Science.gov

Sample records for plasma coating formation

  1. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    PubMed

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  2. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm

    PubMed Central

    Xu, Yuanxi; Jones, John E.; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D.

    2015-01-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections. PMID:26369955

  3. Formation Of Antifriction And Wear-Proof Coatings By Heterogeneous Arc Plasma

    NASA Astrophysics Data System (ADS)

    Smyaglikov, I. P.; Chubrik, N. I.; Kuznechik, O. O.; Minko, D. V.

    2010-07-01

    Formation of coatings of the various functionality on electrode-detail while injecting of metal particles in plasma flow of short argon arc is considered. The possibility of formation both antifriction and wear-proof dense coatings, which have a metallurgical bond with a base, is shown.

  4. Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties

    SciTech Connect

    Van Every, Kent; Krane, Matthew; Trice, Rodney; Wang, Hsin; Porter, Wallace D; Besser, Matthew; Sordelet, Daniel; Ilavsky, Dr. Jan; Almer, Jon

    2011-01-01

    The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 {micro}m and 80 nm. The powder-ethanol suspensions made with 15-{micro}m diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.

  5. Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties

    SciTech Connect

    VanEvery, Kent; Krane, Matthew J.M.; Trice, Rodney W; Wang, Hsin; Porter, Wallace; Besser, Matthew; Sordelet, Daniel; Ilavsky, Jan; Almer, Jonathan

    2012-03-19

    The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 {micro}m and 80 nm. The powder-ethanol suspensions made with 15-{micro}m diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k{sub th}) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k{sub th} values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k{sub th} of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k{sub th} increase was less than has been observed in APS coatings.

  6. Column formation in suspension plasma-sprayed coatings and resultant thermal properties.

    SciTech Connect

    Van Every, K.; Krane, M. J. M.; Trice, R. W.; Wang, H.; Porter, W.; Besser, M.; Sordelet, D.; Ilavsky, J.; Almer, J.

    2011-06-01

    The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 {micro}m and 80 nm. The powder-ethanol suspensions made with 15-{micro}m diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.

  7. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    NASA Astrophysics Data System (ADS)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  8. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  9. Formation of stable nanostructured phases in plasma-jet-treated Ni-Cr powder coatings

    NASA Astrophysics Data System (ADS)

    Alontseva, D. L.; Bratushka, S. N.; Il'yashenko, M. V.; Makhmudov, N. A.; Prokhorenkova, N. V.; Onanchenko, E. L.; Novgorodtsev, A. I.; Pshik, A. V.; Rogoz, V. N.

    2012-08-01

    Samples of steel St3 with Ni-Cr-B-Si-Fe coatings deposited using a plasma jet with subsequent partial melting of the coatings by a plasma jet have been investigated for the first time using the methods of Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray fluorescence analysis, X-ray photoelectron spectroscopy, and nanoindentation. The structure and the phase and elemental compositions of these coatings have been studied. Ni-based nanocrystalline phases and CrNi3-based microcrystalline phases with crystals from 50 to 150 nm in size, extended defects of the microstructure, and nanoregions with different orientations of the crystal lattice and grain sizes on the order of 2-3 nm have been found.

  10. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  11. The Formation of Nanocrystalline Diamond Coating on WC Deposited by Microwave Assisted Plasma CVD

    NASA Astrophysics Data System (ADS)

    Toff, M. R. M.; Hamzah, E.; Purniawan, A.

    2010-03-01

    Diamond is one form of carbon structure. The extreme hardness and high chemical resistant of diamond coatings determined that many works on this area relate to coated materials for tribological applications in biomedicine, as mechanical seals or cutting tools for hard machining operations. In the work, nanocrystalline diamond (NCD) coated tungsten carbide (WC) have been deposited by microwave assisted plasma chemical vapor deposition (MAPCVD) from CH4/H2 mixtures. Morphology of NCD was investigated by using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The quality of NCD is defined as ratio between diamond and non diamond and also full width at half maximum (FWHM) was determined using Raman spectra. The result found that the NCD structure can be deposited on WC surface using CH4/H2 gas mixture with grain size ˜20 nm to 100 nm. Increase %CH4 concentration due to increase the nucleation of NCD whereas decrease the quality of diamond. Based on Raman spectra, the quality of NCD is in the range ˜98.82-99.01% and 99.56-99.75% for NCD and microcrystalline (MCD), respectively. In addition, FWHM of NCD is high than MCD in the range of 8.664-62.24 cm-1 and 4.24-5.05 cm-1 for NCD and MCD respectively that indicate the crystallineity of NCD is smaller than MCD.

  12. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    NASA Astrophysics Data System (ADS)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  13. High-Temperature Oxidation and Oxide Scale Formation in Plasma-Sprayed CoNiCrAlYRe Coatings

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Brentari, Alida; Blasi, Caterina; Pilloni, Luciano; Serra, Emanuele

    2014-11-01

    MCrAlY coatings are usually adopted to improve the environmental resistance of Ni-based superalloy components of turbine engines against high-temperature oxidation and hot corrosion. In this work, CoNiCrAlYRe coatings were produced by atmospheric plasma spraying. The coatings exhibited relatively low oxygen content and porosity. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy analyses revealed that the high-temperature exposure at 1383 K (1110 °C) promoted the growth of an oxide scale on the top surface being composed of a continuous and dense Al2O3 inner layer followed by an outer mixed layer (Cr2O3 and spinels). The oxide scale was mainly composed of Al2O3, while the formation of mixed oxides occurred at lesser extent. After high-temperature exposure, the formation of internal oxides in some areas reduced the inter-lamellar cohesion, so that a decrease in microhardness was found.

  14. Process Sprays Uniforms Plasma Coatings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Walther, G. C.; Nakamura, H. H.

    1983-01-01

    Composite-powder processing procedure developed along with plasma-spray parameters to achieve homogeneous, well-bonded, low-porosity, self-lubricating coatings. Multicomponent plasma coatings are applied without segretation of components.

  15. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-06-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  16. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  17. Formation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process

    PubMed Central

    Mutsuzaki, Hirotaka; Yokoyama, Yoshiro; Ito, Atsuo; Oyane, Ayako

    2013-01-01

    A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment) to create a precoating containing amorphous calcium phosphate (ACP) which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions. PMID:24048251

  18. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Arrabal, R.; Matykina, E.; Skeldon, P.; Thompson, G. E.

    2009-02-01

    Plasma electrolytic oxidation (PEO) of a ZC71/SiC/12p-T6 magnesium metal matrix composite (MMC) is investigated in relation to coating growth and corrosion behaviour. PEO treatment was undertaken at 350 mA cm -2 (rms) and 50 Hz with a square waveform in stirred 0.05 M Na 2SiO 3.5H 2O/0.1 M KOH electrolyte. The findings revealed thick, dense oxide coatings, with an average hardness of 3.4 GPa, formed at an average rate of ˜1 μm min -1 for treatment times up to 100 min and ˜0.2 μm min -1 for later times. The coatings are composed mainly of MgO and Mg 2SiO 4, with an increased silicon content in the outer regions, constituting <10% of the coating thickness. SiC particles are incorporated into the coating, with formation of a silicon-rich layer at the particle/coating interface due to exposure to high temperatures during coating formation. The distribution of the particles in the coating indicated growth of new oxide at the metal/coating interface. The corrosion rate of the MMC in 3.5% NaCl is reduced by approximately two orders of magnitude by the PEO treatment.

  19. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  20. Preparation and characterization of beryllium doped organic plasma polymer coatings

    SciTech Connect

    Brusasco, R.; Letts, S.; Miller, P.; Saculla, M.; Cook, R.

    1995-10-04

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 {mu}m hr{sup {minus}1} were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates.

  1. Smart Coating Technology by Gas Tunnel Type Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Kobayashi, A.

    2008-07-01

    Nano-science & technology is one of the most important scientific fields, and the material processing using the nano-technology is now advanced towards more precise and controllable smart stage. Regarding thermal processing, an important key should be the the performance of the applied heat source. A plasma is fundamentally the most superior heat source, because of high temperature, high energy density, easy controllable, etc. Therefore more precious plasma system has been expected for smart thermal processing. The gas tunnel type plasma system developed by the author has high energy density and also high efficiency. The concept and the feature of this plasma system are explained and the applications to the various thermal processing are described in this report. One practical application is plasma spraying of ceramics such as Al_2O_3 and ZrO_2. The characteristics of these ceramic coatings were superior to the conventional ones. The ZrO_2 composite coating has the possibility of the development of high functionally graded TBC (thermal barrier coating). Another application of gas tunnel type plasma is surface modification of metals. For example the TiN films were formed in a very short time of 5 s. Now, advanced plasma application of spraying methods as a smart coating technology is expected to obtain the desired characteristics of ceramics such as corrosion resistance, thermal resistance, and wear resistance by reducing the porosity and increasing the coating density. One application of the smart coating technology is a formation of the metallic glass coating with high function, and another is Hydroxiapatite coating for bio-medical application. The formation process of those coatings and the coating characteristics were investigated in this study.

  2. Plasma-Sprayed Coatings on Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Leibert, C. H.

    1986-01-01

    Need for combining benefits of duplex thermal-barrier coatings with film cooling on gas-turbine vanes and blades stimulated development of improved method for plasma spraying these coatings. Method reduces blocking of holes by plasma-sprayed material and at same time reduces base-metal oxidation during coating operation. Features provide potential for increased engine efficiency and power, reduced fuel consumption, use of less costly materials or construction procedures, and extended life and durability.

  3. The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Vasilić, Rastko; Radić, Nenad; Tadić, Nenad; Stefanov, Plamen; Grbić, Boško

    2016-07-01

    Tungsten doped Al2O3/ZnO coatings are formed by plasma electrolytic oxidation of aluminum substrate in supporting electrolyte (0.1 M boric acid + 0.05 M borax + 2 g/L ZnO) with addition of different concentrations of Na2WO4·2H2O. The morphology, crystal structure, chemical composition, and light absorption characteristics of formed surface coatings are investigated. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that formed surface coatings consist of alpha and gamma phase of Al2O3, ZnO, metallic tungsten and WO3. Obtained results showed that incorporated tungsten does not have any influence on the absorption spectra of Al2O3/ZnO coatings, which showed invariable band edge at about 385 nm. The photocatalytic activity of undoped and tungsten doped Al2O3/ZnO coatings is estimated by the photodegradation of methyl orange. The photocatalytic activity of tungsten doped Al2O3/ZnO coatings is higher thanof undoped Al2O3/ZnO coatings; the best photocatalytic activity is ascribed to coatings formed in supporting electrolyte with addition of 0.3 g/L Na2WO4·2H2O. Tungsten in Al2O3/ZnO coatings acts as a charge trap, thus reducing the recombination rate of photogenerated electron-hole pairs. The results of PL measurements are in agreement with photocatalytic activity. Declining PL intensity corresponds to increasing photocatalytic activity of the coatings, indicating slower recombination of electron-hole pairs.

  4. Plasma-Spray Metal Coating On Foam

    NASA Technical Reports Server (NTRS)

    Cranston, J.

    1994-01-01

    Molds, forms, and other substrates made of foams coated with metals by plasma spraying. Foam might be ceramic, carbon, metallic, organic, or inorganic. After coat applied by plasma spraying, foam left intact or removed by acid leaching, conventional machining, water-jet cutting, or another suitable technique. Cores or vessels made of various foam materials plasma-coated with metals according to method useful as thermally insulating containers for foods, liquids, or gases, or as mandrels for making composite-material (matrix/fiber) parts, or making thermally insulating firewalls in automobiles.

  5. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  6. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  7. Removing of Mixed Coatings by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Vassallo, E.; Caniello, R.; Deambrosis, S.; Dellasega, D.; Ghezzi, F.; Laguardia, L.; Miorin, E.; Passoni, M.

    2013-08-01

    Next generation tokamaks offer the possibility of highly efficient energy generation from the fusion reaction of hydrogen isotopes. In tokamak operation, the core plasma interaction with the wall materials could produce tiles erosion. Redeposition of the eroded materials (C-W-Be) leads to an increase in the allowable tritium load if the coatings are not periodically removed. Amongst removal methods, plasma based techniques employing Ar, H2 gas have been investigated. Plasma cleaning has been carried out on hydrogenated carbon and carbon-tungsten coatings. It has been shown that at a RF power density of 1.3 W/cm2 (pressure of 1 Pa), the plasma cleaning was effective in removing the coatings. Details of further work in this research activity will be presented.

  8. Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating

    PubMed Central

    Ma, Yibao; Jones, John E.; Ritts, Andrew C.; Yu, Qingsong

    2012-01-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms. PMID:22964248

  9. Plasma Chemical Aspects Of Dust Formation In Hydrocarbon Plasmas

    SciTech Connect

    Berndt, J.; Kovacevic, E.; Stepanovic, O.; Stefanovic, I.; Winter, J.

    2008-09-07

    This contribution deals with some plasma chemical aspects of dust formation in hydrocarbon plasmas. The interplay between dust formation and plasma chemistry will be discussed by means of different experimental results. One specific example concerns the formation of benzene and the role of atomic hydrogen for plasma chemical processes and dust formation in hydrocarbon discharges.

  10. Structural, Mechanical and Erosion Properties of Yttrium Oxide Coatings by Axial Suspension Plasma Spraying for Electronics Applications

    NASA Astrophysics Data System (ADS)

    Kitamura, Junya; Tang, Zhaolin; Mizuno, Hiroaki; Sato, Kazuto; Burgess, Alan

    2011-01-01

    Yttrium oxide (Y2O3) coatings have been prepared by axial suspension plasma spraying with fine powders. It is clarified that the coatings have high hardness, low porosity, high erosion resistance against CF4 -containing plasma and retention of smooth eroded surface. This suggests that the axial suspension plasma spraying of Y2O3 is applicable to fabricating equipment for electronic devices, such as dry etching. Surface morphologies of the slurry coatings with splats are similar to conventional plasma-sprayed Y2O3 coatings, identified from microstructural analysis. Dense coating structures with no lamellar boundaries have been seen, which is apparently different from the conventional coatings. It has also been found that crystal structure of the suspension coatings mainly composed of metastable monoclinic phase, whereas the powders and the conventional plasma spray coatings have stable cubic phase. Mechanism of coating formation by plasma spraying with fine powder slurries is discussed based on the results.

  11. Monitoring Coating Thickness During Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1990-01-01

    High-resolution video measures thickness accurately without interfering with process. Camera views cylindrical part through filter during plasma spraying. Lamp blacklights part, creating high-contrast silhouette on video monitor. Width analyzer counts number of lines in image of part after each pass of spray gun. Layer-by-layer measurements ensure adequate coat built up without danger of exceeding required thickness.

  12. Electrospinning Yarn Formation and Coating

    NASA Astrophysics Data System (ADS)

    Sahbaee Bagherzadeh, Arash

    Electrospinning is a process by which nano polymer fibers can be produced using an electrostatically driven jet of polymer solution. Electrospinning seems to be a relatively simple process for producing nanofibers since it utilizes a few readily available components. On closer examination it is however clearly evident that successful electrospinning involves an understanding of the complex interaction of electrostatic fields, properties of polymer solutions and component design and system geometry. Using grounded plate as a collector causes the uniform electric field in all directions, so the electrostatic forces acting on the fiber have no preferential direction in the plane of the collector, results in a random deposition of the electrospun fibers leading to an isotropic web. For achieving their unique abilities to be useful in devices needs to deposit them in specific location and orientation. In this project a unique needle electrospinning process is described in which nanofibers are continuously fabricated, uniaxially oriented, and twisted to form of a yarn. It is shown that perfectly aligned nanofiber assemblies can be generated by manipulating the electric field. Twist insertion is accomplished by using two stepper motors and associated software. ANSYS/Emag.3-D is used to model the path of the electric field between the needle and the collector and the electrostatic forces acting on a charged nanofiber. The apparatus described, appears to offer advantages over other techniques. Nanofibers need not only be used as webs or yarn in order to attain the performance enhancement of high tech applications, but it is possible to introduce the benefit of nanofiber to regular yarn and other materials, by coating with nanofibers An addition advantage of the present setup is that it is possible to produce continuous fiber hybrid yarn coated with aligned nanofibers along the core yarn axis. With this method it is not only possible to coat regular yarn with aligned

  13. Strength of plasma coating and effect of a plasma coating on hydrogen entry

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Hiroshi; Ohshima, Tamiko; Kawasaki, Hiroharu; Fukuda, Takayuki

    2016-01-01

    The strength of a plasma coating and the effect of the plasma coating on hydrogen entry were investigated to establish a method that provides a base material with highly resistant to hydrogen entry and embrittlement. Aluminum alloy A6061, which is highly resistant to hydrogen gas atmosphere, was employed as the coating material (300 W, 17 h, ∼40 µm thickness). Two types of specimen prepared by the hydrogen-charging method were adopted: the coated and uncoated specimens were (1) immersed in 20 mass % ammonium thiocyanate aqueous solution at 313 K for 48 h, or (2) exposed to hydrogen gas atmosphere at 100 MPa and 270 °C for 200 h. Hydrogen content measurements revealed that the A6061 plasma coating is highly resistant to hydrogen entry in corrosive environments. The coating reduced hydrogen entry by ∼50% during exposure to hydrogen gas atmosphere at 100 MPa and 270 °C. Moreover, the plasma coating method was found to be applicable in the elastic deformation region of the base material.

  14. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Chen, Jiyong; Wu, Yao; Wu, Fang

    2011-03-01

    In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

  15. Characterisation of the TiO2 coatings deposited by plasma spraying

    NASA Astrophysics Data System (ADS)

    Benea, M. L.; Benea, L. P.

    2016-02-01

    Plasma spraying of materials such as ceramics and non-metals, which have high melting points, has become a well-established commercial process. Such coatings are increasingly used in aerospace, automobile, textile, medical, printing and electrical industries to impart proprieties such as corrosion resistance, thermal resistance, wear resistance, etc. One of the most important characteristics of thermal barrier coatings is the ability to undergo fast temperature changes without failing, the so called thermal shock resistance. The formation of residual stresses in plasma sprayed ceramic and metallic coatings is a very complex process. Several factors, such as substrate material, substrate thickness, physical properties of both the substrate and the coating material, deposition rate, relative velocity of the plasma torch, etc. determine the final residual stress state of the coating at room temperature. Our objective is to characterize the titanium oxide and aluminium oxide coatings deposited by plasma spraying in structural terms, the resistance to thermal shock and residual stresses.

