Science.gov

Sample records for plasma epoch theory

  1. Plasma Sterilization: New Epoch in Medical Textiles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Arun, N.; Vigneswaran, C.

    2015-04-01

    Clothing is perceived to be second skin to the human body since it is in close contact with the human skin most of the times. In hospitals, use of textile materials in different forms and sterilization of these materials is an essential requirement for preventing spread of germs. The need for appropriate disinfection and sterilization techniques is of paramount importance. There has been a continuous demand for novel sterilization techniques appropriate for use on various textile materials as the existing sterilization techniques suffer from various technical and economical drawbacks. Plasma sterilization is the alternative method, which is friendlier and more effective on the wide spectrum of prokaryotic and eukaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Plasma exposure can kill micro-organisms on a surface in addition to removing adsorbed monolayer of surface contaminants. Advantages of plasma surface treatment are removal of contaminants from the surface, change in the surface energy and sterilization of the surface. Plasma sterilization aims to kill and/or remove all micro-organisms which may cause infection of humans or animals, or which can cause spoilage of foods or other goods. This review paper emphasizes necessity for sterilization, essentials of sterilization, mechanism of plasma sterilization and the parameters influencing it.

  2. Superposed Epoch Analysis of Ring Current Geoeffectiveness Related to Solar Wind and Plasma Sheet Drivers

    NASA Technical Reports Server (NTRS)

    Liemohm, M. W.; Kozyra, J. U.; Thomsen, M. F.; Borovsky, J. E.; Gahurthakurta, Madulika (Technical Monitor)

    2004-01-01

    The goal of that proposal was to examine the relationship between solar wind drivers and ring current dynamics through data analysis and numerical simulations. The data analysis study was a statistical examination (via superposed epoch analyses) of a solar cycle's worth of storm data. Solar wind data, geophysical indices, and geosynchronous plasma data were collected for every time period with Dst< -50 nT from 1989 through 2002, and the storm list now exceeds 400 entries. This work was first conducted by a summer undergraduate student, Mr. John Vann (University of Kansas), with funding from the NSF Research Experience for Undergraduates program. It was then continued by a University of Michigan graduate student, Mr. Jichun Zhang. Mr. Zhang is now in his fourth year at U-M and is progressing very well toward a PhD in space science. His dissertation will be based on his data analysis and modeling efforts using this geomagnetic storm database. The results of the data analysis study have been the focus of several conference presentations, and the first manuscript has just been published. Two additional papers are presently being prepared, one on average (superposed) solar wind features for various storm subsets (e.g., intense storms at solar maximum), and another on geosynchronous plasma features for these same storm subsets. The latter result was highlighted by the TR&T program director in his presentation at the COSPAR meeting this summer.

  3. Superposed epoch analysis of pressure and magnetic field configuration changes in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Kistler, L. M.; Baumjohann, W.; Nagai, T.; Mobius, E.

    1993-01-01

    Using data from 41 substorm events in the near-Earth magnetotail, we have combined plasma, energetic ion, and magnetic field data from the AMPTE/IRM spacecraft to perform a superposed epoch analysis of changes in the total pressure and in the magnetic field configuration as a function of time relative to substorm onset. Unloading is evident in the total pressure profile; the pressure decreases by about 20 percent. Pressure changes during the growth phase are not as uniform for the different substorms as the pressure changes during the expansion phase. To study changes in the magnetic field configuration, we have determined the development of the plasma pressure profiles in z for an average of data from 15 to 19 R(E). At substorm onset, the field line dipolarization begins on the innermost field lines and then progresses to the outer field lines. The field lines map the closest to the Earth about 45 min after substorm onset, and then begin to stretch out again during the recovery phase of the substorm.

  4. Theory of the unmagnetized plasma.

    NASA Technical Reports Server (NTRS)

    Montgomery, D. C.

    1971-01-01

    The Vlasov mathematical model of a plasma, which has come to be thought more useful than any other in describing the dynamical behavior of the majority of plasmas of interest, is first examined. Macroscopic variables and moment equations; linear electrostatics solutions; plasma oscillations, ion acoustic waves, and linear instabilities are treated, as well as external fields, 'test' charges, and nonlinear Vlasov phenomena. Plasmas are statistically described, and attention is given to the kinetic theory of the stable, uniform plasma and the Balescu-Lenard equation; two-time ensemble averages and fluctuation spectra in stable plasmas; the kinetic theory of the unstable plasma; and ensembles of Vlasov plasmas. Some illustrative experiments are described. Four appendixes deal with the electrostatic approximation and transverse waves; solution of the linearized Vlasov equation in a magnetic field; estimates of correlation functions from thermal equilibrium; and equivalence of spatially uniform BBGKY and Klimontovich correlations.

  5. A consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground-based, and Galileo J0 epochs

    NASA Astrophysics Data System (ADS)

    Smyth, William H.; Peterson, Charles A.; Marconi, Max L.

    2011-07-01

    A new four-dimensional (three spatial and local time) empirical model for the Io plasma torus is presented that includes several System III longitude asymmetries and a dawn-dusk electric field with variable direction and magnitude. The model is used to analyze and compare observations for the peak density structure of the plasma torus acquired at the 1979 Voyager 1, the 1991 ground-based, and the 1995 Galileo J0 epochs. The mean magnitude of the dawn-dusk electric field is determined to be much smaller at the 1991 ground-based epoch than at the Voyager 1 and Galileo J0 epochs. A consistent understanding of the radial structure for the density peaks in the plasma torus may then be achieved for these epochs if the dawn-dusk electric field departs by ˜20° from the true dawn-dusk direction and if account is taken of absolute density changes. The ratio of the electron density in the inner and outer plasma torus varies significantly for the three epochs and indicates different temporal evolutions in the balance of the plasma torus production and loss processes. The undisturbed electron density at Io's position in the plasma torus is calculated and has significantly different values at the three epochs; it is shown for each epoch to undergo large variations as Io changes its location in heliocentric phase angle and System III longitude. These large variations provide a wide variety of changing upstream plasma conditions for Io's atmospheric formation, local aurora and distant footprint emissions, and electrodynamic interaction.

  6. Plasma theory and simulation research

    SciTech Connect

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  7. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  8. Theory of Space Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Mendis, A.

    2012-12-01

    Ionized gases, contaminated with fine (nanometer to micrometer-sized) charged dust, loosely referred to a dusty plasmas, occur in a wide variety of cosmic and laboratory environments. In this topical review I will discuss the underlying theory of such plasmas, with emphasis on the space environment. Central to the discussion is the electrostatic charging of the dust grains by the various currents that they experience in the plasma and radiative environment in which they are immersed. This charging could lead to both physical and dynamical consequences for the dust as well as for the plasma. Among the physical effects for the dust are electrostatic disruption and electrostatic levitation from charged surfaces. The dynamics of the charged dust is affected by the Lorentz force they experience, since space plasmas are generally magnetized. The physical effects for plasma result from the fact that the dust can act both as a sink and as a source of electrons in different space environments. The dynamical effects on the plasma arise from the fact that the charged dust can alter the phase velocity of normal wave modes (e.g., the Ion acoustic mode) by changing the charge equilibrium in the plasma. Additionally the charged dust can also participate in the wave dynamics, leading, for example, to the very low frequency, novel, "dust-acoustic" wave that has been observed in the laboratory. Finally the possibility that charged dust in a space plasma, may indirectly influence the propagation of electromagnetic radiation through it, will also be, briefly, discussed.

  9. Perspectives in Space Plasma Theory

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.

    The past half century has been characterized by the birth of space plasma physics and its rise to maturity which has led into a certain mood of satisfaction and partial saturation with its achievements. Indeed, on the global scale our knowledge about the magnetosphere, the solar wind from the Sun out to its boundaries, even of the condition on the surface and in the atmosphere of the Sun and the Sun's interior has to a high degree become complete. The degree of completion is indeed such that it allows predicting up to a certain precision their behaviour. New names like Solar Seismology, Solar Meteorology, and Space Weather have been coined indicating the transition of some of the sub-field of Space Plasma Physics into the domain of an industry of monitoring and prediction in the interest of the needs of a general society. This is an entirely healthy evolution of a scientific field that is on the way of completion. Still there is a large number of questions which should and can hopefully be answered by space plasma theory. Some of them will be listed here in view of what has been achieved and in which direction future theory could contribute to their resolution when addressing the already operating and the new upcoming space missions like Cluster, MMS and others, most of which are designed to become multi-spacecraft enterprises and also in view of the new theoretical and computational techniques and methods that have been developed during the past decades. These directions reach from the detailed understanding of the processes in the solar atmosphere and solar wind through the detailed physics of the formation of collisionless shocks, magnetosheaths and turbulence, the microphysics of reconnection and particle acceleration, the substorm mechanism to the detailed understanding of planetary magnetospheres and the heliospheric termination shock, heliosheath and boundary layer. All this research though already in flow is by far not completed. It requires new efforts as

  10. Perspectives in space plasma theory

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.

    The past half century has been characterized by the birth of space plasma physics and its rise to maturity which has led into a certain mood of satisfaction and partial saturation with its achievements. Indeed, on the global scale our knowledge about the magnetosphere, the solar wind from the Sun out to its boundaries, even of the conditions on the surface and in the atmosphere of the Sun and the Sun’s interior has to a high degree become complete. The degree of completion is indeed such that it allows predicting up to a certain precision their behavior. New names like solar seismology, solar meteorology, and space weather have been coined indicating the transition of some of the sub-field of Space Plasma Physics into the domain of an industry of monitoring and predicting in the interest of the needs of a general society. This is an entirely healthy evolution of a scientific field that is on the path of completion. Still there is a large number of questions which should and can hopefully be answered by space plasma theory. Some of them will be listed here in view of what has been achieved and in which direction future theory could proceed in order to contribute to their resolution when addressing the already operating and the new and upcoming space missions like Cluster, the planned Magnetospheric Multi-Scale mission MMS and others, respectively, most of which are designed to become multi-spacecraft enterprizes and also in view of the new theoretical and computational techniques and methods that have been developed during the past decades. These directions reach from the detailed understanding of the processes in the solar atmosphere and solar wind through the detailed physics of the formation of collisionless shocks, magnetosheaths and turbulence, the microphysics of reconnection and particle acceleration, and the substorm mechanism to the detailed understanding of planetary magnetospheres, the outer heliosphere with its heliospheric termination shock

  11. Theory for Plasma Rocket Propulsion

    NASA Astrophysics Data System (ADS)

    Grabbe, Crockett

    2009-11-01

    Electrical propulsion of rockets is developing potentially into the use of 3 different thrusters for future long-distance space missions that primarily involve plasma dynamics. These are the Magnetoplasmadynamic (MPD) Thruster, the Plasma Induction Thruster (PID), and the VASIMIR Thruster. The history of the development of electrical propulsion into these prospects and the current research of particularly the VASIMIR Thruster are reviewed. Theoretical questions that need to be addressed in that development are explored.

  12. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. PMID:26276464

  13. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this

  14. Stability theory of Knudsen plasma diodes

    SciTech Connect

    Kuznetsov, V. I. Ender, A. Ya.

    2015-11-15

    A stability theory is developed for a plasma diode in which an electron beam supplied from the emitter propagates without collisions in the self-consistent electric field against the immobile ion background. An integral equation for the amplitude of the perturbed field is deduced using the Q,G method for the regime without electron reflection from a potential barrier. Analytic solutions to this equation are obtained for a number of important particular cases, and the plasma dispersion properties are examined.

  15. Statistical theory of plasma-molecular systems

    NASA Astrophysics Data System (ADS)

    Klimontovich, Yu. L.; Wilhelmsson, H.; Yakimenko, I. P.; Zagorodny, A. G.

    1989-04-01

    The basic principles of kinetic theory are formulated for combined plasma-molecular systems consisting of both free and bound charged particles. The description of the subsystem of bound particles is bassed on the classical model of atomic oscillators (this makes it impossible to take into account ionization and recombination processes, byt the general formalism is still quite useful). In the framework of such a model, collective electromagnetic processes in infinite and bounded plasma-molecular matter are studied. The influence of boundaries on the collision integrals, on the kinetic coefficients and on the space distributions of particles is investigated in detail. The theory of electromagnetic fluctuations in bounded plasma-molecular systems is developed as well. This theory is used to obtain the correlation functions of electron density fluctuations and spontaneous emission spectra. A numerical analysis of spontaneous emission spectra is presented for systems with plane-parallel boundaries. The generalization of the fluctuation theory of bremsstrahlung radiation in a plasma to the case of plasma-molecular matter is also discussed.

  16. Neutral Vlasov kinetic theory of magnetized plasmas

    SciTech Connect

    Tronci, Cesare; Camporeale, Enrico

    2015-02-15

    The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while neglecting radiation effects. Euler-Poincaré reduction theory is used to show that the neutral Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordinates. By construction, the new model recovers all collisionless neutral models employed in plasma simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models are presented in the linear regime.

  17. Kinetic theory of relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1981-01-01

    The thermalization of particle kinetic motion by binary collisions is considered for a plasma with a Boltzmann constant-temperature product approximately equal to 10 to 100 times the product of the electron mass with the square of the speed of light. At this temperature, the principal mechanism for relaxation of electron motion is via radiationless electron-electron collisions (Moller scattering). Ions are nonrelativistic, but are energetic enough so that their Coulomb scattering can be treated in the Born approximation. Relaxation times are computed and Boltzmann-equation Fokker-Planck operators are derived for the various binary-collision processes. The expression for the rate of kinetic energy exchange between electron and ion gases is derived for the case where the gases are at different temperatures.

  18. Weak turbulence theory for collisional plasmas

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ziebell, L. F.; Kontar, E. P.; Schlickeiser, R.

    2016-03-01

    Plasma is an ionized gas in which the collective behavior dominates over the individual particle interactions. For this reason, plasma is often treated as collisionless or collision-free. However, the discrete nature of the particles can be important, and often, the description of plasmas is incomplete without properly taking the discrete particle effects into account. The weak turbulence theory is a perturbative nonlinear theory, whose essential formalism was developed in the late 1950s and 1960s and continued on through the early 1980s. However, the standard material found in the literature does not treat the discrete particle effects and the associated fluctuations emitted spontaneously by thermal particles completely. Plasma particles emit electromagnetic fluctuations in all frequencies and wave vectors, but in the standard literature, the fluctuations are approximately treated by considering only those frequency-wave number regimes corresponding to the eigenmodes (or normal modes) satisfying the dispersion relations, while ignoring contributions from noneigenmodes. The present paper shows that the noneigenmode fluctuations modify the particle kinetic equation so that the generalized equation includes the Balescu-Lénard-Landau collision integral and also modify the wave kinetic equation to include not only the collisional damping term but also a term that depicts the bremsstrahlung emission of plasma normal modes.

  19. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  20. Recent Advances in Plasma Edge Physics Theory

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2015-11-01

    This presentation summarizes recent theory developments for interpreting plasma edge physics experiments in DIII-D. i) Radial and poloidal moment balance require that the radial particle flux be of a pinch-diffusive nature with the pinch representing the electromagnetic forces and external momentum input. Ion radial particle fluxes in experiment are found to be a smaller difference between large outward diffusion fluxes and inward pinch fluxes. When the pinch-diffusion relation is used in the continuity equation a new diffusion theory that preserves momentum balance is obtained. ii) The majority of thermalized ions and their energy cross the LCFS on ion loss orbits and are deposited in the SOL near the outboard midplane. The lost ions are predominantly ctr-current, producing a co-current intrinsic rotation of the remaining ions in the edge plasma. iii) While the contribution of the leading order parallel viscosity to toroidal momentum damping vanishes identically in axisymmetric plasmas, non-axisymmetric radial B-fields in the edge plasma enable parallel viscosity to enhance the damping of toroidal rotation. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  1. Plasmas as Antennas - Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Borg, Gerard

    1999-11-01

    A variety of antennas are employed in telecommunications and radar systems. Some applications pose special problems. Large structures are easily detected by hostile radar. The performance of multi-element HF-VHF arrays is complicated by mutual coupling between large radiating elements. High speed data communications and radar can be limited by signal decay and ringing. A novel solution is an antenna made of plasma that can be made to disappear on microsecond time scales. Recent experiments at the Australian National University (G.G. Borg et. al. App. Phys. Letts. Vol. 74, 3272-3274 [1999]), have shown that highly efficient (25 - 50radiating elements for the range 3 - 300 MHz can be formed using low power (10 - 50 W average) plasma surface waves launched at one end of a tube containing a suitable gas. Only a single capacitive coupler is needed to launch the waves - there is no electrical connection to the other end of the tube. The regimes of wave propagation correlate with expectations from plasma surface wave theory. Actual communications experiments have shown that these plasma antennas can have surprisingly low noise provided they are excited by the rf surface waves and not by a low frequency or DC ohmic current. Applications to HF-VHF communications and radar are being developed. These include both single ruggedised plasma elements and multi-element arrays.

  2. Geometric Gyrokinetic Theory for Edge Plasma

    SciTech Connect

    Qin, H; Cohen, R H; Nevins, W M; Xu, X Q

    2007-01-18

    It turns out that gyrokinetic theory can be geometrically formulated as special cases of a geometrically generalized Vlasov-Maxwell system. It is proposed that the phase space of the spacetime is a 7-dimensional fiber bundle P over the 4-dimensional spacetime M, and that a Poincare-Cartan-Einstein 1-form {gamma} on the 7-dimensional phase space determines particles worldlines in the phase space. Through Liouville 6-form {Omega} and fiber integral, the 1-form {gamma} also uniquely defines a geometrically generalized Vlasov-Maxwell system as a field theory for the collective electromagnetic field. The geometric gyrokinetic theory is then developed as a special case of the geometrically generalized Vlasov-Maxwell system. In its most general form, gyrokinetic theory is about a symmetry, called gyro-symmetry, for magnetized plasmas, and the 1-form {gamma} again uniquely defines the gyro-symmetry. The objective is to decouple the gyro-phase dynamics from the rest of particle dynamics by finding the gyro-symmetry in {gamma}. Compared with other methods of deriving the gyrokinetic equations, the advantage of the geometric approach is that it allows any approximation based on mathematical simplification or physical intuition to be made at the 1-form level, and yet the field theories still have the desirable exact conservation properties such as phase space volume conservation and energy-momentum conservation if the 1-form does not depend on the spacetime coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge plasmas is then derived using this geometric method. This formalism allows large-amplitude, time-dependent background electromagnetic fields to be developed fully nonlinearly in addition to small-amplitude, short-wavelength electromagnetic perturbations. The fact that we adopted the geometric method in the present study does not necessarily imply that the major results reported here can not be achieved using classical methods. What the

  3. Kinetic theory of partially ionized complex (dusty) plasmas

    SciTech Connect

    Tsytovich, V.N.; De Angelis, U.; Ivlev, A.V.; Morfill, G.E.

    2005-08-15

    The general approach to the kinetic theory of complex (dusty) plasmas [Tsytovich and de Angelis, Phys. Plasmas 6, 1093 (1999)], which was formulated with the assumption of a regular (nonfluctuating) source of plasma particles, is reformulated to include ionization by electron impact on neutrals as the plasma source and the effects of collisions of ions and dust particles with neutrals.

  4. Theory and simulation of plasma sheath waves

    SciTech Connect

    Xu, X.Q.; DiPeso, G.; Vahedi, V.; Birdsall, C.K.

    1992-12-15

    Sheath waves have been investigated analytically and with particle simulation for an unmagnetized two dimensional plasma slab with periodic boundary conditions in y and conducting walls at x = 0, L{sub x}. Analytically treating the sheath as a vacuum layer, the sheath wave bears a resemblance to plasma vacuum surface waves. The simulations are in agreement with the theory for both bulk Bohm Grow waves and edge sheath waves, with some unanswered questions. Some waves that were expected did not show up, at least, where we thought they should be. Hence, improvements were made in the initialization (a better quiet start), in the diagnostics (especially the spectra in frequency), and in the excitation (ability to pulse). It has become clear that this problem, seeking both sheath (or surface) and body waves in a bounded system, needs far more attention, in analysis (non-uniform density included) and in simulation, especially in diagnostics. Hence, this report is to be treated as a start on the problem. The problem is not dropped, as the understanding of such waves (in 2d and 3d) is very important, for both basic sheath understanding and for applications, such as plasma control via excitation of sheath or pre-sheath waves.

