Science.gov

Sample records for plasma focus

  1. A continuous plasma final focus

    SciTech Connect

    Whittum, D.H.

    1990-02-01

    Scaling laws are set down for a plasma cell used for transport, focusing and current neutralization of fine, intense, relativistic electron beams. It is found that there exists a minimum beam spot size, {sigma}{sub min} {approximately} {epsilon}{sub n}(I{sub A}/{gamma}I){sup 1/2}, in such a focusing system. Propagation issues, including channel formation, synchrotron radiation, beam ionization and instabilities, are discussed. Three numerical examples are considered. 38 refs., 2 figs., 1 tab.

  2. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  3. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  4. A continuous plasma final focus

    SciTech Connect

    Whittum, D.H.

    1989-11-01

    Scaling laws are set down for a plasma cell used for transport, focusing and current neutralization of fine, intense, relativistic electron beams. It is found that there exists a minimum beam spot size, {sigma}{sub min} {approximately} {var epsilon}{sub n}(I{sub A}/{gamma}I){sup 1/2}, in such a focusing system. Propagation issues, including channel formation, synchrotron radiation, beam ionization and instabilities, are discussed. Numerical examples are given for a proof-of-principle experiment at KEK, an application for luminosity enhancement at the SLC, and a hypothetical TeV electron-positron collider. For a TeV collider, it is found that the effect of ion-motion on focusing, and the effect of Buneman instability on current neutralization must be considered. 3 figs., 1 tab.

  5. Low voltage operation of plasma focus

    SciTech Connect

    Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A.

    2010-08-15

    Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

  6. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  7. Magnetically Induced Plasma Rotation and the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Witalis, E. A.

    1983-09-01

    Fusion for Fission fuel breeding and other incentives for unconventional magnetic fusion research are introductorily mentioned. The design, operation and peculiar characteristics of dense plasma foci are briefly described with attention to their remarkable ion acceleration and plasma heating capabilities. Attempts for interpretations are reviewed, and a brief account is given for an explanation based on the concept of magnetically induced plasma rotation, recently derived in detail in this journal. Basically an ion acceleration mechanism of betraton character it describes in combination with a dynamic, generalized Bennett relation focus plasma characteristics like the polarity dependence, the current channel disruption, the axial ion beam formation and the prerequisites for the ensuing turbulent plasma dissipative stage. Fundamental differences with respect to mainline fusion research are emphasized, and some conjectures and proposals are presented as to the further development of plasma focus nuclear fusion or fission energy production.

  8. Theoretical Study of a Spherical Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  9. Relativistic self-focusing in underdense plasma

    SciTech Connect

    Feit, M.D.; Garrison, J.C.; Komashko, A.; Musher, J.L.; Rubenchik, A.M.; Turistsyn, S.K.

    1997-04-24

    In the present paper, we discuss light self-focusing in underdense (nplasmas. We will show that ion motion is important even for picosecond pulse durations and a description of relativistic self-focusing including ion dynamics will be presented in second part of the paper. In particular, we will demonstrate the formation of empty, wide channels in underdense plasma in the wake of the laser pulse. we discuss the applicability of our results to real situations and possible consequences for the ``Fast Ignitor`` project.

  10. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  11. The heating of plasma focus electrodes

    NASA Astrophysics Data System (ADS)

    Angeli, E.; Frignani, M.; Mannucci, S.; Rocchi, F.; Sumini, M.; Tartari, A.

    2006-02-01

    Plasma focus (PF) technology development today is strictly related to the possibility of a high frequency repetitive working regime. One of the more relevant obstacles to this goal is the heating of structural components due to direct interaction with plasma. In this paper, temperature decay measurements of the inner electrode of a 7 kJ Mather type PF are presented. Data from several series of shots at different bank energies are analysed and compared with theoretical and numerical models. Two possible scale laws are derived from the experimental data to correlate thermal deposition with bank energy. It is found that a fraction of about 10% of total energy is released to the inner electrode. Finally, after some considerations about the cooling and heating mechanisms, an analysis on maximum temperature sustained by materials is presented.

  12. Acceleration and Focusing of Plasma Flows

    NASA Astrophysics Data System (ADS)

    Griswold, Martin E.

    The acceleration of flowing plasmas is a fundamental problem that is useful in a wide variety of technological applications. We consider the problem from the perspective of plasma propulsion. Gridded ion thrusters and Hall thrusters are the most commonly used devices to create flowing plasma for space propulsion, but both suffer from fundamental limitations. Gridded ion sources create good quality beams in terms of energy spread and spatial divergence, but the Child-Langmuir law in the non-neutral acceleration region limits the maximum achievable current density. Hall thrusters avoid this limitation by accelerating ions in quasi-neutral plasma but, as a result, produce plumes with high spatial divergence and large energy spread. In addition the more complicated magnetized plasma in the Hall Thruster produces oscillations that can reduce the efficiency of the thruster by increasing electron transport to the anode. We present investigations of three techniques to address the fundamental limitations on the performance of each thruster. First, we propose a method to increase the time-averaged current density (and thus thrust density) produced by a gridded ion source above the Child-Langmuir limit by introducing time-varying boundary conditions. Next, we use an electrostatic plasma lens to focus the Hall thruster plume, and finally we develop a technique to suppress a prominent oscillation that degrades the performance of Hall thrusters. The technique to loosen the constraints on current density from gridded ion thrusters actually applies much more broadly to any space charge limited flow. We investigate the technique with a numerical simulation and by proving a theoretical upper bound. While we ultimately conclude that the approach is not suitable for space propulsion, our results proved useful in another area, providing a benchmark for research into the spontaneously time-dependent current that arises in microdiodes. Next, we experimentally demonstrate a novel

  13. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  14. Dense plasma in Z-pinches and the plasma focus

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1981-04-01

    Studies of the plasma focus, which after its three-dimensional compression closely resembles a Z-pinch, have shown that an electron temperature of 1 keV can be achieved in a narrow filament. Of great interest is the very high neutron yield, up to one trillion neutrons per discharge, which greatly exceeds that of any other fusion device. The origin of the neutrons is still a matter for research, as under different conditions there is evidence of intense electron and ion beams, instabilities, turbulence, and filamentations. All of these phenomena seem to be closely correlated to the neutron production which may not be thermonuclear in origin at all. An investigation is conducted of the physical processes that could be playing an important role in this case. A simplified interpretation of the phenomena could be that at a high line density the plasma focus is violently MHD unstable, but can form reconnecting bubbles.

  15. Energy and matter flows in a plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Suslin, S. V.

    2016-01-01

    The Plasma Focus is a type of z-pinch that is widely used for both basic research and applied tasks, e.g., as materials modification or research on intense plasma flows. Although the basic mechanisms of z-pinch compression are well-known, many of the processes that occur in the plasma focus have received less attention. This article is devoted to the study of plasma jets and some of its consequences in plasma focus discharges.

  16. Carbonitriding of silicon using plasma focus device

    SciTech Connect

    Jabbar, S.; Khan, I. A.; Ahmad, R.; Zakaullah, M.; Pan, J. S.

    2009-03-15

    Carbonitride thin films have been deposited on silicon substrate by the irradiation of energetic nitrogen ions emanated from dense plasma focus device. The carbon ions are ablated by the irradiation of relativistic electrons from the insert material (graphite) placed at the anode tip. The x-ray diffraction analysis demonstrates that a polycrystalline thin film consisting of various compounds such as Si{sub 3}N{sub 4}, SiC, and C{sub 3}N{sub 4} is formed on the silicon (100) substrate. Crystallinity of different compounds decreases with the increase in angular positions (0 deg., 10 deg., and 20 deg. ). Raman spectroscopy shows the appearance of graphitic and disordered bands with silicon nitride and silicon carbide indicating the formation of carbonitride. Raman spectra also indicate that broadening of bands increases with the increase in focus deposition shots, leading to the amorphization of the thin film. The amorphization of the thin films depends on the ion energy flux as well as on the sample angular position. The scanning electron microscopy exhibits the damaging of the substrate surface at 0 deg. angular position. The microstructure shows the tubular shape for higher ion dose (40 focus shots). At 10 deg. angular position, a two phase phenomenon is observed with the ordered phase in the solid solution. A smooth and uniform surface morphology showing a small cluster is observed for the 20 deg. angular position.

  17. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.; Mishra, S. K.

    2014-03-01

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  19. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect

    Sharma, A. Tibai, Z.; Hebling, J.; Mishra, S. K.

    2014-03-15

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  20. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  1. Enhanced focusing of laser beams in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Suk, H.

    2007-02-01

    The beating of two copropagating laser beams (having frequency difference Δω ≈ωp, where ωp is the plasma frequency) can resonantly excite a large amplitude plasma wave in a narrow-gap semiconductor [V. I. Berezhiani and S. M. Mahajan, Phys. Rev. B 55, 9247 (1997)]. The higher ponderomotive force on the electrons due to the plasma beat wave makes the medium highly nonlinear. As a result, the incident laser beams become self-focused due to the nonlinearity by the ponderomotive force. In this paper, we show the self-focusing and spot size evolution of the laser beams in semiconductor plasmas.

  2. A Plasma Lens for High Intensity Laser Focusing

    SciTech Connect

    Fang, F.; Clayton, C. E.; Marsh, K. A.; Joshi, C.; Lopes, N. C.; Ito, H.

    2006-11-27

    A plasma lens based on a short hydrogen-filled alumina capillary discharge is experimentally characterized. For a plasma length of about 5mm, the focal length, measured from the plasma entrance, was {approx} 11 to 8mm for on axis densities of {approx} 2.5 to 5 x 1018cm-3, respectively. The plasma temperature away from the walls of the 1/2mm diameter capillary was estimated to be {approx} 8eV indicating that the plasma is fully ionized. Such a lens should thus be suitable for focusing very high intensity pulses. Comparisons of the measured focusing strength to that predicted by a first-order fluid model [N. A. Bobrova, et al., Phys. Rev. E 65, 016407 (2002)] shows reasonable agreement given that some of the observed plasma parameters are not predicted by this model.

  3. Observations of underdense plasma lens focusing of relativistic electron beams

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Fliller, R.; Kazakevich, G.M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.; /Rochester U.

    2007-06-01

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion.

  4. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  5. Focusing of Intense Laser via Parabolic Plasma Concave Surface

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Gu, Yuqiu; Wu, Fengjuan; Zhang, Zhimeng; Shan, Lianqiang; Cao, Leifeng; Zhang, Baohan

    2015-12-01

    Since laser intensity plays an important role in laser plasma interactions, a method of increasing laser intensity - focusing of an intense laser via a parabolic plasma concave surface - is proposed and investigated by three-dimensional particle-in-cell simulations. The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude. Compared with the improvement via laser optics approaches, this scheme is much more economic and appropriate for most femtosecond laser facilities. supported by National Natural Science Foundation of China (Nos. 11174259, 11175165), and the Dual Hundred Foundation of China Academy of Engineering Physics

  6. The plasma focus as a tool for plasma-wall-interaction studies

    NASA Astrophysics Data System (ADS)

    Ramos, G.; Martinez, M.; Herrera, J. J. E.; Castillo, F.

    2015-03-01

    The study of the interaction of magnetized plasmas with candidate materials for fusion reactors, as for example tungsten, is a main topic in fusion research. Many studies simulate the plasma wall interaction using ion beams, while only a few use plasma simulators. Plasma foci can produce dense magnetized plasmas of deuterium and helium among other species. We used the plasma focus Fuego-Nuevo II, to expose tungsten samples to deuterium and helium plasmas. The samples were analysed by means of SEM, RBS and NRA, evidencing surface erosion, surface melting and retention of deuterium in a shallow surface layer of 250 nm amounting 6.5·1016 D/cm2. The plasma temperature has been measured at the position of the samples using a triple Langmuir probe and compared to calculations of a snowplow model. The modelling of the electrode to reach desired plasma parameters is discussed.

  7. Soft x-ray yield from NX2 plasma focus

    SciTech Connect

    Lee, S.; Rawat, R. S.; Lee, P.; Saw, S. H.

    2009-07-15

    The Lee model code is used to compute neon soft x-ray yield Y{sub sxr} for the NX2 plasma focus as a function of pressure. Comparison with measured Y{sub sxr} shows reasonable agreement in the Y{sub sxr} versus pressure curve, the absolute maximum yield as well as the optimum pressure. This gives confidence that the code gives a good representation of the neon plasma focus in terms of gross properties including speeds and trajectories and soft x-ray yields, despite its lack of modeling localized regions of higher densities and temperatures. Computed current curves versus pressure are presented and discussed particularly in terms of the dynamic resistance of the axial phase. Computed gross properties of the plasma focus including peak discharge current I{sub peak}, pinch current I{sub pinch}, minimum pinch radius r{sub min}, plasma density at the middle duration of pinch n{sub pinch}, and plasma temperature at middle duration of pinch T{sub pinch} are presented and the trends in variation of these are discussed to explain the peaking of Y{sub sxr} at optimum pressure.

  8. Dense plasma focus production in a hypocycloidal pinch

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.

    1975-01-01

    A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.

  9. Multi-scaling of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Lee, S.

    2015-03-01

    The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.

  10. Compact surface plasma H- ion source with geometrical focusing

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Dudnikova, G.

    2016-02-01

    Factors limiting operating lifetime of a Compact Surface Plasma Sources (CSPS) are analyzed and possible treatments for lifetime enhancement are considered. Increased cooling permeate increased discharge power and increased beam intensity and duty factor. A design of an advanced CSPS with geometrical focusing of H- flux is presented.

  11. Neutron production from puffing deuterium in plasma focus device

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Batobolotova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.; Surala, W.; Sadowski, M. J.; Scholz, M.; Karpinski, L.

    2014-08-15

    The current research has continued on the PF-1000 plasma focus device at the current of 2 MA by comparison of the shots with and without injected deuterium. The increase of the total neutron yield at the level of 10{sup 10}–10{sup 11} per shot was achieved after the compression of about 10 μg/cm of the deuterium from the gas-valve by about 46 μg/cm of the neon or deuterium plasma sheath. It increases five times at the decrease of the puffing deuterium mass to one-half. In shots with neon in the chamber and with puffing deuterium, a considerable decrease was confirmed of the soft X-ray emission in comparison with shots without deuterium injection. This decrease can be explained by the absence of the neon in the region of the compressed and hot plasma. The deuterium plasma from the gas-puff should then be confined in the internal structures both in the phase of implosion as well as during their formation and transformation. In shots with puffing deuterium, the evolution of instabilities in the plasma column was suppressed. The deuterium plasma has a higher conductance and better ability to form expressive and dense plasmoids and to transport the internal current in comparison with neon plasma. Neutrons were produced both at the initial phase of stagnation, as well as at a later time at the evolution of the constrictions and dense plasmoids.

  12. Experimental studies of plasma wake-field acceleration and focusing

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Gai, W.; Konecny, R.; Mtingwa, S.; Norem, J.; Rosing, M.; Schoessow, P.; Simpson, J.

    1989-07-18

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs.

  13. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  14. Application of an impedance matching transformer to a plasma focus.

    PubMed

    Bures, B L; James, C; Krishnan, M; Adler, R

    2011-10-01

    A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current. PMID:22047293

  15. Current interruption and particle beam generation by a plasma focus

    NASA Astrophysics Data System (ADS)

    Gerdin, G.; Venneri, F.

    1982-11-01

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions as to utility of the concept. To estimate the plasma temperature and classical resistivity a soft X-ray spectrometer and X-ray pinhole camera were developed. The temperature was estimated from a coronal model to range between 0.4 to 0.5 keV for either a nitrogen or neon impurity (1 to 2%) in deuterium at 3 torr. Strong pinches were observed in pure neon (0.6 torr) with an electron temperature in the same range. The corresponding classical resistance of the pinch is 9 m omega whereas 500 m omega is more consistent with output voltage pulse and current flow at interruption indicating anomalous resistivity is present. A one-dimensional two-fluid computer code has been developed to model anomalous resistivity in the pinch phase and preliminary results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device.

  16. Formation of nanostructures in a plasma focus discharge

    SciTech Connect

    Krauz, V. I.; Khimchenko, L. N.; Myalton, V. V.; Vinogradov, V. P.; Vinogradova, Yu. V.; Gureev, V. M.; Koidan, V. S.; Smirnov, V. P.; Fortov, V. E.

    2013-04-15

    A new method for creating nanostructures in a plasma focus discharge is proposed. It is shown that the material of a micron-size dust target produced at the discharge axis efficiently evaporates and is then involved in the pinching process. After the pinch decays, the plasma expands with the thermal velocity and the evaporated dust material is deposited on the collectors in the form of fractal particles or nanoclusters organized into various structures. Such structures have a well-developed surface, which is important for various technological applications.

  17. Plasma heating and emission of runaway charged particles in a plasma focus device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2016-03-01

    The required experimental E-field across plasma to generate significant runaway electrons and hard X-rays during the pinch phase and the phase with anomalous resistance has been investigated in a dense plasma focus. The plasma voltage and inductance have been measured in a plasma focus with two different anode tip structures. The results show a significant generation of charged particles and hard X-rays at smaller E-field across the plasma column in the phase of anomalous resistances compared to the pinch phase. Plasma heating process may enhance the rate of runaway-charged-particle generation due to the combined effects of a reduced Dreicer field and the avalanche effects during the phase of anomalous resistance.

  18. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  19. Cross focusing of two laser beams and plasma wave excitation

    SciTech Connect

    Gupta, M.K.; Sharma, R.P.; Gupta, V.L.

    2005-12-15

    This article presents the cross focusing of two high power laser beams in a plasma when relativistic and ponderomotive nonlinearities are operative. The effect of electron density modification changes the critical power significantly in contrast to (only) relativistic case. The plasma wave generation at the difference frequency and particle acceleration has also been studied. In a typical case when laser wavelengths are 1047 and 1064 nm and electron density 1.9x10{sup 19} cm{sup -3}, the maximum electron plasma wave power flux comes out to be 6x10{sup 17} W/cm{sup 2} (laser power P{sub 1}=3.6x10{sup 18} W/cm{sup 2} and P{sub 2}=3.2x10{sup 18} W/cm{sup 2})

  20. Measurable signatures of relativistic self-focusing in underdense plasmas

    SciTech Connect

    Gibbon, P.; Monot, P.; Auguste, T.; Mainfray, G.

    1995-04-01

    The propagation of intense, picosecond laser pulses in tenuous plasmas is studied for conditions close to those required for relativistic self-focusing. Solutions of the steady-state wave-envelope equations are used to obtain experimentally measurable quantities such as the Thomson-scattered light at 90{degree}, and the far-field radiation pattern. It is demonstrated that in the presence of electron cavitation, the Thomson signal has a longitudinal structure which is generally the converse of the intensity pattern. Furthermore, beam collimation in the far-field depends on where the laser is focused in the plasma, and may actually be degraded if self-channeling occurs. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Simulation of the plasma sheath dynamics in a spherical plasma focus

    NASA Astrophysics Data System (ADS)

    Ay, Yasar; Abd Al-Halim, Mohamed A.; Bourham, Mohamed A.

    2015-09-01

    A two concentric electrodes spherical plasma focus device is simulated using a snow plow model, depending on the momentum, circuit and shock wave equations. In the spherical plasma focus, the magnetic pressure for constant discharge current is higher at the system antipodal point as compared to that at the equator. The simulation phases include a run down phase with expansion from the first antipodal to the equator, then a compression from the equator point to the second antipodal point, and finally a reflection of the shock wave on the axis. The results show that the spherical plasma focus model is in good agreement with published experimental results of the plasma parameters such as the discharge current and current derivative. Plasma parameters and the effect of the variation in the gas pressure and discharge voltage were obtained for hydrogen, deuterium and tritium. The energy deposited into the plasma sheath and the power deposited into the plasma focus tube are calculated. The basic calculation of the current fraction is also included in this study.

  2. Current and Perspective Applications of Dense Plasma Focus Devices

    SciTech Connect

    Gribkov, V. A.

    2008-04-07

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  3. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  4. Imaging of fusion reaction zone in plasma focus

    NASA Astrophysics Data System (ADS)

    Zakaullah, M.; Akhtar, Ijaz; Murtaza, G.; Waheed, A.

    1999-08-01

    In a low energy (2.3 kJ) Mather-type deuterium plasma focus, neutron and charged particle emission is investigated by using time-resolved neutron detectors and time-integrated charged particle pinhole imaging camera. The time-integrated charged particle pinhole images demonstrate the varying influence of magnetohydrodynamic (MHD) instabilities vis-a-vis filling pressure. The neutron production mechanism at play strongly depends upon the pressure. At lower pressure, the plasma column is highly unstable due to MHD instabilities and the neutron emission is found to be low with fluence anisotropy exceeding 3.5. At optimum pressure (2.5 mbar for this system), an almost stable dense plasma of about 17 mm3 volume is formed about 5 mm away from the anode, with neutron emission at its highest and the fluence anisotropy lowest. At higher pressure, the plasma column is stable, although it moves away from the anode like a jet and may then be called a moving boiler. In this case, the neutron emission is lowered compared to its optimum value and fluence anisotropy is increased. The data suggest beam-target mechanism at low pressure, trapped gyrating particles at optimum pressure and a jetlike moving boiler at higher pressure.

  5. Recent Results of MJ Plasma-Focus Experiment

    SciTech Connect

    Scholz, M.; Paduch, M.; Tomaszewski, K.; Stepniewski, W.; Bienkowska, B.; Ivanova-Stanik, I.; Karpinski, L.; Miklaszewski, R.; Sadowski, M.J.; Jakubowski, L.; Malinowska, A.; Malinowski, K.; Skladnik-Sadowska, E.; Szydlowski, A.; Kubes, P.; Kravarik, J.; Barvir, P.; Klir, D.; Tsarenko, A.V.; Schmidt, H.

    2006-01-05

    Plasma-Focus (PF) devices, which are based on high-voltage high-current pulse discharges, belong to the non-cylindrical Z-pinches. They produce high-temperature dense magnetized plasma and radiation pulses (of X-rays, electrons, ion beams and fusion protons). The paper reports on studies of intense soft (a few keV) X-ray emission, as performed with a four-frame X-ray camera, and their correlation with time-resolved measurements of current waveforms, neutrons, soft and hard X-rays. Possible mechanisms of the production of fusion neutrons (thermal and non-thermal) were also investigated on the basis of neutron pulses measured at different angels to the electrode outlet axis, and their comparison with time-resolved measurements of the soft and hard X-ray radiation.

  6. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    2009-07-01

    Preliminary results of a 600 J (3.7 μF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltage across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0±0.5 μbar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.

  7. Small plasma focus as neutron pulsed source for nuclides identification

    SciTech Connect

    Milanese, M.; Moroso, R.; Barbaglia, M.; Niedbalski, J.; Mayer, R.; Castillo, F.

    2013-10-15

    In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the “in situ” analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.

  8. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    SciTech Connect

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used.

  9. Estimation of the energy transferred from the capacitor bank to the plasma in plasma focus systems

    SciTech Connect

    Cardenas, Miguel; Soto, Leopoldo

    2009-01-21

    We consider the snowplow model to describe the axial phase of a plasma focus device. We show that, within this framework, the dynamics of a given system can be recovered at different energetic and geometric scales. Then, we consider two different criteria that would plausibly optimize the plasma focus performance. By solving the dynamics equations for the axial phase, we estimate the values of the parameters that do indeed satisfy the aforementioned criteria and compare those values with the corresponding ones attached to few practical devices.

  10. Optical Spectroscopy of a Mega-Ampere Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Dutra, Eric; Bennett, Nichelle; Hagen, Edward; Hunt, Eugene; Hsu, Scott; Koch, Jeffrey; Ross, Patrick; Waltman, Thomas

    2015-11-01

    An optical streaked spectroscopy system was developed to evaluate the spectral emission of the run-down, run-in and pinch phase on the Gemini Dense Plasma Focus (DPF). Time-resolved emission spectra were captured for hydrogen, deuterium, argon, and krypton gas from these phases. The emission was focused onto a fiber, and fed to a spectrometer that was coupled to a streak camera. Spectra of hydrogen, deuterium, argon, and krypton gas were modeled using Spec3D. Plasma parameters including electron density and temperature, from LSP simulations of the DPF discharge, were loaded into the Spec3D simulation to evaluate the emission spectra. Spectra collected from DPF on the streaked spectrometer system were then compared to the Spec3D simulations, and used to verify known optical emission lines for the various gases and to identify possible contaminants. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2519.

  11. Gas-injection experiments on a dense plasma focus

    SciTech Connect

    Barnouin, O.; Javedani, J.; Del Medico, S.; Miley, G.H.; Bromley, B.

    1994-12-31

    Rockford Technology Associates, Inc. (RTA) has been doing experiments on the Dense Plasma focus (DPF) device at the Fusion Studies Laboratory of the University of Illinois. This DPF consists of four racks of five 2-{mu}F capacitors whose charge is switched onto the inner electrode of a plasma focus by four Trigatron spark gaps. The stored energy is 12.5 kJ at 25 kV. The bank is usually discharged in a static fill of H{sub 2} at {approx} 6 torr. Preliminary experiments aimed at exploring the potential of the DPF device as a magnetoplasmadynamic (MPD) thruster and as an x-ray source for lithography have investigated various alternative ways of injecting gas between the electrodes. One of those approaches consists of injecting gas from the tip of the inner electrode at a steady rate. In this operation, the DPF chamber pressure was held constant by running the vacuum pump at full throttle. This operation simulated simultaneous pulsed injection at the base insulator and electrode tip. Hydrogen was fed through a 1/16th-inch hole at a flow rate of {approx} 90 cm/s. Pulsing was then performed at 23 kV, and the corresponding variations of the current were observed using a Rogowski coil. It is found that the plasma collapses into a pinch at the same time as in conventional experiments using a static fill. The singularity in the current waveform is slightly smaller with tip injection, but its size and shape are easily reproducible. Further details and comparison of this operation with conventional pulsing will be presented.

  12. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  13. Self-focusing of electromagnetic pulsed beams in collisional plasmas

    SciTech Connect

    Faisal, Mohammad; Verma, M. P.; Sodha, Mahendra Singh

    2008-10-15

    In this paper, the self-focusing of an electromagnetic pulsed beam in a collisional plasma has been investigated in the paraxial approximation, following the formalism developed by Akhmanov. The energy balance equation for electrons, the equation expressing the equality of pressure gradient (of electrons and ions) to the force due to space charge field, and the equation for the beam width parameter f (obtained by following Akhmanov's approach) have been simultaneously solved for given initial (z=0) time profile of the pulse to obtain f as a function of {xi} (cz/{omega}r{sub 0}{sup 2}) and t{sup '}=t-z/V{sub g}, where V{sub g} is the group velocity. Both Gaussian and sine time profiles of the pulse have been investigated.

