotron frequency to ion-acoustic wave frequency, instability may result from normally dissipative terms such as electron thermal conductivity and

  2. Current-driven instabilities and turbulent plasma acceleration

    Microsoft Academic Search

    Arefev

    1976-01-01

    The nonlinear ''electrothermal runaway of the anomalous resistance,'' which is fundamental to the generation of the fast particles observed in high-current pulsed gas discharges, is analyzed. It is shown that transverse-current instabilities are fundamental to electromagnetic turbulent acceleration of a plasma. Among these instabilities are the modified two-stream instability, instabilities at harmonics of the electron gyrofrequency, and other instabilities, which

  3. Current driven ion electrostatic waves in a magnetized collisional plasma

    NASA Astrophysics Data System (ADS)

    Willett, J. E.; Crowder, C. D.

    1981-01-01

    The stability of ion electrostatic waves propagating at arbitrary angles with respect to a uniform, static magnetic field is studied in a collisional, fully ionized plasma carrying a field-aligned current. It is shown that for arbitrary values of the ratio of ion-cyclotron frequency to ion-acoustic wave frequency, instability may result from normally dissipative terms such as electron thermal conductivity and resistivity.

  4. Modeling of high-explosive driven plasma compression opening switches

    SciTech Connect

    Greene, A.E.; Lindemuth, I.R.; Goforth, J.H.

    1986-01-01

    The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this model as our starting point. The fuse model assumes that the foil material is homogeneous and is characterized by a single temperature and density. The thickness of the foil is assumed to be much less than the magnetic diffusion skin depth so that the magnetic field varies linearly across the foil. For the present application we assume that the side of the foil away from the channel is fixed in space while the side by the channel is untamped. The foil/plasma will, therefore, cross the channel at the expansion velocity as the foil explodes. Equations for the electrical resistance of the foil, the magnetic fields, the motion of the foil, and the kinetic and internal energies are all solved selfconsistantly. The electrical resistivity, the pressure, and the specific energy of aluminium are taken from the Los Alamos SESAME EOS library. In the case of aluminum we have created a SESAME-style table based on the theory of More and Lee which we have modified to agree with experiment where possible.

  5. Modeling of high-explosive driven plasma compression opening switches

    NASA Astrophysics Data System (ADS)

    Greene, A. E.; Lindemuth, I. R.; Goforth, J. H.

    The initial path of the current through a plasma compression switch is through a thin (500-nm thick) metal foil. The current explodes the foil to form the seed for the conducting plasma. The behavior of the foil at this point is the same as an exploding metal fuse for which we have a simple model. We have, therefore, chosen this model as our starting point. The fuse model assumes that the foil material is homogeneous and is characterized by a single temperature and density. The thickness of the foil is assumed to be much less than the magnetic diffusion skin depth so that the magnetic field varies linearly across the foil. For the present application we assume that the side of the foil away from the channel is fixed in space while the side by the channel is untamped. The foil/plasma will, therefore, cross the channel at the expansion velocity as the foil explodes. Equations for the electrical resistance of the foil, the magnetic fields, the motion of the foil, and the kinetic and internal energies are all solved selfconsistantly. The electrical resistivity, the pressure, and the specific energy of aluminum are taken from the Los Alamos SESAME EOS library. In the case of aluminum we have created a SESAME-style table based on the theory of More and Lee which we have modified to agree with experiment where possible.

  6. Wave Driven Ar--N2--H2 Plasma

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Dias, F. M.; Tatarova, E.; Ferreira, C. M.

    2009-10-01

    An experimental investigation of the spatial structure of an Ar--N2--H2 plasma torch is presented. A surface wave induced microwave (2.45 GHz) plasma torch is created using a conventional, surfaguide based set-up. A cylindrical, fused quartz discharge tube (with internal and external radii R1=7.5 mm and R2=9.0 mm, respectively) is filled by an Ar(78%)--N2(20%)--H2(2%) gas mixture at atmospheric pressure. A spectroscopic imaging system able to couple the plasma-emitted radiation into a SPEX 1250M spectrometer, equipped with a nitrogen cooled CCD camera, was used to measure 2D(r,z) profiles of emission intensities and line profiles. Abel inversion has been applied to derive the radial profiles from the side-on measurements. The H? line profiles have been measured to determine the corresponding Doppler temperature and the electron density. The measurements are well fitted by Voigt profiles, whose Gaussian and Lorenzian components have been deconvoluted. In this way, hyperthermal hydrogen atoms have been detected. The measured Doppler temperatures (5,000--8,000 K) are higher than the rotational temperature by a factor of about 2. The 2D map of the electron density (5x10^12--5x10^13 cm-3) was also obtained. Acknowledgement- This work was supported by the Fundacão para a Ciência e a Tecnologia, Minist'erio da Ciência, Tecnologia e Ensino Superior, Portugal

  7. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H. [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504 (United States); Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  8. Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen

    SciTech Connect

    Zaka-ul-Islam, M.; Niemi, K. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); Gans, T.; O'Connell, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); York Plasma Institute, Department of Physics, University of York, Innovation Way, Heslington York YO10 5DQ (United Kingdom)

    2011-07-25

    Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

  9. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 5, OCTOBER 1999 1449 Ion-Beam-Driven Instabilities

    E-print Network

    Lee, Hae June

    -Beam-Driven Instabilities in Bounded Dusty Plasmas Min Sup Hur, Hae June Lee, and Jae Koo Lee Abstract--The ion is applied to many other beam systems. Index Terms--Chaos, dusty plasma, instability, ion beam, sim- ulation treat the ho- mogeneous dusty plasma. In the study of dust crystallization, the boundary effects

  10. 60 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 25, NO. 1, FEBRUARY 1997 Current-Driven Dust Ion-Acoustic

    E-print Network

    Merlino, Robert L.

    -Acoustic Instability in a Collisional Dusty Plasma Robert L. Merlino Abstract--A fluid analysis of the excitation is increased. Index Terms-- Current-driven instabilities, dust ion-acoustic waves, dusty plasmas I of dust ion-acoustic (DIA) waves in a collisional dusty plasma is presented. The DIA waves are excited

  11. American Institute of Aeronautics and Astronautics Microscale Dielectric Barrier Discharge Plasma Actuators

    E-print Network

    Roy, Subrata

    American Institute of Aeronautics and Astronautics 1 Microscale Dielectric Barrier Discharge Plasma by the Authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission of Aeronautics and Astronautics 2 d = damped frequency n = natural frequency = damping ratio I. Introduction

  12. Current-driven Alfvén waves in dusty magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Ali Shan, S.; Haque, Q.; Saleem, H.

    2014-01-01

    It is shown that the sheared flow of electrons and ions in the presence of heavy stationary dust gives rise to unstable Alfvén waves. The coupling of newly studied low frequency electrostatic current-driven mode with the electromagnetic Alfvén and drift waves is investigated. The instability conditions and the growth rates of both inertial and kinetic Alfvén waves are estimated. The theoretical model is applied to the night side boundary regions of Jupiter's magnetosphere which contain positive dust. The growth rates increase with increase in sheared flow speed. In the nonlinear regime, both inertial and kinetic Alfvén waves form dipolar vortices whose speed and amplitude depend upon the magnitude of the zero-order current.

  13. Laser plasma jet driven microparticles for DNA/drug delivery.

    PubMed

    Menezes, Viren; Mathew, Yohan; Takayama, Kazuyoshi; Kanno, Akira; Hosseini, Hamid

    2012-01-01

    This paper describes a microparticle delivery device that generates a plasma jet through laser ablation of a thin metal foil and uses the jet to accomplish particle delivery into soft living targets for transferring biological agents. Pure gold microparticles of 1 µm size were coated with a plasmid DNA, pIG121Hm, and were deposited as a thin layer on one surface of an aluminum foil. The laser (Nd:YAG, 1064 nm wavelength) ablation of the foil generated a plasma jet that carried the DNA coated particles into the living onion cells. The particles could effectively penetrate the target cells and disseminate the DNA, effecting the transfection of the cells. Generation of the plasma jet on laser ablation of the foil and its role as a carrier of microparticles was visualized using a high-speed video camera, Shimadzu HPV-1, at a frame rate of 500 kfps (2 µs interframe interval) in a shadowgraph optical set-up. The particle speed could be measured from the visualized images, which was about 770 m/s initially, increased to a magnitude of 1320 m/s, and after a quasi-steady state over a distance of 10 mm with an average magnitude of 1100 m/s, started declining, which typically is the trend of a high-speed, pulsed, compressible jet. Aluminum launch pad (for the particles) was used in the present study to make the procedure cost-effective, whereas the guided, biocompatible launch pads made of gold, silver or titanium can be used in the device during the actual clinical operations. The particle delivery device has a potential to have a miniature form and can be an effective, hand-held drug/DNA delivery device for biological applications. PMID:23226394

  14. Electron beam driven lower hybrid waves in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-05-01

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  15. Electron beam driven lower hybrid waves in a dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi-110 068 (India)] [School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi-110 068 (India); Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi-110 042 (India)] [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi-110 042 (India); Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi-110 036 (India)] [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi-110 036 (India)

    2013-05-15

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  16. Pressure-driven reconnection and quasi periodical oscillations in plasmas

    SciTech Connect

    Paccagnella, R., E-mail: roberto.paccagnella@igi.cnr.it [Consorzio RFX and Istituto Gas Ionizzati del Consiglio Nazionale delle Ricerche (CNR), Padova (Italy)

    2014-03-15

    This paper presents a model for an ohmically heated plasma in which a feedback exists between thermal conduction and transport, on one side, and the magneto-hydro-dynamical stability of the system, on the other side. In presence of a reconnection threshold for the magnetic field, a variety of periodical or quasi periodical oscillations for the physical quantities describing the system are evidenced. The model is employed to interpret the observed quasi periodical oscillations of electron temperature and perturbed magnetic field around the so called “Single Helical” state in the reversed field pinch, but its relevance for other periodical phenomena observed in magnetic confinement systems, especially in tokamaks, is suggested.

  17. Self-organized criticality in MHD driven plasma edge turbulence

    NASA Astrophysics Data System (ADS)

    dos Santos Lima, G. Z.; Iarosz, K. C.; Batista, A. M.; Caldas, I. L.; Guimarães-Filho, Z. O.; Viana, R. L.; Lopes, S. R.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2012-01-01

    We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfvén Brésillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high MHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation.

  18. Electromechanical flight actuators for advanced flight vehicles

    Microsoft Academic Search

    SERGEY EDWARD LYSHEVSKI

    1999-01-01

    The aircraft flight quantities and success of the mission depend to a great extent upon the actuator performance, and flight actuators must be designed to achieve the specified criteria. Electromechanical flight actuators driven by electric motors have begun to displace hydraulic technology in advanced flight vehicles. In aerospace application, permanent-magnet stepper motors are perfectly suited due to their efficiency and

  19. Single-pulse driven plasma Pockels cell with 350mm×350mm aperture

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Kuixing; Jing, Feng

    2010-08-01

    Large-aperture plasma Pockels cell is one of important components for inertial confinement fusion laser facility. We demonstrate a single-pulse driven PPC with 350mm×350mm aperture. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPC meets the optical switching requirement of SGII update laser facility. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, less the maintenance, and higher reliability.

  20. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2008-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  1. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2010-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  2. Effects of finite plasma pressure on centrifugally driven convection in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Liu, X.; Hill, T. W.

    2012-07-01

    We have previously shown simulation results for centrifugally driven plasma convection in Saturn's inner magnetosphere (2 < L < 12) using the Rice Convection Model, including a continuously active distributed plasma source, and the effects of the Coriolis force and the pickup current. These simulations result in a quasi-steady state, in which fast, narrow inflow channels alternate with slower, wider outflow channels, consistent with Cassini Plasma Spectrometer observations. These previous simulations, however, did not include the plasma pressure. We investigate here the effects of finite plasma pressure and the associated gradient-curvature drift current by giving the cold plasma a finite temperature. Our simulations confirm the theoretical expectation that a finite plasma pressure produces a force in the positive radial direction, the same direction as the centrifugal force, and acts as an additional driver of plasma convection. Our simulations also confirm that the radial velocities can be reduced (to keep them within observational constraints) by increasing the assumed ionospheric Pedersen conductance (also within observational constraints).

  3. Convection-driven delivery of plasma sheet material to the inner magnetosphere.

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Thomsen, M. F.; Lavraud, B.; Skoug, R. M.; Henderson, M. G.; Funsten, H. O.; Jahn, J.; Pollock, C. J.; Weygand, J.

    2005-12-01

    We present data from the MENA instrument onboard the IMAGE satellite taken during a period of enhanced convection on 26 June 2001. During the interval, MENA observes energetic neutral atoms (ENAs) in the magnetotail and an Earthwards-propagating enhancement in their flux, at the same time as the convection strength increases (as measured by the Kp and MBI indices). Data from the magnetospheric plasma analyser (MPA) instrument onboard satellites in geosynchronous orbit indicate that enhanced ion and electron fluxes at plasma sheet energies (~1-45 keV) are detected at the same time as enhanced ENA flux are observed at the satellite location. We interpret the results as a convection-driven delivery of plasma sheet material, the ENA signature of which we observe with IMAGE/MENA. We use the rate of the propagation of the ENA enhancement to infer the speed of the plasma sheet delivery to the inner magnetosphere.

  4. High-Harmonic Fast Wave Driven H-mode Plasmas on NSTX

    SciTech Connect

    B.P. LeBlanc; R.E. Bell; S.I. Bernabei; K. Indireshkumar; S.M. Kaye; R. Maingi; T.K. Mau; D.W. Swain; G. Taylor; P.M. Ryan; J.B Wilgen; J.R. Wilson

    2003-05-01

    The launch of High-Harmonic Fast Waves (HHFW) routinely provides auxiliary power to NSTX plasmas, where it is used to heat electrons and pursue drive current. H-mode transitions have been observed in deuterium discharges, where only HHFW and ohmic heating, and no neutral beam injection (NBI), were applied to the plasma. The usual H-mode signatures are observed. A drop of the Da light marks the start of a stored energy increase, which can double the energy content. These H-mode plasmas also have the expected kinetic profile signatures with steep edge density and electron temperature pedestal. Similar to its NBI driven counterpart--also observed on NSTX-- the HHFW H mode have density profiles that features ''ears'' in the peripheral region. These plasmas are likely candidates for long pulse operation because of the combination of bootstrap current, associated with H-mode kinetic profiles, and active current drive, which can be generated with HHFW power.

  5. Continued study and modeling of compact, RF-driven plasma source

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Kamieneski, Richard; Taylor, Andrew; Batishchev, Oleg

    2014-03-01

    We will be reporting on the theoretical studies and further development of a compact RF-driven gas discharge plasma source operating at a wide range of pressures. Positive results have been obtained using a variety of mono- and diatomic atmospheric gases, including helium and nitrogen. Successful source operation has also been achieved with magnetic field arrangements utilizing chassis of permanent rare-earth magnets. The results of more sophisticated experimental investigations will be discussed, along with associated theoretical studies and numerical modeling of source operation and plasma dynamics. Work is supported by US DoD/ AFOSR Grants FA9550-10-1-0498 and FA2386-12-1-3006.

  6. Plasma-driven self-organization of Ni nanodot arrays on Si(100)

    SciTech Connect

    Levchenko, I. [Plasma Nanoscience, School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Ostrikov, K. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, New South Wales 2070 (Australia); Diwan, K.; Winkler, K.; Mariotti, D. [Department of Microelectronic Engineering, Rochester Institute of Technology, Rochester, New York 14623-5604 (United States)

    2008-11-03

    The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles.

  7. Experimental investigation of explosive-driven plasma-compression opening switches

    SciTech Connect

    Goforth, J.H.; Caird, R.S.

    1983-01-01

    Plasma-compression opening-switch techniques are being developed for use in explosive-driven magnetic-flux-compresssion-generator applications. A new test bed for performing low-cost experimentation is described. Experiments with approx.0.15 MA/cm linear current density in the switch have achieved resistance increases of a factor of 10 in a few hundred nanoseconds. Peak field strengths of 30 kV/cm are generated in these tests. Data are presented from preliminary tests that indicate reduced pressure in the plasma cavity enhanced switch performance.

  8. Structure of parallel-velocity-shear-driven mode in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Dong, J. Q.; Xu, W. B.; Zhang, Y. Z.; Horton, W.

    1998-12-01

    It is shown that the Fourier-ballooning representation is appropriate for the study of short-wavelength drift-like perturbation in toroidal plasmas with a parallel velocity shear (PVS). The radial structure of the mode driven by a PVS is investigated in a torus. The Reynolds stress created by PVS turbulence, and proposed as one of the sources for a sheared poloidal plasma rotation, is analyzed. It is demonstrated that a finite ion temperature may strongly enhance the Reynolds stress creation ability from PVS-driven turbulence. The correlation of this observation with the requirement that ion heating power be higher than a threshold value for the formation of an internal transport barrier is discussed.

  9. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e.g., 44 percent increase as relative humidity changed from 18 percent and dew point 33 degF to 50 percent and dew point of 57 degF.

  10. Cross-field-current-driven electrostatic instabilities in plasmas with generalized distribution functions

    Microsoft Academic Search

    B. N. Goswami; B. Buti

    1975-01-01

    The generalized distribution function is used to investigate the effects of loss-cone and temperature anisotropy on the cross-field-current-driven electrostatic instabilities, i.e. the modified two-stream instability, the ion-acoustic instability and the electron cyclotron drift instability. These effects are important only when (k is the wave number and ?e the electron gyroradius). It is seen that non-Maxwellian plasmas with distribution index J?1,

  11. Laser-driven hydrodynamic perturbation in an overdense Z-pinch plasma

    Microsoft Academic Search

    J. G. Ackenhusen; D. R. Bach

    1979-01-01

    Holographic interferometry of the interaction of a radially incident intense CO2 laser beam (10 to the 11th W\\/sq cm, 38-nsec FWHM pulse) with an overdense helium Z-pinch plasma (n sub e greater than 10 to the 19th e\\/cu cm, T sub e of about 20 eV, L = 100 microns) has indicated the presence of a laser-driven shock. The radial

  12. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  13. Radiochemistry and secondary reactions for the diagnostics of laser-driven fusion plasmas

    SciTech Connect

    Miyanaga, N.; Azechi, H.; Stapf, R.O.; Itoga, K.; Nakaishi, H.; Shiraga, H.; Yamanaka, M.; Yamanaka, T.; Tsuji, R.; Ido, S.; Sakurai, K.; Nishihara, K.; Yabe, T.; Takagi, M.; Nakatsuka, M.; Izawa, Y.; Nakai, S.; Yamanaka, C.; Kobayashi, K.; Kimura, I.; Morinobu, S.

    1986-08-01

    Radiochemical measurements have been developed for the diagnostics of laser-driven implosion plasmas. The excellent calibration for neutron-yield measurement has been done using ..beta..-..gamma.. coincidence technique. The multiactivable tracer method has been examined for measuring the pusher areal density by means of a high-purity germanium detector. The first experimental success of the secondary nuclear fusion reaction method is also demonstrated for the direct measurement of the fuel rhoR-italic.

  14. Electron and Ion Phase Space Holes From Buneman Instabilities in a Current-Driven Plasma

    Microsoft Academic Search

    M. V. Goldman; D. L. Newman; A. Mangeney

    2001-01-01

    Recent 1-D simulations of a current-driven plasma(D. L. Newman, Invited Paper, this meeting) show that a strong local double-layer electric field accelerates electrons into a beam. The resulting two-stream instability produces electron phase-space holes traveling in the direction of the electron beam. In a later stage, after ions have been accelerated in the opposite direction by the same double-layer field,

  15. Laser-Driven Acceleration of Electrons in a Partially Ionized Plasma Channel

    SciTech Connect

    Rowlands-Rees, T. P.; Gonsalves, A. J.; Ibbotson, T.; Hooker, S. M. [University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Kamperidis, C.; Kneip, S.; Mangles, S. P. D.; Krushelnick, K.; Najmudin, Z. [Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2BW (United Kingdom); Gallacher, J. G.; Brunetti, E.; Jaroszynski, D. A. [University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Murphy, C. D.; Foster, P. S.; Streeter, M. J. V.; Norreys, P. A. [Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Budde, F. [Friedrich-Schiller-University, PF 07737 Jena (Germany)

    2008-03-14

    The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.