  5. Hydrodynamic gradient expansion in gauge theory plasmas.

    PubMed

    Heller, Michal P; Janik, Romuald A; Witaszczyk, Przemysław

    2013-05-24

    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description, we calculate numerically the form of the stress tensor for a boost-invariant flow in a hydrodynamic expansion up to terms with 240 derivatives. We observe a factorial growth of gradient contributions at large orders, which indicates a zero radius of convergence of the hydrodynamic series. Furthermore, we identify the leading singularity in the Borel transform of the hydrodynamic energy density with the lowest nonhydrodynamic excitation corresponding to a 'nonhydrodynamic' quasinormal mode on the gravity side. PMID:23745858

  6. Theory of correlation effects in dusty plasmas

    SciTech Connect

    Avinash, K.

    2015-03-15

    A theory of correlation effects in dusty plasmas based on a suitably augmented Debye Huckel approximation is proposed. A model which takes into account the confinement of the dust within the plasma (by external fields) is considered. The dispersion relation of compressional modes with correlation effects is obtained. Results show that strong coupling effects may be subdominant even when Γ ≫ 1. Thus, in the limit Γ→0 and/or κ → ∞, one obtains the weakly coupled dust thermal mode. In the range of values of Γ ≫ 1, the strong coupling effects scale with κ instead of Γ; increasing Γ increases the dust acoustic waves phase velocity C{sub DAW} in this regime. In the limit Γ≫1,κ≪1, one obtains the weakly coupled dust acoustic wave. Only in the limit Γ≫1,κ≥1, one obtains strong coupling effects, e.g., the dust lattice waves (κ=a/λ{sub d}, a is the mean particle distance and λ{sub d} is the Debye length). Observations from a number of experiments are explained.

  7. Theory of plasma contactors for electrodynamic tethered satellite systems

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1987-01-01

    Recent data from ground and space experiments indicate that plasma releases from an object dramatically reduce the sheath impedance between the object and the ambient plasma surrounding it. Available data is in qualitative accord with the theory developed to quantify the flow of current in the sheath. Electron transport in the theory is based on a fluid model of a collisionless plasma with an effective collision frequency comparable to frequencies of plasma oscillations. The theory leads to low effective impedances varying inversely with the square root of the injected plasma density. To support such a low impedance mode of operation using an argon plasma source, for example, requires that only one argon ion be injected for each thirty electrons extracted from the ambient plasma. The required plasma flow rates are quite low; to extract one ampere of electron current requires a mass flow rate of about one gram of argon per day.

  8. Plasma transport theory spanning weak to strong coupling

    SciTech Connect

    Daligault, Jérôme; Baalrud, Scott D.

    2015-06-29

    We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.

  9. Dust in fusion plasmas: theory and modeling

    SciTech Connect

    Smirnov, R. D.; Pigarov, A. Yu.; Krasheninnikov, S. I.; Mendis, D. A.; Rosenberg, M.; Rudakov, D.; Tanaka, Y.; Rognlien, T. D.; Soboleva, T. K.; Shukla, P. K.; Bray, B. D.; West, W. P.; Roquemore, A. L.; Skinner, C. H.

    2008-09-07

    Dust may have a large impact on ITER-scale plasma experiments including both safety and performance issues. However, the physics of dust in fusion plasmas is very complex and multifaceted. Here, we discuss different aspects of dust dynamics including dust-plasma, and dust-surface interactions. We consider the models of dust charging, heating, evaporation/sublimation, dust collision with material walls, etc., which are suitable for the conditions of fusion plasmas. The physical models of all these processes have been incorporated into the DUST Transport (DUSTT) code. Numerical simulations demonstrate that dust particles are very mobile and accelerate to large velocities due to the ion drag force (cruise speed >100 m/s). Deep penetration of dust particles toward the plasma core is predicted. It is shown that DUSTT is capable of reproducing many features of recent dust-related experiments, but much more work is still needed.

  10. Final Report on The Theory of Fusion Plasmas

    SciTech Connect

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  11. Theory for explosive ideal magnetohydrodynamic instabilities in plasmas.

    PubMed

    Wilson, H R; Cowley, S C

    2004-04-30

    Flux tubes confined in tokamaks are observed to erupt explosively in some plasma disruptions and edge localized modes. Similar eruptions occur in astrophysical plasmas, for example, in solar flares and magnetospheric substorms. A single unifying nonlinear evolution equation describing such behavior in both astrophysical and tokamak plasmas is derived. This theory predicts that flux tubes rise explosively, narrow, and twist to pass through overlying magnetic field lines without reconnection. PMID:15169163

  12. Experiments and Theory of Dusty Plasmas

    SciTech Connect

    Shukla, P. K.

    2011-11-29

    The purpose of this paper is to present the most important theoretical and experimental discoveries that have been made in the area of dusty plasma physics. We describe the physics and observations of the well celebrated dust acoustic wave (DAW) and the dust ion-acoustic wave (DIAW) in dusty plasmas with weakly coupled dust grains, as well as the dust Coulomb crystal and dust lattice oscillations (DLOs) in dusty plasmas with strongly coupled dust grains. In dusty plasmas, the dust charge fluctuation is a dynamical variable, which provides a novel collisionless damping of the DA and DIA waves. The latter and the DLOs are excited by external sources, which are here discussed. Besides the Debye-Hueckel short-range repulsive force between like charged dust grains, there are novel attractive forces (e.g. due to dipole-dipole dust particle interactions, overlapping Debye spheres, ion focusing and ion wakefields, dipole magnetic moments etc.), which provide unique possibilities for attracting charged dust particles of similar polarity. The dust particle attraction is responsible for the formation of dust Coulomb crystals in laboratory dusty plasmas, as well as for the formation of planets and large astrophysical bodies in the Milky Way galaxy and in interstellar media. Furthermore, the nonlinear DAW, DIAW, and DLOs also appear in the form of solitary and shock waves, the physics and observations of which are briefly discussed. Finally, we discuss possible applications of dust-in-plasmas and dusty plasmas in laboratory and space.

  13. Testing THEMIS wave measurements against the cold plasma theory

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolik, Ondrej; Le Contel, Olivier; Bonnell, John

    2016-04-01

    The THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission records a multitude of electromagnetic waves inside Earth's magnetosphere and provides data in the form of high-resolution electric and magnetic waveforms. We use multi-component measurements of whistler mode waves and test them against the theory of wave propagation in a cold plasma. The measured ratio cB/E (c is speed of light in vacuum, B is magnetic wave amplitude, E is electric wave amplitude) is compared to the same quantity calculated from cold plasma theory over linearized Faraday's law. The aim of this study is to get estimates for measurement uncertainties, especially with regard to the electric field and the cold plasma density, as well as evaluating the validity of cold plasma theory inside Earth's radiation belts.

  14. Pliocene geomagnetic polarity epochs

    USGS Publications Warehouse

    Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.

    1967-01-01

    A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.

  15. Geometric perturbation theory and plasma physics

    SciTech Connect

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  16. Nonlinear theory of a plasma Cherenkov maser

    SciTech Connect

    Choi, J.S.; Heo, E.G.; Choi, D.I.

    1995-12-31

    The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.

  17. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  18. Plasma confinement theory and transport simulation

    SciTech Connect

    Ross, D.W.

    1993-02-01

    The objectives continue to be: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability for TEXT-Upgrade. Recent publications and reports, and conference presentations of the Fusion Research Center theory group are listed.

  19. Theory of current-drive in plasmas

    SciTech Connect

    Fisch, N.J.

    1986-12-01

    The continuous operation of a tokamak fusion reactor requires, among other things, a means of providing continuous toroidal current. Such operation is preferred to the conventional pulsed operation, where the plasma current is induced by a time-varying magnetic field. A variety of methods has been proposed to provide continuous current, including methods which utilize particle beams or radio frequency waves in any of several frequency regimes. Currents as large as half a mega-amp have now been produced in the laboratory by such means, and experimentation in these techniques has now involved major tokamak facilities worldwide.

  20. Elements of Neoclassical Theory and Plasma Rotation in a Tokamak

    NASA Astrophysics Data System (ADS)

    Smolyakov, A.

    2015-12-01

    The following sections are included: * Introduction * Quasineutrality condition * Diffusion in fully ionized magnetized plasma and automatic ambipolarity * Toroidal geometry and neoclassical diffusion * Diffusion and ambipolarity in toroidal plasmas * Ambipolarity and equilibrium poloidal rotation * Ambipolarity paradox and damping of poloidal rotation * Neoclassical plasma inertia * Oscillatory modes of poloidal plasma rotation * Dynamics of the toroidal momentum * Momentum diffusion in strongly collisional, short mean free path regime * Diffusion of toroidal momentum in the weak collision (banana) regime * Toroidal momentum diffusion and momentum damping from drift-kinetic theory and fluid moment equations * Comments on non-axisymmetric effects * Summary * Acknowledgments * Appendix: Trapped (banana) particles and collisionality regimes in a tokamak * Appendix: Hierarchy of moment equations * Appendix: Plasma viscosity tensor in the magnetic field: parallel viscosity, gyroviscosity, and perpendicular viscosity * Appendix: Closure relations for the flux surface averaged parallel viscosity in neoclassical (banana and plateau) regimes * References

  1. A First-Principle Kinetic Theory of Meteor Plasma Formation

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers

    2015-11-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.

  2. Kinetic theory of nonlinear transport phenomena in complex plasmas

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.

    2013-03-15

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  3. Thermoemission (dust-electron) plasmas: theory of neutralizing charges.

    PubMed

    Vishnyakov, V I; Dragan, G S

    2006-09-01

    Thermoemission plasma--i.e., a system consisting of dust grains and electrons--is studied. In the proposed model, it is assumed that the major part of the electronic gas is uniformly distributed in space and the spatial inhomogeneities of electronic density exist only near the dust grains. The experimental data, well described by the proposed theory, are given. PMID:17025751

  4. Theory for neoclassical toroidal plasma viscosity in tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Chu, M. S.; Hsu, C. T.; Sabbagh, S. A.; Seol, Jae Chun; Sun, Y.

    2012-12-01

    Error fields and magnetohydrodynamic modes break toroidal symmetry in tokamaks. The broken symmetry enhances the toroidal plasma viscosity, which results in a steady-state toroidal plasma flow. A theory for neoclassical toroidal plasma viscosity in the low-collisionality regimes is developed. It extends stellarator transport theory to include multiple modes and to allow for |m - nq| ˜ 1. Here, m is the poloidal mode number, n is the toroidal mode number and q is the safety factor. The bounce averaged drift kinetic equation is solved in several asymptotic limits to obtain transport fluxes. These fluxes depend non-linearly on the radial electric field except for those in the 1/ν regime. Here, ν is the collision frequency. The theory is refined to include the effects of the superbanana plateau resonance at the phase space boundary and the finite ∇B drift on the collisional boundary layer fluxes. Analytical expressions that connect all asymptotic limits are constructed and are in good agreement with the numerical results. The flux-force relations that relate transport fluxes to forces are used to illustrate the roles of transport fluxes in the momentum equation. It is shown that the ambipolar state is reached when the momentum equation is relaxed. It is also shown that the origin of the momentum for plasma flow generated without momentum sources is the local unbalance of particles' momenta and is diamagnetic in nature regardless of the details of the theory.

  5. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  6. Propagation of radiation in fluctuating multiscale plasmas. I. Kinetic theory

    SciTech Connect

    Tyshetskiy, Yu.; Pal Singh, Kunwar; Thirunavukarasu, A.; Robinson, P. A.; Cairns, Iver H.

    2012-11-15

    A theory for propagation of radiation in a large scale plasma with small scale fluctuations is developed using a kinetic description in terms of the probability distribution function of the radiation in space, time, and wavevector space. Large scale effects associated with spatial variations in the plasma density and refractive index of the plasma wave modes and small scale effects such as scattering of radiation by density clumps in fluctuating plasma, spontaneous emission, damping, and mode conversion are included in a multiscale kinetic description of the radiation. Expressions for the Stokes parameters in terms of the probability distribution function of the radiation are used to enable radiation properties such as intensity and polarization to be calculated.

  7. Cold plasma heating in the plasma sheet boundary layer - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1990-01-01

    Satellite observations in recent years have confirmed that the plasma sheet boundary layer is a permanent feature of the earth's magnetotail located between the lobe and central plasma sheet during both quiet and active magnetic periods. Distinct features of the boundary layer include field aligned ion beams and intense electrostatic emissions known as broadband electrostatic noise. Since the plasma sheet boundary layer is a spatial feature of the magnetotail, within it will occur thermal mixing of the resident warm boundary layer plasma with inflowing (convecting) cold ionospheric plasma. A theoretical study involving linear theory and nonlinear numerical particle simulations is presented which examines ion beam instabilities in the presence of a thermally mixed hot and cold background plasma. It is found that the free energy in the ion beams can heat the cool ionospheric plasma to ambient plasma sheet boundary layer temperatures via broadband electrostatic noise. These results, along with recent observational reports that ionospheric outflow can account for measured plasma sheet densities, suggest that the ionospheric role in plasma sheet dynamics and content may be as large as the solar wind.

  8. Nonlinear theory of slow dissipative layers in anisotropic plasmas

    SciTech Connect

    Ballai, I.; Ruderman, M.S.; Erdelyi, R.

    1998-01-01

    The solar coronal plasma is a well-known example of a plasma with strongly anisotropic dissipative coefficients. The main dissipative processes in the solar corona are strongly anisotropic thermal conductivity and viscosity. Ruderman and Goossens [Astrophys. J. {bold 471}, 1015 (1996)] developed a linear theory of driven slow resonant waves in plasmas with strongly anisotropic viscosity and thermal conductivity. Linear theory shows that in the slow dissipative layer the amplitudes of oscillations become very large for high Reynolds and Pecklet numbers, so that nonlinearity may be important. In the present paper the nonlinear behavior of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is studied. The nonlinear governing equation for wave variables in the dissipative layer is derived. The nonlinear connection formulae, which are extensions of the linear connection formulae first introduced in the theory of resonant magnetohydrodynamic waves by Sakurai, Goossens, and Hollweg [Solar Phys. {bold 133}, 127 (1991)], are derived. {copyright} {ital 1998 American Institute of Physics.}

  9. Hydrodynamic theory of diffusion in two-temperature multicomponent plasmas

    SciTech Connect

    Ramshaw, J.D.; Chang, C.H.

    1995-12-31

    Detailed numerical simulations of multicomponent plasmas require tractable expressions for species diffusion fluxes, which must be consistent with the given plasma current density J{sub q} to preserve local charge neutrality. The common situation in which J{sub q} = 0 is referred to as ambipolar diffusion. The use of formal kinetic theory in this context leads to results of formidable complexity. We derive simple tractable approximations for the diffusion fluxes in two-temperature multicomponent plasmas by means of a generalization of the hydrodynamical approach used by Maxwell, Stefan, Furry, and Williams. The resulting diffusion fluxes obey generalized Stefan-Maxwell equations that contain driving forces corresponding to ordinary, forced, pressure, and thermal diffusion. The ordinary diffusion fluxes are driven by gradients in pressure fractions rather than mole fractions. Simplifications due to the small electron mass are systematically exploited and lead to a general expression for the ambipolar electric field in the limit of infinite electrical conductivity. We present a self-consistent effective binary diffusion approximation for the diffusion fluxes. This approximation is well suited to numerical implementation and is currently in use in our LAVA computer code for simulating multicomponent thermal plasmas. Applications to date include a successful simulation of demixing effects in an argon-helium plasma jet, for which selected computational results are presented. Generalizations of the diffusion theory to finite electrical conductivity and nonzero magnetic field are currently in progress.

  10. Kinetic theory of Jeans instability of a dusty plasma.

    PubMed

    Pandey, B P; Lakhina, G S; Krishan, V

    1999-12-01

    A kinetic theory of the Jeans instability of a dusty plasma has been developed in the present work. The effect of grain charge fluctuations due to the attachment of electrons and ions to the grain surface has been considered in the framework of Krook's collisional model. We demonstrate that the grain charge fluctuations alter the growth rate of the gravitational collapse of the dusty plasma. The Jeans length has been derived under limiting cases, and its dependence on the attachment frequency is shown. In the absence of gravity, we see that the damping rate of the dust acoustic mode is proportional to the electron-dust collision frequency. PMID:11970688

  11. Third and fourth quarter progress report on plasma theory and simulation, July 1-December 31, 1986

    SciTech Connect

    Birdsall, C.K.

    1987-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically.

  12. Theory components of the VASIMR plasma propulsion concept

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey

    2003-10-01

    The talk presents a selection of theoretical problems all motivated by the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept [1]. The focus of the talk is on fundamental physics aspects of VASIMR operation, which are formulated as standalone physics problems. The VASIMR device has a magnetic mirror configuration and consists of three main components: a low energy helicon plasma source; an ion cyclotron-resonance heating (ICRH) section; and a magnetic nozzle, which forms a superalfvenic outgoing plasma flow. The ICRH conditions in VASIMR are fundamentally different from the conventional ICRH, because 1) each ion passes the resonance only once; 2) the ion motion is collisionless; 3) the ion energy gain in a single pass significantly exceeds ion energy in the incoming flow. A self-consistent nonlinear model for the rf-power deposition in the ion cyclotron frequency range into a steady-state plasma flow has been developed [3], which generalizes the linear magnetic beach problem solved by T. Stix. Despite the fact that helicon sources are routinely used for plasma production, the underlying physics mechanism is yet to be established. The talk presents a first-principle theory for light-gas helicon plasma sources with a self-consistent treatment of the particle balance [4], power balance, and rf-field structure [2]. A separation of scales among the particle confinement time, the energy confinement time, and the wave period allows one to consider all three constituents separately prior to combining them into an integrated description. The theory addresses the mystery of the high efficiency of helicon sources at frequencies below the typical helicon frequency. The magnetic nozzle transforms the ion rotational motion into the longitudinal motion and it also ensures plasma detachment from the rocket. The detachment occurs when the energy density of the magnetic field drops below the kinetic energy density of the plasma flow. Then the plasma breaks free

  13. Thought analysis on self-organization theories of MHD plasma

    NASA Astrophysics Data System (ADS)

    Kondoh, Yoshiomi; Sato, Tetsuya

    1992-08-01

    A thought analysis on the self-organization theories of dissipative MHD plasmas is presented to lead to three groups of theories that lead to the same relaxed state of del x B = lambda(B), in order to find an essential physical picture embedded in the self-organization phenomena due to nonlinear and dissipative processes. The self-organized relaxed state due to the dissipation by the Ohm loss is shown to be formulated generally as the state such that yields the minimum dissipation rate of global auto- and/or cross-correlations between two quantities in j, B, and A for their own instantaneous values of the global correlations.

  14. Kinetic theory of electromagnetic ion waves in relativistic plasmas

    SciTech Connect

    Marklund, Mattias; Shukla, Padma K.

    2006-09-15

    A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by a ponderomotive force-like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.

  15. Information Epochs and Human Society.

    ERIC Educational Resources Information Center

    Masuda, Yoneji

    1982-01-01

    Mankind has experienced three societal transformations in the course of history. A new information epoch has served as a precondition for social change. The current information society is post-industrial and will lead to change in the socioeconomic structure and in social values. (KC)

  16. Basic plasma and fusion theory and computer simulations survey

    SciTech Connect

    Kawakami, I.; Nishikawa, K.

    1983-12-01

    The College of Science and Technology at Nihon University and the Institute for Fusion Theory at Hiroshima University discuss the history of the role of theory and simulation in fusion-oriented research. Recent activities include a one-dimensional tokamak transport code at Nagoya University and three-dimensional resistive MHD simulation studies of spheromaks. Other recent activities discussed include the tokamak computer code system TRITON, transport flux in currentless ECH-produced plasma in Heliotron-E, and thermal electron transport in the presence of a steep temperature gradient. The Japan-U.S. Joint Institute for Fusion Theory's present activities are discussed, including subject areas in three-dimensional simulation studies, nonequilibrium statistical physics, anaomalous transport and drift wave turbulence and hot-electron physics.

  17. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    PubMed

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances. PMID:20866340

  18. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  19. Laser/plasma theory for microwave modeling experiments. Final report

    SciTech Connect

    Thomson, J J; Divergilio, W F

    1980-01-01

    During the last year, we have carried out theoretical investigations of microwave-plasma interactions in support of both the UCLA program, and the TRW program. The UCLA program concentrated on experimental studies of Stimulated Brillouin Scattering (SBS). We derived a theory which successfully explained the basic features of their experiment. The TRW program was originally conceived of as an investigation of electron heating and thermal transport; however, the subject was later changed to the interaction of SBS and self focusing. The experimental program has not yet started; however, we have developed a theoretical description of the expected interaction.