  14. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  15. Characterization of bismuth nanospheres deposited by plasma focus device

    SciTech Connect

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  16. Characterization of bismuth nanospheres deposited by plasma focus device

    NASA Astrophysics Data System (ADS)

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-01

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  17. Anisotropy of the neutron fluence from a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Kim, K. H.

    1972-01-01

    The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.

  18. ALEGRA-HEDP simulations of the dense plasma focus.

    SciTech Connect

    Flicker, Dawn G.; Kueny, Christopher S.; Rose, David V.

    2009-09-01

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.

  19. Synchrotron radiation from electron beams in plasma-focusing channels.

    PubMed

    Esarey, E; Shadwick, B A; Catravas, P; Leemans, W P

    2002-05-01

    Spontaneous radiation emitted from relativistic electrons undergoing betatron motion in a plasma-focusing channel is analyzed, and applications to plasma wake-field accelerator experiments and to the ion-channel laser (ICL) are discussed. Important similarities and differences between a free electron laser (FEL) and an ICL are delineated. It is shown that the frequency of spontaneous radiation is a strong function of the betatron strength parameter a(beta), which plays a role similar to that of the wiggler strength parameter in a conventional FEL. For a(beta) > or approximately 1, radiation is emitted in numerous harmonics. Furthermore, a(beta) is proportional to the amplitude of the betatron orbit, which varies for every electron in the beam. The radiation spectrum emitted from an electron beam is calculated by averaging the single-electron spectrum over the electron distribution. This leads to a frequency broadening of the radiation spectrum, which places serious limits on the possibility of realizing an ICL. PMID:12059723

  20. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  1. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  2. Observation of plasma jets in a table top plasma focus discharge

    SciTech Connect

    Pavez, Cristian; Soto, Leopoldo; Pedreros, José; Tarifeño-Saldivia, Ariel

    2015-04-15

    In the last years, medium size Z-pinch experiments operating at tens of kJ are being used to create supersonic plasma jets. Those experiments are produced with wire arrays and radial foils, and they are conducted in generators based on water-filled transmission lines. Also plasma jets have been observed in small X-pinch experiments operating at 1 kJ. In this work, observations of plasma jets produced in a table top plasma focus device by means of optical and digital interferometry are shown. The device was operated at only ∼70 J, achieving 50 kA in 150 ns. The plasma jets were observed after the pinch, in the region close and on the anode, along the axis. The electron density measured from the jets is in the range 10{sup 24}–10{sup 25 }m{sup −3}. From two consecutive plasma images separated 18 ns, the axial jet velocity was measured in the order of 4 × 10{sup 4 }m/s.

  3. X-ray Spectral Measurements of a Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Petr, Rodney A.; Freshman, Jay; Hoey, David W.; Heaton, John

    2002-10-01

    Absolute intensities of spectra in a dense-plasma-focus (DPF) source have been recorded and analyzed. This DPF source has been identified as one of the more promising sources for X-ray lithography. The source, developed by Science Research Laboratory, Inc., is currently undergoing testing and further development at BAE Systems, Inc. The DPF operates at 60 Hz and produces an average output pulse of ~5 J of X rays into 4π steradians in a continuous operation mode. In all runs, there was an initial number of pulses, typically between 30 to 40, during which the X-ray output increased and the DPF appeared to be undergoing a conditioning process, and after which a "steady-state" mode was achieved where the average X-ray power was relatively constant. Each spectral run was exposed to ~600 J of output, as measured by the PIN. The X-ray spectral region between 0.8 and 3 keV was recorded on Kodak DEF film in a potassium acid phthalate (KAP) convex curved-crystal spectrograph. The source emits neon line radiation from Ne IX and Ne X ionization stages in the 900 to 1300 eV region, suitable for lithographic exposures of photoresist. Two helium-like neon lines contribute more than 50% of the total energy. From continuum shape, plasma temperatures were found to be approximately 170-200 eV. The absolute, integrated spectral outputs were verified to within 30% by comparison with measurements by a PIN detector and a radiachromic X-ray dosimeter.

  4. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect

    Thomas, Robert; Yang Yang; Miley, G.H.; Mead, F.B.

    2005-02-06

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  5. Stabilization of laser-induced plasma in bulk water using large focusing angle

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2016-08-01

    Laser focusing geometry effects on plasma emissions in bulk water were investigated with five focusing angles ranging from 11.9° to 35.4°. Fast imaging and space-resolved spectroscopy techniques were used to observe the plasma emission distributions and fluctuations. We demonstrated that by increasing the focusing angle, discrete and irregular plasma formed in multiple sites could be turned into continuous and stable plasma with single core fixed at the laser focal point. This indicates the key role of laser focusing angle in the stabilization of plasma positions, which is crucial to the improvement of laser-induced breakdown spectroscopy repeatability in bulk water.

  6. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Benedetti, Carlo; Leemans, Wim

    2013-08-06

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.

  7. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Leemans, W. P.

    2013-08-15

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications.

  8. Focusing of plasma flow in an E cross B discharge

    NASA Astrophysics Data System (ADS)

    Griswold, Martin; Raitses, Yevgeny; Fisch, Nathaniel J.

    2010-11-01

    ExB discharges can be used to accelerate ions in a quasi-neutral plasma. Large ion fluxes can be produced in this way because there is no space charge limitation, however difficulty in specifying the electric field distribution results in large flow divergence [1]. Recent work has identified new methods to control the flow divergence [2,3]. We present the results of new techniques that are designed to further reduce the divergence. [4pt] [1] A.I. Morozov and V.V. Savelyev, Reviews of Plasma Physics vol. 21, B. B. Kadomtsev and V. D. Shafranov, Eds. New York: Consultants Bureau, 2000. [2] Y. Raitses, L.A. Dorf, A.A. Litvak, and N.J. Fisch, Journal of Applied Physics 88 (2000) 1263. [3] A. Smirnov, Y. Raitses, and N.J. Fisch, IEEE Transactions on Plasma Science 36 (2008) 1998.

  9. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    NASA Astrophysics Data System (ADS)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  10. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  11. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    SciTech Connect

    Patil, S. D.; Takale, M. V.

    2013-07-15

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works.

  12. Deposition of materials using a plasma focus of tens of joules

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Jauregui, P.; Soto, L.

    2016-05-01

    Physical properties of transient plasmas, energetic ions and electrons, as produced in plasma focus (PF) discharges are substantially different than the conventional plasma devices used for plasma nanofabrication. In particular, PF discharges provide new and unique opportunities in processing and synthesis of new materials. Since PF discharges have very short duration and produce plasmas of high ion density, the anode is exposed to a high energy density causing its pulverization and generating a vapour of material that allows a fast deposit. In this paper a table top plasma focus of tens of joules, PF-50J, was used to produce material deposition. First deposits obtained from detached anode material (steel) or a metallic insert (titanium) from the plasma ejected after the pinch in the axial direction are presented.

  13. Microwave guiding and intense plasma generation at subcutoff dimensions for focused ion beams

    SciTech Connect

    Mathew, Jose V.; Dey, Indranuj; Bhattacharjee, Sudeep

    2007-07-23

    The mechanism of microwave guiding and plasma generation is investigated in a circular waveguide with a subcutoff dimension using pulsed microwaves of 3 GHz. During the initial phase, gaseous breakdown is induced by the exponentially decaying wave. Upon breakdown, the refractive index of the plasma medium varies radially, with the plasma density reaching close to cutoff values in the central region. At lower pressures, the waves can propagate through the peripheral plasma with a reduced wavelength, due to the collisionally broadened upper hybrid resonance region. The intense narrow cross sectional plasma bears promise for multielemental focused ion beams.

  14. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    SciTech Connect

    Nanda, Vikas; Kant, Niti

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  15. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  16. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    NASA Astrophysics Data System (ADS)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  17. Neutron Emission Characteristics of a High-Current Plasma Focus: Initial Studies

    SciTech Connect

    L. H. Ziegler; B. L. Freeman; J. C. Boydston

    2002-06-01

    The Texas A and M University plasma focus machine is operational and is beginning to provide good experimental data. It has its origins in several earlier machines and is located in a former service station building with a shield wall that provides a good geometry for neutron measurements. We are operating in the high pressure mode for a plasma focus, similar to previous efforts in the US. Early neutron measurements are providing some insight for the machine's operation.

  18. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  19. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  20. Terahertz generation by two cross focused laser beams in collisional plasmas

    SciTech Connect

    Sharma, R. P. Singh, Ram Kishor

    2014-07-15

    The role of two cross-focused spatial-Gaussian laser beams has been studied for the high power and efficient terahertz (THz) radiation generation in the collisional plasma. The nonlinear current at THz frequency arises on account of temperature dependent collision frequency of electrons with ions in the plasma and the presence of a static electric field (applied externally in the plasma) and density ripple. Optimisation of laser-plasma parameters gives the radiated THz power of the order of 0.23  MW.

  1. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing.

    PubMed

    Théberge, Francis; Liu, Weiwei; Simard, Patrick Tr; Becker, Andreas; Chin, See Leang

    2006-09-01

    Our experiment shows that external focusing strongly influences the plasma density and the diameter of femtosecond Ti-sapphire laser filaments generated in air. The control of plasma filament parameters is suitable for many applications such as remote spectroscopy, laser induced electrical discharge, and femtosecond laser material interactions. The measurements of the filament showed the plasma density increases from 10(15)cm(-3) to 2 x 10(18)cm(-3) when the focal length decreases from 380 cm to 10 cm while the diameter of the plasma column varies from 30 microm to 90 microm. The experimental results are in good qualitative agreement with the results of numerical simulations. PMID:17025753

  2. Near-diffraction-limited laser focusing with a near-critical density plasma lens.

    PubMed

    Shou, Yinren; Lu, Haiyang; Hu, Ronghao; Lin, Chen; Wang, Hongyong; Zhou, Meilin; He, Xiantu; Chen, Jia Erh; Yan, Xueqing

    2016-01-01

    In this Letter, we investigate the feasibility of focusing relativistic laser pulses toward diffraction limit by near-critical density plasma lenses. A theoretical model is developed to estimate the focal length of the plasma lens. Particle-in-cell simulations with various pulse parameters, such as pulse duration, beam waist, and intensity, are performed to show the robustness of plasma lenses. The results prove that the near-critical density plasma lenses can be deployed to obtain higher laser peak intensities with sub-wavelength focal spots in experiments. PMID:26696178

  3. On the origin of the coherent x-ray radiation from plasma focus

    SciTech Connect

    Zhevago, N.K.; Glebov, V.I.

    1995-12-31

    In the experiments with plasma focus a highly monochromatic radiation at {lambda}{approx}13{angstrom} was observed at a small angle to the direction of the plasma discharge. This radiation was attributed to the following features. Firstly, during the development of a plasma focus the short-period (T {approx_lt} 1{mu}m) modulation of the plasma density due to the increasing instabilities takes place along the discharge over many periods. Secondly, a definite part of electrons is accelerated up to MeV energies due the cyclotron instability and the increasing diffusion of the magnetic field in the pinch region. In the present report in order to explain the experimental results, we discuss possible mechanisms of coherent X-ray radiation in plasma focus, including the transition radiation from relativistic electrons in the medium with periodically modulated dielectric permittivity, undulator radiation in periodic electric field in the medium, and Cherenkov radiation from plasma in the presence of a strong magnetic field. The calculations of the spectral and angular distributions of X-rays are presented for the various types of radiation under discussion and estimates of the radiation power are made. We also discuss the possibility of the stimulated radiation from plasma focus.

  4. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  5. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation. PMID:12382811

  6. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented. PMID:18601405

  7. Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities

    NASA Astrophysics Data System (ADS)

    Wilson, R.; King, M.; Gray, R. J.; Carroll, D. C.; Dance, R. J.; Armstrong, C.; Hawkes, S. J.; Clarke, R. J.; Robertson, D. J.; Neely, D.; McKenna, P.

    2016-03-01

    The design and development of an ellipsoidal F/1 focusing plasma mirror capable of increasing the peak intensity achievable on petawatt level laser systems to >1022 W cm-2 is presented. A factor of 2.5 reduction in the focal spot size is achieved when compared to F/3 focusing with a conventional (solid state) optic. We find a factor of 3.6 enhancement in peak intensity, taking into account changes in plasma mirror reflectivity and focal spot quality. The sensitivity of the focusing plasma optic to misalignment is also investigated. It is demonstrated that an increase in the peak laser intensity from 3 ×1020 W cm-2 to 1021 W cm-2 results in a factor of 2 increase in the maximum energy of sheath-accelerated protons from a thin foil positioned at the focus of the intense laser light.

  8. Dynamics of ponderomotive self-focusing and periodic bursts of stimulated Brillouin backscattering in plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, N. E.; Gorbunov, L. M.; Tarakanov, S. V.; Zykov, A. I.

    1993-07-01

    The space-time evolution of ponderomotive self-focusing of electromagnetic beams in a plasma is investigated. The quasineutral, hydrodynamic plasma response to the ponderomotive force is considered. The set of coupled quasioptic and acoustic equations is solved both analytically and numerically for slab and cylindrical beams. It is shown that the transient process of self-focusing has the form of a nonlinear wave propagating along the beam axis from boundary into the interior of a plasma with velocity considerably higher than the ion-sound velocity. Mutual dynamics of self-focusing and stimulated Brillouin backscattering (SBBS) is computed. It is shown that self-focusing results in the high intensity periodical bursts of SBBS. However, the time average level of scattered radiation is quite low.

  9. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Seleznev, L. V.; Sunchugasheva, E. S.

    2015-03-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (~100 ns) laser pulses for triggering and guiding long (~1 m) electric discharges is discussed.

  10. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma

    SciTech Connect

    Chen, X.L.; Sudan, R.N. )

    1993-04-05

    We analyze the propagation of a short intense laser pulse in underdense cold plasma. When no electron cavitation is present, a global invariant [ital H] is obtained, and its relation with self-focusing is studied. For relativistic self-focusing, [ital H][lt]0 is a sufficient and necessary condition. For relativistic and ponderomotive self-focusing, [ital H][lt]0 is sufficient but not necessary. Numerical simulations are performed to confirm the above points.

  11. Description of plasma focus current sheath as the Turner relaxed state of a Hall magnetofluid

    SciTech Connect

    Auluck, S. K. H.

    2009-12-15

    The central mystery of plasma focus research is the two orders-of-magnitude-higher-than-thermal fusion reaction rate and the fact that both the space-resolved neutron spectra and space-resolved reaction proton spectra show features which can be ascribed only to a rotational motion of the center-of-mass of the reacting deuteron population. It has been suggested earlier [S. K. H. Auluck, IEEE Trans. Plasma Sci. 25, 37 (1997)] that this and other experimental observations can be consistently explained in terms of a hypothesis involving rotation of the current carrying plasma annulus behind the imploding gas-dynamic shock. Such rotation (more generally, mass flow) is an in-built feature of relaxed state of a two-fluid plasma [R. N. Sudan, Phys. Rev. Lett. 42, 1277 (1979)]. Relaxation in the 'Hall magnetofluid' approximation, in which the generalized Ohm's law includes the Hall effect term and the magnetic convection term but omits the contributions to the electric field from resistive dissipation, electron pressure gradient, thermoelectric effect, electron inertia, etc., has been extensively studied by many authors. In the present paper, Turner's [IEEE Trans. Plasma Sci. PS-14, 849 (1986)] degenerate solution for the relaxed state of the Hall magnetohydrodynamic plasma has been adapted to the case of an infinitely long annular current carrying plasma, a tractable idealization of the current sheath of a plasma focus. The resulting model is consistent with experimental values of ion kinetic energy and observation of predominantly radially directed neutron emission in good shots.

  12. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    NASA Astrophysics Data System (ADS)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2013-10-01

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel determines the focusing forces, while the accelerating field is determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Beam loading using a near-hollow plasma channel is examined. Properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. All-Optical Control of Nonlinear Self-Focusing in Plasmas Using Non-Resonantly Driven Plasma Wave

    SciTech Connect

    Kalmykov, S. Y.; Shadwick, B. A.; Downer, M. C.

    2010-11-04

    Excitation of plasma density perturbations by an initially bi-color laser pulse helps to control nonlinear refraction in the plasma and enables various types of laser self-guiding. In this report we consider a setup that not only makes possible the transport of laser energy over cm-long relatively dense plasmas (n{sub 0} = 10{sup 18} cm{sup -3}) but also transforms the pulse into the unique format inaccessible to the conventional amplification techniques (relativistically intense periodic trains of few-cycle spikes). This well focusable pulse train is a novel light source interesting for ultra-fast high-field science applications. The opposite case of suppression of nonlinear self-focusing and dynamical self-guiding of an over-critical multi-frequency pulse is proposed for the proof-of-principle experimental study.

  14. Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma

    NASA Astrophysics Data System (ADS)

    Singh, Arvinder; Gupta, Naveen

    2015-06-01

    A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.

  15. Flute instability of an ion-focused slab electron beam in a broad plasma

    SciTech Connect

    Whittum, D.H. , 1-1 Oho, Tsukuba, Ibaraki 305 ); Lampe, M.; Joyce, G.; Slinker, S.P. ); Yu, S.S.; Sharp, W.M. )

    1992-11-15

    An intense relativistic electron beam with an elongated cross section, propagating in the ion-focused regime through a broad, uniform, unmagnetized plasma, is shown to suffer a transverse flute instability. This instability arises from the electrostatic coupling between the beam and the plasma electrons at the ion-channel edge. The instability is found to be absolute and the asymptotic growth of the flute amplitude is computed in the frozen-field'' approximation and the large skin-depth limit. The minimum growth length is shown to be much less than the betatron period, with the consequence that focusing is rendered ineffective. It is further shown that growth is much reduced when the beam propagates through a narrow channel where the ion density greatly exceeds that of the surrounding plasma. In this limit, a modest spread in betatron frequency produces rapid saturation. The effect of plasma electron collisions is also considered. Results of beam breakup simulations are noted.

  16. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  17. Detection of high tritium activity on the central titanium electrode of a plasma focus device

    SciTech Connect

    Rout, R.K.; Spinivasan, M.; Shyam, A.; Chitra, V. )

    1991-03-01

    In this paper a 2-kJ Mather plasma focus device is used to deuterate the top end surface (or tip) of its central titanium electrode to investigate the occurrence of anomalous nuclear reactions in the context of the cold fusion phenomenon. The tip of the central titanium electrode is found to develop at least a few tens of microcuries of tritium after several plasma focus discharges. Neither the tritium impurity level in the deuterium gas used in the experiment nor the tritium branch of the d-d reactions that are known to occur in plasma focus devices can account for such activity in the electrode. Anomalous nuclear reactions in the deuterated titanium lattice appear to be the most probable source of this high activity.

  18. Effects of ionization distribution on plasma beam focusing characteristics in Hall thrusters

    SciTech Connect

    Ning Zhongxi; Liu Hui; Yu Daren; Zhou Zhongxiang

    2011-11-28

    The relationship between ionization distribution and divergence of plasma beam in a Hall thruster is investigated using spectrum and probe methods. Experimental results indicate that the shift of ionization region towards the exit of channel causes the reduction of accelerating field and the enhancement of electron thermal pressure effect, which result in further deviation of equipotential lines to magnetic field lines and further increase in divergence of plasma beam. It is, therefore, suggested that to put the ionization region deep inside the channel and separate it from the acceleration region at the design, and development stage is helpful to improve the plasma beam focusing characteristics of a Hall thruster.

  19. Structure and Characteristics of a Spherical Plasma Focus: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Ay, Yasar; Abdal-Halim, Mohamed A.; Bourham, Mohamed

    2014-10-01

    Most studies of dense plasma focus devices use cylindrical coaxial shapes, however, a spherical shape is investigated herein. Snow plow model and shock wave equations are coupled with the circuit equations to model the spherical plasma focus. Of interest in spherical plasma focus is to have both sheath expansion and the magnetic pressure changing rate for the rundown phase instead of the constant sheath only for the cylindrical case. The developed model is compared to published experimental results for validation and good agreement was obtained. Hydrogen and its isotopes were separately used for investigating the effect of the different molecular weights on plasma parameters. The gas pressure and discharge voltage were varied for these gases to study their effect on the plasma parameters. The study predicts a peak discharge current of 1.5 MA for tritium with 0.92 MA dip discharge current, and less for deuterium and hydrogen. The current drop for tritium indicates focus action. It indicates that the sheath velocity for heavy gases is lower than lighter gases. Predicted maximum temperature variation is about 11.1 eV for hydrogen, 14.6 eV for deuterium, 15.9 eV for DT mixture and 17eV for pure tritium; which indicates higher temperature with heavier gasses.

  20. Plasma channels in a filament of a femtosecond laser pulse focused by an axicon

    SciTech Connect

    Chekalin, S V; Kompanets, V O; Dokukina, A E; Smetanina, E O; Kandidov, V P

    2014-06-30

    We report the results of experimental and numerical investigation of the influence of the wavefront curvature of femtosecond light focused by an axicon on the length and position of plasma channels in the filament under conditions of normal and anomalous group velocity dispersion in fused silica. It is shown that a change in the wavefront curvature by a value much greater than the longitudinal dimensions of the filament noticeably changes the geometry of the plasma channel position. The role of axicon focusing for ordering multiple filamentation is studied experimentally. (extreme light fields and their applications)

  1. Plasma channels in a filament of a femtosecond laser pulse focused by an axicon

    NASA Astrophysics Data System (ADS)

    Chekalin, S. V.; Dokukina, A. E.; Smetanina, E. O.; Kompanets, V. O.; Kandidov, V. P.

    2014-06-01

    We report the results of experimental and numerical investigation of the influence of the wavefront curvature of femtosecond light focused by an axicon on the length and position of plasma channels in the filament under conditions of normal and anomalous group velocity dispersion in fused silica. It is shown that a change in the wavefront curvature by a value much greater than the longitudinal dimensions of the filament noticeably changes the geometry of the plasma channel position. The role of axicon focusing for ordering multiple filamentation is studied experimentally.

  2. Study on neutron emission from 2.2 kJ plasma focus device

    SciTech Connect

    Talukdar, N.; Neog, N. K.; Borthakur, T. K.

    2014-06-15

    The neutron emission from a low energy (2.2 kJ) plasma focus device operated in deuterium medium has been investigated by employing photo-multiplier tube (PMT) and bubble dosimeter. The neutron emission is found to be pressure dependent and anisotropic in nature. In most cases of plasma focus shots, the PMT signal shows double pulses of neutron emission with different intensities and widths. An interesting relation between intensity of hard X-ray and neutron emission is also observed.

  3. Self-focusing of circularly polarized laser pulse propagating through a magnetized non-Maxwellian plasma

    SciTech Connect

    Sepehri Javan, N.

    2014-10-15

    Self-focusing of an intense circularly polarized laser pulse propagating through a magnetized non-Maxwellian plasma is investigated. Based on a relativistic two-fluid model, nonlinear equation describing dynamics of the slowly varying amplitude is obtained. The evolution of laser spot size is studied and effect of non-Maxwellian distribution of charge density on the spot size is considered. It is shown that the existence of super-thermal particles leads to the enhancement of the self-focusing quality of plasma.

  4. Dense Plasma Focus: A question in search of answers, a technology in search of applications

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-08-01

    Diagnostic information accumulated over four decades of research suggests a directionality of toroidal motion for energetic ions responsible for fusion neutron production in the Dense Plasma Focus (DPF) and existence of an axial component of magnetic field even under conditions of azimuthal symmetry. This is at variance with the traditional view of Dense Plasma Focus as a purely irrotational compressive flow. The difficulty in understanding the experimental situation from a theoretical standpoint arises from polarity of the observed solenoidal state: three independent experiments confirm existence of a fixed polarity of the axial magnetic field or related azimuthal current. Since the equations governing plasma dynamics do not have a built-in direction, the fixed polarity must be related with initial conditions: the plasma dynamics must interact with an external physical vector in order to generate a solenoidal state of fixed polarity. Only four such external physical vectors can be identified: the earth's magnetic field, earth's angular momentum, direction of current flow and the direction of the plasma accelerator. How interaction of plasma dynamics with these fields can generate observed solenoidal state is a question still in search of answers; this paper outlines one possible answer. The importance of this question goes beyond scientific curiosity into technological uses of the energetic ions and the high-power-density plasma environment. However, commercial utilization of such technologies faces reliability concerns, which can be met only by first-principles integrated design of globally-optimized industrial-quality DPF hardware. Issues involved in the emergence of the Dense Plasma Focus as a technology platform for commercial applications in the not-too-distant future are discussed.

  5. Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma

    SciTech Connect

    Singh, Ram Kishor Sharma, R. P.

    2014-11-15

    This paper presents a theoretical model for terahertz (THz) radiation generation by two cross-focused Gaussian laser beams in a collisionless magnetoplasma. The plasma is redistributed due to the ponderomotive nonlinearity which leads to the cross focusing of the laser beams. The focusing of the copropagating laser beams increases with increasing the externally applied static magnetic field which is perpendicular to the wave propagation direction. The nonlinear current at THz frequency arises on account of nonlinear ponderomotive force as a result of beating of the two lasers. The generated THz radiation amplitude increases significantly with increasing magnetic field. The cross focusing of two laser beams enhances the THz yield. Optimization of laser-plasma parameters gives the radiated normalized THz power of the order of 10 kW.

  6. Simulating underwater plasma sound sources to evaluate focusing performance and analyze errors

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Huang, Jian-Guo; Lei, Kai-Zhuo; Chen, Jian-Feng; Zhang, Qun-Fei

    2010-03-01

    Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.

  7. Investigation of compression of puffing neon by deuterium current and plasma sheath in plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Kortanek, J.; Zielinska, E.

    2015-06-01

    This paper presents the results of the research of the influence of compressed neon, injected by the gas-puff nozzle in front of the anode axis by the deuterium current and plasma sheath on the evolution of the pinch, and neutron production at the current of 2 MA. The intense soft X-ray emission shows the presence of neon in the central region of the pinch. During the implosion and stopping of the plasma sheath, the deuterium plasma penetrates into the internal neon layer. The total neutron yield of 1010-1011 has a similar level as in the pure deuterium shots. The neutron and hard X-ray pulses from fusion D-D reaction are as well emitted both in the phase of the stopping implosion and during the evolution of instabilities at the transformation of plasmoidal structures and constrictions composed in this configuration from both gases. The fast deuterons can be accelerated at the decay of magnetic field of the current filaments in these structures.

