Science.gov

Sample records for plasma cell induced

  1. Plasma-activated medium induced apoptosis on tumor cells

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Kikkawa, Fumitaka

    2013-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has attracted attention in cancer therapy. In this study, the fresh medium was treated with our developed NEAPP, ultra-high electron density (approximately 2 × 1016 cm-3). The medium called the plasma-activated medium (PAM) killed not normal cells but tumor cells through induction of apoptosis. Cell proliferation assays showed that the tumor cells were selectively killed by the PAM. Those cells induced apoptosis using an apoptotic molecular marker, cleaved Caspase3/7. The molecular mechanisms of PAM-mediated apoptosis in the tumor cells were also found that the PAM downregulated the expression of AKT kinase, a marker molecule in a survival signal transduction pathway. These results suggest that PAM may be a promising tool for tumor therapy by downregulating the survival signals in cancers.

  2. T cells induce terminal differentiation of transformed B cells to mature plasma cell tumors.

    PubMed

    Hilbert, D M; Shen, M Y; Rapp, U R; Rudikoff, S

    1995-01-31

    Major interest in the analysis of mature plasma cell neoplasias of mice and humans has focused on identification of precursor cells that give rise to mature malignant plasma cells. Although several laboratories have recently suggested that such cells are present in the granulomas of pristane-treated mice and the bone marrow of some multiple myeloma patients, the in vivo cellular interactions required for their differentiation into mature plasma cell tumors remains unclear. Given the extensive interactions of peripheral T cells and normal B cells, we assessed the potential role of T cells in plasma-cell tumor development, by using a myc, raf-containing retrovirus, J3V1, to induce plasmacytomas in normal BALB/c mice, T-cell-deficient nude mice, and T-cell-reconstituted nude mice. The B-lineage tumors arising in normal BALB/c mice were uniformly mature plasmacytomas, most of which secreted immunoglobulin. In contrast, nude mice yielded predominantly non-immunoglobulin-secreting B-cell lymphomas with a phenotype characteristic of peripheral B cells. T-cell reconstitution of nude mice prior to tumor induction resulted in a shift from B-cell lymphomas to plasmacytomas. These results imply that transformation can occur prior to terminal differentiation of B cells and that such transformed cells can be driven to terminal differentiation by peripheral T cells. These findings further suggest that, in human multiple myeloma, the ability of T cells to influence the differentiation state of transformed B cells may provide a mechanism by which malignant plasma cells found in the bone marrow could arise from clonotypically related less-mature B cells found in both the bone marrow and periphery. PMID:7846031

  3. Apoptosis in vascular cells induced by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Sladek, Raymond; Stoffels, Eva

    2006-10-01

    Apoptosis is a natural mechanism of cellular self-destruction. It can be triggered by moderate, yet irreversible damage. Apoptosis plays a major role in tissue renewal. Artificial apoptosis induction will become a novel therapy that meets all requirements for tissue-saving surgery. Diseased tissues can disappear without inflammation and scarring. This is particularly important in treatment of blockages in body tracts (e.g. cardiovascular diseases). Artificial induction of apoptosis can be achieved by means of cold plasma treatment. In this work an atmospheric micro-plasma operated in helium/air has been used to induce apoptosis in vascular cells. Parametric studies of apoptosis induction have been conducted; the efficiency is almost 100%. The apoptotic factors are ROS/RNS (reactive oxygen and nitrogen species). Their densities in the plasma have been measured by mass spectrometry. For apoptosis induction, RNS seem to be more important than ROS, because of their relative abundance. Moreover, addition of a ROS scavenger (ascorbic acid) to the cell culture medium does not reduce the occurrence of apoptosis. Cold plasma is a very efficient tool for fundamental studies of apoptosis, and later, for controlled tissue removal in vivo.

  4. Analysis of non-thermal plasma-induced cell injury in human lung cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Sano, Kaori; Wada, Motoi; Mizuno, Kazue; Ono, Ryo; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2015-09-01

    Recent progress of biomedical application of atmospheric pressure plasma shows that the biological effects are mainly due to reactive oxygen and nitrogen species (RONS) in liquid produced by the plasma exposure. To elucidate the cellular responses induced by exposure to the plasma, we focused on identification and quantification of reactive chemical species in plasma-exposed cell culture medium, and cell injury in mammalian cells after treatment of the plasma-exposed medium. In this study, we examined human lung cancer cell lines. The contribution of H2O2 to the cellular responses was considered. Here, an atmospheric pressure plasma jet (APPJ) sustained by a pulsed power supply in argon was used. After APPJ exposure to cell culture medium, RONS detection in liquid was conducted. It showed that OH radical, ONOO-, NO2-, NO3-, and H2O2 were produced in the plasma-exposed medium. Cellular responses of human lung cancer cell lines to the plasma-exposed medium in a concentration-dependence manner were also studied. It showed that the plasma-exposed medium and the H2O2 treatment gave similar reduction in viability and induction of apoptosis. This work was partly supported by MEXT KAKENHI Grant Number 24108005 and JSPS KAKENHI Grant Number 26390096.

  5. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    NASA Astrophysics Data System (ADS)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  6. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  7. Non-thermal Plasma Induces Apoptosis in Melanoma Cells via Production of Intracellular Reactive Oxygen Species

    PubMed Central

    Sensenig, Rachel; Kalghatgi, Sameer; Cerchar, Ekaterina; Fridman, Gregory; Shereshevsky, Alexey; Torabi, Behzad; Arjunan, Krishna Priya; Podolsky, Erica; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane; Brooks, Ari D.

    2012-01-01

    Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p<0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm2. TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p<0.001) at a dose of 15 J/cm2. Pre-treatment with N-acetyl-L-cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm2. Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies. PMID:21046465

  8. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  9. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    PubMed Central

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications. PMID:25410636

  10. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    NASA Astrophysics Data System (ADS)

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-11-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.

  11. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes. PMID:19606833

  12. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    SciTech Connect

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  13. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  14. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  15. Cold Atmospheric Plasma Induces a Predominantly Necrotic Cell Death via the Microenvironment

    PubMed Central

    Cousty, Sarah; Cambus, Jean-Pierre; Valentin, Alexis

    2015-01-01

    Introduction Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial. Methods and Results Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells. Conclusion These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy. PMID:26275141

  16. Interleukin-6 is required for pristane-induced plasma cell hyperplasia in mice.

    PubMed

    Dedera, D A; Urashima, M; Chauhan, D; LeBrun, D P; Bronson, R T; Anderson, K C

    1996-07-01

    Intraperitoneal injection of pristane induces production of interleukin-6 (IL-6) and either plasmacytosis or plasmacytoma in mice, depending upon the genetic background. Pristane does not induce plasmacytoma in IL-6 knockout (IL-6-/-) mice, suggesting that IL-6 is required for this process. In the present study we determined whether IL-6 is also required for pristane-induced hyperplasia of normal plasma cells. Pristane was injected intraperitoneally into IL-6-/- and IL-6 wild-type (IL-6+/+) mice. Overall there were more deaths in IL-6+/+ mice (85%) than in IL-6-/- mice (40%), P = 0.024. Hyperplastic lymph node and spleen weight did not differ (P = 0.82 and P = 0.15, respectively) in IL-6-/- versus IL-6+/+ mice. Lymphocytosis with similar patterns of expression of B-cell (B220) and T-cell (Thy-1) antigens was noted in both IL-6-/- and IL-6+/+ mice. However, morphological studies, dual fluorescent staining for Syn-1 and B220 antigens (syn-1+ B220+ cells), and intracytoplasmic Ig staining revealed plasma cell hyperplasia in lymph node and spleen from IL-6+/+, but not IL-6-/-, mice. These plasma cells from IL-6+/+ mice were polyclonal and unable to induce tumour formation in severe combined immunodeficient mice. These data demonstrate that IL-6 is required for pristane-induced hyperplasia of polyclonal plasma cells in mice. PMID:8757508

  17. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  18. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  19. Iron stimulates plasma-activated medium-induced A549 cell injury.

    PubMed

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD(+) and ATP, and elevations in intracellular Ca(2+). The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  20. Iron stimulates plasma-activated medium-induced A549 cell injury

    PubMed Central

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD+ and ATP, and elevations in intracellular Ca2+. The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  1. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  2. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo

    PubMed Central

    2012-01-01

    Background The rate of microscopic incomplete resections of gastrointestinal cancers including pancreatic cancer has not changed considerably over the past years. Future intra-operative applications of tissue tolerable plasmas (TTP) could help to address this problem. Plasma is generated by feeding energy, like electrical discharges, to gases. The development of non-thermal atmospheric plasmas displaying spectra of temperature within or just above physiological ranges allows biological or medical applications of plasmas. Methods We have investigated the effects of tissue tolerable plasmas (TTP) on the human pancreatic cancer cell line Colo-357 and PaTu8988T and the murine cell line 6606PDA in vitro (Annexin-V-FITC/DAPI-Assay and propidium iodide DNA staining assay) as well as in the in vivo tumour chorio-allantoic membrane (TUM-CAM) assay using Colo-357. Results TTP of 20 seconds (s) induced a mild elevation of an experimental surface temperature of 23.7 degree Celsius up to 26.63+/−0.40 degree Celsius. In vitro TTP significantly (p=0.0003) decreased cell viability showing the strongest effects after 20s TTP. Also, TTP effects increased over time levelling off after 72 hours (30.1+/−4.4% of dead cells (untreated control) versus 78.0+/−9.6% (20s TTP)). However, analyzing these cells for apoptosis 10s TTP revealed the largest proportion of apoptotic cells (34.8+/−7.2%, p=0.0009 versus 12.3+/−6.6%, 20s TTP) suggesting non-apoptotic cell death in the majority of cells after 20s TTP. Using solid Colo-357 tumours in the TUM-CAM model TUNEL-staining showed TTP-induced apoptosis up to a depth of tissue penetration (DETiP) of 48.8+/−12.3μm (20s TTP, p<0.0001). This was mirrored by a significant (p<0.0001) reduction of Ki-67+ proliferating cells (80.9+/−13.2% versus 37.7+/−14.6%, p<0.0001) in the top cell layers as well as typical changes on HE specimens. The bottom cell layers were not affected by TTP. Conclusions Our data suggest possible future intra

  3. The relation between doses or post-plasma time points and apoptosis of leukemia cells induced by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli

    2015-12-01

    The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.

  4. Spatially-Selective Membrane Permeabilization Induced by Cell-Solution Electrode Atmospheric Pressure Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Hokari, Yutaro; Kanzaki, Makoto; Kaneko, Toshiro

    2015-09-01

    Gene transfection, which is the process of deliberately introducing nucleic acids into cells, is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure plasma (APP). We have previously reported that the cell membrane permeability, which is closely related with gene transfection, is improved using a cell-solution electrode for generating He-APP. He-APP is irradiated to the solution containing the adherent cells and delivery materials such as fluorescent dyes (YOYO-1) and plasmid DNA (GFP). In case of YOYO-1 delivery, more than 80% of cells can be transferred only in the plasma-irradiated area and the spatially-selective membrane permeabilization is realized by the plasma irradiation. In addition, it is confirmed that plasmid DNA is transfected and the GFP genes are expressed using same APP irradiation system with no obvious cellular damage.

  5. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 ‑•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 ‑• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  6. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  7. Cell Death Induced on Cell Cultures and Nude Mouse Skin by Non-Thermal, Nanosecond-Pulsed Generated Plasma

    PubMed Central

    Bousquet, Guilhem; Gapihan, Guillaume; Starikovskaia, Svetlana M.; Rousseau, Antoine; Janin, Anne

    2013-01-01

    Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm2 for the epidermis, 281 J/cm2 for the dermis, and 394 J/cm2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions. PMID:24358244

  8. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells

    NASA Astrophysics Data System (ADS)

    Ja Kim, Sun; Min Joh, Hea; Chung, T. H.

    2013-10-01

    The effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. Using a detection dye, the production of intracellular reactive oxygen species (ROS) was found to be increased in plasma-treated cells compared to non-treated and gas flow-treated cells. A significant overproduction of ROS and a reduction in cell viability were induced by plasma exposure on cancer cells. Normal cells were observed to be less affected by the plasma-mediated ROS, and cell viability was less changed. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as a cancer therapy.

  9. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility.

    PubMed

    Tournaviti, Stella; Hannemann, Sebastian; Terjung, Stefan; Kitzing, Thomas M; Stegmayer, Carolin; Ritzerfeld, Julia; Walther, Paul; Grosse, Robert; Nickel, Walter; Fackler, Oliver T

    2007-11-01

    SH4 domains provide bipartite membrane-targeting signals for oncogenic Src family kinases. Here we report the induction of non-apoptotic plasma membrane (PM) blebbing as a novel and conserved activity of SH4 domains derived from the prototypic Src kinases Src, Fyn, Yes and Lck as well as the HASPB protein of Leishmania parasites. SH4-domain-induced blebbing is highly dynamic, with bleb formation and collapse displaying distinct kinetics. These reorganizations of the PM are controlled by Rho but not Rac or Cdc42 GTPase signalling pathways. SH4-induced membrane blebbing requires the membrane association of the SH4 domain, is regulated by the activities of Rock kinase and myosin II ATPase, and depends on the integrity of F-actin as well as microtubules. Endogenous Src kinase activity is crucial for PM blebbing in SH4-domain-expressing cells, active Src and Rock kinases are enriched in SH4-domain-induced PM blebs, and PM blebbing correlates with enhanced cell invasion in 3D matrices. These results establish a novel link between SH4 domains, Src activity and Rho signalling, and implicate SH4-domain-mediated PM dynamization as a mechanism that influences invasiveness of cells transformed by SH4-domain-containing oncoproteins. PMID:17959630

  10. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  11. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  12. Plume expansion of a laser-induced plasma studied with the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Ellegaard, O.; Nedelea, T.; Schou, J.; Urbassek, H. M.

    2002-09-01

    The initial stage of laser-induced plasma plume expansion from a solid in vacuum and the effect of the Coulomb field have been studied. We have performed a one-dimensional numerical calculation by mapping the charge on a computational grid according to the particle-in-cell (PIC) method of Birdsall et al. It is assumed that the particle ablation from a surface with a fixed temperature takes place as a pulse, i.e. within a finite period of time. A number of characteristic quantities for the plasma plume are compared with similar data for expansion of neutrals as well as fluid models: Density profiles n( x, t), velocity distributions of ions u( x, t), distribution functions for velocities F( vx) of ions or electrons as well as the time dependence of kinetic energy Ekin( t) for both type of particles. We found a significant increase in the velocities of the ions at the expense of field potential energy as well as electron energy. We have estimated the time constant for energy transfer between the electrons and the ions. The scaling of these processes is given by a single parameter determined by the Debye length obtained from the electron density in the plasma outside the surface.

  13. Red blood cell coagulation induced by low-temperature plasma treatment.

    PubMed

    Miyamoto, Kenji; Ikehara, Sanae; Takei, Hikaru; Akimoto, Yoshihiro; Sakakita, Hajime; Ishikawa, Kenji; Ueda, Masashi; Ikeda, Jun-Ichiro; Yamagishi, Masahiro; Kim, Jaeho; Yamaguchi, Takashi; Nakanishi, Hayao; Shimizu, Tetsuji; Shimizu, Nobuyuki; Hori, Masaru; Ikehara, Yuzuru

    2016-09-01

    Low-temperature plasma (LTP) treatment promotes blood clot formation by stimulation of the both platelet aggregation and coagulation factors. However, the appearance of a membrane-like structure in clots after the treatment is controversial. Based on our previous report that demonstrated characteristics of the form of coagulation of serum proteins induced by LTP treatment, we sought to determine whether treatment with two plasma instruments, namely BPC-HP1 and PN-110/120TPG, formed clots only from red blood cells (RBCs). LTP treatment with each device formed clots from whole blood, whereas LTP treatment with BPC-HP1 formed clots in phosphate-buffered saline (PBS) containing 2 × 10(9)/mL RBCs. Light microscopic analysis results showed that hemolysis formed clots consisting of materials with membrane-like structures from both whole blood and PBS-suspended RBCs. Moreover, electron microscopic analysis results showed a monotonous material with high electron density in the formed clots, presenting a membrane-like structure. Hemolysis disappeared with the decrease in the current through the targets contacting with the plasma flare and clot formation ceased. Taken together, our results and those of earlier studies present two types of blood clot formation, namely presence or absence of hemolysis capability depending on the current through the targets. PMID:27033148

  14. Plasma-activated medium-induced intracellular zinc liberation causes death of SH-SY5Y cells.

    PubMed

    Hara, Hirokazu; Taniguchi, Miko; Kobayashi, Mari; Kamiya, Tetsuro; Adachi, Tetsuo

    2015-10-15

    Plasma is an ionized gas consisting of ions, electrons, free radicals, neutral particles, and photons. Plasma-activated medium (PAM), which is prepared by the irradiation of cell-free medium with non-thermal atmospheric pressure plasma, induces cell death in various types of cancer cell. Since PAM contains reactive oxygen species (ROS), its anti-cancer effects are thought to be attributable to oxidative stress. Meanwhile, oxidative stress has been shown to induce the liberation of zinc (Zn(2+)) from intracellular Zn(2+) stores and to provoke Zn(2+)-dependent cell death. In this study, we thus examined whether Zn(2+) is involved in PAM-induced cell death using human neuroblastoma SH-SY5Y cells. Exposure to PAM triggered cell death in SH-SY5Y cells. The cell-permeable Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) protected against PAM-induced cell death. Zn(2+) imaging using the fluorescent Zn(2+) probe FluoZin-3 revealed that PAM elicited a rise of intracellular free Zn(2+). In addition, PAM stimulated PARP-1 activation, mitochondrial ROS generation, and the depletion of intracellular NAD(+) and ATP. These findings suggest that PAM-induced PARP-1 activation causes energy supply exhaustion. Moreover, TPEN suppressed all of these events elicited by PAM. Taken together, we demonstrated here that Zn(2+) released from intracellular Zn(2+) stores serves as a key mediator of PAM-induced cell death in SH-SY5Y cells. PMID:26319292

  15. Modeling particle-induced electron emission in a simplified plasma Test Cell

    SciTech Connect

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-21

    Particle-induced electron emission (PIE) is modeled in a simplified, well-characterized plasma Test Cell operated at UCLA. In order for PIE to be a useful model in this environment, its governing equations are first reduced to lower-order models which can be implemented in a direct simulation Monte Carlo and Particle-in-Cell framework. These reduced-order models are described in full and presented as semi-empirical models. The models are implemented to analyze the interaction of low- and high-energy ({approx}1-2 keV) xenon ions and atoms with the stainless steel electrodes of the Test Cell in order to gain insight into the emission and transport of secondary electrons. Furthermore, there is a lack of data for xenon-stainless steel atom- and ion-surface interactions for similar environments. Using experimental data as a reference, both total yields and emitted electron energy distribution functions can be deduced by observing sensitivities of current collection results to these numerical models and their parameters.