  20. Effects of the g Factor in Semiclassical Kinetic Plasma Theory

    SciTech Connect

    Brodin, Gert; Marklund, Mattias; Zamanian, Jens; Ericsson, Aasa; Mana, Piero L.

    2008-12-12

    A kinetic theory for spin plasmas is put forward, generalizing those of previous authors. In the model, the ordinary phase space is extended to include the spin degrees of freedom. Together with Maxwell's equations, the system is shown to be energy conserving. Analyzing the linear properties, it is found that new types of wave-particle resonances are possible that depend directly on the anomalous magnetic moment of the electron. As a result, new wave modes, not present in the absence of spin, appear. The implications of our results are discussed.

  1. Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Lemaire, J.; Burlaga, L. F.

    1976-01-01

    A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.

  2. Some improvements in the theory of plasma relaxation

    SciTech Connect

    Hameiri, Eliezer

    2014-04-15

    Taylor's relaxation theory is extended to plasmas with mass flow by using the cross helicity as a conserved quantity, similar to the magnetic helicity. Indeed, it is shown that the conservation of the cross helicity in magnetohydrodynamics is the result of the conservation of two magnetic-like helicities in two-fluid plasmas. In addition, the usually ignored toroidal flux is also held to be conserved. We also view plasma relaxation as attaining a maximum entropy state rather than Taylor's minimum energy state, but prove that maximizing the entropy subject to a given amount of energy is equivalent to minimizing the energy subject to a given amount of entropy. The resulting relaxed state is similar to the one discussed by Finn and Antonsen [Phys. Fluids 26, 3540 (1983)], and involves flow parallel to the magnetic field and constant temperature, but non-constant pressure. We show how to construct an asymptotic solution to the relaxed state based on the smallness of the Alfven Mach number of the flow.

  3. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  4. Plasma theory and simulation. Quarterly progress report I, II, January 1-June 30, 1984

    SciTech Connect

    Birdsall, C.K.

    1984-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of instabilities, heating, transport, and other phenomena in plasmas. We also work on the improvement of simulation both theoretically and practically. Research in plasma theory and simulation has centered on the following: (1) electron Bernstein wave investigations; (2) simulation of plasma-sheath region, including ion reflection; (3) single ended plasma device, general behavior dc or ac; (4) single ended plasma device, unstable states; (5) corrections to time-independent Q-machine equilibria; (6) multifluid derivation of the Alfven ion-cyclotron linear dispersion relation; and (7) potential barrier between hot and cool plasmas.

  5. Perturbation theory of a classical one-component plasma

    SciTech Connect

    Lee, J.W.; Ree, F.H.

    1988-12-01

    We have extended a recent perturbation theory (J. Chem. Phys. 82, 414 (1985); 84, 4547 (1986)) for nonionic systems to the one-component plasma (OCP). Characteristic features of the theory are its ability to handle both fluids and solids and the use of a reference potential whose repulsive range shrinks with density. Based on the computed thermodynamic data, we have developed a simple alternative (optimized hard-sphere) model, whose Helmholtz free energy is a sum of the Helmholtz free energy of the hard-sphere reference system and the Madelung energy of a fcc lattice. Comparison with available Monte Carlo and other theoretical results shows that the optimized hard-sphere model gives reliable solid (fcc) and fluid properties. The theory predicts that the fcc solid will melt at the Coulomb coupling parameter GAMMAsub m/ = 208 versus Helfer et al.'s (J. Stat. Phys. 37, 577 (1984)) Monte Carlo value of 196. This difference is due to a small difference (0.1%) in the computed excess free energy. The computed internal energy can be accurately fitted by an analytic form. Its two leading terms (for the fluid) are -0.899488GAMMA1.272 97GAMMAsup 1/4/, in close agreement with Slattery et al.'s (Phys. Rev. A 21, 2087 (1980); 26, 2255 (1982)) empirical fit to their Monte Carlo data. We conclude that the hard-sphere perturbation theory is applicable to a long-range repulsive system, such as the OCP, so long as the hard-sphere diameter is judiciously chosen by using a density-dependent reference potential.

  6. Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.

  7. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A. ); Braams, B.; Weitzner, H. . Courant Inst. of Mathematical Sciences); Cohen, R. ); Hazeltine, R. . Inst. for Fusion Studies); Hinton, F. ); Houlberg, W. (Oak

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician's point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  8. A survey of problems in divertor and edge plasma theory

    SciTech Connect

    Boozer, A.; Braams, B.; Weitzner, H.; Cohen, R.; Hazeltine, R.; Hinton, F.; Houlberg, W.; Oktay, E.; Sadowski, W.; Post, D.; Sigmar, D.; Wootton, A.

    1992-12-22

    Theoretical physics problems related to divertor design are presented, organized by the region in which they occur. Some of the open questions in edge physics are presented from a theoretician`s point of view. After a cursory sketch of the fluid models of the edge plasma and their numerical realization, the following topics are taken up: time-dependent problems, non-axisymmetric effects, anomalous transport in the scrape-off layer, edge kinetic theory, sheath effects and boundary conditions in divertors, electric field effects, atomic and molecular data issues, impurity transport in the divertor region, poloidally localized power dissipation (MARFEs and dense gas targets), helium ash removal, and neutral transport. The report ends with a summary of selected problems of particular significance and a brief bibliography of survey articles and related conference proceedings.

  9. Wakes in complex plasmas: A self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-06-01

    In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential.

  10. Wakes in complex plasmas: A self-consistent kinetic theory.

    PubMed

    Kompaneets, Roman; Morfill, Gregor E; Ivlev, Alexei V

    2016-06-01

    In ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution. We focus on various limiting cases and demonstrate how the interplay of these factors results in different forms of the shielding potential. PMID:27415371

  11. Hyper-resistivity Theory in a Cylindrical Plasma

    SciTech Connect

    Berk, H L; Fowler, T K; LoDestro, L L; Pearlstein, L D

    2001-02-27

    A model is presented for determining the hyper-resistivity coefficient that arises due to the presence of magnetic structures that appear in plasma configurations such as the reversed field pinch and spheromak. Emphasis is placed on modeling cases where magnetic islands pass from non-overlap to overlap regimes. Earlier works have shown that a diffusion-based model can give realistic transport scalings when magnetic islands are isolated, and this formalism is extended to apply to the hyper-resistivity problem. In this case electrons may either be in long or short mean-free-path regimes and intuitively-based arguments are presented of how to extend previous theories to incorporate this feature in the presence of magnetic structures that pass from laminar to moderately chaotic regimes.

  12. Experiments and Theory of Ablation Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Qi, B.; Lau, Y. Y.; Johnston, M. D.; Doll, G. L.; Lazarides, A.

    2000-10-01

    Research is underway to accelerate laser ablation plume ions for implantation into substrates. Ablation plasma ion implantation (APII) biases the deposition substrate to a large negative voltage. APII has the advantages of direct acceleration and implantation of ions from metals or any other solid targets. This process is environmentally friendly because it avoids the use of toxic gaseous precursors. Initial experiments are directed towards the implantation of iron ions into silicon substrates at negative voltages from 2-10 kV. A KrF laser ablates iron targets at pulse energies up to 600 mJ and typical repetition rates of 10 Hz. Parameters which can be varied include laser fluence, relative timing of laser and high voltage pulse, and target-to-substrate distance. Spectroscopic diagnostics yield Fe plasma plume electron temperatures up to about 10 eV. Analysis of films will compare surface morphology, hardness and adhesion between deposited Vs accelerated-implanted plumes. A simple one dimensional theory is developed [1] to calculate the implanted ion current, extracted from the ion matrix sheath, as a function of time for various substrate-plume separations. This model accurately recovers Lieberman's classic results when the plume front is initially in contact with the substrate. [1] B. Qi, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. (to be published). * This research is supported by the National Science Foundation.

  13. Toward the Theory of Turbulence in Magnetized Plasmas

    SciTech Connect

    Boldyrev, Stanislav

    2013-07-26

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a “condensate”, that is, concentration of magnetic and kinetic energy at small k{sub {parallel}}. A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model.

  14. Plasma stability theory including the resistive wall effects

    NASA Astrophysics Data System (ADS)

    Pustovitov, V. D.

    2015-12-01

    > Plasma stabilization due to a nearby conducting wall can provide access to better performance in some scenarios in tokamaks. This was proved by experiments with an essential gain in and demonstrated as a long-lasting effect at sufficiently fast plasma rotation in the DIII-D tokamak (see, for example, Strait et al., Nucl. Fusion, vol. 43, 2003, pp. 430-440). The rotational stabilization is the central topic of this review, though eventually the mode rotation gains significance. The analysis is based on the first-principle equations describing the energy balance with dissipation in the resistive wall. The method emphasizes derivation of the dispersion relations for the modes which are faster than the conventional resistive wall modes, but slower than the ideal magnetohydrodynamics modes. Both the standard thin wall and ideal-wall approximations are not valid in this range. Here, these are replaced by an approach incorporating the skin effect in the wall. This new element in the stability theory makes the energy sink a nonlinear function of the complex growth rate. An important consequence is that a mode rotating above a critical level can provide a damping effect sufficient for instability suppression. Estimates are given and applications are discussed.

  15. Plasma theory and simulation: Third and fourth quarterly progress report, July 1, 1986-December 31, 1986

    SciTech Connect

    Birdsall, C.K.

    1986-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interactions, and large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically. Two separate papers are included in this report.

  16. Kinetic theory of magnetized dusty plasmas with dust particles charged by collisional processes and by photoionization

    SciTech Connect

    Galvao, R. A.; Ziebell, L. F.

    2012-09-15

    In this work, we detail the derivation of a plasma kinetic theory leading to the components of the dielectric tensor for a magnetized dusty plasma with variable charge on the dust particles, considering that the dust component of the plasma contains spherical dust particles with different sizes, which are charged both by inelastic collisions of electrons and ions and by photoionization.

  17. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  18. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  19. Spherical crystals in dusty plasmas - Simulation and theory

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Henning, C.; Golubnychiy, V.; Baumgartner, H.; Ludwig, P.; Arp, O.; Block, D.; Piel, A.; Melzer, A.; Kraeft, W. D.

    2006-10-01

    Coulomb crystals in spherically symmetric traps have been found in trapped cold ions and, recently, in dusty plasmas at room temperature [1] allowing for precision measurements, including individual particle positions and trajectories. Thus, for the first time, strong correlation phenomena can be studied directly on the microscopic level which allows for detailed comparisons with theoretical results and computer simulations. We present molecular dynamics and Monte Carlo simulations of Coulomb crystals in the range from 10 to 10,000 particles which agree very well with the measurements [3]. The results include the ground state shell configurations and symmetry properties [2,3], the crystal stability and melting behavior. Finally, a thermodynamic theory is developed and compared to simpler models, such as shell models [4]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005). [3] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [4] C. Henning et al., submitted for publication.

  20. Plasma theory and simulation: Quarterly progress report Nos. 3 and 4, July 1, 1985-December 31, 1985

    SciTech Connect

    Birdsall, C.K.

    1985-01-01

    Our group uses theory and simulation as tools in order to increase the understanding of plasma instabilities, heating, transport, plasma-wall interaction an large potentials in plasmas. We also work on the improvement of simulation both theoretically and practically.

  1. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect

    Navarro, Roberto E. Muñoz, Víctor; Araneda, Jaime; Moya, Pablo S.; Viñas, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  2. On the theory of Langmuir waves in a quantum plasma

    SciTech Connect

    Kuzelev, M. V.

    2010-04-15

    Nonlinear quantum-mechanical equations are derived for Langmuir waves in an isotropic electron collisionless plasma. A general analysis of dispersion relations is carried out for complex spectra of Langmuir waves and van Kampen waves in a quantum plasma with an arbitrary electron momentum distribution. Quantum nonlinear collisionless Landau damping in Maxwellian and degenerate plasmas is studied. It is shown that collisionless damping of Langmuir waves (including zero sound) occurs in collisionless plasmas due to quantum correction in the Cherenkov absorption condition, which is a purely quantum effect. Solutions to the quantum dispersion equation are obtained for a degenerate plasma.

  3. Comparison of Theory with Rotation Measurements in JET ICRH Plasmas

    SciTech Connect

    R.V. Budny; C.S. Chang; C. Giroud; R.J. Goldston; D. McCune; J. Ongena; F.W. Perkins; R.B. White; K.-D. Zastrow; and contributors to the EFDA-JET work programme

    2001-06-27

    Plasma rotation appears to improve plasma performance by increasing the E x B flow shearing rate, thus decreasing radial correlations in the microturbulence. Also, plasma rotation can increase the stability to resistive MHD modes. In the Joint European Torus (JET), toroidal rotation rates omega (subscript ''tor'') with high Mach numbers are generally measured in NBI-heated plasmas (since the neutral beams aim in the co-plasma current direction). They are considerably lower with only ICRH (and Ohmic) heating, but still surprisingly large considering that ICRH appears to inject relatively small amounts of angular momentum. Either the applied torques are larger than naively expected, or the anomalous transport of angular momentum is smaller than expected. Since ICRH is one of the main candidates for heating next-step tokamaks, and for creating burning plasmas in future tokamak reactors, this paper attempts to understand ICRH-induced plasma rotation.

  4. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    SciTech Connect

    Zhang, H.; Wu, S. Z.; Zhou, C. T.; He, X. T.; Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 ; Zhu, S. P.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with established linear theory.

  5. Extended neoclassical transport theory for incompressible tokamak plasmas

    SciTech Connect

    Shaing, K.C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number U{sub pM}=[(V{sub {parallel}}/v{sub t})+(V{sub E}B/v{sub t}B{sub p})] of the order of unity for incompressible tokamak plasmas. Here, V{sub {parallel}} is the parallel mass flow, v{sub t} is the ion thermal speed, V{sub E} is the poloidal {bold E{times}B} drift speed, B is the magnetic field strength, and B{sub p} is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if U{sub pM}{gt}1 and S{gt}1. Here, S=[1+cI{sup 2}{Phi}{sup {prime}{prime}}/({Omega}{sub 0}B{sub 0})] is the orbit squeezing factor with c the speed of light, I=RB{sub t}, R the major radius, {Phi} the electrostatic potential, B{sub 0} the magnetic field strength on the axis, {Omega}{sub 0}=eB{sub 0}/Mc, M the ion mass, e the ion charge, {Phi}{sup {prime}{prime}}=d{sup 2}{Phi}/d{psi}{sup 2}, and {psi} the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch{endash}Schl{umlt u}ter transport. {copyright} {ital 1997 American Institute of Physics.}

  6. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2012-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  7. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  8. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime.

  9. A theory of MHD instability of an inhomogeneous plasma jet

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoly S.

    2011-06-01

    A problem of the stability of an inhomogeneous axisymmetric plasma jet in a parallel magnetic field is solved. The jet boundary becomes, under certain conditions, unstable relative to magnetosonic oscillations (Kelvin-Helmholtz instability) in the presence of a shear flow at the jet boundary. Because of its internal inhomogeneity the plasma jet has resonance surfaces, where conversion takes place between various modes of plasma magnetohydrodynamic (MHD) oscillations. Propagating in inhomogeneous plasma, fast magnetosonic waves drive the Alfven and slow magnetosonic (SMS) oscillations, tightly localized across the magnetic shells, on the resonance surfaces. MHD oscillation energy is absorbed in the neighbourhood of these resonance surfaces. The resonance surfaces disappear for the eigenmodes of SMS waves propagating in the jet waveguide. The stability of the plasma MHD flow is determined by competition between the mechanisms of shear flow instability on the boundary and wave energy dissipation because of resonant MHD-mode coupling. The problem is solved analytically, in the Wentzel, Kramers, Brillouin (WKB) approximation, for the plasma jet with a boundary in the form of a tangential discontinuity over the radial coordinate. The Kelvin-Helmholtz instability develops if plasma flow velocity in the jet exceeds the maximum Alfven speed at the boundary. The stability of the plasma jet with a smooth boundary layer is investigated numerically for the basic modes of MHD oscillations, to which the WKB approximation is inapplicable. A new 'unstable mode of MHD oscillations has been discovered which, unlike the Kelvin-Helmholtz instability, exists for any, however weak, plasma flow velocities.

  10. On Kraichnan's 'direct interaction approximation' and Kolmogoroff's theory in two-dimensional plasma turbulence

    SciTech Connect

    Kulsrud, R.M.; Sudan, R.N.

    1981-04-01

    The nonlinear damping in a strongly turbulent convecting plasma computed by Kraichnan's modified direct inteaction approximation and the power spectrum are rederived in a physically transparent form using Kolmogoroff's theory of turbulence.

  11. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  12. Orbital-motion-limited theory of dust charging and plasma response

    SciTech Connect

    Tang, Xian-Zhu Luca Delzanno, Gian

    2014-12-15

    The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma.

  13. Plasma theory and simulation research. Final technical report, January 1, 1986--October 31, 1989

    SciTech Connect

    Birdsall, C.K.

    1989-12-31

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ``sheath``), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  14. Energy branching in the Io plasma torus - The failure of neutral cloud theory

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1988-01-01

    Model calculations are used to explore the energy source characteristics of the energy branching of the hot Io plasma torus. It is assumed that the energy is derived from the kinetic energy acquired by ions created in the rotating planetary magnetic field, and that Coulomb collisions with the electron gas control the flow of energy to the ionizing and radiative processes. The results show that neutral cloud theory is qualitatively inadequate. It is shown that neutral cloud theory can only support a dominantly singly ionized system (at the measured electron densities in the plasma torus) and that it fails to predict observed plasma properties relative to variations in number density.

  15. A theory of the plasma torch for waste-treatment

    SciTech Connect

    Uhm, H.S.; Hong, S.H.

    1997-12-31

    Arc-plasma technology has broad applications to waste treatment processing including the safe disposal of hazardous and low-level radioactive wastes. The plasma torch could be useful to the development of an efficient, compact, lightweight, clean burning incinerator for industrial and municipal waste disposal in an environmentally beneficial way. The authors therefore develop a simple theoretical model describing physics of the plasma torch plume in connection with its applications to the arc-plasma waste-treatment system. The theoretical analysis is carried out by making use of Bernoulli`s pressure-balance equation, which provides a stable equilibrium solution of the gas density in the plume ejected from the torch into a high-pressure reactor chamber with 4{var_epsilon} < 1. The pressure depression parameter {var_epsilon} is proportional to the gas temperature and inversely proportional to the square of the chamber pressure. In a low-pressure chamber, characterized by 4{var_epsilon} > 1, there is no stable equilibrium solution satisfying Bernoulli`s equation. Therefore, it is expected that the observable plasma data may change abruptly as the chamber pressure crosses the borderline defined by 4{var_epsilon} = 1. Indeed most of the plasma data measured in an experiment change abruptly at the pressure borderline of 4{var_epsilon} = 1.

  16. Spin Kinetic Models of Plasmas - Semiclassical and Quantum Mechanical Theory

    SciTech Connect

    Brodin, Gert; Marklund, Mattias; Zamanian, Jens

    2009-11-10

    In this work a recently published semiclassical spin kinetic model, generalizing those of previous authors are discussed. Some previously described properties are reviewed, and a new example illustrating the theory is presented. The generalization to a fully quantum mechanical description is discussed, and the main features of such a theory is outlined. Finally, the main conclusions are presented.

  17. Validating Laser-Induced Birefringence Theory with Plasma Interferometry

    SciTech Connect

    Chen, Cecilia

    2015-09-02

    Intense laser beams crossing paths in plasma is theorized to induce birefringence in the medium, resulting from density and refractive index modulations that affect the polarization of incoming light. The goal of the associated experiment, conducted on Janus at Lawrence Livermore’s Jupiter Laser Facility, was to create a tunable laser-plasma waveplate to verify the relationship between dephasing angle and beam intensity, plasma density, plasma temperature, and interaction length. Interferometry analysis of the plasma channel was performed to obtain a density map and to constrain temperature measured from Thomson scattering. Various analysis techniques, including Fast Fourier transform (FFT) and two variations of fringe-counting, were tried because interferograms captured in this experiment contained unusual features such as fringe discontinuity at channel edges, saddle points, and islands. The chosen method is flexible, semi-automated, and uses a fringe tracking algorithm on a reduced image of pre-traced synthetic fringes. Ultimately, a maximum dephasing angle of 49.6° was achieved using a 1200 μm interaction length, and the experimental results appear to agree with predictions.