  16. Statistics of beam-driven waves in plasmas with ambient fluctuations: Reduced-parameter approach

    SciTech Connect

    Tyshetskiy, Yu.; Cairns, I. H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, 2006 New South Wales (Australia)

    2008-09-15

    A reduced-parameter (RP) model of quasilinear wave-plasma interactions is used to analyze statistical properties of beam-driven waves in plasmas with ambient density fluctuations. The probability distribution of wave energies in such a system is shown to have a relatively narrow peak just above the thermal wave level, and a power-law tail at high energies, the latter becoming progressively more evident for increasing characteristic amplitude of the ambient fluctuations. To better understand the physics behind these statistical features of the waves, a simplified model of stochastically driven thermal waves is developed on the basis of the RP model. An approximate analytic solution for stationary statistical distribution of wave energies W is constructed, showing a good agreement with that of the original RP model. The 'peak' and 'tail' features of the wave energy distribution are shown to be a result of contributions of two groups of wave clumps: those subject to either very slow or very fast random variations of total wave growth rate (due to fluctuations of ambient plasma density), respectively. In the case of significant ambient plasma fluctuations, the overall wave energy distribution is shown to have a clear power-law tail at high energies, P(W){proportional_to}W{sup -{alpha}}, with nontrivial exponent 1<{alpha}<2, while for weak fluctuations it is close to the lognormal distribution predicted by pure stochastic growth theory. The model's wave statistics resemble the statistics of plasma waves observed by the Ulysses spacecraft in some interplanetary type III burst sources. This resemblance is discussed qualitatively, and it is suggested that the stochastically driven thermal waves might be a candidate for explaining the power-law tails in the observed wave statistics without invoking mechanisms such as self-organized criticality or nonlinear wave collapse.

  17. Plasma turbulence driven by transversely large-scale standing shear Alfvén waves

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Rao, Sathyanarayan

    2012-12-01

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k?) lying in the range de-1-6de-1, de being the electron inertial length, suggesting non-local parametric decay from small to large k?. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k||). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k?) = |E?(k?)/|B?(k?)| ? VA for k?de < 0.5, where VA is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  18. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.

  19. PROTOPLASMA - Proton-driven plasma-wakefield experiment at Fermilab: Stages and approach

    SciTech Connect

    Thangaraj, J. C. T.; Park, C. S.; Lewis, J. D.; Spentzouris, P.; An, W.; Mori, W.; Joshi, C. [Fermi National Accelerator Laboratory, IL (United States); Univ. of California, Los Angeles, CA (United States)

    2012-12-21

    Generation of TeV-scale electron beams using conventional RF technology appears expensive for building the next generation of colliders. Proton-driven plasma-wakefield acceleration of electrons promises an alternative route to generate TeV-scale electron beams using existing proton machines. PROTOPLASMA is the proposed R and D project at Fermilab that plans to use a proton beam driven plasma-wakefield to accelerate electrons. The project is planned in stages with the project's path guided by simulations. First, a 60-120 GeV proton beam will be injected into 1-2 meters of plasma to observe selfmodulation instability in the proton beam. Next, an injected 5 MeV electron beam will be accelerated by the plasma. In this paper, we report on the basic project plan and outline our staged approach. We report on first simulation results that show self-modulation of a proton bunch and discuss beam optics requirements and other limits.

  20. Instability of magnetic fields in electroweak plasma driven by neutrino asymmetries

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim; Semikoz, Victor B.

    2014-05-01

    The magnetohydrodynamics (MHD) is modified to incorporate the parity violation in the Standard Model leading to a new instability of magnetic fields in the electroweak plasma in the presence of nonzero neutrino asymmetries. The main ingredient for such a modified MHD is the antisymmetric part of the photon polarization tensor in plasma, where the parity violating neutrino interaction with charged leptons is present. We calculate this contribution to the polarization tensor connected with the Chern-Simons term in effective Lagrangian of the electromagnetic field. The general expression for such a contribution which depends on the temperature and the chemical potential of plasma as well as on the photon's momentum is derived. The instability of a magnetic field driven by the electron neutrino asymmetry for the ?-burst during the first second of a supernova explosion can amplify a seed magnetic field of a protostar, and, perhaps, can explain the generation of strongest magnetic fields in magnetars. The growth of a cosmological magnetic field driven by the neutrino asymmetry density ?n? = n?-nbar nu?0 is provided by a lower bound on |??e| = |??e|/T which is consistent with the well-known Big Bang nucleosynthesis (upper) bound on neutrino asymmetries in a hot universe plasma.

  1. Transport and drift-driven plasma flow components in the Alcator C-Mod boundary plasma

    E-print Network

    Smick, N.

    Boundary layer flows in the Alcator C-Mod tokamak are systematically examined as magnetic topology (upper versus lower-null) and plasma density are changed. Utilizing a unique set of scanning Langmuir–Mach probes, including ...

  2. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    SciTech Connect

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  3. Multidimensional Plasma Sheath Modeling Using The Three Fluid Plasma Model in General Geometries

    NASA Astrophysics Data System (ADS)

    Lilly, Robert; Shumlak, Uri

    2012-10-01

    There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. This expanded general geometry study employs the three-fluid (electrons, ions,neutrals) plasma model as it allows the capture of electron inertial effects, as well as energy and momentum transfer between the charged and neutral species. Previous investigations have typically assumed an electrostatic electric field. This work includes the full electrodynamics in general geometries. Past work utilizing the research code WARPX (Washington Approximate Riemann Problem) employed cartesian grids. In this work, the problem is expanded to general geometries with the euler fluid equations employing Braginskii closure. In addition, WARPX general geometry grids are generated from Cubit or CAD files. Comparisons are made against AFRL magnetized plasma actuator experiments.

  4. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  5. Current-driven turbulence caused by the emission of fast electrons in an inhomogeneous plasma in an intense electromagnetic field

    Microsoft Academic Search

    D. M. Karfidov; N. A. Lukina; K. F. Sergeichev

    1981-01-01

    It has been shown experimentally that the emission of currents of fast electrons from a critical sheath in a plasma under the influence of an intense electromagnetic field occurs against the background of a current-driven turbulence of the plasma. This turbulence may be responsible, along with a modulational instability, for the transfer of energy from the electromagnetic field to fast

  6. Prolonged plasma production at current-driven implosion of wire arrays on Angara5-1 facility

    Microsoft Academic Search

    V. V. Alexandrov; I. N. Frolov; M. V. Fedulov; E. V. Grabovsky; K. N. Mitrofanov; S. L. Nedoseev; G. M. Oleinik; I. Yu. Porofeev; A. A. Samokhin; P. V. Sasorov; V. P. Smirnov; G. S. Volkov; M. M. Zurin; G. G. Zukakischvili

    2002-01-01

    Results of experimental investigation and modeling of prolonged plasma production during implosion of cylindrical wire arrays are presented. Results of the radiography of dense cores of imploding wire array and the measurements of internal azimuthal magnetic field in wire array give new experimental evidences of prolonged plasma production phenomenon. This phenomenon is an important property of current-driven implosion of the

  7. Alpha Particle-Driven Toroidal Alfv en Eigenmodes in Tokamak Fusion Test Reactor Deuterium-Tritium Plasmas: Theory and

    E-print Network

    Alpha Particle-Driven Toroidal Alfv en Eigenmodes in Tokamak Fusion Test Reactor Deuterium-Tritium 26, 11 1984 Deuterium- Tritium plasmas are analyzed using the NOVA-K code C. Z. Cheng, Phys. Reports Deuterium-Tritium DT plasma, the fusion product alpha particles are born with an energy of 3:5 Me

  8. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    NASA Astrophysics Data System (ADS)

    Assmann, R.; Bingham, R.; Bohl, T.; Bracco, C.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R. A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S. R.; McKenzie, J. W.; Meddahi, M.; Militsyn, B. L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T. C. Q.; Norreys, P. A.; Öz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L. O.; Sosedkin, A.; Tarkeshian, R.; Trines, R. M. G. N.; Tückmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.; (AWAKE Collaboration

    2014-08-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  9. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C.B.; Vay, J.-L.; Geddes, C.R.; Benedetti, C.; Esarey and, E.; Leemans, W.P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  10. Transport driven plasma flows in the scrape-off layer of ADITYA Tokamak in different orientations of magnetic field

    SciTech Connect

    Sangwan, Deepak; Jha, Ratneshwar; Brotankova, Jana; Gopalkrishna, M. V. [Institute for Plasma Research, Gandhinagar 382428 (India)

    2014-06-15

    Parallel plasma flows in the scrape-off layer of ADITYA tokamak are measured in two orientations of total magnetic field. In each orientation, experiments are carried out by reversing the direction of the toroidal magnetic field and the plasma current. The transport-driven component is determined by averaging flow Mach numbers, measured in two directions of the toroidal magnetic field and the plasma current for the same orientation. It is observed that there is a significant transport-driven component in the measured flow and the component depends on the field orientation.

  11. Pressure-driven, resistive magnetohydrodynamic interchange instabilities in laser-produced high-energy-density plasmas.

    PubMed

    Li, C K; Frenje, J A; Petrasso, R D; Séguin, F H; Amendt, P A; Landen, O L; Town, R P J; Betti, R; Knauer, J P; Meyerhofer, D D; Soures, J M

    2009-07-01

    Recent experiments using proton backlighting of laser-foil interactions provide unique opportunities for studying magnetized plasma instabilities in laser-produced high-energy-density plasmas. Time-gated proton radiograph images indicate that the outer structure of a magnetic field entrained in a hemispherical plasma bubble becomes distinctly asymmetric after the laser turns off. It is shown that this asymmetry is a consequence of pressure-driven, resistive magnetohydrodynamic (MHD) interchange instabilities. In contrast to the predictions made by ideal MHD theory, the increasing plasma resistivity after laser turn-off allows for greater low-mode destabilization (m>1) from reduced stabilization by field-line bending. For laser-generated plasmas presented herein, a mode-number cutoff for stabilization of perturbations with m> approximately [8pibeta(1+D_{m}k_{ perpendicular};{2}gamma_{max};{-1})];{1/2} is found in the linear growth regime. The growth is measured and is found to be in reasonable agreement with model predictions. PMID:19658823

  12. Toroidal rotation of multiple species of ions in tokamak plasma driven by lower-hybrid-waves

    SciTech Connect

    Zuo Yang; Wang Shaojie [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Pan Chengkang [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China)

    2012-10-15

    A numerical simulation is carried out to investigate the toroidal rotation of multiple species of ions and the radial electric field in a tokamak plasma driven by the lower-hybrid-wave (LHW). The theoretical model is based on the neoclassical transport theory associated with the anomalous transport model. Three species of ions (primary ion and two species of impurity ions) are taken into consideration. The predicted toroidal velocity of the trace impurities during the LHW injection agrees reasonably well with the experimental observation. It is shown that the toroidal rotation velocities of the trace impurity ions and the primary ions are close, therefore the trace impurity ions are representative of the primary ions in the toroidal rotation driven by the LHW.

  13. Studies of Linear and Non-Linear Beam Transmission in Plasmas Driven with Multiple Laser Beams

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; Moody, J. D.; Niemann, C.; Cohen, B. I.; Williams, E. A.; Dorr, M. R.; Hittinger, J. A.; Meezan, N.; Berger, R. L.; Suter, L. J.; Divol, L.; Glenzer, S. H.; Landen, O. L.; Wurtele, J.; Charman, A. E.; Lindberg, R.; Fisch, N. J.; Malkin, V. M.

    2003-10-01

    Measurements of beam transmission in laser driven plasmas are essential for the understanding of the efficiency and symmetry of the drive in ICF and are also allowing development of multi-beam interactions for control of the temporal and spatial profiles of power deposition in laser experiments. Recent efforts in this area include 1) the deployment of the transmitted beam diagnositic (TBD) on the Omega laser to measure power transmission and beam spreading of the 527 nm beam, 2) the study of the effect of ion wave damping on energy transfer between two 351 nm beams in a flowing plasma produced by Omega [1], and 3) development of beam amplification and pulse compression by Raman scattering [2] using the Janus laser. We will describe experiments in which the transmission of a 351 nm beam is enhanced by resonant interaction with a second identical beam in a hot (> 1 keV) plasma with a Mach 1 flow, and the effect of varying the plasma composition from CH to Al (and hence the damping rate of the ion acoutic wave from 10studied at different laser intensities for comparison with wave saturation models. Separate experiments in which an ultra-short pulse 1124 nm beam interacts with a 1 ns pulse 1064 nm beam in low temperature plasma (< 100 eV) which has its density adjusted to match the resonance for simulating plasma waves will also be discussed, and evidence of amplification of the ultra-short pulse beam by the long pulse beam will be presented. Finally initial results from transmission measurements of a 527 nm beam in a hot, 2mm scale plasma will be discussed as available. [1] R. K. Kirkwood, et al., Phys. Rev. Lett. 89, 215003-1 (2002) [2] Malkin, et. al. Phys. Rev. Lett 82, 4448 (1999),

  14. Numerical Simulation of Waves Driven by Plasma Currents Generated by Low-Frequency Alfven Waves in a Multi-Ion Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2003-01-01

    When multi-ion plasma consisting of heavy and light ions is permeated by a lowfrequency Alfien (LFA) wave, the EXB and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-D particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically we study the situation for LFA wave frequency being lower than the heavyion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams.

  15. Visible Light-Driven Artificial Molecular Switch Actuated by Radical-Radical and Donor-Acceptor Interactions.

    PubMed

    Sun, Junling; Wu, Yilei; Liu, Zhichang; Cao, Dennis; Wang, Yuping; Cheng, Chuyang; Chen, Dongyang; Wasielewski, Michael R; Stoddart, J Fraser

    2015-06-18

    We describe a visible light-driven switchable [2]catenane, composed of a Ru(bpy)3(2+) tethered cyclobis(paraquat-p-phenylene) (CBPQT(4+)) ring that is interlocked mechanically with a macrocyclic polyether consisting of electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units. In the oxidized state, the CBPQT(4+) ring encircles the DNP recognition site as a consequence of favorable donor-acceptor interactions. In the presence of an excess of triethanolamine (TEOA), visible light irradiation reduces the BIPY(2+) units to BIPY((•+)) radical cations under the influence of the photosensitizer Ru(bpy)3(2+), resulting in the movement of the CBPQT(2(•+)) ring from the DNP to the BIPY((•+)) recognition site as a consequence of the formation of the more energetically favorable trisradical complex, BIPY((•+)) ? CBPQT(2(•+)). Upon introducing O2 in the dark, the BIPY((•+)) radical cations are oxidized back to BIPY(2+) dications, leading to the reinstatement of the CBPQT(4+) ring encircled around the DNP recognition site. Employing this strategy of redox control, we have demonstrated a prototypical molecular switch that can be manipulated photochemically and chemically by sequential reduction and oxidation. PMID:25984816

  16. Parallel viscosity-driven neoclassical fluxes in the banana regime in nonsymmetric toroidal plasmas

    SciTech Connect

    Shaing, K.C.; Hirshman, S.P.; Tolliver, J.S.

    1986-08-01

    Analytic expressions for the parallel viscosity-driven neoclassical fluxes in the banana regime in arbitrary nonsymmetric toroidal plasmas are derived without considering boundary layer effects. They can be evaluated numerically if the Fourier decomposition of the strength of the magnetic field Vertical BarBVertical Bar is known. Since no averaging over the high-frequency component of the Fourier decomposition of Vertical BarBVertical Bar has been employed, these expressions can reproduce all the known results in symmetric systems and predict the possibility of reversing the direction of the bootstrap current and Ware pinch flux in a stellarator.

  17. FIRST MEASUREMENT OF PRESSURE GRADIENT-DRIVEN CURRENTS IN TOKAMAK EDGE PLASMAS

    SciTech Connect

    THOMAS DM; LEONARD AW; LAO LL; OSBORNE TH; MUELLER HW; FINKENTHAL DK

    2003-11-01

    Localized currents driven by pressure gradients play a pivotal role in the magnetohydrodynamic stability of toroidal plasma confinement devices. We have measured the currents generated in the edge of L- (low) and H- (high confinement) mode discharges on the DIII-D tokamak, utilizing the Zeeman effect in an injected lithium beam to obtain high resolution profiles of the poloidal magnetic field. We find current densities in excess of 1 MA/m{sup 2} in a 1 to 2 cm region near the peak of the edge pressure gradient. These values are sufficient to challenge edge stability theories based on specific current formation models.

  18. Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas

    SciTech Connect

    G.Y. Fu; J. Breslau; E. Fredrickson; W. Park; H.R. Strauss

    2004-12-14

    Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly.

  19. Implosion Dynamics of High-Density Fiber Plasma Driven by Imploding Multicascade Liner

    NASA Astrophysics Data System (ADS)

    Deeba, Farah; Ahmed, Kamaluddin; Haseeb, Mahnaz Qadar; Mirza, Arshad M.

    The dynamics of a high density D-T fiber plasma driven by a multi cascade system (N multiple shells of finite thicknesses) has been investigated with a view to suppress Rayleigh-Taylor (R-T) instability. Our numerical results show that the plasma parameters of the D-T fiber sensitively depends upon the shell mass ratios and thicknesses. Large values of puff-thickness and mass-ratios provide stabilization against the R-T instability in the final stage of compression but adversely affect fusion conditions. Our analysis, however, suggests that optimum values of the puff-thicknesses and mass ratios are needed to achieve fusion parameters in a multi cascade liner staged Z-pinch devices. The relevance of our present investigation to ultra high magnetic fluxes, X-ray lasers as well as controlled thermonuclear fusion is also pointed out.

  20. Self-organized T(sub)e Redistribution during Driven Reconnection Processes in High Temperature Plasmas

    SciTech Connect

    Park, H.K.; Mazzucato, E.; Luhmann, N.C., Jr.; Domier, C.W.; Xia, Z.; Munsat, T.; Donné, A.J.H.; Classen, I.G.J.; van de Pol, M.J.; TEXTOR team

    2005-12-01

    Two-dimensional (2-D) images of electron temperature fluctuations with a high temporal and spatial resolution were employed to study the sawtooth oscillation in TEXTOR tokamak plasmas. The new findings are: 1) 2-D images revealed that the reconnection is localized and permitted the determination of the physical dimensions of the reconnection zone in the poloidal and toroidal planes. 2) The combination of a pressure driven mode and a kink instability leads to an "X-point" reconnection process. 3) Reconnection can take place anywhere along the q~1 rational magnetic surface (both high and low field sides). 4) Heat flow from the core to the outside of the inversion radius during the reconnection time is highly asymmetric and the behavior is collective. These new findings are compared with the characteristics of various theoretical models and experimental results for the study of the sawtooth oscillation in tokamak plasmas.

  1. Electron-ion hybrid instabilities driven by velocity shear in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Romero, H.; Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.

    1992-01-01

    The stability of a magnetized plasma is investigated in which a sheared electron flow channel is present. The flow's peak velocity and shear scale length are denoted by V and L, respectively. If the velocity channel is perpendicular to the confining magnetic field and L is less than the ion Larmor radius, an electrostatic instability develops whose frequency is on the order of the lower hybrid frequency. It is concluded that velocity shear is the only source of free energy. Further, it is shown that density gradients do not stabilize this mode. It follows that the mode presented in this work can not be identified with the well-known modified two-stream instability. If the velocity channel is parallel to the confining magnetic field and the plasma is weakly magnetized, an instability driven by velocity shear is shown to exist.