  8. Investigation of compression of puffing neon by deuterium current and plasma sheath in plasma focus discharge

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Cikhardtova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Kortanek, J.; Paduch, M.; Zielinska, E.

    2015-06-15

    This paper presents the results of the research of the influence of compressed neon, injected by the gas-puff nozzle in front of the anode axis by the deuterium current and plasma sheath on the evolution of the pinch, and neutron production at the current of 2 MA. The intense soft X-ray emission shows the presence of neon in the central region of the pinch. During the implosion and stopping of the plasma sheath, the deuterium plasma penetrates into the internal neon layer. The total neutron yield of 10{sup 10}–10{sup 11} has a similar level as in the pure deuterium shots. The neutron and hard X-ray pulses from fusion D-D reaction are as well emitted both in the phase of the stopping implosion and during the evolution of instabilities at the transformation of plasmoidal structures and constrictions composed in this configuration from both gases. The fast deuterons can be accelerated at the decay of magnetic field of the current filaments in these structures.

  9. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Purohit, Gunjan; Rawat, Priyanka; Gauniyal, Rakhi

    2016-01-01

    The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically to study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam.

  10. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    SciTech Connect

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-04-19

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  11. Focused excimer laser initiated and radio frequency sustained plasma formation in high pressure air

    NASA Astrophysics Data System (ADS)

    Giar, Ryan

    A doctoral thesis project was performed to experimentally investigate the feasibility of focused excimer laser initiation of air plasmas for radio frequency sustainment. A 193 nm, 15 MW, 300 mJ laser was focused with a 18 cm focal length lens to form a small, high density (ne ~ 10 14 cm--3) seed plasma. These laser plasmas were produced inside a borosilicate glass tube around which was wrapped a 5 turn helical antenna. This antenna was powered with 5 kW of 13.56 MHz of radiation for 1.5 s. This was accomplished at a pressure of 22 Torr, resulting in a large volume (300 cm3) air plasma. Diagnostic measurements of this air plasma determined an electron density of 5E10 cm-3 and an electron temperature 1.3 eV with a neutral temperature of 3500 K. The collision frequency was measured to be 9E10 Hz which resulted in a plasma-loaded antenna resistance of 6 O with a voltage reflection coefficient of 0.7.

  12. Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses.

    PubMed

    Ooi, C H Raymond; Talib, Md Ridzuan

    2016-01-01

    We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644

  13. Intricate Plasma-Scattered Images and Spectra of Focused Femtosecond Laser Pulses

    PubMed Central

    Ooi, C. H. Raymond; Talib, Md. Ridzuan

    2016-01-01

    We report on some interesting phenomena in the focusing and scattering of femtosecond laser pulses in free space that provide insights on intense laser plasma interactions. The scattered image in the far field is analyzed and the connection with the observed structure of the plasma at the focus is discussed. We explain the physical mechanisms behind the changes in the colorful and intricate image formed by scattering from the plasma for different compressions, as well as orientations of plano-convex lens. The laser power does not show significant effect on the images. The pulse repetition rate above 500 Hz can affect the image through slow dynamics The spectrum of each color in the image shows oscillatory peaks due to interference of delayed pulse that correlate with the plasma length. Spectral lines of atomic species are identified and new peaks are observed through the white light emitted by the plasma spot. We find that an Ar gas jet can brighten the white light of the plasma spot and produce high resolution spectral peaks. The intricate image is found to be extremely sensitive and this is useful for applications in sensing microscale objects. PMID:27571644

  14. Time-Resolved Spectra of Dense Plasma Focus Using Spectrometer, Streak Camera, CCD Combination

    SciTech Connect

    F. J. Goldin, B. T. Meehan, E. C. Hagen, P. R. Wilkins

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny–Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  15. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination

    SciTech Connect

    Goldin, F. J.; Meehan, B. T.; Hagen, E. C.; Wilkins, P. R.

    2010-10-15

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  16. Wakefield structure of plasma hollow channels self-driven by tightly focused beams

    NASA Astrophysics Data System (ADS)

    Amorim, Ligia D.; Vieira, Jorge; Fonseca, Ricardo A.; Silva, Luis O.

    2015-11-01

    Plasma based wakefield accelerators (PWFA) are promising alternatives to conventional configurations due to the high accelerating gradients they can sustain. For future linear colliders, however, PWFAs need to overcome the challenge of efficiently accelerating positrons. PWFAs regimes with high acceleration gradients typically defocus positron bunches. Several techniques have tried to solve this challenge. Here we explore how tightly focused positron bunches sent through homogeneous plasmas can radially expel the plasma ions generating a hollow channel with high accelerating and focusing fields. We modeled the hollow channel accelerating and focusing wakefields structures analytically, and found good agreement with 3D numerical simulations performed with the PIC code OSIRS. We demonstrated that this scheme could accelerate positrons to high energies. Furthermore, we analyzed the impact of the key drive bunch properties on the formation of the hollow channel, finding that bunches with short fall times (compared to electron bubble radius) and small transverse sizes (compared to plasma skin depth) maximize both accelerating and focusing fields. We also studied hollow channels driven by laser beams. Work supported by FCT grant SFRH/BD/84851/2012. We acknowledge PRACE for access to resources on SuperMUC (Leibniz Research Center).

  17. Noise Suppression and Enhanced Focusability in Plasma Raman Amplifier with Multi-frequency Pump

    SciTech Connect

    A.A. Balakin; G.M. Fraiman; N.J. Fisch; V.M. Malkin

    2003-06-16

    Laser pulse compression/amplification through Raman backscattering in plasmas can be facilitated by using multi-frequency pump laser beams. The efficiency of amplification is increased by suppressing the Raman instability of thermal fluctuations and seed precursors. Also the focusability of the amplified radiation is enhanced due to the suppression of large-scale longitudinal speckles in the pump wave structure.

  18. Investigation of pulsed X-ray radiation of a plasma focus in a broad energy range

    SciTech Connect

    Savelov, A. S. Salakhutdinov, G. Kh.; Koltunov, M. V.; Lemeshko, B. D.; Yurkov, D. I.; Sidorov, P. P.

    2011-12-15

    The results of the experimental investigations of the spectral composition of plasma focus X-ray radiation in the photon energy range of 1.5 keV-400 keV are presented. Three regions in the radiation spectrum where the latter is of a quasi-thermal nature with a corresponding effective temperature are distinguished.

  19. The evolution of the plasmoidal structure in the pinched column in plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Cikhardtova, B.; Kortanek, J.; Zielinska, E.

    2016-04-01

    In this paper, a description is provided of the evolution of the dense spherical-like structures—plasmoids—formed in the pinched column of the dense plasma focus at the current of 1 MA at the final phase of implosion of the deuterium plasma sheath and at the phase of evolution of instabilities both at the time of HXR and neutron production. At the stratification of the plasma column, the plasma injected to the dense structures from the axially neighboring regions forms small turbulences which increase first the toroidal structures, and finally generates a non-chaotic current plasmoidal structure with central maximal density. This spontaneous evolution supports the hypothesis of the spheromak-like model of the plasmoid and its sub-millimeter analogy, high-energy spot. These spots, also called nodules formed in the filamentary structure of the current can be a source of the energy capable of accelerating the fast charged particles.

  20. Preliminary numerical study of Thailand Plasma Focus II (TPF-II) design

    NASA Astrophysics Data System (ADS)

    Tamman, Arlee; Nisoa, Mudtorlep; Onjun, Thawatchai

    2014-08-01

    In this work, we use the Lee model to predict the plasma parameters, such as plasma temperature and pinch duration, in the 3.37 kJ DPF device, called “Thailand Plasma Focus-II (TPF-II).” This numerical result is then used to optimize the electrode parameters for the maximum production rate of 18F. The crossing point of pinch duration and pinch temperature is considered to obtain the appropriate electrode length, anode radius and gas gap between anode and cathode. The gas gap between both electrodes is indicated in ratio between cathode radius and anode radius, c. The results show that the best values of c, anode radius and electrode length are 1.48, 1.2 cm and 26.1 cm, respectively, in which the plasma pinch temperature, peak current and pinch duration of 0.76 keV, 207 kA and 8.725 ns can be obtained.

  1. Internal plasma potential measurements of a Hall thruster using plasma lens focusing

    SciTech Connect

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-10-15

    Magnetic field topology has been found to be a central design concern for high-efficiency Hall thrusters. For future improvements in Hall thruster design, it is necessary to better understand the effects that magnetic field topology has on the internal plasma structure. The Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system is used in conjunction with a floating emissive probe to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propul. Power 22, 721 (2006); 22, 732 (2006)]. Measurements are taken at 300 and 500 V with a xenon propellant. Electron temperature and electric field are also measured and reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic field lines. Moreover, in some cases the ions are accelerated strongly toward the center of the discharge channel. The agreement between magnetic field lines and equipotential lines is best for high-voltage operation. These results have strong implications on the performance and lifetime optimization of Hall thrusters.

  2. Intensity dependence of relativistic focusing of intense laser beams propagating in plasmas

    SciTech Connect

    Liu Mingwei; Zhou Bingju; Yi Yougen; Liu Xiaojuan; Tang Liqiang

    2007-10-15

    Optical guiding of an intense laser beam propagating in uniform plasmas is analyzed by means of the variational method. The focusing properties of the beam are shown to be governed by the laser power as well as the laser intensity. An increase in the laser intensity leads to an enhancement of ponderomotive self-channeling but a stronger weakening of relativistic self-focusing. The oscillations of the beam spot size along the propagation distance come from the variability of the focusing force in terms of the laser intensity; and the dependence on the laser intensity is negligible in the weakly relativistic limit.

  3. Plasma focus sources: Supplement to the neutron resonance radiography workshop proceedings

    SciTech Connect

    Nardi, V.; Brzosko, J.

    1989-01-01

    Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, YN, and the rate of neutron emission, Y/sub n/, of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W/sub 0/. Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y/sub n/. The FDE-induced redistribution of the plasma current increases Y/sub n/ by a factor approx. =5-10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W/sub 0/ = 6kJ, and voltage, V/sub 0/ = 16.5 kV provides Y/sub n/ /congruent/ 4 /times/ 10/sup 9/ D-D neutrons/shot (pure D/sub 2/ filling) and Y/sub n/ = 4 /times/ 10/sup 11/ D-T neutrons/shot (filling is 50% deuterium and 50% tritium). The FDE-induced increase of Y/sub n/ for fixed values of (W/sub 0/, V/sub 0/), the observed scaling law Y/sub n/ /proportional to/ W/sub 0//sup 2/ for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (10/sup 14/ n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution.

  4. Stark Broadening Analysis Using Optical Spectroscopy of the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ross, Patrick; Bennett, Nikki; Dutra, Eric; Hagen, E. Chris; Hsu, Scott; Hunt, Gene; Koch, Jeff; Waltman, Tom; NSTec DPF Team

    2015-11-01

    To aid in validating numerical modeling of MA-class dense plasma focus (DPF) devices, spectroscopic measurements of the Gemini Dense Plasma Focus (DPF) were performed using deuterium and deuterium/dopant (argon/krypton) gas. The spectroscopic measurements were made using a fiber-coupled spectrometer and streak camera. Stark line-broadening analysis was applied to the deuterium beta emission (486 nm) in the region near the breakdown of the plasma and during the run-down and run-in phases of the plasma evolution. Densities in the range of 1e17 to low 1e18 cm-3 were obtained. These values are in agreement with models of the DPF performed using the LSP code. The spectra also show a rise and fall with time, indicative of the plasma sheath passing by the view port. Impurity features were also identified in the spectra which grew in intensity as the gas inside the DPF was discharged repeatedly without cycling. Implications of this impurity increase for D-T discharges (without fresh gas fills between every discharge) will be discussed. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946, and by Los Alamos National Laboratory, under Contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. DOE/NV/25946-2515.

  5. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  6. Developing a plasma focus research training system for the fusion energy age

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2014-08-01

    The 3 kJ UNU/ICTP Plasma Focus Facility is the most significant device associated with the AAAPT (Asian African Association for Plasma Training). In original and modified/upgraded form it has trained generations of plasma focus (PF) researchers internationally, producing many PhD theses and peer-reviewed papers. The Lee Model code was developed for the design of this PF. This code has evolved to cover all PF machines for design, interpretation and optimization, for derivation of radiation scaling laws; and to provide insights into yield scaling limitations, radiative collapse, speed-enhanced and current-stepped PF variants. As example of fresh perspectives derivable from this code, this paper presents new results on energy transfers of the axial and radial phases of generalized PF devices. As the world moves inexorably towards the Fusion Energy Age it becomes ever more important to train plasma fusion researchers. A recent workshop in Nepal shows that demand for such training continues. Even commercial project development consultants are showing interest. We propose that the AAAPT-proven research package be upgraded, by modernizing the small PF for extreme modes of operation, switchable from the typical strong-focus mode to a slow-mode which barely pinches, thus producing a larger, more uniform plasma stream with superior deposition properties. Such a small device would be cost-effective and easily duplicated, and have the versatility of a range of experiments from intense multi-radiation generation and target damage studies to superior advanced-materials deposition. The complementary code is used to reference experiments up to the largest existing machine. This is ideal for studying machine limitations and scaling laws and to suggest new experiments. Such a modernized versatile PF machine complemented by the universally versatile code would extend the utility of the PF experience; so that AAAPT continues to provide leadership in pulsed plasma research training in

  7. Line focusing for soft x-ray laser-plasma lasing.

    PubMed

    Bleiner, Davide; Balmer, Jürg E; Staub, Felix

    2011-12-20

    A computational study of line-focus generation was done using a self-written ray-tracing code and compared to experimental data. Two line-focusing geometries were compared, i.e., either exploiting the sagittal astigmatism of a tilted spherical mirror or using the spherical aberration of an off-axis-illuminated spherical mirror. Line focusing by means of astigmatism or spherical aberration showed identical results as expected for the equivalence of the two frames of reference. The variation of the incidence angle on the target affects the line-focus length, which affects the amplification length such that as long as the irradiance is above the amplification threshold, it is advantageous to have a longer line focus. The amplification threshold is physically dependent on operating parameters and plasma-column conditions and in the present study addresses four possible cases. PMID:22193201

  8. On the focused beam parameters of an electron gun with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  9. Modelling of the internal dynamics and density in a tens of joules plasma focus device

    SciTech Connect

    Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Clausse, Alejandro

    2012-01-15

    Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

  10. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    SciTech Connect

    Stamate, Eugen; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulations are found to be in very good agreement with experiments.

  11. Damages of Carbon-Tungsten Samples under Influence of Deuterium Ions and Dense Plasma Streams within Plasma-Focus Facility

    SciTech Connect

    Gribkov, V. A.; Grebenschikova, Ye. S.; Dubrovsky, A. V.; Makeev, O. N.; Rogozhkin, S. V.; Zaluzhnij, A. G.; Demina, Ye. V.; Kovtun, A. V.; Maslayev, S. A.; Pimenov, V. N.; Malinowski, K.; Skladnik-Sadowska, E.; Paduch, M.; Scholz, M.; Sadowski, M. J.

    2008-03-19

    The paper reports on experimental studies of processes of the interaction of pulsed streams of fast deuterium ions (E{sub i}{approx}100 keV) and dense deuterium plasma (v{sub pl}>10{sup 7} cm/s) with samples made of carbon and tungsten. Experiments were performed in the large PF-1000 plasma-focus facility with the charging energy of 481 kJ and with the pure deuterium filling. Power flux density of plasma/ions streams was q = 10{sup 7}-10{sup 10} W/cm{sup 2} and the pulse length was from 10{sup -7} s to 10{sup -6} s, whereas the duration of heat pulses (due to a secondary plasma at the target's surface) was 10{sup -4} s. The stainless steel, tungsten and carbon-tungsten samples were placed in the zone of their strong melting and evaporation or in the zone without their melting. Each sample was exposed to 1 through 10 discharges, and the irradiated samples were investigated with optical-, electron- and atomic-force-microscopes. The interaction of intense plasma-ion pulses with the carbon-tungsten samples caused the formation of a wave-like relief on sample surfaces, the evident erosion of the sample material, and the creation of numerous micro-cracks. It was also found that about 200-nm-thick layer of the irradiated tungsten sample contained many melted fragments of nm-dimensions. The results might be useful for estimations of tungsten behavior in extreme situations (e.g. disruptions) expected in fusion reactors with magnetic plasma confinement.

  12. Morphological and structural effects on tungsten targets produced by fusion plasma pulses from a table top plasma focus

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Ramos-Moore, E.; Soto, L.

    2015-09-01

    A table top plasma focus device operating at hundreds of joules was used to simulate an equivalent damage factor than the obtained on the divertor in tokamak experiments. Using the ejected plasma produced after the pinch disruptions, the effects on tungsten targets from 50 cumulative plasma shocks with power fluxes per shot between 2.6 and 9200 kW cm-2 and with a duration time in the order of tens of nanoseconds (damage factor in the order of 100-103 (W cm-2)s1/2) were studied. Morphological analysis shows an increasing appearance of cracked surfaces with holes, fissures and defects, suggesting a potential progression of stress effects and a fast heat load that melts the surface, ending in thermal contractions that recrystallize the surface of the target. A structural analysis demonstrates a compressive stress development and suggests that part of the energy is released in the melting of the surface in case of a plasma shock with a power flux of 9.2 MW cm-2, 75 ns duration pulse, 2.5   ×   103 (W cm-2)s1/2 damage factor. How to increase the damage factor by one order of magnitude up to the expected value from type I ELMs on the ITER divertor, i.e. 104 (W cm-2)s1/2 is discussed.

  13. Gamma ray measurements with photoconductive detectors using a dense plasma focus

    SciTech Connect

    May, M. J. Brown, G. V.; Halvorson, C.; Schmidt, A.; Bower, D.; Tran, B.; Lewis, P.; Hagen, C.

    2014-11-15

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or “pinches” plasmas of various gases (e.g., H{sub 2}, D{sub 2}, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n{sup ′}) reactions if D{sub 2} gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident.

  14. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  15. Gamma ray measurements with photoconductive detectors using a dense plasma focus.

    PubMed

    May, M J; Brown, G V; Halvorson, C; Schmidt, A; Bower, D; Tran, B; Lewis, P; Hagen, C

    2014-11-01

    Photons in the MeV range emitted from the dense plasma focus (DPF) at the NSTec North Las Vegas Facility have been measured with both neutron-damaged GaAs and natural diamond photoconductive detectors (PCDs). The DPF creates or "pinches" plasmas of various gases (e.g., H2, D2, Ne, Ar., etc.) that have enough energy to create MeV photons from either bremsstrahlung and/or (n,n(')) reactions if D2 gas is used. The high bandwidth of the PCDs enabled the first ever measurement of the fast micro-pinches present in DPF plasmas. Comparisons between a slower more conventional scintillator/photomultiplier tube based nuclear physics detectors were made to validate the response of the PCDs to fast intense MeV photon signals. Significant discrepancies in the diamond PCD responses were evident. PMID:25430296

  16. Dense Plasma Focus Z-pinches for High Gradient Particle Acceleration

    SciTech Connect

    Tang, V; Adams, M L; Rusnak, B

    2009-07-24

    The final Z-pinch stage of a Dense Plasma Focus (DPF) could be used as a simple, compact, and potentially rugged plasma-based high-gradient accelerator with fields at the 100 MV/m level. In this paper we review previously published experimental beam data that indicate the feasibility of such an DPF-based accelerator, qualitatively discuss the physical acceleration processes in terms of the induced voltages, and as a starting point examine the DPF acceleration potential by numerically applying a self-consistent DPF system model that includes the induced voltage from both macroscopic and instability driven plasma dynamics. Applications to the remote detection of high explosives and a multi-staged acceleration concept are briefly discussed.

  17. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  18. Compressing and focusing a short laser pulse by a thin plasma lens.

    PubMed

    Ren, C; Duda, B J; Hemker, R G; Mori, W B; Katsouleas, T; Antonsen, T M; Mora, P

    2001-02-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing. PMID:11308589

  19. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices

    SciTech Connect

    Tarifeno-Saldivia, Ariel; Soto, Leopoldo

    2012-09-15

    The purpose of this work is to discuss the techniques related to the detection of fast pulsed neutrons produced in plasma focus (PF) devices, the statistical analysis of the corresponding data, and the methodologies for evaluation of the device performance in low emission neutron sources. A general mathematical framework is presented for the assessment of the reproducibility of the neutron emission of small PF devices given the shot-to-shot distribution and detector efficiency. The effect on the reproducibility in case of using two independent detectors is also discussed. The analysis is applied to the neutron emission of the plasma focus device PF-50J operating in repetitive mode (0.1-0.5 Hz and 65 J bank energy).

  20. Statistical characterization of the reproducibility of neutron emission of small plasma focus devices

    NASA Astrophysics Data System (ADS)

    Tarifeño-Saldivia, Ariel; Soto, Leopoldo

    2012-09-01

    The purpose of this work is to discuss the techniques related to the detection of fast pulsed neutrons produced in plasma focus (PF) devices, the statistical analysis of the corresponding data, and the methodologies for evaluation of the device performance in low emission neutron sources. A general mathematical framework is presented for the assessment of the reproducibility of the neutron emission of small PF devices given the shot-to-shot distribution and detector efficiency. The effect on the reproducibility in case of using two independent detectors is also discussed. The analysis is applied to the neutron emission of the plasma focus device PF-50J operating in repetitive mode (0.1-0.5 Hz and 65 J bank energy).

  1. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  2. Influence of the soft X-ray plasma focus radiation on live microorganisms

    NASA Astrophysics Data System (ADS)

    Zapryanov, S.; Goltsev, V.; Galutsov, B.; Gelev, M.; Blagoev, A.

    2012-04-01

    A 3 kJ plasma focus device was used to study the influence of the soft X-ray on live microorganisms. When Saccharomyces cerevisiae - (yeast) was treated with a dose of 65 mSv of the X-ray radiation (14 shots), no difference in the fertility activity between the control probe and the sample was observed. Also no change in the survival enzyme activity was found after irradiation through a 100 μm Al foil of another type of yeast - Kluyveromyces marxiamus. The irradiation of the Chlamydomonas reinhardtii samples by the PF-X-ray emission through 20 μm Al foil with a dose of 11 mSv produces a considerable change of the photosynthesis parameters. This result is similar to the results of previous studies with plasma focus radiation where strong effects were derived with low doses but with a high dose power.

  3. Spectrum of reflected light by self-focusing of light in a laser plasma

    SciTech Connect

    Gorbunov, L.M.

    1983-05-01

    The spectrum of the radiation reflected by a laser-produced plasma is considered. In this situation, self-focusing occurs and a region of low density (caviton) is formed. It is shown that the process leads to a considerable broadening of the spectrum on the ''red'' side, and to the appearance of a line structure in the spectrum. The results can explain data for the reflected light spectrum (L. M. Gorbunov et al., FIAN Preprint No. 126 (1979)) as being due to the nonstationary self-focusing of light in a laser-produced plasma that has recently been observed (V. L. Artsimovich et al., FIAN Preprint No. 252 (1981); Sov. Phys. Doklady 27, 618 (1982)).

  4. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    SciTech Connect

    Hussain, S.; Badar, M. A.; Shafiq, M.; Zakaullah, M.

    2010-09-15

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves such as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.

  5. Dynamics and Density Measurements in a Small Plasma Focus of Tens Joules

    SciTech Connect

    Tarifeno, Ariel; Pavez, Cristian; Moreno, Jose; Soto, Leopoldo

    2009-01-21

    As a part of the systematic research conducted to study the scaling of Plasma Focus experiments to small devices, radial dynamic and density measurements using Hydrogen and Deuterium as filling gas in the PF-50 J device are presented. Results confirm that the expected dynamics observed in large experiments and densities of the order 10{sup 25} m{sup -3} at the pinch time are present in our experiments operated at only 67 J.

  6. Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0

    NASA Astrophysics Data System (ADS)

    Lim, L. H.; Yap, S. L.; Lim, L. K.; Lee, M. C.; Poh, H. S.; Ma, J.; Yap, S. S.; Lee, S.

    2015-09-01

    In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that the computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.

  7. Comparison of measured and computed radial trajectories of plasma focus devices UMDPF1 and UMDPF0

    SciTech Connect

    Lim, L. H.; Yap, S. L. Lim, L. K.; Lee, M. C.; Poh, H. S.; Ma, J.; Yap, S. S.; Lee, S.

    2015-09-15

    In published literature, there has been scant data on radial trajectory of the plasma focus and no comparison of computed with measured radial trajectory. This paper provides the first such comparative study. We compute the trajectories of the inward-moving radial shock and magnetic piston of UMDPF1 plasma focus and compare these with measured data taken from a streak photograph. The comparison shows agreement with the measured radial trajectory in terms of average speeds and general shape of trajectory. This paper also presents the measured trajectory of the radially compressing piston in another machine, the UMDPF0 plasma focus, confirming that the computed radial trajectory also shows similar general agreement. Features of divergence between the computed and measured trajectories, towards the end of the radial compression, are discussed. From the measured radial trajectories, an inference is made that the neutron yield mechanism could not be thermonuclear. A second inference is made regarding the speeds of axial post-pinch shocks, which are recently considered as a useful tool for damage testing of fusion-related wall materials.

  8. Self-focusing of a Gaussian electromagnetic beam in a multi-ions plasma

    SciTech Connect

    Misra, Shikha; Sodha, M. S.; Mishra, S. K.

    2013-10-15

    In this paper, the authors have developed a formulation for the dependence of electron and ion densities on the irradiance of an electromagnetic beam in a plasma with multiply charged ions, corresponding to collisional, ponderomotive, and relativistic-ponderomotive nonlinearities and different electron/ion temperatures; consequently, the corresponding expressions for the electron density modification in the presence of an electromagnetic (em) field have been derived. Paraxial approach in the vicinity of intensity maximum has been adopted to analyze the propagation characteristics of an em beam in such plasmas; on the basis of this analysis, critical curves and self-focusing curves have been computed numerically and graphically illustrated. For a numerical appreciation of the analysis, we have specifically carried out the computations for the simultaneous presence of singly and doubly charged ions in the plasma. As an important outcome, it is seen that the nonlinear effects (and hence self-focusing) get suppressed in the presence of multiply ionized ions; the conditions for the three modes of em-beam propagation viz. oscillatory focusing/defocusing and steady divergence have been discussed.