  16. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  17. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network.

    PubMed

    Adachi, Tetsuo; Tanaka, Hiromasa; Nonomura, Saho; Hara, Hirokazu; Kondo, Shin-ichi; Hori, Masaru

    2015-02-01

    Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Nonthermal atmospheric pressure plasma can be applied to living cells and tissues and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only directly, but also by indirect treatment with previously prepared plasma-activated medium (PAM). The objective of this study was to demonstrate the inhibitory effects of PAM on A549 cell survival and elucidate the signaling mechanisms responsible for cell death. PAM maintained its ability to suppress cell viability for at least 1 week when stored at -80°C. The severity of PAM-triggered cell injury depended on the kind of culture medium used to prepare the PAM, especially that with or without pyruvate. Hydrogen peroxide (H2O2) and/or its derived or cooperating reactive oxygen species reduced the mitochondrial membrane potential, downregulated the expression of the antiapoptotic protein Bcl2, activated poly(ADP-ribose) polymerase-1, and released apoptosis-inducing factor from mitochondria with endoplasmic reticulum stress. However, the activation of caspase 3/7 and attenuation of cell viability by the addition of caspase inhibitor were not observed. The accumulation of adenine 5'-diphosphoribose as a product of the above reactions activated transient receptor potential melastatin 2, which elevated intracellular Ca(2+) levels and subsequently led to cell death. These results demonstrated that H2O2 and/or other reactive species in PAM disturbed the mitochondrial-nuclear network in cancer cells through a caspase-independent apoptotic pathway. Moreover, damage to the plasma membrane by H2O2-cooperating charged species not only induced apoptosis, but also increased its permeability to extracellular reactive species. These phenomena were also detected in PAM-treated HepG2 and MCF-7 cells. PMID:25433364

  18. Altered Antioxidant System Stimulates Dielectric Barrier Discharge Plasma-Induced Cell Death for Solid Tumor Cell Treatment

    PubMed Central

    Park, Daehoon; Choi, Eun H.

    2014-01-01

    This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues. PMID:25068311

  19. Plasma protein induced clustering of red blood cells in micro capillaries

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Brust, Mathias; Aouane, Othmane; Flormann, Daniel; Thiebaud, Marine; Verdier, Claude; Coupier, Gwennou; Podgorski, Thomas; Misbah, Chaouqi; Selmi, Hassib

    2013-11-01

    The plasma molecule fibrinogen induces aggregation of RBCs to clusters, the so called rouleaux. Higher shear rates in bulk flow can break them up which results in the pronounced shear thinning of blood. This led to the assumption that rouleaux formation does not take place in the microcapillaries of the vascular network where high shear rates are present. However, the question is of high medical relevance. Cardio vascular disorders are still the main cause of death in the western world and cardiac patients have often higher fibrinogen level. We performed AFM based single cell force spectroscopy to determine the work of separation. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the adhesion strength and we found that cluster formation is strongly enhanced by fibrinogen at physiological concentrations, even at shear rate as high as 1000 1/s. Numerical simulations based on a boundary integral method confirm our findings and the clustering transition takes place both in the experiments and in the simulations at the same interaction energies. In vivo measurements with intravital fluorescence microscopy in a dorsal skin fold chamber in a mouse reveal that RBCs indeed form clusters in the micrcapillary flow. This work was supported by the German Science Foundation research imitative SFB1027.

  20. Plasma Cell Disorders

    MedlinePlus

    ... microorganisms to which the body is exposed. In plasma cell disorders, one clone of plasma cells multiplies uncontrollably. As a result, this clone ... a light chain and heavy chain). These abnormal plasma cells and the ... produce are limited to one type, and levels of other types of antibodies ...

  1. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  2. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  3. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  4. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper. PMID:26233368

  5. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    NASA Astrophysics Data System (ADS)

    Ribière, M.; Cessenat, O.; d'Almeida, T.; de Gaufridy de Dortan, F.; Maulois, M.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-03-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 1010 cm-3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  6. Cold Atmospheric Plasma Treatment Induces Anti-Proliferative Effects in Prostate Cancer Cells by Redox and Apoptotic Signaling Pathways

    PubMed Central

    Weiss, Martin; Gümbel, Denis; Hanschmann, Eva-Maria; Mandelkow, Robert; Gelbrich, Nadine; Zimmermann, Uwe; Walther, Reinhard; Ekkernkamp, Axel; Sckell, Axel; Kramer, Axel; Burchardt, Martin; Lillig, Christopher H.; Stope, Matthias B.

    2015-01-01

    One of the promising possibilities of the clinical application of cold plasma, so-called cold atmospheric plasma (CAP), is its application on malignant cells and cancer tissue using its anti-neoplastic effects, primarily through the delivery of reactive oxygen and nitrogen species (ROS, RNS). In this study, we investigated the impact of CAP on cellular proliferation and consecutive molecular response mechanisms in established prostate cancer (PC) cell lines. PC cells showed a significantly reduced cell growth following CAP treatment as a result of both an immediate increase of intracellular peroxide levels and through the induction of apoptosis indicated by annexin V assay, TUNEL assay, and the evaluation of changes in nuclear morphology. Notably, co-administration of N-acetylcysteine (NAC) completely neutralized CAP effects by NAC uptake and rapid conversion to glutathione (GSH). Vitamin C could not counteract the CAP induced effects on cell growth. In summary, relatively short treatments with CAP of 10 seconds were sufficient to induce a significant inhibition of cancer proliferation, as observed for the first time in urogenital cancer. Therefore, it is important to understand the mode of CAP related cell death and clarify and optimize CAP as cancer therapy. Increased levels of peroxides can alter redox-regulated signaling pathways and can lead to growth arrest and apoptosis. We assume that the general intracellular redox homeostasis, especially the levels of cellular GSH and peroxidases such as peroxiredoxins affect the outcome of the CAP treatment. PMID:26132846

  7. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    PubMed

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (P<0.05) attenuated by both the 50 and 100 ppm treatments of T. cacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. PMID:26955771

  8. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts

    PubMed Central

    Chen, Joseph C.; Johnson, Brittni A.; Erikson, David W.; Piltonen, Terhi T.; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C.; Greene, Warner C.; Giudice, Linda C.; Roan, Nadia R.

    2014-01-01

    STUDY QUESTION How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? SUMMARY ANSWER Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. WHAT IS KNOWN ALREADY Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. STUDY DESIGN, SIZE, DURATION This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. PARTICIPANTS/MATERIALS, SETTING, METHODS eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. MAIN RESULTS AND THE ROLE OF CHANCE Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced

  9. Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells

    PubMed Central

    Hirst, A M; Simms, M S; Mann, V M; Maitland, N J; O'Connell, D; Frame, F M

    2015-01-01

    Background: In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species. Method: The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout. Results: Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis. Conclusions: This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response. PMID:25839988

  10. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species.

    PubMed

    Tero, Ryugo; Yamashita, Ryuma; Hashizume, Hiroshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Hori, Masaru; Ito, Masafumi

    2016-09-01

    We investigated morphological change of an artificial lipid bilayer membrane induced by oxygen radicals which were generated by non-equilibrium atmospheric pressure plasma. Neutral oxygen species, O((3)Pj) and O2((1)Δg), were irradiated of a supported lipid bilayer existing under a buffer solution at various conditions of dose time and distances, at which the dose amounts of the oxygen species were calculated quantitatively. Observation using an atomic force microscope and a fluorescence microscope revealed that dose of the neutral oxygen species generated nanopores with the diameter of 10-50 nm in a phospholipid bilayer, and finally destructed the bilayer structure. We found that protrusions appeared on the lipid bilayer surface prior to the formation of nanopores, and we attributed the protrusions to the precursor of the nanopores. We propose a mechanism of the pore formation induced by lipid oxidation on the basis of previous experimental and theoretical studies. PMID:27216034

  11. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection.

    PubMed

    Bohannon, Caitlin; Powers, Ryan; Satyabhama, Lakshmipriyadarshini; Cui, Ang; Tipton, Christopher; Michaeli, Miri; Skountzou, Ioanna; Mittler, Robert S; Kleinstein, Steven H; Mehr, Ramit; Lee, Francis Eun-Yun; Sanz, Ignacio; Jacob, Joshy

    2016-01-01

    Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells-with T-cell help-undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge. PMID:27270306

  12. "Angular" plasma cell cheilitis.

    PubMed

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure. PMID:24656273

  13. Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection

    PubMed Central

    Bohannon, Caitlin; Powers, Ryan; Satyabhama, Lakshmipriyadarshini; Cui, Ang; Tipton, Christopher; Michaeli, Miri; Skountzou, Ioanna; Mittler, Robert S.; Kleinstein, Steven H.; Mehr, Ramit; Lee, Frances Eun-Yun; Sanz, Ignacio; Jacob, Joshy

    2016-01-01

    Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells—with T-cell help—undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge. PMID:27270306

  14. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  15. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  16. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma

    PubMed Central

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals. PMID:26919318

  17. Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphate level in the plasma membrane.

    PubMed

    Zhao, Siyuan; Liao, Huanhuan; Ao, Meiying; Wu, Li; Zhang, Xiaojun; Chen, Yong

    2014-01-01

    While most attention has been focused on physiologically generated blebs, the molecular mechanisms for fixation-induced cell blebbing are less investigated. We show that protein-fixing (e.g. aldehydes and picric acid) but not lipid-stabilizing (e.g. OsO4 and KMnO4) fixatives induce blebbing on spread cells. We also show that aldehyde fixation may induce the loss or delocalization of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane and that the asymmetric distribution of fixation-induced blebs on spread/migrating cells coincides with that of PIP2 on the cells prefixed by lipid-stabilizing fixatives (e.g., OsO4). Moreover, fixation induces blebbing less readily on PIP2-elevated spread cells but more readily on PIP2-lowered or lipid raft-disrupted spread cells. Our data suggest that fixation-induced lowering of PIP2 level at cytoskeleton-attaching membrane sites causes bleb formation via local breakdown of the membrane-cytoskeleton coupling. PMID:24649401

  18. Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphate level in the plasma membrane

    PubMed Central

    Zhao, Siyuan; Liao, Huanhuan; Ao, Meiying; Wu, Li; Zhang, Xiaojun; Chen, Yong

    2014-01-01

    While most attention has been focused on physiologically generated blebs, the molecular mechanisms for fixation-induced cell blebbing are less investigated. We show that protein-fixing (e.g. aldehydes and picric acid) but not lipid-stabilizing (e.g. OsO4 and KMnO4) fixatives induce blebbing on spread cells. We also show that aldehyde fixation may induce the loss or delocalization of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasma membrane and that the asymmetric distribution of fixation-induced blebs on spread/migrating cells coincides with that of PIP2 on the cells prefixed by lipid-stabilizing fixatives (e.g., OsO4). Moreover, fixation induces blebbing less readily on PIP2-elevated spread cells but more readily on PIP2-lowered or lipid raft-disrupted spread cells. Our data suggest that fixation-induced lowering of PIP2 level at cytoskeleton-attaching membrane sites causes bleb formation via local breakdown of the membrane–cytoskeleton coupling. PMID:24649401

  19. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  20. Evaluation of extra- and intracellular OH radical generation, cancer cell injury, and apoptosis induced by a non-thermal atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Ninomiya, Kazuaki; Ishijima, Tatsuo; Imamura, Masatoshi; Yamahara, Takayuki; Enomoto, Hiroshi; Takahashi, Kenji; Tanaka, Yasunori; Uesugi, Yoshihiko; Shimizu, Nobuaki

    2013-10-01

    In this study, we investigated the effects of a non-thermal atmospheric-pressure plasma jet inducing extracellular and intracellular OH radical generation as well as cell injury and apoptosis for the cultured human breast cancer cells. Increased OH radical generation in the extracellular culture medium (liquid phase) was observed with increased irradiation time, distance to the liquid surface, and voltage. From the voltage-response relationships for two breast cancer cell lines (invasive MDA-MB-231 cells and non-invasive MCF-7 cells) and normal breast cells (HMEC), the half-maximal effective peak-to-peak voltage (EV50) values were 16.7 ± 0.3 kV, 15.0 ± 0.4 kV and 11.2 ± 0.7 kV for MDA-MB-231, MCF-7 and HMEC cells, respectively. This indicated that there was almost no selective cancer cell injury induced by plasma jet irradiation under these conditions. Compared with control condition without a plasma jet, intracellular OH radical accumulation and apoptotic cells were observed with a plasma jet using conditions that induced injury to 50% of cells irrespective of the cancer cell line.

  1. Osteopathic manipulative therapy induces early plasma cytokine release and mobilization of a population of blood dendritic cells.

    PubMed

    Walkowski, Stevan; Singh, Manindra; Puertas, Juan; Pate, Michelle; Goodrum, Kenneth; Benencia, Fabian

    2014-01-01

    It has been claimed that osteopathic manipulative treatment (OMT) is able to enhance the immune response of individuals. In particular, it has been reported that OMT has the capability to increase antibody titers, enhance the efficacy of vaccination, and upregulate the numbers of circulating leukocytes. Recently, it has been shown in human patients suffering chronic low back pain, that OMT is able to modify the levels of cytokines such as IL-6 and TNF-α in blood upon repeated treatment. Further, experimental animal models show that lymphatic pump techniques can induce a transient increase of cytokines in the lymphatic circulation. Taking into account all these data, we decided to investigate in healthy individuals the capacity of OMT to induce a rapid modification of the levels of cytokines and leukocytes in circulation. Human volunteers were subjected to a mixture of lymphatic and thoracic OMT, and shortly after the levels of several cytokines were evaluated by protein array technology and ELISA multiplex analysis, while the profile and activation status of circulating leukocytes was extensively evaluated by multicolor flow cytometry. In addition, the levels of nitric oxide and C-reactive protein (CRP) in plasma were determined. In this study, our results show that OMT was not able to induce a rapid modification in the levels of plasma nitrites or CRP or in the proportion or activation status of central memory, effector memory or naïve CD4 and CD8 T cells. A significant decrease in the proportion of a subpopulation of blood dendritic cells was detected in OMT patients. Significant differences were also detected in the levels of immune molecules such as IL-8, MCP-1, MIP-1α and most notably, G-CSF. Thus, OMT is able to induce a rapid change in the immunological profile of particular circulating cytokines and leukocytes. PMID:24614605

  2. Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells.

    PubMed

    Ibbotson, S H; Lambert, C R; Moran, M N; Lynch, M C; Kochevar, I E

    1998-01-01

    Ultraviolet A radiation induces oxidative stress and cell damage. The purpose of this investigation was to examine whether ultraviolet A-induced cell injury was amplified by the presence of a non-ultraviolet A absorbing molecule capable of generating free radicals. Benzoyl peroxide was used as a lipid soluble potential radical-generating agent. Plasma membrane permeability assessed by trypan blue uptake was used to measure cell damage in murine leukemia L1210 cells. Cells were irradiated with a pulsed Nd/YAG laser at 355 nm using 0-160 J per cm2. The ratio of the fluence-response slope in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.3 +/- 2.6. Benzoyl peroxide alone or benzoyl peroxide added after irradiation did not cause increased trypan blue uptake. The ratio of the fluence-response slopes in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.7 +/- 1.4 when cells were irradiated (0-43 J per cm2) with a xenon lamp, filtered to remove wavelengths <320 nm. The increased trypan blue uptake in 355 nm-irradiated cells in the presence of benzoyl peroxide was inhibited in a concentration-dependent manner by butylated hydroxytoluene, vitamin E, and trolox, a water-soluble vitamin E derivative. Lipid oxidation, assessed as thiobarbituric acid reactive substances, was significantly increased in samples irradiated with ultraviolet A in the presence of benzoyl peroxide at fluences >34 J per cm2. The increased trypan blue uptake and thiobarbituric acid reactive substances were inhibited by butylated hydroxytoluene. These results suggest that agents not absorbing ultraviolet A radiation may enhance ultraviolet A-initiated oxidative stress in cells. PMID:9424093

  3. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  4. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    PubMed

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  5. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  6. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth

    PubMed Central

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-01

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H+-ATPase, and plasma membrane inward-rectifying K+ channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H+-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42–63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36–41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K+ channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H+-ATPase in guard cells is useful for the promotion of plant growth. PMID:24367097

  7. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    PubMed

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-01

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth. PMID:24367097

  8. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    PubMed

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  9. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients

    PubMed Central

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  10. Mucosal Inducible NO Synthase–Producing IgA+ Plasma Cells in Helicobacter pylori–Infected Patients

    PubMed Central

    Mueller, Mattea; Moos, Verena; Heller, Frank; Meyer, Thomas F.; Loddenkemper, Christoph; Bojarski, Christian; Fehlings, Michael; Doerner, Thomas; Allers, Kristina; Aebischer, Toni; Ignatius, Ralf; Schneider, Thomas

    2016-01-01

    The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)–dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori–infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS+ cell population in H. pylori–infected patients and confirmed intracellular NO production. Because we did not detect iNOS+ PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS+ PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA+ PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS+ PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection. PMID:27456483

  11. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients.

    PubMed

    Neumann, Laura; Mueller, Mattea; Moos, Verena; Heller, Frank; Meyer, Thomas F; Loddenkemper, Christoph; Bojarski, Christian; Fehlings, Michael; Doerner, Thomas; Allers, Kristina; Aebischer, Toni; Ignatius, Ralf; Schneider, Thomas

    2016-09-01

    The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)-dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori-infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS(+) cell population in H. pylori-infected patients and confirmed intracellular NO production. Because we did not detect iNOS(+) PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS(+) PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA(+) PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS(+) PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection. PMID:27456483

  12. In Situ OH Generation from O2− and H2O2 Plays a Critical Role in Plasma-Induced Cell Death

    PubMed Central

    Xu, Dehui; Liu, Dingxing; Wang, Biqing; Chen, Chen; Chen, Zeyu; Li, Dong; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2015-01-01

    Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are considered to be the most important species for biomedical applications, including cancer treatment. However, it is not known which species exert the greatest biological effects, and the nature of their interactions with tumor cells remains ill-defined. These questions were addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Superoxide anion (O2−) and hydrogen peroxide (H2O2) were the two major species present in plasma, but their respective concentrations were not sufficient to cause cell death when used in isolation; however, in the presence of iron, both species enhanced the cell death-inducing effects of plasma. We propose that iron containing proteins in cells catalyze O2− and H2O2 into the highly reactive OH radical that can induce cell death. The results demonstrate how reactive species are transferred to liquid and converted into the OH radical to mediate cytotoxicity and provide mechanistic insight into the molecular mechanisms underlying tumor cell death by plasma treatment. PMID:26046915

  13. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-06-01

    Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress. PMID:27091042

  14. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma.