  18. Quasilinear theory of general electromagnetic fluctuations in unmagnetized plasmas

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2014-09-15

    The general quasilinear Fokker-Planck kinetic equation for the plasma particle distribution functions in unmagnetized plasmas is derived, making no restrictions on the frequency of the electromagnetic fluctuations. The derived kinetic particle equation complements our earlier study of the general fluctuation's kinetic equation. For collective plasma eigenmodes and gyrotropic particle distribution functions, the two coupled kinetic equations describe the self-consistent dynamical evolution of the plasma. The limit of weakly damped collective modes correctly reproduces the well-known textbook kinetic particle equation with longitudinal Langmuir and ion-acoustic fluctuations, demonstrating, in particular, the resonant nature of parallel momentum diffusion of particles. In the limit of aperiodic modes, the Fokker-Planck equation contains the nonresonant diffusion of particles in momentum and the parallel and perpendicular momentum drag coefficients. As an application these drag and diffusion coefficients are calculated for extragalactic cosmic ray particles propagating in the unmagnetized intergalactic medium. Whereas for all cosmic rays, the perpendicular momentum diffusion in intergalactic aperiodic fluctuations is negligibly small; cosmic ray protons with energies below 10{sup 5 }GeV are affected by the plasma drag.

  19. Beyond the Plasma Analogy: Collective Field Theory for Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Can, Tankut; Laskin, Michael; Wiegmann, Paul

    We develop a quantum field theory of collective coordinates describing fractional quantum Hall (FQH) states. We show that the familiar properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian theory arise from ultraviolet regularization, and go beyond the celebrated plasma analogy. They give rise to a gravitational anomaly described by the Liouville theory of 2D quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies. This talk is based on the preprint arXiv:1412.8716.

  20. Extending plasma transport theory to strong coupling through the concept of an effective interaction potential

    SciTech Connect

    Baalrud, Scott D.; Daligault, Jérôme

    2014-05-15

    A method for extending traditional plasma transport theories into the strong coupling regime is presented. Like traditional theories, this is based on a binary scattering approximation, but where physics associated with many body correlations is included through the use of an effective interaction potential. The latter is simply related to the pair-distribution function. Modeling many body effects in this manner can extend traditional plasma theory to orders of magnitude stronger coupling. Theoretical predictions are tested against molecular dynamics simulations for electron-ion temperature relaxation as well as diffusion in one component systems. Emphasis is placed on the connection with traditional plasma theory, where it is stressed that the effective potential concept has precedence through the manner in which screening is imposed. The extension to strong coupling requires accounting for correlations in addition to screening. Limitations of this approach in the presence of strong caging are also discussed.

  1. Nonlinear gyrokinetic theory for finite-BETA plasmas

    SciTech Connect

    Hahm, T.S.; Lee, W.W.; Brizard, A.

    1988-02-01

    A self-consistent and energy-conserving set of nonlinear gyrokinetic equations, consisting of the averaged Vlasov and Maxwell's equations for finite-..beta.. plasmas, is derived. The method utilized in the present investigation is based on the Hamiltonian formalism and Lie transformation. The resulting formation is valid for arbitrary values of k/perpendicular//rho//sub i/ and, therefore, is most suitable for studying linear and nonlinear evolution of microinstabilities in tokamak plasmas as well as other areas of plasma physics where the finite Larmor radius effects are important. Because the underlying Hamiltonian structure is preserved in the present formalism, these equations are directly applicable to numerical studies based on the existing gyrokinetic particle simulation techniques. 31 refs.

  2. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    SciTech Connect

    Schlickeiser, R. E-mail: yoonp@umd.edu; Yoon, P. H. E-mail: yoonp@umd.edu

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  3. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}'s.

  4. Theory and application of maximum magnetic energy in toroidal plasmas

    SciTech Connect

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q{prime}/q (as in reverse field pinches and spheromaks) to have the same {alpha} in all its force-free regions and with a positive q{prime}/q (as in tokamaks) to have centrally peaked {alpha}`s.

  5. On the theory of dynamics of dust grain in plasma

    SciTech Connect

    Stepanenko, A. A.; Krasheninnikov, S. I.

    2013-03-15

    The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.

  6. TOWARD A THEORY OF ASTROPHYSICAL PLASMA TURBULENCE AT SUBPROTON SCALES

    SciTech Connect

    Boldyrev, Stanislav; Horaites, Konstantinos; Xia, Qian; Perez, Jean Carlos

    2013-11-01

    We present an analytical study of subproton electromagnetic fluctuations in a collisionless plasma with a plasma beta of the order of unity. In the linear limit, a rigorous derivation from the kinetic equation is conducted focusing on the role and physical properties of kinetic-Alfvén and whistler waves. Then, nonlinear fluid-like equations for kinetic-Alfvén waves and whistler modes are derived, with special emphasis on the similarities and differences in the corresponding plasma dynamics. The kinetic-Alfvén modes exist in the lower-frequency region of phase space, ω << k v{sub Ti} , where they are described by the kinetic-Alfvén system. These modes exist both below and above the ion-cyclotron frequency. The whistler modes, which are qualitatively different from the kinetic-Alfvén modes, occupy a different region of phase space, k v{sub Ti} << ω << k{sub z}v{sub Te} , and they are described by the electron magnetohydrodynamics (MHD) system or the reduced electron MHD system if the propagation is oblique. Here, k{sub z} and k are the wavenumbers along and transverse to the background magnetic field, respectively, and v{sub Ti} and v{sub Te} are the ion and electron thermal velocities, respectively. The models of subproton plasma turbulence are discussed and the results of numerical simulations are presented. We also point out possible implications for solar-wind observations.

  7. Exact kinetic theory for the instability of an electron beam in a hot magnetized plasma

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.

    2013-09-15

    Efficiency of collective beam-plasma interaction strongly depends on the growth rates of dominant instabilities excited in the system. Nevertheless, exact calculations of the full unstable spectrum in the framework of relativistic kinetic theory for arbitrary magnetic fields and particle distributions were unknown until now. In this paper, we give an example of such a calculation answering the question whether the finite thermal spreads of plasma electrons are able to suppress the fastest growing modes in the beam-plasma system. It is shown that nonrelativistic temperatures of Maxwellian plasmas can stabilize only the oblique instabilities of relativistic beam. On the contrary, non-Maxwellian tails typically found in laboratory beam-plasma experiments are able to substantially reduce the growth rate of the dominant longitudinal modes affecting the efficiency of turbulent plasma heating.

  8. Geomagnetic Polarity Epochs: Sierra Nevada II.

    PubMed

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer. PMID:17799480

  9. Geomagnetic polarity epochs: Sierra Nevada II

    USGS Publications Warehouse

    Cox, A.; Doell, Richard R.; Brent, Dalrymple G.

    1963-01-01

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  10. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  11. Theory and observation of a dynamically evolviong negative ion plasma

    SciTech Connect

    Mendillo, M.; Forbes, J.

    1982-10-01

    As part of the Project Firefly ionospheric modification campaigns conducted during the early 1960's, sulfur hexafluoride (SF/sub 6/) was used to study the creation and consequences of artificially-induced electron depletion regions via the attachment process (SF/sub 6/+e..-->..SF/sub 6/). Since those early experiments, a great many advances have occurred in theoretical, laboratory, and diagnostic techniques related to negative ion plasmas. This study examines the full range of negative ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF/sub 6/ type injections might take in an F region environment. Particular attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three component plasma (O/sup +/, e/sup -/, SF/sub 6//sup -/) are described, and estimates of the incoherent scatter spectra obtained from such a plasma are presented. Model calculations using a first order chemical code are defined and tested to investigate the actual types of negative ion plasmas capable of being created under nighttime conditions. A versatile model for diffusion in an exponential atmosphere ws used to simulate the evolution of 10/sup 26/SF/sub 6/ molecules released at 222 km during a 1962 Firefly experiment. When examined in conjunction with the chemical model calculatins, the results suggest that the ionospheric perturbations recorded at the time probably resulted more from molecular and atomic ion neutralizations involving SF/sub 6//sup -/, SF/sub 5//sup +/, O/sup -/, O/sup +/, and epsilon/sup -/, rather than simple electron attachments, as had been expected. A similar use of SF/sub 6/ diffusion scenarios for high-altitude releases (h = 350-500 km) indicates that large-scale, long-lived negative ion plasmas could be produced by modest rocket or Shuttle-borne payloads to study

  12. Kinetic studies of microinstabilities in toroidal plasmas: Simulation and theory

    SciTech Connect

    Lee, W.W.; Haham, T.S.; Parker, S.E.; Perkins, F.W.; Rath, S.; Rewoldt, G.; Reynders, J.V.W.; Santoro, R.A.; Tang, W.M.

    1992-12-01

    A comprehensive program for the development and use of particle simulation techniques for solving the gyrokinetic Vlasov-Maxwell equations on massively parallel computers has been carried out at Princeton Plasma Physics Laboratory. This is a key element of our ongoing theoretical efforts to systematically investigate physics issues vital to understanding tokamak plasmas. In this paper, our focus is on spatial-gradient-driven microinstabilities. Their importance is supported by the recent progress in achieving a physics-based understanding of anomalous transport in toroidal systems which has been based on the proposition that these drift-type electrostatic modes dependent on ion temperature gradient (ITG) and trapped particle effects are dominant in the bulk ( confinement'') region. Although their presence is consistent with a number of significant confinement trends, results from high temperature tokamaks such as TFTR have highlighted the need for better insight into the nonlinear properties of such instabilities in long-mean-free-path plasmas. In addressing this general issue, we report important new results including (i) the first fully toroidal 3D gyrokinetic simulation of ITG modes and (ii) realistic toroidal eigenmode calculations demonstrating the unique capability to deal with large scale kinetic behavior extending over many rational surfaces. The effects of ITG modes (iii) on the inward pinch of impurities in 3D slab geometry and (iv) on the existence of microtearing modes in 2D slab are also discussed. Finally, (v) sheared toroidal flow effects on trapped-particle modes are presented.

  13. Kinetic studies of microinstabilities in toroidal plasmas: Simulation and theory

    SciTech Connect

    Lee, W.W.; Haham, T.S.; Parker, S.E.; Perkins, F.W.; Rath, S.; Rewoldt, G.; Reynders, J.V.W.; Santoro, R.A.; Tang, W.M.

    1992-12-01

    A comprehensive program for the development and use of particle simulation techniques for solving the gyrokinetic Vlasov-Maxwell equations on massively parallel computers has been carried out at Princeton Plasma Physics Laboratory. This is a key element of our ongoing theoretical efforts to systematically investigate physics issues vital to understanding tokamak plasmas. In this paper, our focus is on spatial-gradient-driven microinstabilities. Their importance is supported by the recent progress in achieving a physics-based understanding of anomalous transport in toroidal systems which has been based on the proposition that these drift-type electrostatic modes dependent on ion temperature gradient (ITG) and trapped particle effects are dominant in the bulk (``confinement``) region. Although their presence is consistent with a number of significant confinement trends, results from high temperature tokamaks such as TFTR have highlighted the need for better insight into the nonlinear properties of such instabilities in long-mean-free-path plasmas. In addressing this general issue, we report important new results including (i) the first fully toroidal 3D gyrokinetic simulation of ITG modes and (ii) realistic toroidal eigenmode calculations demonstrating the unique capability to deal with large scale kinetic behavior extending over many rational surfaces. The effects of ITG modes (iii) on the inward pinch of impurities in 3D slab geometry and (iv) on the existence of microtearing modes in 2D slab are also discussed. Finally, (v) sheared toroidal flow effects on trapped-particle modes are presented.

  14. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Gorelenkov, N. N.; Azizov, E. A.; Romannikov, A. N.; Herrmann, H. W.

    1998-05-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm's law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation.

  15. Gyrokinetic stability theory of electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Helander, P.; Connor, J. W.

    2016-06-01

    > The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, Phys. Rev. Lett., vol. 113, 2014a, 135003) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal magnetohydrodynamics. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.

  16. An effective field theory approach to the stabilization of 8Be in a QED plasma

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojun; Mehen, Thomas; Müller, Berndt

    2016-07-01

    We use effective field theory to study the α –α resonant scattering in a finite-temperature QED plasma. The static plasma screening effect causes the resonance state 8Be to live longer and eventually leads to the formation of a bound state when {m}{{D}}≳ 0.3 {{MeV}}. We speculate that this effect may have implications on the rates of cosmologically and astrophysically relevant nuclear reactions involving α particles.

  17. Kinetic Theory of Meteor Plasma in the Earth's atmosphere: Implications for Radar Head Echo

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.

    2015-12-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to be observed visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma and how it interacts with the Earth's atmosphere. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo often accompanied by a much longer non-specular trail (see the Figure). Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma responsible for the radar head echo. This theory produces analytic expressions describing the ion and neutral velocity distributions along with the detailed 3-D spatial structure of the near-meteoroid plasma. These expressions predict a number of unexpected features such as shell-like velocity distributions. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a strongly non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements, estimates of the ionization efficiency, and should help calculate meteoroid and atmosphere parameters from radar head-echo observations. This theory could also help clarify the physical nature of electromagnetic pulses observed during recent meteor showers and associated with the passage of fast-moving meteors through the

  18. Thermoemission (dust-electron) plasmas: Theory of neutralizing charges

    NASA Astrophysics Data System (ADS)

    Vishnyakov, V. I.; Dragan, G. S.

    2006-09-01

    Thermoemission plasma—i.e., a system consisting of dust grains and electrons—is studied. In the proposed model, it is assumed that the major part of the electronic gas is uniformly distributed in space and the spatial inhomogeneities of electronic density exist only near the dust grains. The experimental data, well described by the proposed theory, are given.

  19. Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device

    SciTech Connect

    Singh, S. K.; Awasthi, L. M.; Singh, R.; Kaw, P. K.; Jha, R.; Mattoo, S. K.

    2011-10-15

    This paper presents a theory of coupled whistler (W) and electron temperature gradient (ETG) mode using two-fluid model in high beta plasma. Non-adiabatic ion response, parallel magnetic field perturbation ({delta}B{sub z}), perpendicular magnetic flutter ({delta}B{sub perpendicular}), and electron collisions are included in the treatment of theory. A linear dispersion relation for whistler-electron temperature gradient (W-ETG) mode is derived. The numerical results obtained from this relation are compared with the experimental results observed in large volume plasma device (LVPD) [Awasthi et al., Phys. Plasma 17, 42109 (2010)]. The theory predicts that the instability grows only where the temperature gradient is finite and the density gradient flat. For the parameters of the experiment, theoretically estimated frequency and wave number of W-ETG mode match with the values corresponding to the peak in the power spectrum observed in LVPD. By using simple mixing length argument, estimated level of fluctuations of W-ETG mode is in the range of fluctuation level observed in LVPD.

  20. Hydrodynamic Theory of Atomic Mixing in Multicomponent Gases and Plasmas

    SciTech Connect

    Ramshaw, J D

    2001-08-22

    Atomic mixing in multicomponent gases and plasmas is usually described as a diffusional process. The diffusional description is an approximation to a more general dynamical description in which the motion of each individual species or material is governed by its own momentum equation, with appropriate coupling terms to represent the exchange of momentum between different species. These equations are not new, but they are scattered in the literature. Here we summarize the form of these species momentum equations, and the coupling coefficients therein, in sufficient detail to facilitate their inclusion and use to simulate atomic mixing in hydrodynamics codes.

  1. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.

    PubMed

    Shukla, P K; Akbari-Moghanjoughi, M

    2013-04-01

    We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion

  2. Theory and Observations of High Frequency Alfven Eigenmodes in Low Aspect Ratio Plasma

    SciTech Connect

    N.N. Gorelenkov; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; S. Kaye; R. White

    2003-06-27

    New observations of sub-cyclotron frequency instability in low aspect ratio plasma in National Spherical Torus Experiments (NSTX) are reported. The frequencies of observed instabilities correlate with the characteristic Alfven velocity of the plasma. A theory of localized Compressional Alfven Eigenmodes (CAE) and Global shear Alfven Eigenmodes (GAE) in low aspect ratio plasma is presented to explain the observed high frequency instabilities. CAE's/GAE's are driven by the velocity space gradient of energetic super-Alfvenic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAE's, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instabilities ions are presented.

  3. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases. PMID:26565352

  4. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis

    2015-09-01

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  5. Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.

    NASA Technical Reports Server (NTRS)

    Vahala, G.

    1972-01-01

    The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.

  6. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    SciTech Connect

    Manheimer, Wallace; Colombant, Denis

    2015-09-15

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  7. Kinetic theory of a two-dimensional magnetized plasma.

    NASA Technical Reports Server (NTRS)

    Vahala, G.; Montgomery, D.

    1971-01-01

    Several features of the equilibrium and nonequilibrium statistical mechanics of a two-dimensional plasma in a uniform dc magnetic field are investigated. The charges are assumed to interact only through electrostatic potentials. The problem is considered both with and without the guiding-center approximation. With the guiding-center approximation, an appropriate Liouville equation and BBGKY hierarchy predict no approach to thermal equilibrium for the spatially uniform case. For the spatially nonuniform situation, a guiding-center Vlasov equation is discussed and solved in special cases. For the nonequilibrium, nonguiding-center case, a Boltzmann equation, and a Fokker-Planck equation are derived in the appropriate limits. The latter is more tractable than the former, and can be shown to obey conservation laws and an H-theorem, but contains a divergent integral which must be cut off on physical grounds. Several unsolved problems are posed.

  8. Scale-free transport in fusion plasmas: theory and applications

    SciTech Connect

    Sanchez, R.; Mier, J. A.; Garcia, L.; Newman, D. E.; Carreras, B. A.; Leboeuf, J. N.; Decyk, V.

    2008-11-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  9. Scale-free transport in fusion plasmas: theory and applications

    SciTech Connect

    Sanchez, Raul; Mier, Jose Angel; Newman, David E; Carreras, Benjamin A; Garcia, Luis; Leboeuf, Jean-Noel; Decyk, Viktor

    2008-01-01

    A novel approach to detect the existence of scale-free transport in turbulent flows, based on the characterization of its Lagrangian characteristics, is presented and applied to two situations relevant for tokamak plasmas. The first one, radial transport in the presence of near-critical turbulence, has been known for quite some time to yield scale-free, superdiffusive transport. We use it to test the method and illustrate its robustness with respect to other approaches. The second situation, radial transport across radially-sheared poloidal zonal flows driven by turbulence via the Reynold stresses, is examined for the first time in this manner. The result is rather surprising and different from the traditionally assumed diffusive behavior. Instead, radial transport behaves instead in a scale-free, subdiffusive manner, which may have implications for the modeling of transport across transport barriers.

  10. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Association EURATOM - Confédération Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  11. Theory of spatially non-symmetric kinetic equilibria for collisionless plasmas

    SciTech Connect

    Cremaschini, Claudio; Tessarotto, Massimo

    2013-01-15

    The problem posed by the possible existence/non-existence of spatially non-symmetric kinetic equilibria has remained unsolved in plasma theory. For collisionless magnetized plasmas, this involves the construction of stationary solutions of the Vlasov-Maxwell equations. In this paper, the issue is addressed for non-relativistic plasmas both in astrophysical and laboratory contexts. The treatment is based on a Lagrangian variational description of single-particle dynamics. Starting point is a non-perturbative formulation of gyrokinetic theory, which allows one to construct 'a posteriori' with prescribed order of accuracy an asymptotic representation for the magnetic moment. In terms of the relevant particle adiabatic invariants generalized bi-Maxwellian equilibria are proved to exist. These are shown to recover, under suitable assumptions, a Chapman-Enskog form which permits an analytical treatment of the corresponding fluid moments. In particular, the constrained posed by the Poisson and the Ampere equations are analyzed, both for quasi-neutral and non-neutral plasmas. The conditions of existence of the corresponding non-symmetric kinetic equilibria are investigated. As a notable feature, both astrophysical and laboratory plasmas are shown to exhibit, under suitable conditions, a kinetic dynamo, whereby the equilibrium magnetic field can be self-generated by the equilibrium plasma currents.

  12. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  13. Very high Mach number shocks - Theory. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  14. Electronics Research Laboratory, Plasma Theory and Simulation Group annual progress report, January 1, 1989--December 31, 1989

    SciTech Connect

    Birdsall, C.K.

    1989-12-31

    This is a brief progress report, covering our research in general plasma theory and simulation, plasma-wall physics theory and simulation, and code development. Reports written in this period are included with this mailing. A publications list plus abstracts for two major meetings are included.