  9. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    SciTech Connect

    Winjum, B. J.; Berger, R. L.; Chapman, T.; Banks, J. W.; Brunner, S.

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  10. Kinetic simulations of the self-focusing and dissipation of finite-width electron plasma waves.

    PubMed

    Winjum, B J; Berger, R L; Chapman, T; Banks, J W; Brunner, S

    2013-09-01

    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMI/νE∼1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)]. PMID:25166675

  11. Simulation of electrical discharge in a 3.6 Joule miniature plasma focus device using SIMULINK

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2014-08-01

    A novel technique has been developed and studied in this paper to simulate the electrical discharge circuit of a 3.6 J miniature plasma focus device (PFD) and investigate the effect of inductance variation on voltage spike and current dip. The technique is based on a correlation between the electrical discharge circuit and plasma dynamics in a very small PFD that operates at the energy of 3.6 J. The simulation inputs include the charging voltage, capacitor bank capacitance, current limiter resistance, by-pass resistance as well as the time-dependent inductance and resistance of the plasma sheath which are calculated by assuming the plasma dynamics as transit times in going from one phase to the next. The variations of the most important elements in the circuit (i.e. the constant and breakdown inductances) and their effects on the current dip are studied in PFDs with low and high constant inductance. The model demonstrated for achieving a good pinch in the PFD, although the total inductance of the system should be low; however there is always an optimum inductance which causes an appropriate pinch. Furthermore, the electrical power produced by the pulsed power supply, the mechanical energy as well as the magnetic energy which are transferred into the plasma tube were obtained from simulation. The graph of electrical power demonstrated a high instantaneous increment in the power transferred into the plasma as one of the greatest advantages of the pulsed power supply. The simulation was performed using software tools within the MATLAB/SIMULINK simulation environment.

  12. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-04-28

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  13. Reactive sputter-deposition of AlN films by dense plasma focus

    SciTech Connect

    Sadiq, Mehboob; Ahmad, S.; Shafiq, M.; Zakaullah, M.; Ahmad, R.; Waheed, A.

    2006-11-15

    A low energy (1.45 kJ) dense plasma focus device is used to deposit thin films of aluminum nitride (AlN) at room temperature on silicon substrates. For deposition of films, a conventional hollow copper anode is replaced with a solid aluminum anode and nitrogen is used as fill gas. The films are deposited using a multiple number of focus shots by placing the substrate in front of the anode. The deposited films are characterized using x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, and a microhardness test. The XRD analysis of the films shows that the deposited films show strong c-axis alignment. The Raman spectra of the films indicate that the deposited films are under compressive stress and crystalline quality decreases with increasing number of focus shots. The microhardness results point toward the uniform deposition of hard AlN layers on silicon substrates.

  14. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Inestrosa-Izurieta, María José; Veloso, Felipe; Gutiérrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermín; and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532 nm and 8 ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  15. Potentiality of a table top plasma focus as X-ray source: Radiographic applications

    NASA Astrophysics Data System (ADS)

    Pavez, Cristian; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Soto, Leopoldo

    2014-05-01

    Images radiographic testing on different elements both in biological and inorganic samples are obtained using the X-ray radiation coming from a small plasma focus of at least 350J (880 nF, 40 nH, 28kV, T/4 ~ 300ns). The experimental device is operated using hydrogen as filling gas in a discharge region limited by a volume of around 70 cm3. The X-ray radiation is monitored shot by shot by means of a scintillator-photomultiplier system located outside of the vacuum chamber at 2.3m far away from the emission region. Angular distribution measurements of the accumulated X-ray dose are carried out using TLD-100 dosimeters which are radially distributed around the emission region center. There are two different arrays for the dosimeter which are placed in two different radial positions outside the discharge chamber. In each array, the TLDs dosimeters are uniformly located and distributed respect to the symmetry axis of the plasma column. An estimation of the energy spectrum of X-ray by means of the filters techniques is presented. The potential of this table top plasma focus is discussed according to its size, the quality of the radiographies, the effective equivalent energy and the dosimetric characteristics.

  16. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-03-15

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.

  17. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  18. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements

    SciTech Connect

    Schmidt, A.; Link, A.; Welch, D.; Ellsworth, J.; Falabella, S.; Tang, V.

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  19. Synthesis of ZrSiN composite films using a plasma focus device

    NASA Astrophysics Data System (ADS)

    R., Ahmad; Hussain, T.; A. Khan, I.; S. Rawat, R.

    2014-06-01

    ZrSiN thin films are synthesized by using plasma focus through various numbers of focus shots (10, 20, and 30), with samples placed at 9 cm away from the tip of the anode. Crystal structures, surface morphologies, and elemental compositions of ZrSiN films are characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM) attached with energy dispersive X-ray spectroscopy (EDS). XRD patterns confirm the formations of polycrystalline ZrSiN films. Crystallinity of nitride increases with the increase of focus shot number. The average crystallite size of zirconium nitride increases from 27 ± 3 nm to 73 ± 8 nm and microstrain decreases from 2.28 to 1.0 with the increase of the focus shot number. SEM results exhibit the formations of granular and oval-shaped microstructures, depending on the number of focus shots. EDS results confirm the presences of silicon, zirconium, nitrogen, and oxygen in the composite films. The content values of Zr and N in the composite films increase with the increase of the focus shot number.

  20. Collective Focusing of a Plasma-Neutralized Intense Ion Beam Propagating Along a Weak Solenoidal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2009-11-01

    Two schemes are considered for focusing intense ion beams utilizing the collective dynamics of plasma electrons. In the first approach, an ion beam propagates through a neutralizing background plasma along a uniform magnetic field. In the second approach, an ion beam passes through a finite size plasma, extracts neutralizing electrons from the plasma, and then enters a magnetic lens. In the both cases, a strong radial electric field is produced due to the collective electron dynamics. This self-electric field provides the enhanced transverse focusing of the ion beam. Detailed analytical and advanced numerical studies using particle-in-cell simulations are performed for both approaches. The radial focusing force acting on beam ions is calculated for an arbitrary ratio between the electron cyclotron and plasma frequencies. Collective focusing effects are shown to be important for the design of heavy ion drivers for high energy density and warm dense matter physics applications.

  1. Plasma focus ion beam fluence and flux—For various gases

    SciTech Connect

    Lee, S.; Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148; Physics Department, University of Malaya ; Saw, S. H.; Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  2. Ion beam measurement using Rogowski coils in a hundred of joules dense plasma focus device.

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Pavez, C.; Bora, B.; Inestrosa-Izurieta, M. J.; Avaria, G.; Soto, L.

    2016-05-01

    In present work an effort has been made to measure the ion beams generated during experiment with PF-400J plasma focus device, using an array of two Rogowski coils with time of flight analysis. It was found that the coils measure the signals of beam for a particular range of operating pressure. The beam signals were recorded at 20, 15, 12, 10, 9,8,7,6 and 5 mbar filled pressure of hydrogen gas. The optimized pressure range for good plasma column formation for this device was found about 9 mbar. At 15 mbar no or very weak beam signals were observed by Rogowski coil which was kept relatively far from the top of the anode and at 20 mbar there were no beam signals observed in both of the coils. The calculated beam energy is found to have maximum value at 9 mbar of filled hydrogen gas pressure.

  3. Neutron Production and Fast Deuteron Characteristics at the Plasma Focus Discharge

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Kravarik, J.; Klir, D.; Rezac, K.; Scholz, M.; Paduch, M.; Ivanova-Stanik, I.; Karpinski, L.; Tomaszewski, K.

    2009-01-01

    This paper summarized the results of interferometry, X-ray and neutron diagnostics performed at the plasma focus facility filled with deuterium. The fusion processes are produced mainly in the dense and hot spherical structure of 2 cm diameter 5-8 cm in front of the anode. The electron temperature of this structure is about 750 eV and the density 5×1024-5×1025. The neutron energy distribution was calculated using time of flight analysis and showed the dominant direction of the fast deuteron velocity downstream. The deuteron energy distribution was estimated supposing isotropy distribution of the sum of opposite orientation. The total number of fast deuterons in the energy range of 10-400 keV is about 1018 with total energy of 20 kJ. Plasma in the spherical structure is heated dominantly with ion-ion Coulomb collisions of fast deuterons in the energy range below 10 keV.

  4. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad

  5. Space and time resolved emission of hard X-rays from a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.

  6. Nonstationary ponderomotive self-focusing of a Gaussian laser pulse in a plasma

    SciTech Connect

    Tripathi, Deepak; Uma, R.; Bhasin, Lalita; Tripathi, V. K.

    2010-11-15

    A model of relaxing ponderomotive nonlinearity is developed to study the nonstationary self-focusing of a Gaussian laser pulse in a plasma. The ponderomotive force acts on the electrons instantaneously but the plasma density redistribution via the process of ambipolar diffusion is taken to evolve on the time scale {tau}{sub R} congruent with r{sub 0}/c{sub s}, where r{sub 0} is the laser spot size and c{sub s} is the sound speed. The paraxial ray approximation is used to solve the wave equation. The focusing is stronger at the rear of the pulse than at the front, causing considerable distortion of the pulse when pulse duration is comparable to nonlinearity relaxation time. The saturation effect of nonlinearity leads to focusing of any portion of the pulse to a minimum spot size r{sub 0}f{sub min} at an optimum distance z{sub op} and then the spot size increases. f{sub min} and z{sub op} depend on the intensity of the portion of the pulse.

  7. DLC coating on stainless steel by pulsed methane discharge in repetitive plasma focus

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Qayyum, A.; Ahmad, S.; Mahmood, S.; Shafiq, M.; Zakaullah, M.; Lee, P.; Rawat, R. S.

    2014-06-01

    Amorphous hydrogenated carbon (a-C:H)/diamond-like carbon (DLC) coatings have been achieved on AISI 304 stainless steel (SS) substrates by employing energetic ions emitted from a repetitive plasma focus operated in CH4 discharge. The Raman spectroscopy of the coatings exhibits the evolution of a-C:H/DLC coatings with clearly observed D and G peaks centered about 1320-1360 and 1560-1620 cm-1 respectively. The diamond character of the coatings is influenced by the ion flux and repetition rate of the focus device. The repetitive discharge mode of plasma focus has led to the formation of a-C:H/DLC coatings in short duration of time. The coatings transform from a-C to a-C:H depending upon substrate angular position. X-ray diffraction (XRD) analysis confirms the formation of DLC coating owing to stress-induced restructuring in SS. The estimated crystallite size is found to be ˜40-50 nm. Field emission scanning electron micrographs exhibit a layered granular surface morphology of the coatings. The Vickers surface hardness of the DLC coated SS samples has been significantly improved.

  8. Palm top plasma focus device as a portable pulsed neutron source

    SciTech Connect

    Rout, R. K.; Niranjan, Ram; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.; Mishra, P.

    2013-06-15

    Development of a palm top plasma focus device generating (5.2 {+-} 0.8) Multiplication-Sign 10{sup 4} neutrons/pulse into 4{pi} steradians with a pulse width of 15 {+-} 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 {mu}F capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 {mu}F, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of {sup 3}He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  9. Palm top plasma focus device as a portable pulsed neutron source.

    PubMed

    Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling. PMID:23822341

  10. Palm top plasma focus device as a portable pulsed neutron source

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Niranjan, Ram; Mishra, P.; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 104 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  11. Time-resolved energy spectrum of the ion beam generated in the plasma focus

    SciTech Connect

    Kilic, H.

    1984-01-01

    A major feature of plasma focus devices in the acceleration of deuterons to energy values of several MeV with an externally applied voltage of only 15 kV on the electrodes. A plasma focus machine (49 ..mu..f, 15 kV, 5.5 kJ) was built and operated in six different pressure regimes (8-3 Torr, D/sub 2/ filling) to measure deuteron beam energies, beam emission time, and absolute beam intensity as a function of drilling pressure and of hard x-ray intensities. A Faraday cup used as an ion collector was placed in a differentially pumped chamber (10/sup -4/ 10/sup -5/ Torr) which was separated from the plasma focus chamber via a 150 /sup +/m diameter pinhole. The energy spectrum of the deuteron beam from a plasma focus discharge was determined with a new time-of-flight method and with a differential filter (2.5 ..mu..m - 750 ..mu..m, mylar filters) method in the energy interval 0.2 to 9 MeV. The ion time-of-flight method accounts for the time structure of the ion beam source on a nanosecond time scale. The new experimental results show that, in beam mode operation (3 - 4 Torr D/sub 2/), more than 10/sup 14/ deuterons with energy 0.2-0.5 MeV are accelerated in each discharge in the electrode axis (2.3 x 10/sup -4/ sr) with corresponding peak ion current approx. = 200 mA, and more than 10/sup 12/ deuterons are accelerated in the energy interval 0.5 - 9 MeV with a peak current of 10 mA. The ion beam acceleration mechanism is strongly dependent on the filling pressure of the discharge chamber. The deuteron beam intensity increases with hard x-ray intensity which fits a particle acceleration process in which the same field accelerates both ion and electron beams.

  12. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  13. Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma

    SciTech Connect

    Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.

    2011-11-15

    The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.

  14. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Mishra, P.; Kaushik, T. C.; Gupta, Satish C.

    2015-11-01

    An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  15. An Investigation of Bremsstrahlung Reflection in a Dense Plasma Focus (DPF) Propulsion Device

    SciTech Connect

    Thomas, Robert; Miley, G. H.; Mead, Franklin

    2006-01-20

    The dense plasma focus device is one of the few fusion systems that is capable of burning advanced fuels such as D - 3He and p - 11B. An study has been performed and shown that three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ration ({approx} 20), an order of magnitude higher pinch lifetime, and the reflection and absorption if at least 50% Bremsstrahlung radiation. The latter issue is the focus of this report, and a literature search has been performed on laser-driven fusion radiation cavities, multilayer reflectors, and their application to Bremsstrahlung radiation reflection is presented. Additionally, the results found are compared to those assumed in the earlier DPF study bring p-11B.

  16. DBR laser with nondynamic plasma grating formed by focused ion beam implanted dopants

    NASA Technical Reports Server (NTRS)

    Boenke, Myra M.; Wu, M. C.; Wang, Shyh; Clark, William M., Jr.; Stevens, Eugene H.

    1989-01-01

    A static plasma grating has been demonstrated experimentally (Wu et al., 1988) in a large-optical-cavity focused-ion-beam-distributed-Bragg-reflector (FIB-DBR) GaAlAs/GaAs laser diode. The grating is formed by implanting stripes of dopants with a focused ion beam. The dopants ionize to form periodic fluctuations in the carrier concentration which, through the Kramers-Kronig relations, form an index grating. A model of the grating strength for optimizaton of the laser design is developed and presented. The computed results show that the coupling coefficient k can be increased by more than an order of magnitude over the 15/cm experimentally. Therefore, FIB-DBR or FIB-distributed-feedback (DFB) lasers with performance comparable to that of conventional DBR (or DFB) lasers can be expected.

  17. Interaction of the high energy deuterons with the graphite target in the plasma focus devices based on Lee model

    SciTech Connect

    Akel, M. Alsheikh Salo, S.; Ismael, Sh.; Saw, S. H.; Lee, S.

    2014-07-15

    Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in the graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.

  18. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    SciTech Connect

    Sears, Jason E-mail: schmidt36@llnl.gov; Link, Anthony E-mail: schmidt36@llnl.gov; Schmidt, Andrea E-mail: schmidt36@llnl.gov; Welch, Dale

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.

  19. Ionization, ion distribution, and ion focusing in laser plasmas from atomic and diatomic targets

    SciTech Connect

    Srivastava, S. N.; Rohr, K.; Sinha, B. K.

    2006-04-01

    Charge-resolved measurements of the total number of particles from plasmas produced from planar, monoatomic targets of copper and tungsten as well as the binary targets of copper and tungsten are reported, using a 125 mJ, 5 ns, Nd:YAG laser, at a laser intensity of about 10{sup 10} W/cm{sup 2}. The measurements show a severe quenching of the ionization states in the case of the diatomic targets. These measurements and their variations with ionization state support the theoretical investigations of plasma motion under the influence of the viscous force in case of plasmas consisting of light and heavy particles. Gaussian width measurements of the angular particle distribution showed a focusing effect towards the target normal, the width decreasing as the ion mass and ionization state increased. From the analysis of the theoretical results on self-similarity expansion it is concluded that the ion acceleration due to the built-in electrostatic potential is not significant.

  20. Current-sheet velocity oscillation and radiation emission in plasma focus discharges

    SciTech Connect

    Melzacki, K.; Nardi, V.

    1995-12-31

    A phenomenon of current sheet velocity oscillation during the compression phase in plasma focus discharge has been found with a Schlieren photography technique. The oscillation period has been determined as about 17 ns and coincided with the period of the simultaneously measured time derivative of the current. The same velocity behavior has been observed with magnetic probes. A microwave emission burst (in 3 cm and 10 cm bands) consisting of a sequence of very narrow (FWHM < 1 ns) peaks, 17 ns apart one another, has also been observed before, during, and after the pinch. The microwave was polarized with the electric field parallel to the electrode axis. All these effects have been recorded on the same PF device (6 kJ). The origin of these oscillations can be interpreted in a few ways, e.g. as related to the electrode-plasma sheath RLC circuit, or to the j{sub s}xB of the plasma current sheet, where j{sub s} is the current density component perpendicular to the current sheet surface. The j{sub s} is related to the current sheet velocity. These results provide the basis of the analysis.

  1. A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus

    SciTech Connect

    Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson

    2009-12-02

    Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (approx10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at approx100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of approx130 kA, this source produces approx1x10{sup 7} (DD) n/pulse. The neutron pulse widths are approx10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D{sub 2} gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.

  2. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  3. Preliminary Studies of Ions Emission in a Small Plasma Focus Device of Hundreds of Joules

    SciTech Connect

    Moreno, Jose; Pavez, Cristian; Soto, Leopoldo; Tarifeno, Ariel; Reymond, Piotr; Verschueren, Nicolas; Ariza, Pablo

    2009-01-21

    Ion beam emission in plasma focus (PF) discharges was originally investigated to explain the strong forward anisotropy observed in the neutron. Several properties of PF emitted deuteron beams have been measured, including their angular distributions and energy spectra in devices operating with energies from 1 kJ to 1 MJ. At present there is a growing interest in the development of very small PF devices operating under 1 kJ. As part of the characterization program of the very low energy PF devices (<1 kJ) developed at the Chilean Nuclear Energy Commission, the charges particle emission in hydrogen (H{sub 2}) and mixture (H{sub 2}+%Ar) are being studied. In order to obtain an estimation of the ions energy spectrum and ionization grade, by using time of flight method, a graphite collector system operating in the bias ion collector mode was constructed and it is being used. Preliminary results of the ion beams measurements in different experimental conditions, at a plasma focus device of 400 joules (PF-400 J) are presented.

  4. Dynamic Faraday cup signal analysis and the measurement of energetic ions emitted by plasma focus

    SciTech Connect

    Pestehe, S. J. Mohammadnejad, M.; Irani Mobaraki, S.

    2014-03-15

    A theoretical model is developed to study the signals from a typical dynamic Faraday cup, and using this model the output signals from this structure are obtained. A detailed discussion on the signal structure, using different experimental conditions, is also given. It is argued that there is a possibility of determining the total charge of the generated ion pulse, the maximum velocity of the ions, ion velocity distribution, and the number of ion species for mixed working gases, under certain conditions. In addition, the number of different ionization stages, the number of different pinches in one shot, and the number of different existing acceleration mechanisms can also be determined provided that the mentioned conditions being satisfied. An experiment is carried out on the Filippov type 90 kJ Sahand plasma focus using Ar as the working gas at the pressure of 0.25 Torr. The data from a typical shot are fitted to a signal from the model and the total charge of the related energetic ion pulse is deduced using the values of the obtained fit parameters. Good agreement between the obtained amount of the total charge and the values obtained during other experiments on the same plasma focus device is observed.

  5. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    SciTech Connect

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explain the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.

  6. The Role of the Driver Circuit in the Neutron Yield of the Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale

    2015-11-01

    Emperical observations have suggested that dense plasma focus (DPF) neutron yield increases with driver impedance. Using the particle-in-cell code LSP, we reproduce this trend in a kJ DPF, and demonstrate in detail how driver impedance is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. We show that m=0 growth is central to beam formation and is a chaotic, non-deterministic process. Neutrons are produced when high, short-lived electric fields in the low-density cavity of an m=0 mode accelerate a beam of ions into the dense downstream pinch region. Neutron yield is highest when the ion beam is generated within 50 ns of the pinch formation on axis, because at that time the pinch (target) density is highest. High driver impedance contributes to prompt beam formation in two ways. First, the high impedance driver, losing less energy to run-down, has a faster run-in velocity and hence larger Rayleigh-Taylor features that more readily seed the m=0 instability. Second, the shorter anode of the high-impedance driver retains less trailing mass in the run-down region and thus exhibits fewer and less parasitic restrikes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass.

    PubMed

    Wang, Zhaohui; Zeng, Bin; Li, Guihua; Xie, Hongqiang; Chu, Wei; He, Fei; Liao, Yang; Liu, Weiwei; Gao, Hui; Cheng, Ya

    2015-12-15

    We report on experimental observations of formation and evolution of transient plasma produced in fused silica glass with spatiotemporally focused (STF) femtosecond laser pulses using a pump-probe shadow imaging technique. Surprisingly, the observation shows that the track of the plasma is significantly curved, which is attributed to an asymmetric density distribution of the transient plasma produced in the focal volume caused by the pulse front tilt of the STF laser field. PMID:26670497

  8. Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse

    SciTech Connect

    Kumar, Ashok; Dahiya, Deepak; Sharma, A. K.

    2011-02-15

    An analytical formalism is developed and particle-in-cell simulations are carried out to study plasma channel formation in air by a two pulse technique and subsequent relativistic self focusing of the third intense laser through it. The first prepulse causes tunnel ionization of air. The second pulse heats the plasma electrons and establishes a prolonged channel. The third pulse focuses under the combined effect of density nonuniformity of the channel and relativistic mass nonlinearity. A channel with 20% density variation over the spot size of the third pulse is seen to strongly influence relativistic self focusing at normalized laser amplitude {approx}0.4-1. In deeper plasma channels, self focusing is less sensitive to laser amplitude variation. These results are reproduced in particle-in-cell simulations. The present treatment is valid for millimeter range plasma channels.

  9. A concept of high plasma compression by the ponderomotive force of an annularly focused laser beam

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Bychenkov, V. Yu.; Tikhonchuk, V. T.

    1998-11-01

    We propose a new concept of kinetic plasma compression by the ponderomotive force of a multi-terawatt annularly focused laser beam. The idea is based on the Coulomb explosion phenomenon, predicted in [1] and observed recently in experiment [2]. In this experiment the focused 1.5 J, 400 fs laser pulse creates in a He gas target a large number of ions with energy up to 500 keV propagating radially from the laser axis. The ions were accelerated by a strong electric field produced by the ponderomotively driven charge separation in a laser channel. We suggest now to employ an annular laser focusing and accelerate a part of ions radially towards the center. Using an appropriate laser pulse shape and target one can achieve a significant kinetic compression on the axis and initiate secondary processes which might be useful for applications. A simple kinetic PIC code has been used for calculations of the characteristic parameters of compression. Preliminary results suggest that by accelerating ions to the energy of 100 keV one can achieve a 100 times volume compression in a 1 micron core during the time of 10 - 20 ps. Even higher, more then 1000 times volume compression can be achieved in a short time scale of 1 ps. These kinetically compressed high-energy ions can be used for initialization of DT fusion reaction, X-ray laser pumping, and for the production of multicharged ions. Such a ponderomotive plasma compression can be performed with modern femtosecond multi-terawatt laser systems. Research has been supported in part by the Russian Foundation for Basic Research, grant No. 96-02-16707- a. [1] N. H. Burnett and G. D. Enright, IEEE J. Quantum Electron., 26, 1797 (1990). [2] G. S. Sarkisov et all., JETP Lett., 66, 1787 (1997). Permanent address of all author: P.N.Lebedev Physics Institute, Moscow, 117924, Russia

  10. Tight focusing of ultra-intense laser pulses by innovative plasma optics toward extreme intensity

    NASA Astrophysics Data System (ADS)

    Nakatsutsumi, M.; Kon, A.; Fuchs, J.; Buffechoux, S.; Audebert, P.; Kodama, R.

    2009-11-01

    With rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching >10^21 Wcm-2. Enhancement of laser intensity is achieved by truncating the pulse width, increasing the laser-energy, or reducing the focal spot size. Although the reduction of the spot size is the simplest among those, by using low f-number optics, this method is not frequently employed because of the difficulty in avoiding damage from target debris or complexity of alignment procedure. We developed for the first time very compact (<1 cm^3) extremely low f-number (0.4) plasma-based, confocal ellipsoid focusing systems. Direct measurement of the laser focal spot using low-energy laser indicates 1/5 reduction of spot size compared to standard focusing (using a f/3 optics). Around tenfold enhancement of laser intensity by reduction of the spot size for high power shots is clearly evidenced by remarkable enhancement of proton energy. The experiment was performed at LULI 100TW laser facility.

  11. Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity

    SciTech Connect

    Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.

    2013-12-15

    Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.

  12. Design, fabrication, and characterization of a 2.3 kJ plasma focus of negative inner electrode

    SciTech Connect

    Mathuthu, M.; Zengeni, T.G.; Gholap, A.V.