  2. One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application.

    PubMed

    Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Yu, Haiwu; Zheng, Jiangang; Cao, Dingxiang; Li, Mingzhong

    2009-09-14

    Pockels cell (PPC), which can use a thin crystal to perform the uniform electro-optical effect, is ideal component as average-power optical switch with large aperture. In this paper, the key problems in PPC are analyzed for repetition-rate application, and thermo-optical effects are simulated by means of numerical modeling when average power is loaded on the electro-optical crystal. By reformative design and employing a capacity to share the gas discharge voltage, the DKDP PPC driven by one pulse is realized. As gas breakdown delay time is stable, and discharge plasma is uniformly filled the full aperture, it meets the demand of plasma electrode for the repetition-rate PPC with DKDP crystal. The switch efficiency of PPC at the whole aperture is better than 99%. PMID:19770935

  3. Plasma turbulence driven by transversely large-scale standing shear Alfven waves

    SciTech Connect

    Singh, Nagendra; Rao, Sathyanarayan [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States)

    2012-12-15

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  4. Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor

    SciTech Connect

    Tadsen, Benjamin, E-mail: tadsen@physik.uni-kiel.de; Greiner, Franko; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)

    2014-10-15

    Nanodust is produced in an rf-driven push-pull parallel-plate reactor using argon with an acetylene admixture at 5–30?Pa. A scheme for the preparation of nanodust clouds with particle radii up to 400?nm for investigations in magnetized plasmas is proposed. The confinement that keeps the nanodust of different radii inside a moderately magnetized discharge (B???500?mT) is investigated by a comparison of 2d-Langmuir probe measurements in the dust-free plasma without and with a magnetic field and by the analysis of scattered light of nanodust clouds. It is shown that the dust cloud changes its shape when the dust density changes. This results in a reversed ?-?{sup ?} transition from a dense dust cloud with a central disk-like void to a dilute dust cloud with a toroidal void. When the dust density is further reduced, filaments are observed in the central part of the cloud, which were absent in the high-density phase. It is concluded that the dense nanodust cloud is able to suppress plasma filamentation in magnetized plasmas.

  5. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  6. General nonlinear mechanics of an electron beam driven multimode plasma system

    SciTech Connect

    McCowan, R.B.

    1986-01-01

    The general nonlinear behavior of the beam driven multimode system is examined. The linearized dispersion for a beam plasma is reviewed, and the new features of linear theory needed to explain the behavior for the plasma with two oppositely directed beams are derived. The dispersion relation and an extension of van der Pol theory are used to develop nonlinear-amplitude rate equations for the plasma. Where quantitative comparison is possible, agreement between the model and the experimental behavior is within the expected ranges. Important qualitative features of the nonlinear multimode system, mode locking, and entrainment are observed in the model and in the experiment. An apparatus for experimental test of the model was built. The components of the system included a vacuum vessel, magnets to guide the electron beam and confine the plasma, and an electron gun to provide the electron beam. Diagnostics used in the experiment were also built and include probes, a microwave resonance shift cavity, and a retarding field energy analyzer. Data were collected and recorded by single channel superheterodyne receivers, spectrum analyzers, and a Data Precision D6000 - a digital waveform acquisition and analysis system. An Apple Macintosh computer is used to communicate with the D6000, and details of the communication between the D6000 and the Macintosh are presented.

  7. Convection in galaxy-cluster plasmas driven by active galactic nuclei and cosmic-ray buoyancy

    E-print Network

    Benjamin D. G. Chandran

    2004-12-20

    Turbulent heating may play an important role in galaxy-cluster plasmas, but if turbulent heating is to balance radiative cooling in a quasi-steady state, some mechanism must set the turbulent velocity to the required value. This paper explores one possible regulating mechanism associated with an active galactic nucleus at cluster center. A steady-state model for the intracluster medium is presented in which radiative cooling is balanced by a combination of turbulent heating and thermal conduction. The turbulence is generated by convection driven by the buoyancy of cosmic rays produced by a central radio source. The cosmic-ray luminosity is powered by the accretion of intracluster plasma onto a central black hole. The model makes the rather extreme assumption that the cosmic rays and thermal plasma are completely mixed. Although the intracluster medium is convectively unstable near cluster center in the model solutions, the specific entropy of the thermal plasma still increases outwards because of the cosmic-ray modification to the stability criterion. The model provides a self-consistent calculation of the turbulent velocity as a function of position, but fails to reproduce the steep central density profiles observed in clusters. The principal difficulty is that in order for the fully mixed intracluster medium to become convectively unstable, the cosmic-ray pressure must become comparable to or greater than the thermal pressure within the convective region. The large cosmic-ray pressure gradient then provides much of the support against gravity, reducing the thermal pressure gradient near cluster center and decreasing the central plasma density gradient. A more realistic AGN-feedback model of intracluster turbulence in which relativistic and thermal plasmas are only partially mixed may have greater success.

  8. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  9. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    SciTech Connect

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-12-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an "X-point" reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic.

  10. Fabrication of thin vertical mirrors through plasma etch and KOH:IPA polishing for integration into MEMS electrostatic actuators

    NASA Astrophysics Data System (ADS)

    Huda, M. Q.; Amin, T. M. F.; Ning, Y.; McKinnon, G.; Tulip, J.; Jäger, W.

    2013-03-01

    We developed a process for the fabrication of thin vertical mirrors as integrated structures of MEMS electrostatic actuators. The mirrors can be implemented as a vertical extension of the actuator sidewall, or can be positioned at any movable part of the actuator. The process involves the fabrication of a mesa structure on the handle layer of a silicon-oninsulator (SOI) wafer through deep reactive ion etching (DRIE). The etch/passivation cycles of the DRIE process were optimized to achieve vertical etch profiles with a depth of up to 200 ?m with an aspect ratio of 10:1. The DRIE process introduced typical etch scallops with peak-to-valley and rms roughnesses on the order of 100 nm and 30 nm, respectively. A mask layer was used to pattern a 2.1 ?m sacrificial oxide layer for the mesa structure. A second mask layer allowed us to define a large etch cavity for handle layer back-etch. The DRIE etched mesa structure was then etched with diluted potassium hydroxide (KOH) in isopropyl alcohol (IPA). Temperature and etch concentration were optimized for the removal of etch scallops without the formation of <111> etch facets. The etch scallops were almost completely removed and mirror quality surfaces were achieved. The developed mesa structures are suitable for integration into actuators that are patterned in the device layer. A third masking layer, aligned through infrared camera, was used to position the thin vertical mirror at the actuator sidewall. The process provides design flexibility in integrating vertical mirrors of adjustable dimensions to movable elements of MEMS structures.

  11. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  12. Multidimensional Plasma Sheath Modeling Using The Three Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Lilly, Robert; Shumlak, Uri

    2011-10-01

    There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. This expanded study employs the three-fluid (electrons, ions, neutrals) plasma model as it allows the capture of electron inertial effects, as well as energy and momentum transfer between the charged and neutral species. Previous investigations have typically assumed an electrostatic electric field. This work includes the full electrodynamics. Past work was conducted in 1- and 2-D. In this work, the problem is expanded to 3-D with the fluid equations extended from euler to Braginskii.

  13. Effect of dust charge fluctuations on current-driven electrostatic ion-cyclotron instability in a collisional magnetized plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh C.; Sharma, Kavita; Gahlot, Ajay

    2013-05-01

    Current-driven electrostatic ion-cyclotron (EIC) instability is studied in a collisional magnetized dusty plasma. The growth rate and unstable mode frequencies were evaluated based on existing physical parameters relevant to ion cyclotron waves in dusty plasmas. It is found that the unstable mode frequency and growth rate of current-driven EIC instability increase with ? (ion-to-electron density ratio). Moreover, the increase in electron neutral collisional frequency (?e) has no effect on the unstable mode frequency while the normalized growth rate has linear dependence on ?e.

  14. Effect of dust charge fluctuations on current-driven electrostatic ion-cyclotron instability in a collisional magnetized plasma

    SciTech Connect

    Sharma, Suresh C.; Sharma, Kavita; Gahlot, Ajay [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India)] [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India)

    2013-05-15

    Current-driven electrostatic ion-cyclotron (EIC) instability is studied in a collisional magnetized dusty plasma. The growth rate and unstable mode frequencies were evaluated based on existing physical parameters relevant to ion cyclotron waves in dusty plasmas. It is found that the unstable mode frequency and growth rate of current-driven EIC instability increase with ? (ion-to-electron density ratio). Moreover, the increase in electron neutral collisional frequency (?{sub e}) has no effect on the unstable mode frequency while the normalized growth rate has linear dependence on ?{sub e}.

  15. Persistence of magnetic field driven by relativistic electrons in a plasma

    NASA Astrophysics Data System (ADS)

    Flacco, A.; Vieira, J.; Lifschitz, A.; Sylla, F.; Kahaly, S.; Veltcheva, M.; Silva, L. O.; Malka, V.

    2015-05-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultrahigh-energy particle flows through gas, plasma and interstellar media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each process operates can be reconciled by scaling parameters that enable one to emulate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles in a laser-wakefield accelerator strongly magnetizes the boundary between plasma and non-ionized gas. We demonstrate, from time-resolved large-scale magnetic-field measurements and full-scale particle-in-cell simulations, the generation of strong magnetic fields up to 10-100 tesla (corresponding to nT in astrophysical conditions). These results open new paths for the exploration and modelling of ultrahigh-energy particle-driven magnetic-field generation in the laboratory.

  16. Nonlinear Evolution of Current-Driven Instabilities in Weakly Magnetized Magnetospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Newman, David L.

    2005-10-01

    In many regions of Earth's magnetosphere, including magnetic reconnection sites, the electrons are weakly magnetized according to the criterion ?e< ?e. These regions often contain strong currents with gradients perpendicular to B (i.e., shear). Reduced Vlasov simulations (N. Sen et al., this meeting), which permit computationally fast evaluation of phase-space dynamics of magnetized plasma species, are employed to simulate the nonlinear evolution of sheared current-driven instabilities in magnetospheric plasmas with weakly magnetized electrons and (effectively) unmagnetized ions. For sufficiently large currents, the plasma will be Buneman unstable. For currents near the Buneman threshold, double layers can form and accelerate electron beams, resulting in secondary two-stream instabilities. Both cases can lead to the formation of electron phase-space holes with bipolar electric field signatures such as those recently observed by Cluster near a reconnection site in Earth's magnetotail.ootnotetextC. A. Cattell et al., JGR, 110, A01211 (2005). In certain regimes, electron holes appear to form in regions of maximum current but later localize near the edge of the current-carrying region. The generation of low- and high-frequency waves and the evolution of the currents will also be discussed.

  17. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    SciTech Connect

    Drallos, P.J.; Riley, M.E.

    1995-01-01

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ``cited state densities in the ``GEC`` Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions.

  18. Mechanisms of Streamer Propagation Affected by Driven Voltage Polarity in a Cold Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Yang, Lanlan

    2015-01-01

    A two-dimensional self-consistent fluid model is used to investigate the effects of DC-voltage polarity in plasma initiation and propagation of helium plasma jet. The simulation results indicate that the difference in initial breakdown for the positive jet and negative jet leads to a difference in the electron density of about 4 orders of magnitude, even with the same initial electric field, which also influences the subsequent propagation. In the propagation process of negative jets, the ionization process exists in a longer gas channel behind the streamer head. In addition, the drift process to the infinite grounded electrode driven by the electric field results in higher energy consumption in the ionization process. However, in the positive jet, the ionization process mainly exists in the streamer head. Therefore, the differences in the initial breakdown and propagation process make the electric field intensity and the ionization weaker in the streamer head of the negative jet, which explains the weaker and shorter appearance of the negative jet compared to the positive jet. Our model can adequately reproduce the experimental results, viz. a bullet-like propagation in the positive jet and a continuous plasma plume in the negative jet. Furthermore, it also indicates that the streamer velocity shows the same variations as the electron drift velocity for both positive and negative jets.

  19. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    E-print Network

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  20. Femtosecond-Laser-Driven Cluster-Based Plasma Source for High-Resolution Ionography

    SciTech Connect

    Faenov, A. Ya.; Pikuz, T. A. [Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA), Kizugawa-shi, Kyoto, 619-0215 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation); Fukuda, Y.; Kando, M.; Kotaki, H.; Homma, T.; Kawase, K.; Kameshima, T.; Mori, M.; Sakaki, H.; Hayashi, Y.; Nakamura, T. [Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA), Kizugawa-shi, Kyoto, 619-0215 (Japan); Pirozhkov, A.; Yogo, A.; Tampo, M.; Bolton, P.; Daido, H.; Tajima, T. [Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA), Kizugawa-shi, Kyoto, 619-0215 (Japan); Photo-Medical Research Center, JAEA, Kizugawa-city, Kyoto 619-0215 (Japan); Pikuz, S. A. Jr.; Kartashev, V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation)

    2009-07-25

    The intense isotropic source of multicharged ions, with energy above 300 keV, was produced by femtosecond Ti:Sa laser pulses irradiation (intensity of approx4x10{sup 17} W/cm{sup 2}) of the He and CO{sub 2} gases mixture expanded in supersonic jet. High contrast ionography images have been obtained for 2000 dpi metal mesh, 1 mum polypropylene and 100 nm Zr foils, as well as for different biological objects. Images were recorded on 1 mm thick CR-39 ion detector placed in contact with back surface of the imaged samples, at the distances 140-160 mm from the plasma source. The obtained spatial resolution of the image was approx600 nm. A 100 nm object thickness difference was resolved very well for both Zr and polymer foils. The multicharged ion energy for Carbon and Oxygen ions passing through the 1 mum polypropylene foil is estimated to give the energy of more than 300 keV. An almost equal number of ions were measured with total number of about 10{sup 8} per shot at a different direction from plasma source. Easy production of different sub-MeV ions in wide space angle, recognizes femtosecond-laser-driven-cluster-based plasma as a well-suited bright source for novel type of submicron ionography to image different media, including nanofoils, membranes, and other low-contrast objects.

  1. On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator

    Microsoft Academic Search

    Nicolas Benard; Eric Moreau

    2011-01-01

    Commercial and military aircrafts or miniature aerial vehicles can suffer from massive flow separation when high angles of\\u000a attack are required. Single dielectric barrier discharge (DBD) actuators have demonstrated their capability of controlling\\u000a such a separated flow at low external velocity. However, the processes resulting in the improvement of the flight performances\\u000a remain unclear. In the present study, the reattachment

  2. Numerical Simulation of Rotation-Driven Plasma Transport In the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wolf, Richard A.

    1997-01-01

    A Jupiter version of the Rice Convection Model (RCM-J) was developed with support of an earlier NASA SR&T grant. The conversion from Earth to Jupiter included adding currents driven by centrifugal force, reversing the planetary magnetic field, and rescaling various parameters. A series of informative runs was carried out, all of them solving initial value problems. The simulations followed an initial plasma torus configuration as it fell apart by interchange instability. Some conclusions from the simulations were the following: 1. We confirmed that, for conventional values of the torus density and ionospheric conductance, the torus disintegrates by interchange instability on a time scale of approx. one day, which is 1-2 orders of magnitude shorter than the best estimates of the average residence time of plasma in the torus. 2. In the model, the instability could be slowed to an arbitrary degree by the addition of sufficient impounding energetic particles, as suggested earlier by Siscoe et al (1981). However, the observed energetic particles do not seem sufficient to guarantee impoundment (e.g., Mauk et al., 1996). 3. Whether inhibited by impoundment or not, the interchange was found to proceed by the formation of long fingers, which get thinner as they get longer. This picture differed dramatically from the conventional radial-diffusion picture (e.g., Siscoe and Summers (1981)), more superficially with the outward-moving-blob picture (Pontius and Hill, 1989). The obvious limitation of the original RCM-J was that it could not represent a plasma source. We could represent the decay of a pre-existing torus, but we could not represent the way ionization of material from Io continually replenishes the plasma. We consequently were precluded from studying a whole set of fundamental issues of torus theory, including whether the system can come to a steady state.

  3. Temperature measurement using infrared thermography of the dielectric in a dbd plasma actuator dedicated to subsonic airflow control

    Microsoft Academic Search

    Romain Joussot; Dunpin Hong; Vincent Boucinha; Regine Weber-Rozenbaum; Annie Leroy-Chesneau

    2010-01-01

    In order to use the non-thermal plasmas for subsonic airflow control, plasmas created on a dielectric surface have been widely investigated by researchers and engineers in several coutries1. The plasmas in these studies were mainly generated by a corona discharge or a dielectric barrier discharge (DBD). Usually, electrical parameters including active power are measured as well as the induced ionic

  4. Laser-Driven Plasma Deceleration of Electron Beams for Compact Photon Sources

    NASA Astrophysics Data System (ADS)

    Vay, J.-L.; Geddes, C. G. R.; Rykovanov, S. G.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2015-10-01

    Particle accelerators are in widespread use as intense, precisely controllable photon sources, but many applications, including nuclear nonproliferation, are limited by size. Laser-driven plasma accelerators (LPAs) reduce accelerator size, but a compact system also requires addressing radiation hazards resulting from disposal of particle beam energy after photon production, typically requiring large and heavy "beam dumps". In this paper, we investigate, through 3-D Particle-In-Cell simulations, an LPA stage demonstrating equal effectiveness at accelerating and decelerating an electron beam over a very short distance. This indicates that in addition to providing compact accelerators, such structures can effectively reduce beam energy after photon production and hence beam dump weight and volume. This is important to the development of compact photon source systems which can satisfy needs including transportable operation or operation in populated areas.

  5. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    SciTech Connect

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  6. Linear instabilities driven by differential rotation in very weakly magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Quataert, E.; Heinemann, T.; Spitkovsky, A.

    2015-03-01

    We study the linear stability of weakly magnetized differentially rotating plasmas in both collisionless kinetic theory and Braginskii's theory of collisional, magnetized plasmas. We focus on the very weakly magnetized limit in which ? ? ?c/?, where ? is the ratio of thermal to magnetic energy and ?c/? is the ratio of the cyclotron frequency to rotation frequency. This regime is important for understanding how astrophysical magnetic fields originate and are amplified at high redshift. We show that the single instability of fluid theory - the magnetorotational instability mediated by magnetic tension - is replaced by two distinct instabilities, one associated with ions and one with electrons. Each of these has a different way of tapping into the free energy of differential rotation. The ion instability is driven by viscous transport of momentum across magnetic field lines due to a finite ion cyclotron frequency (gyroviscosity); the fastest growing modes have wavelengths significantly longer than magnetohydrodynamic (MHD) and Hall MHD predictions. The electron instability is a whistler mode driven unstable by the temperature anisotropy generated by differential rotation; the growth time can be orders of magnitude shorter than the rotation period. The electron instability is an example of a broader class of instabilities that tap into the free energy of differential rotation or shear via the temperature anisotropy they generate. We briefly discuss the application of our results to the stability of planar shear flows and show that such flows are linearly overstable in the presence of fluid gyroviscosity. We also briefly describe the implications of our results for magnetic field amplification in the virialized haloes of high-redshift galaxies.