  15. Geomagnetic reversal in brunhes normal polarity epoch.

    PubMed

    Smith, J D; Foster, J H

    1969-02-01

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent. PMID:17750890

  16. Theory and Fluid Simulations of Boundary Plasma Fluctuations

    SciTech Connect

    Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S

    2007-01-09

    Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.

  17. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. II

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    The consistent kinetic approach developed in Paper I [Ya. S. Dimant and R. N. Sudan, Phys. Plasmas {bold 2}, 1157 (1995)] is applied to obtain the general dispersion relation of the two-stream {bold E}{times}{bold B} instability in collisionally dominated weakly ionized plasmas for wave frequencies small compared to the ion--neutral collision frequency. This dispersion relation covers the whole low-frequency band from the asymptotic short-wave limit studied in Paper I to the long-wave limit. Previous theories employing simplified kinetic theory or fluid equations for electron behavior are only correct in the long-wave limit. The principal new results are that the threshold conditions for this instability and the growth rates are altered from those predicted by earlier simplified theories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev's Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    NASA Astrophysics Data System (ADS)

    Krommes, John A.

    2015-12-01

    > In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical

  19. First and second quarter progress report 1987 on plasma theory and simulation, January 1-June 30, 1987

    SciTech Connect

    Birdsall, C.K.

    1987-01-01

    This paper contains papers on general plasma theory and plasma-wall physics. Specific titles enclosed are as follows: ion acceleration in a source sheath with an initial velocity; collector and source sheaths of a finite ion temperature plasma; effects of secondary electron emission on the collector and source sheaths of a finite ion temperature plasma; effects of ion reflection on the collector and source sheaths of a finite ion temperature plasma; and vortex dynamics and transport to the wall in a crossed field plasma sheath.

  20. Theory of "clumps" in drift-wave turbulence in tokamak plasma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Qiu, Xiaoming; X, M. Qhiu

    1986-08-01

    Basing on the new method of trajectory stochastic treatment advanced by one of the authors of this paper, the theory of "clumps" in driftwave turbulence in tokamak plasmas has been developed. It is shown that, as a longer time behaviour, plasmas in tokamaks will have the same "clumps" effects as those in uniform magnetic fields, although the diffusion crossing magnetic field lines in tokamaks will be enhanced. The influence of the non-uniformity of the magnetic field, such as curvature, shear, etc., on the transverse diffusion and the "clump" life-time is discussed.

  1. Profile of a low-Mach-number shock in two-fluid plasma theory

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Kushinsky, Y.; Balikhin, M.

    2015-08-01

    Magnetic profiles of low-Mach-number collisionless shocks in space plasmas are studied within the two-fluid plasma theory. Particular attention is given to the upstream magnetic oscillations generated at the ramp. By including weak resistive dissipation in the equations of motion for electrons and protons, the dependence of the upstream wave train features on the ratio of the dispersion length to the dissipative length is established quantitatively. The dependence of the oscillation amplitude and spatial damping scale on the shock normal angle θ is found.

  2. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  3. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  4. Administering an epoch initiated for remote memory access

    SciTech Connect

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  5. Radar probing of ionospheric plasmas precisely confirms linear kinetic plasma theory (Hannes Alfvén Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Farley, Donald

    2010-05-01

    In 1958 W. E. Gordon first suggested that huge radars could probe the ionosphere via scattering from independent electrons, even though the radar cross section of a single electron is only 10-28 m2. This suggestion quickly led to the construction of two enormous radars in the early 1960s, one near Lima, Peru, and one near Arecibo, Puerto Rico. It soon became apparent that the theory of this scatter was more complicated than originally envisaged by Gordon. Although the new theory was more complicated, it was much richer: by measuring the detailed shape of the Doppler frequency spectrum (or alternatively the signal autocorrelation function, the ACF), a radar researcher could determine many, if not most, of the parameters of interest of the plasma. There is now a substantial network of major radar facilities scattered from the magnetic equator (Peru) to the high arctic latitudes (Svalbard and Resolute Bay), all doing important ionospheric research. The history of what is now called Incoherent Scatter (even though it is not truly incoherent) is fascinating, and I will touch on a few highlights. The sophisticated radar and data processing techniques that have been developed are also impressive. In this talk, however, I want to focus mainly on the details of the theory and on how the radar observations have confirmed the predictions of classical linear plasma kinetic theory to an amazingly high degree of precision, far higher than has any other technique that I am aware of. The theory can be, and has been, developed from two very different points of view. One starts with 'dressed particles,' or Coulomb 'clouds' around ions and electrons moving with a Maxwellian velocity distribution; the second starts by considering all the charged particles to be made up of a spectrum of density plane waves and then invokes a generalized version of the Nyquist Noise Theorem to calculate the thermal amplitudes of the waves. Both approaches give exactly the same results, results that

  6. Experimental Measurements and Density Functional Theory Calculations of Continuum Lowering in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam

    2014-10-01

    An accurate description of the ionization potential depression (IPD) of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here I present the first experimental investigation of the IPD as a function of ionic charge state in a range of dense Mg, Al and Si plasmas, using the Linac Coherent Light Source X-ray free-electron laser. The measurements show significantly larger IPDs than are predicted by the most commonly used models, such as that of Stewart-Pyatt, or the ion-sphere model of Zimmerman-More. Instead, plasma simulations using finite-temperature density functional theory with excited-state projector augmented-wave potentials show excellent agreement with the experimental results and explain the stronger-than-expected continuum lowering through the electronic structure of the valence states in these strong-coupling conditions, which retain much of their atomic characteristics close to the ion core regions. These results have a profound impact on the understanding and modelling of plasmas over a wide range of warm- and hot-dense matter conditions.

  7. Plasma theory and simulation. Quarterly progress report Nos. 1 and 2, 1 January-30 June 1985

    SciTech Connect

    Birdsall, C.K.

    1985-06-01

    Partial contents include: (1) The Alfven Ion Cyclotron Instability: Simulation Theory and Techniques; (2) Transport of particle and energy fluxes through the plasma-sheath region, including ion reflection. The time-independent theory developed is very nearly verified by the average of the time-dependent simulations, with some exceptions; (3) Thermionic emission I-V paradox. The problem is described (Longo's 1/J observations) and conjectures are offered on the causes; (4) POLY: A hybrid scheme for the solution of the Vlasov equation. One component is modeled by linearized fluid equations and the other component(s) by the full Vlasov equation(s).

  8. Plasma theory and simulation. Quarterly progress report Nos. 3 and 4, 1 July-30 December 1984

    SciTech Connect

    Birdsall, C.K.

    1984-12-31

    Contents include: oblique-electron Bernstein-wave investigations; simulation of the effect of large-amplitude rf waves on the interchange instability-supporting theory; one-beam Alfven ion-cyclotron instabilities of multiple-ion distribution functions; linear-mode coupling in simulations of the Alfven ion-cyclotron instability; simulation of the plasma-sheath region including ion reflection; planar magnetron discharges; partial simulations of the low-alpha Pierce diode; theory and simulation of ion-acoustic double layers; and uniform-number generation for quiet starts.

  9. Application of linear response theory to magnetotransport properties of dense plasmas

    SciTech Connect

    Adams, J. R.; Redmer, R.; Reinholz, H.

    2010-03-15

    Linear response theory, as developed within the Zubarev formalism, is a quantum statistical approach for describing systems out of but close to equilibrium, which has been successfully applied to a wide variety of plasmas in an external electric field and/or containing a temperature gradient. We present here an extension of linear response theory to include the effects of an external magnetic field. General expressions for the complete set of relevant transport properties are given. In particular, the Hall effect and the influence of a magnetic field on the dc electrical conductivity are discussed. Low-density limits including electron-electron scattering are presented as well as results for arbitrary degeneracy.

  10. Theory of the jitter radiation in a magnetized plasma accompanying a temperature gradient

    NASA Astrophysics Data System (ADS)

    Hattori, Makoto; Fujiki, Kazushiro

    2016-04-01

    The linear stability of a magnetized plasma accompanying a temperature gradient is reexamined by using plasma kinetic theory. We propose that the anisotropic velocity distribution function should be decomposed into two components. One is proportional to the temperature gradient parallel to the background magnetic field. The other is proportional to the temperature gradient perpendicular to the background magnetic field. Since the amplitude of the anisotropic velocity distribution function is proportional to the heat conductivity, and the heat conductivity perpendicular to the magnetic field is strongly reduced, the first component of the anisotropic velocity distribution function is predominant. The anisotropic velocity distribution function induced by the temperature gradient along the background magnetic field drives plasma kinetic instability and circular polarized magnetic plasma waves are excited. We show that the instability is almost identical to the Weibel instability in the weakly magnetized plasma. However, in the case of the instability caused by the temperature gradient, whether wave vectors of modes are parallel to or antiparallel to the background magnetic field, the growth rate of one mode is suppressed and the growth rate of the other mode is enhanced due to the background magnetic field. In the strongly magnetized plasma, one mode is stabilized and only one of the modes remains unstable. The formulae for the jitter radiation spectrum emitted by relativistic electrons when they travel through the magnetized plasma with the plasma waves driven by the instability are deduced at the first time. We show that the synchrotron emission and the jitter radiation are simultaneously emitted from the same relativistic electron. The jitter radiation is expected to be circularly polarized but with a very small polarization degree since almost the same amounts of left-handed and right-handed circular polarized magnetic waves are excited by the instability.

  11. COSMIC-RAY TRANSPORT THEORY IN PARTIALLY TURBULENT SPACE PLASMAS WITH COMPRESSIBLE MAGNETIC TURBULENCE

    SciTech Connect

    Casanova, S.; Schlickeiser, R.

    2012-02-01

    Recently, a new transport theory of cosmic rays in magnetized space plasmas extending the quasilinear approximation to the particle orbit has been developed for the case of an axisymmetric incompressible magnetic turbulence. Here, we generalize the approach to the important physical case of a compressible plasma. As previously obtained in the case of an incompressible plasma, we allow arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field. For the case of quasi-stationary and spatially homogeneous magnetic turbulence we derive, in the small Larmor radius approximation, gyrophase-averaged cosmic-ray Fokker-Planck coefficients. Upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients and for the perpendicular and parallel spatial diffusion coefficients are presented.

  12. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  13. Theory of optical phase conjugation via four-wave mixing in laser plasmas

    SciTech Connect

    Lahiri, J.; Sinha, B.K.

    1995-05-01

    Theoretical studies of optical phase conjugation via four-wave mixing in a two-temperature laser produced carbon plasma are reported. Starting from Maxwell equations and using the theory of parametric decay instability, analytical expressions of the phase conjugate reflectivity for a steady-state probe have been obtained and numerically evaluated for the case of the laser plasma formed by irradiating a carbon slab target with a Nd:Glass laser operating at {lambda}{sub 0}=1.06 {mu}. The variation of reflectivity as a function of frequency and angular mismatch between the pump and probe waves has been considered. It is observed that the reflectivity peaks occur under the situation of resonance when the frequency mismatch equals the ion-acoustic frequency of the plasma. The detailed numerical results are graphically reported and discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  14. Theory of type 3b solar radio bursts. [plasma interaction and electron beams

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Delanoee, J.

    1975-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  15. Fully kinetic plasma-sheath theory for a cold-electron emitting surface

    NASA Astrophysics Data System (ADS)

    Ordonez, C. A.

    1992-04-01

    The fully kinetic, one-dimensional, plasma-sheath theory by Schwager and Birdsall [Phys. Fluids B 2, 1057 (1990)] is further developed. A cold-electron emitting surface is included and a three-dimensional plasma is considered. The sheath potential is not assumed to equal the floating potential so that the theory applies to a current-carrying sheath. Appropriate values are found for higher-order moments of the velocity distribution which depend on the three-dimensional velocity distribution width. Distribution functions in terms of energy and angle are derived. The (effective) temperature, the total energy flux, and the heat flux are evaluated in terms of exact analytic functions. The normalized magnitude of the floating potential for a deuterium plasma with equal ion and electron temperatures is calculated to be ψf=3.2 for δ=0 and ψf=1.8 for δ=0.75 where δ is the electron emission coefficient. The normalized magnitude of the sheath potential for the same plasma (with δ=0) is calculated to be ψs=3.9 for γ=0.02 and ψs=2.8 for γ=-0.02 where γ is the normalized current density. A self-consistent integral solution for the electrostatic potential profile within the sheath is derived.

  16. Neoclassical transport theory in a tokamak plasma with large spatial gradients

    SciTech Connect

    Chang, C.S.

    1996-12-31

    Usual neoclassical theories assumed that the spatical inhomogeneity of the plasma was weak. Specifically, this included the following two strong assumptions: banana width was negligible compared to the radial gradient scale length and variation of any physical quantity along the field line was small. This led to the simplification that the spatial inhomogeneity itself did not affect the fundamental transport processes. However, there have been many experimental suggestions that the spatial inhomogeneity may not be small. Firstly, both H-mode and ERS mode experiments have indicated that the finite banana width effect may be important to understand the plasma transport processes. Secondly, the RF and auxiliary heating processes may be sufficiently localized in space so that we may need to consider a strongly inhomogeneous heating effect along the field lines. In the present work we develop a modified neoclassical theory, in parallel with the old theories, which can include the finite banana width effect and the inhomogeneous heating effect. Several new and significant transport terms have been identified, which can play important roles in the understanding of the fundamental transport processes in a tokamak plasma.

  17. Theory and observations of Alfvén solitons in the finite beta magnetospheric plasma

    NASA Astrophysics Data System (ADS)

    Patel, V. L.; Dasgupta, Brahmananda

    1987-08-01

    A nonlinear Schrödinger equation which governs the nonlinear evolution of Alfvén wave in a hot, two-fluid plasma, is derived by using a modified version of reductive perturbation theory. The effect of coupling with the density fluctuation is taken into account in the calculation of nonlinear frequency shift. The theory is applied to explain recent observations of the solitary Alfvén waves in space plasma. For the observational analysis, an extensive search was conducted by analyzing magnetic field data from geostationary satellites GOES 2, 3, and 5 in the earth's magnetosphere at 6.6 earth radii. In data covering a period of August 1979-January 1984, we have found occurrence of 292 solitary wave events. Out of these events, 108 events are classified as Alfvénic solitons (perturbations perpendicular to the ambient field) and 184 mixed mode solitons (perturbations perpendicular and parallel to the ambient field.) No event for compressional mode soliton was found. We believe, this is the first time, such analysis and observations of solitary waves in space plasma have been performed. A statistical analysis has been carried out to compare the results of theory and observations. A range of unstable wave numbers has been determined for the Alfvénic soliton in the magnetosphere. Permanent address: Saha Institute of Nuclear Physics, 92 Acharya P.C. Road, Calcutta, 700009 India.

  18. Kinetic Theory in Hot Plasmas and Neutral Gases Applications to the Computation of the transport coefficients

    SciTech Connect

    Bendib, A.

    2008-09-23

    The conference is devoted to the study of systems consisting of a large number of particles by using the kinetic theory. In a first part, we present a general overview of the kinetic theory. In particular, the role of the correlations between particles is shown and discussed through the main models reported in the literature. In a second part, we present three applications to the transport properties in plasmas and neutral gases. The first application is devoted to the transport in hot plasmas perturbed with respect to the global equilibrium. The quasi-static and collisionless distribution function and transport coefficients are established. The influence of relativistic effects is also discussed. The second application deals with strongly inhomogeneous magnetized plasmas. The transport coefficients of Braginskii are calculated numerically in the local and the weakly nonlocal approximations. New nonlocal transport coefficients are emphasized. Finally, we apply the kinetic theory to the neutral gases by calculating the semi-collisional dispersion relation of acoustic waves. In particular, the dispersion and the damping of these waves in rarefied gases are highlighted. The method used to solve the kinetic equations is compared with the conventional method of Chapman-Enskog.

  19. On the Threshold of the Reionization Epoch

    NASA Astrophysics Data System (ADS)

    Djorgovski, S. G.; Castro, S.; Stern, D.; Mahabal, A. A.

    2001-10-01

    Discovery of the cosmic reionization epoch would represent a significant milestone in cosmology. We present Keck spectroscopy of the quasar SDSS 1044-0125, at z=5.73. The spectrum shows a dramatic increase in the optical depth at observed wavelengths λ>~7550 Å, corresponding to zabs>~5.2. Only a few small, narrow transmission regions are present in the spectrum beyond that point and out to the redshifts where the quasar signal begins. We interpret this result as a signature of the trailing edge of the cosmic reionization epoch, which we estimate to occur around ~6 (as indeed confirmed by subsequent observations by Becker et al.) and extending down to z~5.2. This behavior is expected in the modern theoretical models of the reionization era, which predict a patchy and gradual onset of reionization. The remaining transmission windows we see may correspond to the individual reionization bubbles (Strömgren spheres) embedded in a still largely neutral intergalactic medium, intersected by the line of sight to the quasar. Future spectroscopic observations of quasars at comparable or larger redshifts will provide a more detailed insight into the structure and extent of the reionization era. Based on the observations obtained at the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

  20. Geomagnetic polarity epochs: Nunivak Island, Alaska

    USGS Publications Warehouse

    Cox, A.; Dalrymple, G.B.

    1967-01-01

    New paleomagnetic and potassium-argon dating measurements have been made of basalt flows from Nunivak Island, Alaska, with the following results. (1) The best estimate of the age of the Brunhes/Matuyama polarity epoch boundary is found to be 0.694 m.y. (2) The best estimate of the age of the Gauss/Gilbert boundary is 3.32 m.y. (3) Three normally magnetized flows with ages from 0.93 to 0.88 m.y. are in accord with previous estimates of the age and duration of the Jaramillo normal event. (4) One normally magnetized flow with an age of 1.65 ?? 0.09 m.y. supplies additional evidence for the Gilsa?? normal event. (5) Two new normal events are identified within the Gilbert reversed epoch, the "Cochiti normal event" with an age of 3.7 m.y. and the "Nunivak normal event" with an age of 4.1 m.y. ?? 1967.

  1. Multi-Epoch XMM Observations of NGC4258

    NASA Technical Reports Server (NTRS)

    Greenhill, Lincoln J.

    2004-01-01

    The goal of this project was detection of variability in the X-ray absorption column of the AGN in NGC4258 through monitoring with the XMM satellite. We have accomplished this goal and submitted the results to ApJ for publication in a paper entitled, "X-ray Luminosity and Absorption Column Fluctuations in the H2O Maser Galaxy NGC4258 from Weeks to Years," by Fruscione, A., Greenhill, L.J., Filippedco, A.V., Moran, J.M., Hermstein, J.R., and Galle, E. We have received a favorable referee report and expect the article will appear in 2005. To complete the project, we reduced our four epochs of XMM data for NGC4258, one archival XMM observation, and all existing Chandra datasets for NGC4258 (with the latest calibration tables and a grid of corrections for pileup). Self-consistent reduction of all these data permitted detailed comparison that could not have been accomplished simply by taking published model fits that appear in the literature. To accumulate a broader monitoring record, we combined the Chandra and XMM results with those published for SAX and ASCA. We modeled the Chandra and XMM data self-consistently with partially absorbed, hard power-law, soft thermal plasmas, and soft power-law components. Over nine years, the photo-electric absorbing column exhibited a 40% drop between two ASCA epochs separated by 3 years and a 60% rise between two XMM epochs separated by just 5 months. In contract, uncorrelated factor of of 2-3 changes were seen in absorbed flux on te timescale of years, which suggests intrinsic variability of the central engine. The warped disk that is a known source of H2O maser emission in 4258 is believed to cross the line of sight to the central engine. We have proposed that the variations in absorbing column arise from inhomogeneities in the rotating disk, as they sweep across the line of sight. We estimate from the XMM data that the inhomogeneities are about 1E+15 cm in size at radii greater than 0.27 pc. This is consistent with the estimated

  2. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Pavlos, George

    2015-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time

  3. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Infrared VLT Observations Identify Hidden Galaxies in the Early Universe Working with the ESO Very Large Telescope (VLT) at the Paranal Observatory , a group of European astronomers [1] has just obtained one of the deepest looks into the distant Universe ever made by an optical telescope. These observations were carried out in the near-infrared spectral region and are part of an attempt to locate very distant galaxies that have so far escaped detection in the visual bands. The first results are very promising and some concentrations of galaxies at very large distances were uncovered. Some early galaxies may be in hiding Current theories hypothesize that more than 80% of all stars ever formed were assembled in galaxies during the latter half of the elapsed lifetime of the Universe, i.e., during the past 7-8 billion years. However, doubts have arisen about these ideas. There are now observational indications that a significant number of those galaxies that formed during the first 20% of the age of the Universe, i.e. within about 3 billion years after the Big Bang, may not be visible to optical telescopes. In some cases, we do not see them, because their light is obscured by dust. Other distant galaxies may escape detection by optical telescopes because star formation in them has ceased and their light is mainly emitted in the red and infrared spectral bands. This is because, while very young galaxies mostly contain hot and blue stars, older galaxies have substantial numbers of cool and red stars. They are then dominated by an older, "evolved" stellar population that is cooler and redder. The large cosmic velocities of these galaxies further enhance this effect by causing their light to be "redshifted" towards longer wavelengths, i.e. into the near-infrared spectral region. Observations in the infrared needed Within the present programme, long exposures in near-infrared wavebands were made with the Infrared Spectrometer And Array Camera (ISAAC) , mounted on ANTU , the

  4. Derivations and Comparisons of Three Groups ofSelf-Organization Theories for Magnetohydrodynamic Plasmas

    NASA Astrophysics Data System (ADS)

    Kondoh, Yoshiomi; Sato, Tetsuya

    1994-04-01

    A theoretical investigation on self-organization theories ofdissipative MHD plasmas is presented to derive three groups oftheories that lead to the same relaxed state of ∇ × B=λ B, in order to find more essential physicalpicture embedded in self-organization phenomena due to nonlinear anddissipative processes. Comparisons among all of the theories treatedand derived here suggest that a theory standing upon spectrumspreadings and selective dissipations of eigenmodes for thedissipative operator -∇ ×η j and leading toself-organized relaxed states of ∇ ×ηj=α B/2 with the minimum dissipation rate is the most agreeable to various results obtained by experiments and by 3-D MHD simulations reported so far.