  16. Induction suspension plasma sprayed biological-like hydroxyapatite coatings.

    PubMed

    Loszach, Max; Gitzhofer, François

    2015-04-01

    Substituted hydroxyapatite coatings with different ions (Mg, Na, K, Cl, F) have been developed by the induction suspension plasma spray process. Suspensions were prepared with sol-gel. The main objective of this study was to demonstrate that induction suspension plasma spray technology possesses high material composition flexibility that allows as-sprayed coatings to closely mimic natural bone composition. Long-term in vitro behaviour of as-sprayed substituted coatings was evaluated with simulated body fluid. Data on the suspensions showed the formation of a pure hydroxyapatite phase. Transmission electron microscopy characterized various preparation stages of the suspensions. As-sprayed samples were distinguished by X-ray diffraction and scanning electron microscopy. Substituted elements were quantified by neutron activation. A well-crystallized hydroxyapatite phase was produced with concentration in various substitutions very close to natural bone composition. Ca/P and (Ca + Mg + Na + K)/P ratios provided evidence of the introduction of different cations into apatite structures. The immersion of samples into simulated body fluid led to the nucleation and growth of a flake-like octacalcium phosphate crystal layer at the surface of as-sprayed coatings after one week. Proof of octacalcium phosphate transformation and its partial dissolution and direct re-precipitation into apatite was disclosed by local energy dispersive spectroscopy and microstructure observation. Formation of a Ca/P ratio gradient from the precipitated layer surface to the as-sprayed coatings interface was observed after four weeks once the octacalcium phosphate crystals reached a critical size, resulting in the formation of a rich apatite layer at the interface after six weeks. A set of mechanisms has been proposed to explain these findings. PMID:25586411

  17. Performance of coated columbium and tantalum alloys in plasma arc reentry simulation tests

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Merutka, J. P.

    1974-01-01

    The evaluation of coated refractory metals screened in stagnation model plasma arc tests is reported. Columbium alloys FS-85, C-129Y, and Cb-752 coated with Si-20Cr-20Fe (R512E) were tested at 1390 C. Three silicide coatings on Ta-10W were tested at 1470 C. Half-hour cycles and a 6500 N/sqm stagnation pressure were used. The best R512E coated columbium alloy was FS-85 with first local coating breakdowns occurring in 12 to 50 cycles. At coating defects, low metal recession rates (0.005 mm/min) were generally observed on coated columbium alloys while high rates (0.15 mm/min) were observed on coated Ta-10W. Coated columbium suffered large emittance losses (to below 0.7) due to surface refractory metal pentoxide formation.

  18. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  19. Qualification of tungsten coatings on plasma-facing components for JET

    NASA Astrophysics Data System (ADS)

    Maier, H.; Neu, R.; Greuner, H.; Böswirth, B.; Balden, M.; Lindig, S.; Matthews, G. F.; Rasinski, M.; Wienhold, P.; Wiltner, A.

    2009-12-01

    This contribution summarizes the work that has been performed to establish the industrial production of tungsten coatings on carbon fibre composite (CFC) for application within the ITER-like Wall Project at JET. This comprises the investigation of vacuum plasma-sprayed coatings, physical vapour deposited tungsten/rhenium multilayers, as well as coatings deposited by combined magnetron-sputtering and ion implantation. A variety of analysis tools were applied to investigate failures and oxide and carbide formation in these systems.

  20. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  1. Erosion-resistance of plasma sprayed coatings

    SciTech Connect

    Xia, Z.; Zhang, X.; Song, J.

    1999-12-01

    Cr{sub 3}C{sub 2}/NiCr, ZrO{sub 2}/NiCr, WTiC{sub 2}/NiCr, and X40 were plasma sprayed on the substrate 1Cr18NI9Ti in order to solve the erosion wear at high temperature encountered in the oil-refining industry. A series of properties of the coatings, including their microstructure, hardness, and erosion-behavior, have been tested. The test results show that the properties of the coatings have a significant effect on their erosion-resistant performance. Good erosion-resistant materials need to be hard and tough. Both Cr{sub 3}C{sub 2}/NiCr and X40 have good erosion resistance at elevated temperature.

  2. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  3. Surface coating for prevention of crust formation

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface.

  4. Cell Adhesion to Plasma-Coated PVC

    PubMed Central

    Rangel, Elidiane C.; de Souza, Eduardo S.; de Moraes, Francine S.; Duek, Eliana A. R.; Lucchesi, Carolina; Schreiner, Wido H.; Durrant, Steven F.; Cruz, Nilson C.

    2014-01-01

    To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices. PMID:25247202

  5. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating.

    PubMed

    Roy, Mangal; Fielding, Gary A; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-03-01

    Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings. PMID:22313742

  6. Mechanical, In Vitro Antimicrobial and Biological Properties of Plasma Sprayed Silver-Doped Hydroxyapatite Coating

    PubMed Central

    Roy, Mangal; Fielding, Gary A.; Beyenal, Haluk; Bandyopadhyay, Amit; Bose, Susmita

    2012-01-01

    Implant related infection is one of the key concerns in total joint hip arthroplasties. In order to reduce bacterial adhesion, silver (Ag) / silver oxide (Ag2O) doping was used in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0 and 6.0 wt% Ag, heat treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas Aeruginosa (PAO1). Live/Dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Present results suggest that the plasma sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag doped HA coatings. PMID:22313742

  7. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants

    PubMed Central

    Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15– 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 μm was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo. PMID:21552358

  8. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-04-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

  9. Stable low-fouling plasma polymer coatings on polydimethylsiloxane

    PubMed Central

    Forster, S.; McArthur, S. L.

    2012-01-01

    Polydimethylsiloxane (DMS) is a popular material for microfluidics, but it is hydrophobic and is prone to non-specific protein adsorption. In this study, we explore methods for producing stable, protein resistant, tetraglyme plasma polymer coatings on PDMS by combining extended baking processes with multiple plasma polymer coating steps. We demonstrate that by using this approach, it is possible to produce a plasma polymer coatings that resist protein adsorption (<10 ng/cm2) and are stable to storage over at least 100 days. This methodology can translate to any plasma polymer system, enabling the introduction of a wide range of surface functionalities on PDMS surfaces. PMID:24062864

  10. Plasma tests of sprayed coatings for rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Love, W. K.

    1974-01-01

    Several plasma-sprayed coating systems were evaluated for structural stability in hydrogen plasma and in oxygen plasma mixed with hydrogen plasma. The principal test heat flux was 15 Btu per inch squared seconds. The system consisted of a number of thin 0.002 to 0.020 in. layers of metal oxides and/or metals. The principal materials included are molybdenum nichrome, alumina, and zirconia. The study identifies important factors in coating system fabrication and describes the durability of the coating systems in the test environments. Values of effective thermal conductivity for some of the systems are indicated.

  11. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications.

    PubMed

    Vahabzadeh, Sahar; Roy, Mangal; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    In this work we have investigated the effects of strontium (Sr) dopant on in vitro protein release kinetics and in vivo osteogenic properties of plasma sprayed hydroxyapatite (HA) coatings, along with their dissolution behavior. Plasma sprayed HA coatings are widely used in load-bearing implants. Apart from osseointegration, the new generation of HA coating is expected to deliver biomolecules and/or drugs that can induce osteoinduction. This paper reports the preparation of crystalline and amorphous HA coatings on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray, and their stability at different solution pH. Coatings prepared at 110 mm working distance from the nozzle showed an average Ca ion release of 18 and 90 ppm in neutral and acidic environments, respectively. Decreasing the working distance to 90 mm resulted in the formation of a coating with less crystalline HA and phases with higher solubility products, and consequently higher dissolution over 32 days. A 92% release of a model protein bovine serum albumin (BSA) in phosphate buffer with pH of 7.4 was measured for Sr-doped HA (Sr-HA) coating, while only a 72% release could be measured for pure HA coating. Distortion of BSA during adsorption on coatings revealed a strong interaction between the protein and the coating, with an increase in α-helix content. Osteoid formation was found on Sr-HA implants as early as 7 weeks post implantation compared to HA coated and uncoated Ti implants. After 12 weeks post implantation, osteoid new bone was formed on HA implants; whereas, bone mineralization started on Sr-HA samples. While no osteoid was formed on bare Ti surfaces, bone was completely mineralized on HA and Sr-HA coatings after 16 weeks post implantation. Our results show that both phase stability and chemistry can have a significant influence toward in vitro and in vivo response of HA coatings on Ti implants. PMID:25638672

  12. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  13. Microbubble formation from plasma polymers.

    PubMed

    Shahravan, Anaram; Yelamarty, Srinath; Matsoukas, Themis

    2012-09-27

    We document the formation of liquid-like particles in a toluene glow discharge that subsequently solidify via a process that releases hydrogen to form a solid microbubble with micrometer-size diameter, nanometer-size shell thickness, and high volume fraction, in excess of 90%. Liquid-like particles are produced in a toluene plasma under conditions that promote low degree of cross-linking (low power, high pressure). When these are transferred for observation in TEM, they are seen to transform under irradiation by the electron beam into solid bubbles with diameter of about 3 μm. This transformation also takes place under laser irradiation of sufficient power and under heating. We present evidence that the formation of these microbubbles is due to solidification of the liquid-like precursor that is accompanied by release of hydrogen. This mechanism is supported by a geometric model that provides a quantitative description of the particle size before and after solidification. These unique stimuli-responsive particles exhibit the potential of using temperature, electron beam, or laser as a source to change their size and structure which may find application in thermal insulators, lightweight materials, and light scattering agents. PMID:22954230

  14. Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Jordan, E. H.; Xie, L.; Gell, M.; Padture, N. P.; Cetegen, B.; Ozturk, A.; Ma, X.; Roth, J.; Xiao, T. D.; Bryant, P. E. C.

    2004-03-01

    A novel process, solution precursor plasma spray (SPPS), is presented for depositing thermal barrier coatings (TBCs), in which aqueous chemical precursors are injected into a standard direct current plasma spray system. The resulting coatings microstructure has three unique features: (1) ultra fine splats (1 µm), (2) nanometer and micron-sized interconnected porosity, and (3) closely spaced, through-thickness cracks. Coatings over 3 mm thick can be readily deposited using the SPPS process. Coating durability is excellent, with SPPS coatings showing, in furnace cycling tests, 2.5 times the spallation life of air plasma coatings (APS) and 1.5 times the life of electron beam physical vapor deposited (EB-PVD) coatings. The conductivity of SPPS coatings is lower than EB-PVD coatings and higher than the best APS coatings. Manufacturing cost is expected to be similar to APS coatings and much lower than EB-PVD coatings. The SPPS deposition process includes droplet break-up and material arriving at the deposition surface in various physical states ranging from aqueous solution, gel phase, to fully-molten ceramic. The relation between the arrival state of the material and the microstructure is described.

  15. Preparation of coatings and surface modification by plasma and thermal processes

    NASA Astrophysics Data System (ADS)

    Yamashina, Toshiro; Hino, Tomoaki

    1987-05-01

    The application of various plasma and ion beam processes for the production of coatings and surface modification of materials, are reviewed. We describe, in particular, cold plasma techniques for the preparation of nitrides, carbides, oxides, bondes and so on and ion implantation techniques for modification of surfaces and interfaces by ion beam mixing to form alloys and chemical compounds on materials. Further, we present our recent collaborative studies on in situ coatings by a dc glow discharge of H 2 + CH 4 gas in torus devices. The carbon coatings deposited on surface probes at liner positions of TEXTOR and JIPPT-IIU are characterized in terms of depth composition profiles, chemical binding states and hydrogen concentration. Properties of these coatings produced by the dc glow discharge are compared with those by an ECR plasma and by a thermal decomposition of hydrocarbons at high temperature. Finally, our recent results on the formation of ceramics by the exposure of Tokamak plasmas and thermal heating will be discussed. TiC layers on a Ti-coated graphite probe and TiB x layers on a B-coated Ti probe were formed after the exposure to the scrape-off layer plasma in JIPPT-IIU, and TiC-TiN double layers on Ti-coated stainless steels were formed by vacuum heating at 600-1000°C.

  16. DLC coating on stainless steel by pulsed methane discharge in repetitive plasma focus

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Qayyum, A.; Ahmad, S.; Mahmood, S.; Shafiq, M.; Zakaullah, M.; Lee, P.; Rawat, R. S.

    2014-06-01

    Amorphous hydrogenated carbon (a-C:H)/diamond-like carbon (DLC) coatings have been achieved on AISI 304 stainless steel (SS) substrates by employing energetic ions emitted from a repetitive plasma focus operated in CH4 discharge. The Raman spectroscopy of the coatings exhibits the evolution of a-C:H/DLC coatings with clearly observed D and G peaks centered about 1320-1360 and 1560-1620 cm-1 respectively. The diamond character of the coatings is influenced by the ion flux and repetition rate of the focus device. The repetitive discharge mode of plasma focus has led to the formation of a-C:H/DLC coatings in short duration of time. The coatings transform from a-C to a-C:H depending upon substrate angular position. X-ray diffraction (XRD) analysis confirms the formation of DLC coating owing to stress-induced restructuring in SS. The estimated crystallite size is found to be ˜40-50 nm. Field emission scanning electron micrographs exhibit a layered granular surface morphology of the coatings. The Vickers surface hardness of the DLC coated SS samples has been significantly improved.

  17. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  18. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  19. The Structure-Phase Compositions of Powder Ni - based Coatings after Modification by DC Plasma Jet Irradiation

    NASA Astrophysics Data System (ADS)

    Alontseva, D.; Ghassemieh, E.

    2015-10-01

    This paper presents the results of investigation of the structure-phase compositions of Ni-based coatings deposited by plasma jet on steel substrates after modification by direct current (DC) plasma jet irradiation. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffraction (XRD) are used in the current study. The phase structures and morphology of precipitation of strengthening phases from solid solution are defined. The irradiation of the coatings leads to the evolution of the structural-phase state of coatings: an increase in the volume fraction of hardening intermetallic phases, the formation of sufficiently homogeneous fine-grained structure in the irradiated coatings. There is a mutual penetration of the substrate main element Fe into the coating and base coating elements Ni into the substrate as a result of the coating treatment by a pulse DC plasma jet.

  20. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  1. Tensile adhesion test measurements on plasma-sprayed coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.

    1986-01-01

    Adhesion measurements on plasma-sprayed coatings are briefly studied, including a critical analysis of the experimental scatter for duplicate tests. The application of a simple method which presents adhesion strength data in a fracture mechanics perspective is demonstrated. Available data are analyzed in a way which suggests an approach to finding the overall defect contribution to reducing the apparent strength of coatings.

  2. Specific Measurements of In-Flight Droplet and Particle Behavior and Coating Microstructure in Suspension and Solution Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Fauchais, P.; Vardelle, M.; Goutier, S.; Vardelle, A.

    2015-12-01

    The plasma spraying of suspensions of sub-micro- or nano-sized particles and of solutions of chemicals precursors produces finely structured coatings that have generally enhanced properties compared to conventional plasma-sprayed coatings. However, most techniques used in conventional plasma spraying are no more adapted to experimentally observe the behavior of the liquid feedstock in the plasma jet and investigate the effect of the operating conditions on liquid fragmentation in droplets, solid particles released by solvent evaporation or formed from the chemical precursors. Also, specific techniques have to be used to study the coating formation and characterize its microstructure. This paper aims to present the main techniques developed or adapted, up to now, to study the plasma-liquid feedstock interactions and characterize the coatings achieved by suspension and solution plasma spraying.

  3. X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings.

    PubMed

    Zhang, Xun; Aliasghari, Sepideh; Němcová, Aneta; Burnett, Timothy L; Kuběna, Ivo; Šmíd, Miroslav; Thompson, George E; Skeldon, Peter; Withers, Philip J

    2016-04-01

    Plasma electrolytic oxidation (PEO) is of increasing interest for the formation of ceramic coatings on metals for applications that require diverse coating properties, such as wear and corrosion resistance, low thermal conductivity, and biocompatibility. Porosity in the coatings can have an important impact on the coating performance. However, the quantification of the porosity in coatings can be difficult due to the wide range of pore sizes and the complexity of the coating morphology. In this work, a PEO coating formed on titanium is examined using high resolution X-ray computed tomography (X-ray CT). The observations are validated by comparisons of surface views and cross-sectional views of specific coating features obtained using X-ray CT and scanning electron microscopy. The X-ray CT technique is shown to be capable of resolving pores with volumes of at least 6 μm(3). Furthermore, the shapes of large pores are revealed and a correlation is demonstrated between the locations of the pores, nodules on the coating surface, and depressions in the titanium substrate. The locations and morphologies of the pores, which constitute 5.7% of the coating volume, indicate that they are generated by release of oxygen gas from the molten coating. PMID:26974706

  4. Formation and Plasma Circulation of Solar Prominences

    NASA Astrophysics Data System (ADS)

    Xia, C.; Keppens, R.

    2016-05-01

    Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied outer solar atmosphere or corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous downflows in quiescent prominences are difficult to interpret because plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is born and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward, dragging along mass-loaded field lines. The circulation of prominence plasma is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere–corona plasma cycle. Synthetic images of the modeled prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly closely resemble actual observations, with many dynamical threads underlying an elliptical coronal cavity.

  5. The possibility of boron carbide coating formation by using a coaxial magnetoplasma accelerator

    NASA Astrophysics Data System (ADS)

    Sivkov, A.; Rachmatullin, I.; Makarova, A.

    2014-10-01

    A coaxial magnetoplasma accelerator can generate a dense and high velocity plasma jet by applying a pulsed high-current arc-discharge. The results of the experiment investigations of plasmodynamic synthesis in the B-C system have been shown while hyper speed jet boron carbide electric-discharged plasma steams onto copper substrate. The boron carbide coatings were formed on the copper substrate without a binder material. The formation of the crystalline boron carbide coating on the copper substrate was analyzed through X-ray diffractometry, transmission electron microscopy and scanning electron microscopy.

  6. Corrosion behavior of magnetic ferrite coating prepared by plasma spraying

    SciTech Connect

    Liu, Yi; Wei, Shicheng Tong, Hui; Tian, Haoliang; Liu, Ming; Xu, Binshi

    2014-12-15

    Graphical abstract: The saturation magnetization (M{sub s}) of the ferrite coating is 34.417 emu/g while the M{sub s} value of the ferrite powder is 71.916 emu/g. It can be seen that plasma spray process causes deterioration of the room temperature soft magnetic properties. - Highlights: • Spinel ferrite coatings have been prepared by plasma spraying. • The coating consists of nanocrystalline grains. • The saturation magnetization of the ferrite coating is 34.417 emu/g. • Corrosion behavior of the ferrite coating was examined in NaCl solution. - Abstract: In this study, spray dried spinel ferrite powders were deposited on the surface of mild steel substrate through plasma spraying. The structure and morphological studies on the ferrite coatings were carried out using X-ray diffraction, scanning electron microscope and Raman spectroscopy. It was showed that spray dried process was an effective method to prepare thermal spraying powders. The coating showed spinel structure with a second phase of LaFeO{sub 3}. The magnetic property of the ferrite samples were measured by vibrating sample magnetometer. The saturation magnetization (M{sub s}) of the ferrite coating was 34.417 emu/g. The corrosion behavior of coating samples was examined by electrochemical impedance spectroscopy. EIS diagrams showed three corrosion processes as the coating immersed in 3.5 wt.% NaCl solution. The results suggested that plasma spraying was a promising technology for the production of magnetic ferrite coatings.

  7. Formation Of Voids In Dusty Lorentzian Plasma

    SciTech Connect

    Bahamida, S.; Annou, K.; Annou, R.

    2008-09-07

    We study the possibility of formation of voids in Lorentzian plasmas containing of dust particles obeying to vortex-like velocity distribution. The size of the void is found to be ion spectral index dependent.

  8. Plasma variables and tribological properties of coatings in low pressure (0.1 - 10.0 torr) plasma systems

    NASA Technical Reports Server (NTRS)

    Avni, R.; Spalvins, T.