  7. Effects of electron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    Microsoft Academic Search

    Supriya B. Ganguli; Peter J. Palmadesso; Horace G. Mitchell

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current region have been performed to show that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to much higher transverse ion temperature than the current driven EIC instability (CDICI) alone would produce. Anomalous resistivity enhances ion heating in two

  8. Effects of eletron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    Microsoft Academic Search

    Supriya B. Ganguli; Horace G. Mitchell; Peter J. Palmadesso

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes

  9. Effects of electron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    Microsoft Academic Search

    Supriya B. Ganguli; Peter J. Palmadesso; Horace G. Mitchell

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current tregion have been performed to show that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to much higher transverse ion temperature than the current driven EIC instability (CDICI) alone would produce. Anomalous resistivity enhances ion heating in two

  10. Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas O. V. Gotchev,1,2,3

    E-print Network

    Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas O. V. Gotchev,1,2,3 P. Y velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core density. In such systems, thermal conduction losses are a major factor in the energy balance

  11. A water bag model of driven phase space holes in non-neutral plasmas L. Friedland,1,a

    E-print Network

    Friedland, Lazar

    - nova remnant electrostatic shocks waves.12 Numerical simu- lations suggested that stable one-dimensional; accepted 23 July 2008; published online 15 August 2008 The formation and control of stable multiphase space hole structures and the associated Bernstein­ Greene­Kruskal modes in trapped pure ion plasmas driven

  12. A quantitative analysis of Scratch Drive Actuator using buckling motion

    Microsoft Academic Search

    Terunobu Akiyama; Hiroyuki Fujita

    1995-01-01

    This paper presents a surface micromachined polysilicon actuator which employs an electrostatic driven Scratch Drive Actuator (SDA) to generate a force that can move an extemal object. The micro actuator consists of the SDA, a link frame and a buckling beam. Using this structure, generated forces of the SDA as a function of applied pulse peak voltages were measured. A

  13. Study on optical servosystem - Contribution to optical actuator

    Microsoft Academic Search

    Takeshi Nakada; Dong-Hui Cao; Chi-Yu Hsien; You Yamauti; Takashi Yamauti

    1993-01-01

    This paper deals with a new concept of an optical servosystem and presents an experimental analysis on photostrictive ceramics for use as an optical actuator in the optical servosystem. The optical servosystem proposed here is characterized by introduction of an optical actuator into the system. PLZT ceramics is used as an optical actuator which is directly driven by light irradiation.

  14. Hydraulic actuated automotive cooling systems—Nonlinear control and test

    Microsoft Academic Search

    M. H. Salah; P. M. Frick; J. R. Wagner; D. M. Dawson

    2009-01-01

    The replacement of traditional automotive mechanical cooling system components with computer controlled servo-motor driven actuators can improve temperature tracking and reduce parasitic losses. The integration of hydraulic actuators in the engine cooling circuit offers greater power density in a smaller package space when compared with electric actuators. In this paper, a comprehensive nonlinear backstepping robust control technique is developed to

  15. Quantification of the effect of surface heating on shock wave modification by a plasma actuator in a low-density supersonic flow over a flat plate

    NASA Astrophysics Data System (ADS)

    Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis

    2015-05-01

    This paper describes experimental and numerical investigations focused on the shock wave modification induced by a dc glow discharge. The model is a flat plate in a Mach 2 air flow, equipped with a plasma actuator composed of two electrodes. A weakly ionized plasma was created above the plate by generating a glow discharge with a negative dc potential applied to the upstream electrode. The natural flow exhibited a shock wave with a hyperbolic shape. Pitot measurements and ICCD images of the modified flow revealed that when the discharge was ignited, the shock wave angle increased with the discharge current. The spatial distribution of the surface temperature was measured with an IR camera. The surface temperature increased with the current and decreased along the model. The temperature distribution was reproduced experimentally by placing a heating element instead of the active electrode, and numerically by modifying the boundary condition at the model surface. For the same surface temperature, experimental investigations showed that the shock wave angle was lower with the heating element than for the case with the discharge switched on. The results show that surface heating is responsible for roughly 50 % of the shock wave angle increase, meaning that purely plasma effects must also be considered to fully explain the flow modifications observed.

  16. Accelerated dynamics of blast wave driven Rayleigh-Taylor instabilities in high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Swisher, N.; Kuranz, C.; Drake, R. P.; Abarzhi, S. I.

    2014-10-01

    We report the systematic analysis of experimental data describing the late time evolution of the high Mach number and high Reynolds number Rayleigh-Taylor instability which is driven by a blast wave. The parameter regime is relevant to high energy density plasmas and astrophysics. The experiments have been conducted at the Omega laser facility. By processing the experimental x-ray images, we quantified the delicate features of RT dynamics, including the measurements of the curvature of the transmitted shock and the interface envelopes, the positions of RT bubbles and spikes, and the quantification of statistics of RT mixing. The measurements were performed at four time steps and for three different initial perturbations of the target (single mode and two two-mode). We found that within the noise level the curvatures of the shock and interface envelope evolve steadily and are an imprint of laser imperfections. At late times, the bubble merge does not occur, and the flow keeps significant degree of order. Yet, the blast-wave-driven RT spikes do accelerate with the power-law exponent smaller than that in case of sustained acceleration. We compared the experimental results with the momentum model of RT mixing and stochastic model achieving good agreement. The work is supported by the US National Science Foundation.

  17. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  18. Ion-temperature-gradient driven modes in dust-contaminated plasma with nonthermal electron distribution and dust charge fluctuations

    NASA Astrophysics Data System (ADS)

    Zakir, U.; Haque, Q.; Qamar, A.; Mirza, Arshad M.

    2014-04-01

    The effect of nonthermal electrons on ion-temperature-gradient (ITG) driven modes is investigated in the presence of variable dust charge and ion shear flow. The dust charge fluctuating expression is obtained in the presence of kappa distributed electrons. A dispersion relation is derived and analyzed numerically by choosing space plasma parameters of Jupiter/Saturn magnetospheres. It is found that the presence of nonthermal electrons population reduces the growth rate of ITG mode driven instability. The effects of ion temperature, electron density and magnetic field variation on the growth rate of ITG instability are presented numerically. It is also pointed out that the present results will be useful to understand the ITG driven modes with variable dust charge and kappa distributed electrons, present in most of the space plasma environments.

  19. Fabrication of TiNi shape memory actuator for micropump

    NASA Astrophysics Data System (ADS)

    Makino, Eiji; Mitsuya, Takashi; Shibata, Takayuki

    1999-09-01

    We are attempting to develop a shape memory alloy (SMA) actuated micropump as a component for use in micro analysis or micro dosage systems. In this paper, we will discuss the fabrication process and dynamic actuation properties of an SMA actuator. TiNi thin film of about 6 micrometers in thickness was deposited onto a Si wafer with a square recess on its reverse side, and annealed at 500 degrees C for 1h in a vacuum to memorize an initial flat shape. The TiNi thin film and a Pyrex glass cap of 500 micrometers thickness with a square recess were then anodically bonded together in a vacuum to form a chamber to which a bias pressure was to be applied to deform the TiNi thin film. After removing the remaining 50 $mUm thick Si layer beneath the TiNi thin film by RIE in SF6 plasma, a shape memory diaphragm of 5mm square in size was completed. The fabricated actuator was driven by resistive heating and air-cooling under a bias pressure of 200 kPa, which was applied by a nitrogen gas flow through a small hole pieced in the Pyrex glass cap. Under these conditions, the actuator gave displacements of about 95 micrometers at the center during repeated thermal cycles. A Si check valve structure, to be assembled with the actuator to construct a micropump, was also fabricated through a process of anisotropic etching and fusion bonding. The flow resistance for forward flow proved to be about one-three hundredths of that for backward flow.

  20. Trapped energetic electron driven modes with second stable regime in tokamak plasmas

    SciTech Connect

    He, Hongda; He, Zhixiong; Zheng, G. Y.; Lu, Gaimin; Hao, G. Z.; Tao, Xie; Wang, L. F. [Southwestern Institute of Physics, Chengdu (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou (China); Southwestern Institute of Physics, Chengdu (China); Zhao, K. [Southwest University for Nationalities, Chengdu (China)

    2014-06-15

    Features of fishbone-like trapped energetic electrons driven modes (TEEMs), which are a particular manifestation of the fishbone gap modes, are investigated taking into account model radial profile and the pitch angle distribution of the energetic electrons (EEs). The TEEMs are found unstable only when the beta values of EEs ?{sub h} (=pressure of the energetic electrons/pressure of magnetic field) are higher than certain critical values which are proportional to perturbed energy ?W{sup ^}{sub c} of background plasma and much lower than that for traditional fishbone modes. In addition, TEEMs become stable again and enter a second stable regime when ?{sub h} values are higher than second critical values. Furthermore, the modes can only be excited in plasmas which are stable for MHD instabilities. The real frequency and growth rate of the modes are approximately linear and parabolic functions of ?{sub h}, respectively. The real frequency is very low but not zero in the vicinity of lower beta region, whereas it is comparable to the toroidal precession frequency of the EEs in higher critical beta region. The numerical results show that the second stable regime is easy to form when q?=?1 flux surface is close to the magnetic axis. Suitable density gradient of EEs and magnetic shear are other two necessary conditions for excitation of the TEEMs.

  1. Trapped energetic electron driven modes with second stable regime in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    He, Hongda; Dong, J. Q.; Zhao, K.; He, Zhixiong; Zheng, G. Y.; Lu, Gaimin; Hao, G. Z.; Tao, Xie; Wang, L. F.

    2014-06-01

    Features of fishbone-like trapped energetic electrons driven modes (TEEMs), which are a particular manifestation of the fishbone gap modes, are investigated taking into account model radial profile and the pitch angle distribution of the energetic electrons (EEs). The TEEMs are found unstable only when the beta values of EEs ?h (=pressure of the energetic electrons/pressure of magnetic field) are higher than certain critical values which are proportional to perturbed energy ?W ?c of background plasma and much lower than that for traditional fishbone modes. In addition, TEEMs become stable again and enter a second stable regime when ?h values are higher than second critical values. Furthermore, the modes can only be excited in plasmas which are stable for MHD instabilities. The real frequency and growth rate of the modes are approximately linear and parabolic functions of ?h, respectively. The real frequency is very low but not zero in the vicinity of lower beta region, whereas it is comparable to the toroidal precession frequency of the EEs in higher critical beta region. The numerical results show that the second stable regime is easy to form when q = 1 flux surface is close to the magnetic axis. Suitable density gradient of EEs and magnetic shear are other two necessary conditions for excitation of the TEEMs.

  2. Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.

    2012-10-01

    Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (??/?˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (??˜1THz) to observations for narrower bandwidth operation (??˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.

  3. 41.8-nm Xe{sup 8+} laser driven in a plasma waveguide

    SciTech Connect

    Butler, A.; Gonsalves, A.J.; McKenna, C.M.; Spence, D.J.; Hooker, S.M.; Sebban, S.; Mocek, T.; Betttaibi, I.; Cros, B. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Laboratoire d'Optique Appliquee, ENSTA/Ecole Polytechnique, CNRS UMR 7639, F-91761 Palaiseau cedex (France); LPGP, UMR 8578, CNRS, Universite Paris XI, Batiment 210, 91405 Orsay (France)

    2004-08-01

    An experimental demonstration of an optical field ionization short-wavelength laser driven in a gas-filled capillary-discharge waveguide is described in detail. Guiding of high-intensity laser pulses has previously been demonstrated with this type of waveguide for capillary discharges in hydrogen. For the present experiments xenon gas was mixed with the hydrogen, and strong lasing on the 4d{sup 9}5d-4d{sup 9}5p transition in Xe{sup 8+} at 41.8 nm was observed. Under optimum conditions the short-wavelength laser output achieved with the waveguide was found to be greater than that from a Xe gas cell. Measurements of the transmission of the pump laser pulses through the waveguide show that the short-wavelength laser signal was greatest under conditions for which the pump laser pulses were well guided. Simulations of the propagation of the pump laser radiation are presented for a range of initial plasma conditions, and these indicate that the laser-plasma interaction length achieved was greatly increased compared to that which can be achieved in a gas cell.

  4. Linear and Quasilinear Model for Pressure-Driven Interchange and Entropy Modes in a Warm Electron Dipole Plasma

    NASA Astrophysics Data System (ADS)

    Mauel, M.; Garnier, D.; Roberts, T.; Kesner, J.

    2014-10-01

    The measured structures of electrostatic interchange modes in dipole-confined plasma cause global mixing when driven by energetic trapped electrons, sonic plasma, or warm electron pressure. Global circulation also appears in planetary magnetospheres driven by solar wind, but differences exist in underlying physics. Breaking azimuthal symmtry in magnetospheres caused currents to flow through the ionosphere, which regulate interchange motion. In the laboratory, there are no field-aligned currents and perturbations induce ion-inertial currents, which determine the global linear model structure. In this poster, the linear description of global interchange and entropy modes are presented for the CTX and LDX laboratory magnetospheres computed from the flux-tube averaged gyrofluid equations. Additionally, the quasilinear particle and heat flux are calculated and show turbulent self-organization that drives profiles to become centrally-peaked. Supported by the NSF-DOE Partnership in Plasma Science Grants DE-FG02-00ER54585 and PHY-1201896.

  5. Combined actuator and latch for cartridge powered actuator

    NASA Technical Reports Server (NTRS)

    Murphy, D. W.

    1967-01-01

    Combined attenuator and latch stops and latches in place a given mass which is to be moved a discrete distance to effect a desired condition. This device is used in a retraction actuator driven by a pyrotechnic thruster, and can be tailored to meet specific design requirements.

  6. Mars Science Laboratory Rover Actuator Thermal Design

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Liu, Yuanming; Lee, Chern-Jiin; Hendricks, Steven

    2010-01-01

    NASA will launch a 900 kg rover, part of the Mars Science Laboratory (MSL) mission, to Mars in October of 2011. The MSL rover is scheduled to land on Mars in August of 2012. The rover employs 31, electric-motor driven actuators to perform a variety of engineering and science functions including: mobility, camera pointing, telecommunications antenna steering, soil and rock sample acquisition and sample processing. This paper describes the MSL rover actuator thermal design. The actuators have stainless steel housings and planetary gearboxes that are lubricated with a "wet" lubricant. The lubricant viscosity increases with decreasing temperature. Warm-up heaters are required to bring the actuators up to temperature (above -55 C) prior to use in the cold wintertime environment of Mars (when ambient atmosphere temperatures are as cold as -113 C). Analytical thermal models of all 31 MSL actuators have been developed. The actuators have been analyzed and warm-up heaters have been designed to improve actuator performance in cold environments. Thermal hardware for the actuators has been specified, procured and installed. This paper presents actuator thermal analysis predicts, and describes the actuator thermal hardware and its operation. In addition, warm-up heater testing and thermal model correlation efforts for the Remote Sensing Mast (RSM) elevation actuator are discussed.

  7. INJECTION OF PLASMA INTO THE NASCENT SOLAR WIND VIA RECONNECTION DRIVEN BY SUPERGRANULAR ADVECTION

    SciTech Connect

    Yang Liping; He Jiansen; Tu Chuanyi; Chen Wenlei; Zhang Lei; Wang Linghua; Yan Limei [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Peter, Hardi [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse, D-37191 Katlenburg-Lindau (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Feng, Xueshang, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100871 Beijing (China)

    2013-06-10

    To understand the origin of the solar wind is one of the key research topics in modern solar and heliospheric physics. Previous solar wind models assumed that plasma flows outward along a steady magnetic flux tube that reaches continuously from the photosphere through the chromosphere into the corona. Inspired by more recent comprehensive observations, Tu et al. suggested a new scenario for the origin of the solar wind, in which it flows out in a magnetically open coronal funnel and mass is provided to the funnel by small-scale side loops. Thus mass is supplied by means of magnetic reconnection that is driven by supergranular convection. To validate this scenario and simulate the processes involved, a 2.5 dimensional (2.5D) numerical MHD model is established in the present paper. In our simulation a closed loop moves toward an open funnel, which has opposite polarity and is located at the edge of a supergranulation cell, and magnetic reconnection is triggered and continues while gradually opening up one half of the closed loop. Its other half connects with the root of the open funnel and forms a new closed loop which is submerged by a reconnection plasma stream flowing downward. Thus we find that the outflowing plasma in the newly reconnected funnel originates not only from the upward reconnection flow but also from the high-pressure leg of the originally closed loop. This implies an efficient supply of mass from the dense loop to the dilute funnel. The mass flux of the outflow released from the funnel considered in our study is calculated to be appropriate for providing the mass flux at the coronal base of the solar wind, though additional heating and acceleration mechanisms are necessary to keep the velocity at the higher location. Our numerical model demonstrates that in the funnel the mass for the solar wind may be supplied from adjacent closed loops via magnetic reconnection as well as directly from the footpoints of open funnels.

  8. Polyaniline actuators

    Microsoft Academic Search

    Elisabeth Smela; Wen Lu; Benjamin R. Mattes

    2005-01-01

    Drawn polyaniline films and fibers doped with 2-acrylamido-2-methyl-propane-1-sulfonic acid, PANI(AMPS), were electrochemically cycled in HCl and their material properties and actuation performance comprehensively characterized. The Young's modulus was obtained as a function of applied voltage. Actuator figures of merit were derived from isotonic and isometric measurements, including strain, stress, work, power, creep, and efficiency. The effects of sample length, solution

  9. Numerical simulation of waves driven by plasma currents generated by low-frequency Alfvén waves in a multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Khazanov, George

    2004-05-01

    When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfvén (LFA) wave, the crossed-electric-and-magnetic field (E × B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.

  10. Numerical Simulation of Waves Driven by Plasma Currents Generated by Low-Frequency Alfven Waves in a Multi-Ion Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2004-01-01

    When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.

  11. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off-the-shelf, electric servomotor, a motor angle resolution sensor (typically an encoder or resolver), and microprocessor-based intelligent software. In applications requiring precision positioning, it may be necessary to add strain gauges to the T-slide housing. Existing sensory- interactive motion control art will work for T slides. For open-loop positioning, a stepping motor emulation technique can be used.

  12. Wireless actuation characteristics and modal control effectiveness of segmented photostrictive actuators

    Microsoft Academic Search

    Hong-Hao Yue; Gui-Lan Sun; Zong-Quan Deng; Horn-Sen Tzou

    2007-01-01

    Photostrictive materials, such as PLZT, which have the ability to convert high-energy light into mechanical motion, are emerging as new actuation materials. In contrast to the conventional transducers, photostrictive materials can produce actuation strains resulting from irradiation from certain wavelength light, which are immune from the electromagnetic interferences. And this photo-driven process is the photodeformation effect. In this paper, characteristics

  13. Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments

    SciTech Connect

    Merlino, Robert L. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States)

    2009-12-15

    Dust acoustic waves (DAWs) are spontaneously excited in dusty plasmas produced in dc and rf discharge plasmas over a wide range of plasma and dust conditions. A common feature of these plasmas is the presence of an ion drift relative to the dust, which is driven by an electric field, E{sub o} in the discharge. Using a three fluid model of the DAWs, including the zero order electric field and collisions of all species with the background neutral gas (pressure P{sub o}), DAW stability curves were obtained in the E{sub o}-P{sub o} plane, for various dust and wave parameters. The (E{sub o},P{sub o}) data points from several experiments in which DAWs have been observed are also shown in comparison with the theoretical stability boundaries. This analysis supports the conclusion that the DAWs are excited by an ion-dust streaming instability.

  14. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research vessels. Heretofore, electrically actuated hydraulic pumps have been used for this purpose. By eliminating the demand for electrical energy for pumping, the use of the thermally actuated hydraulic pumps could prolong the intervals between battery charges, thus making it possible to greatly increase the durations of undersea exploratory missions.

  15. Current-driven Langmuir oscillations and amplitude modulations—Another view on electron beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Sauer, K.; Sydora, R. D.

    2015-01-01

    origin of Langmuir amplitude modulations and harmonic waves observed in the solar wind and in planetary foreshock regions is investigated in beam plasmas where the saturation process of the beam instability is accompanied with the formation of a plateau distribution. This saturated state represents a current which is shown to drive homogeneous electric field oscillations at the plasma frequency. This simple mechanism has been ignored in most numerical studies based on Vlasov or particle-in-cell simulations because of the use of the Poisson equation which is not suitable to describe the mechanism of current drive in plasmas with immobile ions; instead, Ampere's law must be used. A simple fluid description of stable plateau plasmas, coupled with Ampere's law, is applied to illustrate the basic elements of current-driven Langmuir oscillations. If beam-generated Langmuir/electron-acoustic waves with frequencies above or below the plasma frequency are simultaneously present, beating of both wave modes leads to Langmuir amplitude modulations, thus providing an alternative to parametric decay. Furthermore, very important implications of our studies (presented separately) concern the electrostatic and electromagnetic second harmonic generation by nonlinear interaction of Langmuir oscillations with finite wave number modes which are driven by the plateau current as well.