    1997-03-01

    The design, fabrication, and characterization of a 2.3 kJ plasma focus device with negative inner electrode are discussed. The purpose of the design was to initiate research in and study of plasma dynamics, nuclear reactions, and neutron emission mechanisms at the university. Also the device will be used to teach and demonstrate plasma phenomena at the postgraduate level and to perform experiments with inverted polarity to examine different operating regimes with nonstandard gases. It is hoped that in the long run the research work will help find a solution to the polarity riddle of plasma focus devices. When the system was operated with spectrographic argon as the filling gas, the best focus was obtained at a pressure range of 0.1{endash}1.25 Torr. With nitrogen as the filling gas, the best focus was obtained at pressures between 0.1 and 1.25 Torr. Air gave the best focus at a pressure range of 0.5{endash}1.5 Torr. The observed good focus action is attributed to the small inner electrode length (this reduces the amount of anode material ablated into the current sheath) and tapering of the inner electrode. Positive {ital z}-directed electrons contribute to the temperature and further ionization of the plasma gas during focusing. The performance of the device compares quite well with other known devices. {copyright} {ital 1997 American Institute of Physics.}

  13. Neutron emission characterisation at the FN-II Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Castillo-Mejía, F.; Gamboa-de Buen, I.; Herrera-Velázquez, J. J. E.; Rangel-Gutiérrez, José

    2014-05-01

    Plasma foci are efficient plasma based neutron sources, when deuterium is used as the filling gas. The dense plasma focus FN-II is a small device (4.7 kJ), in which the emission of deuterium fusion neutrons (2.45 MeV) are studied. The system produces an average neutron yield of (5.3 ± 0.5) × 108 neutron/shot in 4π sr at ~ 350 kA peak discharge current and 2.75 torr deuterium operation. Three methods are currently used; silver activation counters and CR-39 nuclear track detectors, for time integrated and angular distribution studies, and BC 400 scintillators coupled to photomultiplier tubes for spectra studies. In the latter case, we compare signals due to neutron reflections in the laboratory with those obtained with a collimated beam in a paraffin shielded detector. Regarding the angular distribution of the neutron emission, it has been found to have isotropic and anisotropic components, the former giving the largest contribution. Also, the neutron spectrum, measured at 90° of the axis device, is broadened, peaking at energies slightly larger than 2.45 MeV. These can be interpreted as the consequence of coexisting neutron generation mechanisms, which will be discussed in this work. The correlation between neutron and hard X-ray yields is also discussed, and a possible interpretation in terms of different neutron generation mechanisms is attempted. There has also been a dosimetric study of the laboratory with TLD dosimeters, which will be presented in this paper.

  14. Efficacy of liver assisting in patients with hepatic encephalopathy with special focus on plasma exchange.

    PubMed

    Stenbøg, Poul; Busk, Troels; Larsen, Fin Stolze

    2013-06-01

    Severe liver injury result in development of hepatic encephalopathy (HE) and often also in brain edema that is a potentially fatal complication. HE and brain edema are correlated to the level and persistence of hyperammonemia and the presence of systemic inflammation. Treatment of HE and brain edema is based on restoring and keeping normal physiological variables including tonicity, blood gasses, lactate, temperature and vascular resistance by a wide variety of interventions. In addition liver support devices improve the stage of HE, cerebral metabolic rate for oxygen and glucose, and are used either as a bridge to liver transplantation or liver recovery in patients with fulminant hepatic failure and in patients with acute-on-chronic liver failure. This short review will mainly focus on the management and efficacy of doing plasma exchange on HE in patients with acute HE. PMID:23572273

  15. Two-dimensional self-focusing of short intense laser pulse in underdense plasma

    SciTech Connect

    Chen, X.L.; Sudan, R.N. )

    1993-04-01

    A simplified set of three-dimensional equations are derived for the propagation of an intense laser pulse of arbitrary strength [bold a]=[ital e][bold A]/[ital mc][sup 2] (where [bold A] is the magnetic vector potential of the laser pulse) in cold underdense plasma. In different limits, the equations can be easily reduced to those of previous one-dimensional models [Phys. Fluids [bold 30], 526 (1987); Phys. Rev. A [bold 40], 3230 (1989); [bold 41], 4463 (1990)]. For [vert bar][bold a][vert bar][le]1, an approximate set of equations from the averaged Lagrangian is obtained. The present study differs from previous work in that wave dispersion is also important for short laser pulse, and is included in the model equations. The axisymmetric two-dimensional model equations are solved numerically to show the effect of dispersion in the self-focusing process.

  16. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    SciTech Connect

    Ellsworth, J. L. Falabella, S. Schmidt, A. Tang, V.

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  17. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions

    SciTech Connect

    Lemos, N.; Lopes, N.; Dias, J. M.

    2009-10-15

    In this work we optimize the contour of supersonic nozzles to produce long and stable gas jets suitable to be used in loose focus laser-plasma applications. The nozzle design method takes into account the inclusion of a boundary layer that increases the length of the usable gas jet. Two 8 mm supersonic nozzles were characterized, one with a Mach number of 3 and another with a Mach number of 6, using a Mach-Zehnder interferometer performed with a He:Ne 4 cm expanded laser beam. The experimental results confirm that the inclusion of the boundary layer produces an 8 mm constant longitudinal density profile for the nozzle with a Mach number of 6 (NM6) and a 4.5 mm constant longitudinal density profile for the nozzle with a Mach number of 3 (NM3).

  18. On focusing of a ring ripple on a Gaussian electromagnetic beam in a plasma

    SciTech Connect

    Misra, Shikha; Mishra, S. K.

    2008-09-15

    In this communication the authors have investigated the focusing of a ring ripple on a Gaussian electromagnetic beam propagating in a plasma, considering each of the three kinds of basic nonlinearities, namely, ponderomotive, collisional, and relativistic. In this analysis, the electric field profile of the propagating beam is assumed to be composed of the radial electric field distribution of the Gaussian beam as well as that of the ring ripple; a paraxial like approach has been adopted to analyze the characteristics of the propagation. Thus, one considers a unique dielectric function for the beam propagation and a radial field sensitive diffraction term, appropriate to the vicinity of the maximum of the irradiance distribution of the ring ripple. Further, the variation of the phase associated with the beam on account of the r independent terms in the eikonal has also been accounted for.

  19. Feasibility analysis of a Plasma Focus neutron source for BNCT treatment of transplanted human liver

    NASA Astrophysics Data System (ADS)

    Benzi, V.; Mezzetti, F.; Rocchi, F.; Sumini, M.

    2004-01-01

    Boron Neutron Capture Therapy preliminary treatments on transplanted human liver have been recently conducted at Pavia University. The need of high fluences of thermal neutrons imposed the use of the available thermal channel of a TRIGA reactor properly modified for this application. We analyse the possibility of using the Plasma Focus (PF) machine as a pulsed neutron source for this medical application instead of a nuclear reactor. Thermalization of the fast (2.45 MeV for D-D reactions) neutrons produced by the PF is gained with a paraffin or polyethylene moderator which contains both the neutron source and the irradiation chamber. The design parameters of a PF optimized for such an application are discussed, as well as other considerations on the advantages that this machine can bring to this kind of cancer therapy.

  20. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  1. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  2. Low-Energy Plasma Focus Device as an Electron Beam Source

    PubMed Central

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  3. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; Santarius, John; Percy, Tom

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  4. Design and characterization of supersonic nozzles for wide focus laser-plasma interactions.

    PubMed

    Lemos, N; Lopes, N; Dias, J M; Viola, F

    2009-10-01

    In this work we optimize the contour of supersonic nozzles to produce long and stable gas jets suitable to be used in loose focus laser-plasma applications. The nozzle design method takes into account the inclusion of a boundary layer that increases the length of the usable gas jet. Two 8 mm supersonic nozzles were characterized, one with a Mach number of 3 and another with a Mach number of 6, using a Mach-Zehnder interferometer performed with a He:Ne 4 cm expanded laser beam. The experimental results confirm that the inclusion of the boundary layer produces an 8 mm constant longitudinal density profile for the nozzle with a Mach number of 6 (NM6) and a 4.5 mm constant longitudinal density profile for the nozzle with a Mach number of 3 (NM3). PMID:19895054

  5. Analysis for Radiation and Shielding Dose in Plasma Focus Neutron Source Using FLUKA

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Amrollahi, R.; Habibi, M.

    2012-06-01

    Monte Carlo simulations have been performed for the attenuation of neutron radiation produced at Plasma focus (PF) devices through various shielding design. At the test site it will be fired with deuterium and tritium (D-T) fusion resulting in a yield of about 1013 fusion neutrons of 14 MeV. This poses a radiological hazard to scientists and personnel operating the device. The goal of this paper was to evaluate various shielding options under consideration for the PF operating with D-T fusion. Shields of varying neutrons-shielding effectiveness were investigated using concrete, polyethylene, paraffin and borated materials. The most effective shield, a labyrinth structure, allowed almost 1,176 shots per year while keeping personnel under 20 mSV of dose. The most expensive shield that used, square shield with 100 cm concrete thickness on the walls and Borated paraffin along with borated polyethylene added outside the concrete allowed almost 15,000 shot per year.

  6. Effect of cathode structure on neutron yield performance of a miniature plasma focus device

    NASA Astrophysics Data System (ADS)

    Verma, Rishi; Rawat, R. S.; Lee, P.; Lee, S.; Springham, S. V.; Tan, T. L.; Krishnan, M.

    2009-07-01

    In this Letter we report the effect of two different cathode structures - tubular and squirrel cage, on neutron output from a miniature plasma focus device. The squirrel cage cathode is typical of most DPF sources, with an outer, tubular envelope that serves as a vacuum housing, but does not carry current. The tubular cathode carries the return current and also serves as the vacuum envelope, thereby minimizing the size of the DPF head. The maximum average neutron yield of (1.82±0.52)×10 n/shot for the tubular cathode at 4 mbar was enhanced to (1.15±0.2)×10 n/shot with squirrel cage cathode at 6 mbar operation. These results are explained on the basis of a current sheath loading/mass choking effect. The penalty for using a non-transparent cathode negates the advantage of the smaller size of the DPF head.

  7. Short-lived radioisotopes scaling with energy in plasma focus device

    NASA Astrophysics Data System (ADS)

    Kakavandi, Javad A.; Roshan, Mahmood V.; Habibi, Morteza

    2016-03-01

    The computational investigation of the correlation between the achievable reaction yield and discharge energy for a plasma focus device (PFD) is presented. Radioisotope production in PFDs with applicable activities is highly dependent on establishing the related scaling law. Carbon target is bombarded by high energy deuterons and short-lived radioisotope of 13N is produced through 12C(d,n)13N in which the threshold energy is not very high. Both computed and measured ion energy spectra are used to estimate and optimize the scaling law. It is shown that the number of ions emitted from the pinch region for a device operating under optimized conditions is linearly proportional to the discharge energy of the PFD.

  8. Design and construction of pulsed neutron diagnostic system for plasma focus device (SBUPF1)

    SciTech Connect

    Moghadam, Sahar Rajabi; Davani, Fereydoon Abbasi

    2010-07-15

    In this paper, two designs of pulsed neutron counter structure are introduced. To increase the activation counter efficiency, BC-400 plastic scintillator plates along with silver foils are utilized. Rectangular cubic and cylindrical geometries for activation counter cell are modeled using MCNP4C code. Eventually, an optimum length of 14 cm is calculated for the detector cell and optimum numbers of 20 silver foils for rectangular cubic geometry and ten foils for cylindrical geometry have been acquired. Due to the high cost of cutting, polishing of plastics, and etc., the rectangular cubic design is found to be more economical than the other design. In order to examine the functionality and ensure the detector output and corresponding designing, neutron yield of a 2.48 kJ plasma focus device (SBUPF1) in 8 mbar pressure with removal source method for calibration was measured (3.71{+-}0.32)x10{sup 7} neutrons per shot.

  9. Spectroscopic measurements of the parameters of the helium plasma jets generated in the plasma focus discharge at the PF-3 facility

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Dan'ko, S. A.; Myalton, V. V.; Zhuzhunashvili, A. I.; Kalinin, Yu. G.; Krauz, V. I.; Ladygina, M. S.; Marchenko, A. K.

    2016-03-01

    The spectroscopic technique used to measure the parameters of the plasma jets generated in the plasma focus discharge and those of the plasma of the immobile gas through which these jets propagate is described. The time evolution of the intensities and shapes of spectral lines in experiments carried out with helium at the PF-3 facility was studied by means of electron-optical streak cameras. The plasma electron temperature, T ≈ 4-5 eV, was determined from the intensity ratio of two spectral lines, one of which (λ1 = 5876 Å) belongs to neutral helium, while the other (λ2 = 4686 Å), to hydrogen-like helium ions. The plasma density at different time instants was determined from the Stark broadening of these lines in the electric fields of different nature. The plasma density is found to vary from 4 × 1014 to 2 × 1017 cm-3.

  10. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    SciTech Connect

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37 kV with a stored energy of 4.8 kJ and a deuterium filling pressure of 2.75 torr. Distributions of protons and neutrons are measured with CR-39 Lantrack registered nuclear track detectors, on 1.8x0.9 cm{sup 2} chips, 500 {mu}m thick. A set of detectors was placed on a semicircular Teflon registered holder, 13 cm away from the plasma column, and covered with 15 {mu}m Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after {+-}40 deg. , the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  11. Experiments and Simulations on Magnetically Driven Implosions in High Repetition Rate Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy

    2015-11-01

    Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.

  12. Progress in Development of Dense Plasma Focus Pinch for AmBe Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Falabella, Steve; Povilus, Alex; Schmidt, Andrea; Ellsworth, Jennifer; Link, Anthony; Sears, Jason; Higginson, Drew; Jiang, Sheng

    2015-11-01

    A dense plasma focus (DPF) is a compact plasma gun accelerator that can produce intense, high energy ion beams (multiple MeV). These ion beams could be used to replace radiological sources for a variety of applications. Using a 2kJ DPF with a helium gas fill, alpha particles are accelerated into a beryllium target in order to generate a neutron spectrum similar to an AmBe source. We report on initial observations of neutron yields for this system and efforts to optimize and improve repeatability of pinch performance. In particular, incorporating results from newly-developed kinetic LSP simulations, we demonstrated higher neutron yields by adjusting the geometry of the anode electrode. In addition, we present preliminary measurements for energy distributions of ions accelerated by the pinch. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development.

  13. Neutron Production and Fast Deuteron Characteristics at the Plasma Focus Discharge

    SciTech Connect

    Kubes, P.; Kravarik, J.; Klir, D.; Rezac, K.; Scholz, M.; Paduch, M.; Ivanova-Stanik, I.; Karpinski, L.; Tomaszewski, K.

    2009-01-21

    This paper summarized the results of interferometry, X-ray and neutron diagnostics performed at the plasma focus facility filled with deuterium. The fusion processes are produced mainly in the dense and hot spherical structure of 2 cm diameter 5-8 cm in front of the anode. The electron temperature of this structure is about 750 eV and the density 5x10{sup 24}-5x10{sup 25}. The neutron energy distribution was calculated using time of flight analysis and showed the dominant direction of the fast deuteron velocity downstream. The deuteron energy distribution was estimated supposing isotropy distribution of the sum of opposite orientation. The total number of fast deuterons in the energy range of 10-400 keV is about 10{sup 18} with total energy of 20 kJ. Plasma in the spherical structure is heated dominantly with ion-ion Coulomb collisions of fast deuterons in the energy range below 10 keV.

  14. Vlasov Simulations of Electron Plasma and Ion Acoustic Waves: self-focusing and harmonics

    NASA Astrophysics Data System (ADS)

    Banks, Jeffrey; Berger, R.; Cohen, B.; Hittinger, J.; Brunner, S.

    2011-10-01

    Vlasov simulations of nonlinear electron plasma (EPW) and ion acoustic waves (IAW) are presented in one and two dimensions. In 2D simulations with LOKI (Banks et al., 18, 052102 (2011)) the waves are created with an external traveling wave potential with a transverse envelope of width Δy such that thermal electrons transit the wave in a ``sideloss'' time, tsl ~ Δ y/ve where ve is the electron thermal velocity. The quasi-steady distribution of trapped electrons and its self-consistent plasma wave are studied after the external field is turned off. For sufficiently short times and large enough wave amplitudes, the magnitude of the negative frequency shift from trapped electrons is a local function of electrostatic potential. Analysis and simulations are presented of the damping and trapped-electron-induced self-focusing (H. Rose PoP 12, 012318 (2005)) of the finite-amplitude EPW. In 1D simulations with SAPRISTI (Brunner and Valeo, PRL 93, 145003 (2004)), IAWs are created with an external traveling wave potential with full electron dynamics. For large IAW amplitudes, the contribution from IAW harmonics to the frequency shift is significant and larger than fluid theory predicts. Prepared by LLNL under Contract DE-AC52-07NA27344.

  15. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  16. Current sheath formation dynamics and structure for different insulator lengths of plasma focus device

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-11-15

    The breakdown phase of the UNU-ICTP plasma focus (PF) device was successfully simulated using the electromagnetic particle in cell method. A clear uplift of the current sheath (CS) layer was observed near the insulator surface, accompanied with an exponential increase in the plasma density. Both phenomena were found to coincide with the surge in the electric current, which is indicative of voltage breakdown. Simulations performed on the device with different insulator lengths showed an increase in the fast ionization wave velocity with length. The voltage breakdown time was found to scale linearly with the insulator length. Different spatial profiles of the CS electron density, and the associated degree of uniformity, were found to vary with different insulator lengths. The ordering, according to the degree of uniformity, among insulator lengths of 19, 22, and 26 mm agreed with that in terms of soft X-ray radiation yield observed from experiments. This suggests a direct correlation between CS density homogeneity near breakdown and the radiation yield performance. These studies were performed with a linearly increasing voltage time profile as input to the PF device.

  17. Fully three-dimensional simulation and modeling of a dense plasma focus

    SciTech Connect

    Meehan, B. T.; Niederhaus, J. H. J.

    2014-10-01

    A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (~ 100 ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments.

  18. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas <2 MeV, an AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  19. High rep rate high performance plasma focus as a powerful radiation source

    SciTech Connect

    Lee, S.; Lee, P.; Zhang, G.; Feng, X.; Liu, M.; Serban, A.; Wong, T.K.S.; Gribkov, V.A.

    1998-08-01

    Basic operational characteristics of the plasma focus are considered from design perspectives to develop powerful radiation sources. Using these ideas the authors have developed two compact plasma focus (CPF) devices operating in neon with high performance and high repetition rate capacity for use as an intense soft X-ray (SXR) source for microelectronics lithography. The NX1 is a four-module system with a peak current of 320 kA when the capacitor bank (7.8 {micro}F {times} 4) is charged to 14 kV. It produces 100 J of SXR per shot (4% wall plug efficiency) giving at 3 Hz, 300 W of average SXR power into 4{pi}. The NX2 is also a four-module system. Each module uses a rail gap switching 12 capacitors each with a capacity of 0.6 {micro}F. The NX2 operates with peak currents of 400 kA at 11.5 kV into water-cooled electrodes at repetition rates up to 16 Hz to produce 300 W SXR in burst durations of several minutes. SXR lithographs are taken from both machines to demonstrate that sufficient SXR lithographs are taken from both machines to demonstrate that sufficient SXR flux is generated for an exposure with only 300 shots. In addition, flash electron lithographs are also obtained requiring only ten shots per exposure. Such high performance compact machines may be improved to yield over 1 kW of SXR, enabling sufficient exposure throughput to be of interest to the wafer industry. In deuterium the neutron yield could be over 10{sup 10} neutrons per second over prolonged bursts of minutes.

  20. Self-aligning concave relativistic plasma mirror with ultrafast adjustable focus

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Arefiev, Alexey; Shaw, Joseph; Stark, David; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael; Univ of Texas, Austin Team; InstituteFusion Studies, Univ of Texas, Austin Team

    2015-11-01

    Plasma mirrors (PMs) excited at sub-relativistic intensity (<1018W/cm2) are widely used to improve the temporal contrast of ultrashort laser pulses that are subsequently focused to ultra-relativistic intensity. However, new applications demand PMs that reflects efficiently with high beam quality when excited directly at relativistic intensity. We report a quantitative laboratory study of space-/time-integrated and space-/time- resolved reflectivity of PMs excited by high-contrast, 30 fs, 800 nm relativistically intense laser pulses. We observe high reflectivity (>0.8) for intensities up to 5x1018W/cm2, provided laser contrast exceeds 104 at 1 ps and angle of incidence is less than 5°. Particle-in-cell simulations suggest that sharp drops observed outside these limits are caused by refocusing of reflected light outside the collection optics due to depression of the reflecting surface by light pressure (deformation, usually a concave curvature) and self-induced relativistic transparency. Furthermore, the reflected relativistic intensity can be enhanced multiple times and the second focus position can be adjusted in the range of few tens of micron away from PM surface by controlling the contrast at 1 ps.

  1. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  2. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  3. Particle-In-Cell Modeling for MegaJoule Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Link, Anthony

    2015-11-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations are by far the most detailed and computationally intensive DPF simulations run to date. They incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50 + cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. An anode shape scan as well as a scan in stored energy/charging voltage has been performed. A comparison of MJ performance for different drivers will be presented. Validation assessments are being performed, comparing against experimental measurements of neutron yield, neutron anisotropy and plasma density. Prepared by LLNL under Contract DE-AC52-07NA27344. This work supported by the U.S. Department of Energy's National Nuclear Security Administration. Computing support for this work came from the LLNL

  4. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-24

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.

  5. Filamentary structure of plasma produced by compression of puffing deuterium by deuterium or neon plasma sheath on plasma-focus discharge

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Cikhardtova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.

    2014-12-15

    The present experiments were performed on the PF-1000 plasma focus device at a current of 2 MA with the deuterium injected from the gas-puff placed in the axis of the anode face. The XUV frames showed, in contrast with the interferograms, the fine structure: filaments and spots up to 1 mm diameter. In the deuterium filling, the short filaments are registered mainly in the region of the internal plasmoidal structures and their number correlates with the intensity of neutron production. The longer filamentary structure was recorded close to the anode after the constriction decay. The long curve-like filaments with spots were registered in the big bubble formed after the pinch phase in the head of the umbrella shape of the plasma sheath. Filaments can indicate the filamentary structure of the current in the pinch. Together with the filaments, small compact balls a few mm in diameter were registered by both interferometry and XUV frame pictures. They emerge out of the dense column and their life-time can be greater than hundreds of ns.

  6. Preliminary design of a 150 kJ repetitive plasma focus for the production of 18-F

    NASA Astrophysics Data System (ADS)

    Sumini, Marco; Mostacci, Domiziano; Rocchi, Federico; Frignani, Michele; Tartari, Agostino; Angeli, Ergisto; Galaverni, Dario; Coli, Ugo; Ascione, Bernardino; Cucchi, Giorgio

    2006-06-01

    Experiments in the past five years have demonstrated production of short-lived radioisotopes with a Plasma Focus device, using the so-termed Endogenous Mode. So far radioisotope activities of only a few microcuries have been obtained from single discharges in small scale Plasma Focus machines (capacitor bank energies of approximately 7 kJ). It is expected that higher activities could be obtained with larger bank energies, operating at high pulse repetition rates, e.g. 1 Hz. However, many scientific and technological issues must be addressed for a high-energy Plasma Focus device to run at one pulse per second. Aim of this paper is to present preliminary results pertaining to the plasma, electrical, fluid-dynamical, thermal, material and mechanical design of a 150 kJ Plasma Focus, capable of a repetition rate of 1 Hz, that will be operated at 30 kV with a 350 μF capacitor bank and a maximum total current of 1.5 MA. This device will be used to breed 18-F for the synthesis of drugs used in positron-emission medical examinations, such as FDG for PET.

  7. Random Density Inhomogeneities and Focusability of the Output Pulses for Plasma-based Powerful Backward Raman Amplifiers

    SciTech Connect

    A.A. Solodov; V.M. Malkin; N.J. Fisch

    2003-01-21

    Random plasma density inhomogeneities may defocus the output pulses of powerful backward Raman amplifiers (BRA). Because of ultra-high intensities of even non-focused BRA outputs, such distortions, if occur, are then difficult to correct. We derive a simple expression for the largest BRA length for which the output pulse focusability is not yet spoiled. Interestingly, this limitation does not depend on the pump laser intensity. We also note a useful effect of plasma inhomogeneities that might help to suppress premature pump backscattering by thermal noise.

  8. EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Rocchi, F.; Mostacci, D.; Sumini, M.; Tartari, A.; Mariotti, F.

    2012-09-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 μm brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  9. EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.; Mariotti, F.

    2012-09-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 {mu}m brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  10. Self-Similar Nonlinear Dynamical Solutions for One-Component Nonneutral Plasma in a Time-Dependent Linear Focusing Field

    SciTech Connect

    Hong Qin and Ronald C. Davidson

    2011-07-19

    In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.

  11. Nanofocus of tenth of joules and a portable plasma focus of few joules for field applications

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Tarifeno, Ariel; Pedreros, Jose; Altamirano, Luis

    2009-01-21

    A repetitive pinch plasma focus that works with stored energy less than 1 J per shot has be developed at the Chilean Nuclear Energy Commission. The main features of this device, repetitive Nanofocus, are 5 nF of capacity, 5 nH of inductance, 5-10 kV charging voltage, 60-250 mJ stored energy, 5-10 kA current peak, per shot. The device has been operated at 20 Hz in hydrogen and deuterium. X-ray radiographs of materials of different thickness were obtained. Neutrons were detected using a system based upon {sup 3}He proportional counter in chare integrated mode. However, the reproducibility of this miniaturized device is low and several technological subjects have to be previously solved in order to produce neutrons for periods greater than minutes. Further studies in the Nanofocus are being carried out. In addition, a device with a stored energy of a few joules is being explored. A preliminary compact, low weight (3 kg), portable PF device (25 cmx5 cmx5 cm) for field applications has been designed. This device was designed to operate with few kilovolts (10 kV or less) with a stored energy of 2 J and a repetition rate of 10 Hz without cooling. A neutron flux of the order of 10{sup 4}-10{sup 5} n/s is expected.

  12. In situ determination of the static inductance and resistance of a plasma focus capacitor bank

    SciTech Connect

    Saw, S. H.; Lee, S.; Roy, F.; Chong, P. L.; Vengadeswaran, V.; Sidik, A. S. M.; Leong, Y. W.; Singh, A.

    2010-05-15

    The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L{sub 0}, and resistance r{sub 0} to be obtained using lightly damped sinusoid equations given the bank capacitance C{sub 0}. However, for a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.

  13. Investigation of deuterated target effects on neutron yield in plasma focus device SBUMTPF1

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun; Shirani, Babak

    2015-04-01

    In this research, the effect of inserting deuterated solid target in plasma focus device `SBUMTPF1' on neutron yield has been investigated. The deuterated target with the diameter of 2.5 cm was placed at different heights relative to the anode tip. In each height, the best place of target (where the ion density is highest) was found from observing the effects of ions struck on the aluminum samples. Also for each height, 20 shots were performed at the optimum pressure of deuterium working gas and operating voltage, which are equal to 1.5 mbar and 24 kV, respectively. The neutron production was measured with two activation counters, which placed in 0○ and 90○ relative to the anode axis. Neutron scattering from two activation counters was calculated with MCNP4C code and the results showed that this effect is negligible. In this article, the probability of implanting deuterium ions into the titanium target was also investigated. Deviation angle of the ion emission relative to the anode axis was measured experimentally in this research and it was about 3.1○.