    1984-01-01

    A detailed treatment is presented of the dialog known as plasma surface interactions (PSI) with respect to the coating process and its tribological behavior. Adsorption, morphological changes, defect formation, sputtering, chemical etching, and secondary electron emission are all discussed as promoting and enhancing the surface chemistry, thus influencing the tribological properties of the deposited flux. Phenomenological correlations of rate of deposition, flux composition, microhardness, and wear with the plasma layer variables give an insight to the formation of chemical bonding between the deposited flux and the substrate surface.

  9. Surface modification of air plasma spraying WC-12%Co cermet coating by laser melting technique

    NASA Astrophysics Data System (ADS)

    Afzal, M.; Ajmal, M.; Nusair Khan, A.; Hussain, A.; Akhter, R.

    2014-03-01

    Tungsten carbide cermet powder with 12%Co was deposited on stainless steel substrate by air plasma spraying method. Two types of coatings were produced i.e. thick (430 µm) and thin (260 µm) with varying porosity and splat morphology. The coated samples were treated with CO2 laser under the shroud of inert atmosphere. A series of experimentation was done in this regard, to optimize the laser parameters. The plasma sprayed coated surfaces were then laser treated on the same parameters. After laser melting the treated surfaces were characterized and compared with as-sprayed surfaces. It was observed that the thickness of the sprayed coatings affected the melt depth and the achieved microstructures. It was noted that phases like Co3W3C, Co3W9C4 and W were formed during the laser melting in both samples. The increase in hardness was attributed to the formation of these phases.

  10. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    PubMed Central

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-01-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306

  11. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray.

    PubMed

    Cai, Yuxuan; Coyle, Thomas W; Azimi, Gisele; Mostaghimi, Javad

    2016-01-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces. PMID:27091306

  12. Compatibility study of plasma grown alumina coating with Pb-17Li under static conditions

    NASA Astrophysics Data System (ADS)

    Jamnapara, Nirav I.; Sarada Sree, A.; Rajendra Kumar, E.; Mukherjee, S.; Khanna, A. S.

    2014-12-01

    A novel plasma assisted tempering process has been developed to generate a stable α-Al2O3 + FeAl coating on P91 steels. Hot dip aluminized P91 samples had been subjected to normalizing treatment in muffle furnace at 980 °C for 20 min followed by a glow discharge oxygen plasma assisted tempering treatment at 750 °C for 1 h. The plasma processing led to the formation of a stable α-Al2O3 coating, while thermal tempering in muffle furnace led to formation of θ-Al2O3 coating. Both the thermal and plasma tempered samples with alumina coating along with bare P91 samples were subjected to compatibility tests with Pb-17Li under static conditions at 550 °C for 1000 h. The extent of degradation of the samples was measured by weight loss method, X-ray diffraction and a cross-sectional examination with elemental studies using energy dispersive X-ray analysis. Plasma processed samples did not reveal any weight loss while thermally treated samples with metastable θ-Al2O3 indicated 0.23 mg/cm2 weight loss and bare P91 steels indicated a weight loss of 7.3 mg/cm2.

  13. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    NASA Astrophysics Data System (ADS)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  14. Adherent diamond like carbon coatings on metals via plasma source ion implantation

    SciTech Connect

    Walter, K.C.; Nastasi, M.; Munson, C.P.

    1996-12-01

    Various techniques are currently used to produce diamond-like carbon (DLC) coatings on various materials. Many of these techniques use metallic interlayers, such as Ti or Si, to improve the adhesion of a DLC coating to a ferrous substrate. An alternative processing route would be to use plasma source ion implantation (PSII) to create a carbon composition gradient in the surface of the ferrous material to serve as the interface for a DLC coating. The need for interlayer deposition is eliminated by using a such a graded interfaces PSII approach has been used to form adherent DLC coatings on magnesium, aluminum, silicon, titanium, chromium, brass, nickel, and tungsten. A PSII process tailored to create a graded interface allows deposition of adherent DLC coatings even on metals that exhibit a positive heat of formation with carbon, such as magnesium, iron, brass and nickel.

  15. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  16. On coating adhesion during impulse plasma deposition

    NASA Astrophysics Data System (ADS)

    Nowakowska-Langier, Katarzyna; Zdunek, Krzysztof; Chodun, Rafal; Okrasa, Sebastian; Kwiatkowski, Roch; Malinowski, Karol; Składnik-Sadowska, Elzbieta; Sadowski, Marek J.

    2014-05-01

    The impulse plasma deposition (IPD) technique is the only method of plasma surface engineering (among plasma-based technologies) that allows a synthesis of layers upon a cold unheated substrate and which ensures a good adhesion. This paper presents a study of plasma impacts upon a copper substrate surface during the IPD process. The substrate was exposed to pulsed N2/Al plasma streams during the synthesis of AlN layers. For plasma-material interaction diagnostics, the optical emission spectroscopy method was used. Our results show that interactions of plasma lead to sputtering of the substrate material. It seems that the obtained adhesion of the layers is the result of a complex surface mechanism combined with the effects of pulsed plasma energy impacts upon the unheated substrate. An example of such a result is the value of the critical load for the Al2O3 layer, which was measured by the scratch-test method to be above 40 N.

  17. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    NASA Astrophysics Data System (ADS)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  18. Antihydrogen Formation using Cold Plasmas

    SciTech Connect

    Madsen, N.; Bowe, P.D.; Hangst, J.S.; Amoretti, M.; Carraro, C.; Macri, M.; Testera, G.; Variola, A.; Amsler, C.; Johnson, I.; Pruys, H.; Regenfus, C.; Bonomi, G.; Bouchta, A.; Doser, M.; Kellerbauer, A.; Landua, R.; Cesar, C.L.; Charlton, M.; Joergensen, L.V.

    2004-10-20

    Antihydrogen, the antimatter counterpart of the hydrogen atom, can be formed by mixing cold samples of antiprotons and positrons. In 2002 the ATHENA collaboration succeeded in the first production of cold antihydrogen. By observing and imaging the annihilation products of the neutral, non-confined, antihydrogen atoms annihilating on the walls of the trap we can observe the production in quasi-real-time and study the dynamics of the formation mechanism. The formation mechanism strongly influences the final state of the formed antihydrogen atoms, important for future spectroscopic comparison with hydrogen. This paper briefly summarizes the current understanding of the antihydrogen formation in ATHENA.

  19. Plasma technology for creation of protective and decorative coatings for building materials

    NASA Astrophysics Data System (ADS)

    Volokitin, Oleg; Volokitin, Gennady; Skripnikova, Nelli; Shekhovtsov, Valentin

    2016-01-01

    An experimental setup is developed to create a protective and decorative coating on the surface of building materials. Experimental study is conducted to create a protective coating using low-temperature plasma. The properties of the surface before and after the plasma treatment are investigated. At the increase of the plasma generator power (56-75 kW) the rate of the vitreous coating formation is significantly reduced, and the destruction of hydrous calcium silicates occurs at a lower depth (0.5-2.0 mm). In this case, the adhesive strength increases up to 2.34 MPa. At the increase of the exposure time at 56 kW (0.045 m/s melting rate) plasma generation power, the melt formation is observed not only at the surface but at depth of 0.7 mm and deeper. Also, a deep degradation of the material occurs and the adhesive strength decreases. The optimal heat flux density of plasma generator was established at 1.8-2.6 . 106 W/m2, which allows the achievement of the uniform layer formation on the wood surface that preserves its natural pattern visible.

  20. Plasma electrolytic oxidation coating of synthetic Al-Mg binary alloys

    SciTech Connect

    Tarakci, Mehmet

    2011-12-15

    The binary Al-Mg synthetic alloys were prepared in a vacuum/atmosphere controlled furnace with the addition of 0.5, 1, 2, 4, 7, and 15 wt.% pure Mg into pure aluminum as substrate material. The surfaces of the Al-Mg alloys and pure aluminum were coated for 120 min by plasma electrolytic oxidation in the same electrolyte of 12 g/L sodium silicate and 2 g/L KOH in distilled water. The coating was characterized by X-ray diffraction, scanning electron microscopy, profilometry and Vickers microhardness measurements. There regions of loose outer layer, dense inner layer with precipitate like particles of {alpha}-Al{sub 2}O{sub 3} and a thin transition layer were identified for the coated samples. The coating thickness increases from 85 to 150 {mu}m with Mg contents in the alloys. The surface morphology becomes more porous and consequently surface roughness tends to increase with plasma electrolytic oxidation treatment and further with Mg content. The increase in magnesium content reduces the formation of {alpha}-Al{sub 2}O{sub 3} and crystalline mullite phases in the coating and decreases microhardness of coating. The Mg concentration is constant throughout the other loose and dense regions of coating though it gradually decreases in the thin inner region. - Research Highlights: Black-Right-Pointing-Pointer The average thickness of PEO coating of Al-Mg alloys increases with Mg content. Black-Right-Pointing-Pointer The addition of Mg reduces and prevents the formation of {alpha}-Al{sub 2}O{sub 3} and mullite. Black-Right-Pointing-Pointer The surface roughness increases with Mg content in the Al-Mg alloys. Black-Right-Pointing-Pointer The hardness values of the coating decreases with the Mg amount in the substrate. Black-Right-Pointing-Pointer The Mg concentration is constant throughout the main regions of coating.

  1. Solution precursor plasma deposition of nanostructured ZnO coatings

    SciTech Connect

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  2. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect

    Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J; Bush, C; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Wampler, W R; Wilgen, J B

    2008-09-12

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  3. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect

    Kaita, R

    2009-02-17

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  4. Plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Nakamura, H. H.; Logan, W. R.; Harada, Y.

    1982-01-01

    One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency.

  5. Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    PubMed Central

    Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian

    2015-01-01

    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015

  6. Calcium phosphate coating on titanium using laser and plasma spray

    NASA Astrophysics Data System (ADS)

    Roy, Mangal

    Though calcium phosphate (CaP) coated implants are commercially available, its acceptance is still not wide spread due to challenges related to weaker interfacial bonding between metal and ceramic, and low crystallinity of hydroxyapatite (HA). The objectives of this research are to improve interfacial strength, crystallinity, phase purity and bioactivity of CaP coated metallic implants for orthopaedic applications. The rationale is that forming a diffuse and gradient metal-ceramic interface will improve the interfacial strength. Moreover, reducing CaP particles exposure to high temperature during coating preparation, can lead to improvement in both crystallinity and phase purity of CaP. In this study, laser engineered net shaping (LENS(TM)) was used to coat Ti metal with CaP. LENS(TM) processing enabled generation of Ti+TCP (tricalcium phosphate) composite coating with diffused interface, that also increased the coating hardness to 1049+/-112 Hv compared to a substrate hardness of 200+/-15 Hv. In vitro bone cell-material interaction studies confirmed the bioactivity of TCP coatings. Antimicrobial properties of the TCP coatings were improved by silver (Ag) electrodeposition. Along with LENS(TM), radio frequency induction plasma spray, equipped with supersonic plasma nozzle, was used to prepare HA coatings on Ti with improved crystallinity and phase purity. The coating was made of multigrain HA particles of ˜200 nm in size, which consisted of 15--20 nm HA grains. In vitro bone cell-material interaction and in vivo rat model studies confirmed the HA coatings to be bioactive. Furthermore, incorporation of Sr2+ improved bone cell of HA coatings interaction. A combination of LENS(TM) and plasma spray was used to fabricate a compositionally graded HA coatings on Ti where the microstructure varied from pure HA at the surface to pure Ti substrate with a diffused Ti+TCP composite region in between. The plasma spray system was used to synthesize spherical HA nano powder from

  7. HVOF and plasma sprayed molybdenum coatings -- microstructure and properties

    SciTech Connect

    Zimmermann, S.; Kreye, H.

    1995-12-31

    High velocity oxy-fuel (HVOF) and plasma spray experiments were carried out to investigate the oxidation mechanism of molybdenum in the spray process and to determine how the various process parameters affect the microstructure and properties of the coatings. HVOF coatings exhibit their highest hardness and wear resistance at an oxygen content of 6 to 8% by weight. Such an oxygen level can be achieved with Mo and Mo-MoO{sub 2} composite powders as well. In the plasma spray process oxidation of molybdenum is less pronounced and Mo-MoO{sub 2} composite powders containing 6 to 8% oxygen have to be used to obtain similar properties as compared to HVOF-coatings. When Mo-Mo{sub 2}C composite powders are used oxidation of molybdenum becomes greatly reduced and highly wear resistant coatings are obtained at a low hardness level in both spray processes.

  8. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  9. Reactive Plasma-Sprayed Aluminum Nitride-Based Coating Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro; Egota, Kazumi; Okamoto, Kenji

    2015-12-01

    Recently, thick aluminum nitride/alumina (AlN/Al2O3) composite coatings were successfully fabricated through the reactive plasma spraying of fine Al2O3/AlN mixture in the N2/H2 atmospheric plasma. The coatings consist of AlN, Al5O6N, γ-Al2O3, and α-Al2O3 phases. This study will evaluate the thermal conductivity of these complicated plasma-sprayed coatings and optimize the controlling aspects. Furthermore, the influence of the process parameters on the coatings thermal conductivity will be investigated. The fabricated coatings showed very low thermal conductivity (2.43 W/m K) compared to the AlN sintered compacts. It is attributed to the phase composition of the fabricated coatings, oxide content, and porosity. The presence of Al2O3, Al5O6N and the high coating porosity decreased its thermal conductivity. The presence of oxygen in the AlN lattice creates Al vacancies which lead to phonon scattering and therefore suppressed the thermal conductivity. The formation of γ-Al2O3 phase in the coating leads to further decrease in its conductivity, due to its lower density compared to the α-phase. Moreover, the high porosity of the coating strongly suppressed the conductivity. This is due to the complicated microstructure of plasma spray coatings (splats, porosity, and interfaces, particularly in case of reactive spray process), which obviously lowered the conductivity. Furthermore, the measured coating density was lower than the AlN value and suppressed the coating conductivity. In addition, the spraying parameter showed a varied effect on the coating phase composition, porosity, density, and therefore on its conductivity. Although the N2 gas flow improved the nitride content, it suppressed the thermal conductivity gradually. It is attributed to the further increase in the porosity and further decrease in the density of the coatings with the N2 gas. Furthermore, increasing the arc did not show a significant change on the coating thermal conductivity. On the other hand

  10. Plasma assisted surface coating/modification processes - An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  11. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  12. Plasma assisted surface coating/modification processes: An emerging technology

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  13. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  14. Coating Solar Cells By Microwave Plasma Deposition

    NASA Technical Reports Server (NTRS)

    Minaee, Behrooz; Chitre, Sanjeev R.; Zahedi, Narges

    1991-01-01

    Antireflection films deposited on silicon solar cells at high production rates with microwave-enhanced plasma deposition. Microwave energy at frequency of 2.45 GHz generates plasma in mixture of gases, from which thin film of silicon nitride deposits on silicon substrates. Reaction temperature relatively low (only 250 degrees C), and film deposition rate more than 500 Angstrom/minute - 2 to 5 times faster. Quality of antireflection film similar to that produced by chemical-vapor deposition. Uses less power and consumes smaller quantities of gas. Species formed in plasma longer lived and dissociate reactants in region of chamber well away from plasma-generation region.

  15. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    NASA Astrophysics Data System (ADS)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  16. Dissolution behavior of plasma-sprayed hydroxyapatite coatings.

    PubMed

    Fazan, F; Marquis, P M

    2000-12-01

    The long-term stability of plasma-sprayed hydroxyapatite coatings is influenced by the dissolution behavior of the coating in in vivo conditions. Plasma-spraying generates a mixture of phases and this study has focused on how the balance of phases affects the in vitro dissolution behavior of the coatings in double distilled-deionized water and in tris-buffer solutions. The pH changes in double distilled-deionized water were monitored, whilst the pH value was maintained at 7.25 for the tris-buffer solution at 37 degrees C with 5% CO2 atmosphere. The phosphate and calcium ions released were measured using UV-Visible Spectrophotometer and Atomic Absorption Spectroscopy respectively. Changes in crystal and surface topology were also studied. The results indicate that the dissolution behavior of the coatings depends on several factors. The rate of release of phosphate ions was found to increase significantly for the tris-buffer solution compared to the deionized water, indicating that the presence of electrolyte constituents affects the dissolution behavior of the coatings. The Ca/P ratio in the tris-buffer solution is approximately three. Increases in the level of crystallinity of the coatings significantly decreased the dissolution rate and hence, the amount of phosphate ions released. The higher the percentage of crystallinity, the higher the stability of the coating under in vitro conditions. PMID:15348061

  17. Smart coating technology by gas tunnel type plasma spraying

    NASA Astrophysics Data System (ADS)

    Kobayashi, Akira

    2008-10-01

    Nano-science & technology is one of the most important scientific fields, and the material processing using the nano-technology is now advanced towards more precise and controllable smart stage. Regarding thermal processing, plasma system with high precise, has been expected for smart thermal processing. The gas tunnel type plasma system developed by the author exhibits high energy density and also high efficiency. Among the applications to the various thermal processing, one practical application is plasma spraying of ceramics such as A12O3 and ZrO2. The characteristics of these ceramic coatings were superior to the conventional ones. The ZrO2 composite coating has the possibility of the development of high functionally graded TBC (thermal barrier coating). In this study, the performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia functionally graded TBCs produced by gas tunnel type plasma spraying was investigated and discussed. The results showed that the alumina/zirconia composite system exhibited the improvement of mechanical properties and oxidation resistance. Now, one of the advanced plasma application, a smart coating technology, is expected to obtain the desired characteristics of ceramics with improved corrosion resistance, thermal resistance, and wear resistance.

  18. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  19. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    SciTech Connect

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong; Park, Joo Hyun; Ko, Young Gun; Shin, Dong Hyuk

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, various ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.

  20. Influence of Oxidation Behavior of Feedstock on Microstructure and Ablation Resistance of Plasma-Sprayed Zirconium Carbide Coating

    NASA Astrophysics Data System (ADS)

    Hu, Cui; Ge, Xuelian; Niu, Yaran; Li, Hong; Huang, Liping; Zheng, Xuebin; Sun, Jinliang

    2015-10-01

    Plasma spray is one of the suitable technologies to deposit carbide coatings with high melting point, such as ZrC. However, in the spray processes performed under atmosphere, oxidation of the carbide powder is inevitable. To investigate the influence of the oxidation behavior of feedstock on microstructure and ablation resistance of the deposited coating, ZrC coatings were prepared by atmospheric and vacuum plasma spray (APS and VPS) technologies, respectively. SiC-coated graphite was applied as the substrate. The obtained results showed that the oxidation of ZrC powder in APS process resulted in the formation of ZrO and Zr2O phases. Pores and cracks were more likely to be formed in the as-sprayed APS-ZrC coating. The VPS-ZrC coating without oxides possessed denser microstructure, higher thermal diffusivity, and lower coefficients of thermal expansion as compared with the APS-ZrC coating. A dense ZrO2 layer would be formed on the surface of the VPS-ZrC-coated sample during the ablation process and the substrate can be protected sufficiently after being ablated in high temperature plasma jet. However, the ZrO2 layer, formed by oxidation of the APS-ZrC coating having loose structure, was easy to be washed away by the shearing action of the plasma jet.