  16. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    SciTech Connect

    O'Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  17. Ion motion in the wake driven by long particle bunches in plasmas

    SciTech Connect

    Vieira, J.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon (Portugal); Fonseca, R. A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon (Portugal); DCTI, ISCTE – Instituto Universitário de Lisboa, 1649-026 Lisboa (Portugal); Mori, W. B. [Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-05-15

    We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ Dawson's plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunch limit. We use these results to determine the on-set of the ion dynamics and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.

  18. Non-Gaussian statistics and superdiffusion in a driven-dissipative dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.; Feng, Yan

    2008-10-01

    Particle random motion can exhibit both anomalous diffusion and non-Gaussian statistics in some physical systems. Anomalous diffusion is quantified by a deviation from ?=1 in a power law for a particle’s mean-square displacement, MSD?(?t)? . A deviation from Gaussian statistics for a probability distribution function (PDF) is quantified by fitting to a ? function or Tsallis distribution, with a fit parameter q . We report an experiment and simulations to test a theory that connects anomalous diffusion and non-Gaussian statistics. In the experiment, a single-layer dusty plasma, which behaved as a two-dimensional (2D) driven-dissipative system, had a non-Gaussian PDF. By adjusting an externally applied laser heating, q was varied over a wide range. A correlation between the deviations from Gaussian statistics and normal diffusion for a 2D liquid was found in the experiment. This correlation indicates a connection between anomalous diffusion and non-Gaussian statistics. However, such a connection is lacking in equilibrium 2D Yukawa liquids, as demonstrated in numerical simulations.

  19. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (?? / ? ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (?? ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  20. FIRST COMPLETE DETERMINATION OF PLASMA PHYSICAL PARAMETERS ACROSS A CORONAL MASS EJECTION-DRIVEN SHOCK

    SciTech Connect

    Bemporad, A.; Mancuso, S., E-mail: bemporad@oato.inaf.i [Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Torino (Italy)

    2010-09-01

    We report on the study of a fast coronal mass ejection (CME)-driven shock associated with the solar eruption of 2002 March 22. This event was observed in the intermediate corona both in white light and the extreme ultraviolet (EUV) by the LASCO and UVCS instruments on board the Solar and Heliospheric Observatory, as well as in metric and decametric wavelengths through space- and ground-based radio observatories. Clear signatures of shock transit are (1) strong type II emission lanes observed after the CME initiation, (2) strong O VI {lambda}{lambda}1032, 1037 line profile broadenings (up to {approx}2 x 10{sup 7} K) associated with the shock transit across the UVCS slit field of view, and (3) a density enhancement located in LASCO images above the CME front. Since the UVCS slit was centered at 4.1 R{sub sun}, in correspondence with the flank of the expanding CME, this observation represents the highest UV detection of a shock obtained so far with the UVCS instrument. White-light and EUV data have been combined in order to estimate not only the shock compression ratio and the plasma temperature, but also the strength of the involved coronal magnetic fields, by applying the Rankine-Hugoniot equations for the general case of oblique shocks. Results show that, for a compression ratio X = 2.06 as derived from LASCO data, the coronal plasma is heated across the shock from an initial temperature of 2.3 x 10{sup 5} K up to 1.9 x 10{sup 6} K, while at the same time the magnetic field undergoes a compression from a pre-shock value of {approx}0.02 G up to a post-shock field of {approx}0.04 G. Magnetic and kinetic energy density increases at the shock are comparable (in agreement with the idea of equipartition of energy), and both are more than two times larger than the thermal energy density increase. This is the first time that a complete characterization of pre- and post-shock plasma physical parameters has been derived in the solar corona.

  1. A nonextensive approach for the instability of current-driven ion-acoustic waves in space plasmas

    Microsoft Academic Search

    Zhipeng Liu; Liyan Liu; Jiulin Du

    2009-01-01

    The instability of current-driven ion-acoustic waves in the collisionless magnetic-field-free space plasma is investigated by using a nonextensive approach. The ions and the electrons are thought of in the power-law distributions that can be described by the generalized q-Maxwellian velocity distribution and are considered with the different nonextensive q-parameters. The generalized q-wave frequency and the generalized instability q-growth rate for

  2. On the Transition from Thermally-driven to Ponderomotively-driven Stimulated Brillouin Scattering and Filamentation of Light in Plasma

    SciTech Connect

    R.L. Berger; E.J. Valeo; S. Brunner

    2005-04-04

    The dispersion properties of ion acoustic waves and their nonlinear coupling to light waves through ponderomotive and thermal forces are sensitive to the strength of electron-ion collisions. Here, we consider the growth rate of stimulated Brillouin scattering (SBS) when the driven acoustic wave frequency and wavelength span the range of small to large compared to electron-ion collision frequency and mean free path respectively. We find in all cases the thermal contributions to the SBS growth rate are insignificant if the ion acoustic wave frequency is greater than the electron-ion collision frequency and the wavelength is much shorter than the electron-ion mean free path. On the other hand, the purely growing filamentation instability remains thermally driven for shorter wavelengths than SBS even when the growth rate is larger than the acoustic frequency.

  3. Current-Driven Dust Ion-Cyclotron Waves in Presence of a Transverse DC Electric Fields in Magnetized Plasma with Charge Fluctuations

    Microsoft Academic Search

    Suresh C. Sharma; Satoshi Hamaguchi

    2004-01-01

    The current-driven electrostatic ion-cyclotron (EIC) instability is studied in presence of a transverse dc electric fields in a collisional magnetized dusty plasma. We derive the appropriate charging equation self consistently by using the Vlasov equation.

  4. Studies of ion kinetic effects in shock-driven inertial confinement fusion implosions at OMEGA and the NIF and magnetic reconnection using laser-produced plasmas at OMEGA

    E-print Network

    Rosenberg, Michael Jonathan

    2014-01-01

    Studies of ion kinetic effects during the shock-convergence phase of inertial confinement fusion (ICF) implosions and magnetic reconnection in strongly-driven, laser-produced plasmas have been facilitated by the use of ...

  5. Instability-driven electromagnetic fields in coronal plasmas M. J.-E. Manuel, C. K. Li, F. H. Sguin, N. Sinenian, J. A. Frenje et al.

    E-print Network

    flu- ids through the Lorentz force. Electromagnetic fields are pre- dicted to affect fluid behaviorInstability-driven electromagnetic fields in coronal plasmas M. J.-E. Manuel, C. K. Li, F. H://pop.aip.org/authors #12;Instability-driven electromagnetic fields in coronal plasmasa) M. J.-E. Manuel,1,b),c) C. K. Li,1

  6. Cross-field current-driven electrostatic instabilities and plasma heating in a counterstreaming electron-beams-plasma system

    Microsoft Academic Search

    Kiyoshi Yatsui; Takashi Irie; Masatomo Furumi; Tsuyoshi Imai; Mitsuyasu Yatsuzuka

    1976-01-01

    Experimental studies are presented of the wave characteristics and associated plasma heating in a system composed of two counterstreaming electron beams and a longitudinally magnetized inhomogeneous plasma. Such an injection of two beams makes the plasma potential strongly negative, and produces the cross-field current. Three types of electrostatic instabilities are excited by the cross-field current: lower-hybrid instability, ion-cyclotron harmonic instability,

  7. Parallel rf Force Driven by the Inhomogeneity of Power Absorption in Magnetized Plasma Zhe Gao,1,2,* Jiale Chen,2

    E-print Network

    Parallel rf Force Driven by the Inhomogeneity of Power Absorption in Magnetized Plasma Zhe Gao,1 Jersey 08543, USA (Received 8 February 2013; published 6 June 2013) A nonlinear parallel force can no integrated force over a plasma volume, this force can redistribute momentum parallel to the magnetic field

  8. Electrorepulsive actuator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (inventor); Curry, Kenneth C. (inventor)

    1992-01-01

    The invention is a linear actuator that operates under the principle that like charges repel and opposite charges attract. The linear actuator consists of first and second pairs of spaced opposed conductors where one member of each pair of conductors is attached to a fixed member, and where the other member of each pair of conductors is attached to a movable member such as an elongated rod. The two pairs of spaced conductors may be provided in the form of two spacedly interwound helical vanes where the conductors are located on the opposite sides of the two helical vanes. One helical vane extends inwardly from a housing and the other helical vane extends outwardly from an elongated rod. The elongated rod may be caused to move linearly with respect to the housing by applying appropriate charges of like or opposite polarity to the electrical conductors on the helical vanes.

  9. Characteristics of vapor coverage formation on an RF-driven metal electrode to discharge a plasma in saline solution

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Jang, Youn Chang; Lee, Sang-Heun; Hong, Jung Wha; Hong, Young ki; Kim, Gon-Ho

    2012-10-01

    The generation condition of sub-mm sized non-thermal plasmas (named aqua-plasmas) inside electrically conductive liquids (saline) is investigated with various electrical conductivities of the electrolyte. The breakdown condition of an RF-driven (380 kHz and less than 50 W) aqua-plasma discharge on a metal electrode is investigated using both experimental and numerical simulation methods. Since breakdown occurs in the vapor covering the powered electrode surface, the boiling process and the influence of fluidic dynamics on the vapor coverage oscillation are considered in detail. The vapor coverage is formed on the metal electrode surface via three phases: individual bubble generation, merging of bubbles and maintaining the bubbles during the aqua-plasma discharge inside the full vapor coverage. The surface temperature is evaluated from a numerical simulation based on the proposed one-dimensional aqua-plasma equivalent circuit electro-fluid power balance, and the bubble coverage can be sustained due to boiling of the film on the heated electrode by a current flow of electrolyte ions, especially Na+ in this case. The periodic discharge of the aqua-plasma inside the shrunken vapor coverage is investigated by a model that considers the electrolyte viscosity and surface charge model. The vapor coverage periodically shrinks under the heat balance between the gain, mainly plasma heating and heat flux from the heated tip, and the loss to the saline, so it is a feature that the aqua-plasma is discharged during the period of shrinkage. Moreover, the tip, heated up to meet the temperature condition of film boiling ˜300 °C, reduces the breakdown field due to the reduced work function of the electrode material.

  10. Polyaniline actuators

    Microsoft Academic Search

    Elisabeth Smela; Benjamin R. Mattes

    2005-01-01

    Actuation of polyaniline (PANI)\\/Au bending bilayers and stretched polyaniline fibers doped with 2-acrylamido-2-methyl-propane-1-sulfonic acid was studied in aqueous methanesulfonic acid. Electrochemical activity was retained even upon repeated cycling into the pernigraniline state, unlike in HCl. The polyaniline expanded 1.6% from the leucoemeraldine state to the emeraldine state, similar to the strain in HCl, and then contracted 0.2% upon entering the

  11. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  12. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    SciTech Connect

    Reiser, D. [Research Center Jülich GmbH, Institute for Energy and Climate Research—Plasma Physics, D-52425 Jülich (Germany)] [Research Center Jülich GmbH, Institute for Energy and Climate Research—Plasma Physics, D-52425 Jülich (Germany); Ohno, N. [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)] [Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki 509-5292 (Japan)] [National Institute for Fusion Science, Toki 509-5292 (Japan); Vela, L. [Physics Department, Universidad Carlos III de Madrid, Avda de la Universidad 30, 28911-Leganés, Madrid (Spain)] [Physics Department, Universidad Carlos III de Madrid, Avda de la Universidad 30, 28911-Leganés, Madrid (Spain)

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and the spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.

  13. Actuator Exerts Tensile Or Compressive Axial Load

    NASA Technical Reports Server (NTRS)

    Nozzi, John; Richards, Cuyler H.

    1994-01-01

    Compact, manually operated mechanical actuator applies controlled, limited tensile or compressive axial force. Designed to apply loads to bearings during wear tests in clean room. Intended to replace hydraulic actuator. Actuator rests on stand and imparts axial force to part attached to clevis inside or below stand. Technician turns control screw at one end of lever. Depending on direction of rotation of control screw, its end of lever driven downward (for compression) or upward (for tension). Lever pivots about clevis pin at end opposite of control screw; motion drives downward or upward link attached via shearpin at middle of lever. Link drives coupling and, through it, clevis attached to part loaded.

  14. Improved RF-driven probe method for RF discharge plasma diagnostics

    Microsoft Academic Search

    A. Ohsawa; M. Ohuchi; T. Kubota

    1991-01-01

    The authors describe an electrostatic probe technique for radio-frequency (RF) plasmas. The presence of RF potential fluctuations between probe and plasma distorts the Langmuir probe characteristic; it therefore introduces large errors into plasma parameters. The method presented an improved version of that proposed by Braithwaite et al. to remove the effect of an RF fluctuation on probe characteristics. It consists

  15. The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations

    SciTech Connect

    Greb, Arthur; Niemi, Kari; O'Connell, Deborah; Gans, Timo [York Plasma Institute, Department of Physics, University of York, York, YO10 5DD (United Kingdom)] [York Plasma Institute, Department of Physics, University of York, York, YO10 5DD (United Kingdom)

    2013-12-09

    Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

  16. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  17. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing.

    PubMed

    Madadi, Hojjat; Casals-Terré, Jasmina; Mohammadi, Mahdi

    2015-01-01

    There is currently a growing need for lab-on-a-chip devices for use in clinical analysis and diagnostics, especially in the area of patient care. The first step in most blood assays is plasma extraction from whole blood. This paper presents a novel, self-driven blood plasma separation microfluidic chip, which can extract more than 0.1 ?l plasma from a single droplet of undiluted fresh human blood (~5 ?l). This volume of blood plasma is extracted from whole blood with high purity (more than 98%) in a reasonable time frame (3 to 5 min), and without the need for any external force. This would be the first step towards the realization of a single-use, self-blood test that does not require any external force or power source to deliver and analyze a fresh whole-blood sample, in contrast to the existing time-consuming conventional blood analysis. The prototypes are manufactured in polydimethylsiloxane that has been modified with a strong nonionic surfactant (Silwet L-77) to achieve hydrophilic behavior. The main advantage of this microfluidic chip design is the clogging delay in the filtration area, which results in an increased amount of extracted plasma (0.1 ?l). Moreover, the plasma can be collected in one or more 10 ?m-deep channels to facilitate the detection and readout of multiple blood assays. This high volume of extracted plasma is achieved thanks to a novel design that combines maximum pumping efficiency without disturbing the red blood cells' trajectory through the use of different hydrodynamic principles, such as a constriction effect and a symmetrical filtration mode. To demonstrate the microfluidic chip's functionality, we designed and fabricated a novel hybrid microdevice that exhibits the benefits of both microfluidics and lateral flow immunochromatographic tests. The performance of the presented hybrid microdevice is validated using rapid detection of thyroid stimulating hormone within a single droplet of whole blood. PMID:26000798

  18. Improved plasma confinement and evidence for a pressure-driven instability from reduced magnetic field errors in the CTX spheromak

    SciTech Connect

    Fernandez, J.C.; Wysocki, F.J.; Jarboe, T.R.; Barnes, C.W.; Henins, I.; Knox, S.O.; Marklin, G.J.

    1989-01-01

    The 0.67 m radius mesh flux conserver (MFC) in CTX was replaced by a solid flux conserver (SFC), resulting in greatly reduced field errors. Decreased spheromak open flux led to vastly improved decaying discharges, including increased global energy confinement times /tau//sub E/ (from 20 to 180 ..mu..s) and corresponding magnetic energy decay times /tau//sub B/sup 2// (from 0.7 to 2 ms). Improved confinement allowed the observation of a pressure-driven instability which ejects plasma from the spheromak interior to the wall. 9 refs., 3 figs.

  19. Photoelectron Emission from Metal Surfaces Induced by VUV-emission of Filament Driven Hydrogen Arc Discharge Plasma

    E-print Network

    Laulainen, J; Koivisto, H; Komppula, J; Tarvainen, O

    2015-01-01

    Photoelectron emission measurements have been performed using a filament-driven multi-cusp arc discharge volume production H^- ion source (LIISA). It has been found that photoelectron currents obtained with Al, Cu, Mo, Ta and stainless steel (SAE 304) are on the same order of magnitude. The photoelectron currents depend linearly on the discharge power. It is shown experimentally that photoelectron emission is significant only in the short wavelength range of hydrogen spectrum due to the energy dependence of the quantum efficiency. It is estimated from the measured data that the maximum photoelectron flux from plasma chamber walls is on the order of 1 A per kW of discharge power.

  20. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the displacement from a capacitance gap sensor and impedance spectra were measured at specific intervals. The average degradation in the stroke over the life test was found to be small (<3%) for the primary stacks and <4% for the redundant stacks. It was noted that about half of the stroke reduction occurred within the first 10 billion cycles. At the end of the life test, it was found that the actuator could recover about half of the lost stroke by applying a dc voltage of 100 V at room temperature. The data up to 100 billion cycles for these tests and the analysis of the experimental results are presented in this paper. PMID:21507759

  1. One-dimensional hybrid simulation of the dc/RF combined driven capacitively coupled CF{sub 4} plasmas

    SciTech Connect

    Wang Shuai [School of Science, Northeastern University, Shenyang 110891 (China); Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-11-15

    We developed a one-dimensional hybrid model to simulate the dc/RF combined driven capacitively coupled plasma for CF{sub 4} discharges. The numerical results show the influence of the dc source on the plasma density distribution, ion energy distributions (IEDs), and ion angle distributions (IADs) on both RF and dc electrodes. The increase of dc voltage impels more ions with high energy to the electrode applied to the dc source, which makes the IEDs at the dc electrode shift toward higher energy and the peaks in IADs shift toward the small angle region. At the same time, it also decreases ion-energy at the RF electrode and enlarges the ion-angles which strike the RF electrode.

  2. Particle in cell simulations of Buneman instability of a current-driven plasma with q-nonextensive electron velocity distribution

    SciTech Connect

    Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Roozbahani, H.; Komaizi, D. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Hashemzadeh, M. [Faculty of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of)

    2014-09-15

    The nonlinear evolution of low frequency Buneman instability in an unmagnetized current-driven plasma with q-nonextensive electron velocity distribution is investigated using particle in cell simulation. Simulation results show that the generation of electron phase space holes and the counter-streaming current induced in the plasma strongly depend on the q-parameter. It is found that by increasing the nonextensive parameter, the distribution of electron density becomes highly peaked. This density steepening or grating-like pattern occurs at the saturation time. In addition, a generalized dispersion relation is obtained using the kinetic theory. Analysis of the dispersion relation and the temporal evolution of the electric field energy density reveal that the growth rate of instability increases by increasing the q-parameter. Finally, the results of Maxwellian and q-nonextensive velocity distributions have been compared and discussed.

  3. Near-GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse

    SciTech Connect

    Kneip, S.; Nagel, S. R.; Mangles, S. P. D.; Bellei, C.; Palmer, C. A. J.; Schreiber, J.; Najmudin, Z. [The Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom); Martins, S. F.; Fiuza, F.; Fonseca, R.; Vieira, J.; Silva, L. O. [GoLP/Instituto Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Lisbon (Portugal); Chekhlov, O.; Clarke, R. J.; Divall, E. J.; Ertel, K.; Foster, P.; Hawkes, S. J.; Hooker, C. J.; Rajeev, P. P. [Central Laser Facility, Rutherford Appleton Laboratory, Oxon, OX11 0QX (United Kingdom)

    2009-07-17

    The acceleration of electrons to approx =0.8 GeV has been observed in a self-injecting laser wakefield accelerator driven at a plasma density of 5.5x10{sup 18} cm{sup -3} by a 10 J, 55 fs, 800 nm laser pulse in the blowout regime. The laser pulse is found to be self-guided for 1 cm (>10z{sub R}), by measurement of a single filament containing >30% of the initial laser energy at this distance. Three-dimensional particle in cell simulations show that the intensity within the guided filament is amplified beyond its initial focused value to a normalized vector potential of a{sub 0}>6, thus driving a highly nonlinear plasma wave.