  14. Revisiting Plant Plasma Membrane Lipids in Tobacco: A Focus on Sphingolipids.

    PubMed

    Cacas, Jean-Luc; Buré, Corinne; Grosjean, Kevin; Gerbeau-Pissot, Patricia; Lherminier, Jeannine; Rombouts, Yoann; Maes, Emmanuel; Bossard, Claire; Gronnier, Julien; Furt, Fabienne; Fouillen, Laetitia; Germain, Véronique; Bayer, Emmanuelle; Cluzet, Stéphanie; Robert, Franck; Schmitter, Jean-Marie; Deleu, Magali; Lins, Laurence; Simon-Plas, Françoise; Mongrand, Sébastien

    2016-01-01

    The lipid composition of plasma membrane (PM) and the corresponding detergent-insoluble membrane (DIM) fraction were analyzed with a specific focus on highly polar sphingolipids, so-called glycosyl inositol phosphorylceramides (GIPCs). Using tobacco (Nicotiana tabacum) 'Bright Yellow 2' cell suspension and leaves, evidence is provided that GIPCs represent up to 40 mol % of the PM lipids. Comparative analysis of DIMs with the PM showed an enrichment of 2-hydroxylated very-long-chain fatty acid-containing GIPCs and polyglycosylated GIPCs in the DIMs. Purified antibodies raised against these GIPCs were further used for immunogold-electron microscopy strategy, revealing the distribution of polyglycosylated GIPCs in domains of 35 ± 7 nm in the plane of the PM. Biophysical studies also showed strong interactions between GIPCs and sterols and suggested a role for very-long-chain fatty acids in the interdigitation between the two PM-composing monolayers. The ins and outs of lipid asymmetry, raft formation, and interdigitation in plant membrane biology are finally discussed. PMID:26518342

  15. Co-deposition of titanium and iron nitrides on SS-321 by using plasma focus

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Hassan, M.; Murtaza, G.; Akhter, J. I.; Qayyum, A.; Waheed, A.; Zakaullah, M.

    2006-02-01

    This article reports the co-deposition process of TiN0.9 and (Fe,Cr)(2)N compounds on SS-321 substrate using a 2.3 kJ dense plasma focus device operated with N-2 discharges. X-ray diffraction analysis is performed to investigate the ion-induced changes in the near surface structure of the SS-321. Scanning electron microscopy with the energy dispersive X-ray spectroscopy is carried out to analyse the surface morphology and the elemental composition of the nitrided samples. The results reveal that at the low fluence of ion bombardment, a non-stoichiometric tertiary phase (Fe,Cr)(x)N is developed, which transforms into a stable stoichiometric compound (Fe,Cr)(2)N by increasing the ion flux. Some CrN precipitates are also observed because of the thermal effect produced by the bombardment of energetic ion beam. Vickers micro-hardness values are increased more than twice for typical ion nitrided samples.

  16. Plasma focus ion beam fluence and flux--Scaling with stored energy

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.

    2012-11-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers [A Bernard et al., J. Mosc. Phys. Soc. 8, 93-170 (1998)]. This present paper uses the Lee Model code [S Lee, http://www.plasmafocus.net (2012)], integrated with experimental measurements to provide the basis for reference numbers and the scaling of deuteron beams versus stored energy E0. The ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8 × 1020 and 2.2-33 × 106, respectively, are found to be independent of E0 from 0.4 to 486 kJ. Typical inductance machines (33-55 nH) produce 1.2-2 × 1015 ions per kJ carrying 1.3%-4% E0 at mean ion energy 50-205 keV, dropping to 0.6 × 1015 ions per kJ carrying 0.7% E0 for the high inductance INTI PF.

  17. Effect of Driver Impedance on Dense Plasma Focus Z-Pinch Neutron Yield and Beam Acceleration

    NASA Astrophysics Data System (ADS)

    Sears, J.; Link, A.; Ellsworth, J.; Falabella, S.; Rusnak, B.; Tang, V.; Schmidt, A.; Welch, D.

    2014-10-01

    We explore the effect of driver characteristics on dense plasma focus (DPF) neutron yield and beam acceleration using particle-in-cell (PIC) simulations of a kJ-scale DPF. Our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. Simulations are benchmarked to measurements of a table top kJ DPF experiment with neutron yield measured with He3-based detectors. Simulated neutron yield scales approximately with the fourth power of peak current, I4. We also probe the accelerating fields by measuring the acceleration of a 4 MeV deuteron beam and by measuring the DPF self-generated beam energy distribution, finding gradients higher than 50 MV/m. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) at LLNL.

  18. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    SciTech Connect

    Ciocarlan, C.; Wiggins, S. M.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.

    2013-09-15

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive self-focusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.0 × 10{sup 18} cm{sup −3}, the peak normalized laser vector potential, a{sub 0}, increases from 1.0 to 1.85 close to the entrance plane of the capillary compared with a{sub 0} = 1.41 when the plume is neglected.

  19. Weakly relativistic and ponderomotive effects on self-focusing and self-compression of laser pulses in near critical plasmas

    SciTech Connect

    Bokaei, B.; Niknam, A. R.

    2014-10-15

    The spatiotemporal dynamics of high power laser pulses in near critical plasmas are studied taking in to account the effects of relativistic and ponderomotive nonlinearities. First, within one-dimensional analysis, the effects of initial parameters such as laser intensity, plasma density, and plasma electron temperature on the self-compression mechanism are discussed. The results illustrate that the ponderomotive nonlinearity obstructs the relativistic self-compression above a certain intensity value. Moreover, the results indicate the existence of the turning point temperature in which the compression process has its strongest strength. Next, the three-dimensional analysis of laser pulse propagation is investigated by coupling the self-focusing equation with the self-compression one. It is shown that in contrast to the case in which the only relativistic nonlinearity is considered, in the presence of ponderomotive nonlinearity, the self-compression mechanism obstructs the self-focusing and leads to an increase of the laser spot size.

  20. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    NASA Astrophysics Data System (ADS)

    Niti, Kant; Manzoor, Ahmad Wani

    2015-07-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel-Kramers-Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. Supported by a Financial Grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  1. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin

    2016-06-01

    Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.

  2. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    SciTech Connect

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.; Paduch, M.; Zielinska, E.; Rosmej, O.; Yongtao, Zhao; Gojska, A.

    2010-10-15

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  3. Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma

    SciTech Connect

    Masson-Laborde, P. E.; Depierreux, S.; Loiseau, P.; Hüller, S.; Pesme, D.; Labaune, Ch.; Bandulet, H.

    2014-03-15

    The origin of the low level of stimulated Brillouin scattering (SBS) observed in laser-plasma experiments carried out with a single laser speckle is investigated by means of three-dimensional simulations and modeling in the limit when the laser beam power P is well above the critical power for ponderomotive self-focusing We find that the order of magnitude of the time averaged reflectivities, together with the temporal and spatial SBS localization observed in our simulations, are correctly reproduced by our modeling. It is observed that, after a short transient stage, SBS reaches a significant level only (i) as long as the incident laser pulse is increasing in amplitude and (ii) in a single self-focused speckle located in the low-density front part of the plasma. In order to describe self-focusing in an inhomogeneous expanding plasma, we have derived a new Lagrangian density describing this process. Using then a variational approach, our model reproduces the position and the peak intensity of the self-focusing hot spot in the front part of the plasma density profile as well as the local density depletion in this hot spot. The knowledge of these parameters then makes it possible to estimate the spatial amplification of SBS as a function of the laser beam power and consequently to explain the experimentally observed SBS reflectivity, considerably reduced with respect to standard theory in the regime of large laser beam power.

  4. Ion focusing and interaction potential for spherical and rodlike obstacles in a supersonic plasma flow: numerical simulations

    SciTech Connect

    Miloch, W. J.; Pecseli, H. L.; Trulsen, J.; Vladimirov, S. V.

    2008-09-07

    The parameter dependence of the ion focus behind perfectly conducting or alternatively perfectly insulating spherical grains for different electron to ion temperature ratios is studied. For elongated, insulating dust grains we study the potential and plasma density wakes in drifting plasma for rods or plates of different lengths and different inclination angles. These two characteristics (i.e., the rod length and the inclination angle are important for the exact charge distribution on the surface and the wake pattern. For this case we discuss also the interaction potential between two elongated grains in a flowing plasma.Our simulations are carried out in two spatial dimensions by a Particle-in-Cell code, treating ions and electrons as individual particles. These studies can be relevant for finite size dust grains suspended in a plasma sheath or larger objects in space, e.g., meteoroids.

  5. Battery powered tabletop pulsed neutron source based on a sealed miniature plasma focus device

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Mishra, P.; Rawool, A. M.; Kulkarni, L. V.; Gupta, Satish C.

    2008-10-01

    The development of a novel and portable tabletop pulsed neutron source is presented. It is a battery powered neutron tube based on a miniature plasma focus (PF) device having all metal-sealed components. The tube, fuelled with deuterium gas, generates neutrons because of D-D fusion reactions. The inner diameter and the length of the tube are 3.4 cm and 8 cm, respectively. A single capacitor (200 J, 4.0 µF, 10 nH) of compact size (17 cm × 15 cm × 13 cm, 6.5 kg) is used as the energy driver. A power supply system charges the capacitor to 10 kV in 10 s and also provides a 30 kV trigger pulse to the spark gap. An input of 24 V dc (7.5 A) to the power supply system is provided by two rechargeable batteries (each 12 V, 7.5 A, 20 h). The device has produced neutrons for 150 shots within a period of 120 days in a very reliable manner without purging the deuterium gas between the shots. For the first 50 shots, the average yield is (1.6 ± 0.3) × 106 neutrons/shot in 4π sr with a pulse width of 23.4 ± 3.3 ns. The estimated neutron energy is 2.47 ± 0.22 MeV. The neutron production reduces slowly and reaches the detection threshold value of 3 × 105 neutrons/shot towards the last shots. The device produces neutrons in a similar manner on evacuation and refilling. The height of the mounted PF tube with the capacitor and the spark gap is 35 cm. The complete setup comprising the capacitor with spark gap, the PF tube, the power supply system with two batteries and the control panel weighs only 23 kg.

  6. Deposition of alumina stabilized zirconia at room temperature by plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, I. A.; Rawat, R. S.; Ahmad, R.; Shahid, M. A. K.

    2014-01-01

    Nanostructured multiphase zirconium aluminium oxide (MP-ZrAlO) composite films are deposited on zirconium substrate by plasma focus device. The XRD results reveal that the crystallinity of ZrO2 and Al2O3 phases is improved for 15 focus deposition shots (FDS), while it is decreased with increasing sample angular positions. A better crystallinity of m-ZrO2 and c-ZrO2 phases is achieved at 300 °C annealing temperature, while the re-crystallization of all phases except m-ZrO2 (111) phase is observed at 600 °C annealing temperature. The strains developed in ZrO2 (111) and Al2O3 (220) planes are found to be -3.8 × 10-3 and +2.2 × 10-3, respectively, for 15 FDS ion irradiations and remained constant for higher FDS ion irradiations. The weight fraction of m-ZrO2 phase decreased from 89 to 79%, while it increased from 11 to 21% for c-ZrO2 phase with increasing FDS. The weight fraction of m-ZrO2 phase increases from 89 to 92%, while it is decreased from 11 to 8% for c-ZrO2 phase with increasing sample angular (0°-10°) positions. At 300 °C annealing temperature, the weight fractions of m-ZrO2 phase decreases from 89 to 81%, while it increased from 11 to 19% for c-ZrO2 phase. The SEM microstructures reveal that the formation of nano-grains (range from 45 nm to 100 nm), nano-strips (width ranges from 333 nm to 750 nm and length ranges from 2.5 μm to 9 μm) and nano-rods (diameter ranges from 25 nm to 50 nm) observed in different micrographs of MP-ZrAlO composite films can be attributed to increasing FDS, sample angular positions and annealing temperature. The microhardness of MP-ZrAlO composite films deposited for 25 FDS ion irradiations is found to be 9.14 ± 0.35 GPa which is approximately seven times than the microhardness of virgin zirconium.

  7. Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Kortanek, J.; Cikhardtova, B.; Paduch, M.; Zielinska, E.

    2015-05-15

    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures inside the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.

  8. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    SciTech Connect

    Nanda, Vikas; Kant, Niti

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  9. Gender differences in Parkinson's disease: focus on plasma α-synuclein.

    PubMed

    Caranci, Giovanni; Piscopo, Paola; Rivabene, Roberto; Traficante, Anna; Riozzi, Barbara; Castellano, Anna Elisa; Ruggieri, Stefano; Vanacore, Nicola; Confaloni, Annamaria

    2013-08-01

    Among promising biological markers proposed for Parkinson's disease (PD) and other disorders related to Lewy bodies, plasma alpha-synuclein assay has provided conflicting results mainly owing to the various laboratory assay techniques used and protein forms assayed. In this observational and exploratory cross-sectional study, using an immunoenzymatic technique, we assayed and compared total plasma alpha-synuclein concentrations in 69 patients with PD and 110 age-matched healthy control subjects. Two previously unreported findings concerned gender. First, plasma alpha-synuclein concentrations measured in the more advanced parkinsonian disease stages decreased in men, but not in women. Second, again only in men, plasma alpha-synuclein concentration was associated with cognitive impairments, hallucinations, and sleep disorders. These findings underline the gender-related differences in parkinsonian patients and indicate plasma alpha-synuclein expression as a potential biological marker for PD progression in men. PMID:23328951

  10. Self-focusing induced reduction of Stimulated Brillouin Scattering for the case of monospeckle laser beams interacting with a plasma

    NASA Astrophysics Data System (ADS)

    Masson-Laborde, Paul-Edouard; Hueller, Stefan; Pesme, Denis; Loiseau, Pascal; Labaune, Christine; Bandulet, Heidi

    2008-11-01

    The mechanism explaining the low level of Stimulated Brillouin Scattering observed in laser-plasma experiments with monospeckle laser beams, carried out at the LULI facility, is studied by means of numerical simulations. For the regime where the beam power is well above the self-focusing critical power, simulations carried out with the codes Harmony2D and HERA-ILP (in 2D and 3D geometry respectively), show time-averaged reflectivities of the order of only a few percent. Because of self-focusing and the filament resonant instability, SBS takes only place in self-focused hot spots located in the low-density front part of the plasma. The shortened hot spot sizes and the steepened flow-profile dramatically reduce SBS. This scenario may also applies to the most intense laser hot spots in a spatially smoothed laser beam.

  11. Current interruption and particle beam generation by a plasma focus. Interim report (annual), 30 Sep 81-30 Sep 82

    SciTech Connect

    Gerdin, G.; Venneri, F.

    1982-11-30

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions as to utility of the concept. To estimate the plasma temperature and classical resistivity a soft X-ray spectrometer and X-ray pinhole camera were developed. The temperature was estimated from a coronal model to range between 0.4 to 0.5 keV for either a nitrogen or neon impurity (1 to 2%) in deuterium at 3 torr. Strong pinches were observed in pure neon (0.6 torr) with an electron temperature in the same range. The corresponding classical resistance of the pinch is 9 m omega whereas 500 m omega is more consistent with output voltage pulse and current flow at interruption indicating anomalous resistivity is present. A one-dimensional two-fluid computer code has been developed to model anomalous resistivity in the pinch phase and preliminary results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device.

  12. Common features of particle beams and x-rays generated in a low energy dense plasma focus device

    SciTech Connect

    Behbahani, R. A.; Xiao, C.

    2015-02-15

    Features of energetic charged particle beams and x-ray emission in a low energy (1–2 kJ) plasma focus (DPF) device are described and the possible mechanism are explained based on circuit analyses and energy balance in the DPF system. In particular, the resistance and the voltage across the plasma column are estimated to explain the mechanisms of the generation of particle beams and hard x-ray. The analysis shows that the total inductance of a DPF might have played a role for enhancement of the particle beams and x-ray emissions during the phase of anomalous resistance.

  13. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Takale, M. V.

    2016-05-01

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  14. Current neutralization and focusing of intense ion beams with a plasma-filled solenoidal lens. I

    SciTech Connect

    Oliver, B.V.; Sudan, R.N.

    1996-12-01

    The response of the magnetized plasma in an axisymmetric, plasma-filled, solenoidal magnetic lens, to intense light ion beam injection is studied. The lens plasma fill is modeled as an inertialess, resistive, electron magnetohydrodynamic (EMHD) fluid since characteristic beam times {tau} satisfy 2{pi}/{omega}{sub {ital pe}},2{pi}/{Omega}{sub {ital e}}{lt}{tau}{le}2{pi}/{Omega}{sub {ital i}} ({omega}{sub {ital pe}} is the electron plasma frequency and {Omega}{sub {ital e},{ital i}} are the electron, ion gyrofrequencies). When the electron collisionality satisfies {nu}{sub {ital e}}{lt}{Omega}{sub {ital e}}, the linear plasma response is determined by whistler wave dynamics. In this case, current neutralization of the beam is reduced on the time scale for whistler wave transit across the beam. The transit time is inversely proportional to the electron density and proportional to the angle of incidence of the beam with respect to the applied solenoidal field. In the collisional regime ({nu}{sub {ital e}}{gt}{Omega}{sub {ital e}}) the plasma return currents decay on the normal diffusive time scale determined by the conductivity. The analysis is supported by two-and-one-half dimensional hybrid particle-in-cell simulations. {copyright} {ital 1996 American Institute of Physics.}

  15. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    NASA Astrophysics Data System (ADS)

    Bokaei, B.; Niknam, A. R.

    2014-03-01

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  16. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    SciTech Connect

    Bokaei, B.; Niknam, A. R.

    2014-03-15

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  17. Characterization of Nano-Crystalline Diamond like Carbon (DLC) Films with Substrate Temperature Using Dense Plasma Focusing Method

    SciTech Connect

    Yadav, Vikram S; Dhubkarya, D. C.; Singh, Yashpal; Sahu, Devendra K; Singh, Manveer; Kumar, Kuldeep

    2010-06-17

    Nano-crystalline Diamond like Carbon (DLC) film has been grown by Dense Plasma Focusing Method (DPF) using pure graphite Plasma, on different substrate (glass/silica) at different substrate temperature. The films were grown at substrate temperature 100 deg. C, 150 deg. C and 300 deg. C by the high dense plasma of energy 1.3 k Joule on glass and silica. Raman spectra confirmed that sp{sup 3} content is grown in the films under various conditions. The Raman spectra of these films show a broad asymmetric peak which narrow with sp{sup 2} decreasing contents. We believe that our data presented here may be used as reference of DLC characterization.

  18. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications

    NASA Astrophysics Data System (ADS)

    Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo

    2012-10-01

    Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.

  19. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  20. Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma

    SciTech Connect

    Kaur, Sukhdeep; Sharma, A. K.; Yadav, Sushila

    2010-05-15

    Resonant third harmonic generation by a Gaussian laser beam in a rippled density plasma is studied. The laser ponderomotive force induces second harmonic longitudinal velocity on electrons that couples with the static density ripple to produce a density perturbation at 2omega,2k+q, where omega and k are the frequency and wave number of the laser and q is the ripple wave number of the laser. This density perturbation beats with electron oscillatory velocity at omega,k-vector to produce a nonlinear current driving the third harmonic generation. In the regime of quadratic nonlinearity, the self-focusing of the laser enhances the third harmonic power. However, at higher intensity, plasma density is significantly reduced on the axis, detuning the third harmonic resonance and weakening the harmonic yield. Self-focusing causes enhancement in the efficiency of harmonic generation.

  1. Terahertz generation by relativistic ponderomotive focusing of two co-axial Gaussian laser beams propagating in ripple density plasma

    SciTech Connect

    Kumar, Subodh; Singh, Ram Kishor Sharma, R. P.

    2015-10-15

    Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yield of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.

  2. Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel

    SciTech Connect

    Singh, Arvinder E-mail: naveens222@rediffmail.com; Gupta, Naveen E-mail: naveens222@rediffmail.com

    2015-01-15

    This paper presents an investigation of relativistic self-focusing effect of a q-Gaussian laser beam on second harmonic generation in a preformed parabolic plasma channel. An expression has been derived for density perturbation associated with the plasma wave excited by the laser beam. This in turn acts as a source of second harmonic generation. The moment theory approach has been used to derive a differential equation that governs the evolution of spot size of the laser beam with the distance of propagation. The detailed effects of intensity distribution deviation from Gaussian distribution, intensity of laser beam, density, and depth of the channel have been studied on self-focusing as well as on second harmonic generation.

  3. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV. PMID:21456735

  4. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    SciTech Connect

    Mitrofanov, K. N.; Krauz, V. I. E-mail: vkrauz@yandex.ru; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.

    2015-05-15

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

  5. Influence of the Al wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardtova, B.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Zaloga, D.; Sadowski, M. J.; Tomaszewski, K.

    2016-06-01

    In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) and associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.

  6. Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma

    SciTech Connect

    Bokaei, B.; Niknam, A. R.; Jafari Milani, M. R.

    2013-10-15

    The propagation characters of Gaussian laser beam in collisionless plasma are investigated by considering the ponderomotive and relativistic nonlinearities. The second-order differential equation of dimensionless beam width parameter is solved numerically, taking into account the effect of electron temperature. The results show that the ponderomotive force does not facilitate the relativistic self-focusing in all intensity ranges. In fact, there exists a certain intensity value that, if below this value, the ponderomotive nonlinearity can contribute to the relativistic self-focusing, or obstruct it, if above. It is also indicated that there is a temperature interval in which self-focusing can occur, while the beam diverges outside of this region. In addition, the results represent the existence of a “turning point temperature” in the mentioned interval that the self-focusing has the strongest power. The value of the turning point is dependent on laser intensity in which higher intensities result in higher turning point.

  7. Synthesis of highly transparent ultrananocrystalline diamond films from a low-pressure, low-temperature focused microwave plasma jet

    PubMed Central

    2012-01-01

    This paper describes a new low-temperature process underlying the synthesis of highly transparent ultrananocrystalline diamond [UNCD] films by low-pressure and unheated microwave plasma jet-enhanced chemical vapor deposition with Ar-1%CH4-10%H2 gas chemistry. The unique low-pressure/low-temperature [LPLT] plasma jet-enhanced growth even with added H2 and unheated substrates yields UNCD films similar to those prepared by plasma-enhanced growth without addition of H2 and heating procedure. This is due to the focused plasma jet which effectively compensated for the sluggish kinetics associated with LPLT growth. The effects of pressure on UNCD film synthesis from the microwave plasma jet were systematically investigated. The results indicated that the substrate temperature, grain size, surface roughness, and sp3 carbon content in the films decreased with decreasing pressure. The reason is due to the great reduction of Hα emission to lower the etching of sp2 carbon phase, resulting from the increase of mean free path with decreasing pressure. We have demonstrated that the transition from nanocrystalline (80 nm) to ultrananocrystalline (3 to 5 nm) diamond films grown via microwave Ar-1%CH4-10%H2 plasma jets could be controlled by changing the pressure from 100 to 30 Torr. The 250-nm-thick UNCD film was synthesized on glass substrates (glass transition temperature [Tg] 557°C) using the unique LPLT (30 Torr/460°C) microwave plasma jet, which produced UNCD films with a high sp3 carbon content (95.65%) and offered high optical transmittance (approximately 86% at 700 nm). PMID:22260391

  8. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  9. Self-focusing and self-compression of a laser pulse in the presence of an external tapered magnetized density-ramp plasma

    NASA Astrophysics Data System (ADS)

    Saedjalil, N.; Jafari, S.

    2016-06-01

    In this paper, the effects of external tapered axial magnetic field and plasma density-ramp on the spatiotemporal evolution of the laser pulse in inhomogeneous plasma have been studied. The external magnetic field can modify the refractive index of plasma and consequently intensifies the nonlinear effects. By considering the relativistic nonlinearity effect, self-focusing and self-compression of the laser beam propagating through the magnetized plasma have been investigated, numerically. Numerical results indicate that self-focusing and self-compression are better enhanced in a tapered magnetic field than in a uniform one. Besides, in plasma density-ramp profile, self-focusing and self-compression of the laser beam improve in comparison with no ramp structure. In addition, with increasing both the slope of the density ramp and slope constant parameter of the tapered magnetic field, the laser focusing increases, properly, in short distances of the laser propagation through the plasma.

  10. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    NASA Astrophysics Data System (ADS)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6–2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5–2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1–1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150–170 eV, while for neon discharges with the deuterium puffing it reached 330–880 eV (with accuracy of  ±20%).

  11. Response to “Comment on ‘Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma’” [Phys. Plasmas 21, 064701 (2014)

    SciTech Connect

    Patil, S. D.; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  12. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  13. Demonstration of relativistic electron beam focusing by a laser-plasma lens

    PubMed Central

    Thaury, C.; Guillaume, E.; Döpp, A.; Lehe, R.; Lifschitz, A.; Ta Phuoc, K.; Gautier, J.; Goddet, J-P; Tafzi, A.; Flacco, A.; Tissandier, F.; Sebban, S.; Rousse, A.; Malka, V.

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  14. Demonstration of relativistic electron beam focusing by a laser-plasma lens.

    PubMed

    Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V

    2015-01-01

    Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line. PMID:25880791

  15. Ring formation in self-focusing of electromagnetic beams in plasmas

    SciTech Connect

    Faisal, M.; Mishra, S. K.; Verma, M. P.; Sodha, M. S.

    2007-10-15

    This article presents a paraxial theory of ring formation as an initially Gaussian beam propagates in a nonlinear plasma, characterized by significant collisional or ponderomotive nonlinearity. Regions in the axial irradiance-(beam width){sup -2} space, for which the ring formation occurs and the paraxial theory is valid, have been characterized; for typical points in these regions the dependence of the beam width parameter and the radial distribution of irradiance on the distance has been specifically investigated and discussed.