  1. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    SciTech Connect

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-03-11

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  2. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    DOE PAGESBeta

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; Gibbs, Paul J.

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg atmore » 820 °C leading to the formation of MgO and MgAl2O4.« less

  3. Plasma sprayed rutile titania-nanosilver antibacterial coatings

    NASA Astrophysics Data System (ADS)

    Gao, Jinjin; Zhao, Chengjian; Zhou, Jingfang; Li, Chunxia; Shao, Yiran; Shi, Chao; Zhu, Yingchun

    2015-11-01

    Rutile titania (TiO2) coatings have superior mechanical properties and excellent stability that make them preferential candidates for various applications. In order to prevent infection arising from bacteria, significant efforts have been focused on antibacterial TiO2 coatings. In the study, titania-nanosilver (TiO2/Ag) coatings with five different kinds of weight percentages of silver nanoparticles (AgNPs) were prepared by plasma spray. The feedstock powders, which had a composition of rutile TiO2 powders containing 1-10,000 ppm AgNPs, were double sintered and deposited on stainless steel substrates with optimized spraying parameters. X-Ray diffraction and scanning electron microscopy were used to analysize the phase composition and surface morphology of TiO2/Ag powders and coatings. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were employed to examine the antibacterial activity of the as-prepared coatings by bacterial counting method. The results showed that silver existed homogeneously in the TiO2/Ag coatings and no crystalline changed happened in the TiO2 structure. The reduction ratios on the TiO2/Ag coatings with 10 ppm AgNPs were as high as 94.8% and 95.6% for E. coli and S. aureus, respectively, and the TiO2/Ag coatings with 100-1000 ppm AgNPs exhibited 100% bactericidal activity against E. coli and S. aureus, which indicated the TiO2/Ag coatings with more than 10 ppm AgNPs had strong antibacterial activity. Moreover, the main factors influencing the antibacterial properties of TiO2/Ag coatings were discussed with grain size and the content of silver as well as the microstructure of the coatings.

  4. Mechanical and Tribological Behavior of Ni(Al)-Reinforced Nanocomposite Plasma Spray Coatings

    NASA Astrophysics Data System (ADS)

    Movahedi, B.

    2014-02-01

    The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.

  5. Formation of Ha-Containing Coating on AZ31 Magnesium Alloy by Micro-Arc Oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Li, Deyu; Chen, Xiuping; Wu, Chao; Wang, Fuping

    2013-08-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this study, a HA-containing coating was fabricated by micro-arc oxidation (MAO). The active plasma species of micro-discharge was studied by optical emission spectroscopy (OES). The microstructure and composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior and apatite-forming ability were studied by electrochemical tests and immersed samples in simulated body fluids (SBF). The results show that the microdischarge channel model is gas discharges and oxide layer discharges. The elements from the substrate and electrolyte take part in the formation of the coating. The MAO coating significantly improves the corrosion resistance of AZ31 magnesium alloy and enhances the apatite formation ability.

  6. Suspension plasma spraying of nanostructured WC-12Co coatings

    NASA Astrophysics Data System (ADS)

    Berghaus, J. Oberste; Marple, B.; Moreau, C.

    2006-12-01

    Nanostructured WC-12% Co coatings were deposited by suspension plasma spraying of submicron feedstock powders, using an internal injection plasma torch. The liquid carrier used in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to thin coatings with a fine surface finish. A polyethylene-imine (PEI) dispersant was used to stabilize the colloidal suspension in an ethanol carrier. In-flight particle states were measured for a number of operating conditions of varying plasma gas flow rates, feed rates, and standoff distances and were related to the resulting microstructure, phase composition (EDS, SEM, XRD), and Vickers hardness. High in-flight particle velocities (>800 m/s) were generated, leading to dense coatings. It was observed that the coating quality was generally compromised by the high temperature and reactivity of the small particles. To compensate for this shortcoming, the suspension feed rate was adjusted, thereby varying the thermal load on the plasma. Results showed that a slightly larger agglomerate size, in conjunction with low particle jet temperatures, could somewhat limit the decomposition of WC into brittle W2C/W3C and amorphous cobalt containing binder phases.

  7. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  8. Crystallization behavior of plasma-sprayed lanthanide magnesium hexaaluminate coatings

    NASA Astrophysics Data System (ADS)

    Huang, Liang-liang; Meng, Hui-min; Tang, Jing

    2014-12-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were prepared by atmospheric plasma spraying. The crystallization behavior of the coatings and the synthesis mechanism of LaMgAl11O19 powders were researched. The results showed that the plasma-sprayed coatings contained some amorphous phase, and LaMgAl11O19 powders were partially decomposed into Al2O3, LaAlO3, and MgAl2O4 in the plasma spraying process. The amorphous phase was recrystallized at a temperature of approximately 1174.9°C, at which level the decomposed Al2O3, LaAlO3, and MgAl2O4 reacted again. The resynthesis temperature of LaMgAl11O19 in the plasma-sprayed coatings was lower than that of LaMgAl11O19 in the original raw powders. The synthesis mechanism of LaMgAl11O19 powders can be summarized as follows: during the first part of the overall reaction, La2O3 reacts with Al2O3 to form LaAlO3 at approximately 900°C, and then LaAlO3 further reacts with Al2O3 and MgAl2O4 to produce LaMgAl11O19 at approximately 1200°C.

  9. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    SciTech Connect

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  10. Plasma cleaning of beryllium coated mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  11. Challenges Upon Reactive Plasma Spray Nitriding: Al Powders and Fabrication of AlN Coatings as a Case Study

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro

    2016-05-01

    Reactive plasma spraying (RPS) is a promising technology for the in situ formation of several ceramic coatings. The focus of this paper is to summarize the state of our current knowledge about the RPS process and using the nitriding of Al particles and the fabrication of aluminum nitride coatings, as a case study. The aspects and challenges in this process such as the influence of the plasma power, in-flight time, particle size, nitriding mechanism, splat morphology, in-flight particle diagnostics, N2 plasma gas, and the feeding rate on the RPS process are analyzed and discussed.

  12. Challenges Upon Reactive Plasma Spray Nitriding: Al Powders and Fabrication of AlN Coatings as a Case Study

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Fukumoto, Masahiro

    2016-06-01

    Reactive plasma spraying (RPS) is a promising technology for the in situ formation of several ceramic coatings. The focus of this paper is to summarize the state of our current knowledge about the RPS process and using the nitriding of Al particles and the fabrication of aluminum nitride coatings, as a case study. The aspects and challenges in this process such as the influence of the plasma power, in-flight time, particle size, nitriding mechanism, splat morphology, in-flight particle diagnostics, N2 plasma gas, and the feeding rate on the RPS process are analyzed and discussed.

  13. Research of functional properties of nitride ion-plasma coatings

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Ovechkin, B. B.; Papchenko, A. V.; Shvagrukova, E. V.

    2016-02-01

    This paper considers the influence of ion-plasma coatings with the use of nitrogen (N), zirconium nitride (ZrN), titanium-aluminum nitride (Ti,Al)N and titanium nitride and zirconium nitride by-layer (TiN+ZrN - eight layers) on the properties of steel 65X13. The main functional properties of the coatings are determined: microhardness, nanohardness, Young's modulus and corrosion resistance. It is shown that all the types of coatings allow increasing the physical and mechanical characteristics of instrument steel 65X13. Hardness and wear-resistance, depending on the type of the deposited coating, increase from 1, 5 to 4 times, corrosion resistance increases by tens times.

  14. Microstructure and abrasion resistance of plasma sprayed titania coatings

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  15. Program for plasma-sprayed self-lubricating coatings

    NASA Technical Reports Server (NTRS)

    Walther, G. C.

    1979-01-01

    A method for preparing composite powders of the three coating components was developed and a procedure that can be used in applying uniform coatings of the composite powders was demonstrated. Composite powders were prepared by adjusting particle sizes of the components and employing a small amount of monoaluminum phosphate as an inorganic binder. Quantitative microscopy (image analysis) was found to be a convenient method of characterizing the composition of the multiphase plasma-sprayed coatings. Area percentages and distribution of the components were readily obtained by this method. The adhesive strength of the coating to a nickel-chromium alloy substrate was increased by about 40 percent by a heat treatment of 20 hours at 650 C.

  16. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    SciTech Connect

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  17. Wear and microstructural integrity of ceramic plasma sprayed coatings

    NASA Astrophysics Data System (ADS)

    Erickson, Lynn C.

    1999-10-01

    In this work a series of ceramic plasma sprayed (PS) coatings, both alumina- and chromia-based, were sprayed according to a matrix of deposition parameters in order to produce a broad range of microstructures. To investigate the effect of splat size on the coating response, a series of mono-crystalline a -alumina powders with very narrow particle size ranges, nominally 5, 10 and 18 microns in diameter, was sprayed. The coatings were extensively characterized for a variety of microstructural features, including porosity, the angular distribution and density of microcracks as well as the lamellar, or splat, dimensions, using techniques of metallurgical analysis and electron microscopy. The coatings were then evaluated using a series of micromechanical techniques, including indentation, controlled scratch testing, abrasion and dry particle erosion, to investigate their response to different contact situations. It was found that the microstructural features with the most influence on the behaviour of ceramic PS coatings during contact, or wear, by hard particles include, in order of importance: (1) macro-porosity, (2) horizontal crack density, (3) degree of flattening of the splats and (4) volume of unmelted particles, which are all linked to the level and strength of interlamellar bonding in the coating. The major effect of the inter-lamellar bonding in ceramic PS coatings was seen in the wear mechanism transitions. As the level of inter-splat bonding in the coating decreases, the contact load at which the transition from plastic deformation to splat fracture and debonding occurs does as well. However, the load at which catastrophic brittle fracture and spalling occur is increased. All of the micromechanical and wear methods evaluated in the present work were sensitive to differences in the coating microstructures to varying degrees. The low load abrasion results showed the most sensitivity to the microstructural differences of the coatings, followed by controlled

  18. Kinetics of structuring of submonolayer carbon coatings on silicon (100) crystals during microwave vacuum-plasma deposition

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2015-06-01

    The kinetics of self-organization of nanodomains during the deposition of submonolayer carbon coatings on (100) silicon in the microwave plasma of low-pressure ethanol vapors is studied by atomic force microscopy and scanning electron microscopy. The laws of influence of the substrate temperature and the kinetic energy of carbon-containing ions on the mechanisms of formation and structuring of the forming silicon-carbon surface phases are established. It is shown that the deposited carbon-containing nanodomains can be used as nonlithographic mask coatings for the formation of spatial low-dimensional systems on single-crystal silicon upon selective highly anisotropic plasma-chemical etching.

  19. Plasma Spraying Of Dense, Rough Bond Coats

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Edmonds, Brian J.; Leissler, George W.

    1988-01-01

    Simple modification of plasma torch facilitates spraying of coarse powders. Shape of nozzle changed to obtain decrease in velocity of gas and consequent increase in time particles spend in flame before impact on substrate. Increased residence time allows melting of coarser powders, spraying of which results in rougher bond surfaces.

  20. Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings

    NASA Astrophysics Data System (ADS)

    Borisov, D. P.; Kuznetsov, V. M.; Slabodchikov, V. A.

    2015-11-01

    The paper reports on the chemical composition of titanium nitride (TiN) and silicon (Si) coatings deposited with a new technological vacuum plasma setup which comprises magnetron sputtering systems, arc evaporators, and an efficient plasma generator. It is shown that due to highly clean vacuum conditions and highly clean surface treatment in the gas discharge plasma, both the coating-substrate interface and the coatings as such are almost free from oxygen and carbon. It is found that the coating-substrate interface represents a layer of thickness ≥ 60 nm formed through vacuum plasma mixing of the coating and substrate materials. The TiN coatings obtained on the new equipment display a higher adhesion compared to brass coatings deposited by industrial technologies via intermediate titanium oxide layers. It is concluded that the designed vacuum plasma equipment allows efficient surface modification of materials and articles by vacuum plasma immersion processes.

  1. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  2. Novel approach to produce polymerized hydrocarbon coatings using dielectric barrier controlled atmospheric pressure glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Mishra, K. K.; Khardekar, R. K.; Singh, Rashmi; Pant, H. C.

    2002-09-01

    Conventionally, low-pressure (<1 Torr) electrical discharges are used for material processing and thin-film deposition. These schemes suffer mainly due to the high cost of equipment and the complexity of operations. The atmospheric pressure glow discharge plasma is developed using a threaded styled electrode in different configurations, and these reactors are used to produce plasma polymerized coatings, required on plane substrates as self-supporting films to obtain membranes for blocking holes in cavities, and on microballoon targets, which are used as fuel containers for inertial confinement fusion, to avoid DT gas permeation. Helium gas is used as the supporting gas for formation and stabilization of atmospheric pressure glow discharge plasma reactors. Ethylene and acetylene gases are used as monomers to produce plasma polymerized hydrocarbon films. These films are characterized using scanning electron microscopy. Plasma polymerized coatings of thickness 100 nm-10 μm with a smooth surface finish (rms<100 nm) are deposited successfully. The surface finish is further improved using a postdischarge configuration. Preliminary results are very encouraging but further progress is to be made in this area. We are also planning to extend this technique for C:H coating of microballoons, which are used as fuel containers in inertial confinement fusion.

  3. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology

    NASA Astrophysics Data System (ADS)

    Tenzer, Stefan; Docter, Dominic; Kuharev, Jörg; Musyanovych, Anna; Fetz, Verena; Hecht, Rouven; Schlenk, Florian; Fischer, Dagmar; Kiouptsi, Klytaimnistra; Reinhardt, Christoph; Landfester, Katharina; Schild, Hansjörg; Maskos, Michael; Knauer, Shirley K.; Stauber, Roland H.

    2013-10-01

    In biological fluids, proteins bind to the surface of nanoparticles to form a coating known as the protein corona, which can critically affect the interaction of the nanoparticles with living systems. As physiological systems are highly dynamic, it is important to obtain a time-resolved knowledge of protein-corona formation, development and biological relevancy. Here we show that label-free snapshot proteomics can be used to obtain quantitative time-resolved profiles of human plasma coronas formed on silica and polystyrene nanoparticles of various size and surface functionalization. Complex time- and nanoparticle-specific coronas, which comprise almost 300 different proteins, were found to form rapidly (<0.5 minutes) and, over time, to change significantly in terms of the amount of bound protein, but not in composition. Rapid corona formation is found to affect haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time.

  4. Preparation of CTS Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology

    NASA Astrophysics Data System (ADS)

    Ye, Wenting; Wu, Di; Pan, Xin; Chen, Yashao; Han, Yong; Song, Zhongxiao

    2010-10-01

    Chitosan (CTS) coatings contained calcium (Ca) and phosphorus (P) on titanium (Ti) surface are prepared by the cathode liquid phase plasma technology (CLPT), in a certain concentration electrolyte solution with selective additions of ammonium dihydrogen phosphate and calcium nitrate. It is indicated that the parameters for a stable discharge are voltage of 400 V, frequency of 100 Hz, duty cycle of 30% based on a large amount of experiment data. The morphology, structure and composition of the coated samples are studied by SEM, FTIR, XRD, XPS. The results demonstrate that the composite coatings are uniform, and some solid particles of inorganic salt containing calcium and phosphorus dispersed on the coatings. CA tests show that the samples treated by the liquid plasma became less hydrophilic. The variation of hydrophilicity on the CLPT treated titanium is attributed to the change of the function groups on the sample surface. Meanwhile, a possible formation mechanism of the composite coatings is discussed.

  5. Thermophysical properties of plasma sprayed coatings

    NASA Technical Reports Server (NTRS)

    Wilkes, K. E.; Lagedrost, J. F.

    1973-01-01

    Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.

  6. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    SciTech Connect

    Dallaire, S.; Legoux, J.G.

    1995-12-31

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low.

  7. Study on electrolytic plasma discharging behavior and its influence on the plasma electrolytic oxidation coatings

    NASA Astrophysics Data System (ADS)

    Hussein, Riyad Omran

    In this study, aluminum oxide was deposited on a pure aluminum substrate to produce hard ceramic coatings using a Plasma Electrolytic Oxidation (PEO) process. The process utilized DC, unipolar pulsed DC in the frequency range (0.2 KHz -- 20 KHz) and bipolar pulsed DC current modes. The effects of process parameters (i.e., electrolyte concentration, current density and treatment time) on the plasma discharge behavior during the PEO treatment were investigated using optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm -- 900 nm). The emission spectra were recorded and plasma temperature profile versus processing time was constructed using the line intensity ratios method. Scanning Electron Microscopy (SEM) with energy dispersive x-ray analysis (EDS) was used to study the coating microstructure. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings. The main effect came from the strongest discharges which were initiated at the interface between the substrate and the coating. Through manipulation of process parameters to control or reduce the strongest discharge, the density and quality of the coating layers could be modified. This work demonstrated that by adjusting the ratio of the positive to negative pulse currents as well as their timing in order to eliminate the strongest discharges, the quality of the coatings was considerably improved.

  8. A Novel Plasma-Sprayed Durable Thermal Barrier Coating with a Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Li, Yong; Yang, Guan-Jun; Li, Cheng-Xin

    2012-06-01

    Atmospheric plasma-sprayed YSZ (yttria-stabilized zirconia) thermal barrier coatings (TBCs) are widely used in industrial gas turbine engines to protect the superalloy blades from failure. The failure of TBCs in service occurs by the spalling of YSZ coating. Crack propagation leading to the failure of plasma-sprayed TBCs usually occurs within the YSZ coating near the YSZ/bond coat interface. In the present study, a novel durable TBC consisting of a YSZ interlayer of well-bonded lamellae between the bond coat and the conventional YSZ porous top coat was introduced. The YSZ interlayer was deposited at different coating surface temperatures, which resulted in the formation of YSZ with significantly improved interlamellar bonding. The result shows that the thermal cyclic lifetime of the novel TBCs with the 20-30-μm-thick YSZ interlayer increased by a factor of 4 compared with that of the conventional one. The improved thermal cyclic lifetime was attributed to the controlled transition of the cracking path from near the YSZ/bond coat interface to the YSZ top layer. The effect of the YSZ interlayer thickness on the lifetime of TBCs was also investigated.

  9. Porosity in plasma sprayed alumina coatings

    SciTech Connect

    Ilavsky, J.; Herman, H.; Berndt, C.C.; Goland, A.N.; Long, G.G.; Krueger, S.; Allen, A.J.

    1994-03-01

    Small-angle neutron scattering (SANS) was used to study the porosity of plasma sprayed deposits of alumina in as-sprayed and heat-treated conditions. SANS results were compared with mercury intrusion porosimetry (MIP) and water immersion techniques. Multiple small-angle neutron scattering yields a volume-weighted effective pore radius (R{sub eff}), for pores with sizes between 0.08 and 10{mu}m, the pore volume in this size region, and from the Porod region, the surface area of pores of all sizes.

  10. Development of plasma spray coated cylinder liners

    SciTech Connect

    Tricard, M.; Hagan, J.; Redington, P.; Subramanian, K.; Haselkorn, M.

    1996-09-01

    Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150 C to over 300 C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.