  5. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  6. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  7. Kinetic theory of quasi-stationary collisionless axisymmetric plasmas in the presence of strong rotation phenomena

    SciTech Connect

    Cremaschini, Claudio; Stuchlík, Zdeněk; Tessarotto, Massimo

    2013-05-15

    The problem of formulating a kinetic treatment for quasi-stationary collisionless plasmas in axisymmetric systems subject to the possibly independent presence of local strong velocity-shear and supersonic rotation velocities is posed. The theory is developed in the framework of the Vlasov-Maxwell description for multi-species non-relativistic plasmas. Applications to astrophysical accretion discs arising around compact objects and to plasmas in laboratory devices are considered. Explicit solutions for the equilibrium kinetic distribution function (KDF) are constructed based on the identification of the relevant particle adiabatic invariants. These are shown to be expressed in terms of generalized non-isotropic Gaussian distributions. A suitable perturbative theory is then developed which allows for the treatment of non-uniform strong velocity-shear/supersonic plasmas. This yields a series representation for the equilibrium KDF in which the leading-order term depends on both a finite set of fluid fields as well as on the gradients of an appropriate rotational frequency. Constitutive equations for the fluid number density, flow velocity, and pressure tensor are explicitly calculated. As a notable outcome, the discovery of a new mechanism for generating temperature and pressure anisotropies is pointed out, which represents a characteristic feature of plasmas considered here. This is shown to arise as a consequence of the canonical momentum conservation and to contribute to the occurrence of temperature anisotropy in combination with the adiabatic conservation of the particle magnetic moment. The physical relevance of the result and the implications of the kinetic solution for the self-generation of quasi-stationary electrostatic and magnetic fields through a kinetic dynamo are discussed.

  8. Unification of Plasma Fluid and Kinetic Theory via Gaussian Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Candy, J. M.

    2015-11-01

    A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev. 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator contains friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, nonlinear (bilinear) operator. Numerical discretization of the operator, in particular for collisions of unlike species, is extremely challenging. In this work, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also have a deep physical interpretation in statistical mechanics and plasma physics as local thermodynamic equilibria. We outline the general theory, highlight the connection to plasma fluid theories, and also give 2D and 3D numerical solutions of the nonlinear Fokker-Planck equation. A broad spectrum of applications for the new method is anticipated in both astrophysical and laboratory plasmas. In particular, we believe that the RBF method may provide a new bridge between fluid and kinetic descriptions of magnetized plasma. Work supported in part by US DOE under DE-FG02-08ER54963.

  9. PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)

    NASA Astrophysics Data System (ADS)

    Garbet, Xavier; Sauter, Olivier

    2012-12-01

    The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012

  10. Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control

    NASA Astrophysics Data System (ADS)

    Thomas, Johannes; Kostyukov, Igor Yu.; Pronold, Jari; Golovanov, Anton; Pukhov, Alexander

    2016-05-01

    We introduce a complete semi-analytical model for a cavitated electron wake driven by an electron beam in a radially inhomogeneous plasma. The electron response to the driver, dynamics of electrons in a thin sheath surrounding the cavity, as well as accelerating and focusing fields inside the cavity are calculated in the quasistatic approximation. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. A free-propagating blow-out in an evacuated channel experiences longitudinal squeezing, qualitatively the same as observed in particle-in-cell simulations for the laser pulse-driven case [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. Our model also permits qualitative interpretation of the earlier observed cancellation of the focusing gradient in the cavity [Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014)]. In this work, we show the underlying mechanism that causes the radial fields in the vacuum part of a channel to become defocussing.

  11. Modeling the Extragalactic Epoch of Reionization Foreground

    NASA Astrophysics Data System (ADS)

    Carroll, Patricia A.

    The Epoch of Reionization represents a largely unexplored yet fundamental chapter of the early universe. During this period, spanning several hundred million years, the first stars and galaxies formed and the Hydrogen-dominated intergalactic medium transitioned from a predominantly neutral to ionized state. Modern efforts to study exactly when and how reionization occurred are largely focused on the distribution of neutral Hydrogen gas and its evolution in response to the increasing abundance of luminous objects and ionizing flux. The Murchison Widefield Array is a low frequency radio interferometer designed as a first generation EoR experiment. The predominant systematic difficulty in making a detection of the primordial HI signal is the overwhelmingly bright emission from the intervening foreground galaxies and quasars. This thesis presents novel survey methods used to create a highly precise and reliable catalog of discrete extragalactic sources for the purposes of both calibration and foreground removal.

  12. LEDDB: LOFAR Epoch of Reionization Diagnostic Database

    NASA Astrophysics Data System (ADS)

    Martinez-Rubi, O.; Veligatla, V. K.; de Bruyn, A. G.; Lampropoulos, P.; Offringa, A. R.; Jelic, V.; Yatawatta, S.; Koopmans, L. V. E.; Zaroubi, S.

    2013-10-01

    One of the key science projects of the Low-Frequency Array (LOFAR) is the detection of the cosmological signal coming from the Epoch of Reionization (EoR). Here we present the LOFAR EoR Diagnostic Database (LEDDB) that is used in the storage, management, processing and analysis of the LOFAR EoR observations. It stores referencing information of the observations and diagnostic parameters extracted from their calibration. These stored data are used to ease the pipeline processing, monitor the performance of the telescope, and visualize the diagnostic parameters which facilitates the analysis of the several contamination effects on the signals. It is implemented with PostgreSQL and accessed through the psycopg2 Python module. We have developed a very flexible query engine, which is used by a web user interface to access the database, and a very extensive set of tools for the visualization of the diagnostic parameters through all their multiple dimensions.

  13. Orion: The Final Epoch (OrionTFE)

    NASA Astrophysics Data System (ADS)

    Megeath, Tom; Allen, Tom; Arce, Hector; Booker, Joseph; Calvet, Nuria; Flaherty, Kevin; Furlan, Elise; Fischer, Will; Gonzales, Beatriz; Gutermuth, Rob; Hartman, Lee; Henning, Thomas; Hora, Joe; Karnath, Nicole; Kim, Kyoung Hee; Kounkel, Marina; Mazur, Brian; Offner, Stella; Osorio, Mayra; Pillitteri, Ignazio; Pipher, Judy; Prchlik, Jakub; Rebull, Luisa; Terebey, Susan; Tobin, John; Stanke, Thomas; Stutz, Amelia; Watson, Dan; Wolk, Scott

    2016-08-01

    The Orion molecular clouds are an essential laboratory for studying low mass star formation over the broad range of environments in which they form. Starting with the Spitzer survey of Orion in 2004, more than a decade of observations with Spitzer, WISE, HST and Herschel, have accumulated an unparalleled characterization of the young stellar object population in Orion. We propose a final epoch of observations divided into two separate, complementary observations: A repeat of the entire Orion molecular cloud survey to 1.) identify ejected stars from clusters, 2.) measure the bulk proper motions of groups and clusters of stars, 3.) constrain the rate of luminous, accretion driven outbursts from both protostars and pre-main sequence stars with disks and 4.) use proper motions of IR Herbig-Haro knots as a fossil record of previous accretion events. A high cadence variability survey of the L1641 cloud extending the YSOVAR variability survey of the Orion Nebula Cluster across the Orion A cloud with the goals of 1.) constraining the star formation history of Orion A, 2.) studying the evolution of mid-IR variability from the protostellar to pre-main sequence phase, 3.) searching for periodicities in (nearly) edge-on protostars and disks due to orbiting clumps and structures from orbiting planets, and 4.) assessing whether inner disk processes - as traced by variability - are affected by their birth environment. This program completes an unparalleled, > 12 year multi-epoch, mid-IR study of the nearest large molecular cloud complex with both a wide spatial coverage and a uniformity that will not be exceeded in the forseeable future. It will place unique constraints on the highly dynamic processes that control low mass star formation, serve as a pathfinder to molecular cloud surveys of WFIRST, and provide well characterized targets needed to study mass accretion and planet formation around young low mass stars with SOFIA and JWST.

  14. Towards a Lunar Epoch of Reionization Telescope

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Lazio, J.; MacDowall, R.; Weiler, K.; Burns, J.

    2007-05-01

    Low-frequency radio astronomy is recognized as one of the few areas of astronomy that would clearly benefit from lunar basing. This is particularly true for locations on the far side of the Moon, a unique location because it provides simultaneous shielding from terrestrial interference and from strong solar radio bursts (half of the time). All lunar based instruments are also free of the serious effects of Earth's ionosphere, which is opaque at frequencies below 20-30 MHz and introduces large phase errors below 100 MHz. As a first step, a relatively small radio array on the near side of the Moon (ROLSS, the Radio Observatory for Lunar Sortie Science) has been proposed to NASA's Lunar Sortie Science Opportunity program. ROLSS will be able to image radio emission from coronal mass ejections (type II radio bursts) and fast electron streams (type III bursts), and will also produce the first high-resolution images of the sky at low frequencies. It is possible that solar observations below a few MHz may be limited by the transient lunar ionosphere; a simple experiments to monitor the lunar ionosphere with riometry (LAPS, the Lunar Array Precursor Station), has also been proposed to the Lunar Sortie Science program. Finally, the lunar far side is the best location for large radio arrays designed to produce the highest quality images of redshifted neutral Hydrogen before and during the epoch of reionization. This is an area of fundamental importance, and will require a large number of array antenna elements. One concept for this far-future array is MERIT, the Moon-based Epoch of Reionization Imaging Telescope), which is partly based on technologies to be demonstrated by ROLSS. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  15. The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Pavlos, George

    2015-04-01

    As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time

  16. Theory of the plasma thruster based on the rotating electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ya. I.; Lutsenko, V. V.; Rudenko, T. S.

    2015-04-01

    A theory of electrodeless electric propulsion systems (EEPS) based on the use of the solenoid magnetic field and the rotating electromagnetic field produced by antennas is developed, which includes a study of the plasma acceleration by the Radio Frequency (RF) field and the concomitant thrust. It was assumed that the frequency of the RF field exceeds the lower hybrid frequency but is much less than the electron gyrofrequency. Relations for the thrust are obtained and analyzed. It is shown that thrust gain is significant only when the RF-induced drift velocity well exceeds the fluid velocity of the injected plasma. It is revealed that the curvature of the magnetic field lines and the plasma acceleration in the region outside the solenoid are the factors which can considerably increase the thrust. On the other hand, it is found that the axial inhomogeneity of the plasma and some other factors are unfavorable for the thrust. The obtained results can be used for the optimization of particular experiments aimed to create a new thruster for long-time space missions.

  17. Gyrotropic guiding-center fluid theory for turbulent inhomogeneous magnetized plasma

    SciTech Connect

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Bouhram, Mehdi

    2006-07-15

    In this paper, a new fluid theory is given in the guiding-center and gyrotropic approximation which is derivable from the Vlasov-Maxwell equations. The theory includes the effect of wave-particle interactions for the weakly turbulent, weakly inhomogeneous, nonuniformly magnetized plasma, and it is applicable to a variety of space and laboratory plasmas. It is assumed that the turbulence is random and electrostatic, and that the velocity-space Fokker-Planck operator can be used to calculate the correlation functions that describe the wave-particle interactions. Conservation laws are derived that relate the low-order velocity moments of the particle distributions to the turbulence. The theory is based on the work of Hubbard [Proc. R. Soc. London, Ser. A 260, 114 (1961)] and Ichimaru and Rosenbluth [Phys. Fluids 13, 2778 (1970)]. In the work presented here, the idea is proposed that the fluid equations can be solved (1) by using measurements of the turbulence to specify the electric-field fluctuations; and (2) by using measurements of the low-order velocity moments to specify the initial and boundary conditions.

  18. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    SciTech Connect

    W.M. Tang

    2005-01-03

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources.

  19. Nonlinear theory of ion-acoustic waves in an electron-positron-ion plasma

    SciTech Connect

    Dubinov, A. E.; Sazonkin, M. A.

    2009-01-15

    An analytical nonlinear gasdynamic theory of ion-acoustic waves in an e-p-i plasma is developed for the case in which all the plasma components in the wave undergo polytropic compression and rarefaction. An exact solution to the basic equations is found and analyzed by the Bernoulli pseudopotential method. The parameter range in which periodic waves can propagate and the range in which solitary waves (solitons) exist are determined. It is shown that the propagation velocity of a solitary is always higher than the linear ion sound velocity. The profiles of all the physical quantities in both subsonic and supersonic waves are calculated. The results obtained agree well with both the data from other papers and particular limiting cases.

  20. Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2015-07-15

    The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed.

  1. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory.

    PubMed

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014);] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)]. PMID:26764850

  2. Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Sjostrom, Travis; Daligault, Jérôme

    2015-12-01

    We validate the application of our recent orbital-free density functional theory (DFT) approach [Phys. Rev. Lett. 113, 155006 (2014), 10.1103/PhysRevLett.113.155006;] for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warm dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001].

  3. A theory of two-beam acceleration of charged particles in a plasma waveguide

    SciTech Connect

    Ostrovsky, A.O.

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  4. Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan

    2014-06-01

    The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.

  5. Linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    SciTech Connect

    Lundin, J.; Brodin, G.

    2010-11-15

    We have considered linear kinetic theory, including the electron-spin properties in a magnetized plasma. The starting point is a mean-field Vlasov-like equation, derived from a fully quantum-mechanical treatment, where effects from the electron-spin precession and the magnetic dipole force are taken into account. The general conductivity tensor is derived, including both the free current contribution and the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.

  6. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    SciTech Connect

    Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  7. Molecular hydrogen in the cosmic recombination epoch

    SciTech Connect

    Alizadeh, Esfandiar; Hirata, Christopher M.

    2011-10-15

    The advent of precise measurements of the CMB anisotropies has motivated correspondingly precise calculations of the cosmic recombination history. Cosmic recombination proceeds far out of equilibrium because of a ''bottleneck'' at the n=2 level of hydrogen: atoms can only reach the ground state via slow processes--two-photon decay or Lyman-{alpha} resonance escape. However, even a small primordial abundance of molecules could have a large effect on the interline opacity in the recombination epoch and lead to an additional route for hydrogen recombination. Therefore, this paper computes the abundance of the H{sub 2} molecule during the cosmic recombination epoch. Hydrogen molecules in the ground electronic levels X{sup 1}{Sigma}{sub g}{sup +} can either form from the excited H{sub 2} electronic levels B{sup 1}{Sigma}{sub u}{sup +} and C{sup 1}{Pi}{sub u} or through the charged particles H{sub 2}{sup +}, HeH{sup +}, and H{sup -}. We follow the transitions among all of these species, resolving the rotational and vibrational sublevels. Since the energies of the X{sup 1}{Sigma}{sub g}{sup +}-B{sup 1}{Sigma}{sub u}{sup +} (Lyman band) and X{sup 1}{Sigma}{sub g}{sup +}-C{sup 1}{Pi}{sub u} (Werner band) transitions are near the Lyman-{alpha} energy, the distortion of the CMB spectrum caused by escaped H Lyman-line photons accelerates both the formation and the destruction of H{sub 2} due to this channel relative to the thermal rates. This causes the populations of H{sub 2} molecules in X{sup 1}{Sigma}{sub g}{sup +} energy levels to deviate from their thermal equilibrium abundances. We find that the resulting H{sub 2} abundance is 10{sup -17} at z=1200 and 10{sup -13} at z=800, which is too small to have any significant influence on the recombination history.

  8. Theory Issues for Induced Plasma Convection Experiments in the Divertor of the MAST Spherical Tokamak

    SciTech Connect

    Cohen, R H; Fielding, S; Helander, P; Ryutov, D D

    2001-09-05

    This paper surveys theory issues associated with inducing convective cells through divertor tile biasing in a tokamak to broaden the scrape-off layer (SOL). The theory is applied to the Mega-Ampere Spherical Tokamak (MAST), where such experiments are planned in the near future. Criteria are presented for achieving strong broadening and for exciting shear-flow turbulence in the SOL; these criteria are shown to be attainable in practice. It is also shown that the magnetic shear present in the vicinity of the X-point is likely to confine the potential perturbations to the divertor region below the X-point, leaving the part of the SOL that is in direct contact with the core plasma intact. The current created by the biasing and the associated heating power are found to be modest.

  9. Theory of waves in pair-ion plasmas: Natural explanation of backward modes

    SciTech Connect

    Kono, M.; Vranjes, J.; Batool, N.

    2013-12-15

    Backward waves observed in the experiments by Oohara and Hatakeyama (Phys. Rev. Lett. 91, 205005 (2003)) are identified to be ion cyclotron harmonic waves inherent to the kinetic theory. The derived dispersion equation is based on exact solutions of the characteristic equations of the Vlasov equation in a bounded cylindrical coordinate system; it is different from its counterpart in unbounded plasmas, and it provides all the branches of the dispersion relations observed in the experiment. Positive and negative ions respond to a potential in the same time scale and cooperate to expose kinetic orbital behaviors to the macroscopic propagation characteristics. In addition, the experimental setting of the large Larmor radius makes higher harmonic ion cyclotron backward/forward waves observable. The large Larmor radius effects are naturally treated by a kinetic theory.

  10. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.

    PubMed

    Akbari-Moghanjoughi, M; Shukla, P K

    2012-12-01

    We present a generalized nonlinear theory for large-amplitude electrostatic (ES) ion shocks in collisional quantum plasmas composed of mildly coupled degenerate electron fluid of arbitrary degeneracy and nondegenerate strongly correlated ion fluid with arbitrary atomic number. For our purposes, we use the inertialess electron momentum equation including the electrostatic force, pressure gradient, and relevant quantum forces, as well as a generalized viscoelastic ion momentum (GVIM) equation for strongly correlated nondegenerate ions. The ion continuity equation, in the quasineutral approximation, then closes our nonlinear system of equations. When the electric field force is eliminated from the GVIM equation by using the inertialess electron momentum equation, we then obtain a GVIM and ion continuity equations, which exhibit nonlinear couplings between the ion number density and the ion fluid velocity. The pair of nonlinear equations is numerically solved to study the dynamics of arbitrarily-large-amplitude planar and nonplanar ES shocks arising from a balance between harmonic generation nonlinearities and the ion fluid viscosity for a wide range of plasma mass densities and ion atomic numbers that are relevant for the cores of giant planets (viz., Jupiter) and compact stars (viz., white dwarfs). Our numerical results reveal that the ES shock density profiles strongly depend on the plasma number density and composition (the atomic-number) parameters. Furthermore, ion density perturbations propagate with Mach numbers which significantly depend on the studied plasma fractional parameters. It is concluded that the dynamics of the ES shocks in the superdense degenerate plasma is quite different in the core of a white dwarf star from that in the lower density crust region. PMID:23368053

  11. Theory of plasma contactors in ground-based experiments and low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.

    1990-01-01

    Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.