  16. Increase of Diagnostic Mirror Lifetime Using TiN Coated Stainless Steel by Using a Plasma Focus Device

    NASA Astrophysics Data System (ADS)

    K. Mikaili, Agah; Ghoranneviss, M.; K. Salem, M.; A. Salar, Elahi; S., Mohammadi; Arvin, R.

    2013-05-01

    Plasma-surface interaction experiments on TiN coated stainless steel 316L (S.S.316L) using a plasma focus (PF) device have been performed in an attempt to investigate whether we can use the hardness property of TiN against erosion to increase the lifetime of the mirrors used in plasma diagnostics equipment. Firstly, two similar S.S.316L samples were chosen for this purpose. One of the samples was coated with TiN by using a PF device, while the other was kept intact as a reference for investigating the effect of TiN coating. Then, in order to study the coating effects, these samples were exposed to 200 shots of hydrogen plasma with a total duration of 7 s in a tokamak. Before and after exposure, samples were analyzed by using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and a spectrophotometer. It was found that the uncoated sample was severely damaged, its reflection dropped significantly, and it developed some cracks and lines, while no significant change was observed on the surface characteristic of the coated sample. Moreover the weight loss of the uncoated sample was higher in comparison to the coated one. Therefore the results of this experiment showed that the coating of S.S.316L by TiN using a PF device is a useful method to strengthen it against plasma erosion and with further optimization it could possibly be used in preparing plasma diagnostics mirrors.

  17. Simulation of nanosecond pulsed laser ablation of copper samples: A focus on laser induced plasma radiation

    NASA Astrophysics Data System (ADS)

    Aghaei, M.; Mehrabian, S.; Tavassoli, S. H.

    2008-09-01

    A thermal model for nanosecond pulsed laser ablation of Cu in one dimension and in ambient gas, He at 1 atm, is proposed in which equations concerning heat conduction in the target and gas dynamics in the plume are solved. These equations are coupled to each other through the energy and mass balances at interface between the target and the vapor and also Knudsen layer conditions. By assumption of local thermal equilibrium, Saha-Eggert equations are used to investigate plasma formation. The shielding effect of the plasma, due to photoionization and inverse bremsstrahlung processes, is considered. Bremsstrahlung and blackbody radiation and spectral emissions of the plasma are also investigated. Spatial and temporal distribution of the target temperature, number densities of Cu and He, pressure and temperature of the plume, bremsstrahlung and blackbody radiation, and also spectral emissions of Cu at three wavelengths (510, 516, and 521 nm) are obtained. Results show that the spectral power of Cu lines has the same pattern as CuI relative intensities from National Institute of Standard and Technology. Investigation of spatially integrated bremsstrahlung and blackbody radiation, and also Cu spectral emissions indicates that although in early times the bremsstrahlung radiation dominates the two other radiations, the Copper spectral emission is the dominant radiation in later times. It should be mentioned that the blackbody radiation has the least values in both time intervals. The results can be used for prediction of the optimum time and position of the spectral line emission, which is applicable in some time resolved spectroscopic techniques such as laser induced breakdown spectroscopy. Furthermore, the results suggest that for distinguishing between the spectral emission and the bremsstrahlung radiation, a spatially resolved spectroscopy can be used instead of the time resolved one.

  18. Scaling, stability, and fusion mechanisms. Studies using plasma focus devices from tens of kilojoules to tenth of joules

    SciTech Connect

    Soto, Leopoldo; Pavez, Cristian; Moreno, Jose; Cardenas, Miguel; Tarifeno, Ariel

    2009-01-21

    Fusion studies using plasma focus devices from tens of kilojoules to less than one joule performed at the Chilean Nuclear Energy Commission are presented. The similarity of the physical behavior and the scaling observed in these machines are emphasized. Experiments on actual devices show that scaling holds at least through six order of magnitude. In particular all of these devices, from the largest to the smallest, keep the same quantity of energy per particle. Therefore, fusion reactions are possible to be obtained in ultraminiature devices (driven by generators of 0.1 J), as they are in the bigger devices (driven by generators of 1 MJ). However, the stability of the plasma depends on the size and energy of the device.

  19. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    SciTech Connect

    Auluck, S. K. H. E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  20. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-15

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10{sup 7} per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  1. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    SciTech Connect

    Dan’ko, S. A.; Mitrofanov, K. N.; Krauz, V. I.; Myalton, V. V.; Zhuzhunashvili, A. I.; Vinogradov, V. P.; Kharrasov, A. M.; Anan’ev, S. S.; Vinogradova, Yu. V.; Kalinin, Yu. G.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measured soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.

  2. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-09-01

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and "wind pressure" resisting its motion. The resulting sheath velocity, or the numerically proportional "drive parameter," is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservation laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.

  3. Low-energy-spread laser wakefield acceleration using ionization injection with a tightly focused laser in a mismatched plasma channel

    NASA Astrophysics Data System (ADS)

    Li, F.; Zhang, C. J.; Wan, Y.; Wu, Y. P.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.; Mori, W. B.; Joshi, C.

    2016-03-01

    An improved ionization injection scheme for laser wakefield acceleration using a tightly focused laser pulse, with intensity near the ionization threshold to trigger the injection in a mismatched plasma channel, has been proposed and examined via 3D particle-in-cell (PIC) simulations. In this scheme, the key to achieving a very low energy spread is shortening the injection distance through the fast diffraction of the tightly focused laser. Furthermore, the oscillation of the laser envelope in the mismatched plasma channel can induce multiple low-energy-spread injections with an even distribution in both space and energy. The envelope oscillation can also significantly enhance the energy gain of the injected beams compared to the standard non-evolving wake scenario due to the rephasing between the electron beam and the laser wake. A theoretical model has been derived to precisely predict the injection distance, the ionization degree of injection atoms/ions, the electron yield as well as the ionized charge for given laser-plasma parameters, and such expressions can be directly utilized for optimizing the quality of the injected beam. Through 3D PIC simulations, we show that an injection distance as short as tens of microns can be achieved, which leads to ultrashort fs, few pC electron bunches with a narrow absolute energy spread around 2 MeV (rms). Simulations also show that the initial absolute energy spread remains nearly constant during the subsequent acceleration due to the very short bunch length, and this indicates that further acceleration of the electron bunches up to the GeV level may lead to an electron beam with an energy spread well below 0.5%. Such low-energy-spread electron beams may have potential applications for future coherent light sources driven by laser-plasma accelerators.

  4. Focusing of high-current, large-area, heavy-ion beams with an electrostatic plasma lens

    SciTech Connect

    Goncharov, A.A.; Protsenko, I.M.; Yushkov, G.Y.; Brown, I.G.

    1999-08-01

    We report on measurements of the focusing of high-current, large-area beams of heavy metal ions using an electrostatic plasma lens. Tantalum ion beams were formed by a repetitively pulsed vacuum arc ion source, with energy in the 100 keV range, current up to 0.5 A, initial beam diameter 10 cm, and pulse length 250 {mu}s. The plasma lens was of internal diameter 10 cm and length 20 cm, and had nine electrostatic ring electrodes with potential applied to the central electrode of up to 7 kV, in the presence of a pulsed magnetic field of up to 800 G. The current-density profile of the downstream, focused, ion beam was measured with a radially moveable, magnetically suppressed, Faraday cup. The tantalum ion-beam current density at the focus was compressed by a factor of up to 30. The results are important in that they provide a demonstration of a means of manipulating high-current ion beams without associated space-charge blowup. {copyright} {ital 1999 American Institute of Physics.}

  5. Mather-type dense plasma focus as a new optical pump for short-wavelength high-power lasers

    SciTech Connect

    Fanning, J.J.; Kim, K.

    1984-04-01

    For the first time, a Mather-type dense plasma focus (MDPF) is successfully operated as an optical pump for lasers. Rhodamine-6G dye is optically pumped using the MDPF fluorescence, producing a laser pulse 1 ..mu..s in duration and more than 50 kW in output power. No optimization is attempted either of the laser cavity or of the lasing medium concentration and volume. A brief description of the experimental setup is presented, along with a summary and discussion of the results. The advantages of the present optical pump source and, in particular, their implications for the pumping of short-wavelength lasers are discussed.

  6. Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime using upward ramp of plasma density

    SciTech Connect

    Patil, S. D.; Takale, M. V.

    2013-08-15

    We have studied the steady state self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive regime for upward increasing plasma ramp density profile. We have obtained the differential equation for beam width parameter by using parabolic equation approach under the usual Wentzel–Kramers–Brillouin and paraxial approximations. The variation of beam width parameter with respect to dimensionless distance of propagation is presented graphically by varying the parameters of density profile, intensity parameter, and electronic temperature. It shows that the above stated parameters play an important role in propagation characteristics and give reasonably interesting results.

  7. Simultaneous observation of HF-enhanced plasma waves and HF-wave self-focusing

    SciTech Connect

    Frey, A.; Duncan, L.M.

    1984-07-01

    Intense HF-radiowaves of the ordinary mode transmitted from the ground enhance plasma waves near the reflection height. These have been extensively studied in the past by the use of Incohernt-Scatter-Radars. Intense HF-radiowaves propagating in the ionosphere also produce electron density irregularities with scale sizes much larger than the HF wavelength of approx.60 m. These have been observed by radio star intensity scintillations. For the past 2 years a new method was used at Arecibo, P.R. which allows radar- and scintillation-measurements at 430 MHz to be performed simultaneously along the same line of sight. The scale sizes deduced from the scintillation measurements are shorter than the scale sizes observed with the radar and are inconsistent with the HF-power density thresholds predicted by existing theories.

  8. Numerical simulation to study the transient self focusing of laser beam in plasma

    SciTech Connect

    Sharma, R. P.; Hussain, Saba Gaur, Nidhi

    2015-02-15

    In this paper, we present the numerical simulation for the coupled system of equations governing the dynamics of laser and Ion Acoustic Wave (IAW) in a collisionless plasma, when the coupling between the waves is through ponderomotive non-linearity. The nonlinear evolution of the laser beam is studied when the pump laser is perturbed by a periodic perturbation. By changing the perturbation wave number, we have studied its effect on the nonlinear evolution pattern of laser beam. In order to have a physical insight into the nonlinear dynamics of laser beam evolution in time and space, we have studied the laser and IAW spectra containing spatial harmonics. The magnitude of these harmonics changes with time and leads to time dependent localization of laser beam in spatial domain. The nonlinear dynamics of this localization is investigated in detail by using simulation and a semi-analytical model.

  9. Interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme

    NASA Astrophysics Data System (ADS)

    Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.

    2016-06-01

    In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.

  10. Physical processes taking place in dense plasma focus devices at the interaction of hot plasma and fast ion streams with materials under test

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2015-06-01

    The dense plasma focus (DPF) device represents a source of powerful streams of penetrating radiations (hot plasma, fast electron and ion beams, x-rays and neutrons) of ns-scale pulse durations. Power flux densities of the radiation types may reach in certain cases the values up to 1013 W cm  -  2. They are widely used at present time in more than 30 labs in the world in the field of radiation material science. Areas of their implementations are testing of the materials perspective for use in modern fusion reactors (FR) of both types, modification of surface layers with an aim of improvements their properties, production of some nanostructures on their surface, and so on. To use a DPF correctly in these applications it is important to understand the mechanisms of generation of the above-mentioned radiations, their dynamics inside and outside of the pinch and processes of interaction of these streams with targets. In this paper, the most important issues on the above matter we discuss in relation to the cumulative hot plasma stream and the beam of fast ions with illustration of experimental results obtained at four DPF devices ranged in the limits of bank energies from 1 kJ to 1 MJ. Among them mechanisms of a jet formation, a current abruption phenomenon, a super-Alfven ion beam propagation inside and outside of DPF plasma, generation of secondary plasma and formation of shock waves in plasma and inside a solid-state target, etc. Nanosecond time-resolved techniques (electric probes, laser interferometry, frame self-luminescent imaging, x-ray/neutron probes, etc) give an opportunity to investigate the above-mentioned events and to observe the process of interaction of the radiation types with targets. After irradiation, we analyzed the specimens by contemporary instrumentation: optical and scanning electron microscopy, local x-ray spectral and structure analysis, atomic force microscopy, the portable x-ray diffractometer that combines x-ray single

  11. Experimental study of relativistic self-focusing and self-channeling of an intense laser pulse in an underdense plasma

    SciTech Connect

    Gibbon, P.; Jakober, F.; Monot, P.; Auguste, T.

    1996-04-01

    This paper reports on experimental investigations on relativistic self-focusing and self-channeling of a terawatt laser pulse (0.7 TW {le} P {le} 15 TW) in an underdense plasma. The authors present results obtained with picosecond ({tau} = 1 ps) and subpicosecond ({tau} = 0.4 ps) pulses. In the ``long pulse`` regime, modifications in the laser propagation are observed for P < P{sub c}, the critical power for self-focusing. By contrast, self-guiding of subpicosecond pulses is observed for P {approx} P{sub c}. Using a paraxial envelope model describing the laser propagation and taking into account the plasma response to the ponderomotive force, it is shown that a maximum laser intensity of 5--15 times that reached in vacuum may be achieved when P is in the (1.25--4) {times} P{sub c} range. It is also demonstrated that ion motion may significantly reduce the effective P{sub c}.

  12. Study of the neutron pulse regularity of a small dense plasma focus device by time of flight measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Fermín; Herrera, Julio; Rangel, José

    2002-11-01

    Plasma foci are well know to be efficient neutron generators, with a great potential for immediate applications. For this purpose, it is particularly important to assess the uniformity of their behaviour, which strongly depends on the geometry details and the materials used in their construction. It has been established that there are competing mechanisms in the neutron generation, that yield both isotropic and anisotropic components. However, the latter, which may be associated to the generation of axial ion-beams has been found to contribute no more than 30the total neutron yield, and less than 10particular device. As a matter of fact, measurements of the ratio of head-on and side-on neutron fluxes have been found to be grossly misleading, since they may be extremely large due to very pronounced anisotropic components, even though they may actually contribute less than 10neutron yield. The isotropic component, on the other hand, can be reasonably described by thermonuclear models, and within the experimental error, allowed by the regularity of the device behaviour, can be properly characterised by side-on measurements. The purpose of this work is to study the regularity of the neutron emissions from a small dense plasma focus (5kJ at 37kV) [1], analysing the time of flight signals from three, side-on, on-line, scintillation detectors. [1] F. Castillo, J.J.E. Herrera, J. Rangel, A. Alfaro, M.A. Maza, V. Sakaguchi, G. Espinosa and J.I. Golzarri, "Neutron Anisotropy and X-ray Production of the FN-II Dense Plasma Focus", Brazilian J. Phys. Vol.32 (2002) 3-12.

  13. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  14. Structural and mechanical properties of Al–C–N films deposited at room temperature by plasma focus device

    NASA Astrophysics Data System (ADS)

    Z, A. Umar; R, Ahmad; R, S. Rawat; M, A. Baig; J, Siddiqui; T, Hussain

    2016-07-01

    The Al–C–N films are deposited on Si substrates by using a dense plasma focus (DPF) device with aluminum fitted central electrode (anode) and by operating the device with CH4/N2 gas admixture ratio of 1:1. XRD results verify the crystalline AlN (111) and Al3CON (110) phase formation of the films deposited using multiple shots. The elemental compositions as well as chemical states of the deposited Al–C–N films are studied using XPS analysis, which affirm Al–N, C–C, and C–N bonding. The FESEM analysis reveals that the deposited films are composed of nanoparticles and nanoparticle agglomerates. The size of the agglomerates increases at a higher number of focus deposition shots for multiple shot depositions. Nanoindentation results reveal the variation in mechanical properties (nanohardness and elastic modulus) of Al–C–N films deposited with multiple shots. The highest values of nanohardness and elastic modulus are found to be about 11 and 185 GPa, respectively, for the film deposited with 30 focus deposition shots. The mechanical properties of the films deposited using multiple shots are related to the Al content and C–N bonding.

  15. Studies on scalability and scaling laws for the plasma focus: similarities and differences in devices from 1 MJ to 0.1 J

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Pavez, Cristian; Tarifeño, Ariel; Moreno, José; Veloso, Felipe

    2010-10-01

    A comprehensive analysis of scaling laws for plasma focus devices producing neutrons is presented. Similarities and differences in plasma focus devices working with stored energies ranging from 1 MJ to 0.1 J are found. First, a brief review listing the most important results achieved by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission, CCHEN, is presented. The aim of the work at CCHEN has been to characterize the physics of dense plasma foci and also to carry out the design and construction of smaller devices—in terms of both input energy and size—capable of providing dense hot plasmas. Certain scaling rules have been found from this research. These rules combined with other scaling laws have been applied to design and construct plasma focus devices with storage energy in a region never explored before (tens of joules and less than 1 J). Thus, a comprehensive analysis also including results from other groups is presented. In particular, all the devices, from the largest to the smallest, maintain the same value of ion density, magnetic field, plasma sheath velocity, Alfvén speed and the quantity of energy per particle. Therefore, fusion reactions are even possible to obtain in ultraminiature devices (driven by generators of 0.1 J for example), as they are in the larger devices (driven by generators of 1 MJ). However, the stability of the plasma pinch highly depends on the size and energy of the device.

  16. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-12-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.

  17. Order of magnitude enhancement in neutron emission with deuterium-krypton admixture operation in miniature plasma focus device

    SciTech Connect

    Verma, Rishi; Lee, P.; Lee, S.; Springham, S. V.; Tan, T. L.; Rawat, R. S.; Krishnan, M.

    2008-09-08

    The effect of varied concentrations of deuterium-krypton (D{sub 2}-Kr) admixture on the neutron emission of a fast miniature plasma focus device was investigated. It was found that a judicious concentration of Kr in D{sub 2} can significantly enhance the neutron yield. The maximum average neutron yield of (1{+-}0.27)x10{sup 4} n/shot for pure D{sub 2} filling at 3 mbars was enhanced to (3.14{+-}0.4)x10{sup 5} n/shot with D{sub 2}+2% Kr admixture operation, which represents a >30-fold increase. More than an order of magnitude enhancement in the average neutron yield was observed over the broader operating range of 1-4 mbars for D{sub 2}+2% Kr and D{sub 2}+5% Kr admixtures.

  18. Specific features of X-ray generation by plasma focus chambers with deuterium and deuterium-tritium fillings

    NASA Astrophysics Data System (ADS)

    Dulatov, A. K.; Krapiva, P. S.; Lemeshko, B. D.; Mikhailov, Yu. V.; Moskalenko, I. N.; Prokuratov, I. A.; Selifanov, A. N.

    2016-01-01

    The process of hard X-ray (HXR) generation in plasma focus (PF) chambers was studied experimentally. The radiation was recorded using scintillation detectors with a high time resolution and thermoluminescent detectors in combination with the method of absorbing filters. Time-resolved analysis of the processes of neutron and X-ray generation in PFs is performed. The spectra of HXR emission from PF chambers with deuterium and deuterium-tritium fillings are determined. In experiments with PF chambers filled with a deuterium-tritium mixture, in addition to the HXR pulse with photon energies of up to 200-300 keV, a γ-ray pulse with photon energies of up to 2.5-3.0 MeV is recorded, and a mechanism of its generation is proposed.

  19. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  20. A dual-channel, focusing x-ray spectrograph with uniform dispersion for Z pinch plasmas measurement

    SciTech Connect

    Yang Qingguo; Li Zeren; Chen Guanhua; Ye Yan; Huang Xianbin; Cai Hongchun; Li Jing; Xiao Shali

    2012-01-15

    A dual-channel, focusing x-ray spectrograph with uniform dispersion (i.e., the linear dispersion of this spectrograph is a constant) is described for measuring the x-ray spectra emission from the hot, dense Al Z pinch plasmas. The spectrograph uses double uniform-dispersed crystals (e.g., a Quartz 1010 crystal and a Mica 002 crystal) as dispersion elements and a double-film box as detector to achieve the simultaneous recording of the time integrated spectrum covering a wide spectral range of {approx}5-9 A. Since this spectrograph disperse the x-rays on the detector plane with uniform spacing for every wavelength, it needs not the calibration of the wavelength with spatial coordinate, thereby own the advantages of easiness and veracity for spectra identification. The design of this spectrograph and the example of experiment on the ''Yang'' accelerator are presented.

  1. Application of the focusing x-ray spectrograph with crossed dispersion to investigations of X pinch plasmas

    SciTech Connect

    Pikuz, S.A.; Song, B.M.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.

    2004-10-01

    A new focusing spectrograph configuration with crossed dispersion (FSCD) has been developed for use in X pinch experiments. This device solves the problem in a crystal spectrograph of the overlapping of reflected radiation in many orders. The x-ray radiation from a small source is dispersed by a transmission grating before it reaches the Bragg reflector (mica crystal). A large aperture (10 mmx10 mm), 0.5 {mu}m period gold transmission grating was made on a 0.5 {mu}m thick Si{sub 3}N{sub 4} substrate and combined with spherically bent mica crystals with radii of curvature of 100 mm or 186 mm. Results of FSCD application to plasma experiments with X pinch x-ray sources is presented.

  2. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges.

    PubMed

    Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E

    2015-01-01

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed. PMID:25638081

  3. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  4. Monte Carlo simulation of neutron backscattering from concrete walls in the dense plasma focus laboratory of Bologna University.

    PubMed

    Frignani, M; Mostacci, D; Rocchi, F; Sumini, M

    2005-01-01

    Between 2001 and 2003 a 3.2 kJ dense plasma focus (DPF) device has been built at the Montecuccolino Laboratory of the Department of Energy, Nuclear and Environmental Control Engineering (DIENCA) of the University of Bologna. A DPF is a pulsed device in which deuterium nuclear fusion reactions can be obtained through the pinching effects of electromagnetic fields upon a dense plasma. The empirical scale law that governs the total D-D neutron yield from a single pulse of a DPF predicts for this machine a figure of approximately 10(7) fast neutrons per shot. The aim of the present work is to evaluate the role of backscattering of neutrons from the concrete walls surrounding the Montecuccolino DPF in total neutron yield measurements. The evaluation is performed by MCNP-5 simulations that are aimed at estimating the neutron spectra at a few points of interest in the laboratory, where neutron detectors will be placed during the experimental campaigns. Spectral information from the simulations is essential because the response of detectors is influenced by neutron energy. Comparisons are made with the simple r(-2) law, which holds for a DPF in infinite vacuum. The results from the simulations will ultimately be used both in the design and optimisation of the neutron detectors and in their final calibration and placement inside the laboratory. PMID:16381750

  5. On some necessary conditions for p-11B ignition in the hot spots of a plasma focus

    NASA Astrophysics Data System (ADS)

    Di Vita, Andrea

    2013-09-01

    Recently, it has been predicted that hydrogen-boron (p-11B) nuclear fusion may attain ignition in the hot spots observed in a plasma focus (PF) pinch, due to their huge values of particle density, magnetic field and (reportedly) ion temperature. Accordingly, large magnetic fields should raise electronic Landau levels, thus reducing collisional exchange of energy from ion to electrons and Bremsstrahlung losses. Moreover, large particle densities, together with ion viscous heating, should allow fulfilment of Lawson criterion and provide effective screening of cyclotron radiation. We invoke both well-known, empirical scaling laws of PF physics, Connor-Taylor scaling laws, Poynting balance of electromagnetic energy and the balance of generalised helicity. We show that the evolution of PF hot spots is a succession of relaxed states, described by the double Beltrami solutions of Hall-MHD equations of motion. We obtain some necessary conditions for ignition, which are violated in most realistic conditions. Large electromagnetic fields in the hot spot accelerate electrons at supersonic velocities and trigger turbulence, which raises electric resistivity and Joule heating, thus spoiling further compression. Ignition is only possible if a significant fraction of the Bremsstrahlung-radiated power is reflected back into the plasma. Injection of angular momentum decreases the required reflection coefficient.

  6. Design of a 100 J Dense Plasma Focus Z-pinch Device as a Portable Neutron Source

    NASA Astrophysics Data System (ADS)

    Jiang, Sheng; Higginson, Drew; Link, Anthony; Liu, Jason; Schmidt, Andrea

    2015-11-01

    The dense plasma focus (DPF) Z-pinch devices are capable of accelerating ions to high energies through MV/mm-scale electric fields. When deuterium is used as the filling gas, neutrons are generated through beam-target fusion when fast D beams collide with the bulk plasma. The neutron yield on a DPF scales favorably with current, and could be used as portable sources for active interrogation. Past DPF experiments have been optimized empirically. Here we use the particle-in-cell (PIC) code LSP to optimize a portable DPF for high neutron yield prior to building it. In this work, we are designing a DPF device with about 100 J of energy which can generate 106 - 107 neutrons. The simulations are run in the fluid mode for the rundown phase and are switched to kinetic to capture the anomalous resistivity and beam acceleration process during the pinch. A scan of driver parameters, anode geometries and gas pressures are studied to maximize the neutron yield. The optimized design is currently under construction. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL.

  7. Symmetry Group Formulation for Self-focusing of a Cylindrical Laser Beam in a Plasma with Nonlinearity Saturation

    NASA Astrophysics Data System (ADS)

    Dantu, Subbarao; Uma, R.

    2000-10-01

    The nonlinear Schrodinger equation in cylindrical geometry with saturating nonlinearity like the ponderomotive or relativistic nonlinearity in a plasma is analysed with the help of Symmetry Group Analysis. The symmetry group of the equation is deduced and a fiber-preserving subgroup of linear transformations are identified that leave such a nonlinear Schrodinger equation invariant. The MACSYMA-based Lie algebra of the symmetry group is realized to the extent possible. The theory results in an ordinary differential equation apart from a dictated beam profile. The resulting ordinary differential equation for self-focusing is compared with similar equations obtained from other existing theories of self-focusing in cylindrical geometry like the modified paraxial theory based on harmonic-oscillator basis, the moments theory and the variational theory . New types of solutions are identified and the limitations of the different methods are indicated.Acknowledgements: Financial assistance of CSIR(India)(Research Project,03(0815)/97/ EMR-II) for this work is acknowledged.

  8. The correlation of x-ray emission with pinch energy in a 1.5 kJ plasma focus

    NASA Astrophysics Data System (ADS)

    Hussain, S. S.; Ahmad, S.; Lee, S.; Zakaullah, M.

    2007-08-01

    Correlation of x-ray emission with pinch energy from a 1.5 kJ Mather-type plasma focus device for Ag and Sn inserts at the Cu tapered anode tip is reported. The space and time resolved x-ray emission characteristics are investigated by using a simple pinhole camera with appropriate filters and a multichannel pin-diode spectrometer. High voltage probe and Rogowski coil signals are used to estimate the pinch energy. At optimum conditions, the maximum x-ray yield in 4π-geometry is found to be 9 and 8 J/shot with efficiency of 0.6% and 0.5% for Sn and Ag inserted anodes. This is despite the fact that input energy converted to pinch energy is lower at 8% for Sn insert compared with 15% for the Ag insert. An increase in x-ray yield with an increase in pinch energy is observed for Sn as well as Ag. Pinhole images reveal that x-rays of energy less than 5 keV are emitted from the focus region and the high-energy x-rays are emanated from the anode tip.