  4. Application of smart material-hydraulic actuators

    NASA Astrophysics Data System (ADS)

    Anderson, Eric H.; Bales, Gregory L.; White, Edward V.

    2003-08-01

    The application of a new class of actuators is considered. The actuators under development combine a high energy density smart material, specifically a piezoelectric material, with internal servohydraulic components. Large displacement outputs are produced, while the high force capacity of the stiff smart material is retained, for a net high-energy output. The actuator is considered "power-by-wire" because only electrical power is provided from the vehicle or system controller. A primary motivating application is in unmanned combat air vehicles (UCAVs). The particular actuation needs of these vehicles, in flight control and other utility functions, are described and distilled to a set of relevant device requirements. Other potential applications, such as flight motion simulation, are also highlighted. The new actuation architecture offers specific advantages over centralized hydraulic systems and has capabilities not present in electromechanical actuators (EMAs). The main advantage over centralized hydraulic systems is the elimination of the need for hydraulic lines. Compared to motor-driven ball screw type EMAs, the new actuators offer higher frequency response, and a larger peak-to-average output. A laboratory test facility designed to represent the loading experienced by a UCAV control surface is described. Key steps necessary to flight qualify the actuator are introduced.

  5. Investigation of chemo-mechanical actuation in polymer gels

    Microsoft Academic Search

    Salvador Enrique Lobato Larios

    2009-01-01

    The objective of this thesis is to investigate chemically – driven gel actuators and their usefulness to perform mechanical work. The thesis work has mainly concentrated on chitosan as the gel actuator material. Chitosan is a widely used biopolymer that shows a large volume transition through changing pH. \\u0009 The pH induced actuation behaviour of polymer gels makes these materials analogous

  6. Thermo-magnetic materials for use in designing intelligent actuators

    SciTech Connect

    Ohtani, Yoshimutsu; Yoshimura, Fumikatsu; Hatakeyama, Iwao [NTT Interdisciplinary Research Labs., Tokai, Ibaraki (Japan); Ishii, Yoshikazu [NTT Interdisciplinary Research Labs., Musashino, Tokyo (Japan)

    1994-12-31

    The authors present the concept of an intelligent thermal actuator designed by using thermally sensitive magnetic materials. The use of the magnetic transition of FeRh alloy is very effective in increasing the actuator functions. These functions are freedom of direction, tuning temperature, and increasing both sensitivity and power. Two new types of actuator, a remote controlled optical driven thermo-magnetic motor and a temperature sensitive spring-less valve, are proposed and experimental results are shown.

  7. Nonlinear opto-electromechanics and photodeformation of optical actuators

    Microsoft Academic Search

    H. S. Tzou; C.-S. Chou

    1996-01-01

    Optically driven actuators can introduce remote actuation and control effects without any hard-wire connections. In this study, photostrictive (opto-piezoelectric) characteristics and photodeformation of distributed photostrictive optical actuators are investigated and a parametric study of design parameters is conducted. Photodeformation induced by the photostrictive (opto-piezoelectric) effect (a combination of the photovoltaic effect and the converse piezoelectric effect) is discussed and its

  8. Recent developments in DBD plasma flow control

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Jun; Choi, Kwing-So; Feng, Li-Hao; Jukes, Timothy N.; Whalley, Richard D.

    2013-10-01

    Flow control using DBD (dielectric-barrier-discharge) plasma actuators is a relatively new, but rapidly expanding area of research. There are a number of review papers available on this subject, but few discuss on their latest developments. The purpose of the present article is to “fill the gap” by reviewing the recent trend of plasma actuator design and to summarise aerodynamic control techniques. Here, we review new plasma actuators, such as plasma synthetic jet actuators, plasma spark jet actuators, three-dimensional plasma actuators and plasma vortex generators, which can induce three-dimensional flows away from the wall. We also review the starting vortex that leads to formation of a plasma wall jet. This is an important subject not only for a better understanding of the flow induced by DBD plasma actuators, but also as a database that can be used to calibrate the numerical models for plasma flow control. Design of DBD plasma actuators to obtain turbulent skin-friction reduction is shown and the modifications to near-wall turbulence structures are summarised. Novel applications of DBD plasma actuators for aerodynamic control are then discussed, including pitch and roll control, plasma jet vectoring, circulation control and plasma flap, showing a potential of DBD plasma actuators for replacing movable, aircraft control surfaces. Finally, vortex shedding control techniques by a number of different plasma actuators are surveyed.

  9. Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions

    E-print Network

    Frenje, Johan A.

    The fuel layer density of an imploding laser-driven spherical shell is inferred from framed x-ray radiographs. The density distribution is determined by using Abel inversion to compute the radial distribution of the opacity ...

  10. Breakdown of Electrostatic Predictions for the Nonlinear Dispersion Relation of a Stimulated Raman Scattering-Driven Plasma Wave

    SciTech Connect

    Benisti, D; Strozzi, D J; Gremillet, L

    2007-05-08

    The kinetic nonlinear dispersion relation, and frequency shift {delta}{omega}{sub srs}, of a plasma wave driven by stimulated Raman scattering (SRS) are presented. Our theoretical calculations are fully electromagnetic, and use an adiabatic expression for the electron susceptibility which accounts for the change in phase velocity as the wave grows. When k{lambda}{sub D} {approx}> 0.35 (k being the plasma wave number and {lambda}{sub D} the Debye length), {delta}{omega}{sub srs} is significantly larger than could be inferred by assuming that the wave is freely propagating. Our theory is in excellent agreement with 1-D Eulerian Vlasov-Maxwell simulations when 0.3 {le} k{lambda}{sub D} {le} 0.58, and allows discussion of previously proposed mechanisms for Raman saturation. In particular, we find that no 'loss of resonance' of the plasma wave would limit the Raman growth rate, and that saturation through a phase detuning between the plasma wave and the laser drive is mitigated by wave number shifts.

  11. Dust acoustic instability driven by drifting ions and electrons in the dust plasma with Lorentzian kappa distribution

    SciTech Connect

    Liu Zhipeng; Du Jiulin [Department of Physics, School of Science, Tianjin University, Tianjin 300072 (China)

    2009-12-15

    The instability of the dust acoustic waves driven by drifting electrons and ions in a dusty plasma is investigated by the kinetic theory. All the plasma components (electrons, ions, and dust particles) are assumed to be the Lorentzian kappa (kappa) distributions. The spectral indices kappa of the kappa-distributions for the three plasma components are different from each other. The obtained instability growth rate depends on the physical quantities of the plasma not only, but on the spectral indices. The numerical results for the kappa-effect on the instability growth rate show that, if the normalized wave number is small, the index of electrons has a stabilized effect on the dust acoustic waves and the index of ions has an instability effect on the waves, but if the normalized wave number is large, they both nearly have no any effect on the waves. In reverse, the index of dust grains has nearly no any effect on the instability growth rate if the normalized wave number is small, but it has a stabilized effect on the dust waves if the normalized wave number is large.

  12. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100???m long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5???m transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length. PMID:24483670

  13. Theory and design of emission-driven microplasmas for plasma-assisted processes: Tiny devices for large outcomes

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy

    2014-10-01

    With the growing emphasis on nano/microscale systems, sustaining and utilizing plasmas in the microscale has transformed into an exciting and novel research area in the last decade or so with several experimental, theoretical and numerical investigations. While initial efforts in trying to understand microdischarges focused on trying to prevent breakdown in electrostatic microscale devices, recent research has expanded to exploiting these versatile plasmas in several applications. The overarching goal of this talk is to describe the unique characteristics of microplasmas summarizing some of the recent contributions following which we will look at the future of microplasmas, potential applications and challenges. Specifically, microplasmas require emission mechanisms from the cathode other than secondary electron emission which could be provided either by field emission or a combination of thermionic and field emission. The first half of the talk will thus focus on theories for microscale breakdown and their relation to the traditional Townsend criterion, interplay of emission mechanisms and plasma number densities/operating modes of these plasmas. The second half of the talk will discuss proof-of-concept results for potential applications that can benefit from microplasma devices. The discussion will emphasize the potentially superior performance of emission driven microplasmas in comparison to existing alternatives such as dielectric barrier discharges. Finally, current challenges and the future research road map will be laid out.

  14. Current-driven electrostatic dust-cyclotron instability in a collisional plasma

    Microsoft Academic Search

    N. D'Angelo

    1998-01-01

    Electrostatic dust-cyclotron (EDC) waves can be excited in a collisional, magnetized, dusty plasma by passing a current along the magnetic field, B, permeating the plasma. The minimum B field-aligned electric field required for excitation of the EDC waves is typically several times smaller than the one required for excitation of dust-acoustic (DA) waves.Two dusty plasmas are considered in more detail,

  15. Current-driven electrostatic dust-cyclotron instability in a collisional plasma

    Microsoft Academic Search

    N. D'Angelo

    1998-01-01

    Electrostatic dust-cyclotron (EDC) waves can be excited in a collisional, magnetized, dusty plasma by passing a current along the magnetic field, B, permeating the plasma. The minimum B field-aligned electric field required for excitation of the EDC waves is typically several times smaller than the one required for excitation of dust-acoustic (DA) waves. Two dusty plasmas are considered in more

  16. Current Driven Rotating Kink Mode in a Plasma Column with Non-Line-Tied Free End

    SciTech Connect

    Furno, I; Intrator, T P; Ryutov, D D; Abbate, S; Madziwa-Nussinov, T; Light, A; Dorf, L; Lapenta, G

    2006-03-28

    First experimental measurements are presented for the kink instability in a linear plasma column which is insulated from an axial boundary by finite sheath resistivity. Instability threshold below the classical Kruskal-Shafranov threshold, axially asymmetric mode structure and rotation are observed. These are accurately reproduced by a recent kink theory, which includes axial plasma flow and one end of the plasma column that is free to move due to a non-line-tied boundary condition.

  17. An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses

    Microsoft Academic Search

    X Lu; S Wu; Paul K Chu; D Liu; Y Pan

    2011-01-01

    An atmospheric-pressure room-temperature plasma brush, which can deliver uniform surface treatment effects, is reported. The plasma structure, which includes the negative glow, Faraday dark space and positive column, is clearly visible to the naked eye. The width of the Faraday dark space diminishes with decreasing gap distance and this phenomenon is different from that observed from low-pressure glow discharge plasmas.

  18. Propagation of ion shock in solid DT target with nonlinear force-driven plasma blocks

    Microsoft Academic Search

    A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

    2012-01-01

    The plasma block (piston) with pressure P1 is generated as a result of the nonlinear (ponderomotive) force in laser–plasma interaction. The plasma block can be used for the ignition of a fusion flame front in a solid density deuterium–tritium (DT) target by compressing the fuel that creates an ion shock propagating with velocity uion? shock in the inside of a

  19. Evaluation of piezoceramic actuators for control of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.

    1992-01-01

    Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.

  20. All-Optical Control of Nonlinear Self-Focusing in Plasmas Using Non-Resonantly Driven Plasma Wave

    SciTech Connect

    Kalmykov, S. Y.; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States); Downer, M. C. [The Department of Physics, C1500, University of Texas at Austin, Austin, TX 78712 (United States)

    2010-11-04

    Excitation of plasma density perturbations by an initially bi-color laser pulse helps to control nonlinear refraction in the plasma and enables various types of laser self-guiding. In this report we consider a setup that not only makes possible the transport of laser energy over cm-long relatively dense plasmas (n{sub 0} = 10{sup 18} cm{sup -3}) but also transforms the pulse into the unique format inaccessible to the conventional amplification techniques (relativistically intense periodic trains of few-cycle spikes). This well focusable pulse train is a novel light source interesting for ultra-fast high-field science applications. The opposite case of suppression of nonlinear self-focusing and dynamical self-guiding of an over-critical multi-frequency pulse is proposed for the proof-of-principle experimental study.

  1. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)] [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brandenburg, Ronny [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands) [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  2. Effects of Ion Motion in Intense Beam-Driven Plasma Wakefield Accelerators

    SciTech Connect

    Rosenzweig, J.B.; Cook, A.M.; Thompson, M.C. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Scott, A. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Physics, University of California Santa Barbara, Santa Barbara, California 93016 (United States); Yoder, R.B. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Physics, Manhattan College, 4513 Manhattan College Parkway, Riverdale, New York 10471 (United States)

    2005-11-04

    Recent proposals for using plasma wakefield accelerators (PWFA) as a component of a linear collider have included intense electron beams with densities many times in excess of the plasma density. The beam's electric fields expel the plasma electrons from the beam path to many beam radii in this regime. We analyze here the motion of plasma ions under the beam fields, and find for a proposed PWFA collider scenario that the ions completely collapse inside of the beam. Simulations of ion collapse are presented. Implications of ion motion on the feasibility of the PWFA-based colliders are discussed.

  3. PLZT film actuators deposited by a hydrothermal method

    Microsoft Academic Search

    Akimasa Tonokai; Takefumi Kanda; Daisuke Yamaguchi; Koichi Suzumori

    2010-01-01

    Optical actuators are effective for a miniaturization of micro devices because those actuators can be driven by non-contact energy supply. PLZT is a ferroelectric material which has a photostrictive effect. In this study, a PLZT polycrystalline film has been deposited on a titanium substrate by using a hydrothermal method. The characteristics of the PLZT film have been evaluated. PLZT film

  4. Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for an ICE diagnostic in ITER

    E-print Network

    McClements, K G; Dendy, R O; Carbajal, L; Chapman, S C; Cook, J W S; Harvey, R W; Heidbrink, W W; Pinches, S D

    2014-01-01

    Fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) have provided a valuable diagnostic of confined and escaping fast ions in many tokamaks. This is a passive, non-invasive diagnostic that would be compatible with the high radiation environment of deuterium-tritium plasmas in ITER, and could provide important information on fusion {\\alpha}-particles and beam ions in that device. In JET, ICE from confined fusion products scaled linearly with fusion reaction rate over six orders of magnitude and provided evidence that {\\alpha}-particle confinement was close to classical. In TFTR, ICE was observed from super-Alfv\\'enic {\\alpha}-particles in the plasma edge. The intensity of beam-driven ICE in DIII-D is more strongly correlated with drops in neutron rate during fishbone excitation than signals from more direct beam ion loss diagnostics. In ASDEX Upgrade ICE is produced by both super-Alfv\\'enic DD fusion products and sub-Alfv\\'enic deuterium beam ions.

  5. Functional reconstitution of an ATP-driven Ca sup 2+ -transport system from the plasma membrane of Commelina communis L

    SciTech Connect

    Graef, P.; Weiler, E.W. (Ruhr-Universitaet Bochum (West Germany))

    1990-10-01

    The protein(s) that constitute(s) the ATP-driven Ca{sup 2+}-translocator of plasma membrane enriched vesicles obtained by aqueous two-phase partitioning from leaves of Commelina communis L. has/have been solubilized and reincorporated into tightly sealed liposomes. The reconstituted Ca{sup 2+}-transport system was studied using ATP-driven {sup 45}Ca{sup 2+} import into the proteoliposomes as a measure of activity. The detergent, 3- ((3-cholamidopropyl) dimethylammonio) -1-propane-sulfonate proved to be the most suitable and was used at 10 millimolar concentration, i.e. just above its critical micellar concentration. The presence of additional phospholipid and ATP improved the solubilization and/or reconstitution. The characteristics of the reconstituted system were similar to those of the plasma membrane-bound activity, including the apparent K{sub m} for Ca{sup 2+} inhibition by relatively high levels of vanadate and lacking response to added calmodulin. The reconstituted transport system was very strongly inhibited by erythrosine B and had a low apparent K{sub m} for ATP levels of the Ca{sup 2+}-ionophore A 23187 instantaneously discharged 90% of the Ca{sup 2+} associated with the vesicles, proving that it had been accumulated in the intravesicular volume in soluble, freely exchangeable form. Ca{sup 2+}-transport in the reconstituted system was thus primary active, through a Ca{sup 2+}-translocating ATPase.

  6. Electron drift driven nonlinear ion-acoustic instability in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Bora, Madhurjya Prosad; Goswami, Rajita

    In this work, we report the investigation of nonlinear ion-acoustic instability in complex plasma with electron drift in the presence of collisional effects. We have analysed the parameter regime, which can be very well realisable in laboratory and space plasma. The dust particles are negatively charged and their influence on the ion-acoustic instability is modelled through the charge fluctuation term.

  7. Plasma Sheath Modeling Using The Three Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Lilly, Robert; Shumlak, Uri

    2010-11-01

    There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. Accurate modeling of plasma sheath physics is of particular importance for the plasmas found in high speed flight applications. This study employs the three-fluid (electrons, ions, neutrals) plasma model as it allows the capture of electron inertial effects without the unbounded whistler wave that accompanies Hall MHD, as well as energy and momentum transfer between the charged and neutral species. Previous investigations have typically assumed an electrostatic electric field. This work includes the full electrodynamics. Floating potential sheath formation is investigated initially. We then present a method of voltage control that allows for control of the sheath. The resulting boundary scheme, in conjunction with the use of the purely hyperbolic Maxwells equation set, will be reviewed and the results in 1D and 2D discussed. Finally the outlook for incorporating transport will be presented.

  8. Parallel ion velocity shear driven electromagnetic fluctuations and associated particle transport in partially ionized plasmas

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mirza, Arshad M.; Faria, R. T.

    1998-05-01

    A nonuniform partially ionized magnetized plasma is shown to be unstable against electromagnetic perturbations. The source of free energy for the instability is sheared magnetic-field-aligned ion flow, which is coupled to the electromagnetic waves via charged particle-neutral collisions. Analytical expressions for the growth rate and threshold are obtained. Numerical studies for the ionospheric parameters suggest that electromagnetic waves grow faster than their electrostatic counterparts. Furthermore, linearly excited electromagnetic waves in partially ionized collisional plasmas are shown to cause nonthermal cross-field transport of plasma particles. The results can have relevance to the current filamentation and the plasma diffusion in the ionosphere of the Earth, as well as in low-temperature laboratory plasmas.

  9. An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses

    NASA Astrophysics Data System (ADS)

    Lu, X.; Wu, S.; Chu, Paul K.; Liu, D.; Pan, Y.

    2011-12-01

    An atmospheric-pressure room-temperature plasma brush, which can deliver uniform surface treatment effects, is reported. The plasma structure, which includes the negative glow, Faraday dark space and positive column, is clearly visible to the naked eye. The width of the Faraday dark space diminishes with decreasing gap distance and this phenomenon is different from that observed from low-pressure glow discharge plasmas. High-speed photographs taken at an exposure time of 2.5 ns show that the plasma propagates from the nozzle to the object in about 100 ns and 10 ns for gap distances of 6 mm and 2 mm, respectively, and the results are consistent with electric measurements. The emission spectra reveal N2(B-A) bands in addition to those of O, N_2^+ , N2(C-B) and He, indicating that the plasma source is reactive and suitable for applications such as surface modification and materials processing.

  10. Design of MEMS PZT circular diaphragm actuators to generate large deflections

    Microsoft Academic Search

    Eunki Hong; Susan Trolier-McKinstry; Robert L. Smith; Silai V. Krishnaswamy; Carl B. Freidhoff

    2006-01-01

    This paper presents a design of lead zirconate titanate (PZT) circular diaphragm actuators to generate large deflections. The actuators utilize a unimorph structure consisting of an active PZT and a passive thermally grown SiO2 layer. The diaphragm structures were formed by deep reactive ion etching (DRIE). Two different designs, where the PZT layer in the diaphragm actuators was driven by

  11. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  12. Functional Reconstitution of an ATP-Driven Ca2+-Transport System from the Plasma Membrane of Commelina communis L. 1

    PubMed Central

    Gräf, Peter; Weiler, Elmar W.