    PubMed

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs' antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2(-) and NO3(-) can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2(-), but not NO3(-), acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2(-) in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2(-) and NO3(-) in solution. PMID:27364563

  15. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    PubMed Central

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  16. Plasma cell gingivitis

    PubMed Central

    Joshi, Chandershekhar; Shukla, Pradeep

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, often flavouring agents or spices found in chewing gums, toothpastes and lorenzes. A 27-yr old male with a chief complaint of painful, bleeding swollen mass in his lower front teeth region with prolong use of herbal toothpowder. The gingiva bled readily on probing. Patient was advised to refrain from the use of herbal toothpowder and along with periodontal treatment, no further reoccurrence was found. as more and more herbal products are gaining popularity, clinicians should be aware of effects of these products. Early diagnosis is essential as plasma cell gingivitis has similar pathologic changes seen clinically as in leukemia, HIV infection, discoid lupus erythematosis, atrophic lichen planus, desquamative gingivitis, or cicatrical pemphigoid which must be differentiated through hematologic and serologic testing. PMID:26015677

  17. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  18. Plasma rotation induced by RF

    SciTech Connect

    Chan, V. S.; Chiu, S. C.; Lin-Liu, Y. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698; Omelchenko, Y. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5698

    1999-09-20

    Plasma rotation has many beneficial effects on tokamak operation including stabilization of MHD and microturbulence to improve the beta limit and confinement. Contrary to present-day tokamaks, neutral beams may not be effective in driving rotation in fusion reactors; hence the investigation of radiofrequency (RF) induced plasma rotation is of great interest and potential importance. This paper reviews the experimental results of RF induced rotation and possible physical mechanisms, suggested by theories, to explain the observations. This subject is only in the infancy of its research and many challenging issues remained to be understood and resolved. (c) 1999 American Institute of Physics.

  19. Plasma cell vulvitis

    PubMed Central

    Bharatia, Pravin R.; Pradhan, Avinash M.; Zawar, Vijay P.

    2015-01-01

    Plasma cell vulvitis is a very rare inflammatory disorder of vulva, characterized by a bright-red mucosal lesion of significant chronicity, which may be symptomatic. Very few case studies of this condition are reported in literature. We describe one such classical patient, who presented with slight dyspareunia. The diagnosis was confirmed on histopathological examination. It is important for clinicians to accurately diagnose this alarming condition in time. PMID:26692614

  20. Effect of active species on animal cells in culture media induced by DBD Plasma irradiation using air

    NASA Astrophysics Data System (ADS)

    Ohtsubo, Tetsuya; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Little has been reported on action mechanism of active species produced by plasmas affecting living cells. In this study, active species in culture medium generated by torch type DBD and variations of animal cells are attempted to be clarified. Animal cells are irradiated by DBD plasma through various media such as DMEM, PBS and distilled water. Irradiation period is 1 to 15 min. The distance between the lower tip of plasma touch and the surface of the medium is 10 mm. Concentrations of NO2 -, O2 in liquid are measured. After the irradiation, the cells were cultivated in culture medium and their modifications are observed by microscope and some chemical reagents. Concentration of NO2 - and H2 O2 in all media increased with discharge period. Increase rate of NO2 -concentration is much higher than that of hydrogen peroxide. After plasma irradiation for 15 min, concentrations of NO2 were 80 mg/L in DMEM, 30 mg/L in PBS and 15 mg/L in distilled water. Also, the concentration of H2 O2 became 3mg/L in DMEM, 6.5 mg/L in PBS and 6.5mg/L in distilled water. The significant inactivation of cells was observed in the PBS. Above results indicate that, in this experiment, H2 O2 or OH radicals would affect animal cells in culture media.

  1. Endothelial Cell Sensitization by Death Receptor Fractions of an Anti-Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice.

    PubMed

    Sun, Der-Shan; Chang, Ying-Chen; Lien, Te-Sheng; King, Chwan-Chuen; Shih, Yung-Luen; Huang, Hsuan-Shun; Wang, Teng-Yi; Li, Chen-Ru; Lee, Chin-Cheng; Hsu, Ping-Ning; Chang, Hsin-Hou

    2015-09-15

    The mechanisms leading to the life-threatening dengue hemorrhagic fever (DHF) remain elusive. DHF preferentially occurs during secondary dengue infections, suggesting that aberrant immune responses are involved in its development. We previously demonstrated that the autoantibodies elicited by dengue virus (DENV) nonstructural protein 1 (NS1; anti-NS1 Igs) induce plasma leakage and mortality in mice with warfarinized anticoagulant suppression. However, the involved pathogenic Ig fractions of anti-NS1 Igs remain unclear. In this study, the autoreactive Igs in patients with DHF and in NS1-immunized rabbits crossreacted with TNF-related apoptosis-inducing ligand receptor 1 (death receptor [DR]4). Challenges with the DENV in a subcytotoxic dose sensitized endothelial cells to apoptosis. Treatments with the autoantibodies induced proapoptotic activities and suppressed the surface expression of endothelial anticoagulant thrombomodulin. Combined treatments comprising the DENV and DR4 affinity-purified fractions of anti-NS1 IgGs (anti-NS1-DR4 Ig), but not preimmune control IgGs, in subcytotoxic doses led to apoptosis in endothelial cells. Treatments with the anti-NS1-DR4 Ig led to plasma leakage, coagulopathy, and morality in mice with warfarinized anticoagulant suppression. These results suggest that DR4-induced endothelial cell sensitization through NS1-elicited autoantibodies exacerbates anticoagulant suppression, vascular injury, and plasma leakage. Detecting and blocking anti-DR Igs in patients may be novel strategies for managing severe DENV infection. PMID:26259584

  2. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    PubMed Central

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-01-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements. PMID:25534001

  3. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-12-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.

  4. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    PubMed

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  5. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-10-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  6. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet

    PubMed Central

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T. H.; Kang, Tae-Hong

    2014-01-01

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment. PMID:25319447

  7. Plasma cytokine concentration and the cytokine producing ability of whole blood cell cultures from healthy females with pharmacologically induced hyperprolactinemia.

    PubMed

    Rovenský, J; Lackovic, V; Veselková, Z; Horváthová, M; Koska, J; Blazícková, S; Vigas, M

    1999-01-01

    We investigated the in vitro effect of domperidone-induced hyperprolactinemia on plasma cytokine concentration and blood leukocyte cytokine production in healthy female volunteers. No changes were found in the plasma concentration of interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, IL-10, IL-6 and IL-13 during hyperprolactinemia when compared with control values. Using unseparated blood leukocytes, we found that the spontaneous production of IL-6 (4-8 h) and transforming growth factor (TGF)-beta 1 (2-4 h) was significantly decreased and that the in vitro stimulated production of IFN-gamma (2-8 h) and TNF (4 h) was significantly increased compared with control. Our data concerning the increased IFN-gamma and TNF producing capacity of unseparated leukocytes during pharmacologically induced hyperprolactinemia strongly support the possibility that the lymphocyte production of these cytokines can be rapidly amplified by prolactin via a priming mechanism. PMID:10568223

  8. Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways

    PubMed Central

    Ma, Yonghao; Ha, Chang Seung; Hwang, Seok Won; Lee, Hae June; Kim, Gyoo Cheon; Lee, Kyo-Won; Song, Kiwon

    2014-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is an ionized gas at room temperature and has potential as a new apoptosis-promoting cancer therapy that acts by generating reactive oxygen species (ROS). However, it is imperative to determine its selectivity and standardize the components and composition of NTAPP. Here, we designed an NTAPP-generating apparatus combined with a He gas feeding system and demonstrated its high selectivity toward p53-mutated cancer cells. We first determined the proper conditions for NTAPP exposure to selectively induce apoptosis in cancer cells. The apoptotic effect of NTAPP was greater for p53-mutated cancer cells; artificial p53 expression in p53-negative HT29 cells decreased the pro-apoptotic effect of NTAPP. We also examined extra- and intracellular ROS levels in NTAPP-treated cells to deduce the mechanism of NTAPP action. While NTAPP-mediated increases in extracellular nitric oxide (NO) did not affect cell viability, intracellular ROS increased under NTAPP exposure and induced apoptotic cell death. This effect was dose-dependently reduced following treatment with ROS scavengers. NTAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of NTAPP as a potent cancer therapy. Collectively, these results strongly support the potential of NTAPP as a selective anticancer treatment, especially for p53-mutated cancer cells. PMID:24759730

  9. Acute Hypertonicity Alters Aquaporin-2 Trafficking and Induces a MAPK-dependent Accumulation at the Plasma Membrane of Renal Epithelial Cells*

    PubMed Central

    Hasler, Udo; Nunes, Paula; Bouley, Richard; Lu, Hua A. J.; Matsuzaki, Toshiyuki; Brown, Dennis

    2008-01-01

    The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser256-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity. PMID:18664568

  10. Plasma cell leukemia

    PubMed Central

    Albarracin, Flavio; Fonseca, Rafael

    2014-01-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and splenomegaly. The diagnostic evaluation of a patient with suspected PCL should include a review of the peripheral blood smear, bone marrow aspiration and biopsy, serum protein electrophoresis (SPEP) with immunofixation, and protein electrophoresis of an aliquot from a 24h urine collection (UPEP). The diagnosis is made when a monoclonal population of PCs is present in the peripheral blood with an absolute PC count exceeding 2000/μL and PC comprising 20% or more of the peripheral blood white cells. The prognosis of PCL is poor with a median survival of 7 to 11 months. Survival is even shorter (2 to 7 months) when PCL occurs in the context of refractory or relapsing MM. There have been no prospective randomized trials investigating the treatment of PCL. Recommendations are primarily based upon data from small retrospective series, case reports, and extrapolation of data from patients with MM. In general, patients are treated with induction therapy followed by hematopoietic cell transplantation (HCT) in those who are appropriate candidates for this approach. The best induction regimen for PCL is not known and there is great variability in clinical practice. Newer agents that are being incorporated into frontline and salvage therapy for MM have also demonstrated activity in PCL such as Immunomodulatory agents and the use of bortezomib with different combinations. PMID:21295388

  11. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  12. Plasma Derived From Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated From the Peripheral Blood of ALS Patients.

    PubMed

    Eve, David J; Ehrhart, Jared; Zesiewicz, Theresa; Jahan, Israt; Kuzmin-Nichols, Nicole; Sanberg, Cyndy Davis; Gooch, Clifton; Sanberg, Paul R; Garbuzova-Davis, Svitlana

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration of motor neurons in the spinal cord and brain. This disease clinically manifests as gradual muscular weakness and atrophy leading to paralysis and death by respiratory failure. While multiple interdependent factors may contribute to the pathogenesis of ALS, increasing evidence shows the possible presence of autoimmune mechanisms that promote disease progression. The potential use of plasma derived from human umbilical cord blood (hUCB) as a therapeutic tool is currently in its infancy. The hUCB plasma is rich in cytokines and growth factors that are required for growth and survival of cells during hematopoiesis. In this study, we investigated the effects of hUCB plasma on the mitogen-induced proliferation of mononuclear cells (MNCs) isolated from the peripheral blood of ALS patients and apoptotic activity by detection of caspase 3/7 expression of the isolated MNCs in vitro. Three distinct responses to phytohemagglutinin (PHA)-induced proliferation of MNCs were observed, which were independent of age, disease duration, and the ALS rating scale: Group I responded normally to PHA, Group II showed no response to PHA, while Group III showed a hyperactive response to PHA. hUCB plasma attenuated the hyperactive response (Group III) and potentiated the normal response in Group I ALS patients, but did not alter that of the nonresponders to PHA (Group II). The elevated activity of caspase 3/7 observed in the MNCs from ALS patients was significantly reduced by hUCB plasma treatment. Thus, study results showing different cell responses to mitogen suggest alteration in lymphocyte functionality in ALS patients that may be a sign of immune deficiency in the nonresponders and autoimmunity alterations in the hyperactive responders. The ability of hUCB plasma to modulate the mitogen cell response and reduce caspase activity suggests that the use of hUCB plasma alone, or with

  13. A locally-induced increase in intracellular Ca2+ propagates cell-to-cell in the presence of plasma membrane Ca2+ ATPase inhibitors in non-excitable cells.

    PubMed

    Nakano, Tadashi; Koujin, Takako; Suda, Tatsuya; Hiraoka, Yasushi; Haraguchi, Tokuko

    2009-11-19

    Intercellular Ca(2+) waves are commonly observed in many cell types. In non-excitable cells, intercellular Ca(2+) waves are mediated by gap junctional diffusion of a Ca(2+) mobilizing messenger such as IP(3). Since Ca(2+) is heavily buffered in the cytosolic environment, it has been hypothesized that the contribution of the diffusion of Ca(2+) to intercellular Ca(2+) waves is limited. Here, we report that in the presence of plasma membrane Ca(2+) ATPase inhibitors, locally-released Ca(2+) from the flash-photolysis of caged-Ca(2+) appeared to induce further Ca(2+) release and were propagated from one cell to another, indicating that Ca(2+) was self-amplified to mediate intercellular Ca(2+) waves. Our findings support the notion that non-excitable cells can establish a highly excitable medium to communicate local responses with distant cells. PMID:19840794

  14. Lipopeptide Biosurfactant Pseudofactin II Induced Apoptosis of Melanoma A 375 Cells by Specific Interaction with the Plasma Membrane

    PubMed Central

    Janek, Tomasz; Krasowska, Anna; Radwańska, Agata; Łukaszewicz, Marcin

    2013-01-01

    In the case of melanoma, advances in therapies are slow, which raises the need to evaluate new therapeutic strategies and natural products with potential cancer cell inhibiting effect. Pseudofactin II (PFII), a novel cyclic lipopeptide biosurfactant has been isolated from the Arctic strain of Pseudomonas fluorescens BD5. The aim of this study was to investigate the effect of PFII on A375 melanoma cells compared with the effect of PFII on Normal Human Dermis Fibroblast (NHDF) cells and elucidate the underlying mechanism of PFII cytotoxic activity. Melanoma A375 cells and NHDF cells were exposed to PFII or staurosporine and apoptotic death was assessed by monitoring caspase 3-like activity and DNA fragmentation. From time-dependent monitoring of lactate dehydrogenase (LDH) release, Ca2+ influx, and a correlation between Critical Micelle Concentration (CMC) we concluded that cell death is the consequence of plasma membrane permeabilisation by micelles. This finding suggests that pro-apoptotic mechanism of PFII is different from previously described cyclic lipopeptides. The mechanism of PFII specificity towards malignant cells remains to be discovered. The results of this study show that PFII could be a new promising anti-melanoma agent. PMID:23483962

  15. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells

    PubMed Central

    2010-01-01

    Background Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. Results Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. Conclusion We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions. PMID:21156059

  16. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  17. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  18. Seminal plasma induces the expression of IL-1α in normal and neoplastic cervical cells via EP2/EGFR/PI3K/AKT pathway

    PubMed Central

    2014-01-01

    Background Cervical cancer is a chronic inflammatory disease of multifactorial etiology usually presenting in sexually active women. Exposure of neoplastic cervical epithelial cells to seminal plasma (SP) has been shown to promote the growth of cancer cells in vitro and tumors in vivo by inducing the expression of inflammatory mediators including pro-inflammatory cytokines. IL-1α is a pleotropic pro-inflammatory cytokine induced in several human cancers and has been associated with virulent tumor phenotype and poorer prognosis. Here we investigated the expression of IL-1α in cervical cancer, the role of SP in the regulation of IL-1α in neoplastic cervical epithelial cells and the molecular mechanism underlying this regulation. Methods and results Real-time quantitative RT-PCR confirmed the elevated expression of IL-1α mRNA in cervical squamous cell carcinoma and adenocarcinoma tissue explants, compared with normal cervix. Using immunohistochemistry, IL-1α was localized to the neoplastically transformed squamous, columnar and glandular epithelium in all cases of squamous cell carcinoma and adenocarcinomas explants studied. We found that SP induced the expression of IL-α in both normal and neoplastic cervical tissue explants. Employing HeLa (adenocarcinoma) cell line as a model system we identified PGE2 and EGF as possible ligands responsible for SP-mediated induction of IL-1α in these neoplastic cells. In addition, we showed that SP activates EP2/EGFR/PI3kinase-Akt signaling to induce IL-1α mRNA and protein expression. Furthermore, we demonstrate that in normal cervical tissue explants the induction of IL-1α by SP is via the activation of EP2/EGFR/PI3 kinase-Akt signaling. Conclusion SP-mediated induction of IL-1α in normal and neoplastic cervical epithelial cells suggests that SP may promote cervical inflammation as well as progression of cervical cancer in sexually active women. PMID:25237386

  19. Mestastable State Population in Laser Induced Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, V. H. S.; Kyriakides, C.; Ward, W. K.

    2006-01-01

    Laser induced plasma has been used as a source of neutrals and ions in the study of astrophysical plasmas. The purity of state of this source is essential in the determination of collision parameters such as the charge transfer rate coefficients between ions and neutrals. We will show that the temperature of the laser induced plasma is a rapidly decreasing function of time. The temperature is initially high but cools off rapidly through collisions with the expanding plasma electrons as the plasma recombines and streams into the vacuum. This rapid expansion of the plasma, similar to a supersonic jet, drastically lowers the internal energy of the neutrals and ions.

  20. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

    PubMed

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-02-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  1. Plasma-induced spectral broadening of high-energy ultrashort laser pulses in a helium-filled multiple-pass cell

    SciTech Connect

    Nurhuda, Muhammad; Suda, Akira; Midorikawa, Katsumi

    2006-09-15

    We investigated the possibility of plasma-induced spectral broadening of high-energy ultrashort laser pulses in a helium-filled multipass cell (MPC) through a series of full numerical simulations of the extended nonlinear Schroedinger equation. It was found that the gas pressure must be set low so that the propagation dynamics can be controlled only by plasma defocusing. Simulations using 100 mJ, 40 fs laser pulses in the MPC, which is 6 m long and has a mirror of 3.1 m radius at each end, showed that if the gas pressure is set within the range of 40-130 Pa, then the relevant spectral broadening can be obtained after five passes, yielding compressed pulses of a 4.7-6.4 fs width. The ratio of the energy of the compressed pulse to the output pulse is found to be within 58-88%.