  12. Parallax Results from Urat Epoch Data

    NASA Astrophysics Data System (ADS)

    Finch, Charlie T.; Zacharias, Norbert

    2016-06-01

    We present 1103 trigonometric parallaxes and proper motions from the United States Naval Observatory Robotic Astrometric Telescope (URAT) observations taken at the Naval Observatory Flagstaff Station (NOFS) over a three-year period from 2012 April to 2015 June covering the entire sky north of about -10^\\circ decl. We selected two samples: previously suspected nearby stars from known photometric distances and stars showing a large, significant parallax signature in URAT epoch data without any prior selection criteria. All systems presented in this paper have an observed parallax ≥40 mas with no previous published trigonometric parallax. The formal errors on these weighted parallax solutions are mostly between 4 and 10 mas. This sample gives a significant (of the order of 50%) increase to the number of known systems having a trigonometric parallax to be within 25 pc of the Sun (without applying Lutz–Kelker bias corrections). A few of these are found to be within 10 pc. Many of these new nearby stars display a total proper motion of less than 200 mas yr‑1. URAT parallax results have been verified against Hipparcos and Yale data for stars in common. The publication of all signifigant parallax observations from URAT data is in preparation for CDS.

  13. Energy branching in the Io plasma torus - The failure of neutral cloud theory

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.

    1988-03-01

    The energy branching of the hot Io plasma torus using model calculations which include all of the significant physical chemistry that affects the system has been examined in order to study energy source characteristics. Most theoretical discussions of the energetics of the torus assume that the system is maintained against radiative and other losses by the interaction of the plasma with neutral atomic clouds. The energy in this theory is derived from the kinetic energy acquired by ions created in the rotating planetary magnetic field. Coulomb collisions with the electron gas control the flow of energy to the ionizing and radiative processes. The energetics of this theoretical system is defined by fixing the electron density, the diffusive loss time, and the relative volumetric rates of injection of the major neutral constituents, oxygen and sulfur. On the basis of calculations of this kind in comparison with the characteristics of the observed system, the conclusion has been drawn that neutral cloud theory is qualitatively inadequate. Two possibilities for energy sources involving a particular interaction with an Io atmosphere and a heterogeneous source of energetic electrons are discussed.

  14. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. I

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    A consistent kinetic theory is developed for the description of electrons under conditions of a low-frequency two-stream {bold E}{times}{bold B} instability in collisionally dominated, weakly ionized plasmas. Starting from the Boltzmann collision integral, a simplified kinetic equation for the electron distribution function has been derived, which takes into account strong pitch-angle scattering of electrons by neutrals, velocity dependence of the electron--neutral collision frequency, etc. Linearized equations describing small oscillations of the electron distribution function and ion density are presented. For the asymptotic case of short waves, the dispersion relation of the {bold E}{times}{bold B} instability has been obtained and analyzed under conditions typical for the lower ionosphere. Under certain conditions, the rigorous kinetic consideration yields substantial changes in results compared to previous theories. The general approach may be applied to other linear and nonlinear low-frequency processes in a weakly ionized plasma. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Plasma theory and simulation. Quarterly progress report Nos. 3-4, 1 July-31 December 1987

    SciTech Connect

    Birdsall, C.K.

    1987-12-31

    A magnetized plasma next to an absorbing wall is simulated, showing positive wall charging causing a large E-field near the wall, then a large ExB drift, then a Kevlin-Helmholtz instability, vortices, and coalescence. Particle transport to the walls is Bohm-like for Omega sub pl > Omega sub ci. A kinetic theory, allowing finite ion Larmor radii, general magnetic-field geometries and plasma equilibria, was developed for hydromagnetic Alfven waves excited within the Earth's magnetosphere by the storm-time energetic ring-current particles. Multi-time and space scaling for bounded plasmas is being developed using an implicit method. It is found that, using large time steps, (Omega sub ce) (Delta t > 1) provides reliable guiding-center motions for single particles. Electron-neutral elastic scattering is added to ES1 readily. Runs with initial beam verify predictions. RF heating (ECRH) is shown to work well with PIC simulations, providing results very similar to a Monte Carlo RF heating code.

  16. Theory of isolated, small-scale magnetic islands in a high temperature tokamak plasma

    SciTech Connect

    Connor, J.W.; Wilson, H.R.

    1995-12-01

    A theory for the existence of noninteracting small-scale, ``drift`` magnetic islands in a high temperature tokamak plasma is presented. This situation contrasts with that discussed by Rebut and Hugon [Plasma Phys. Controlled Fusion {bold 33}, 1085 (1991)] which involves a background ``sea`` of magnetic turbulence caused by island overlap. The islands are driven by the effect of finite ion Larmor radius on the particle drifts and they propagate with a velocity comparable to the diamagnetic velocity. In contrast with the work of Smolyakov [Plasma Phys. Controlled Fusion {bold 35}, 657 (1993)] collisions are assumed to be rare. Although the saturated island size is independent of the collision frequency in the model discussed here, collisions play a crucial role in determining the frequency of the magnetic islands. An estimate is made of the anomalous heat transport which results from the fluctuations in the electrostatic potential associated with these magnetic islands. The predicted thermal diffusivity has several, but not all, of the characteristics of the Rebut--Lallia--Watkins transport model. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Variational theory of average-atom and superconfigurations in quantum plasmas

    SciTech Connect

    Blenski, T.

    2007-05-15

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed--all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density n{sub i} and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n{sub 0}=Z*n{sub i} occupying the volume 1/n{sub i}. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en{sub 0} outside. The first-order contribution to free energy per ion is the difference between the free energy of the system 'central ion+infinite plasma' and the free energy of the system 'infinite plasma'. An important part of the approach is an 'ionization model' (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure

  18. Variational theory of average-atom and superconfigurations in quantum plasmas.

    PubMed

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  19. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Infrared VLT Observations Identify Hidden Galaxies in the Early Universe Working with the ESO Very Large Telescope (VLT) at the Paranal Observatory , a group of European astronomers [1] has just obtained one of the deepest looks into the distant Universe ever made by an optical telescope. These observations were carried out in the near-infrared spectral region and are part of an attempt to locate very distant galaxies that have so far escaped detection in the visual bands. The first results are very promising and some concentrations of galaxies at very large distances were uncovered. Some early galaxies may be in hiding Current theories hypothesize that more than 80% of all stars ever formed were assembled in galaxies during the latter half of the elapsed lifetime of the Universe, i.e., during the past 7-8 billion years. However, doubts have arisen about these ideas. There are now observational indications that a significant number of those galaxies that formed during the first 20% of the age of the Universe, i.e. within about 3 billion years after the Big Bang, may not be visible to optical telescopes. In some cases, we do not see them, because their light is obscured by dust. Other distant galaxies may escape detection by optical telescopes because star formation in them has ceased and their light is mainly emitted in the red and infrared spectral bands. This is because, while very young galaxies mostly contain hot and blue stars, older galaxies have substantial numbers of cool and red stars. They are then dominated by an older, "evolved" stellar population that is cooler and redder. The large cosmic velocities of these galaxies further enhance this effect by causing their light to be "redshifted" towards longer wavelengths, i.e. into the near-infrared spectral region. Observations in the infrared needed Within the present programme, long exposures in near-infrared wavebands were made with the Infrared Spectrometer And Array Camera (ISAAC) , mounted on ANTU , the

  20. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    SciTech Connect

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the {rvec B} field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field {delta}B{sub {parallel}} and electrostatic potential {Phi} along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric {delta}B{sub {parallel}}, and {Phi} structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta ({beta}{sub {parallel}} {ge} O(1)) and pressure anisotropy (P{sub {perpendicular}}/P{sub {parallel}} > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values.

  1. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in

  2. Refinement of the semiclassical theory of the Stark broadening of hydrogen spectral lines in plasmas

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-02-01

    Stark broadening (SB) of hydrogen, deuterium, and tritium lines (H-lines) is an important diagnostic tool for many applications. The most "user-friendly" are semiclassical theories of the SB of H-lines: their results can be expressed analytically in a relatively simple form for any H-line. The simplest semiclassical theory is the so-called Conventional Theory (CT), which is frequently referred to as Griem's theory. While by now there are several significantly more advanced semiclassical "non-CT" theories of the SB, Griem's CT is still used by a number of groups performing laboratory experiments or astrophysical observations for the comparison with their experimental or observational results. In the present study we engage unexplored capabilities of the CT for creating analytically a more accurate CT. First, we take into account that the perturbing electrons actually do not move as free particles: rather they move in a dipole potential V=·r/r3, where r is the radius-vector of the perturbing electrons and is the mean value of the radius vector of the atomic electron. Second, Griem's definition of the so-called Weisskopf radius was not quite accurate. Third, in his book of year 1974, Griem suggested changing so-called strong collision constant without changing the Weisskopf radius, while in reality the choices of the Weisskopf radius and of the strong collision constant are interrelated. We show that the above refinements of the CT increase the electron broadening - especially for warm dense plasmas emitting H-lines. By comparison with benchmark experiments concerning the Hα line we demonstrate that the effect of the ion dynamics (neglected in any CT) might be slightly smaller than previously thought, while the effect of the acceleration of perturbing electrons by the ion field in the vicinity of the radiating atom (neglected in any CT) might be greater than previously thought.

  3. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1–6 s versus 4–8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of

  4. New Insight into the Cosmic Renaissance Epoch

    NASA Astrophysics Data System (ADS)

    2003-08-01

    VLT Discovers a Group of Early Inhabitants and Find Signs of Many More [1] Summary Using the ESO Very Large Telescope (VLT) , two astronomers from Germany and the UK [2] have discovered some of the most distant galaxies ever seen . They are located about 12,600 million light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to traverse this huge distance. We therefore observe those galaxies as they were at a time when the Universe was very young, less than about 10% of its present age . At this time, the Universe was emerging from a long period known as the "Dark Ages" , entering the luminous "Cosmic Renaissance" epoch. Unlike previous studies which resulted in the discovery of a few, widely dispersed galaxies at this early epoch, the present study found at least six remote citizens within a small sky area, less than five per cent the size of the full moon! This allowed understanding the evolution of these galaxies and how they affect the state of the Universe in its youth. In particular, the astronomers conclude on the basis of their unique data that there were considerably fewer luminous galaxies in the Universe at this early stage than 500 million years later. There must therefore be many less luminous galaxies in the region of space that they studied, too faint to be detected in this study. It must be those still unidentified galaxies that emit the majority of the energetic photons needed to ionise the hydrogen in the Universe at that particularly epoch. PR Photo 25a/03 : Colour-composite of the sky field with the distant galaxies. PR Photo 25b/03 : Close-Up images of some of the most distant galaxies known in the Universe. PR Photo 25c/03 : Spectra of these galaxies. From the Big Bang to the Cosmic Renaissance Nowadays, the Universe is pervaded by energetic ultraviolet radiation, produced by quasars and hot stars. The short-wavelength photons liberate electrons from the hydrogen atoms that make up the

  5. Investigation of the epoch state filter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Edwards, J. A.

    1972-01-01

    A navigation filtering technique has been formulated using as state variables the initial or epoch position and velocity of the spacecraft. The estimate of this initial state is then improved by filtering new measurements. The current state may be obtained by a conic extrapolation of the epoch state. Results of a digital computer simulation of the epoch state filter show that this formulation of the navigational problem results in less computer run time and less computer storage space than conventional techniques. The errors produced by this technique have been demonstrated to be comparable to those obtained by conventional maximum-likelihood filtering.

  6. Kinetic theory of dust ion acoustic waves in a kappa-distributed plasma

    NASA Astrophysics Data System (ADS)

    Baluku, T. K.; Hellberg, M. A.

    2015-08-01

    Using a kinetic theory approach, dust ion acoustic (DIA) waves are investigated in an unmagnetized collisionless plasma with kappa-distributed electrons and ions, and Maxwellian dust grains of constant charge. Both analytical and numerical results, the latter following from the full solution of the associated dispersion relation, are presented, and a comparison is made. The effects of the ion and electron spectral indices, as well as the species' density ( ne/ni ) and temperature ( Te/Ti ) ratios, on the dispersion and damping of the waves are considered. In the long wavelength regime, increases in both the electron spectral index (κe) and the dust density fraction (reduced f =ne/ni ) lead to an increase in phase velocity. The range in wavelength over which modes are weakly damped increases with an increase in Te/Ti . However, the ion spectral index, κi, does not have a significant effect on the dispersion or damping of DIA waves.

  7. Sub-Daily Earth Rotation During Epoch '92

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Dickey, J. O.; Lichten, S. M.; Herring, T. A.

    1994-01-01

    Earth rotation data were obtained with GPS during the EPOCH '92 campaign in the summer of 1992. About 10 days of data were acquired from 25 globally distributed stations and a constellation of 17 GPS satellites.

  8. Rotation of the Universe at different cosmological epochs

    NASA Astrophysics Data System (ADS)

    Chechin, L. M.

    2016-06-01

    A step-by-step foundation for the differential character of the Universe's rotation is presented. First, invoking the concept of spacetime foam with spin, it is reasonable to assume that the very early Universe can be described by the Dirac equation. Second, it is shown using the Ehrenfest theorem that, from a classical point of view, the early Universe can be described by the Papapetrou equations. Third, it is stressed that our Universe can perform only rotational motion. It is shown based on the spin part of the Papapetrou equations that the Universe's rotation depends appreciably on the physical properties of a specific cosmological epoch. The rotational angular velocity is calculated for three basic cosmological epochs: the matter-dominated epoch, the transition period (from domination of matter to domination of vacuum), and the vacuum-dominated epoch.

  9. Propagation of high power electromagnetic beams in overdense plasmas: Higher order paraxial theory

    SciTech Connect

    Sodha, Mahendra Singh; Faisal, Mohammad

    2008-03-15

    This article presents the paraxial theory of the propagation of an initially Gaussian electromagnetic beam in an inhomogeneous plasma with an overdense region; in contrast to earlier work on penetration in overdense plasma, higher order terms (up to r{sup 4}) in the expansion of the dielectric function and the eikonal have been taken into account. Three types of nonlinearities, viz., collisional, ponderomotive, and relativistic, have been considered. As expected the higher order terms do not affect the critical curves, corresponding to initial propagation without convergence or divergence. It is seen that the inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Corresponding to the case of ponderomotive nonlinearity numerical results for the dependence of beam width parameter and the axial dielectric function on the distance of propagation have been presented for specific values of the initial beam width and axial irradiance and specific spatial dependence of the electron density in the absence of the beam. Both the situations, viz., formation of bright or dark rings in the transverse irradiation pattern, have been considered. From a parametric analysis the dependence of the maximum penetration (when the axial dielectric function tends to zero) on the axial irradiance and an inhomogeneity parameter has been graphically illustrated.

  10. DYNAMICS AND STAGNATION IN THE MALTHUSIAN EPOCH

    PubMed Central

    Ashraf, Quamrul; Galor, Oded

    2013-01-01

    This paper examines the central hypothesis of the influential Malthusian theory, according to which improvements in the technological environment during the pre-industrial era had generated only temporary gains in income per capita, eventually leading to a larger, but not significantly richer, population. Exploiting exogenous sources of cross-country variations in land productivity and the level of technological advancement the analysis demonstrates that, in accordance with the theory, technological superiority and higher land productivity had significant positive effects on population density but insignificant effects on the standard of living, during the time period 1–1500 CE. PMID:25506082

  11. Theory and Simulation of Magnetohydrodynamic Dynamos and Faraday Rotation for Plasmas of General Composition

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2013-03-01

    Many astrophysical phenomena depend on the underlying dynamics of magnetic fields. The observations of accretion disks and their jets, stellar coronae, and the solar corona are all best explained by models where magnetic fields play a central role. Understanding these phenomena requires studying the basic physics of magnetic field generation, magnetic energy transfer into radiating particles, angular momentum transport, and the observational implications of these processes. Each of these topics comprises a large enterprise of research. However, more practically speaking, the nonlinearity in large scale dynamo is known to be determined by magnetic helicity(>), the topological linked number of knotted magnetic field. Magnetic helicity, which is also observed in solar physics, has become an important tool for observational and theoretical study. The first part of my work addresses one aspect of the observational implications of magnetic fields, namely Faraday rotation. It is shown that plasma composition affects the interpretation of Faraday rotation measurements of the field, and in turn how this can be used to help constrain unknown plasma composition. The results are applied to observations of astrophysical jets. The thesis then focuses on the evolution of magnetic fields. In particular, the dynamo amplification of large scale magnetic fields is studied with an emphasis on the basic physics using both numerical simulations and analytic methods. In particular, without differential rotation, a two and three scale mean field (large scale value + fluctuation scales) dynamo theory and statistical methods are introduced. The results are compared to magnetohydrodynamic (MHD) simulations of the Pencil code, which utilizes high order finite difference methods. Simulations in which the energy is initially driven into the system in the form of helical kinetic energy (via kinetic helicity) or helical magnetic energy (via magnetic helicity) reveal the exponential growth of

  12. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    SciTech Connect

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-05-09

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow.

  13. [Demographic transition at the epoch of industrialization].

    PubMed

    Billig, W

    1984-01-01

    The relationship between the early stages of industrialization and population factors in the United Kingdom, France, and the United States is analyzed from a Marxist perspective. The author attempts to associate successive phases of industrialization with phases of the demographic transition. He concludes that no comprehensive general theory concerning this relationship has been established. (summary in ENG, RUS) PMID:12266382

  14. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    SciTech Connect

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from the metric plane

  15. 'Black universe' epoch in string cosmology

    SciTech Connect

    Buchel, Alex; Kofman, Lev

    2008-10-15

    String theory compactification involves manifolds with multiple warp factors. For cosmological applications, we often introduce a short, high-energy inflationary throat, and a long, low-energy standard model (SM) throat. It is assumed that at the end of inflation, the excited Kaluza-Klein modes from the inflationary throat tunnel to the SM throat and reheat standard model degrees of freedom, which are attached to probe brane(s). However, the huge hierarchy of energy scales can result in a highly dynamic transition of the throat geometry. We point out that in such a cosmological scenario the standard model throat (together with SM brane) will be cloaked by a Schwarzschild horizon, produced by the Kaluza-Klein modes tunneling from the short throat. The black brane formation is dual to the first order chiral phase transition of the cascading gauge theory. We calculate the critical energy density corresponding the formation of the black hole (BH) horizon in the long throat. We discuss the duality between 'black universe' cosmology and an expanding universe driven by the hot gauge theory radiation. We address the new problem of the hierarchical multiple-throat scenarios: SM brane disappearance after the decay of the BH horizon.

  16. Plasma theory and simulation: Quarterly progress report Nos. 1 and 2, January 1, 1986-June 30, 1986

    SciTech Connect

    Birdsall, C.K.

    1986-06-30

    This quarterly report deals with General Plasma Theory and Simulation. Computer simulation of bounded plasma systems, with external circuits, is discussed in considerable detail. Artificial cooling of trapped electrons in bounded simulations was observed and is now attributed to noiseless injection; the cooling does not occur if random injection is used. This report also deals with Plasma-Wall Physics and Simulation. The collector and source sheaths at the boundaries of warm plasma are treated in detail, including ion reflection and secondary electron emission at the collector. The Kelvin-Helmholtz instability is observed in a self-consistent magnetized sheath, producing long-lived vortices which increase the particle transport to the wall dramatically.

  17. A two-dimensional theory of plasma contactor clouds used in the ionosphere with an electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Gatsonis, N. A.; Rivas, D. A.

    1988-01-01

    Plasma contactors have been proposed as a means of making good electrical contact between biased surfaces such as found at the ends of an electrodynamic tether and the space environment. A plasma contactor is a plasma source which emits a plasma cloud which facilitates the electrical connection. The physics of this plasma cloud is investigated for contactors used as electron collectors and it is shown that contactor clouds in space will consist of a spherical core possibly containing a shock wave. Outside of the core the cloud will expand anisotropically across the magnetic field leading to a turbulent cigar shape structure along the field. This outer region is itself divided into two regions by the ion response to the electric field. A two-dimensional theory of the motion of the cloud across the magnetic field is developed. The current voltage characteristic of an Argon plasma contactor cloud is estimated for several ion currents in the range of 1-100 Amperes. It is shown that small ion current contactors are more efficient than large ion current contactors. This suggests that if a plasma contactor is used on an electrodynamic tether then a miltiple tether array will be more efficient than a single tether.

  18. Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Zelenyi, L. M.; Malova, H. V.; Sharma, A. S.