    1990-01-01

    The protein(s) that constitute(s) the ATP-driven Ca2+-translocator of plasma membrane enriched vesicles obtained by aqueous two-phase partitioning from leaves of Commelina communis L. has/have been solubilized and reincorporated into tightly sealed liposomes. The reconstituted Ca2+-transport system was studied using ATP-driven 45Ca2+ import into the proteoliposomes as a measure of activity. The detergent, 3-[(3-cholamidopropyl) dimethylammonio]-1-propane-sulfonate proved to be the most suitable and was used at 10 millimolar concentration, i.e. just above its critical micellar concentration. The presence of additional phospholipid (2 milligrams phosphatidylcholine per milliliter) and ATP (5 millimolar) improved the solubilization and/or reconstitution. The characteristics of the reconstituted system were similar to those of the plasma membrane-bound activity, including the apparent Km for Ca2+ (5.2 micromolar), inhibition by relatively high levels of vanadate (IC50 = 500 micromolar) and lacking response to added calmodulin. The reconstituted transport system was very strongly inhibited by erythrosine B (IC50 = 0.01 micromolar) and had a low apparent Km for ATP (11.4 micromolar). As in the plasma membrane vesicles, the protonophore carbonylcyanide m-chlorophenyl hydrazone did not affect Ca2+-transport detectably in the reconstituted system. However, low levels of the Ca2+-ionophore A 23187 instantaneously discharged 90% of the Ca2+ associated with the vesicles, proving that it had been accumulated in the intravesicular volume in soluble, freely exchangeable form. Ca2+-transport in the reconstituted system was thus primary active, through a Ca2+-translocating ATPase. The system reported here may serve as a valuable tool for purifying the Ca2+-ATPase and for studying structural and functional aspects of the purified enzyme. PMID:16667759

  13. Plasma physical parameters along coronal-mass-ejection-driven shocks. I. Ultraviolet and white-light observations

    SciTech Connect

    Bemporad, A.; Susino, R. [Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese, Torino (Italy); Lapenta, G., E-mail: bemporad@oato.inaf.it [Center for Plasma Astrophysics (CPA), KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2014-04-01

    In this work, UV and white-light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a coronal mass ejection. Pre-shock plasma density, shock compression ratio, speed, and inclination angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between 2.2 and 2.6 R {sub ?} at the shock nose and at the two flanks. Stronger field deflection (by ?46°), plasma compression (factor ?2.7), and heating (factor ?12) occur at the nose, while heating at the flanks is more moderate (factor 1.5-3.0). Starting from a pre-shock corona where protons and electrons have about the same temperature (T{sub p} ? T{sub e} ? 1.5 × 10{sup 6} K), temperature increases derived with RH equations could better represent the proton heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor ?2 at the nose, ?1.2-1.5 at the flanks) could be more representative of electron heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.

  14. Compression, Heating and Fusion of Colliding Plasmoids by a Z-theta Driven Plasma Liner

    NASA Astrophysics Data System (ADS)

    Slough, John; Milroy, Richard; Ziemba, Tim; Woodruff, S.

    2007-06-01

    A potentially promising approach to fusion employs a plasma shell to radially compress two colliding plasmoids. The presence of the magnetic field in the target plasma suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target to fusion conditions. With the momentum flux being delivered by an imploding plasma shell, many of the difficulties encountered in imploding a solid metal liner are eliminated or minimized. The best plasma for the target in this approach is the FRC. It has demonstrated both high ?, and robustness in translation and compression that is demanded for the target plasma. A high density compressed plasmoid is formed by a staged axial and radial compression of two colliding/merging FRCs where the energy that is required for the implosion compression and heating of the magnetized target plasmoid is stored in the kinetic energy of the plasmas used to compress it. An experimental apparatus is being constructed for the demonstration of both the target plasmoid formation as well as the compression of the plasmoid by a plasma liner. It is believed that with the confinement properties and the high ? nature of the FRC, combined with the unique approach to be taken, that an n?E T i triple product ˜5 × 1017 m-3 s keV can be achieved.

  15. Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator

    SciTech Connect

    Pukhov, A.; Kumar, N.; Tueckmantel, T.; Upadhyay, A. [Institut fuer Theoretische Physik I, Universitaet Duesseldorf, 40225 Germany (Germany); Lotov, K. [Budker Institute of Nuclear Physics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Muggli, P. [Max-Plank-Institut fuer Physik, 80805 Muenchen (Germany); Khudik, V.; Siemon, C.; Shvets, G. [University of Texas at Austin, Department of Physics and Institute for Fusion Studies, Austin Texas 78712 (United States)

    2011-09-30

    It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wake's dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wake's phase velocity by smooth plasma density gradients.

  16. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  17. plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Jin, C. G.; Yang, Y.; Ye, C.; Zhuge, L. J.; Wu, X. M.

    2014-12-01

    As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.

  18. Intrinsic Rotation Driven by Non-Maxwellian Equilibria in Tokamak Plasmas

    E-print Network

    Lee, J. P.

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence ...

  19. Heliopause Instabilities Driven by Plasma-Neutral Interaction: Linear Analysis from Fluid Model

    SciTech Connect

    Dasgupta, B.; Avinash, K. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Florinski, V.; Zank, G. P.; Heerikhuisen, J. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Bandyopadhyay, A. [Department of Computer Science, Alabama A and M University, Normal, AL 35762 (United States)

    2011-09-21

    The heliopause (HP) is the outer edge of the heliosphere that separates the tenuous and hot heliosheath plasma from the relatively dense and cool magnetized plasma of the local interstellar medium (LISM). As a surface of tangential discontinuity, the HP is subject to both Rayleigh-Taylor (RT) and Kelvin-Helmholtz (KH) instabilities. The coupling between plasma ions and neutral atoms through charge exchange provides an ''effective gravity'' for RT, while shear flows due to the velocity difference between the heliosheath and the interstellar flows can drive KH modes. We derive the linearized dispersion relations for waves propagating along the surface of this discontinuity using a fluid picture, to study the possibility for both RT and KH instabilities, including a second population of energetic neutrals produced by charge exchange interactions between the hot solar wind plasma in the heliosheath with interstellar hydrogen. We show that due to charge exchange interactions, the HP is unconditionally unstable to all perturbations.

  20. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Wells, Russell P. (Kensington, CA); Craven, Glen E. (Fremont, CA)

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  1. Plasma/thermal-driven the rapid wettability transition on a copper surface

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaotao; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhou, Xiaoyan

    2011-02-01

    A simple and time-saving method to realize the reversible wettability transition is reported. Through a solution-immersion process followed by stearic acid modification, a superhydrophobic surface was prepared on the copper surface. After being treated by air-plasma exposure, the surface wettability was converted into superhydrophilicity. XPS analysis demonstrated that the incorporation of oxygen species by air-plasma activation accounted for the highly hydrophilic character of the surface. Upon annealing the plasma-treated surface in air, the non-oxidized alkyl chains were transferred to the surface for recovery the superhydrophobicity. It was found that the recovery was fast upon annealing at a relative high temperature. By the alternation of air-plasma treatment and annealing process, the rapid reversible wettability transition between superhydrophobic and superhydrophilic state was realized. The shortest processing time for a whole reversible wettability transition was 21 min.

  2. Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas

    E-print Network

    Barnes, M; Lee, J P; Belli, E A; Nave, M F F; White, A E

    2013-01-01

    The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.

  3. Plasma\\/thermal-driven the rapid wettability transition on a copper surface

    Microsoft Academic Search

    Xiaotao Zhu; Zhaozhu Zhang; Xuehu Men; Jin Yang; Xianghui Xu; Xiaoyan Zhou

    2011-01-01

    A simple and time-saving method to realize the reversible wettability transition is reported. Through a solution–immersion process followed by stearic acid modification, a superhydrophobic surface was prepared on the copper surface. After being treated by air-plasma exposure, the surface wettability was converted into superhydrophilicity. XPS analysis demonstrated that the incorporation of oxygen species by air-plasma activation accounted for the highly

  4. Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.

    PubMed

    Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao

    2013-12-30

    Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser. PMID:24514788

  5. Smart Material-Actuated Rotor Technology – SMART

    Microsoft Academic Search

    Friedrich K. Straub; Dennis K. Kennedy; David B. Domzalski; Ahmed A. Hassan; Hieu Ngo; V. Anand; Terry Birchette

    2004-01-01

    Vibration, noise, and aerodynamic design compromises are primary barriers to further improvements in effectiveness of the helicopter. The MD900 light utility helicopter main rotor system is modified to include in-blade smart material actuation for active control. A piezoelectric (PE)-driven trailing edge flap is used for vibration, noise, and aerodynamic performance improvements. A shape memory alloy (SMA)-driven trailing edge trim tab

  6. Fluid micropumps based on rotary magnetic actuators

    Microsoft Academic Search

    Chong H. Ahn; Mark G. Allen

    1995-01-01

    A jet-type magnetically driven fluid micropump to drive conductive fluids has been designed, fabricated, and tested. The pump actuation is based on a rotary magnetic micromotor with fully integrated stator and coils operating with the rotor immersed in the fluid to be pumped, thereby driving the fluid from a inlet flow reservoir through integrated flow channels to an outlet flow

  7. On the development of planar actuators for variable stiffness devices

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  8. The algorithm and program complex for splitting on a parts the records of acoustic waves recorded during the work of plasma actuator flush-mounted in the model plane nozzle with the purpose of analyzing their robust spectral and correlation characteristics

    NASA Astrophysics Data System (ADS)

    Chernousov, A. D.; Malakhov, D. V.; Skvortsova, N. N.

    2014-03-01

    Currently acute problem of developing new technologies by reducing the noise of aircraft engines, including the directional impact on the noise on the basis of the interaction of plasma disturbances and sound generation pulsations. One of the devices built on this principle being developed in GPI RAS. They are plasma actuators (group of related to each other gaps, built on the perimeter of the nozzle) of various shapes and forms. In this paper an algorithm was developed which allows to separate impulses from the received experimental data, acquired during the work of plasma actuator flush-mounted in the model plane nozzle. The algorithm can be adjusted manually under a variety of situations (work of actuator in a nozzle with or without airflow, adjustment to different frequencies and pulse duration of the actuator). And program complex is developed on the basis of MatLab software, designed for building sustainable robust spectral and autocovariation functions of acoustic signals recorded during the experiments with the model of a nozzle with working actuator.

  9. Gyrokinetic simulation of turbulence driven geodesic acoustic modes in edge plasmas of HL-2A tokamak

    SciTech Connect

    Liu Feng; Zhao, K. J. [Southwestern Institute of Physics, Chengdu 610041 (China); Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Dong, J. Q. [Southwestern Institute of Physics, Chengdu 610041 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    Strong correlation between high frequency microturbulence and low frequency geodesic acoustic mode (GAM) has been observed in the edge plasmas of the HL-2A tokamak, suggesting possible GAM generation via three wave coupling with turbulence, which is in turn modulated by the GAM. In this work, we use the gyrokinetic toroidal code to study the linear and nonlinear development of the drift instabilities, as well as the generation of the GAM (and low frequency zonal flows) and its interaction with the turbulence for realistic parameters in the edge plasmas of the HL-2A tokamak for the first time. The simulation results indicate that the unstable drift wave drives strong turbulence in the edge plasma of HL-2A. In addition, the generation of the GAM and its interaction with the turbulence are all observed in the nonlinear simulation. The simulation results are in reasonable agreement with the experimental observations.

  10. Viscosity gradient driven instability of `shear mode' in a strongly coupled plasma

    E-print Network

    Banerjee, D; Chakrabarti, N; Chaudhuri, M

    2013-01-01

    The influence of viscosity gradient (due to shear flow) on low frequency collective modes in strongly coupled dusty plasma is analyzed. It is shown that for a well known viscoelastic plasma model, the velocity shear dependent viscosity leads to an instability of the shear mode. The inhomogeneous viscous force and velocity shear coupling supply the free energy for the instability. The combined strength of shear flow and viscosity gradient wins over any stabilizing force and makes the shear mode unstable. Implication of such a novel instability and its applications are briefly outlined.

  11. Excitation of current-driven electrostatic ion-cyclotron waves in presence of a transverse direct current electric fields in a magnetized plasma

    Microsoft Academic Search

    Suresh C. Sharma; M. Sugawa; V. K. Jain

    2000-01-01

    The temporal evolution of the current-driven electrostatic ion–cyclotron (CDEIC) instability is investigated in the presence of a transverse dc electric field in a collisional magnetized plasma. It was found that the inclusion of a transverse dc electric field in addition to the magnetic field changes the dispersion characteristics of the ion cyclotron waves. The growth rate of the instability increases

  12. Excitation of current-driven electrostatic ion-cyclotron waves in presence of a transverse direct current electric fields in a magnetized plasma

    Microsoft Academic Search

    Suresh C. Sharma; M. Sugawa; V. K. Jain

    2000-01-01

    The temporal evolution of the current-driven electrostatic ion-cyclotron (CDEIC) instability is investigated in the presence of a transverse dc electric field in a collisional magnetized plasma. It was found that the inclusion of a transverse dc electric field in addition to the magnetic field changes the dispersion characteristics of the ion cyclotron waves. The growth rate of the instability increases

  13. Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma

    SciTech Connect

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K. [Department of Physics, IIT Delhi, New Delhi-110016 (India)

    2013-02-15

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  14. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  15. Quasi-steady and unsteady actuation by surface non-thermal plasma discharge for control of a turbulent round air jet

    Microsoft Academic Search

    N. Benard; P. Braud; J. Pons; G. Touchard; E. Moreau

    2007-01-01

    The dielectric barrier discharge (DBD) is a nonmechanical device able to generate electrohydrodynamic forces close to a dielectric wall. The generated “electric wind” is actually used to control airflow over various bluff bodies. In this study, a DBD actuator is investigated for the control of a round turbulent air jet. The separation along the bevel of a small angle (12°)

  16. Paper actuators made with cellulose and hybrid materials.

    PubMed

    Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad

    2010-01-01

    Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated. PMID:22294882

  17. Ion anisotropy driven waves in the earth`s magnetosheath and plasma depletion layer

    SciTech Connect

    Denton, R.E.; Hudson, M.K. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Anderson, B.J. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.; Fuselier, S.A. [Lockheed Palo Alto Research Labs., CA (United States); Gary, S.P. [Los Alamos National Lab., NM (United States)

    1993-05-01

    Recent studies of low frequency waves ({omega}{sub r} {le} {Omega}{sub p}, where {Omega}{sub p} is the proton gyrofrequency) observed by AMPTE/CCE in the plasma depletion layer and magnetosheath proper arereviewed. These waves are shown to be well identified with ion cyclotron and mirror mode waves. By statistically analyzing the transitions between the magnetopause and time intervals with ion cyclotron and mirror mode waves, it is established that the regions in which ion cyclotron waves occur are between the magnetopause and the regions where the mirror mode is observed. This result is shown to follow from the fact that the wave spectral properties are ordered with respect to the proton parallel beta, {beta}{sub {parallel}p}. The later result is predicted by linear Vlasov theory using a simple model for the magnetosheath and plasma depletion layer. Thus, the observed spectral type can be associated with relative distance from the magnetopause. The anisotropy-beta relation, A{sub p} {triple_bond} (T{perpendicular}/T{sub {parallel}}){sub p} {minus} 1 = 0.50{beta}{sub {parallel}p}{sup {minus}0.48} results from the fact that the waves pitch angle scatter the particles so that the plasma is near marginal stability, and is a fundamental constraint on the plasma.

  18. Experiments on radiation-driven waves produced during the production of a radially confined plasma column

    Microsoft Academic Search

    D. Dufresne; P. A. Pincosy; J.-P. Caressa; P. Bournot; M. Autric

    1978-01-01

    A plasma column radially confined by a magnetic field was produced in hydrogen by the light energy of a CO2 laser (200 J and a pulse length of 2 microsec). The absorption zone which normally propagates toward the laser from the focal spot was eliminated to permit the study, in an approximately constant column diameter, of front propagation regimes as

  19. Chaos in the parallel sheared plasma flow driven electromagnetic turbulence in nonuniform magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Rafiq, Tariq; Murtaza, G.; Shukla, P. K.; Faria, R. T.

    1999-04-01

    By employing the two-fluid model, a system of nonlinear equations for low-frequency electromagnetic waves in nonuniform collisional magnetoplasmas has been derived. The plasma contains both the equilibrium density gradient and sheared flows. In the linear limit, a local dispersion relation has been obtained and analyzed in several interesting limiting cases. It is found that equilibrium sheared plasma flows cause instabilities of Alfvén-type waves even in the absence of the density gradient. The numerical results also show a large growth rate of electromagnetic parallel velocity shear (PVS) mode compared to the electrostatic mode for some ionospheric parameters. For this case, the temporal nonlinear behavior of the relevant governing mode coupling equations is governed by six coupled equations, which are a generalization of the Lorenz-Stenflo equations and which admit chaotic trajectories. The results of this investigation should be useful for understanding the linear and nonlinear properties of electromagnetic waves that are generated by sheared plasma flows in magnetized plasmas.

  20. High-intensity laser-plasma interaction studies employing laser-driven proton probes

    NASA Astrophysics Data System (ADS)

    Borghesi, M.; Audebert, P.; Bulanov, S. V.; Cowan, T.; Fuchs, J.; Gauthier, J. C.; MacKinnon, A. J.; Patel, P. K.; Pretzler, G.; Romagnani, L.; Schiavi, A.; Toncian, T.; Willi, O.

    2005-09-01

    Due to their particular properties (low emittance, short duration, and large number density), the beams of multi-MeV protons generated during the interaction of ultraintense (I > 1019 W/cm2) short pulses with thin solid targets are suited for use as a particle probe in laser-plasma experiments. When traversing a sample, the proton density distribution is, in general, affected by collisional stopping, scattering and deflections via electromagnetic fields, and each of these effects can be used for diagnostic purposes. In particular, in the limit of very thin targets, the proton beams represent a valuable diagnostic tool for the detection of quasi-static electromagnetic fields. The proton imaging and deflectometry techniques employ these beams, in a point-projection imaging scheme, as an easily synchronizable diagnostic tool in laser- plasma interactions, with high temporal and spatial resolution. By providing diagnostic access to electro-magnetic field distributions in dense plasmas, this novel diagnostics opens up to investigation a whole new range of unexplored phenomena. Several transient processes were investigated employing this technique, via the detection of the associated electric fields. Examples provided in this paper include the detection of pressure-gradient electric field in extended plasmas, and the study of the electrostatic fields associated to the emission of MeV proton beams in high-intensity laser-foil interactions.

  1. Vlasov-Maxwell kinetic simulations of radio-frequency-driven ion flows in magnetized plasmas.

    PubMed

    Marchetto, Chiara; Califano, Francesco; Lontano, Maurizio

    2003-02-01

    The generation of a coherent ion flow due to the injection in a plasma of a purely electrostatic wave of finite amplitude, propagating at right angle with the ambient uniform magnetic field, is investigated making use of a kinetic code which solves the fully nonlinear Vlasov equations for electrons and ions, coupled with the Maxwell equations, in one spatial and two velocity dimensions. A uniformly magnetized slab plasma is considered. The wave frequency is assumed in the range of the fourth harmonic of the ion cyclotron frequency, and the wave vector is chosen in order to model the propagation of an ion Bernstein wave. The computation of the first-order moment of the ion distribution function shows that indeed a quasistationary transverse average ion drift velocity is produced. The time evolution of the ion distribution function undergoes a "resonant" interaction of Cherenkov type, even if the plasma ions are magnetized (omega(ci)/omega(pi) approximately 0.5). During the wave-plasma interaction, the electron distribution function remains Gaussian-like, while increasing its energy content. PMID:12636820

  2. The Effects of Ion Motion in Very Intense Beam-driven Plasma Wakefield Accelerators

    SciTech Connect

    Rosenzweig, J.B.; Cook, A.M.; Thompson, M.C.; Yoder, R. [UCLA Department of Physics and Astronomy, 405 Hilgard Ave, Los Angeles, CA 90095 (United States)

    2004-12-07

    Recent proposals for using plasma wakefield accelerators in the blowout regime as a component of a linear collider have included very intense driver and accelerating beams, which have densities many times in excess of the ambient plasma density. The electric fields of these beams are widely known to be large enough to completely expel plasma electrons from the beam path; the expelled electrons often attain relativistic velocities in the process. We examine here another aspect of this high-beam density scenario: the motion of ions. In the lowest order analysis, for both cylindrically symmetric and 'flat' beams, it is seen that for the 'after-burner' scenario discussed at AAC 2004 the ions completely collapse inside of the electron beam. In this case the ion density is significantly increased, with a large increase in the beam emittance expected as a result. We also examine a less severe scenario, where the ion collapse onset is expected, and new, coupled equilibria in the beam and plasma density are created.