  2. A particle-in-cell plus Monte Carlo study of plasma-induced damage of normal incidence collector optics used in extreme ultraviolet lithography

    SciTech Connect

    Wieggers, R. C.; Goedheer, W. J.; Akdim, M. R.; Bijkerk, F.; Zegeling, P. A.

    2008-01-01

    We present a kinetic simulation of the plasma formed by photoionization in the intense flux of an extreme ultraviolet lithography (EUVL) light source. The model is based on the particle-in-cell plus Monte Carlo approach. The photoelectric effect and ionization by electron collisions are included. The time evolution of the low density argon plasma is simulated during and after the EUV pulse and the ion-induced sputtering of the coating material of a normal incidence collector mirror is computed. The relation between the time and position at which the ions are created and their final energy is studied, revealing how the evolution and the properties of the sheath influence the amount of sputtered material. The influence of the gas pressure and the source intensity is studied, evaluating the behavior of Ar{sup +} and Ar{sup 2+} ions. A way to reduce the damage to the collector mirror is presented.

  3. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    SciTech Connect

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B. . E-mail: pravin_sehgal@nymc.edu

    2006-03-15

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and {alpha}-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1{alpha} and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis.

  4. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response.

    PubMed

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B

    2006-03-15

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a "megalocytosis" phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the "Golgi blockade" hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and alpha-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1alpha and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis. PMID:16000202

  5. Kaposi sarcoma associated herpesvirus (KSHV) induces AKT hyperphosphorylation, bortezomib-resistance and GLUT-1 plasma membrane exposure in THP-1 monocytic cell line

    PubMed Central

    2013-01-01

    Background Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates multiple cellular processes such as cell proliferation, evasion from apoptosis, migration, glucose metabolism, protein synthesis and proper differentiation in immune cells. Kaposi sarcoma-associated herpesvirus (KSHV), an oncogenic virus associated with several human malignancies, expresses a variety of latent and lytic proteins able to activate PI3K/AKT pathway, promoting the growth of infected cells and a successful viral infection. Results We found that KSHV latent infection of THP-1 cells, a human monocytic cell line derived from an acute monocytic leukemia patient, resulted in an increase of AKT phoshorylation, not susceptible to bortezomib-induced dephosphorylation, compared to the mock-infected THP-1. Accordingly, THP-1-infected cells displayed increased resistance to the bortezomib cytotoxic effect in comparison to the uninfected cells, which was counteracted by pre-treatment with AKT-specific inhibitors. Finally, AKT hyperactivation by KSHV infection correlated with plasma membrane exposure of glucose transporter GLUT1, particularly evident during bortezomib treatment. GLUT1 membrane trafficking is a characteristic of malignant cells and underlies a change of glucose metabolism that ensures the survival to highly proliferating cells and render these cells highly dependent on glycolysis. GLUT1 membrane trafficking in KSHV-infected THP-1 cells indeed led to increased sensitivity to cell death induced by the glycolysis inhibitor 2-Deoxy-D-glucose (2DG), further potentiated by its combination with bortezomib. Conclusions KSHV confers to the THP-1 infected cells an oncogenic potential by altering the phosphorylation, expression and localization of key molecules that control cell survival and metabolism such as AKT and GLUT1. Such modifications in one hand lead to resistance to cell death induced by some chemotherapeutic drugs such as bortezomib

  6. Neoplastic development in plasma cells.

    PubMed

    Potter, Michael

    2003-08-01

    An increasing number of model systems of plasma cell tumor (PCT) formation have been and are being developed. Discussed here are six models in mice and multiple myeloma (MM) in humans. Each model illustrates a unique set of biological factors. There are two general types of model systems: those that depend upon naturally arising mutagenic changes (pristane-induced PCTs, 5TMM, and MM) and those that are associated with oncogenes (Emu-v-abl), growth factors [interleukin-6 (IL-6)], and anti-apoptotic factors (Bcl-xL/Bcl-2). PCTs develop in several special tissue microenvironments that provide essential cytokines (IL-6) and cell-cell interactions. In mice, the activation and deregulation of c-myc by chromosomal translocations is a major feature in many of the models. This mechanism is much less a factor in MM and the 5T model in mice. Genetically determined susceptibility is involved in many of the mouse models, but only a few genes have been implicated thus far. PMID:12846815

  7. Plasma Etching Improves Solar Cells

    NASA Technical Reports Server (NTRS)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  8. Seminal plasma induces prostaglandin-endoperoxide synthase (PTGS) 2 expression in immortalized human vaginal cells: involvement of semen prostaglandin E2 in PTGS2 upregulation.

    PubMed

    Joseph, Theresa; Zalenskaya, Irina A; Sawyer, Lyn C; Chandra, Neelima; Doncel, Gustavo F

    2013-01-01

    Inflammation of the cervicovaginal mucosa is considered a risk factor for HIV infection in heterosexual transmission. In this context, seminal plasma (SP) may play an important role that is not limited to being the main carrier for the virions. It is known that SP induces an inflammatory reaction in the cervix called postcoital leukocytic reaction, which has been associated with promotion of fertility. The mechanisms by which SP triggers this reaction, however, have not been clearly established. Previously we reported the expression of prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), in human vaginal cells in response to toll-like receptor (TLR) ligands and other proinflammatory stimuli. In this study, we demonstrate that SP induces transcriptional and translational increase of COX-2 expression in human vaginal cells and cervicovaginal tissue explants. Furthermore, SP potentiates vaginal PTGS2 expression induced by other proinflammatory stimulants, such as TLR ligands and a vaginal mucosal irritant (nonoxynol-9) in a synergistic manner. SP-induced PTGS2 expression is mediated by intracellular signaling pathways involving MAPKs and NF-κB. Using fractionation and functional analysis, seminal prostaglandin (PG)-E(2) was identified as a one of the major factors in PTGS2 induction. Given the critical role of this PG-producing enzyme in mucosal inflammatory processes, the finding that SP induces and potentiates the expression of PTGS2 in cervicovaginal cells and tissues has mechanistic implications for the role of SP in fertility-associated mucosal leukocytic reaction and its potential HIV infection-enhancing effect. PMID:23153564

  9. Magnetically Induced Plasma Rotation and the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Witalis, E. A.

    1983-09-01

    Fusion for Fission fuel breeding and other incentives for unconventional magnetic fusion research are introductorily mentioned. The design, operation and peculiar characteristics of dense plasma foci are briefly described with attention to their remarkable ion acceleration and plasma heating capabilities. Attempts for interpretations are reviewed, and a brief account is given for an explanation based on the concept of magnetically induced plasma rotation, recently derived in detail in this journal. Basically an ion acceleration mechanism of betraton character it describes in combination with a dynamic, generalized Bennett relation focus plasma characteristics like the polarity dependence, the current channel disruption, the axial ion beam formation and the prerequisites for the ensuing turbulent plasma dissipative stage. Fundamental differences with respect to mainline fusion research are emphasized, and some conjectures and proposals are presented as to the further development of plasma focus nuclear fusion or fission energy production.

  10. Genome-Wide Analysis Reveals Selective Modulation of microRNAs and mRNAs by Histone Deacetylase Inhibitor in B Cells Induced to Undergo Class-Switch DNA Recombination and Plasma Cell Differentiation

    PubMed Central

    Shen, Tian; Sanchez, Helia N.; Zan, Hong; Casali, Paolo

    2015-01-01

    As we have suggested, epigenetic factors, such as microRNAs (miRNAs), can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase (HDAC) inhibitors (HDI) inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR), somatic hypermutation (SHM), and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J Immunol 193:5933–5950, 2014). To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b, and miR-361, which target Aicda, and miR-23b, miR-30a, and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell). Only 18 (0.36%) of these highly expressed mRNAs, including Aicda, Prdm1, and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30%) of the highly expressed mRNAs were upregulated (more than twofold) by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting, or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  11. Genome-Wide Analysis Reveals Selective Modulation of microRNAs and mRNAs by Histone Deacetylase Inhibitor in B Cells Induced to Undergo Class-Switch DNA Recombination and Plasma Cell Differentiation.

    PubMed

    Shen, Tian; Sanchez, Helia N; Zan, Hong; Casali, Paolo

    2015-01-01

    As we have suggested, epigenetic factors, such as microRNAs (miRNAs), can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase (HDAC) inhibitors (HDI) inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR), somatic hypermutation (SHM), and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J Immunol 193:5933-5950, 2014). To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b, and miR-361, which target Aicda, and miR-23b, miR-30a, and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell). Only 18 (0.36%) of these highly expressed mRNAs, including Aicda, Prdm1, and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30%) of the highly expressed mRNAs were upregulated (more than twofold) by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting, or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  12. Stimulus-induced association of Ca(2+)-binding proteins with the plasma membrane detected in situ by photolabeling of intact chromaffin and PC12 cells.

    PubMed Central

    Schwaller, B; Calef, E; Gitler, C; Rosenheck, K

    1993-01-01

    To investigate the involvement of cytosolic proteins in exocytosis, a system with high temporal and spatial resolution has been developed that allows us to detect the interaction of Ca(2+)- and membrane-binding proteins with the plasma membrane during stimulation of intact chromaffin and PC12 (rat pheochromocytoma) cells. We used 5-iodonaphthalene-1-azide (INA), a hydrophobic label that rapidly partitions into the lipid bilayer of biological membranes. Upon photolysis the label covalently attaches to membrane-embedded domains of proteins. Cells, preincubated with INA in the dark, were stimulated by either 300 microM carbamoylcholine or 60 mM K+ and irradiated (20 s) at various time intervals after stimulation. Subsequently, the cytosolic Ca(2+)- and membrane-binding proteins were isolated in the presence of EGTA (EGTA extract). Of the approximately 40 proteins in the EGTA extract, 15 (15-100 kDa) are labeled in both cell types. Upon stimulation, labeling is increased up to 3-fold in some of the proteins compared to cells labeled under basal conditions. In the absence of external Ca2+, no increase is observed. The rate of label incorporation is similar to the rate of exocytosis in several of these proteins. These results indicate that in the event of triggered exocytosis some of the Ca(2+)-binding proteins interact with the plasma membrane and temporarily embed in the lipid bilayer. Our findings support the hypothesis according to which stimulus-induced alterations in the structure of the Ca(2+)-binding proteins lead to their transient insertion into the membrane and thereby to membrane fusion. Images PMID:8433989

  13. Analysis of nuclear induced plasmas

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1976-01-01

    A kinetic model is developed for a plasma generated by fission fragments, and the results are employed to study He plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments.

  14. Impurity-induced divertor plasma oscillations

    DOE PAGESBeta

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  15. Impurity-induced divertor plasma oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  16. Responses of cells in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Okazaki, Yasumasa; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-09-01

    Plasma consists of electrons, ions, radicals, and lights, and produces various reactive species in gas and liquid phase. Cells receive various inputs from their circumstances, and induce several physiological outputs. Our goal is to clarify the relationships between plasma inputs and physiological outputs. Plasma-activated medium (PAM) is a circumstance that plasma provides cells and our previous studies suggest that PAM is a promising tool for cancer therapy. However, the mode of actions remains to be elucidated. We propose survival and proliferation signaling networks as well as redox signaling networks are key factors to understand cellular responses of PAM-treated glioblastoma cells.

  17. FLIM studies of 22- and 25-NBD-cholesterol in living HEK293 cells: plasma membrane change induced by cholesterol depletion.

    PubMed

    Ostašov, Pavel; Sýkora, Jan; Brejchová, Jana; Olżyńska, Agnieszka; Hof, Martin; Svoboda, Petr

    2013-01-01

    HEK293 cells stably expressing δ-opioid receptor were labeled first with fluorescent analog of cholesterol, 22-NBD-cholesterol, exposed to cholesterol-depleting agent β-cyclodextrin (β-CDX) and analyzed by fluorescence lifetime imaging microscopy (FLIM). In accordance with chemical analysis of cholesterol level, the total cellular signal of this probe was decreased to half. Distribution of lifetime (τtot) values of 22-NBD-cholesterol, however, when screened over the whole cell area indicated no significant difference between control (τtot=4.9±0.1 ns) and β-CDX-treated (τtot=4.8±0.1 ns) cells. On the contrary, comparison of control (τtot=5.1±0.1 ns) and β-CDX-treated (τtot=4.4±0.1 ns) cells by analysis of 25-NBD-cholesterol fluorescence implied highly significant decrease of lifetime values of this probe. The observation that 22-NBD-cholesterol appears to be indifferent to the changes in the membrane packing in living cells is in agreement with previous studies in model membranes. However, our data indicate that the alternation of plasma membrane structure induced by decrease of cholesterol level by β-CDX makes the membrane environment of NBD moiety of 25-NBD-cholesterol probe a significantly more hydrated. This finding not only encourages using 25-NBD-cholesterol in living cells, but also demonstrates that previously drawn discouraging conclusions on the use of 25-NBD-cholesterol in model membranes are not valid for living cells. PMID:23466534

  18. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  19. Photoreflectance and DLTS evaluation of plasma-induced damage in GaAs and InP prior to solar cell fabrication

    NASA Technical Reports Server (NTRS)

    He, L.; Anderson, W. A.

    1991-01-01

    The effect is considered of plasma etching on both GaAs and InP followed by damage removal using rapid thermal annealing (RTA). Effects of these processes were studied by photoreflectance spectroscopy (PR) and deep level transient spectroscopy (DLTS). These techniques are useful in evaluation of wafers prior to and effects of plasma processing during solar cell fabrication.

  20. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy--comparison with human epileptic samples.

    PubMed

    Roncon, Paolo; Soukupovà, Marie; Binaschi, Anna; Falcicchia, Chiara; Zucchini, Silvia; Ferracin, Manuela; Langley, Sarah R; Petretto, Enrico; Johnson, Michael R; Marucci, Gianluca; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2015-01-01

    The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis. PMID:26382856

  1. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples

    PubMed Central

    Roncon, Paolo; Soukupovà, Marie; Binaschi, Anna; Falcicchia, Chiara; Zucchini, Silvia; Ferracin, Manuela; Langley, Sarah R.; Petretto, Enrico; Johnson, Michael R.; Marucci, Gianluca; Michelucci, Roberto; Rubboli, Guido; Simonato, Michele

    2015-01-01

    The identification of biomarkers of the transformation of normal to epileptic tissue would help to stratify patients at risk of epilepsy following brain injury, and inform new treatment strategies. MicroRNAs (miRNAs) are an attractive option in this direction. In this study, miRNA microarrays were performed on laser-microdissected hippocampal granule cell layer (GCL) and on plasma, at different time points in the development of pilocarpine-induced epilepsy in the rat: latency, first spontaneous seizure and chronic epileptic phase. Sixty-three miRNAs were differentially expressed in the GCL when considering all time points. Three main clusters were identified that separated the control and chronic phase groups from the latency group and from the first spontaneous seizure group. MiRNAs from rats in the chronic phase were compared to those obtained from the laser-microdissected GCL of epileptic patients, identifying several miRNAs (miR-21-5p, miR-23a-5p, miR-146a-5p and miR-181c-5p) that were up-regulated in both human and rat epileptic tissue. Analysis of plasma samples revealed different levels between control and pilocarpine-treated animals for 27 miRNAs. Two main clusters were identified that segregated controls from all other groups. Those miRNAs that are altered in plasma before the first spontaneous seizure, like miR-9a-3p, may be proposed as putative biomarkers of epileptogenesis. PMID:26382856

  2. Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that cause inflammation and sickness through genetic and proteomic activation. The objective of our study was to identify the proteomic changes in plasma associated with inflammation induced by LPS treatment. Five-week-old ...

  3. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells.

    PubMed

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  4. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells

    PubMed Central

    Nguyen, Ngoc Hoan; Park, Hyung Jun; Yang, Sang Sik; Choi, Kyeong Sook; Lee, Jong-Soo

    2016-01-01

    The therapeutic potential of nonthermal plasma for cancer treatment has been reported recently. The heterogeneity of cancer cells need to be addressed to design effective anticancer treatments. Here, we show that treatment with nonthermal atmospheric-pressure plasma dissolved in a liquid (liquid plasma) induces oxidative stress in heterogeneous populations of cancer cells and ultimately kills these cells via apoptosis, regardless of genetic status, e.g., mutations in p53 and other DNA-damage-response genes. We found that liquid plasma markedly increased the concentration of intracellular and mitochondrial reactive oxygen species (ROS), reflecting an influx from the extracellular milieu. Liquid plasma contributed to mitochondrial accumulation of ROS and depolarization of mitochondrial membrane potential with consequent cell death. Healthy normal cells, however, were hardly affected by the liquid-plasma treatment. The antioxidant N-acetylcysteine blocked liquid-plasma-induced cell death. A knockdown of CuZn-superoxide dismutase or Mn-SOD enhanced the plasma-induced cell death, whereas expression of exogenous CuZn-SOD, Mn-SOD, or catalase blocked the cell death. These results suggest that the mitochondrial dysfunction mediated by ROS production is a key contributor to liquid-plasma-induced apoptotic cell death, regardless of genetic variation. Thus, liquid plasma may have clinical applications, e.g., the development of therapeutic strategies and prevention of disease progression despite tumor heterogeneity. PMID:27364630

  5. Iron granules in plasma cells.

    PubMed Central

    Cook, M K; Madden, M

    1982-01-01

    The curious and unusual finding of coarse iron granules in marrow plasma cells is reported in 13 patients, in whom the finding was incidental. In 10 of these patients there was known alcohol abuse and serious medical complications of that abuse. Previous reports of the finding are reviewed. Haematological data of the 13 patients are presented. A hypothesis is outlined which may account for the finding. Images PMID:7068907

  6. Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection.