    2000-06-01

    A self-consistent theory of thin current sheets, where the magnetic field line tension is balanced by the ion inertia rather than by the pressure gradient, is presented. Assuming that ions are the main current carriers and their dynamics is quasi-adiabatic, the Maxwell-Vlasov equations are reduced to the nonlocal analogue of the Grad-Shafranov equation using a new set of integrals of motion, namely, the particle energy and the sheet invariant of the quasi-adiabatic motion. It is shown that for a drifting Maxwellian distribution of ions outside the sheet the equilibrium equation can be reduced in the limits of strong and weak anisotropy to universal equations that determine families of equilibria with similar profiles of the magnetic field. In the region Bn/B0>1) the self-consistent current sheet equilibrium may also exist with no indications of the catastrophe reported earlier by Burkhart et al. [1992a]. On the contrary, it is found that in this limit the magnetic field profiles again become similar to each other with the characteristic thickness ~ρ0. The profiles of plasma and current densities as well as the components of the pressure tensor are calculated for arbitrary ion anisotropy outside the sheet. It is shown that the thin current sheet for the equilibrium considered here is usually embedded into a much thicker plasma sheet. Moreover, in the case of weak anisotropy the perturbation of the plasma density inside the sheet is shown to be proportional to the parameter vD/vT, and as a result the electrostatic effects should be small, consistent with observations. This model of the thin current sheet

  19. A New Cosmic Ray Transport Theory in Partially Turbulent Space Plasmas: Extending the Quasilinear Approach

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2011-05-01

    A new transport theory of cosmic rays in magnetized space plasmas with axisymmetric incompressible magnetic turbulence is developed extending the quasilinear approximation to the particle orbit. Arbitrary gyrophase deviations from the unperturbed spiral orbits in the uniform magnetic field are allowed. For quasi-stationary and spatially homogeneous magnetic turbulence, we derive the small Larmor radius approximation gyrophase-averaged cosmic ray Fokker-Planck coefficients. The generalized Fokker-Planck coefficients correctly reduce to their known quasilinear values in the corresponding limit. New forms of the quasilinear Fokker-Planck coefficients in axisymmetric turbulence are derived which no longer involve infinite sums of products of Bessel functions, which facilitate their numerical computation for specified turbulence field correlation tensors. The Fokker-Planck coefficients for arbitrary phase orbits of the cosmic ray particles provide strict upper limits for the perpendicular and pitch-angle Fokker-Planck coefficients, which in turn yield strict upper and lower limits for the perpendicular and parallel spatial diffusion coefficients, respectively, describing the spatial diffusion of the isotropic part of the cosmic ray phase space density. For the associated mean free paths, we find for this general case that the product of the minimum parallel mean free path with the sum of the maximum perpendicular mean free paths equals R 2 L , where RL denotes the cosmic ray gyroradius.

  20. Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory

    NASA Astrophysics Data System (ADS)

    Berger, Richard; Chapman, Thomas; Brunner, Stephan

    2013-10-01

    The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 < eϕ0 /Te < 1) and wavenumbers (0 . 25 theory. Despite the simplicity of the dispersion relation, growth rates found with the Kruer-Dawson-Sudan model [Kruer et al. PRL 23, 838 (1969)] agree quite well with the numerical results. The most unstable modes with frequency and wavenumber ω , k satisfy the relation, ω - k .vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.

  1. Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab

    SciTech Connect

    Angus, J. R.; Krasheninnikov, S. I.; Smolyakov, A. I.

    2010-10-15

    The effects of electromagnetic plane waves obliquely incident on a warm bounded plasma slab of finite length L are studied by solving the coupled Vlasov-Maxwell set of equations. It is shown that the solution can be greatly simplified in the limit where thermal effects are most important by expanding in small parameters and introducing self-similar variables. These solutions reveal that the coupling of thermal effects with the angle of incidence is negligible in the region of bounce resonance and anomalous skin effect. In the region of the anomalous skin effect, the heating is shown to scale linearly with the anomalous skin depth {delta}{sub a} when {delta}{sub a}<>L, the heating is shown to decay with 1/{delta}{sub a}{sup 3}. The transmission is found to be exponentially larger than that predicted from a local theory in the appropriate region of the anomalous skin effect.

  2. Alpha Particle-Driven Toroidal Alfven Eigenmodes in Tokamak Fusion Test Reactor Deuterium-Tritium Plasmas: Theory and Experiments

    SciTech Connect

    Budny, R.; Chang, Z.; Fu, G.Y.; Nazikian, R.

    1998-07-09

    The toroidal Alfvén eigenmodes (TAE) in the Tokamak Fusion Test Reactor [K. Young, et al., Plasma Phys. Controlled Fusion 26, 11 (1984)]deuterium-tritium plasmas are analyzed using the NOVA-K code [C.Z. Cheng, Phys. Reports 211, 1 (1992)]. The theoretical results are compared with the experimental measurements in detail. In most cases, the theory agrees with the observations in terms of mode frequency, mode structure, and mode stability. However, one mode with toroidal mode number n = 2 is observed to be poloidally localized on the high field side of the magnetic axis with a mode frequency substantially below the TAE frequency.

  3. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized). PMID:25167246

  4. Declinations in the Almagest: accuracy, epoch, and observers

    NASA Astrophysics Data System (ADS)

    Brandt, John C.; Zimmer, Peter; Jones, Patricia B.

    2014-11-01

    Almagest declinations attributed to Timocharis, Aristyllos, Hipparchus, and Ptolemy are investigated through comparisons of the reported declinations with the declinations computed from modern positions translated to the earlier epochs. Consistent results indicate an observational accuracy of ≈ 0.1° and epochs of: Timocharis, c. 298 BC; Aristyllos, c. 256 BC, and Hipparchus, c. 128 BC.The ≈ 42-year difference between Aristyllos and Timocharis is confirmed to be statistically significant. The declinations attributed to Ptolemy were likely two distinct groups—observations taken c. AD 57 and observations taken c. AD 128. The later observations could have been taken by Ptolemy himself.

  5. Theory of the pulse response from a small antenna in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1989-01-01

    The electrostatic plasma response to a small pulsed antenna in a magnetic field is analyzed. The ringing of the plasma at three discrete frequencies--the upper-hybrid frequency and two resonance cone branch frequencies--is evidenced, and the amplitudes of these frequency responses is determined as a function of the characteristic plasma frequencies, the angle of observation with respect to the magnetic field, and the pulse length. Applications to plasma diagnostics are discussed. It is shown that the upper hybrid response and the response at either of the resonance cone branch frequencies is adequate information to determine the plasma density, and the magnetic field magnitude and angle.

  6. Equilibrium Plasma Position Control for a Large Tokamak Using Modern Control Theory

    NASA Astrophysics Data System (ADS)

    Fukunishi, Kohyu; Saito, Seiji; Ogata, Atsushi; Ninomiya, Hiromasa

    1980-09-01

    Optimal control techniques are applied to maintain the plasma in its equilibrium position in a large tokamak. The application of the state space equation to plasma position control is also discussed. Optimal controls with states, which are plasma current, OH coil current and vertical field current, and integrated plasma displacement feedbacks are formulated as linear, time invariant expressions with quadratic performance indices. Effective plasma position control was obtained with integral state feedback in computer simulations for the JT-60. These control techniques will be applied to the JT-60.

  7. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    SciTech Connect

    Almeida, P. G. C.; Benilov, M. S.

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  8. The Utility of Shorter Epochs in Direct Motion Monitoring

    ERIC Educational Resources Information Center

    Dorsey, Karen; Herrin, Jeph; Krumholz, Harlan; Irwin, Melinda

    2009-01-01

    This cross-sectional study using direct motion monitoring evaluated whether short epochs increased estimates of moderate or vigorous physical activity (MPA or VPA) and enhanced differences in daily VPA comparing overweight (OW) and nonoverweight (NOW) children. Seventy-seven children (ages 8-10 years) wore accelerometers for 7 days. We calculated…

  9. Sub-Daily Polar Motion During Epoch '92 with GPS

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Lichten, S. M.; Lindqwister, U. J.; Gross, R. S.; Herring, T. A.

    1994-01-01

    Data from a worldwide Global Positioning System (GPS) tracking network spanning six days during the EPOCH '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes. The resulting polar motion time series is compared with estimates derived from very long baseline interferometry (VLBI) observations.

  10. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  11. 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas (Varenna, Italy, 27-31 August 2012)

    NASA Astrophysics Data System (ADS)

    Gabet, Xavier; Sauter, Olivier

    2013-07-01

    The 2012 Joint Varenna-Lausanne International Workshop on the theory of fusion plasmas was very fruitful. A broad variety of topics was addressed, covering turbulence, magnetohydrodynamics (MHD), edge physics, and radio frequency (RF) wave heating. Moreover, the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, some of them triggered by the construction of ITER and JT-60SA. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may refer to, for instance, the choice of plasma facing components or the design of control systems. Another characteristic of these workshops is the interplay between various domains of plasma physics. For instance, MHD modes are currently investigated with gyrokinetic codes, kinetic effects are included in MHD stability analysis more and more, and turbulence is now accounted for in wave propagation problems. This is proof of cross-fertilization and is certainly a healthy sign for our community. Finally, introducing some novelty in the programme does not prevent from us respecting old traditions. As usual, many presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne Workshop, which was respected again this year. The quality and size of the scientific output from this workshop is shown in this special issue of Plasma Physics and Controlled Fusion; a further 26 papers have already appeared in Journal of Physics: Conference Series in December 2012. We hope the readers will enjoy this special issue, and find therein knowledge and inspiration.

  12. Superposed epoch analysis of ion temperatures during CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2013-05-01

    Ion temperatures in the plasma sheet influence the development of the ring current. The variation of ion temperatures in the magnetosphere during geomagnetic storms depends on the storm driver. While the magnitude of storms driven by corotating interaction regions and the associated high speed streams (CIR/HSS), as measured by Dst index, tends to be smaller than that for CME-driven storms, significant ion heating occurs during these storms. The TWINS Mission provides a global view of the magnetosphere with continuous temporal coverage provided by two satellites. Ion temperature images with spatial and temporal resolution can be calculated from the energetic neutral atom (ENA) data provided by the satellites. Using this technique, we have found that ion temperatures increase throughout the recovery phase of CIR/HSS-driven storms. Denton and Borovsky [2008] performed a superposed epoch analysis of CIR/HSS-driven storms and found that ion heating begins at convection onset, as measured by the midnight boundary index (MBI). We present superposed epoch analysis results of ion temperature evolution during CIR/HSS-driven storms using both the minimum in the Sym-H index and the MBI for comparison.

  13. The big contradiction between the perturbation theory and the chaotic state. A detailed mathematical analysis indicates when the plasma is stable or unstable

    NASA Astrophysics Data System (ADS)

    Xaplanteris, C. L.; Xaplanteris, S. C.

    2016-05-01

    In the present manuscript enough observations and interpretations of three issues of Plasma Physics are presented. The first issue is linked to the common experimental confirmation of plasma waves which appear to be repeated in a standard way while there are also cases where plasma waves change to an unstable state or even to chaotic state. The second issue is associated with a mathematical analysis of the movement of a charged particle using the perturbation theory; which could be used as a guide for new researchers on similar issues. Finally, the suitability and applicability of the perturbation theory or the chaotic theory is presented. Although this study could be conducted on many plasma phenomena (e.g. plasma diffusion) or plasma quantities (e.g. plasma conductivity), here it was decided this study to be conducted on plasma waves and particularly on drift waves. This was because of the significance of waves on the plasmatic state and especially their negative impact on the thermonuclear fusion, but also due to the long-time experience of the plasma laboratory of Demokritos on drift waves.

  14. A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.

    2011-05-01

    Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by

  15. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  16. Theory of Filamentary Plasma Array Formation in Microwave Breakdown at Near-Atmospheric Pressure

    SciTech Connect

    Nam, Sang Ki; Verboncoeur, John P.

    2009-07-31

    Recently reported observations of filamentation during high power microwaves breakdown of near-atmospheric pressure gas are explained using a one-dimensional fluid model coupled to a theoretical wave-plasma model. This self-consistent treatment allows for time-dependent effects, plasma growth and diffusion, and partial absorption and reflection of waves. Simulation results, consistent with experiments, show the evolution of the plasma filaments spaced less than one-quarter wavelength, the sequential discrete light emission propagating back toward the source, and the diffusion and decay of the plasma. The model allows examination of many features not easily obtained experimentally, including dependence on field strength and frequency, pressure, and gas composition, which influence the breakdown and emission properties, including the spacing and speed of propagation of the filaments.

  17. Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure.

    PubMed

    Nam, Sang Ki; Verboncoeur, John P

    2009-07-31

    Recently reported observations of filamentation during high power microwaves breakdown of near-atmospheric pressure gas are explained using a one-dimensional fluid model coupled to a theoretical wave-plasma model. This self-consistent treatment allows for time-dependent effects, plasma growth and diffusion, and partial absorption and reflection of waves. Simulation results, consistent with experiments, show the evolution of the plasma filaments spaced less than one-quarter wavelength, the sequential discrete light emission propagating back toward the source, and the diffusion and decay of the plasma. The model allows examination of many features not easily obtained experimentally, including dependence on field strength and frequency, pressure, and gas composition, which influence the breakdown and emission properties, including the spacing and speed of propagation of the filaments. PMID:19792510

  18. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    PubMed

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures. PMID:26560459

  19. Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. I. Electron theory

    SciTech Connect

    Ramos, J. J.

    2010-08-15

    A closed theoretical model to describe slow, macroscopic plasma processes in a fusion-relevant collisionality regime is set forward. This formulation is a hybrid one, with fluid conservation equations for particle number, momentum and energy, and drift-kinetic closures. Intended for realistic application to the core of a high-temperature tokamak plasma, the proposed approach is unconventional in that the ion collisionality is ordered lower than in the ion banana regime of neoclassical theory. The present first part of a two-article series concerns the electron system, which is still equivalent to one based on neoclassical electron banana orderings. This system is derived such that it ensures the precise compatibility among the complementary fluid and drift-kinetic equations, and the rigorous treatment of the electric field and the Fokker-Planck-Landau collision operators. As an illustrative application, the special limit of an axisymmetric equilibrium is worked out in detail.

  20. Modified theory of secondary electron emission from spherical particles and its effect on dust charging in complex plasma

    SciTech Connect

    Misra, Shikha; Mishra, S. K.; Sodha, M. S.

    2013-01-15

    The authors have modified Chow's theory of secondary electron emission (SEE) to take account of the fact that the path length of a primary electron in a spherical particle varies between zero to the diameter or x{sub m} the penetration depth depending on the distance of the path from the centre of the particle. Further by including this modified expression for SEE efficiency, the charging kinetics of spherical grains in a Maxwellian plasma has been developed; it is based on charge balance over dust particles and number balance of electrons and ionic species. It is seen that this effect is more pronounced for smaller particles and higher plasma temperatures. Desirable experimental work has also been discussed.

  1. Kinetic theory of current and density drift instabilities with weak charged-neutral collisions. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1984-01-01

    This paper describes the linear kinetic theory of electrostatic instabilities driven by a density gradient drift and a magnetic-field-aligned current in a plasma with weak charged neutral collisions. The configuration is that of a uniform magnetic field B, a weak, uniform density gradient in the x direction and a weak, uniform electric field in the z direction. Collisions are represented by the BGK model. The transition from the (kinetic) universal density drift instability to the (fluidlike) current convective instability is studied in detail, and the short wavelength properties of the latter mode are investigated.

  2. Structure and Characteristics of a Spherical Plasma Focus: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Ay, Yasar; Abdal-Halim, Mohamed A.; Bourham, Mohamed

    2014-10-01

    Most studies of dense plasma focus devices use cylindrical coaxial shapes, however, a spherical shape is investigated herein. Snow plow model and shock wave equations are coupled with the circuit equations to model the spherical plasma focus. Of interest in spherical plasma focus is to have both sheath expansion and the magnetic pressure changing rate for the rundown phase instead of the constant sheath only for the cylindrical case. The developed model is compared to published experimental results for validation and good agreement was obtained. Hydrogen and its isotopes were separately used for investigating the effect of the different molecular weights on plasma parameters. The gas pressure and discharge voltage were varied for these gases to study their effect on the plasma parameters. The study predicts a peak discharge current of 1.5 MA for tritium with 0.92 MA dip discharge current, and less for deuterium and hydrogen. The current drop for tritium indicates focus action. It indicates that the sheath velocity for heavy gases is lower than lighter gases. Predicted maximum temperature variation is about 11.1 eV for hydrogen, 14.6 eV for deuterium, 15.9 eV for DT mixture and 17eV for pure tritium; which indicates higher temperature with heavier gasses.

  3. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Astrophysics Data System (ADS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-08-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  4. Theory of plasma contactors in ground-based experiments and low earth orbit

    NASA Technical Reports Server (NTRS)

    Gerver, M. J.; Hastings, D. E.; Oberhardt, M. R.

    1990-01-01

    An examination of several models of electron collection by plasma contactors leads to a definition of the range of validity and applicability for each model. It is noted that most present ground-based experiments are of limited relevance to space applications of plasma contactors, since they operate in a regime where the magnetic field and effective collisions are at most only marginally important. An exception is the experiment of Stenzel and Urrutia (1986), which examined a plasma whose electron Larmor radius was small by comparison to the scale of the potential, and in which the anomalous transport of electrons across the magnetic field was important. The enhanced electron current was not continuous in time, but occurred in periodic bursts as the instabilities periodically emerged, saturated, and decayed.

  5. Theory of coherent transition radiation generated at a plasma-vacuum interface

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  6. Theory of coherent transition radiation generated at a plasma-vacuum interface.

    PubMed

    Schroeder, C B; Esarey, E; Van Tilborg, J; Leemans, W P

    2004-01-01

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and the coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long-wavelength radiation. This method of transition radiation generation has the capability of producing high peak power terahertz radiation, of order 100 microJ/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art terahertz sources. PMID:14995729

  7. Phase-space description of plasma waves. Part 1. Linear theory

    NASA Astrophysics Data System (ADS)

    Biro, T.; Rönnmark, K.

    1992-06-01

    We develop an (r, k) phase-space description of waves in plasmas by introducing Gaussian window functions to separate short-scale oscillations from long-scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation in an inhomogeneous and time-varying background plasma, we first discuss the proper form of the current response function. In analogy with the particle distribution function f(v, r, t), we introduce a wave density N(k, r, t) on phase space. This function is proved to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible.

  8. Plasma theory and simulation. Quarterly progress report Nos. 1 and 2, 1 January-30 June 1986

    SciTech Connect

    Birdsall, C.K.

    1986-06-30

    Computer simulation of bounded plasma systems, with external circuits, is discussed in considerable detail; artificial cooling of trapped electrons in bounded simulations was observed and is now attributed to noiseless injection: the cooling does not occur if random injection is used; the collector and source sheaths at the boundaries of warm plasma are treated in detail, including ion reflection and secondary-electron emission at the collector; the kelvin-Helmholtz instability is observed in a self-consistent magnetized sheath, producing long-lived vortices which increase the particle transport to the wall dramatically; the ES2 user's manual - Version 1 has been issued; addition of electron-neutral elastic collisions is introduced; implicit particle simulation of velocity space transport and self-consistent electric potentials in magnetized plasmas (TESS code) is described in detail; and dynamic dimensioning with heap management is described in detail.

  9. Theory and observation of a dynamically evolving negative ion plasma. [in F region

    NASA Technical Reports Server (NTRS)

    Mendillo, M.; Forbes, J.

    1982-01-01

    The study described here examines the full range of negative-ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF6-type injections might take in an F region environment. Special attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three-component plasma are described, and estimates are given of the incoherent scatter spectra obtained from such a plasma. Model calculations using a first-order chemical code are defined and tested in order to investigate the actual types of negative-ion plasma capable of being created under nighttime conditions.

  10. Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory

    SciTech Connect

    Frias, Winston; Smolyakov, Andrei I.; Kaganovich, Igor D.; Raitses, Yevgeny

    2012-07-15

    The problem of long wavelength instabilities in Hall thruster plasmas is revisited. A fluid model of the instabilities driven by the E{sub 0} Multiplication-Sign B drift in plasmas with gradients of density, electron temperature, and magnetic field is proposed. It is shown that full account of compressibility of the electron flow in inhomogeneous magnetic field leads to quantitative modifications of earlier obtained instability criteria and characteristics of unstable modes. Modification of the stability criteria due to finite temperature fluctuations is investigated.