  3. Ion acoustic instability driven by a temperature gradient in laser-produced plasmas

    Microsoft Academic Search

    A. V. Brantov; V. Yu. Bychenkov; W. Rozmus

    2001-01-01

    The return current instability excited in laser-produced plasmas by a temperature gradient has been studied using a nonlocal theory of electron transport. The transport model is applicable for an arbitrary ratio of the temperature inhomogeneity scale length to the collisional mean free path. It is demonstrated that nonlocal thermal effects have a significant impact on the ion acoustic instability growth

  4. Applications of compact laser-driven EUV\\/XUV plasma sources

    Microsoft Academic Search

    Frank Barkusky; Armin Bayer; Stefan Döring; Bernhard Flöter; Peter Großmann; Christian Peth; Michael Reese; Klaus Mann

    2009-01-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. So far, intense light sources based on discharge or laser plasmas, beam steering and imaging optics as well as sensitive detectors are available. Currently, applications of EUV radiation apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis come more and more

  5. Observations of subsonic and supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.

    2009-11-01

    Shear layers containing strong velocity gradients appear in many high-energy-density (HED) systems and play important roles in mixing and the transition to turbulence. Yet few laboratory experiments have been carried out to study their detailed evolution in this extreme environment where plasmas are compressible, actively ionizing, often involve strong shock waves and have complex material properties. Many shear flows produce the Kelvin-Helmholtz (KH) instability, which initiates the mixing at a fluid interface. We present results from two dedicated shear flow experiments that produced overall subsonic and supersonic flows using novel target designs. In the subsonic case, the Omega laser was used to drive a blast wave along a rippled interface between plastic and foam, shocking both the materials to produce two fluids separated by a sharp shear layer. The interface subsequently rolled-upped into large KH vortices that were accompanied by bubble-like structures of unknown origin. This was the first time the evolution of a well-resolved KH instability was observed in a HED plasma in the laboratory. We have analyzed the properties and dynamics of the plasma based on the data and fundamental models, without resorting to simulated values. In the second, supersonic experiment the Nike laser was used to drive a supersonic flow of Al plasma along a rippled, low-density foam surface. Here again the flowing plasma drove a shock into the second material, so that two fluids were separated by a shear layer. In contrast to the subsonic case, the flow developed shocks around the ripples in response to the supersonic flow of Al. Collaborators: R.P. Drake, O.A. Hurricane, J.F. Hansen, Y. Aglitskiy, T. Plewa, B.A. Remington, H.F. Robey, J.L. Weaver, A.L. Velikovich, R.S. Gillespie, M.J. Bono, M.J. Grosskopf, C.C. Kuranz, A. Visco.

  6. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    SciTech Connect

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2004-10-15

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (T{sub e}) of hundreds of eV in the arc as revealed by the simulation. Hence T{sub e} of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density n{sub e} of this metal plasma is shown to be in the range 4x10{sup 21}-6x10{sup 21} m{sup -3} and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x10{sup 6} cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  7. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  8. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  9. Uniaxial Electric Actuator

    NSDL National Science Digital Library

    This site includes a cut-away animation of how a uniaxial electric actuator operates. Objective: Describe how the uniaxial electric actuator works. You can find this animation under the heading "Automation Technology."

  10. Electromechanical rotary actuator

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; McMahon, W. J.

    1995-05-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  11. Electromechanical rotary actuator

    NASA Technical Reports Server (NTRS)

    Smith, S. P.; Mcmahon, W. J.

    1995-01-01

    An electromechanical rotary actuator has been developed as the prime mover for a liquid oxygen modulation valve on the Centaur Vehicle Rocket Engine. The rotary actuator requirements, design, test, and associated problems and their solutions are discussed in this paper.

  12. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  13. Plasma-density determination from x-ray radiography of laser-driven spherical implosions.

    PubMed

    Marshall, F J; McKenty, P W; Delettrez, J A; Epstein, R; Knauer, J P; Smalyuk, V A; Frenje, J A; Li, C K; Petrasso, R D; Séguin, F H; Mancini, R C

    2009-05-01

    The fuel layer density of an imploding laser-driven spherical shell is inferred from framed x-ray radiographs. The density distribution is determined by using Abel inversion to compute the radial distribution of the opacity kappa from the observed optical depth tau. With the additional assumption of the mass of the remaining fuel, the absolute density distribution is determined. This is demonstrated on the OMEGA laser system with two x-ray backlighters of different mean energies that lead to the same inferred density distribution independent of backlighter energy. PMID:19518881

  14. Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions

    SciTech Connect

    Marshall, F. J.; McKenty, P. W.; Delettrez, J. A.; Epstein, R.; Knauer, J. P.; Smalyuk, V. A.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Seguin, F. H.; Mancini, R. C. [Laboratory for Laser Energetics, University of Rochester 250 E. River Road, Rochester, New York 14623 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)

    2009-05-08

    The fuel layer density of an imploding laser-driven spherical shell is inferred from framed x-ray radiographs. The density distribution is determined by using Abel inversion to compute the radial distribution of the opacity {kappa} from the observed optical depth {tau}. With the additional assumption of the mass of the remaining fuel, the absolute density distribution is determined. This is demonstrated on the OMEGA laser system with two x-ray backlighters of different mean energies that lead to the same inferred density distribution independent of backlighter energy.

  15. Microwave-driven plasmas in Hollow-Core Photonic Crystal Fibres

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2013-09-01

    This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 ?m core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (< 50 W). Diagnostics of the coupled power evidence high ionization degrees (~10-2) , for moderate gas temperatures (~1300 K at the centre of the fibre, estimated by OES), with no damage to the host structure. This counter intuitive result is studied using a 1D-radial fluid model that describes the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. We analyze the modification of the plasma and the gas heating mechanisms with changes in the work conditions (core diameter, pressure and electron density). This paper reports on a novel solution to ignite and maintain micro-plasmas in gas-filled Hollow-Core Photonic Crystal Fibres (HC-PCFs), using CW microwave excitation (2.45 GHz). The original concept is based on a surfatron, generating argon micro-plasmas of few centimetres in length within a 100 ?m core-diameter Kagome HC-PCF, at ~1 mbar on-gap gas-pressure using low powers (< 50 W). Diagnostics of the coupled power evidence high ionization degrees (~10-2) , for moderate gas temperatures (~1300 K at the centre of the fibre, estimated by OES), with no damage to the host structure. This counter intuitive result is studied using a 1D-radial fluid model that describes the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. We analyze the modification of the plasma and the gas heating mechanisms with changes in the work conditions (core diameter, pressure and electron density). Work supported by ANR and DGA (ASTRID-2011-UVfactor) and by FCT (Pest-OE/SADG/LA0010/2011).

  16. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  17. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4?m. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  18. A wireless actuating drug delivery system

    NASA Astrophysics Data System (ADS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-04-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6?mm in diameter and 100?µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7?mm thick. 28?µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6?µl?s?1 by induction heating at 160?µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator.

  19. Fast particle-driven ion cyclotron emission (ICE) in tokamak plasmas and the case for an ICE diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; D'Inca, R.; Dendy, R. O.; Carbajal, L.; Chapman, S. C.; Cook, J. W. S.; Harvey, R. W.; Heidbrink, W. W.; Pinches, S. D.

    2015-04-01

    The detection of fast particle-driven waves in the ion cyclotron frequency range (ion cyclotron emission or ICE) could provide a passive, non-invasive diagnostic of confined and escaping fast particles (fusion ?-particles and beam ions) in ITER, and would be compatible with the high radiation environment of deuterium–tritium plasmas in that device. Recent experimental results from ASDEX Upgrade and DIII-D demonstrate the efficacy of ICE as a diagnostic of different fast ion species and of fast ion losses, while recent particle-in-cell (PIC) and hybrid simulations provide a more exact comparison with measured ICE spectra and open the prospect of exploiting ICE more fully as a fast ion diagnostic in future experiments. In particular the PIC/hybrid approach should soon make it possible to simulate the nonlinear physics of ICE in full toroidal geometry. Emission has been observed previously at a wide range of poloidal angles, so there is flexibility in the location of ICE detectors. Such a detector could be implemented in ITER by installing a small toroidally orientated loop near the plasma edge or by adding a detection capability to the ion cyclotron resonance heating (ICRH) antennae. In the latter case, the antenna could be used simultaneously to heat the plasma and detect ICE, provided that frequencies close to those of the ICRH source are strongly attenuated in the detection system using a suitable filter. Wavenumber information, providing additional constraints on the fast ion distribution exciting the emission, could be obtained by measuring ICE using a toroidally distributed array of detectors or different straps of the ICRH antenna.

  20. Melting transition in a two-dimensional complex plasma heated by driven acoustic instability

    SciTech Connect

    Sheridan, T. E. [Department of Physics and Astronomy, Ohio Northern University, Ada, Ohio 45810 (United States)

    2008-10-15

    The melting transition in a two-dimensional complex (dusty) plasma is studied experimentally. A system consisting of {approx_equal}3900 microspheres is heated by amplitude modulating the rf discharge power with a square wave at the vertical resonance frequency. The vertical motion couples to an in-plane dust-acoustic instability at one-half the modulation frequency, thereby increasing the complex plasma's effective temperature. The 'thermodynamic' phase of the system is characterized for increasing levels of amplitude modulation at constant neutral pressure (35 mTorr Ar) and average rf power using the Lindemann ratio, defect density, bond-orientational correlation function, and pair correlation function. A melting transition showing evidence for an intermediate hexatic phase is observed.

  1. Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas

    E-print Network

    Misra, A P

    2010-01-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...

  2. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (? = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (? = 100, 200, and 300 ?m with peak-to-valley amplitudes of 10, 20, and 30 ?m respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  3. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  4. Simulation of non-Maxwellian electron velocity distributions in an inhomogeneous plasma driven by intense microwaves

    Microsoft Academic Search

    J. P. Matte; T. W. Johnston; J. M. Liu; J. S. De Groot; R. P. Drake

    1993-01-01

    Flat-topped electron velocity distributions, of the type exp (-(v\\/u)**m), with m > 2, are observed in the UCD AURORA II device for inverse Bremsstrahlung heating with intense microwaves (V{sub osc}**2\\/V{sub e}**2 of order 1), in approximate agreement with electron kinetic simulations. Permanent magnets are arranged on the surface of the vacuum tank to confine the argon discharge plasma and to

  5. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    Microsoft Academic Search

    T. Vijayan; P. Roychowdhury; N. Venkatramani

    2004-01-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current

  6. Short-Pulse Laser Harmonics From Oscillating Plasma Surfaces Driven At Relativistic Intensity

    Microsoft Academic Search

    Roland Lichters; Alexander Pukhov; Jürgen Meyer-Ter-Vehn

    1996-01-01

    The generation of harmonics by interaction of an ultrashort laser pulse with a step boundary of a plane overdense plasma layer is studied at intensities Ilambda^2=10^17 - 10^20 Wcm-2mum^2. Fully relativistic one-dimensional particle-in-cell (PIC) simulations are performed with high spectral resolution. Harmonics of order 100 with conversion efficiency eta_100=10-7 are obtained at highest intensity. Harmonic emission increases with intensity and

  7. Investigation of power flow to a plasma opening switch driven electron-beam diode

    Microsoft Academic Search

    D. C. Black; J. R. Boller; R. J. Commisso; M. C. Myers; D. V. Rose; S. J. Stephanakis; B. V. Weber; D. M. Weidenheimer; F. C. Young

    1998-01-01

    Summary form only given, as follows. Experiments are being conducted on the HAWK inductive storage generator at the Naval Research Laboratory using a plasma opening switch (POS) to drive an electron-beam (e-beam) diode load. Utilizing a suite of current, voltage, and radiation diagnostics to measure power flow out of the POS as it opens into an e-beam diode, these experiments

  8. Current-driven drift wave instability in a collisional dusty negative ion plasma

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Rosenberg

    2013-12-01

    The excitation of drift waves by an electron current parallel to the magnetic field is investigated in a nonuniform plasma composed of electrons, positive ions, negative ions, and massive, negatively charged dust. Electrostatic drift waves with frequencies smaller than the ion gyrofrequencies and wavelengths larger than the ion gyroradii are considered. Linear kinetic theory is used, and collisions of charged particles with neutrals are taken into account. The present results may be relevant to laboratory collisional magnetoplasmas containing negative ions and dust.

  9. Large-scale magnetic field generation by alpha effect driven by collective neutrino-plasma interaction.

    PubMed

    Semikoz, V B; Sokoloff, D D

    2004-04-01

    We suggest a new mechanism for the generation of a large-scale magnetic field in the hot plasma of the early Universe which is based on parity violation in weak interactions and depends neither on the helicity of matter turbulence resulting in the standard alpha effect nor on general rotation. The mechanism can result in a self-excitation of an (almost) uniform cosmological magnetic field. PMID:15089594

  10. Beam driven upper-hybrid-wave instability in quantized semiconductor plasmas

    SciTech Connect

    Jamil, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan)] [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rasheed, A. [Department of Physics, Government College University, Faisalabad 38000 (Pakistan)] [Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Rozina, Ch. [Department of Physics, Government M.A.O. College, Lahore 54000 (Pakistan)] [Department of Physics, Government M.A.O. College, Lahore 54000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt) [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)] [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

    2014-02-15

    The excitation of Upper-Hybrid waves (UHWs) induced by electron beam in semiconductor plasma is examined using quantum hydrodynamic model. Various quantum effects are taken into account including recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The bandwidth of the UHWs spectrum shows that the system supports purely growing unstable mode. The latter has been studied for diversified parameters of nano-sized GaAs semiconductor.

  11. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  12. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF. PMID:19405657

  13. Analytic structure of a drag-driven confined dust vortex flow in plasma

    NASA Astrophysics Data System (ADS)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K.

    2015-06-01

    Flow structure of a dust medium electrostatically suspended and confined in a plasma presents a unique setup where the spatial scale of a volumetric drive by the plasma flow might exceed that of the boundaries confining the dust. By means of a formal implementation of a two-dimensional hydrodynamic model to a confined dust flow and its analytic curvilinear solutions, it is shown that the eigenmode spectrum of the dust vortex flow can lose correlations with the driving field even at the low dust Reynolds numbers as a result of strong shear and finer scales introduced in the equilibrium dust vorticity spectrum by the boundaries. While the boundary effects can replace the desired turbulent processes unavailable in this regime, the shear observable in most of the dust vortex flows is identified to have a definite exponent of dependence on the dust viscosity over a substantially large range of the latter. These results and scalings allow quantification of the notion of dusty plasma medium as a paradigm for a wide range of natural flow processes having scales inaccessible to ordinary laboratory experiments.

  14. Folded dielectric elastomer actuators

    Microsoft Academic Search

    Federico Carpi; Claudio Salaris; Danilo DeRossi

    2007-01-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on

  15. Hardware Components: Sensors, Actuators,

    E-print Network

    Hu, Fei

    in an electric field light-electric effects; magnetic effects; ... #12;3 5 Example: Acceleration Sensor MEMS1 1 Hardware Components: Sensors, Actuators, Converters + Sudeep Pasricha Colorado State University and Tony Givargis 2 Simplified Block Diagram actuators #12;2 3 Sensors and Actuators Sensors: Capture

  16. Possible control of plasma transport in the near-Earth plasma sheet via current-driven Alfvén waves (f~=fH+)

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Roux, A.; Perraut, S.; Pellat, R.; Holter, Ø.; Pedersen, A.; Korth, A.

    2001-06-01

    Two time periods, each covering both quiet and disturbed conditions (growth phase, breakup, and postbreakup phase), are studied. Electric and magnetic field measurements, carried out in the near-Earth plasma sheet (NEPS), are used to calculate the two components (radial and azimuthal) of the electric E×B/B2 drift. These calculations are compared with independent estimates of the ion flow direction deduced from ion flux measurements. During active periods, the two flow directions coincide to a large degree. Evidence is given for two regimes of transport: (1) During the growth phase, and after the active phase, the electric field (radial and azimuthal) and hence the azimuthal and radial flow velocities are small in the near-equatorial region. This is interpreted as the consequence of an electrostatic field that tends to shield the induced electric field associated with time-varying external conditions. (2) During active phases (breakup and pseudobreakup), however, large-amplitude bursts in E×B/B2 radial and azimuthal components (interpreted as flow bursts), with typical velocities of the order of 100 kms-1, are observed. The direction of these flow bursts is somewhat arbitrary, and in particular, for the two substorm events described here, sudden reversals in the flow direction are observed. These fast flow bursts coincide with intense low-frequency electromagnetic fluctuations: current-driven Alfvén waves (CDA waves) with frequency f~=fH+, the proton gyrofrequency. CDA waves produce ``anomalous'' collisions on timescales shorter than the electron bounce period, thus violating the second adiabatic invariant for electrons. As a consequence, the electrostatic shielding is destroyed, which leads to enhanced radial transport. Thus the transport in the NEPS seems to be controlled by a microscopic current-driven instability.

  17. Modelling a surface acoustic wave based remotely actuated microvalve

    Microsoft Academic Search

    Ajay C. Tikka; Said F. Al-Sarawi; Derek Abbott

    2009-01-01

    We present a normally closed, remotely actuated, secure coded, electrostatically driven active microvalve using passive components. This is carried out by utilizing the complex signal processing capabilities of two identical 5 × 2-bit Barker sequence encoded acoustic wave correlators. An electrostatically driven microchannel, comprising two conducting diaphragms as the top and bottom walls, is placed in between the compressor interdigital

  18. Few-cycle driven relativistically oscillating plasma mirrors: a source of intense isolated attosecond pulses.

    PubMed

    Heissler, P; Hörlein, R; Mikhailova, J M; Waldecker, L; Tzallas, P; Buck, A; Schmid, K; Sears, C M S; Krausz, F; Veisz, L; Zepf, M; Tsakiris, G D

    2012-06-01

    The conditions required for the production of isolated attosecond pulses from relativistically oscillating mirrors (ROM) are investigated numerically and experimentally. In simulations, carrier-envelope-phase-stabilized three-cycle pulses are found to be sufficient to produce isolated attosecond pulses, while two-cycle pulses will predominantly lead to isolated attosecond pulses even in the absence of carrier-envelope stabilization. Using a state-of-the-art laser system delivering three-cycle pulses at multiple-terawatt level, we have generated higher harmonics up to 70 eV photon energy via the ROM mechanism. The observed spectra are in agreement with theoretical expectations and highlight the potential of few-cycle-driven ROM harmonics for intense isolated attosecond pulse generation for performing extreme ultraviolet-pump extreme ultraviolet-probe experiments. PMID:23003964

  19. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}??W/??cm^{2}. Highly charged gold ions with kinetic energies up to >200??MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747

  20. Tuneable Auxiliary Control Mechanisms For RUM Actuators

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Alhorn, Dean C.

    1995-01-01

    Tuneable auxiliary control mechanisms for rotating unbalanced-mass (RUM) actuators used to maximize scan amplitudes and/or minimize power consumption during changing conditions. This type of mechanism more sophisticated version of type of mechanism described in "Auxiliary Control Mechanisms for RUM Actuators" (MFS-28817). Torsional stiffness of torsionally flexible coupling made adjustable on command. Torsionally flexible coupling in tuneable version of auxiliary control mechanism adjustable by use of stepping-motor-driven worm-gear mechanism that varies bending length of flexible blade.