    PubMed

    Jinno, Masafumi; Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu

    2016-09-01

    This study has been done to know what kind of factors in plasmas and processes on cells induce plasma gene transfection. We evaluated the contribution weight of three groups of the effects and processes, i.e. electrical, chemical and biochemical ones, inducing gene transfection. First, the laser produced plasma (LPP) was employed to estimate the contribution of the chemical factors. Second, liposomes were fabricated and employed to evaluate the effects of plasma irradiation on membrane under the condition without biochemical reaction. Third, the clathrin-dependent endocytosis, one of the biochemical processes was suppressed. It becomes clear that chemical factors (radicals and reactive oxygen/nitrogen species) do not work by itself alone and electrical factors (electrical current, charge and field) are essential to plasma gene transfection. It turned out the clathrin-dependent endocytosis is the process of the transfection against the 60% in all the transfected cells. The endocytosis and electrical poration are dominant in plasma gene transfection, and neither permeation through ion channels nor chemical poration is dominant processes. The simultaneous achievement of high transfection efficiency and high cell survivability is attributed to the optimization of the contribution weight among three groups of processes by controlling the weight of electrical and chemical factors. PMID:27136710

  7. Cavitations induced by plasmas, plasmas induced by cavitations, and plasmas produced in cavitations

    NASA Astrophysics Data System (ADS)

    Sasaki, Koichi

    2015-11-01

    Cavitation bubbles are not static bubbles but have dynamics of expansion, shrinkage, and collapse. Since the collapse of a cavitation bubble is roughly an adiabatic process, the inside of the bubble at the collapse has a high temperature and a high pressure, resulting in the production of a plasma. This talk will be focused on cavitation-related plasma phenomena and the role of the cavitation bubble in the synthesis of nanoparticles. A method for inducing a cavitation bubble is laser ablation in liquid. After the disappearance of laser-produced plasma with optical emission, we have observed the formation of a cavitation bubble. We have found that the inside of the cavitation bubble is the reaction field for the synthesis of nanoparticles. The atomic and molecular species ejected from the ablation target toward the liquid are transported into the cavitation bubble, and they condense into nanoparticles inside it. It is important to note that nanoparticles are stored inside the cavitation bubble until its collapse. We have shown that the size and the structure of nanoparticles are controlled by controlling the dynamics of the cavitation bubbles. Another method for inducing cavitation bubbles is to use ultrasonic power. We have found a simple method for the efficient production of standing cavitation bubbles. The method is just inserting a punching metal plate into water irradiated by ultrasonic wave. The depth of water and the position of the punching plate should be tuned precisely. We have proposed the mechanism of the efficient production of cavitation bubbles by this method. Currently, we try to have electric discharges in cavitation bubbles with the intention of realizing nonequilibrium sonochemistry. In particular, the electric discharge in a laser-induced cavitation bubble shows interesting distortion of the bubble shape, which suggests the electrostatic characteristics of the cavitation bubble.

  8. Heat and Products Induced by Plasma Electrolysis

    SciTech Connect

    Tadahiko Mizuno; Tadayoshi Ohmori; Tadashi Akimoto; Akito Takahashi

    2000-11-12

    Plasma is formed on an electrode surface when a metal cathode is polarized in high-voltage electrolysis in a liquid electrolyte. When a liquid electrolyte is polarized at high voltage (70 to 500 V), it gives rise to an electric discharge and a plasma state. We measured the output heat and input electric power in real time by a method that combined open cell isoperibolic calorimetry and flow calorimetry. Takahashi et al. hypothesize a nuclear reaction induced by photon activation on the cathode element. We have attempted to explain the experimental results by a mechanism that produces no radioactive materials or weak radioactive emission. We applied the Takahashi theory developed for Pd and Au electrodes to the case of a W electrode. We have first reported that the distribution for their reaction product showed clearly one or two peaks that consisted of the mass number around 52 for the case of Pd and 64 and 120 for Au. This paper mainly pertains to the metal electrode. With a tungsten electrode, one peak in the anomalous elements is for the major elements from 40 to 65, and the other is from 100 to 120. The total mass of elements generated during excess heat evolution was on the order of 1 mg. Based on this mass, according to conventional laws of fission and fusion, 'commensurate' heat would have been on the order of 10{sup 6} to 10{sup 7} J. The actual excess heat was typically estimated at 10{sup 5}-several orders of magnitude less than the expected value. It is still difficult to calculate the actual weight loss of the reactive material before and after the reaction. However, we can say that the total energy generated was much less than the value calculated from the produced weight. We conclude that the photofission mechanism explains the amount of excess heat and the distribution of the element generation during the electrochemical treatment.

  9. Effects of Non-Thermal Plasma on Mammalian Cells

    PubMed Central

    Kalghatgi, Sameer; Kelly, Crystal M.; Cerchar, Ekaterina; Torabi, Behzad; Alekseev, Oleg; Fridman, Alexander; Friedman, Gary; Azizkhan-Clifford, Jane

    2011-01-01

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers. PMID:21283714

  10. Dynamics of photoinduced cell plasma membrane injury.

    PubMed Central

    Thorpe, W P; Toner, M; Ezzell, R M; Tompkins, R G; Yarmush, M L

    1995-01-01

    We have developed a video microscopy system designed for real-time measurement of single cell damage during photolysis under well defined physicochemical and photophysical conditions. Melanoma cells cultured in vitro were treated with the photosensitizer (PS), tin chlorin e6 (SnCe6) or immunoconjugate (SnCe6 conjugated to a anti-ICAM monoclonal antibody), and illuminated with a 10 mW He/Ne laser at a 630 nm wavelength. Cell membrane integrity was assessed using the vital dye calcein-AM. In experiments in which the laser power density and PS concentration were varied, it was determined that the time lag before cell rupture was inversely proportional to the estimated singlet oxygen flux to the cell surface. Microscopic examination of the lytic event indicated that photo-induced lysis was caused by a point rupture of the plasma membrane. The on-line nature of this microscopy system offers an opportunity to monitor the dynamics of the cell damage process and to gain insights into the mechanism governing photolytic cell injury processes. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 PMID:7612864

  11. Gas Plasma Effects on Living Cells

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Sladek, R. E. J.; Kieft, I. E.

    This paper surveys the research activities at the Eindhoven University of Technology (The Netherlands) in the area of biomedical applications of gas discharge plasmas. A non-thermal atmospheric plasma source (the plasma needle) has been developed, and its interactions with living mammalian cells and bacteria are studied. It is concluded that plasma can efficiently kill bacteria without harming the cells, and also influence the cells without causing cell death (necrosis). In future it will lead to applications like skin (wound) and caries treatment.

  12. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Nakamura, Kae; Hayashi, Moemi; Tanaka, Hiromasa; Kondo, Hiroki; Kajiyama, Hiroaki; Kano, Hiroyuki; Kikkawa, Fumitaka; Hori, Masaru

    2012-03-01

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  13. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki; Hori, Masaru; Nakamura, Kae; Hayashi, Moemi; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Kano, Hiroyuki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  14. The effect of jet and DBD plasma on NCI-78 blood cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Kaushik, Neha; Choi, Eun Ha

    2013-06-01

    In this study we describe the effects of a nonthermal jet and dielectric barrier discharge (DBD) plasma on the T98G brain cancer cell line. The results of this study reveal that the jet and DBD plasma inhibits NCI-78 blood cancer cells growth efficiently with the loss of metabolic viability of cells. The main goal of this study is to induce cell death in NCI-78 blood cancer cells by the toxic effect of jet and DBD plasma.

  15. Autophagy in Plasma Cell Pathophysiology

    PubMed Central

    Oliva, Laura; Cenci, Simone

    2014-01-01

    Plasma cells (PCs) are the effectors responsible for antibody (Ab)-mediated immunity. They differentiate from B lymphocytes through a complete remodeling of their original structure and function. Stress is a constitutive element of PC differentiation. Macroautophagy, conventionally referred to as autophagy, is a conserved lysosomal recycling strategy that integrates cellular metabolism and enables adaptation to stress. In metazoa, autophagy plays diverse roles in cell differentiation. Recently, a number of autophagic functions have been recognized in innate and adaptive immunity, including clearance of intracellular pathogens, inflammasome regulation, lymphocyte ontogenesis, and antigen presentation. We identified a previously unrecognized role played by autophagy in PC differentiation and activity. Following B cell activation, autophagy moderates the expression of the transcriptional repressor Blimp-1 and immunoglobulins through a selective negative control exerted on the size of the endoplasmic reticulum and its stress signaling response, including the essential PC transcription factor, XBP-1. This containment of PC differentiation and function, i.e., Ab production, is essential to optimize energy metabolism and viability. As a result, autophagy sustains Ab responses in vivo. Moreover, autophagy is an essential intrinsic determinant of long-lived PCs in their as yet poorly understood bone marrow niche. In this essay, we discuss these findings in the context of the established biological functions of autophagy, and their manifold implications for adaptive immunity and PC diseases, in primis multiple myeloma. PMID:24659989

  16. Clinically granulomatous cheilitis with plasma cells

    PubMed Central

    Sarkar, Somenath; Ghosh, Sarmistha; Sengupta, Dipayan

    2016-01-01

    Plasma cell cheilitis, also known as plasma cell orificial mucositis is a benign inflammatory condition clinically characterized by erythematous plaque on lips that may be ulcerated. Histopathologically it is characterized by dense plasma cell infiltrates in a band-like pattern in dermis, which corresponds to Zoon's plasma cell balanitis. On the other hand, granulomatous cheilitis, as a part of orofacial granulomatosis, manifests as sudden diffuse or nodular swelling involving lip and cheek. Initial swelling is soft to firm, but with recurrent episodes swelling gradually become firm rubbery in consistency. We hereby report a case of cheilitis in a 52-year-old man with diffuse swelling involving lower lip, which clinically resembles granulomatous cheilitis, but histopathological examination showed diffuse infiltrate of plasma cells predominantly in upper and mid-dermis. PMID:27057489

  17. Clinically granulomatous cheilitis with plasma cells.

    PubMed

    Sarkar, Somenath; Ghosh, Sarmistha; Sengupta, Dipayan

    2016-01-01

    Plasma cell cheilitis, also known as plasma cell orificial mucositis is a benign inflammatory condition clinically characterized by erythematous plaque on lips that may be ulcerated. Histopathologically it is characterized by dense plasma cell infiltrates in a band-like pattern in dermis, which corresponds to Zoon's plasma cell balanitis. On the other hand, granulomatous cheilitis, as a part of orofacial granulomatosis, manifests as sudden diffuse or nodular swelling involving lip and cheek. Initial swelling is soft to firm, but with recurrent episodes swelling gradually become firm rubbery in consistency. We hereby report a case of cheilitis in a 52-year-old man with diffuse swelling involving lower lip, which clinically resembles granulomatous cheilitis, but histopathological examination showed diffuse infiltrate of plasma cells predominantly in upper and mid-dermis. PMID:27057489

  18. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    NASA Astrophysics Data System (ADS)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  19. Metal surface nitriding by laser induced plasma

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  20. Early Events Induced by the Elicitor Cryptogein in Tobacco Cells: Involvement of a Plasma Membrane NADPH Oxidase and Activation of Glycolysis and the Pentose Phosphate Pathway.

    PubMed Central

    Pugin, A.; Frachisse, J. M.; Tavernier, E.; Bligny, R.; Gout, E.; Douce, R.; Guern, J.

    1997-01-01

    Application of the elicitor cryptogein to tobacco (cv Xanthi) is known to evoke external medium alkalinization, active oxygen species production, and phytoalexin synthesis. These are all dependent on an influx of calcium. We show here that cryptogein also induces calcium-dependent plasma membrane depolarization, chloride efflux, cytoplasm acidification, and NADPH oxidation without changes in NAD+ and ATP levels, indicating that the elicitor-activated redox system, responsible for active oxygen species production, uses NADPH in vivo. NADPH oxidation activates the functioning of the pentose phosphate pathway, leading to a decrease in glucose 6-phosphate and to the accumulation of glyceraldehyde 3-phosphate, 3- and 2-phosphoglyceric acid, and phosphoenolpyruvate. By inhibiting the pentose phosphate pathway, we demonstrate that the activation of the plasma membrane NADPH oxidase is responsible for active oxygen species production, external alkalinization, and acidification of the cytoplasm. A model is proposed for the organization of the cryptogein responses measured to date. PMID:12237354

  1. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells

    PubMed Central

    Kim, Sun Ja; Chung, T. H.

    2016-01-01

    Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306

  2. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  3. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Cai Xuwi; Shedden, Kerby; Ao Xiaoping; Davis, Mary

    2010-07-01

    Purpose: To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade {>=}2 (RILT2). Methods and Materials: A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2. Results: More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively. Conclusions: This proteomic approach identified new plasma protein markers for future studies on RILT prediction.

  4. Confocal Laser Induced Fluorescence of Argon Plasmas

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Soderholm, Mark

    2015-11-01

    Laser Induced Fluorescence (LIF) provides measurements of flow speed, temperature and when absolutely calibrated, density of ions or neutrals in a plasma. Traditionally, laser induced fluorescence requires two ports on a plasma device. One port is used for laser injection and the other is used for fluorescence emission collection. Traditional LIF is tedious and time consuming to align. These difficulties motivate the development of an optical configuration that requires a single port and remains fully aligned at all times; confocal LIF. Our confocal optical design employs a single two inch diameter lens to both inject the laser light and collect the stimulated emission from an argon plasma. A pair of axicon lenses create an annular beam path for the emission collection and the pump laser light is confined inside the annulus of the collection beam. The measurement location is scanned radially by manually adjusting the final focusing lens position. Here we present optical modeling of and initial results from the axicon based confocal optical system. The confocal measurements are compared to traditional, two-port, LIF measurements over the same radial range. This work is supported by US National Science Foundation grant number PHY-1360278.

  5. Anions in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Shabanov, S. V.; Gornushkin, I. B.

    2016-07-01

    The equation of state for plasmas containing negative atomic and molecular ions (anions) is modeled. The model is based on the assumption that all ionization processes and chemical reactions are at local thermal equilibrium and the Coulomb interaction in the plasma is described by the Debye-Hückel theory. In particular, the equation of state is obtained for plasmas containing the elements Ca, Cl, C, Si, N, and Ar. The equilibrium reaction constants are calculated using the latest experimental and ab initio data of spectroscopic constants for the molecules CaCl_2, CaCl, Cl_2, N_2, C_2, Si_2, CN, SiN, SiC, and their positive and negative ions. The model is applied to laser-induced plasmas (LIPs) by including the equation of state into a fluid dynamic numerical model based on the Navier-Stokes equations describing an expansion of LIP plumes into an ambient gas as a reactive viscous flow with radiative losses. In particular, the formation of anions Cl-, C-, Si-, {{Cl}}2^{ - }, {{Si}}2^{ - }, {{C}}2^{ - }, CN-, SiC-, and SiN- in LIPs is investigated in detail.

  6. Fibrinogen induces endothelial cell permeability

    PubMed Central

    Tyagi, Neetu; Roberts, Andrew M.; Dean, William L.; Tyagi, Suresh C.

    2010-01-01

    Many cardiovascular and cerebrovascular disorders are accompanied by an increased blood content of fibrinogen (Fg), a high molecular weight plasma adhesion protein. Fg is a biomarker of inflammation and its degradation products have been associated with microvascular leakage. We tested the hypothesis that at pathologically high levels, Fg increases endothelial cell (EC) permeability through extracellular signal regulated kinase (ERK) signaling and by inducing F-actin formation. In cultured ECs, Fg binding to intercellular adhesion molecule-1 and to α5β1 integrin, caused phosphorylation of ERK. Subsequently, F-actin formation increased and coincided with formation of gaps between ECs, which corresponded with increased permeability of ECs to albumin. Our data suggest that formation of F-actin and gaps may be the mechanism for increased albumin leakage through the EC monolayer. The present study indicates that elevated un-degraded Fg may be a factor causing microvascular permeability that typically accompanies cardiovascular and cerebrovascular disorders. PMID:17849175

  7. Kinetic Approach for Laser-Induced Plasmas

    SciTech Connect

    Omar, Banaz; Rethfeld, Baerbel

    2008-10-22

    Non-equilibrium distribution functions of electron gas and phonon gas excited with ultrashort intense laser pulses are calculated for laser-induced plasmas occurring in solids. The excitation during femtosecond irradiation and the subsequent thermalization of the free electrons, as well as the dynamics of phonons are described by kinetic equations. The microscopic collision processes, such as absorption by inverse bremsstrahlung, electron-electron collisions, and electron-phonon interactions are considered by complete Boltzmann collision integrals. We apply our kinetic approach for gold by taking s-band electron into account and compare it with the case of excitation of d-band electrons.

  8. Induced hydrophobic recovery of oxygen plasma-treated surfaces

    PubMed Central

    Guckenberger, David J.; Berthier, Erwin; Young, Edmond W. K.; Beebe, David J.

    2014-01-01

    Plasma treatment is a widely used method in microfabrication laboratories and the plasticware industry to functionalize surfaces for device bonding and preparation for mammalian cell culture. However, spatial control of plasma treatment is challenging because it typically requires a tedious masking step that is prone to alignment errors. Currently, there are no available methods to actively revert a surface from a treated hydrophilic state to its original hydrophobic state. Here, we describe a method that relies on physical contact treatment (PCT) to actively induce hydrophobic recovery of plasma-treated surfaces. PCT involves applying brushing and peeling processes with common wipers and tapes to reverse the wettability of hydrophilized surfaces while simultaneously preserving hydrophilicity of non-contacted surfaces. We demonstrate that PCT is a user-friendly method that allows 2D and 3D surface patterning of hydrophobic regions, and the protection of hydrophilic surfaces from unwanted PCT-induced recovery. This method will be useful in academic and industrial settings where plasma treatment is frequently used. PMID:22592853

  9. The interaction of atmospheric pressure plasma jets with cancer and normal cells: generation of intracellular reactive oxygen species and changes of the cell proliferation and cell cycle

    NASA Astrophysics Data System (ADS)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Leem, Sun Hee

    2013-09-01

    The possibility of atmospheric pressure plasmas is emerging as a candidate in cancer therapy. The primary role is played by reactive oxygen species (ROS), UV photons, charged particles and electric fields. Among them, intracellular ROS induced by plasma are considered to be the key constituents that induce cellular changes and apoptosis. In this study, the effects of atmospheric pressure plasma jet on cancer cells (human lung carcinoma cells) and normal cells (embryonic kidney cells and bronchial epithelial cells) were investigated. The plasma treatment was performed under different working gases, applied voltages, gas flow rates, and with and without additive oxygen flow. Using a detection dye, we observed that plasma exposure leads to the increase of the intracellular ROS and that the intracellular ROS production can be controlled by plasma parameters. A significant ROS generation was induced by plasma exposure on cancer cells and the overproduction of ROS contributes to the reduced cell proliferation. Normal cells were observed to be less affected by the plasma-mediated ROS and cell proliferation was less changed. The plasma treatment also resulted in the alteration of the cell cycle that contributes to the induction of apoptosis in cancer cells. The selective effect on cancer and normal cells provides a promising prospect of cold plasma as cancer therapy. This work was supported by the National Research Foundation of Korea under Contract No. 2012R1A1A2002591 and 2012R1A1A3010213.

  10. Railgun system using a laser-induced plasma armature

    SciTech Connect

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  11. Plasma cell adaptation to enhance particle acceleration

    SciTech Connect

    Ragheb, M. S.