  11. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  12. Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-06-01

    Intrasplat cracks, an essential feature of thermally sprayed ceramic coatings, play important roles in determining coating properties. However, final intrasplat crack patterns are always considered to be disordered and irregular, resulting from random cracking during splat cooling, since the detailed formation process of intrasplat cracks has scarcely been considered. In the present study, the primary formation mechanism for intrasplat cracking was explored based on both experimental observations and mechanical analysis. The results show that the intrasplat crack pattern in thermally sprayed ceramic splats presents a hierarchical structure with four sides and six neighbors, indicating that intrasplat crack patterns arise from successive domain divisions due to sequential cracking during splat cooling. The driving forces for intrasplat cracking are discussed, and the experimental data quantitatively agree well with theoretical results. This will provide insight for further coating structure designs and tailoring by tuning of intrasplat cracks.

  13. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    NASA Astrophysics Data System (ADS)

    Wang, C. X.; Lv, J. C.; Ren, Y.; Zhi, T.; Chen, J. Y.; Zhou, Q. Q.; Lu, Z. Q.; Gao, D. W.; Jin, L. M.

    2015-12-01

    This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O2 plasma treated and SWCNT coated PET fabric was better and worse than that of N2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated and SWCNT coated PET fabrics also increased with the increasing SWCNT concentration, curing time and curing temperature in the range studied. Plasma conditions and SWCNT coating parameters had signally influence on the antistatic property of plasma treated and SWCNT coated PET fabrics. Therefore, adequate parameters should be carefully selected for the optimum antistatic property of the plasma treated and SWCNT coated PET fabrics.

  14. High resolution video monitoring of coating thickness during plasma spraying

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1988-01-01

    A new approach to monitoring the thickness of plasma sprayed coatings during application is described. The method employs a high resolution video camera and width analyzer to accurately measure the dimensions of samples having simple geometries. This approach is best suited for cylindrical or flat substrates but it may also work for selected locations on more complex geometries. Measurement accuracy is a function of specimen dimensions and extent of magnification. Tolerances of plus or minus 0.5 mil (0.13 mm) on final coating thickness can be achieved. Additionally, the plot of cumulative coating thickess versus the number of passes has proven to be a useful diagnostic tool. While the ideal plot is linear, strong deviations from linearity - indicating the need for corrective action - may be observed.

  15. Ultrasmooth plasma polymerized coatings for laser-fusion targets

    SciTech Connect

    Letts, S.A.; Myers, D.W.; Witt, L.A.

    1980-08-26

    Coatings for laser fusion targets were deposited up to 135 ..mu..m thick by plasma polymerization onto 140 ..mu..m diameter DT filled glass microspheres. Ultrasmooth surfaces (no defect higher than 0.1 ..mu..m) were achieved by eliminating particulate contamination. Process generated particles were eliminated by determining the optimum operating conditions of power, gas flow, and pressure, and maintaining these conditions through feedback control. From a study of coating defects grown over known surface irregularities, a quantitative relationship between irregularity size, film thickness, and defect size was determined. This relationship was used to set standards for the maximum microshell surface irregularity tolerable in the production of hydrocarbon or fluorocarbon coated laser fusion targets.

  16. Plasma printing: patterned surface functionalisation and coating at atmospheric pressure.

    PubMed

    Penache, C; Gessner, C; Betker, T; Bartels, V; Hollaender, A; Klages, C-P

    2004-08-01

    A new plasma-based micropatterning technique, here referred to as plasma printing, combines the well known advantages given by the nonequilibrium character of a dielectric barrier discharge (DBD) and its operation inside small gas volumes with dimension between tens and hundreds of micrometres. The discharge is run at atmospheric pressure and can be easily implemented for patterned surface treatment with applications in biotechnology and microtechnology. In this work the local modification of dielectric substrates, e.g. polymeric films, is addressed with respect to coating and chemical functionalisation, immobilisation of biomolecules and area-selective electroless plating. PMID:16475858

  17. Use of molecular beams to support microspheres during plasma coating

    SciTech Connect

    Crane, J.K.; Smith, R.D.; Johnson, W.L.; Letts, S.A.; Korbel, G.R.; Krenick, R.M.

    1980-08-26

    Spherical laser fusion targets can be levitated on beams of Ar or other gas atoms. This is an especially useful and reliable technique for supporting microspheres during plasma coating or plasma etching. The reliability of this technique is principally the result of two things: the success of a special centering device which provides a lateral, stabilizing force on the levitated microspheres; and a gas handling system which is capable of controlling levitation gas flow in the microtorr liter/sec range. We have determined that the operational regime of this device is that of Knudsen's flow. This knowledge of the flow characteristics has been important in developing this device.

  18. Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates.

    PubMed

    Gomes, Pedro S; Botelho, Cláudia; Lopes, Maria A; Santos, José D; Fernandes, Maria H

    2010-08-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings have been plasma sprayed over titanium substrates (Ti-6Al-4V) aiming to improve the bioactivity of the constructs for bone tissue repair/regeneration. X-ray diffraction analysis of the coatings has shown that, previous to the thermal deposition, no secondary phases were formed due to the incorporation of 0.8 wt % Si into HA crystal lattice. Partial decomposition of hydroxyapatite, which lead to the formation of the more soluble phases of alpha- and beta-tricalcium phosphate and calcium oxide, and increase of amorphization level only occurred following plasma spraying. Human bone marrow-derived osteoblastic cells were used to assess the in vitro biocompatibility of the constructs. Cells attached and grew well on the Si-HA coatings, putting in evidence an increased metabolic activity and alkaline phosphatase expression comparing to control, i.e., titanium substrates plasma sprayed with hydroxyapatite. Further, a trend for increased differentiation was also verified by the upregulation of osteogenesis-related genes, as well as by the augmented deposition of globular mineral deposits within established cell layers. Based on the present findings, plasma spraying of Si-HA coatings over titanium substrates demonstrates improved biological properties regarding cell proliferation and differentiation, comparing to HA coatings. This suggests that incorporation of Si into the HA lattice could enhance the biological behavior of the plasma-sprayed coating. PMID:20574971

  19. Effect of Microstructure on the Thermal Conductivity of Plasma-Sprayed Al2O3-YSZ Coatings

    NASA Astrophysics Data System (ADS)

    Song, Xuemei; Liu, Ziwei; Kong, Mingguang; Wang, Yongzhe; Huang, Liping; Zheng, Xuebin; Zeng, Yi

    2016-04-01

    The microstructures of three atmospheric plasma-sprayed (APS) Al2O3-ZrO2 coatings were investigated using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The differences in the microstructures of the three Al2O3-ZrO2 coatings, including their phase compositions, cracks, pores, grain sizes, and solid solutions, were analyzed in detail. A close relationship was observed between the thermal conductivities of the coatings and the microstructures, and the Al2O3-YSZ coatings with more spherical pores, fewer vertical cracks, and finer grains exhibited the lowest thermal conductivity of 0.91 W/m·K. Compared with YSZ coatings, Al2O3-YSZ coatings can exhibit lower thermal conductivity, which may be attributed to the formation of an amorphous phase, smaller grains, and Al2O3-YSZ solid solution.

  20. Plasma and Ion Sources in Large Area Coatings: A Review

    SciTech Connect

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  1. A conformal oxidation-resistant, plasma-polymerized coating

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Lerner, Narcinda R.

    1991-01-01

    A comparative study was made of the surface recession (etching) of thin films of plasma polymerized tetrafluoro ethylene (PPTFE), polytetrafluoro ethylene (PTFE), and ion-beam sputter deposited polytetrafluoro ethylene (SPTFE) exposed to ground-state atomic oxygen downstream from a nonequilibrium radio-frequency O2 plasma. At 22 C, the etch rates for PTFE, SPTFE, and PPTFE were in the ratio of 8.7:1.8:1.0. A thin, conformal coating of PPTFE (etch rate of 0.3 nm/h at 22 C) was found to protect an underlying cast film of a reactive polymer, cis-1,4 polybutadiene, against ground-state atomic oxygen attack for the time required to fully etch away the PPTFE coating. From ESCA analysis, PTFE exhibited only minor surface oxidation (uptake of 0.5 atom percent O) upon etching, its F/C ratio decreasing slightly from 2.00 to 1.97; PPTFE exhibited considerable surface oxidation (uptake of 5.9 atom percent O) intermediate between those of PTFE and PPTFE, with a decrease in F/C ratio from 1.73 to 1.67. A plasma-polymerized fluorocarbon coating such as PPTFE might be useful for space applications to protect polymers that are vulnerable to oxidation or degradation by oxygen atoms.

  2. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    NASA Astrophysics Data System (ADS)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  3. Investigation of the Electrolyte Effects on Formation of Vanadium Carbide via Plasma Electrolytic Saturation Method (pes)

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Babak; Khoie, Seyed Mohammad Mousavi; Rasouli, Mahmood; Doodran, Ramona Javadi

    2016-02-01

    One of the most important hardening methods of tool steel is the use of carbide coatings. During this process, vanadium atoms diffuse the specimen’s surface at high temperature and reacts with the available carbon in steel and create vanadium carbide with high hardness. During the plasma electrolytic saturation (PES) process, the vanadium element diffuses with the help of plasma and increases up to around 950∘ as a result of the temperature, providing conditions for the creation of vanadium carbide. The best combination of electrolyte is 4g vanadium oxide and 50mL hydrochloric acid and different concern of sodium hydroxide. The results indicate that the formed coating is about 30μm. As the conductivity increases, the condition for diffusion is provided; however, with increase in the temperature, the diffusion decreases. The coating formation is observed in the current at 9-11 A and hardness of this coating is about 1400vickers.

  4. Microstructure and Wear Behavior of Conventional and Nanostructured Plasma-Sprayed WC-Co Coatings

    NASA Astrophysics Data System (ADS)

    Sánchez, E.; Bannier, E.; Salvador, M. D.; Bonache, V.; García, J. C.; Morgiel, J.; Grzonka, J.

    2010-09-01

    WC-12%Co coatings were deposited by atmospheric plasma spraying using conventional and nanostructured powders and two secondary plasmogenous gases (He and H2). Coating microstructure and phase composition were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction techniques (XRD) techniques. This study examined wear and friction properties of the coatings under dry friction conditions. SEM was used to analyze abraded surface microstructure. Coating microhardness and fracture toughness were also determined. All coatings displayed strong decarburization as a result of WC decomposition, which gave rise to the formation of secondary phases (W2C and W). A very fine undissolved WC crystalline dispersion coexisted with these new phases. TEM observation confirmed that the matrix was predominantly amorphous and filled with block-type, frequently dislocated crystallites. Wear was observed to follow a three-body abrasive mechanism, since debris between the ball and the coating surface was detected. The main wear mechanism was based on subsurface cracking, owing to the arising debris. WC grain decomposition and dissolution were concluded to be critical factors in wear resistance. The level of decomposition and dissolution could be modified by changing the plasmogenous gas or feed powder grain size. The influence of the plasmogenous gas on wear resistance was greater than the influence of feedstock particle size.

  5. Plasma polymerized carvone as an antibacterial and biocompatible coating.

    PubMed

    Chan, Yuen Wah; Siow, Kim Shyong; Ng, Pei Yuen; Gires, Usup; Yeop Majlis, Burhanuddin

    2016-11-01

    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner. PMID:27524089

  6. Effect of Plasma Nitriding and Nitrocarburizing on HVOF-Sprayed Stainless Steel Coatings

    NASA Astrophysics Data System (ADS)

    Park, Gayoung; Bae, Gyuyeol; Moon, Kyungil; Lee, Changhee

    2013-12-01

    In this work, the effects of plasma nitriding (PN) and nitrocarburizing on HVOF-sprayed stainless steel nitride layers were investigated. 316 (austenitic), 17-4PH (precipitation hardening), and 410 (martensitic) stainless steels were plasma-nitrided and nitrocarburized using a N2 + H2 gas mixture and the gas mixture containing C2H2, respectively, at 550 °C. The results showed that the PN and nitrocarburizing produced a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer depending on the crystal structures of the HVOF-sprayed stainless steel coatings. Also, the diffusion depth of nitrogen increased when a small amount of C2H2 (plasma nitrocarburizing process) was added. The PN and nitrocarburizing resulted in not only an increase of the surface hardness, but also improvement of the load bearing capacity of the HVOF-sprayed stainless steel coatings because of the formation of CrN, Fe3N, and Fe4N phases. Also, the plasma-nitrocarburized HVOF-sprayed 410 stainless steel had a superior surface microhardness and load bearing capacity due to the formation of Cr23C6 on the surface.

  7. Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications.

    PubMed

    Lara Rodriguez, L; Sundaram, P A; Rosim-Fachini, E; Padovani, A M; Diffoot-Carlo, N

    2014-07-01

    In an attempt to enhance the potential of gamma titanium aluminide intermetallic alloy as a biomaterial, its surface characteristics were successfully modified using a calcium and phosphorous rich electrolyte through the application of plasma electrolytic oxidation. Scanning electron microscopy and atomic force microscopy were used to characterize the morphology and topographical features of the resulting coating while X-ray diffraction and energy dispersive spectroscopy were used to determine the surface oxide composition. The mechanical properties of the surface coating were characterized by nanoindentation studies. The results observed show the formation of a submicron scale porous structure and a concomitant increase in the surface roughness. The surface oxide was composed of rutile and anatase phases. Composition gradients of Ca and P were also present which can possibly enhance the biomaterial application potential of this treated surface. Nanoindentation measurements indicate the formation of a fairly compact oxide during the process. PMID:24259371

  8. Character of laser-glazed, plasma-sprayed zirconia coatings on stainless steel substrata

    NASA Technical Reports Server (NTRS)

    Fischman, G. S.; Chen, C. H.; Rigsbee, J. M.; Brown, S. D.

    1985-01-01

    Partially stabilized zirconia was applied as coatings to 316L stainless steel substrata using an 80-kw arc-plasma unit. Some of these coating-substrate systems were subsequently glazed using a 10 kw CO2 continuous-wavelength laser. SEM was used to characterize the microstructures of the coatings and coating-substrate interfaces. Results are reported and discussed.

  9. Influence of injected silver content on synthesis of silver coated nickel particles by DC thermal plasma

    NASA Astrophysics Data System (ADS)

    Park, Si Taek; Kim, Tae-Hee; Park, Dong-Wha

    2016-06-01

    Silver nanoparticle-coated spherical nickel particles were prepared from a mixture of micro-sized silver and nickel as raw materials by DC thermal plasma treatment. The mixture of micro-sized silver and nickel powders was injected into the high-temperature region of an argon thermal plasma jet. Although the silver, with its very high thermal conductivity and relatively low boiling point, was thoroughly evaporated by this process, nickel was not evaporated perfectly because of its comparatively low thermal conductivity and high boiling point. The rough nickel powder was spheroidized as it melted. Finally, silver evaporated by the thermal plasma quickly condensed into nanoparticles on the surfaces of the micro-sized spherical nickel particles, aided by the sharp temperature gradient of the thermal plasma jet. With varying the ratios of silver to nickel feedstock from 1:10 to 5:1, the products synthesized in each condition were examined by XRD, XPS, FE-SEM, and FE-TEM. More silver nanoparticles were attached on the nickel by increasing the injected feedstock to 9.8 at% silver. Meanwhile, a decrease of silver in the products was observed when larger amounts of silver were introduced to the thermal plasma jet. The exposed silver components decreased with greater proportions of silver feedstock because of the metal's dendritic structure and the formation of silver-coated silver particles.

  10. Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment

    SciTech Connect

    M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

    2009-08-20

    Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

  11. Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces

    NASA Astrophysics Data System (ADS)

    Lamont-Friedrich, Stephanie J.; Michl, Thomas D.; Giles, Carla; Griesser, Hans J.; Coad, Bryan R.

    2016-07-01

    The attachment of pathogenic fungal cells onto materials surfaces, which is often followed by biofilm formation, causes adverse consequences in a wide range of areas. Here we have investigated the ability of thin film coatings from chlorinated molecules to deter fungal colonization of solid materials by contact killing of fungal cells reaching the surface of the coating. Coatings were deposited onto various substrate materials via plasma polymerization, which is a substrate-independent process widely used for industrial coating applications, using 1,1,2-trichloroethane as the process vapour. XPS surface analysis showed that the coatings were characterized by a highly chlorinated hydrocarbon polymer nature, with only a very small amount of oxygen incorporated. The activity of these coatings against human fungal pathogens was quantified using a recently developed, modified yeast assay and excellent antifungal activity was observed against Candida albicans and Candida glabrata. Plasma polymer surface coatings derived from chlorinated hydrocarbon molecules may therefore offer a promising solution to preventing yeast and mould biofilm formation on materials surfaces, for applications such as air conditioners, biomedical devices, food processing equipment, and others.

  12. Biocompatibility of Cation Coated on Plasma-Polymerized Ti Surface

    NASA Astrophysics Data System (ADS)

    Lee, Kang; Ko, Yeong-Mu; Kim, Byung-Hoon

    2012-08-01

    In this study, we investigated the bone formation properties and cell responses on Na-, Mg-, K-, and Ca-ion-exchanged carboxyl plasma polymerized titanium (Ti) surfaces. The phase and morphologies of deposits bonelike apatite were significantly influence by the cation species. Na and Mg ions promote bonelike apatite nucleation and growth on plasma-functionalized Ti surfaces in simulated body fluid (SBF) and improves the crystallinity of the bonelike apatite deposited layer. The cell viability tests revealed significantly enhanced viability on the Ca-ion-exchanged plasma-functionalized Ti surface than on any other surface.

  13. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    SciTech Connect

    K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

  14. Plasma-sprayed metal-glass fluoride coatings for lubrication to 1170 K (1650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma spray of Nichrome matrix composite contains dispersed glass for oxidation protection and calcium fluoride for lubrication. Coatings can be applied to bearing journals and bearing bores. Coating was easily machinable and had excellent bond strength on substrate metal.

  15. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  16. Plasma Spray-PVD: Plasma Characteristics and Impact on Coating Properties

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Vaßen, R.

    2012-12-01

    Typical plasma characteristics of the plasma spray-physical vapour deposition (PS-PVD) process were investigated by optical emission spectroscopy. Electron temperatures were determined by Boltzmann plots while temperatures of the heavy species as well as electron densities were obtained by broadening analysis of spectral lines. The results show how the plasma properties and thermodynamic equilibrium conditions are affected by the admixture of hydrogen and the ambient chamber pressure. Some experimental examples of PS-PVD coatings demonstrate the impact on feedstock treatment and deposited microstructures.

  17. Crystal Nucleation in Plasma Deposited Dlc Coatings during Annealing

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Pavlidou, E.; Psyllaki, P.; Chrissafis, K.; Vourlias, G.