    2008-06-15

    A plasma study is performed in order to construct a cell for plasma acceleration purpose. As well, a multicell design is introduced for the injection of beam driver application. The suggested idea is experimentally demonstrated for two plasma cell configuration. The preformed plasma is obtained by a symmetrically driven capacitive audio frequency discharge. It is featured by its moderate pressure of 0.1-0.2 Torr, low consumption power of 130 W maximum, low discharge voltage and frequency up to 950 V and 20 kHz, respectively, and high plasma density from 10{sup 11} to 10{sup 15} cm{sup -3}. The electron temperature obtained by Langmuir double probe varies from 1 up to 16 eV. It is observed that the increases of the discharge voltage and frequency enlarge the plasma parameters to their maximum values. The plasma cell filled with different gases demonstrates that the Ar and He gases manifest the highest ionization efficiency exceeding 100% at 950 V and 20 kHz. The formed plasma is cold; its density is uniform and stable along the positive column for long competitive lifetime. Showing that it follows the conditions to enhance particle acceleration and in conjunction with its periphery devices form a plasma cell that could be extended to serve this purpose. Demonstrating that an injected electron beam into the extended preformed plasma could follow, to long distance, a continuous trajectory of uniform density. Such plasma generated by H{sub 2} or Ar gases is suggested to be used, respectively, for low-density or higher density beam driver.

  12. Coating Solar Cells By Microwave Plasma Deposition

    NASA Technical Reports Server (NTRS)

    Minaee, Behrooz; Chitre, Sanjeev R.; Zahedi, Narges

    1991-01-01

    Antireflection films deposited on silicon solar cells at high production rates with microwave-enhanced plasma deposition. Microwave energy at frequency of 2.45 GHz generates plasma in mixture of gases, from which thin film of silicon nitride deposits on silicon substrates. Reaction temperature relatively low (only 250 degrees C), and film deposition rate more than 500 Angstrom/minute - 2 to 5 times faster. Quality of antireflection film similar to that produced by chemical-vapor deposition. Uses less power and consumes smaller quantities of gas. Species formed in plasma longer lived and dissociate reactants in region of chamber well away from plasma-generation region.

  13. Measurement of plasma-generated RONS in the cancer cells exposed by atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Joh, Hea Min; Baek, Eun Jeong; Kim, Sun Ja; Chung, Tae Hun

    2015-09-01

    The plasma-induced reactive oxygen and nitrogen species (RONS) could result in cellular responses including DNA damages and apoptotic cell death. These chemical species, O, O2-,OH, NO, and NO2-,exhibit strong oxidative stress and/or trigger signaling pathways in biological cells. Each plasma-generated chemical species having biological implication should be identified and quantitatively measured. For quantitative measurement of RONS, this study is divided into three stages; plasma diagnostics, plasma-liquid interactions, plasma-liquid-cell interactions. First, the optical characteristics of the discharges were obtained by optical emission spectroscopy to identify various excited plasma species. And the characteristics of voltage-current waveforms, gas temperature, and plume length with varying control parameters were measured. Next, atmospheric pressure plasma jet was applied on the liquid. The estimated OH radical densities were obtained by ultraviolet absorption spectroscopy at the liquid surface. And NO2-is detected by Griess test and compared between the pure liquid and the cell-containing liquid. Finally, bio-assays were performed on plasma treated human lung cancer cells (A549). Intracellular ROS production was measured using DCF-DA. Among these RONS, productions of NO and OH within cells were measured by DAF-2DA and APF, respectively. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas, liquids, and cells.

  14. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma.

    PubMed

    Xu, Dehui; Luo, Xiaohui; Xu, Yujing; Cui, Qingjie; Yang, Yanjie; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2016-05-13

    Cold atmospheric plasma was shown to induce cell apoptosis in numerous tumor cells. Recently, some other biological effects, such as induction of membrane permeation and suppression of migration, were discovered by plasma treatment in some types of tumor cells. In this study, we investigated the biological effects of plasma treatment on multiple myeloma cells. We detected the detachment of adherent myeloma cells by plasma, and the detachment area was correlated with higher density of hydroxyl radical in the gas phase of the plasma. Meanwhile, plasma could promote myeloma differentiation by up-regulating Blimp-1 and XBP-1 expression. The migration ability was suppressed by plasma treatment through decreasing of MMP-2 and MMP-9 secretion. In addition, plasma could increase bortezomib sensitivity and induce myeloma cell apoptosis. Taking together, combination with plasma treatment may enhance current chemotherapy and probably improve the outcomes. PMID:27067049

  15. The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability

    PubMed Central

    Cheng, Xiaoqian; Sherman, Jonathan; Murphy, William; Ratovitski, Edward; Canady, Jerome; Keidar, Michael

    2014-01-01

    Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition. In order to determine the threshold of plasma treatment on U87, normal human astrocytes (E6/E7) were used as the comparison cell line. Our data showed that the 30 sec plasma treatment caused 3-fold cell death in the U87 cells compared to the E6/E7 cells. All the other compositions of cold plasma were performed based on this result: plasma treatment time was maintained at 30 s per well while other plasma characteristics such as voltage, flow rate of source gas, and composition of source gas were changed one at a time to vary the intensity of the reactive species composition in the plasma jet, which may finally have various effect on cells reflected by cell viability. We defined a term “plasma dosage” to summarize the relationship of all the characteristics and cell viability. PMID:24878760

  16. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    NASA Astrophysics Data System (ADS)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  17. Kidney disease associated with plasma cell dyscrasias

    PubMed Central

    Goes, Nelson B.; Spitzer, Thomas R.; Raje, Noopur S.; Humphreys, Benjamin D.; Anderson, Kenneth C.; Richardson, Paul G.

    2010-01-01

    Plasma cell dyscrasias are frequently encountered malignancies often associated with kidney disease through the production of monoclonal immunoglobulin (Ig). Paraproteins can cause a remarkably diverse set of pathologic patterns in the kidney and recent progress has been made in explaining the molecular mechanisms of paraprotein-mediated kidney injury. Other recent advances in the field include the introduction of an assay for free light chains and the use of novel antiplasma cell agents that can reverse renal failure in some cases. The role of stem cell transplantation, plasma exchange, and kidney transplantation in the management of patients with paraprotein-related kidney disease continues to evolve. PMID:20462963

  18. Treatment of prostate cancer cell lines and primary cells using low temperature plasma

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, Adam; Frame, Fiona F.; Maitland, Norman J.

    2014-10-01

    The mechanisms of cell death after plasma treatment of both benign and cancerous prostate epithelial cells are investigated. Prostate cancer tissue was obtained with patient consent from targeted needle core biopsies following radical prostatectomy. Primary cells were cultured from cancer tissue and plated onto a chamber slide at a density of 10,000 cells per well in 200 microliter of stem cell media (SCM). The treated sample was previously identified as Gleason grade 7 cancer through tissue histo-pathology. A dielectric barrier discharge (DBD) jet configuration, with helium as a carrier gas, and 0.3% O2 admixture was used for treating the cells. Reactive oxygen and nitrogen species (RONS) produced by the plasma are believed to be the main mediators of the plasma-cell interaction and response. We found the concentration of reactive oxygen species (ROS) induced inside the cells increased with plasma exposure. Exposure to the plasma for >3 minutes showed high levels of DNA damage compared to untreated and hydrogen peroxide controls. Cell viability and cellular recovery are also investigated and will be presented. All findings were common to both cell lines, suggesting the potential of LTP therapy for both benign and malignant disease.

  19. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  20. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    SciTech Connect

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  1. Evaluation of the effects of a plasma activated medium on cancer cells

    NASA Astrophysics Data System (ADS)

    Mohades, S.; Laroussi, M.; Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-01

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  2. Evaluation of the effects of a plasma activated medium on cancer cells

    SciTech Connect

    Mohades, S.; Laroussi, M. Sears, J.; Barekzi, N.; Razavi, H.

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  3. [Molecular pathology of plasma cell neoplasms].

    PubMed

    Fend, F

    2010-10-01

    Plasma cell myeloma (PCM) and related immunosecretory disorders are a group of B-cell proliferations with a wide clinical and prognostic spectrum, characterized by the production of monoclonal immunoglobulin by immortalized plasma cells. Recent years have seen an explosion in knowledge on the genetic basis and biology of these diseases, followed by improved clinical risk stratification and the introduction of novel therapeutic concepts, such as treatment with proteasome inhibitors or immunomodulatory substances. PCM is a common malignancy, accounting for approximately 10% of all hematological neoplasms. There is good evidence to support a multistep transformation process in plasma cell neoplasms, which corresponds to clinically discernible disease stages. Monoclonal gammopathy of unknown significance is a common asymptomatic precursor lesion for PCM which carries an approximately 1% annual risk for progression. Terminal disease stages are characterized by increasing genetic complexity and independence from bone marrow stromal cells and show a rapidly increasing tumour load with severe clinical symptoms. Modern diagnostics of plasma cell neoplasms require inclusion of clinical, morphological, immunophenotypical and cytogenetic features to allow for individual risk assessment and therapy planning. PMID:20852863

  4. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  5. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  6. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  7. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  8. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    SciTech Connect

    Yang, H.; Gan, L.; Yang, X. E-mail: yangxl@mail.hust.edu.cn; Lu, R.; Xian, Y.; Lu, X. E-mail: yangxl@mail.hust.edu.cn

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  9. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    SciTech Connect

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  10. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-12-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  11. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  12. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    SciTech Connect

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj.; Leskovac, A.; Filipović, J.; Joksić, G.

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  13. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Lazović, S.; Maletić, D.; Leskovac, A.; Filipović, J.; Puač, N.; Malović, G.; Joksić, G.; Petrović, Z. Lj.

    2014-09-01

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  14. Electromagnetically Induced Guiding of Counter-propagating Lasers in Plasmas

    SciTech Connect

    First Author = G. Shvets; A. Pukhov

    1998-05-01

    The interaction of counter-propagating laser pulses in a plasma is considered. When the frequencies of the two lasers are close, nonlinear modification of the refraction index results in the mutual focusing of the two beams. A short (of order the plasma period) laser pulse can also be nonlinearly focused by a long counter-propagating beam which extends over the entire guiding length. This phenomenon of electromagnetically induced guiding can be utilized in laser-driven plasma accelerators.

  15. Lasing effects in a laser-induced plasma plume

    NASA Astrophysics Data System (ADS)

    Nagli, Lev; Gaft, Michael

    2015-11-01

    We have studied coherent emission from optically pumped preliminarily created laser induced plasma and demonstrate the possibility to create laser sources based on laser plasma as an active medium. The effect was studied in detail with Al plasma, and preliminary but promising results were also obtained with other atoms from the 13th and 14th groups of the periodic table. These lasers may be used as coherent light sources in a variety of optical applications.

  16. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  17. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  18. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  19. Characteristics of microwave plasma induced by lasers and sparks.

    PubMed

    Ikeda, Yuji; Tsuruoka, Ryoji

    2012-03-01

    Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N(2). Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement. PMID:22410918

  20. Elevation of Plasma TGF-{beta}1 During Radiation Therapy Predicts Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer: A Combined Analysis From Beijing and Michigan

    SciTech Connect

    Zhao Lujun; Wang Luhua Ji Wei; Wang Xiaozhen; Zhu Xiangzhi; Hayman, James A.; Kalemkerian, Gregory P.; Yang Weizhi; Brenner, Dean; Lawrence, Theodore S.; Kong, F.-M.

    2009-08-01

    Purpose: To test whether radiation-induced elevations of transforming growth factor-{beta}1 (TGF-{beta}1) during radiation therapy (RT) correlate with radiation-induced lung toxicity (RILT) in patients with non-small-cell lung cancer (NSCLC) and to evaluate the ability of mean lung dose (MLD) to improve the predictive power. Methods and Materials: Eligible patients included those with Stage I-III NSCLC treated with RT with or without chemotherapy. Platelet-poor plasma was obtained pre-RT and at 4-5 weeks (40-50 Gy) during RT. TGF-{beta}1 was measured using an enzyme-linked immunosorbent assay. The primary endpoint was {>=} Grade 2 RILT. Mann-Whitney U test, logistic regression, and chi-square were used for statistical analysis. Results: A total of 165 patients were enrolled in this study. The median radiation dose was 60 Gy, and the median MLD was 15.3 Gy. Twenty-nine patients (17.6%) experienced RILT. The incidence of RILT was 46.2% in patients with a TGF-{beta}1 ratio > 1 vs. 7.9% in patients with a TGF-{beta}1 ratio {<=} 1 (p < 0.001), and it was 42.9% if MLD > 20 Gy vs. 17.4% if MLD {<=} 20 Gy (p = 0.024). The incidence was 4.3% in patients with a TGF-{beta}1 ratio {<=} 1 and MLD {<=} 20 Gy, 47.4% in those with a TGF-{beta}1 ratio >1 or MLD > 20 Gy, and 66.7% in those with a TGF-{beta}1 ratio >1 and MLD > 20 Gy (p < 0.001). Conclusions: Radiation-induced elevation of plasma TGF-{beta}1 level during RT is predictive of RILT. The combination of TGF- {beta}1 and MLD may help stratify the patients for their risk of RILT.

  1. Impact of plasma induced liquid chemistry and charge on bacteria loaded aerosol droplets

    NASA Astrophysics Data System (ADS)

    Rutherford, David; McDowell, David; Mariotti, Davide; Mahony, Charles; Diver, Declan; Potts, Hugh; Bennet, Euan; Maguire, Paul

    2014-10-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique opportunity to study the local chemical and electrical effects on cell structure and viability. Individual bacteria, each encapsulated in an aerosol droplet, were successfully transmitted through a non-thermal equilibrium RF coaxial plasma, using a custom-design concentric double gas shroud interface and via adjustment of transit times and plasma parameters, we can control cell viability. Plasma electrical characteristics (ne ~ 1013 cm-3), droplet velocity profiles and aspects of plasma-induced droplet chemistry were determined in order to establish the nature of the bacteria in droplet environment. Plasma-exposed viable E coli cells were subsequently cultured and the growth rate curves (lag and exponential phase gradient) used to explore the effect of radical chemistry and electron bombardment on cell stress. The extent and nature of membrane disruption in viable and non-viable cells were investigated through genomic and protein/membrane lipid content estimation. We will also compare our results with simulations of the effect of bacterial presence on plasma induced droplet charging and evaporation. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  2. Adipocyte cell size enlargement involves plasma membrane area increase.

    PubMed

    Chowdhury, H H; Zorec, R

    2012-07-01

    The adipocyte enlargement is associated with an increase in the cytoplasmic lipid content, but how the plasma membrane area follows this increase is poorly understood. We monitored single-cell membrane surface area fluctuations, which mirror the dynamics of exocytosis and endocytosis. We employed the patch-clamp technique to measure membrane capacitance (C(m)), a parameter linearly related to the plasma membrane area. Specifically, we studied whether insulin affects membrane area dynamics in adipocytes. A five-minute cell exposure to insulin increased resting C(m) by 12 ± 4%; in controls the change in C(m) was not different from zero. We measured cell diameter of isolated rat adipocytes microscopically. Twenty-four hour exposure of cells to insulin resulted in a significant increase in cell diameter by 5.1 ± 0.6%. We conclude that insulin induces membrane area increase, which may in chronic hyperinsulinemia promote the enlargement of plasma membrane area, acting in concert with other insulin-mediated metabolic effects on adipocytes. PMID:22540353

  3. How I treat plasma cell leukemia

    PubMed Central

    Lokhorst, Henk M.; Anderson, Kenneth C.; Richardson, Paul G.

    2012-01-01

    Primary plasma cell leukemia (pPCL) is a rare and aggressive plasma cell proliferative disorder with a very poor prognosis and with distinct biologic, clinical, and laboratory features. Compared with multiple myeloma, pPCL presents more often with extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, elevated serum β2-microglobulin and lactate dehydrogenase levels, as well as impaired renal function. Many of the genetic aberrations observed in newly diagnosed pPCL are typically found in advanced multiple myeloma. These cytogenetic abnormalities and mutations lead to increased proliferation, enhanced inhibition of apoptosis, escape from immune surveillance, and independence from the BM microenvironment, with changes in expression of adhesion molecules or chemokine receptors. The outcome of pPCL has improved with the introduction of autologous stem cell transplantation and combination approaches with novel agents, including bortezomib and immunomodulatory drugs, such as lenalidomide. In this review, we provide an overview of currently available therapeutic options with recommendations of how these treatment modalities can best be used to improve outcome for plasma cell leukemia patients. PMID:22837533

  4. How I treat plasma cell leukemia.

    PubMed

    van de Donk, Niels W C J; Lokhorst, Henk M; Anderson, Kenneth C; Richardson, Paul G

    2012-09-20

    Primary plasma cell leukemia (pPCL) is a rare and aggressive plasma cell proliferative disorder with a very poor prognosis and with distinct biologic, clinical, and laboratory features. Compared with multiple myeloma, pPCL presents more often with extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, elevated serum β(2)-microglobulin and lactate dehydrogenase levels, as well as impaired renal function. Many of the genetic aberrations observed in newly diagnosed pPCL are typically found in advanced multiple myeloma. These cytogenetic abnormalities and mutations lead to increased proliferation, enhanced inhibition of apoptosis, escape from immune surveillance, and independence from the BM microenvironment, with changes in expression of adhesion molecules or chemokine receptors. The outcome of pPCL has improved with the introduction of autologous stem cell transplantation and combination approaches with novel agents, including bortezomib and immunomodulatory drugs, such as lenalidomide. In this review, we provide an overview of currently available therapeutic options with recommendations of how these treatment modalities can best be used to improve outcome for plasma cell leukemia patients. PMID:22837533

  5. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinnya; Hori, Masaru; Kikkawa, Fumitaka

    2016-06-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma‑activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related to the sensitivity of cancer cells to the plasma treatment. PMID:27035127

  6. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  7. Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hur, M. S.; Wurtele, J. S.; Shvets, G.

    2003-07-01

    Electromagnetically induced transparency (EIT), a phenomenon well known in atomic systems, has a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for right-hand polarized electromagnetic waves at the electron cyclotron frequency Ω0, so that a probe wave with frequency ω1=Ω0 cannot propagate through the plasma. The plasma can be made transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation, and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The theory of plasma EIT derived here extends that found in the earlier work to include the effects of the lower sideband of the pump and renormalization of the plasma frequency and an analysis of the transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations is presented and estimates for the performance ion accelerator using the EIT interaction are given. The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are in good agreement with particle-in-cell simulations.

  8. Micromachining of polydimethylsiloxane induced by laser plasma EUV light

    NASA Astrophysics Data System (ADS)

    Torii, S.; Makimura, T.; Okazaki, K.; Nakamura, D.; Takahashi, A.; Okada, T.; Niino, H.; Murakami, K.