    2010-01-01

    Diamond-like carbon (DLC) films, hard carbon coatings, with unique physical and mechanical properties which approach those of natural diamond, such as high hardness, low coefficient of friction and chemical inertness. In several applications, heavy loads and high friction forces are generated and lead to local temperature increase. In such cases these coatings must be thermal stable and with enhanced high temperature oxidation resistance in order to be good candidates for wear protection of metallic components. In the present study a radio frequency plasma deposition system was used for the deposition of 2 μm-thick amorphous DLC coatings onto AISI D2 substrates. The as deposited DLC covered samples were dense, homogeneous and well bonded to the substrate, while no cracks were observed. In order to study the thermal stability of the coatings' DLC nature, in-situ Transmission Electron Microscopic (TEM) observations were carried out during slow annealing of the specimen in the microscope vacuum chamber, as well as thermo-gravimetric (TG) measurements in argon atmosphere, up to 800° C. The first crystallites appeared within the DLC amorphous matrix at about 450° C as surface crystallization, while the mass crystallization started at 600° C as the TG measurements indicated. Finally, the nucleation was completed at 700° C. The oxidation results, performed from ambient temperature up to 1000° C, showed that DLC covered coupons are remarkably resistant as their mass gain was significantly lower than that of the uncovered substrates.

  18. Plasma sprayed coatings as surface treatments of aluminum adherends

    SciTech Connect

    Davis, G.D.; Whisnant, P.L.; Groff, G.B.; Shaffer, D.K.

    1996-12-31

    Plasma sprayed coatings have been evaluated as surface treatments for aluminum substrates being prepared for adhesive bonding. Blends of an aluminum-silicon alloy and polyester give the best performance. To establish durability performance, wedge tests were done using four common epoxy adhesives without primers. In all cases, the 60%Al-Si/40%polyester coating gave results superior to those of FPL-etched specimens and, in some cases, performance equivalent to PAA specimens. This roughness provides excellent opportunity for mechanical interlocking or physical bonding and allows a complex interphase to be formed as the adhesive penetrates into the coating. Crack growth measurements and subsequent failure analysis using x-ray photoelectron spectroscopy (XPS) indicate that crack propagation occurs within this complex interphase. The results also show that the aluminum and polyester components are synergistic and blends of the two give better performance than either component by itself The aluminum gives strength to the coating while the polyester provides toughness and improves moisture resistance.

  19. Improved uniformity of multiphase ceramic-metal plasma-sprayed coats

    NASA Technical Reports Server (NTRS)

    Nakamura, H. H.; Logan, W. R.; Harada, Y.; Jacobson, T. P.; Sliney, H. E.

    1982-01-01

    Processing-technology development of a multiphase, self-lubricating, plasma-spray powder resulted in greater uniformity and reproducibility of plasma-sprayed coats. The effect of particle-size variation, binder concentration, and reproducible processing parameters are reported. Greater adhesive strengths of coats to substrates were achieved by particle-size variation, use of an intermediate bond coat such as Ni-Cr, or heat treatment. Quantitative analyses of polished, coated specimens are also given.

  20. Reactive Evaporation And Plasma Processes For Thin Film Optical Coatings

    NASA Astrophysics Data System (ADS)

    Ebert, Johannes

    1989-02-01

    Bombardment of growing films with reactive particles has developed into a powerful technology over the last 3o years. Compared to normal evaporation methods, important improvements are: better adhesion between film and substrate, high film density, fast coating rate and stoichiometric layers with low optical losses. Although the techniques used to achieve the desired properties vary quite dramatically from high pressure plasma processing to bombardment with monoenergetic ion beams in ultra high vacuum environment, from particles with nearly thermal to some keV energy and from discharge currents of some μA to more than 1oo A in industrial applications, the ion-surface interaction, which causes the modification of the films, is the basic of all reactive deposition processes. The purpose of this paper is to review plasma processes for the production of optical coatings including ion assisted deposition, ion plating and ion cluster beam deposition, comparing the structural and optical properties of the films. Some applications of reactive evaporation presented in the following papers demonstrate the potential use of reactive evaporation and plasma processes for solving optical problems.

  1. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  2. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  3. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  4. Modeling of formation of deposited layer by plasma spray process

    NASA Astrophysics Data System (ADS)

    Lee, Joo-Dong; Ra, Hyung-Yong; Hong, Kyung-Tae; Hur, Sung-Kang

    1992-03-01

    An analytical model is developed to describe the plasma deposition process in which average solidified thickness and coating and substrate temperatures are obtained. During the deposition process, the solidification rate is periodically varied, due to the impingement of liquid splats, and the amount of liquid in the coating layer increases. Periodical variation of the solidification rate causes temperature fluctuation in coating and substrate. The nature of interfacial structure of plasma-sprayed NiCrBSi MA powder is compared with the result predicted using the model, which indicates that the liquid deposited at the coating surface during deposition causes discontinuous boundaries within the coating. The spraying rate and the solidification rate reverse periodically with spraying process.

  5. Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Bertolissi, G.; Chazelas, C.; Bolelli, G.; Lusvarghi, L.; Vardelle, M.; Vardelle, A.

    2012-12-01

    This study examines the fundamental reactions that occur in-flight during the solution precursor plasma spraying (SPPS) of solutions containing Zr- and Y-based salts in water or ethanol solvent. The effect of plasma jet composition (pure Ar, Ar-H2 and Ar-He-H2 mixtures) on the mechanical break-up and thermal treatment of the solution, mechanically injected in the form of a liquid stream, was investigated. Observation of the size evolution of the solution droplets in the plasma flow by means of a laser shadowgraphy technique, showed that droplet break-up was more effective and solvent evaporation was faster when the ethanol-based solution was injected into binary or ternary plasma gas mixtures. In contrast with water-based solutions, residual liquid droplets were always detected at the substrate location. The morphology and structure of the material deposited onto stainless steel substrates during single-scan experiments were characterised by SEM, XRD and micro-Raman spectroscopy and were shown to be closely related to in-flight droplet behaviour. In-flight pyrolysis and melting of the precursor led to well-flattened splats, whereas residual liquid droplets at the substrate location turned into non pyrolysed inclusions. The latter, although subsequently pyrolysed by the plasma heat during the deposition of entire coatings, resulted in porous "sponge-like" structures in the deposit.

  6. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation.

  7. Induction plasma calcining of pigment particles for thermal control coatings

    NASA Technical Reports Server (NTRS)

    Farley, E. P.

    1971-01-01

    Induction plasma heating techniques were studied for calcining zinc orthotitanate particles for use in thermal control coatings. Previous studies indicated that the optimum calcining temperature is between 1400 and 1750 C. An intermediate temperature (1670 C) was chosen as a reference point for running a temperature series at the reference point and 220 C on both sides. The effect of varying chamber temperature on the reflectance spectra, before and after vacuum UV irradiation, is presented. The correlation between Zn2Ti04 paramagnetic resonance activity and its susceptibility to vacuum UV damage is discussed.

  8. Formation of Chromate Conversion Coatings on Aluminum and Its Alloys

    SciTech Connect

    Isaacs,H.; Sasaki, K.; Jeffcoate, C.; Laget, V.; Buchheit, R.

    2005-01-01

    We used in situ X-ray adsorption near-edge structure (XANES) to investigate the formation of chromate conversion coatings on pure Al, commercial Al alloys (AA 1100, AA2024, and AA7075), and a series of binary A1-Cu alloys. The method employed a new electrochemical cell that can determine the ratio of hexavalent chromium (Cr(VI)) to total chromium (Cr(total)) speciation in conversion coatings as a fraction of exposure time to a chromate solution. The spectra showed that the initial Cr(VI)/Cr(total) ratios are greater than later ones for pure Al and AAl 100, but not for AA2024 and AA7075. Measurements with Al-Cu alloys demonstrated that the difference observed in AA2024 and AA7075 may not be due to Cu alloying. The proportion of Cr(VI) in the coatings becomes approximately constant after 180 s of exposure for all the specimens examined even though the coatings continue to grow.

  9. Microstructure and characterization of a novel cobalt coating prepared by cathode plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Quan, Cheng; He, Yedong

    2015-10-01

    A novel cobalt coating was prepared by cathode plasma electrolytic deposition (CPED). The kinetics of the electrode process in cathode plasma electrolytic deposition was studied. The composition and microstructure of the deposited coatings were investigated by SEM, EDS, XRD and TEM. The novel cobalt coatings were dense and uniform, showing a typically molten morphology, and were deposited with a rather fast rate. Different from the coatings prepared by conventional electrodeposition or chemical plating, pure cobalt coatings with face center cubic (fcc) structure were obtained by CPED. The deposited coatings were nanocrystalline structure with an average grain size of 40-50 nm, exhibited high hardness, excellent adhesion with the stainless steels, and superior wear resistance. The properties of the novel cobalt coatings prepared by CPED have been improved significantly, as compared with that prepared by conventional methods. It reveals that cathode plasma electrolytic deposition is an effective way to prepare novel cobalt coatings with high quality.

  10. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray

    PubMed Central

    Daugaard, Henrik; Elmengaard, Brian; Bechtold, Joan E.; Jensen, Thomas; Soballe, Kjeld

    2013-01-01

    Skeletal bone consists of hydroxyapatite (HA) [Ca10(PO4)6(OH)2] and collagen type I, both of which are osseoconductive. The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable long-lasting fixation between bone and an implant surface. In this study, we evaluated the mechanical fixation and tissue distribution surrounding implants coated with three surfaces: plasma-sprayed HA coating, thinner coating of electrochemical-assisted deposition of HA, and an identical thin coating with a top layer of mineralized collagen. Uncoated plasma-sprayed titanium (Ti-6Al-4V) served as negative control. The electrochemical-assisted deposition was performed near physiological conditions. We used a canine experimental joint replacement model with four cylindrical implants (one of each treatment group) inserted in the humeri cancellous metaphyseal bone in a 1 mm gap. Observation time was 4 weeks. The mechanical fixation was quantified by push-out test to failure, and the peri-implant tissue formation by histomorphometric evaluation. HA coatings deposited by plasma spray technique or electrochemically, increased the mechanical fixation and bone ongrowth, but there was no statistical difference between the individual HA applications. Addition of collagen to the mineralized phase of the coating to create a more bone natural surface did not improve the osseoconductive effect of HA. PMID:19291683

  11. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  12. Formation of nanodiamond films from aqueous suspensions during spin coating

    NASA Astrophysics Data System (ADS)

    Lebedev-Stepanov, P. V.; Molchanov, S. P.; Vasil'ev, A. L.; Mitrokhin, V. P.; Yurasik, G. A.; Aleksenskii, A. E.; Dideikin, A. T.

    2016-03-01

    The formation of multifunctional ordered arrays of detonation diamond particles is studied during self-assembling in spin coating of films of evaporating microdroplets. It is shown that the most homogeneous layer of diamond particles on a crystalline silicon substrate forms at a rate of substrate rotation of 8000 min-1, whereas a relation between the distribution of particles and the radius is clearly detected at rates of about 2000 min-1. As the rate of substrate rotation increases from 2500 to 8000 min-1, the density of the coating of a silicon substrate with diamond nanoparticles decreases approximately threefold. A model is proposed to estimate the increase in the number of individual diamond "points" with the substrate rotation frequency.

  13. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    SciTech Connect

    Ladwig, Angela

    2008-01-23

    There is great demand for thin functional coatings in the semiconductor, optics, electronics, medical, automotive and aerospace industries [1-13]. As fabricated components become smaller and more complex, the properties of the materials’ surface take on greater importance. Thin coatings play a key role in tailoring surfaces to give them the desired hardness, wear resistance, chemical inertness, and electrical characteristics. Diamond-like carbon (DLC) coatings possess an array of desirable properties, including outstanding abrasion and wear resistance, chemical inertness, hardness, a low coefficient of friction and exceptionally high dielectric strength [14-22]. Diamond-like carbon is considered to be an amorphous material, containing a mixture of sp2 and sp3 bonded carbon. Based on the percentage of sp3 carbon and the hydrogen content, four different types of DLC coatings have been identified: tetrahedral carbon (ta-C), hydrogenated amorphous carbon (a-C:H) hard, a-C:H soft, and hydrogenated tetrahedral carbon (ta-C:H) [20,24,25]. Possessing the highest hardness of 80 GPa, ta-C possesses an sp3 carbon content of 80 to 88u%, and no appreciable hydrogen content whereas a-C:H soft possesses a hardness of less than 10 GPa, contains an sp3 carbon content of 60% and a hydrogen content between 30 to 50%. Methods used to deposit DLC coatings include ion beam deposition, cathodic arc spray, pulsed laser ablation, argon ion sputtering, and plasma-enhanced chemical vapor deposition [73-83]. Researchers contend that several advantages exist when depositing DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of

  14. Highly effective antibiofilm coating of silver-polymer nanocomposite on polymeric medical devices deposited by one step plasma process.

    PubMed

    Agarwala, Munin; Barman, Tapan; Gogoi, Dolly; Choudhury, Bula; Pal, Arup R; Yadav, R N S

    2014-08-01

    Foley's catheters were coated with Silver (Ag), plasma polymerized aniline (PPAni) and Ag-PPAni composite by plasma based deposition processes which were characterized by XRD, EDX, SEM, and FT-IR spectroscopy and bioassays were performed to validate their efficacies to kill planktonic cells as well as to remove biofilm. The analyses confirmed the formation of Ag nanoparticles (AgNPs), PPAni and Ag-PPAni composite and also corroborated their successful deposition over the catheters. Antibacterial assays showed that coated catheters were capable of killing planktonic cells of most commonly encountered uropathogens and equally capable of eradicating biofilm formation by the uropathogens as evident from the reduced cfu/ml. UV-vis spectroscopy results showed that the nanoparticle coated catheters were capable of gradual release of AgNPs, killing all planktonic cells in solution over the time. Foley's catheters coated with AgNPs and their composites by one step plasma process were non-toxic devices capable of killing planktonic cells and proficient in eradicating biofilm formation which could be used to cutback the likelihood of the catheter related complications. PMID:24449248

  15. Chemical Stability and Biological Properties of Plasma-Sprayed CaO-SiO2-ZrO2 Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Xie, Youtao; Ji, Heng; Huang, Liping; Zheng, Xuebin

    2010-12-01

    In this work, calcia-stabilized zirconia powders were coated by silica derived from tetraethoxysilane (TEOS) hydrolysis. After calcining at 1400 °C, decalcification of calcia-stabilized zirconia by silica occurred and powders composed of Ca2SiO4, ZrO2, and CaZrO3 were prepared. We produced three kinds of powders with different Ca2SiO4 contents [20 wt.% (denoted as CZS2), 40 wt.% (denoted as CZS4), and 60 wt.% (denoted as CZS6)]. The obtained powders were sprayed onto Ti-6Al-4V substrates using atmospheric plasma spraying. The microstructure of the powders and coatings were analyzed. The dissolution rates of the coatings were assessed by monitoring the ions release and mass losses after immersion in Tris-HCl buffer solution. Results showed that the chemical stability of the coatings were significantly improved compared with pure calcium silicate coatings, and increased with the increase of Zr contents. The CZS4 coating showed not only good apatite-formation ability in simulated body fluid, but also well attachment and proliferation capability for the canine bone marrow stem cells. Results presented here indicate that plasma-sprayed CZS4 coating has medium dissolution rate and good biological properties, suggesting its potential use as bone implants.

  16. Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Sharifullin, S. N.; Pustovalov, AS

    2016-01-01

    This paper presents the results of simulation of plasma deposition and hardening of coatings in modulating the electrical parameters. Mathematical models are based on physical models of gas-dynamic mechanisms more dynamic and thermal processes of the plasma jet. As an example the modeling of dynamic processes of heterogeneous plasma jet, modulated current pulses indirect arc plasma torch.

  17. Blocking of bacterial biofilm formation by a fish protein coating.

    PubMed

    Vejborg, Rebecca Munk; Klemm, Per

    2008-06-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections. PMID:18424549

  18. Oxygen post-treatment of plastic surface coated with plasma polymerized silicon-containing monomers

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.; Hollanhan, J. R., Jr. (Inventor)

    1979-01-01

    The abrasion resistance of plastic surfaces coated with polymerized organosilanes can be significantly improved by post-treatment of the polymerized silane in an oxygen plasma. For optical purposes, the advantages of this post-treatment are developed with a transparent polycarbonate resin substrate coated with plasma polymerized vinyltrimethoxysilane.

  19. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    SciTech Connect

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; Gibbs, Paul J.

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl2O4.

  20. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  1. Oxidation and degradation of a plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.

    1996-04-01

    The isothermal oxidation behavior of thermal barrier coating (TBC) specimens consisting of single-crystal superalloy substrates, vacuum plasma-sprayed Ni-22Cr-10Al-1Y bond coatings and air plasma-sprayed 7.5 wt.% yttria stabilized zirconia top coatings was evaluated by thermogravimetric analysis at 1150{degrees}C for up to 200 hours. Coating durability was assessed by furnace cycling at 1150{degrees}C. Coatings and reaction products were identified by x-ray diffraction, field-emission scanning electron microscopy and energy dispersive spectroscopy.

  2. Hydrogen plasma tests of some insulating coating systems for the nuclear rocket thrust chamber

    NASA Technical Reports Server (NTRS)

    Current, A. N.; Grisaffe, S. J.; Wycoff, K. C.

    1972-01-01

    Several plasma-sprayed and slurry-coated insulating coating systems were evaluated for structural stability in a low-pressure hot hydrogen environment at a maximum heat flux of 19.6 million watts/sq meter. The heat was provided by an electric-arc plasma generator. The coating systems consisted of a number of thin layers of metal oxides and/or metals. The materials included molybdenum, nichrome, tungsten, alumina, zirconia, and chromia. The study indicates potential usefulness in this environment for some coatings, and points up the need for improved coating application techniques.

  3. Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Thiyagarajan, T. K.; Pragatheeswaran, A.

    2015-07-01

    Ceramic coatings are applied on engineering components for protecting them from large thermal load and hot corrosion. Choices of coating material for protection against hot corrosion by uranium are few, because of its high reactivity. Yttrium oxide has a high melting temperature and is inert towards uranium. Therefore, yttrium oxide coatings are effective as a barrier against hot corrosion by uranium and its alloys. This paper gives a summary of the developmental work on plasma-sprayed yttria coatings for corrosion barrier applications against molten uranium. Results show that plasma-sprayed yttria coatings offer a long-term solution to hot corrosion problems.

  4. Technical note - Plasma-sprayed ceramic thermal barrier coatings for smooth intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Doychak, J.

    1992-01-01

    A new approach for plasma spray deposition of ceramic thermal barrier coatings directly to smooth substrates is described. Ceramic thermal barrier coatings were directly applied to substrates that had been coated with low-pressure plasma sprayed NiCrAlY bond coats and then centerless ground to simulate a smooth oxidation-resistant substrate. As the high-temperature oxidation behavior of NiAl+Zr is superior to that of MCrALY alloy, the bond coat is not required for oxidation resistance.

  5. Atmosphere corrosion behavior of plasma sprayed and laser remelted coatings on copper

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; An, Geng; MacAlpine, J. M. K.

    2006-01-01

    Nickel and chromium coatings were produced using plasma spraying and laser remelting on the copper sheet. The corrosion test was carried out in an acidic atmosphere, and the corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. Experimental results show that nickel and chromium coatings display better corrosion resistance properties relative to the original pure copper sample. The corrosion rate of chromium coating is less than that of nickel coating, and corrosion resistances of laser remelted nickel and chromium samples are better than those of plasma sprayed samples. The corrosion deposit film of copper is loose compared with nickel and chromium.