    2011-06-01

    Polydimethylsiloxane (PDMS) is fundamental materials in the field of biotechnology. Because of its biocompatibility, microfabricated PDMS sheets are applied to micro-reactors and microchips for cell culture. Conventionally, the microstructures were fabricated by means of cast or imprint using molds, however it is difficult to fabricate the structures at high aspect ratios such as through-holes/vertical channels. The fabrication of the high-aspect structures would enable us to stack sheets to realize 3D fluidic circuits. In order to achieve the micromachining, direct photo-ablation by short wavelength light is promising. In the previous works, we investigated ablation of transparent materials such as silica glass and poly(methyl methacrylate) induced by irradiation with laser plasma EUV light. We achieved smooth and fine nanomachining. In this work, we applied our technique to PDMS micromachining. We condensed the EUV light onto PDMS surfaces at high power density up to 108 W/cm2 using a Au coated ellipsoidal mirror. We found that PDMS sheet was ablated at a rate up to 440 nm/shot. It should be emphasized that through hole with a diameter of 1 μm was fabricated in a PDMS sheet with a thickness of 4 μm. Thus we demonstrated the micromachining of PDMS sheets using laser plasma EUV light.

  9. Sepsis-induced elevation in plasma serotonin facilitates endothelial hyperpermeability

    PubMed Central

    Li, Yicong; Hadden, Coedy; Cooper, Anthonya; Ahmed, Asli; Wu, Hong; Lupashin, Vladimir V.; Mayeux, Philip R.; Kilic, Fusun

    2016-01-01

    Hyperpermeability of the endothelial barrier and resulting microvascular leakage are a hallmark of sepsis. Our studies describe the mechanism by which serotonin (5-HT) regulates the microvascular permeability during sepsis. The plasma 5-HT levels are significantly elevated in mice made septic by cecal ligation and puncture (CLP). 5-HT-induced permeability of endothelial cells was associated with the phosphorylation of p21 activating kinase (PAK1), PAK1-dependent phosphorylation of vimentin (P-vimentin) filaments, and a strong association between P-vimentin and ve-cadherin. These findings were in good agreement with the findings with the endothelial cells incubated in serum from CLP mice. In vivo, reducing the 5-HT uptake rates with the 5-HT transporter (SERT) inhibitor, paroxetine blocked renal microvascular leakage and the decline in microvascular perfusion. Importantly, mice that lack SERT showed significantly less microvascular dysfunction after CLP. Based on these data, we propose that the increased endothelial 5-HT uptake together with 5-HT signaling disrupts the endothelial barrier function in sepsis. Therefore, regulating intracellular 5-HT levels in endothelial cells represents a novel approach in improving sepsis-associated microvascular dysfunction and leakage. These new findings advance our understanding of the mechanisms underlying cellular responses to intracellular/extracellular 5-HT ratio in sepsis and refine current views of these signaling processes during sepsis. PMID:26956613

  10. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  11. Recent trends in atomic spectrometry with microwave-induced plasmas

    NASA Astrophysics Data System (ADS)

    Broekaert, José A. C.; Siemens, Volker

    2004-12-01

    The state-of-the-art and trends of development in atomic spectrometry with microwave-induced plasmas (MIPs) since the 1998s are presented and discussed. This includes developments in devices for producing microwave plasma discharges, with reference also to miniaturized systems as well as to progress in sample introduction for microwave-induced plasmas, such as pneumatic and ultrasonic nebulization using membrane desolvation, to the further development of gaseous analyte species generation systems and to both spark and laser ablation (LA). The features of microwave-induced plasma mass spectrometry (MIP-MS) as an alternative to inductively coupled plasma (ICP)-MS are discussed. Recent work on the use of microwave-induced plasma atomic spectrometry for trace element determinations and monitoring, their use as tandem sources and for particle sizing are discussed. Recent applications of the coupling of gas chromatography and MIP atomic spectrometry for the determination of organometallic compounds of heavy metals such as Pb, Hg, Se and Sn are reviewed and the possibilities of trapping for sensitivity enhancement, as required for many applications especially in environmental work, are showed at the hand of citations from the recent literature.

  12. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium

    PubMed Central

    UTSUMI, FUMI; KAJIYAMA, HIROAKI; NAKAMURA, KAE; TANAKA, HIROMASA; MIZUNO, MASAAKI; TOYOKUNI, SHINNYA; HORI, MASARU; KIKKAWA, FUMITAKA

    2016-01-01

    Non-thermal atmospheric pressure plasma has been widely studied in recent years in many fields, including cancer treatment. However, its efficiency for inducing apoptosis sometimes varies depending on the cell species and experimental conditions. The aim of this study was to elucidate what causes these differences in responses to plasma treatment. Using four ovarian cancer cell lines, the cell density had a markedly negative impact on the proliferation inhibition rate (PIR) and it was more obvious in OVCAR-3 and NOS2 cells. Furthermore, TOV21G and ES-2 cells were drastically sensitive to plasma-activated medium (PAM) compared with the other two cell lines. We demonstrated that the proportion of reactive oxygen species and cell number had a marked impact on the effect of PAM against ovarian cancer cells. Additionally it was suggested that the morphological features of cells were also closely related PMID:27035127

  13. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H.; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option. PMID:26042423

  14. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe

    2015-06-01

    Atmospheric-pressure microwave induced N2 plasma is diagnosed by optical emission spectroscopy with respect to the plasma gas temperature. The spectroscopic measurement of plasma gas temperature is discussed with respect to the spectral line broadening of Ar I and the various emission rotational-vibrational band systems of N2(B-A), N2(C-B) and \\text{N}2+(\\text{B-X}). It is found that the Boltzmann plot of the selective spectral lines from \\text{N}2+(\\text{B-X}) at 391.4 nm is preferable to others with an accuracy better than 5% for an atmospheric-pressure plasma of high gas temperature. On the basis of the thermal balance equation, the dependences of the plasma gas temperature on the absorbed power, the gas flow rate, and the gas composition are investigated experimentally with photographs recording the plasma morphology.

  15. Anaplastic plasmacytomas: relationships to normal memory B cells and plasma cell neoplasms of immunodeficient and autoimmune mice.

    PubMed

    Qi, Chen-Feng; Shin, Dong-Mi; Li, Zhaoyang; Wang, Hongsheng; Feng, Jianxum; Hartley, Janet W; Fredrickson, Torgny N; Kovalchuk, Alexander L; Morse, Herbert C

    2010-05-01

    Anaplastic plasmacytomas (APCTs) from NFS.V(+) congenic mice and pristane-induced plasmacytic PCTs from BALB/c mice were previously shown to be histologically and molecularly distinct subsets of plasma cell neoplasms (PCNs). Here we extended these comparisons, contrasting primary APCTs and PCTs by gene expression profiling in relation to the expression profiles of normal naïve, germinal centre, and memory B cells and plasma cells. We also sequenced immunoglobulin genes from APCT and APCT-derived cell lines and defined surface phenotypes and chromosomal features of the cell lines by flow cytometry and by spectral karyotyping and fluorescence in situ hybridization. The results indicate that APCTs share many features with normal memory cells and the plasma cell-related neoplasms (PLs) of FASL-deficient mice, suggesting that APCTs and PLs are related and that both derive from memory B cells. Published in 2010 by John Wiley & Sons, Ltd. PMID:20217872

  16. High-contrast plasma-electrode Pockels cell

    SciTech Connect

    Kruschwitz, B. E.; Kelly, J. H.; Shoup, M. J. III; Waxer, L. J.; Cost, E. C.; Green, E. T.; Hoyt, Z. M.; Taniguchi, J.; Walker, T. W

    2007-03-10

    A plasma-electrode Pockels cell (PEPC) has been developed for use on the OMEGA extended performance (EP)laser system that can be used in a high-contrast optical switch, as required for isolation of the system from retroreflected pulses. Contrast ratios reliably exceeded 500:1 locally everywhere in the clear aperture. The key to achieving this improvement was the use of circular windows simply supported on compliant O rings, which is shown to produce very low stress-induced birefringence despite vacuum loading. Reliable operation was achieved operating at a relatively high operating pressure, low operating pressures being found to be strongly correlated to occurrences of local loss of plasma density.

  17. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage.

    PubMed

    Schoenhals, Matthieu; Jourdan, Michel; Seckinger, Anja; Pantesco, Véronique; Hose, Dirk; Kassambara, Alboukadel; Moreaux, Jérôme; Klein, Bernard

    2016-07-17

    A role of the transcription factor Krüppel-like factor 4 (KLF4) in the generation of mature plasma cells (PC) is unknown. Indeed, KLF4 is critical in controlling the differentiation of various cell linages, particularly monocytes and epithelial cells. KLF4 is expressed at low levels in pro-B cells and its expression increases as they mature into pre-B cells, resting naïve B cells and memory B cells. We show here that KLF4 is expressed in human bone marrow plasma cells and its function was studied using an in vitro model of differentiation of memory B cells into long lived plasma cells. KLF4 is rapidly lost when memory B cells differentiate into highly cell cycling plasmablasts, poorly cycling early plasma cells and then quiescent long-lived plasma cells. A forced expression of KLF4 in plasmablasts enhances the yield of their differentiation into early plasma cell and long lived plasma cells, by inhibiting apoptosis and upregulating previously unknown plasma cell pathways. PMID:27230497

  18. Infrared Signatures of Laser Induced Plasma in Air

    NASA Astrophysics Data System (ADS)

    Hening, Alexandru; Lu, Ryan; Ramirez, Ayax; Advanced Technology Team

    2014-03-01

    Characterization of the temporal and spatial evolution of laser generated plasma in air is necessary for the development of potential applications which range from laser induced ionized micro channels and filaments able to transfer high electric pulses over few hundreds of meters, to the generation of plasma artifacts in air, far away from the laser source. This work is focused mainly on the infrared spectrum. The influence of laser parameters (energy per pulse, pulse duration, repetition rate, wavelength and etc.) on the plasma formation and evolution has been investigated. Laser transmission losses through the air as well as through the breakdown plasma as well as their effect on infrared plasma signature are to be presented.

  19. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  20. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  1. Electromagnetically induced guiding of counterpropagating lasers in plasmas

    SciTech Connect

    Shvets, G.; Pukhov, A.

    1999-01-01

    The interaction of counterpropagating laser pulses in a plasma is considered. When the frequencies of the two lasers are close, nonlinear modification of the refraction index results in the mutual focusing of the two beams. A short (of order of the plasma period) laser pulse can also be nonlinearly focused by a long counterpropagating beam which extends over the entire guiding length. This phenomenon of electromagnetically induced guiding can be utilized in laser-driven plasma accelerators. {copyright} {ital 1999} {ital The American Physical Society}

  2. Plasma Induced Sputtered Exosphere of Callisto

    NASA Astrophysics Data System (ADS)

    Pfleger, Martin; Lammer, Helmut; Lindkvist, Jesper; Holmström, Mats; Vorburger, Audrey; Galli, André; Wurz, Peter; Lichtenegger, Herbert; Barabash, Stas

    2014-05-01

    A better understanding of particle release processes from the Gallilean satellites such as Callisto's surface is needed for planned exospheric and remote surface geochemical studies by the particle and plasma instruments of the PEP experiment on board of ESA's JUICE mission. We study the interaction between the Jovian magnetosphere plasma and Callisto's surface with a hybrid model and applied a geochemical surface composition model for the input of the surface sputter release. Then we apply a 3-D exospheric model for studying the feasibility of exospheric measurements. We model energy and ejection angle distributions of the released particles from the surface, with the emission process determining the actual distribution functions. Our model follows the trajectory of each particle by numerical integration until the particle hits Callisto's surface again or escapes from the calculation domain. Using a large set of these trajectories, bulk parameters of the exospheric gas are derived, e.g., particle densities for various species.

  3. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  4. Evolution of laser-induced plasma in solvent aerosols

    NASA Astrophysics Data System (ADS)

    Hening, Alexandru; Wroblewski, Ronald; George, Robert; McGirr, Scott

    2014-10-01

    This paper describes a novel technique for the detection of contaminants in air using the process of laser-induced filamentation. This work is focused primarily on the visible and infrared spectrum. Characterization of the temporal and spatial evolution of laser-generated plasma in solvent aerosols is necessary for the development of potential applications. Atmospheric aerosols impact capabilities of applications such as range from laser-induced ionized micro channels and filaments able to transfer high electric pulses over a few hundreds of meters, to the generation of plasma artifacts in air, far away from the laser source.

  5. Hematopoietic Cell and Renal Transplantation in Plasma Cell Dyscrasia Patients.

    PubMed

    Baraldi, Olga; Grandinetti, Valeria; Donati, Gabriele; Comai, Giorgia; Battaglino, Giuseppe; Cuna, Vania; Capelli, Irene; Sala, Elisa; La Manna, Gaetano

    2016-01-01

    Gammopathies, multiple myeloma, and amyloidosis are plasma dyscrasias characterized by clonal proliferation and immunoglobulin overproduction. Renal impairment is the most common and serious complication with an incidence of 20-30% patients at the diagnosis. Kidney transplant has not been considered feasible in the presence of plasma dyscrasias because the immunosuppressive therapy may increase the risk of neoplasia progression, and paraproteins may affect the graft. However, recent advances in clinical management of multiple myeloma and other gammopathies allow considering kidney transplant as a possible alternative to dialysis. Numerous evidence indicates the direct relationship between hematological remission and renal function restoring. The combination of kidney and hematopoietic cell transplant has been reported as a promising approach to reestablish end-organ function and effectively treat the underlying disease. This review describes current protocols used to perform kidney transplantation in patients with plasma dyscrasias. PMID:26160700

  6. Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir

    2014-10-01

    The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.

  7. Biphenotypic plasma cell myeloma: two cases of plasma cell neoplasm with a coexpression of kappa and lambda light chains

    PubMed Central

    Jiwani, Shahanawaz; Bornhost, Joshua; Alapat, Daisy

    2015-01-01

    Plasma cell neoplasm (PCM) is a medullary and extra medullary proliferation of clonal plasma cells that occurs due to accidental translocation of proto-oncogenes into immunoglobulin (Ig) gene loci. While the majority of plasma cell neoplasms are monoclonal, up to 2% of the PCMs [1] considered being biclonal based on electrophoretic analysis, characterized by secretion of paraprotein with two distinct heavy chains or light chains are possible and present unique diagnostic challenges. Methods: Traditionally protein electrophoresis has been used to diagnose, characterize, and monitor progression of plasma cell neoplasm. To characterize neoplastic plasma cells, in our institution, other ancillary studies, including in situ hybridization, flow cytometric analyses of plasma cell surface markers and cytoplasmic immunoglobulins with DNA ploidy, are also utilized routinely. Results: We present two cases of plasma cell myeloma in which the neoplastic plasma cells shows production of cytoplasmic kappa and lambda light chain, with secretion of free lambda light chain only. Co-expression of kappa and lambda light chain by the same neoplastic plasma cells is a rare but reported phenomenon. Conclusions: Our study indicates that serum electrophoresis alone could mischaracterize biphenotypic myeloma as monotypic plasma cell myelomas in the absence of additional testing methods. PMID:26339430

  8. Laser induced micro plasma processing of polymer substrates for biomedical implant applications

    NASA Astrophysics Data System (ADS)

    French, P. W.; Rosowski, A.; Murphy, M.; Irving, M.; Sharp, M. C.

    2015-07-01

    This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the "backside" of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the "topside" of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates.

  9. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage. PMID:22773133

  10. Plasmocytoma, multiple myeloma and plasma cell neoplasms in orofacial region.

    PubMed

    Zajko, J; Czako, L; Galis, B

    2016-01-01

    A neoplastic proliferation of B cell lymphocyte is called plasma cell neoplasms, results from malignant plasma cells transformation in bone marrow. The authors present a clinical study and overview of this pathology in maxillofacial region for six years (Tab. 2, Ref. 14). PMID:27546545

  11. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients

    PubMed Central

    Mariano, Filippo; Cantaluppi, Vincenzo; Stella, Maurizio; Romanazzi, Giuseppe Mauriello; Assenzio, Barbara; Cairo, Monica; Biancone, Luigi; Triolo, Giorgio; Ranieri, V Marco; Camussi, Giovanni

    2008-01-01

    Background Severe burn is a systemic illness often complicated by sepsis. Kidney is one of the organs invariably affected, and proteinuria is a constant clinical finding. We studied the relationships between proteinuria and patient outcome, severity of renal dysfunction and systemic inflammatory state in burns patients who developed sepsis-associated acute renal failure (ARF). We then tested the hypothesis that plasma in these patients induces apoptosis and functional alterations that could account for proteinuria and severity of renal dysfunction in tubular cells and podocytes. Methods We studied the correlation between proteinuria and indexes of systemic inflammation or renal function prospectively in 19 severe burns patients with septic shock and ARF, and we evaluated the effect of plasma on apoptosis, polarity and functional alterations in cultured human tubular cells and podocytes. As controls, we collected plasma from 10 burns patients with septic shock but without ARF, 10 burns patients with septic shock and ARF, 10 non-burns patients with septic shock without ARF, 10 chronic uremic patients and 10 healthy volunteers. Results Septic burns patients with ARF presented a severe proteinuria that correlated to outcome, glomerular (creatinine/urea clearance) and tubular (fractional excretion of sodium and potassium) functional impairment and systemic inflammation (white blood cell (WBC) and platelet counts). Plasma from these patients induced a pro-apoptotic effect in tubular cells and podocytes that correlated with the extent of proteinuria. Plasma-induced apoptosis was significantly higher in septic severe burns patients with ARF with respect to those without ARF or with septic shock without burns. Moreover, plasma from septic burns patients induced an alteration of polarity in tubular cells, as well as reduced expression of the tight junction protein ZO-1 and of the endocytic receptor megalin. In podocytes, plasma from septic burns patients increased

  12. Oxidative stress induced carbonylation in human plasma.

    PubMed

    Madian, Ashraf G; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E

    2011-10-19

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  13. Oxidative stress induced carbonylation in human plasma

    PubMed Central

    Madian, Ashraf G.; Diaz-Maldonado, Naomi; Gao, Qiang; Regnier, Fred E.