  6. Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment

    SciTech Connect

    Bell, M. G.; Kugel, H.; Kaita, R.; Zakharov, L. E.; Schneider, H; LaBlanc, B. P.; Mansfield, D.K.; Bell, R. E.; Maingi, R.; Ding, S.; Kaye, S.; Paul, S.F.; Gerhardt, S.P.; Canik, John; Hosea, J.; Taylor, G.

    2009-01-01

    Experiments in the National Spherical Torus Experiment ( NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbon-fiber-composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor toward the lower divertor. In neutral beam injection (NBI)-heated deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of edge-localized modes (ELMs) were observed, including complete ELM suppression for periods of up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off-layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off-layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but

  7. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-12-01

    Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne coated targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  8. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-10-01

    Metal targets covered by micrometer layers of metal- phthalocyanines are studied here. An increase in EUV yield due to optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to product an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique makes it possible to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne equals 2.0 (+/- 0.5)1018 cm-3 and Te equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne coated targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  9. Formation of three-dimensionally integrated nanocrystalline silicon particles by dip-coating method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shotaro; Nakamine, Yoshifumi; Zheng, Ran; Kouge, Masahiro; Ishikawa, Tetsuya; Usami, Koichi; Kodera, Tetsuo; Kawano, Yukio; Oda, Shunri

    2015-10-01

    Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structures of nc-Si quantum dots with a uniform size of 10 nm prepared by the very high frequency plasma decomposition of silane gas. We have clarified the major problem of the dip-coating method, which is the formation of stripe structures. To circumvent this problem, we have proposed two methods: coating onto line-and-space-patterned substrates and utilization of electrophoresis force. We have successfully demonstrated the control of the position and number of layers of nc-Si by using a line-and-space-patterned substrate, however, with a limited shape. We have clarified the conditions of the formation of stripe-free regions by varying applied voltage and nc-Si concentration in the electrophoresis method.

  10. Properties of magnesium-substituted hydroxyapatite and the plasma coatings based on it

    NASA Astrophysics Data System (ADS)

    Lyasnikova, A. V.; Pichkhidze, S. Ya.; Dudareva, O. A.; Markelova, O. A.

    2015-11-01

    Magnesium-substituted hydroxyapatite is synthesized and deposited by plasma spraying, and the coating and the products of hydroxyapatite decomposition are analyzed. The phase composition of magnesium- substituted hydroxyapatite deposited by plasma spraying undergoes changes. The coating consisting of molten magnesium-substituted hydroxyapatite powder particles with pores between them has a homogeneous structure over the surface and throughout the internal structure and adhesion characteristics that exceed those of hydroxyapatite coatings.

  11. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Zhao, Huayu; Zhou, Xiaming; Tao, Shunyan; Ding, Chuanxian

    2012-11-01

    CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 1017 atoms/cm2. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al2O3 scale to improve the oxidation resistance. The Al implanted coating could form Al2O3 scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  12. Research and development of plasma sprayed tungsten coating on graphite and copper substrates

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zhang, Fu; Tao, Shunyan; Cao, Yunzhen; Xu, Zengyu; Liu, Yong; Noda, N.

    2007-06-01

    Vacuum plasma sprayed tungsten coating on graphite and copper substrates has been prepared. VPS-W coated graphite has multilayered silicon and tungsten interface pre-deposited by physical vapor deposition (PVD) and VPS-W coated copper has graded transition interlayer. VPS-W coating was characterized, and then the high heat flux properties of the coating were examined. Experimental results indicated that both VPS-W coated graphite and VPS-W coated copper could endure 1000 cycles without visible failure under a heat flux of approximately 5 MW/m2 absorbed power density and 5 s pulse duration. A comparison between the present VPS-W coated graphite and VPS-W coated carbon fiber composite (CX-2002U) with Re interface made by Plansee Aktiengesllshaft was carried out. Results show that both Re and Si are suitable as intermediate layer for tungsten coating on carbon substrates.

  13. Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation

    NASA Astrophysics Data System (ADS)

    Yuan, Jianhui; Zhu, Yingchun; Zheng, Xuebing; Ruan, Qichao; Ji, Heng

    2009-06-01

    The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.

  14. Effect of Molecular Cluster Injector Fueling on Lithium Tokamak Experiment Plasmas with Lithium-Coated Walls

    NASA Astrophysics Data System (ADS)

    Lundberg, D. P.; Granstedt, E.; Kaita, R.; Majeski, R.

    2011-10-01

    Lithium Tokamak Experiment (LTX) plasmas with lithium-coated walls have demonstrated low-recycling conditions, with substantially higher fueling requirements and reductions in edge neutral emission. Most fueling systems, such as wall-mounted gas puffers or supersonic gas injectors, are ill-suited for use with low-recycling plasmas, as they primarily source low-density gas into the plasma edge. A Molecular Cluster Injector (MCI) has been installed to improve fueling efficiency by increasing the penetration of neutrals into the plasma core. The MCI molecular density has been measured with an electron beam, with nH2exceeding 1016cm-3 more than 15cm from the nozzle. These densities are 100-1000 the LTX ne, making the MCI suitable for testing high-density fueling. By varying the MCI pressure, temperature, and location relative to the plasma, the relative importance of the molecular density and the degree of cluster formation within the supersonic jet can be studied. The effects of MCI fueling on LTX ne profiles is discussed. Supported by DOE contract number DE-AC02-09CH11466.

  15. Mechanical properties, electrochemical corrosion and in-vitro bioactivity of yttria stabilized zirconia reinforced hydroxyapatite coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Yugeswaran, S; Yoganand, C P; Kobayashi, A; Paraskevopoulos, K M; Subramanian, B

    2012-05-01

    Yttria stabilized zirconia reinforced hydroxyapatite coatings were deposited by a gas tunnel type plasma spray torch under optimum spraying conditions. For this purpose, 10, 20 and 30 wt% of yttria stabilized zirconia (YSZ) powders were premixed individually with hydroxyapatite (HA) powder and were used as the feedstocks for the coatings. The effect of YSZ reinforcement on the phase formation and mechanical properties of the coatings such as hardness, adhesive strength and sliding wear rates was examined. The results showed that the reinforcement of YSZ in HA could significantly enhance the hardness and adhesive strength of the coatings. The potentiodynamic polarization and impedance measurements showed that the reinforced coatings exhibited superior corrosion resistance compared to the HA coating in SBF solution. Further the results of the bioactivity test conducted by immersion of coatings in SBF showed that after 10 days of immersion of the obtained coatings with all the above compositions commonly exhibited the onset of bioactive apatite formation except for HA+10%YSZ coating. The cytocompatibility was investigated by culturing the green fluorescent protein (GFP)-labeled marrow stromal cells (MSCs) on the coating surface. The cell culture results revealed that the reinforced coatings have superior cell growth than the pure HA coatings. PMID:22498280

  16. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings.

    PubMed

    Yi, Deliang; Wu, Chengtie; Ma, Xubing; Ji, Heng; Zheng, Xuebin; Chang, Jiang

    2012-12-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca(2)MgSi(2)O(7)) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7-42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. PMID:23159958

  17. Diagnostics and modeling of yttria-stabilized zirconia formation in solution-precursor plasma-spray process

    NASA Astrophysics Data System (ADS)

    Ozturk, Alper

    Thermal barrier coatings produced by solution-precursor plasma-spray (SPPS) process have been shown to offer superior thermal properties and durability. The microstructure of these coatings combines favorable properties of conventional air plasma spray (APS) and electron beam physical vapor deposition (EB-PVD) coatings by providing evenly spaced, through-thickness vertical cracks and uniformly distributed porosity resulting in good strain tolerance and low thermal conductivity. This experimental and computational study aims at clarifying some of the key aspects of this process through diagnostics of the actual process, modeling of vaporization and precipitation within droplets and through model experiments which utilize a combustion flame instead of a plasma jet. The work also includes characterization of the combustion flame and study of the possibility of coating formation utilizing combustion processes instead of plasmas. Plasma-extracted sample indicate presence of spherical sintered polycrystalline particles of 100 nm to 1 micron. Characterization of the precursor spray show that the mean droplet size is about 40 micron suggesting droplet disintegration in the process. Modeling of the heat and mass transfer around the droplets and solute precipitation predict formation of shell type structures and ceno-spheres supported by the experimental evidence of shell type structures in the single pass plasma experiments. Combustion flame experiments were found to produce sintered polycrystalline tetragonal yttria-stabilized zirconia particles similar to the plasma-extracted samples. The microstructural and compositional evolution of the ceramic particles was characterized as a function of downstream distance in the flame jet.

  18. Vortex formation during rf heating of plasma

    SciTech Connect

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

  19. Dynamics of polymer film formation during spin coating

    SciTech Connect

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  20. Dynamics of polymer film formation during spin coating

    NASA Astrophysics Data System (ADS)

    Mouhamad, Y.; Mokarian-Tabari, P.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.

    2014-09-01

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  1. Characterization and Wear Behavior of Heat-treated Ni3Al Coatings Deposited by Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Ahmed, F.; Mudassar Rauf, M.

    2016-07-01

    Air plasma spraying was utilized to deposit Ni3Al coatings on AISI-321 steel substrate. The deposited coatings were isothermally heat-treated at various temperatures from 500 to 800 °C for 10, 30, 60, and 100 h. The x-ray diffraction analysis revealed NiO formation in Ni3Al at 500 °C after 100 h, and the percentage of NiO increased with increasing exposure time and temperature. The hardness of the coating increased with the formation of NiO. The DSC test showed the formation of minor phases, Al3Ni and Al3Ni2, within the coating along with the major phase Ni3Al. TGA revealed a slowing down of the oxidation rate upon surface oxide formation. The pin-on-disk wear test on the as-sprayed and heat-treated coatings showed that wear rate and coefficient of friction decreased with an increase in the NiO phase content.

  2. Characterization and Wear Behavior of Heat-treated Ni3Al Coatings Deposited by Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Ahmed, F.; Mudassar Rauf, M.

    2016-05-01

    Air plasma spraying was utilized to deposit Ni3Al coatings on AISI-321 steel substrate. The deposited coatings were isothermally heat-treated at various temperatures from 500 to 800 °C for 10, 30, 60, and 100 h. The x-ray diffraction analysis revealed NiO formation in Ni3Al at 500 °C after 100 h, and the percentage of NiO increased with increasing exposure time and temperature. The hardness of the coating increased with the formation of NiO. The DSC test showed the formation of minor phases, Al3Ni and Al3Ni2, within the coating along with the major phase Ni3Al. TGA revealed a slowing down of the oxidation rate upon surface oxide formation. The pin-on-disk wear test on the as-sprayed and heat-treated coatings showed that wear rate and coefficient of friction decreased with an increase in the NiO phase content.

  3. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  4. Effect of ion irradiation on the properties multi-element plasma coatings

    NASA Astrophysics Data System (ADS)

    Eremin, E. N.; Syzdykova, A. S.; Guchenko, S. A.; Yurov, V. M.; Gyngazova, M. S.

    2016-02-01

    The paper presents the results of the study of ion irradiation on the properties of multi-element plasma coatings. The coatings were bombarded by argon ions using heavy current ion source with a hollow cathode. After ion irradiation, the structure and physical properties of the coatings change, however, the nature of the changes is different for different coatings. To predict the behavior of the coating exposed to irradiation is virtually impossible. Therefore, structural studies and investigation of physical properties of the coatings to determine their functional characteristics are to be conducted.

  5. Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pawlik, R.; Loewenthal, W.

    2009-01-01

    Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.

  6. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.

    PubMed

    Huang, Yi; He, Jing; Gan, Lu; Liu, Xiaoguang; Wu, Yao; Wu, Fang; Gu, Zhong-wei

    2014-12-01

    The beneficial effect of a porous structure on the biological functions of calcium phosphate bulk ceramic or scaffold has been well documented. Nevertheless, the effect of a porous structure on the in vivo performance of hydroxyapatite (HA) coatings has been rarely reported, partly due to the difficulty in synthesizing porous HA coatings suitable for commercial applications. In this study, we have carried out a systematic in vivo study of porous HA-coated Ti implants (with and without surface modification) prepared by the liquid precursor plasma spraying process, in terms of its osteoconductivity and osteoinductivity. The results suggest the clear advantage of the porous structure over the dense structure, despite the pore structure (about 48% porosity and less than 100 μm average pore size) being far from the ideal pore structure reported for bulk ceramic. The porous HA-coated implant significantly promotes early bone ingrowth at the pre-generated defective region, and early fixation at the bone-implant interface, especially at early implantation time (one month), showing about 120% and 40% increases respectively over those of the dense HA-coated implants prepared by the conventional atmospheric plasma spraying process. Moreover, the porous structure can be readily used to incorporate collagen/rh-BMP2, which demonstrates clear ectopic bone formation. Overall, the results suggest the augmentation of bone ingrowth is significant for HA coatings with a porous structure, which is critical for the early fixation and long-term stability of medical implants. PMID:25384201

  7. Electrochemical characterization of plasma polymer coatings in corrosion protection of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Chan, Yenfong; Yu, Qingsong

    2005-07-01

    Low-temperature plasma polymerization is a promising pretreatment technique to create environmentally friendly coating systems for corrosion protection of aluminum alloys. In this study, the pretreatment effects of plasma treatment and plasma polymerization on corrosion properties of alclad aluminum alloy 2024-T3 ([2A]) were investigated using electrochemical characterization techniques, including cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS). The [2A] panels were coated with an ultrathin layer (~50 nm) of plasma polymers in a direct current (dc) glow discharge of trimethylsilane or its mixtures with one of two diatomic gases (O2 and N2). The CP measurement results showed that the plasma polymer coated [2A] panels exhibited more negative corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and no surface passivation when compared with uncoated [2A] control panels. The lower values of Icorr imply a higher corrosion resistance on the plasma polymer coated [2A]. When investigated using EIS, these plasma polymer coated [2A] panels exhibited higher impedance (|Z|) at lower frequency when first immersed in electrolyte solution, yet degraded quickly to a similar level as uncoated controls within 1 day of immersion. These results illustrated that thin plasma polymer films provided a certain but very limited corrosion resistance to [2A] substrate; their dominant role in plasma interface engineered coating systems still relied mostly on their adhesion enhancement at metal/paint interface as observed in our previous studies.

  8. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Ganvir, Ashish; Curry, Nicholas; Markocsan, Nicolaie; Nylén, Per; Joshi, Shrikant; Vilemova, Monika; Pala, Zdenek

    2016-01-01

    Suspension plasma spraying is a relatively new thermal spaying technique to produce advanced thermal barrier coatings (TBCs) and enables production of coatings with a variety of structures—highly dense, highly porous, segmented, or columnar. This work investigates suspension plasma-sprayed TBCs produced using axial injection with different process parameters. The influence of coating microstructure on thermal properties was of specific interest. Tests carried out included microstructural analysis, phase analysis, determination of porosity, and pore size distribution, as well as thermal diffusivity/conductivity measurements. Results showed that axial suspension plasma spraying process makes it possible to produce various columnar-type coatings under different processing conditions. Significant influence of microstructural features on thermal properties of the coatings was noted. In particular, the process parameter-dependent microstructural attributes, such as porosity, column density, and crystallite size, were shown to govern the thermal diffusivity and thermal conductivity of the coating.

  9. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  10. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Kopp, Nils; Warda, Thomas

    2012-12-01

    Carbon fibre reinforced carbon (CFC) materials are increasingly applied as sample carriers in modern furnaces. Only their tendency to react with different metals at high temperatures by C-diffusion is a disadvantage, which can be solved by application of diffusion barriers. Within this study the feasibility of plasma sprayed Al2O3 coatings as diffusion barrier was studied. Al2O3 coatings were prepared by air plasma spraying (APS). The coatings were investigated in terms of their microstructure, bonding to CFC substrates and thermal stability. The results showed that Al2O3 could be well deposited onto CFC substrates. The coatings had a good bonding and thermal shock behavior at 1060°C. At higher temperature of 1270°C, crack network formed within the coating, showing that the plasma sprayed Al2O3 coatings are limited regarding to their application temperatures as diffusion barrier on CFC components.

  11. Ablation Plasma Ion Implantation Optimization and Deposition of Compound Coatings

    NASA Astrophysics Data System (ADS)

    Jones, M. C.; Qi, B.; Gilgenbach, R. M.; Johnston, M. D.; Lau, Y. Y.; Doll, G. L.; Lazarides, A.

    2002-10-01

    Ablation Plasma Ion Implantation (APII) utilizes KrF laser ablation plasma plumes to implant ions into pulsed, negatively-biased substrates [1]. Ablation targets are Ti foils and TiN disks. Substrates are Si wafers and Al, biased from 0 to -10 kV. Optimization experiments address: 1) configurations that reduce arcing, 2) reduction of particulate, and 3) deposition/implantation of compounds (e.g. TiN). Arcing is suppressed by positioning the target perpendicular (previously parallel) to the substrate. Thus, bias voltage can be applied at the same time as the KrF laser, resulting in higher ion current. This geometry also yields lower particulate. APII with TiN has the goal of hardened coatings with excellent adhesion. SEM, AFM, XPS, TEM, and scratch tests characterize properties of the thin films. Ti APII films at - 4kV are smoother with lower friction. 1. B. Qi, R.M. Gilgenbach, Y.Y. Lau, M.D. Johnston, J. Lian, L.M. Wang, G. L. Doll and A. Lazarides, APL, 78, 3785 (2001) * Research funded by NSF

  12. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Yan, JianHui; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-01

    In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200-1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases-(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn.

  13. Ultrafast thermal plasma physical vapor deposition of yttria-stabilized zirconia for novel thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Huang, Heji; Eguchi, Keisuke; Kambara, Makoto; Yoshida, Toyonobu

    2006-03-01

    This research aims to develop advanced thermal plasma spraying technology for the next-generation thermal barrier coatings (TBCs) with a high power hybrid plasma spraying system. By using thermal plasma physical vapor deposition (TP-PVD), various functional structured yttria-stabilized zirconia (YSZ) coatings were deposited. Parameters, such as powder feeding rate, hydrogen gas concentration, and total mass flow rate of the plasma gas, were optimized, and their influences on the evaporation of YSZ powder were investigated. Ultrafast deposition of a thick coating was achieved at a rate of over 150 μm/min. The deposited porous coating has a low thermal conductivity of 0.7W/mK and the dense coating with interlaced t' domains possesses a high nanohardness of 27.85 GPa and a high reflectance. These characteristics show that the TP-PVD technique is a very valuable process for manufacturing novel TBCs.

  14. Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo

    PubMed Central

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration. PMID:23776648

  15. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    PubMed

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration. PMID:23776648

  16. Apparatus for coating a surface with a metal utilizing a plasma source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1991-01-01

    An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.

  17. Effect of Porosity on Photocatalytic Activity of Plasma-Sprayed TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Chaudhary, Ujwal; Das, Santanu; Godavarty, Anuradha; Agarwal, Arvind

    2013-10-01

    The effect of porosity on photocatalytic activity of plasma-sprayed TiO2 coating on steel substrate is studied by varying processing parameters viz. plasma power and powder feed rate. The relationship between porosity content and methylene blue (MB) dye decomposition rate was established to correlate coating microstructure and its photocatalytic activity. The coating with the highest porosity content exhibited best photocatalytic efficiency. The same processing parameters were used to deposit TiO2 coating on FTO glass. The photocatalytic activity of TiO2 coating on FTO was 2.5 times better than TiO2 coating on the steel substrate. TiO2 coating on FTO glass contains bimodal porosity distribution (micropores and submicron pores) which accelerated MB decomposition by accelerated diffusion of ionic species.