    2011-01-01

    The focus of this study was on the assessment of technology that might be of clinical utility in identification, quantification, characterization of carbonylation in human plasma proteins. Carbonylation is widely associated with oxidative stress diseases. Breast cancer patient samples were chosen as a stress positive case based on the fact that oxidative stress has been reported to be elevated in this disease. Measurements of 8-isoprostane in plasma confirmed that breast cancer patients in this study were indeed experiencing significant oxidative stress. Carbonyl groups in proteins from freshly drawn blood were derivatized with biotin hydrazide after which the samples were dialyzed and the biotinylated proteins subsequently selected, digested and labeled with iTRAQ™ heavy isotope coding reagent(s). Four hundred sixty proteins were identified and quantified, 95 of which changed 1.5 fold or more in concentration. Beyond confirming the utility of the analytical method, association of protein carbonylation was examined as well. Nearly one fourth of the selected proteins were of cytoplasmic, nuclear, or membrane origin. Analysis of the data by unbiased knowledge assembly methods indicated the most likely disease associated with the proteins was breast neoplasm. Pathway analysis showed the proteins which changed in carbonylation were strongly associated with Brca1, the breast cancer type-1 susceptibility protein. Pathway analysis indicated the major molecular functions of these proteins are defense, immunity and nucleic acid binding. PMID:21856457

  14. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment

    SciTech Connect

    Ma Ruonan; Zhang Qian; Feng Hongqing; Liang Yongdong; Li Fangting; Zhu Weidong; Zhang Jue; Fang Jing; Becker, Kurt H.

    2012-03-19

    With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

  15. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  16. Immunosuppressive plasma cells impede T cell-dependent immunogenic chemotherapy

    PubMed Central

    Shalapour, Shabnam; Font-Burgada, Joan; Di Caro, Giuseppe; Zhong, Zhenyu; Sanchez-Lopez, Elsa; Dhar, Debanjan; Willimsky, Gerald; Ammirante, Massimo; Strasner, Amy; Hansel, Donna E.; Jamieson, Christina; Kane, Christopher J.; Klatte, Tobias; Birner, Peter; Kenner, Lukas; Karin, Michael

    2015-01-01

    Cancer-associated genetic alterations induce expression of tumor antigens which can activate CD8+ cytotoxic T cells (CTL), but the microenvironment of established tumors promotes immune tolerance through poorly understood mechanisms1,2. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumor-directed CTL and are effective in some human cancers1. Immune mechanisms also affect treatment outcome and certain chemotherapeutic drugs stimulate cancer-specific immune responses by inducing immunogenic cell death (ICD) and other effector mechanisms3,4. Our previous studies revealed that B lymphocytes recruited by CXCL13 into prostate cancer (PC) promote castrate-resistant PC (CRPC) by producing lymphotoxin (LT) which activates an IKKα-Bmi1 module in PC stem cells5,6. Since CRPC is refractory to most therapies, we examined B cell involvement in acquisition of chemotherapy resistance. We focused this study on oxaliplatin, an immunogenic chemotherapeutic3,4 that is effective in aggressive PC7. We found that B cells modulate the response to low dose oxaliplatin, which by inducing ICD promotes tumor-directed CTL activation. Three different mouse PC models were refractory to oxaliplatin unless genetically or pharmacologically depleted of B cells. The critical immunosuppressive B cells are plasmocytes that express IgA, IL-10 and PD-L1, whose appearance depends on TGFβ-receptor (TGFβR) signaling. Elimination of these cells, which also infiltrate human therapy-resistant PC, allows CTL-dependent eradication of oxaliplatin-treated tumors. PMID:25924065

  17. Magnetowave induced plasma wakefield acceleration for ultrahigh energy cosmic rays.

    PubMed

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard

    2009-03-20

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{21} eV) is possible. PMID:19392185

  18. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  19. Plasma erosion rate diagnostics using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Turley, R. S.; Matossian, J. N.; Beattie, J. R.; Williamson, W. S.

    1992-01-01

    An optical technique for measuring the sputtering rate of a molybdenum surface immersed in a xenon plasma has been developed and demonstrated. This approach, which may be useful in real-time wear diagnostics for ion thrusters, relies on laser-induced fluorescence to determine the density of sputtered molybdenum atoms.

  20. Mechanisms of interaction of non-thermal plasma with living cells

    NASA Astrophysics Data System (ADS)

    Kalghatgi, Sameer Ulhas

    Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces various highly active molecules and atoms without heat. As a result, its effects on living cells and tissues could be selective and tunable. This makes non-thermal plasma very attractive for medical applications. However, despite several interesting demonstrations of non-thermal plasma in blood coagulation and tissue sterilization, the biological and physical mechanisms of its interaction with living cells are still poorly understood impeding further development of non-thermal plasma as a clinical tool. Although several possible mechanisms of interaction have been suggested, no systematic experimental work has been performed to verify these hypotheses. Using cells in culture, it is shown in this work that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects ranging from increasing cell proliferation to inducing apoptosis which are consistent with the effects of oxidative stress. DNA damage is chosen as a marker to assess the effects of oxidative stress in a quantitative manner. It is demonstrated here that plasma induced DNA damage as well as other effects ranging from cell proliferation to apoptosis are indeed due to production of intracellular reactive oxygen species (ROS). We found that DNA damage is initiated primarily by plasma generated active neutral species which cannot be attributed to ozone alone. Moreover, it is found that extracellular media and its components play a critical role in the transfer of the non-thermal plasma initiated oxidative stress into cells. Specifically, it is found that the peroxidation efficiency of amino acids is the sole predictor of the ability of the medium to transfer the oxidative stress induced by non-thermal plasma. Phosphorylation of H2AX, a DNA damage marker, following plasma treatment is found to be ATR dependent and ATM

  1. Visualization of plasma turbulence with laser-induced fluorescence (invited)

    SciTech Connect

    Levinton, Fred M.; Trintchouk, Fedor

    2001-01-01

    Turbulence is a key factor limiting the performance of fusion devices. Plasma edge turbulence determines the boundary values of the plasma density and temperature, which in turn determine the internal gradients and controls global plasma transport. In recent years, significant progress has been made in modeling turbulence behavior in plasmas and its effect on transport. Progress has also been made in diagnostics for turbulence measurement; however, there is still a large gap in our understanding of it. An approach to improve this situation is to experimentally visualize the turbulence, that is, a high resolution 2-D image of the plasma density. Visualization of turbulence can improve the connection to theory and help validate theoretical models. One method that has been successfully developed to visualize turbulence in gases and fluids is planar laser-induced fluorescence. We have recently applied this technique to visualize turbulence and structures in a plasma. This was accomplished using an Alexandrite laser that is tunable between 700 and 800 nm, and from 350 to 400 nm with second harmonic generation. The fluorescence light from an argon ion transition has been imaged onto an intensified charged coupled device camera that is gated in synchronization with the laser. Images from the plasma show a rotating structure at 30 kHz in addition to small scale turbulence.

  2. Development of plasma-on-chip: Plasma treatment for individual cells cultured in media

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Chang, Chun-Yao; Jeong, Jonghyeon; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru

    2016-01-01

    A device consisting of Si microwells and microplasma sources has been fabricated for plasma treatment of individual cells cultured in media. We named the device plasma-on-chip. The microwells have through-holes at the bottom where gas–liquid interfaces form when they are filled with media containing biological samples. The microplasma sources, which supply reactive species, are located on the back of each microwell. Through the gas–liquid interface, the reactive species are supplied to the cells. Chlorella cells were used to demonstrate the feasibility of the device and after three minutes of plasma treatment, the fluorescence intensity of Chlorella cells appeared to be decreased. Optical emission spectroscopy identified O and OH radicals in the plasma, which can affect the cells. In the analysis of biological samples such as human cells or tissues, this device raises the possibility of revealing the mechanisms of plasma medicine in more detail.

  3. Plasma treatment of biomaterials to direct the differentiation of embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Hanley, Erik

    In this work, we explore how embryonic stem (ES) cell differentiation patterns are affected by surface interactions with plasma-processed materials. We hypothesize that mouse embryonic stem-cell exposure to certain plasma-polymerized tetraglyme surfaces will direct their differentiation into endothelial cells. R1 mouse embryonic stem (ES) cells were plated on surfaces onto which tetraglyme was deposited by plasma polymerization. In addition, tissue-treated polystyrene and control glass cover slips were also examined. Some samples were fixed three days after plating and immunofluorescence stained with platelet endothelial-cell adhesion molecule, while the others were fixed seven days after plating and immunofluorescence stained with von Willebrand Factor. Positive results seen by ES cell derivatives precociously expressing the vWF and PECAM genetic markers on the plasma-polymerized tetraglyme treated surfaces suggest that the plasma-polymerized surfaces direct differentiation of ES cells into endothelial cells. Research goals of this dissertation include: characterization of the material properties of the plasma-polymerized tetraglyme surfaces that induce directed differentiation of ES cells into endothelial cells, optimization of the plasma-polymerization process to maximize the number of endothelial cells derived from R1 ES cells, and biological experimentation to characterize properties of the mechanism of directed differentiation. A potential application of this work is in the design and construction of an artificial blood vessel. Current small-scale arterial substitutes have proved inadequate because of thrombogenicity and infection. Moreover, the lower blood flow velocities of smaller vessels pose a different set of design criteria and introduce new problems not encountered in large arterial substitutes. By utilizing a tissue engineering approach that incorporates embryonic stem cell-derived endothelial cells, the longevity of the prosthesis can be ensured.

  4. Hubble-induced mass from MSSM plasma

    SciTech Connect

    Kawasaki, Masahiro; Takesako, Tomohiro; Takahashi, Fuminobu E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2013-04-01

    We evaluate the effective mass of a scalar field φ coupled to thermal plasma through Planck-suppressed interactions. We find it useful to rescale the coupled fields so that all the φ-dependences are absorbed into the yukawa and gauge couplings, which allows us to read off the leading order contributions to the effective mass m-tilde {sub φ} from the 2-loop free energy calculated with the rescaled couplings. We give an analytical expression for m-tilde {sub φ} at a sufficiently high temperature in the case where φ is coupled to the MSSM chiral superfields through non-minimal Kähler potential. We find that | m-tilde {sub φ}{sup 2}| is about 10{sup −3}H{sup 2} ∼ 10{sup −2}H{sup 2} at the leading order in terms of the couplings for typical parameter sets, where H is the Hubble expansion rate in the radiation-dominated era.

  5. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway. PMID:27470414

  6. Improvement of early cell adhesion on Thai silk fibroin surface by low energy plasma.

    PubMed

    Amornsudthiwat, Phakdee; Mongkolnavin, Rattachat; Kanokpanont, Sorada; Panpranot, Joongjai; Wong, Chiow San; Damrongsakkul, Siriporn

    2013-11-01

    Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry. PMID:23893032

  7. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    NASA Astrophysics Data System (ADS)

    Slepička, P.; Juřík, P.; Malinský, P.; Macková, A.; Kasálková, N. Slepičková; Švorčík, V.

    2014-08-01

    Modification based on polymer surface exposure to plasma treatment exhibits an easy and cheap technique for polymer surface nanostructuring. The influence of argon plasma treatment on biopolymer poly(L-lactide acid (PLLA) will be presented in this paper. The combination of Ar+ ion irradiation, consequent sputter metallization (platinum) and thermal annealing of polymer surface will be summarized. The surface morphology was studied using atomic force microscopy. The Rutherford Backscattering Spectroscopy and X-ray Photoelectron Spectroscopy were used as analytical methods. The combination of plasma treatment with consequent thermal annealing and/or metal sputtering led to the change of surface morphology and its elemental ratio. The surface roughness and composition has been strongly influenced by the modification parameters and metal layer thickness. By plasma treatment of polymer surface combined with consequent annealing or metal deposition can be prepared materials applicable both in tissue engineering as cell carriers, but also in integrated circuit manufacturing.

  8. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  9. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy.

    PubMed

    Harilal, S S; Yeak, J; Phillips, M C

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filament channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also explain the near absence of ion emission but strong atomic neutral emission from plumes produced during fs LIBS in air. PMID:26480372

  10. Laser-Induced Underwater Plasma And Its Spectroscopic Applications

    SciTech Connect

    Lazic, Violeta

    2008-09-23

    Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

  11. Transport induced by symmetry breaking in a nonneutral plasma

    SciTech Connect

    Rome, M.; Kotelnikov, I.

    2010-06-16

    Small asymmetries of the confining electric and magnetic fields pose an upper limit on the lifetime of nonneutral plasmas trapped in Malmberg-Penning traps. The present paper reviews the effect of magnetic and electric field errors on the equilibrium of nonneutral plasma based on a suitable parallel current constraint. Together with Poisson's equation, this constraint provides a full set of equations for determining self-consistent asymmetric equilibria of non-neutral plasmas in a Malmberg-Penning trap. Using this approach, the effect on the plasma equilibrium of weak magnetic and electric squeezes (field errors with azimuthal number m = 0), tilt (m = 1) and quadrupole (m = 2) distortions is investigated. Analytical and semi-analytical solutions for the electric potential variation inside the trap are found in a paraxial limit for various radial density profiles of the plasma, including the case of global thermal equilibrium. A direct analog of the Pfirsch-Schlueter and Stupakov currents is also derived. The presented theory of the plasma equilibrium distorted by field errors provides the basis for elaborating a self-consistent theory of the asymmetry induced transport in a Malmberg-Penning trap.

  12. Immunophenotyping in multiple myeloma and related plasma cell disorders

    PubMed Central

    Kumar, Shaji; Kimlinger, Teresa; Morice, William

    2010-01-01

    SUMMARY Plasma cell disorders form a spectrum ranging from the asymptomatic presence of small monoclonal populations of plasma cells to conditions like plasma cell leukemia and multiple myeloma, in which the bone marrow can be replaced by the accumulation of neoplastic plasma cells. Immunophenotyping has become an invaluable tool in the management of hematological malignancies and is increasingly finding a role in the diagnosis and monitoring of plasma cell disorders. Multiparameter flow cytometry has evolved considerably during the past decade with an increasing ability to screen large numbers of events and to detect multiple antigens at the same time. This, along with a better understanding of the phenotypic heterogeneity of the clonal plasma cells in different disorders, has made immunophenotyping an indispensible tool in the diagnosis, prognostic classification and management of plasma cell disorders. This book chapter addresses the approaches taken to evaluate monoclonal plasma cell disorders, and the different markers and techniques that are important for the study of these diseases. PMID:21112041

  13. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  14. Skeletal Cell Differentiation Is Enhanced by Atmospheric Dielectric Barrier Discharge Plasma Treatment

    PubMed Central

    Zhang, Jun; Kurpad, Deepa S.; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A.

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  15. The effects of non-thermal plasmas on selected mammalian cells

    NASA Astrophysics Data System (ADS)

    Leduc, Mathieu

    built a simple transfection device consisting of a straight glass capillary tube and a plastic support. Using three different gases and five different capillary diameters, we were able to relate the transfection efficiency to the dynamic pressure of the gas exiting the capillary tube. Finally, even though transfection of cells seem to depend more on the mechanical forces exerted by the gas flow than on the effects of the plasma, other applications of non-thermal plasma in the field of medicine are in development. However, published studies have focused on only the positive effects of non-thermal plasmas, neglecting the potentially induced adverse effects. Therefore, we studied if damage could be caused in cells following an indirect (APGD-t) or a direct (parallel electrodes DBD) plasma treatment. We found that a low power direct plasma treatment caused oxidative stress in HeLa cells. Both plasma sources were shown to produce DNA double-strand breaks but no lipid peroxidation. Also, the sequencing of plasma-treated naked plasmid DNA introduced in electrocompetent bacteria showed no evidence of mutations.

  16. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    NASA Astrophysics Data System (ADS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  17. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  18. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  19. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit.

    PubMed

    Tran, Lee; Hanavan, Paul D; Campbell, Latoya E; De Filippis, Elena; Lake, Douglas F; Coletta, Dawn K; Roust, Lori R; Mandarino, Lawrence J; Carroll, Chad C; Katsanos, Christos S

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  20. Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

    PubMed Central

    Tran, Lee; Hanavan, Paul D.; Campbell, Latoya E.; De Filippis, Elena; Lake, Douglas F.; Coletta, Dawn K.; Roust, Lori R.; Mandarino, Lawrence J.; Carroll, Chad C.; Katsanos, Christos S.

    2016-01-01

    Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish

  1. Tokamak Plasma Flows Induced by Local RF Forces

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Gao, Zhe

    2015-10-01

    The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning

  2. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  3. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  4. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  5. Flow induced dust acoustic shock waves in a complex plasma

    NASA Astrophysics Data System (ADS)

    Jaiswal, Surabhi; Bandyopadhyay, Pintu; Sen, Abhijit

    2015-11-01

    We report on experimental observations of particle flow induced large amplitude shock waves in a dusty plasma. These dust acoustic shocks (DAS) are observed for strongly supersonic flows and have been studied in a U-shaped Dusty Plasma Experimental (DPEx) device for charged kaolin dust in a background of Argon plasma. The strong flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of the dust density near the potential hill is used to trigger the onset of high velocity dust acoustic shocks. The dynamics of the shocks are captured by fast video pictures of the structures that are illuminated by a laser sheet beam. The physical characteristics of the shock are delineated from a parametric scan of their dynamical properties over a range of plasma parameters and flow speeds. Details of these observations and a physical explanation based on model calculations will be presented.

  6. Investigations of LHCD induced plasma rotation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Chouli, B.; Fenzi, C.; Garbet, X.; Bourdelle, C.; Sarazin, Y.; Rice, J.; Aniel, T.; Artaud, J.-F.; Baiocchi, B.; Basiuk, V.; Cottier, P.; Decker, J.; Imbeaux, F.; Irishkin, M.; Mazon, D.; Schneider, M.; the Tore Supra Team

    2015-12-01

    Theoretical investigations are performed in order to explain the plasma rotation increments induced by lower hybrid current drive (LHCD) in Tore Supra and the results are compared to the experimental observations. The intrinsic toroidal rotation is governed by several mechanisms in concert. The impact of the LHCD on each involved mechanism is analyzed. The neoclassical toroidal rotation is always in the counter-current direction. The toroidal diamagnetic velocity is of the order of the experimental toroidal velocity. At high plasma current the rotation evolution in the lower hybrid (LH) phase is controlled by the neoclassical friction force due to the trapped ions in banana trajectories through the toroidal diamagnetic velocity. This force results in the counter-current increment as observed in the experimental measurement of toroidal rotation. At low plasma current the rotation is dominated by momentum turbulent transport when the LH waves are applied. The Reynolds stress grows strongly compared to the high plasma current case and acts as a co-current force through its residual stress contribution. Momentum transport simulations are also performed with CRONOS (Artaud et al 2010) in order to assess the rotation increments induced by LHCD.

  7. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  8. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    NASA Astrophysics Data System (ADS)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  9. Thermal emittance from ionization-induced trapping in plasma accelerators

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Vay, J.-L.; Esarey, E.; Bulanov, S. S.; Benedetti, C.; Yu, L.-L.; Chen, M.; Geddes, C. G. R.; Leemans, W. P.

    2014-10-01

    The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse phase space distribution following ionization and passage through the laser is derived, and expressions for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated using laser ionization injection into plasma accelerators, and examples are presented showing normalized emittances on the order of tens of nm.

  10. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.