  18. Thermal Aging Behavior of Axial Suspension Plasma-Sprayed Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan

    2015-02-01

    7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.

  19. Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-06-01

    Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO2) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO2 coating on the response of osteoblasts to H2O2-induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H2O2-treated osteoblasts. It indicated that the CeO2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress. PMID:27091042

  20. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-07-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density (i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  1. Acoustoplasma synthesis of nanoparticles of metal oxides and formation of nanostructured coatings on material surfaces under ultrasonic treatment

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Morozova, E. A.; Muravyev, E. N.; Chernov, A. A.; Kazaryan, M. A.

    2015-12-01

    In this paper, a new form of plasma discharge in a liquid under intensive ultrasonic treatment exceeding the cavitation threshold has been explored in view of initiation of various physical and chemical processes. Furthermore, in this plasma discharge, nanoparticles of oxides of various metals with controlled shape and size of particles and narrow particles size distribution have been synthesized. Further research proved that ultrasonic cavitation during synthesis significantly affects the physical and chemical characteristics of nanoparticles. These nanoparticles can be used for formation of nanostructured coatings on surfaces of various materials by an ultrasonic technique.

  2. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-12-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  3. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-03-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  4. Oxidation and Hot Corrosion Behavior of Plasma-Sprayed MCrAlY-Cr2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Huang, Chuanbing; Lan, Hao; Du, Lingzhong; Zhang, Weigang

    2016-08-01

    The oxidation and hot corrosion behavior of two atmospheric plasma-sprayed NiCoCrAlY-Cr2O3 and CoNiCrAlY-Cr2O3 coatings, which are primarily designed for wear applications at high temperature, were investigated in this study. The two coatings were exposed to air and molten salt (75%Na2SO4-25%NaCl) environment at 800 °C under cyclic conditions. Oxidation and hot corrosion kinetic curves were obtained by thermogravimetric technique. X-ray diffraction analysis and scanning electron microscopy with energy-dispersive x-ray spectrometry were employed to characterize the coatings' microstructure, surface oxides, and composition. The results showed that both coatings provided the necessary oxidation resistance with oxidation rates of about 1.03 × 10-2 and 1.36 × 10-2 mg/cm2 h, respectively. The excellent oxidation behavior of these two coatings is attributed to formation of protective (Ni,Co)Cr2O4 spinel on the surface, while as-deposited Cr2O3 in the coatings also acted as a barrier to diffusion of oxidative and corrosive substances. The greater presence of Co in the CoNiCrAlY-Cr2O3 coating restrained internal diffusion of sulfur and slowed down the coating's degradation. Thus, the CoNiCrAlY-Cr2O3 coating was found to be more protective than the NiCoCrAlY-Cr2O3 coating under hot corrosion condition.

  5. Plasma spray processing of TiC-based coatings for sliding wear resistance

    NASA Astrophysics Data System (ADS)

    Mohanty, Mahesh

    Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was

  6. Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Kobayashi, A.

    2007-06-01

    Hydroxyapatite (HA) is a bioactive material because its chemical structure is close to the natural bone. Its bioactive properties make it attractive material in biomedical applications. Gas tunnel type plasma spraying (GTPS) technique was employed in the present study to deposit HA coatings on SUS 304 stainless steel substrate. GTPS is composed of two plasma sources: gun which produces internal low power plasma (1.3-8 kW) and vortex which produces the main plasma with high power level (10-40 kW). Controlling the spraying parameters is the key role for spraying high crystalline HA coatings on the metallic implants. In this study, the arc gun current was changed while the vortex arc current was kept constant at 450 A during the spraying process of HA coatings. The objective of this study is to investigate the influence of gun current on the microstructure, phase crystallinity and hardness properties of HA coatings. The surface morphology and microstructure of as-sprayed coatings were examined by scanning electron microscope. The phase structure of HA coatings was investigated by X-ray diffraction analysis. HA coatings sprayed at high gun current (100 A) are dense, and have high hardness. The crystallinity of HA coatings was decreased with the increasing in the gun current. On the other hand, the hardness was slightly decreased and the coatings suffer from some porosity at gun currents 0, 30 and 50 A.

  7. Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-03-01

    Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.

  8. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect

    Kaita, R., et. al.

    2008-09-29

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  9. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect

    Kaita, R; Kugel, H; Bell, M G; Bell, R; Boedo, J; Bush, C; Ellis, R; Gates, D; Gerhardt, S; Gray, T; Kallman, J; Kaye, S; LeBlanc, B; Majeski, R; Maingi, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, S H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Zakharov, L; Ahn, J; Allain, J P; Wampler, W R

    2009-01-08

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  10. Structural Analysis of Dusty Plasma Formations Based on Spatial Spectra

    SciTech Connect

    Khakhaev, A. D.; Luizova, L. A.; Piskunov, A. A.; Podryadchikov, S. F.; Soloviev, A. V.

    2008-09-07

    Some advantages of studying the structure of dusty plasma formations using spatial spectra are illustrated by simulated experiments and by processing actual images of dusty structures in dc glow discharge in inert and molecular gases.

  11. High heat flux properties of pure tungsten and plasma sprayed tungsten coatings

    NASA Astrophysics Data System (ADS)

    Liu, X.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Yang, L.; Xu, Z.

    2004-08-01

    High heat flux properties of pure tungsten and plasma sprayed tungsten coatings on carbon substrates have been studied by annealing and cyclic heat loading. The recrystallization temperature and an activation energy QR=126 kJ/mol for grain growth of tungsten coating by vacuum plasma spray (VPS) were estimated, and the microstructural changes of multi-layer tungsten and rhenium interface pre-deposited by physical vapor deposition (PVD) with anneal temperature were investigated. Cyclic load tests indicated that pure tungsten and VPS-tungsten coating could withstand 1000 cycles at 33-35 MW/m 2 heat flux and 3 s pulse duration, and inert gas plasma spray (IPS)-tungsten coating showed local cracks by 300 cycles but did not induce failure by further cycles. However, the failure of pure tungsten and VPS-tungsten coating by fatigue cracking was observed under higher heat load (55-60 MW/m 2) for 420 and 230 cycles, respectively.

  12. Mechanisms of Soldering Formation on Coated Core Pins

    NASA Astrophysics Data System (ADS)

    Song, Jie; Denouden, Tony; Han, Qingyou

    2012-02-01

    Die soldering is one of the major casting defects during the high-pressure die casting (HPDC) process, causing dimensional inaccuracy of the castings and increased downtimes of the HPDC machine. In this study, we analyzed actually failed core pins to determine the mechanism of soldering and its procedures. The results show that the soldering process starts from a local coating failure, involves a series of intermetallic phase formation from reactions between molten aluminum alloys and the H13 steel pin, and accelerates when an aluminum-rich, face-centered cubic (fcc) phase is formed between the intermetallic phases. It is the formation of the aluminum-rich fcc phase in the reaction region that joins the core pin with the casting, resulting in the sticking of the casting to the core pin. When undercuts are formed on the core pin, the ejection of castings from the die will lead to either a core pin failure or damages to the casting being ejected.

  13. Processing-microstructure-properties relationships in small-particle plasma-sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Mawdsley, Jennifer Renee

    The objective of this study was to determine processing-microstructure-properties relationships for small-particle plasma-sprayed (SPPS) ceramic coatings. Plasma-sprayed yttria partially-stabilized zirconia (YSZ) coatings, which are used to protect superalloys from heat and the environment in turbine engines, and plasma-sprayed alumina coatings, which are being investigated as a potential replacement for chrome in corrosion protection applications, were fabricated using SPPS technology and their microstructure and pertinent properties were examined. The properties of plasma-sprayed YSZ and alumina coatings were investigated with designed experiments. The parameters varied include power, spray distance, total plasma gas flow, percent hydrogen in the plasma gas, injector angle, injector offset and carrier gas flow. The variations in thermal diffusivity, thermal conductivity, elastic modulus, and hardness for the YSZ SPPS coatings were found to correlate to the variations in density, which were related to the processing variables. It was found that surface roughness was related to the amount of splashing and debris associated with the single splats. In four-point bending strain tolerance and fatigue tests, the SPPS YSZ coatings showed very little acoustic emission activity, except in the case of tensile fatigue of a coating without network cracks. Small angle X-ray scattering experiments revealed that SPPS YSZ coatings have significantly less submicron intersplat porosity than conventional plasma-sprayed coatings, and that the pore and microcrack scattering area decreases with heat treatment due to the sintering of microcracks and small pores. The SPPS alumina coatings were optimized to produce a coating with excellent corrosion protection capabilities. It was found that the hardest SPPS alumina coatings did not provide the best corrosion protection due to unique porosity defect structures associated with surface bumps in the coatings. The surface bumps were

  14. Microstructures of Yttria-Stabilized Zirconia Coatings by Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Li, Chenyi; Guo, Hongbo; Gao, Lihua; Wei, Liangliang; Gong, Shengkai; Xu, Huibin

    2015-02-01

    As a novel processing technology, plasma spray-physical vapor deposition (PS-PVD) has exhibited potential capability to shape the sprayed coating microstructures. In this paper, yttria-stabilized zirconia (YSZ) coatings were produced at spray distances in the range of 450-1400 mm by PS-PVD. The morphologies of the coatings, going from a denser type of layer to the columnar structure, along the axial and radial directions of the plasma plume were studied. Along the axial direction, five YSZ coating microstructures including "dense lamellar structure," "closely packed columnar structure," "quasi-columnar structure with more nanoparticles," "EB-PVD-like columnar structure," and "quasi-columnar structure with less nanoparticles" were achieved, respectively. Along the radial direction, similar microstructures of coatings were obtained. A simple structure spatial distribution model was developed for demonstrating the mapping of various YSZ coating microstructures.

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Modification of material properties and coating deposition using plasma jets

    NASA Astrophysics Data System (ADS)

    Pogrebnyak, Alexander D.; Tyurin, Yu N.

    2005-05-01

    The review is concerned with the current status of research on the use of plasma jets for the modification of surface properties of metalware, as well as of investigations of doping and mass transfer of elements. The effect of thermal plasma parameters on the efficiency of surface processing of metal materials is discussed. The structure and properties of protective coatings produced by exposure to pulsed plasmas are analyzed. A new direction for the production of combined coatings is considered. Their structure and properties were studied by the example of Fe, Cu, steels, and alloys, including titanium alloys; the modification process was shown to be controllable by the action of pulsed plasma jets. The physical factors that affect the modification process and the coating deposition, and their effect on the structure and properties of metallic, ceramic - metal, and ceramic coatings were analyzed.

  16. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.

    1996-01-01

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

  17. Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating.

  18. Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Hospach, A.; Zotov, N.; Vaßen, R.

    2013-03-01

    Plasma spraying at very low pressure (50-200 Pa) is significantly different from atmospheric plasma conditions (APS). By applying powder feedstock, it is possible to fragment the particles into very small clusters or even to evaporate the material. As a consequence, the deposition mechanisms and the resulting coating microstructures could be quite different compared to conventional APS liquid splat deposition. Thin and dense ceramic coatings as well as columnar-structured strain-tolerant coatings with low thermal conductivity can be achieved offering new possibilities for application in energy systems. To exploit the potential of such a gas phase deposition from plasma spray-based processes, the deposition mechanisms and their dependency on process conditions must be better understood. Thus, plasma conditions were investigated by optical emission spectroscopy. Coating experiments were performed, partially at extreme conditions. Based on the observed microstructures, a phenomenological model is developed to identify basic growth mechanisms.

  19. Porcelain-coated antenna for radio-frequency driven plasma source

    DOEpatents

    Leung, K.N.; Wells, R.P.; Craven, G.E.

    1996-12-24

    A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.

  20. Effect of Li coatings on coarse-grained W exposed to high flux He plasmas at high temperatures

    NASA Astrophysics Data System (ADS)

    Neff, Anton; Allain, Jean Paul; Morgan, Thomas

    2014-10-01

    Tungsten is appealing as a plasma facing component (PFC) because of its high sputter threshold, high melting temperature, and good thermal conductivity. However, when exposed to He ions at low energy and high flux, like those in a tokamak divertor, the surface microstructure changes detrimentally, creating bubbles, holes, and fuzz. Recent studies show that adding impurities (C and Be) to the He plasma can inhibit the growth of fuzz. Additionally, lithium as a PFC coating in multiple tokamaks has improved plasma performance. We investigated the effect that a thin ~500 nm Li coating had on the formation of these surface defects in W. Samples were exposed in the linear plasma device Magnum PSI, at fluxes of ~1024 m-2 s-1 and Tsurf > 700& circ; C. After irradiation, the surface of the samples were characterized with scanning electron microscopy (SEM). These results will be presented along with XPS and SIMS results investigating the survivability of the Li coating under these conditions. This work is supported by US DOE Contracts: DE-SC0010717 and DE-SC0010719.

  1. In-situ formation of multiphase deposited thermal barrier coatings

    DOEpatents

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  2. Microstructure and corrosion properties of thick WC composite coating formed by plasma cladding

    NASA Astrophysics Data System (ADS)

    Guozhi, Xie; Xiaolong, Song; Dongjie, Zhang; Yuping, Wu; Pinghua, Lin

    2010-08-01

    The thick Ni-coated WC coatings, in a matrix of Nickel-based alloys, were prepared on AISI 1045 steel using plasma cladding equipment. A pre-placed layer of uniform mixture, with different weight fractions of Ni-coated WC powder and Nickel-based alloy powder, on the steel substrate was melted at the high temperature of the plasma jet. The coating composition, microstructure and microhardness were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS) and microhardness testing. The experimental results show that the metallurgical bond was formed between the coating and substrate. The XRD results show that the coatings contain γ-Ni, carbides (such as M 23C 6 and M 7C 3) and boride (such as Fe 2B, Fe 3B phases). SEM shows that all the coatings are crack-free with lower porosity (<1%). It is found that the microhardness and the electrochemical behavior of the coatings are depended on the content of Ni-coated WC powder. The corrosion mechanism for the coatings may be due to the microgalvance corrosion between the phases in the cladding coatings.

  3. Structure, mechanical performance and electrochemical characterization of plasma sprayed SiO 2/Ti-reinforced hydroxyapatite biomedical coatings

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Fahim, N. F.; Kobayashi, A.

    2008-12-01

    For achieving an excellent bioactivity and mechanical properties, silica and titanium-reinforced hydroxyapatite composite coatings were deposited onto 304 SUS substrate by using a gas-tunnel plasma spraying system. A commercial HA powder of average size 10-45 μm was blended with fused amorphous silica and titanium powders with HA:SiO 2:Ti wt.% ratios of 75:15:10 respectively. The mixed powders have been plasma sprayed at various plasma gas flow rates (Ar) of 120, 140, 160 and 170 l/min. The morphologies and structure of the resulting coatings were investigated by scanning electron microscope, X-ray diffraction and electron dispersive spectroscopy. Hardness, abrasive wear resistance and adhesive bonding strength properties of the as-sprayed composite coatings were investigated. Silica and titanium provide reinforcement via increasing the bonding strength of HA particles and abrasion resistance. A heat treatment for the sprayed coatings was carried out at a temperature of 650 °C for 2 h in ambient oxygen and the change in the phase structure was analysed by X-ray diffraction. The results showed a formation of TiO 2 (rutile) phase due to titanium oxidation at 650 °C. On the other hand, the heat treatment enhanced the crystallinity of HA coating by transferring the non-apatite tri-calcium phosphate phase into apatite phase. The corrosion resistance measurement by polarization method confirmed the improvement of corrosion resistance of the composite HA/SiO 2/Ti coatings compared with the pure HA. However, the annealed samples showed lower corrosion resistance compared with as-sprayed samples.

  4. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  5. Formation and Stability of Impurity "snakes" in Tokamak Plasmas

    SciTech Connect

    L. Delgado-Aparicio, et. al.

    2013-01-28

    New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried-out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q < 1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature

  6. Composite ion-plasma coatings with nanodisperse reinforced phase: scientific and practical aspects of synthesis

    NASA Astrophysics Data System (ADS)

    Brzhozovskii, B.; Martynov, V.; Zinina, E.; Brovkova, M.

    2016-02-01

    The article describes the main aspects of the synthesis of composite coatings in the surface layer of figurine-shaped product using low-temperature plasma of combined discharge. The example of cutting tools shows the benefits of using the coatings in extreme conditions that occur in machining of materials by cutting.

  7. Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Jeong, O.; Lee, A.; Raum, C.; Suzuki, A.

    2016-02-01

    We have developed a plasma-sprayed anti-reflection (AR) coating technology for millimeter-wave astrophysics experiments with cryogenic optics which achieves minimal dissipative loss and broad bandwidth and is easily and accurately applied. Plasma spraying is a coating process through which melted or heated materials are sprayed onto a substrate. The dielectric constants of the plasma-sprayed coatings were tuned between 2.7 and 7.9 by mixing hollow ceramic microspheres with alumina powder as the base material and varying the plasma energy of the spray. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. At 300 K, we achieved a fractional bandwidth of 106 over 90% transmission using a three-layer AR coating. Applying ceramic coatings on ceramic lenses offers an additional benefit of preventing cryogenic delamination of the coatings. We report on methodology of coating application and measurement of uniformity, repeatability, transmission property, and cryogenic adhesion performance.

  8. D. C. Plasma-Sprayed Coatings of Nanostructured Alumina-Titania-Silica

    NASA Astrophysics Data System (ADS)

    Jiang, Xian-liang; Liu, Min

    2002-10-01

    Nanocrystalline powders of w(Al2O3) = 95%, w(TiO2) = 3%, and w(SiO2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spray the agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated noncrystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.

  9. Performance comparison of plasma spray and physical vapor deposition BC23 coatings in the LM2500

    SciTech Connect

    Wortman, D.J.

    1985-11-01

    Operation of US Navy Component Improvement Program LM2500 engines on the GTS Callaghan has provided an at-sea test bed for evaluation of hot corrosion on gas turbine engine components. In a presentation at a previous International Conference on Metallurgical Coatings, (ICMC), comparison of several coatings applied by physical vapor deposition (PVD) techniques were compared after LM2500 service. A three-step coating BC23 consisting of PVD CoCrAl followed by codeposition of hafnium and aluminum and an electroplated platinum layer was identified as the most corrosion-resistant coating of several PVD coatings tested. In this paper, a plasma sprayed version of BC23 is compared to the three-step BC23 coating on LM2500 Stage 2 HPT blades from the GTS Callaghan. The plasma sprayed coating PBC23 was produced by an argon-shrouded plasma spray process using prealloyed CoCrAlHfPt powder. The results showed that in this application, where low temperature hot corrosion (type 2) is the predominant mode of corrosion, the plasma sprayed coatings had less attack. These results are compared to laboratory hot corrosion tests and microprobe analysis to explain the improved corrosion resistance of PBC23.

  10. Fatigue testing of plasma-sprayed thermal barrier coatings, volume 2

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.