  9. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  10. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  11. Self-focusing and defocusing of Gaussian laser beams in collisional underdense magnetized plasmas with considering the nonlinear ohmic heating and ponderomotive force effects

    SciTech Connect

    Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak

    2015-10-15

    The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show that the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.

  12. Angular distribution of energetic argon ions emitted by a 90 kJ Filippov-type plasma focus

    SciTech Connect

    Pestehe, S. J.; Mohammadnejad, M.

    2015-02-15

    Characteristics of the energetic argon ions emitted by a 90 kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3 Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.

  13. Characterization of x-rays pulses from a hundred joules plasma focus to study its effects on cancer cells.

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Avaria, G.; Pavez, C.; Bora, B.; Inestrosa Izurieta, M. J.; Diez, D.; Alvarez, O.; Tapia, J.; Marcelain, K.; Armisen, R.; Soto, L.

    2016-05-01

    With the purpose to study the effects of pulsed x-rays radiation on cancer cells, the total doses of x-ray pulses and the temporal duration of the pulse has been characterized in a hundred joules plasma focus device (PF-400J, 130 kA achieved in 300ns, 30 kV, 880 nF, 38 nH). TLD dosimeters were located outside of the discharge chamber, at 96 mm from the anode top. In addition, two photomultipliers with plastic scintillator were located in axial and radial directions. From the statistical analysis of the TLD and photomultiplier signals, was possible to estimate that a single shot has a total dose of the order of 30±15 µSv with a duration of the order of 12±3.6 ns at FWHM. Preliminary experiments using MCF7, a breast cancer cell line, were performed. Cells were irradiated at 96 mm from the anode top with 300 cumulative x-ray shots and cell proliferation was evaluated at 24, 48 and 72 hours later.

  14. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  15. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions

    PubMed Central

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921

  16. Solid-state pulsed power for driving a high-power dense plasma focus x-ray source

    NASA Astrophysics Data System (ADS)

    Petr, R.; Reilly, D.; Freshman, J.; Orozco, N.; Pham, D.; Ngo, L.; Mangano, J.

    2000-03-01

    Solid-state pulsed power technology has been successfully applied to a high average power dense plasma focus (DPF) x-ray point source. In the past, electrode erosion and the associated insulator lifetime have been the primary limiting factors for implementing a DPF x-ray source in a practical x-ray lithographic tool. The solid-state pulsed power supply described here uses fast-switching thyristors, diodes, and saturable magnetics to eliminate current reversal through the DPF electrodes. This has improved the DPF system performance and lifetime by reducing the electrode and insulator vaporization rates more than 20× compared to conventional sparkgap-switched drivers. Erosion measurements indicate that an electrode set can last more than 5 million shots before refurbishment. The DPF source produces an average energy of 7.3 J pulse into 4π Sr at a 1.1 keV effective wavelength in ˜1 Torr of neon gas at repetition rates up to 60 Hz. The x-ray yield efficiency is nominally 0.6%.

  17. Effect of deposition parameters on structural and mechanical properties of niobium nitride synthesized by plasma focus device

    NASA Astrophysics Data System (ADS)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Khalid, Nida

    2015-06-01

    Effects of deposition angle and axial distance on the structural and mechanical properties of niobium nitride synthesized by a dense plasma focus (DPF) system are studied. The x-ray diffraction (XRD) confirms that the deposition parameters affect the growth of multi-phase niobium nitride. Scanning electron microscopy (SEM) shows the granular surface morphology with strong thermally assisted coagulation effects observed at the 5-cm axial distance. The non-porous granular morphology observed at the 9-cm distance along the anode axis is different from those observed at deposition angles of 10° and 20°. Energy dispersive x-ray (EDX) spectroscopy reveals the maximum nitrogen content at the shortest (5 cm) axial position. Atomic force microscopy (AFM) exhibits that the roughness of coated films varies for coatings synthesized at different axial and angular positions, and the Vickers micro-hardness test shows that a maximum hardness value is (08.44 ± 0.01) GPa for niobium nitride synthesized at 5-cm axial distance, which is about 500% more than that of a virgin sample. Project supported by the HEC, Pakistan.

  18. X-ray characterization of a hundred joules plasma focus to study its effects on cancer cells

    NASA Astrophysics Data System (ADS)

    Jain, Jalaj; Moreno, Jose; Avaria, Gonzalo; Pavez, Cristian; Bora, Biswajit; Inestrosa-Izurieta, Maria Jose; Soto, Leopoldo; Diez, Daniela; Alvarez, Oscar; Tapia, Julio; Marcelain, Katherine; Armisen, Ricardo

    2014-10-01

    With the aim to study the effects of pulsed x-rays radiation on biological cells, in particular cancer cells, the total doses of x-ray pulses and the temporal duration of the pulse has been characterized in a hundred joules plasma focus device (PF-400 J, 130 kA achieved in 300 ns). TLD dosimeters were located outside of the discharge chamber, at 96 mm from the anode top. In addition, two photomultipliers with plastic scintillator were located in axial and radial directions. Several sequences of accumulative shots were obtained (260, 380, 980 shots). From the statistical analysis of the TLD and photomultiplier signals was possible to estimate that a single shot have a total dose in the order of 30 +/- 15 micro Sv with a duration of the order of 12 +/- 3.6 ns at FWHM. Preliminary experiments using MCF7, a breast cancer cell line, were performed. Cells were irradiated at 96 mm from the anode top with 260, 380 and 980 cumulative x-ray shots and cell survival was evaluated at 24, 48 and 72 hours later. The effects are compared with cells irradiated by a continuous x-ray source. Supported by CONICYT Grant ACT-1115.

  19. Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings

    NASA Astrophysics Data System (ADS)

    Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Golikov, A. V.; Andreev, D. A.; Mikhailov, Yu V.; Prokuratov, I. A.; Selifanov, A. N.

    2015-11-01

    Development of neutron generators using plasma focus (PF) chambers is being conducted in the All-Russia Scientific Research Institute of Automatics (VNIIA) during more than 25 years. PF is a source of soft and hard x-rays and neutrons 2.5 MeV (D) or 14 MeV (DT). Pulses of x-rays and neutrons have a duration of about several tens of nanoseconds, which defines the scope of such generators—the study of ultrafast processes. VNIIA has developed a series of pulse neutron generators covering the range of outputs 107-1012 n/pulse with resources on the order of 103-104 switches, depending on purposes. Generators have weights in the range of 30-700 kg, which allows referring them to the class of transportable generators. Generators include sealed PF chambers, whose manufacture was mastered by VNIIA vacuum tube production plant. A number of optimized PF chambers, designed for use in generators with a certain yield of neutrons has been developed. The use of gas generator based on gas absorber of hydrogen isotopes, enabled to increase the self-life and resource of PF chambers. Currently, the PF chambers withstand up to 1000 switches and have the safety of not less than 5 years. Using a generator with a gas heater, significantly increased security of PF chambers, because deuterium-tritium mixture is released only during work, other times it is in a bound state in the working element of the gas generator.

  20. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  1. A 109 neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Kaushik, T. C.; Gupta, Satish C.

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 108 neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.

  2. Damage threshold and focusability of mid-infrared free-electron laser pulses gated by a plasma mirror with nanosecond switching pulses

    SciTech Connect

    Wang, Xiaolong; Nakajima, Takashi; Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2013-11-04

    The presence of a pulse train structure of an oscillator-type free-electron laser (FEL) results in the immediate damage of a solid target upon focusing. We demonstrate that the laser-induced damage threshold can be significantly improved by gating the mid-infrared FEL pulses with a plasma mirror. Although the switching pulses we employ have a nanosecond duration which does not guarantee the clean wavefront of the gated FEL pulses, the high focusability is experimentally confirmed through the observation of spectral broadening by a factor of 2.1 when we tightly focus the gated FEL pulses onto the Ge plate.

  3. γ-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation.

    PubMed

    Sato, Katsutoshi; Nishikino, Masaharu; Okano, Yasuaki; Ohshima, Shinsuke; Hasegawa, Noboru; Ishino, Masahiko; Kawachi, Tetsuya; Numasaki, Hodaka; Teshima, Teruki; Nishimura, Hiroaki

    2010-10-01

    The usefulness of laser plasma X-ray pulses for medical and radiation biological studies was investigated, and the effects of laser plasma X rays were compared with those of conventional sources such as a linear accelerator. A cell irradiation system was developed that used copper-Kα (8 keV) lines from an ultrashort high-intensity laser to produce plasma. The absorbed dose of the 8 keV laser plasma X-ray pulse was estimated accurately with Gafchromic® EBT film. When the cells were irradiated with approximately 2 Gy of laser plasma X rays, the circular regions on γ-H2AX-positive cells could be clearly identified. Moreover, the numbers of γ-H2AX and phosphorylated ataxia telangiectasia mutated (ATM) foci induced by 8 keV laser plasma X rays were comparable to those induced by 4 MV X rays. These results indicate that the laser plasma X ray source may be useful for radiation biology studies. PMID:20718602

  4. Generalization of the Bennett equilibrium condition for a relativistic electron beam propagating in the Ohmic plasma channel and ion focusing regime along an external magnetic field

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.; Manuilov, A. S.

    2016-04-01

    The problem of formulating the generalization of the Bennett equilibrium condition is considered for a relativistic electron beam propagating in the Ohmic plasma channel, as well as in the ion focusing regime in the presence of an external longitudinal uniform magnetic field. We assume that the electron component of the background plasma is not completely removed from the region occupied by the beam. This equilibrium condition is derived using the mass and momentum transport equations obtained for a paraxial monoenergetic beam from the Fokker-Planck kinetic equation.

  5. Observation of a strong correlation between electromagnetic soliton formation and relativistic self-focusing for ultra-short laser pulses propagating through an under-dense plasma

    SciTech Connect

    Zhu Bin; Wu Yuchi; Dong Kegong; Hong Wei; Teng Jian; Zhou Weimin; Cao Leifeng; Gu Yuqiu

    2012-10-15

    A strong correlation is observed between the formation of electromagnetic solitons, generated during the interaction of a short intense laser pulse (30 fs, {approx}10{sup 18} W/cm{sup 2}) with a rarefied (<0.1n{sub c}) plasma, and pulse self-focusing. Pulse defocusing, which occurs after soliton generation, results in laser-pulse energy depletion. The role of stimulated Raman scattering in soliton generation is analyzed from 2D particle-in-cell simulations. An observed relationship between initial plasma density and soliton generation is presented that might have relevance to wake-field accelerators.

  6. The dispersive Alfven wave in the time-stationary limit with a focus on collisional and warm-plasma effects

    SciTech Connect

    Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.

    2008-05-15

    A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.

  7. The nonlinear interplay between Raman scattering, self-focusing, and hosing of intense short-pulse lasers propagating in an underdense plasma

    NASA Astrophysics Data System (ADS)

    Tzeng, Kuo-Cheng

    1998-11-01

    Understanding the propagation of short-pulse high intensity lasers through Rayleigh lengths of underdense plasma is essential for the successful development of laser-plasma accelerator schemes and the fast ignitor fusion concept. When short-pulse lasers propagate through underdense plasmas they are susceptible to a wide range of instabilities, including Raman scattering, spot size self-modulation, relativistic self-focusing, and hosing. Furthermore, the highly nonlinear interplay between these instabilities leads to the generation of relativistic plasma waves which can wave break, generating kA's of relativistic electrons with energies up to ≈100 MeV. To unravel this complex interplay of instabilities, we use a fully relativistic parallelized particle-in-cell code. The simulations show that for parameters relevant to several ongoing laser-plasma accelerator experiments that significant laser absorption occurs within Rayleigh length distances, that Raman scattering and plasma heating can suppress self-focusing and ponderomotive blowout, and that the final nonlinear state of the pulses is dominated by a long wavelength hosing instability. The simulations also provide details of the characteristics of the accelerated electrons including, the self-trapping mechanism, their maximum energy, energy spread and emittance. The simulations show that the maximum energy can exceed simple dephasing estimates in agreement with recent experimental observations. This work was done in collaboration with R.G.Hemker, B.J.Duda, W.B.Mori and T.Katsouleas Work supported by DOE grants DE-FG-03-92-ER40727 and DE-FG-03-98-DP00211, LLNL contract W-7405-ENG-48, and NSF grant DMS-9722121. *Currently at Capital Management Sciences, Los Angeles

  8. The electromagnetic Ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    NASA Astrophysics Data System (ADS)

    Bostick, W. H.; Nardi, V.

    1985-08-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.

  9. The electromagnetic ram action of the plasma focus as a paradigm for the generation of cosmic rays and the gigantic jets in active galaxies

    NASA Technical Reports Server (NTRS)

    Bostick, W. H.; Nardi, V.

    1985-01-01

    Recent measurements of the energy spectrum of the plasma-focus-generated deuteron beam yield as spectrum of the form N(E)=(approx.) E to the -2.7 for 1MeV E 13 MeV. Other measurements show that the beta 1 electron beam which is generated simultaneously with the deuteron beam is interrupted into segments of spacing 25ps and duration approximately 4ps. A stuttering-electro-magnetic-ram (ser) model of the plasma focus in proposed which is similar to Raudorf's electronic ram which produces a similar spectrum for an electron beam for 1Mev E 10MeV. It is proposed that the cosmic ray spectrum and the giganic galactic jets are both generated by ser action near the centers of active galaxies.

  10. Coded aperture imaging of fusion source in a plasma focus operated with pure D{sub 2} and a D{sub 2}-Kr gas admixture

    SciTech Connect

    Springham, S. V.; Talebitaher, A.; Shutler, P. M. E.; Rawat, R. S.; Lee, P.; Lee, S.

    2012-09-10

    The coded aperture imaging (CAI) technique has been used to investigate the spatial distribution of DD fusion in a 1.6 kJ plasma focus (PF) device operated in, alternatively, pure deuterium or deuterium-krypton admixture. The coded mask pattern is based on a singer cyclic difference set with 25% open fraction and positioned close to 90 Degree-Sign to the plasma focus axis, with CR-39 detectors used to register tracks of protons from the D(d, p)T reaction. Comparing the coded aperture imaging proton images for pure D{sub 2} and D{sub 2}-Kr admixture operation reveals clear differences in size, density, and shape between the fusion sources for these two cases.

  11. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.

    2011-08-15

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  12. A range-based method to calibrate a magnetic spectrometer measuring the energy spectrum of the backward electron beam of a plasma focus

    NASA Astrophysics Data System (ADS)

    Ceccolini, E.; Rocchi, F.; Mostacci, D.; Sumini, M.; Tartari, A.

    2011-08-01

    The electron beam emitted from the back of plasma focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A plasma focus device is being developed for this purpose, and there is a need for characterizing its electron beam, particularly, insofar as the energy spectrum is concerned. The instrument used is a magnetic spectrometer. To calibrate this spectrometer, a procedure relying on the energy-range relation in Mylar® has been devised and applied. By measuring the transmission through increasing thicknesses of the material, electron energies could be assessed and compared to the spectrometer readings. Thus, the original calibration of the instrument has been extended to higher energies and also to better accuracy. Methods and results are presented.

  13. Design a 10 kJ IS Mather Type Plasma Focus for Solid Target Activation to Produce Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Adlparvar, S.; Sheibani, S.; Elahi, M.; Safarien, A.; Farhangi, S.; Zirak, A. R.; Alhooie, S.; Mortazavi, B. N.; Khalaj, M. M.; Khanchi, A. R.; Dabirzadeh, A. A.; Kashani, A.; Zahedi, F.

    2010-10-01

    A 10 kJ (15 kV, 88 μF) IS (Iranian Sun) Mather type plasma focus device has been studied to determine the activity of a compound exogenous carbon solid target through 12C(d,n)13N nuclear reaction. The produced 13N is a short-lived radioisotope with a half-life of 9.97 min and threshold energy of 0.28 MeV. The results indicate that energetic deuterons impinging on the solid target can produce yield of = 6.7 × 10-5 with an activity of A = 6.8 × 104 Bq for one plasma focus shut and A ν = 4 × 105 Bq for 6 shut per mint when the projectile maximum deuterons energy is E max = 3 MeV.

  14. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication

    NASA Astrophysics Data System (ADS)

    Saw, S. H.; Damideh, V.; Chong, P. L.; Lee, P.; Rawat, R. S.; Lee, S.

    2014-08-01

    This paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 × 450 µF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long-duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.

  15. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  16. Calibration of the RSS-131 high efficiency ionization chamber for radiation dose monitoring during plasma experiments conducted on plasma focus device

    NASA Astrophysics Data System (ADS)

    Szewczak, Kamil; Jednoróg, Sławomir

    2014-10-01

    Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse -1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (˜100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.

  17. Anomalous resistivity effect on multiple ion beam emission and hard x-ray generation in a Mather type plasma focus device

    SciTech Connect

    Behbahani, R. A.; Aghamir, F. M.

    2011-10-15

    Multi ion beam and hard x-ray emissions were detected in a high inductance (more than 100 nH) Mather type plasma focus (PF) device at different filling gas pressures and charging voltages. The signal analysis was performed through the current trace, as it is the fundamental signal from which all of the phenomena in a PF device can be extracted. Two different fitting processes were carried out according to Lee's computational (snow-plow) model. In the first process, only plasma dynamics and classical (Spitzer) resistances were considered as energy consumer parameters for plasma. This led to an unsuccessful fitting and did not answer the energy transfer mechanism into plasma. A second fitting process was considered through the addition of anomalous resistance, which provided the best fit. Anomalous resistance was the source of long decrease in current trace, and multi dips and multi peaks of high voltage probe. Multi-peak features were interpreted considering the second fitting process along with the mechanisms for ion beam production and hard x-ray emission. To show the important role of the anomalous resistance, the duration of the current drop was discussed.

  18. PLASMA WINDOW FOR VACUUM - ATMOSPHERE INTERFACE AND FOCUSING LENS OF SOURCES FOR NON-VACUUM MATERIAL MODIFICATION.

    SciTech Connect

    HERSHCOVITCH,A.

    1997-09-07

    Material modifications by ion implantation, dry etching, and micro-fabrication are widely used technologies, all of which are performed in vacuum, since ion beams at energies used in these applications are completely attenuated by foils or by long differentially pumped sections, which ate currently used to interface between vacuum and atmosphere. A novel plasma window, which utilizes a short arc for vacuum-atmosphere interface has been developed. This window provides for sufficient vacuum atmosphere separation, as well as for ion beam propagation through it, thus facilitating non-vacuum ion material modification.

  19. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  20. Self-focusing and stimulated Brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma

    SciTech Connect

    Niknam, A. R.; Barzegar, S.; Hashemzadeh, M.

    2013-12-15

    The nonlinear dynamics of electromagnetic waves propagating through a plasma considering the effects of relativistic mass and ponderomotive nonlinearities is investigated. The modified electron density distribution, the dispersion relation, and the spatial profiles of electromagnetic wave amplitude in the plasma are obtained. It is shown that the cut-off frequency decreases, and there is an intensity range in which the ponderomotive self-focusing takes place. In the upper limit of this range, the laser beam is defocused due to the relativistic ponderomotive force. In addition, the stability of electromagnetic waves to stimulated Brillouin scattering is studied, and the backscattered wave resulting from decay of high power electromagnetic beam is resolved in relativistic regime. The study of effects of electron density and temperature on the growth rate of backscattered wave has been shown that by increasing these effects, the growth rate of instability increases.

  1. Re-appraisal and extension of the Gratton-Vargas two-dimensional analytical snowplow model of plasma focus. II. Looking at the singularity

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2015-11-01

    The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.

  2. Re-appraisal and extension of the Gratton-Vargas two-dimensional analytical snowplow model of plasma focus. II. Looking at the singularity

    SciTech Connect

    Auluck, S. K. H.

    2015-11-15

    The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.

  3. Mechanical and Chemical Characterization of a TiC/C System Synthesized Using a Focus Plasma Arc

    PubMed Central

    Mahmoodian, Reza; Hamdi, M.; Hassan, M. A; Akbari, Abolghasem

    2015-01-01

    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product’s properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials. PMID:26111217

  4. Ablation of polymers by focused EUV radiation from a table-top laser-produced plasma source

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Mann, Klaus

    2011-10-01

    We have investigated ablation of polymers with radiation of 13.5 nm wavelength, using a table-top laser produced plasma source based on solid gold as target material. A Schwarzschild objective with Mo/Si multilayer coatings was adapted to the source, generating an EUV spot of 5 μm diameter with a maximum energy density of ˜1.3 J/cm2. In combination with a Zirconium transmission filter, radiation of high spectral purity (2% bandwidth) can be provided on the irradiated spot. Ablation experiments were performed on PMMA, PTFE and PC. Ablation rates were determined for varying fluences using atomic force microscopy and white light interferometry. The slopes of these curves are discussed with respect to the chemical structure of the polymers. Additionally, the ablation behavior in terms of effective penetration depths, threshold fluences and incubation effects is compared to literature data for higher UV wavelength.

  5. Mechanical and Chemical Characterization of a TiC/C System Synthesized Using a Focus Plasma Arc.

    PubMed

    Mahmoodian, Reza; Hamdi, M; Hassan, M A; Akbari, Abolghasem

    2015-01-01

    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials. PMID:26111217

  6. Study of Pyrex and quartz insulators contamination effect on the X-ray intensity in a 4-kJ plasma focus device

    SciTech Connect

    Habibi, M. Sharifi, R.; Amrollahi, R.

    2013-12-15

    The variation of the X-ray intensity has been investigated with the Pyrex and quartz insulators surface contamination in a 4-kJ plasma focus device with argon gas at 11.5-kV charging voltage. Elemental analysis (EDAX) showed that the Cu evaporated from the electrode material and was deposited on the sleeve surface improves the breakdown conditions. A small level of sleeve contamination by copper is found to be essential for good focusing action and high HXR intensity. The SEM imaging showed the grain-type structure of Cu formed on the surface and it changed the surface property. Resistance measurements of original and coated Pyrex surface proved that the copper deposition on the sleeve surface will reduce its resistance as compared to the almost infinitely large resistance of the uncontaminated sleeve. As the contamination is surpassed to some critical level, the HXR intensity from the device is deteriorated.

  7. Symmetry Group Analysis of Self-focusing in a Nonlinear Schrodinger Equation in Cylindrical Geometry With Saturating Nonlinearity of a Plasma

    NASA Astrophysics Data System (ADS)

    Dantu, Subbarao; Ramanathan, Uma

    2000-04-01

    The nonlinear Schrodinger equation with saturating nonlinearity like the ponderomotive nonlinearity in a plasma is analysed with the help of Symmetry Group Analysis. The symmetry group of the equation is deduced and a fiber-preserving subgroup of linear transformations are identified that leave such a nonlinear Schrodinger equation invariant. The MACSYMA-based Lie algebra of the symmetry group is realized to the extent possible. The theory results in an ordinary differential equation apart from a dictated beam profile. The resulting ordinary differential equation for self-focusing is compared with similar equations obtained from other existing theories of self-focusing in cylindrical geometry like the moments theory, the variational theory and the modified paraxial theory based on harmonic-oscillator modes. New types of solutions are identified and the limitations of the different methods are indicated.Acknowledgements: Financial assistance of CSIR(India)(Research Project,03(0815)/97/ EMR-II) for this work is acknowledged.

  8. Use of delayed gamma rays for active non-destructive assay of 235U irradiated by pulsed neutron source (plasma focus)

    NASA Astrophysics Data System (ADS)

    Andola, Sanjay; Niranjan, Ram; Kaushik, T. C.; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Tomar, B. S.; Ramakumar, K. L.; Gupta, S. C.

    2014-07-01

    A pulsed neutron source based on plasma focus device has been used for active interrogation and assay of 235U by monitoring its delayed high energy γ-rays. The method involves irradiation of fissile material by thermal neutrons obtained after moderation of a burst of neutrons emitted upon fusion of deuterium in plasma focus (PF) device. The delayed gamma rays emitted from the fissile material as a consequence of induced fission were detected by a large volume sodium iodide (NaI(Tl)) detector. The detector is coupled to a data acquisition system of 2k input size with 2k ADC conversion gain. Counting was carried out in pulse height analysis mode for time integrated counts up to 100 s while the temporal profile of delayed gamma has been obtained by counting in multichannel scaling mode with dwell time of 50 ms. To avoid the effect of passive (natural) and active (from surrounding materials) backgrounds, counts have been acquired for gamma energy between 3 and 10 MeV. The lower limit of detection of 235U in the oxide samples with this set-up is estimated to be 14 mg.

  9. On the Angular Distribution of Neutrons Protons and X-Rays from a Small Dense Plasma Focus Machine

    SciTech Connect

    Herrera, J.J.E.; Castillo, F.; Gamboa, I.; Rangel, R.; Espinosa, G.; Golzarri, J. I.

    2006-01-05

    Time integrated measurements of the angular distributions of neutrons, protons and X-rays are made, inside the discharge chamber of the FN-II device, using passive detectors. A set of detectors was placed on a semi-circular Teflon registered holder, 13 cm. around the plasma column, and covered with 15 {mu}m Al filters, thus eliminating energetic ions from the expansion of the discharge, as well as tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. It is found that the detectors on the upper side of the holder show two distinctively different distributions of track diameters. The distribution of the smaller ones, is sharper than that of the larger ones, and are presumably originated by a wide angle beam of protons. The distribution of the ones on the lower side of the holder, which can only be attributed to charged particles which result as a recoil of neutron collisions, are slightly shifted to larger diameters. The angular distribution of X-rays is also studied within the chamber with TLD-200 dosimeters. While the neutron and proton angular distributions can be fitted by single maximum distributions, the X-ray one shows two maxima around the axis.

  10. Study of ions and neutrons from a dense plasma focus instrument by means of nuclear tracks detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Golzarri, J. I.; Herrera, J. J. E.; Martınez, H.; Rangel, J.; Espinosa, G.

    2014-07-01

    A most interesting feature of dense plasma foci is the acceleration of charge particle at energy in the range of MeV per nucleon. Using deuterium gas, this devices produce fusion D-D reactions, generating fast neutron pulses (˜ 2.5 MeV). This work describes the studies of this phenomenon in a low energy device (˜ 5 kJ) with a 3 cm diameter and 10 cm long, copper inner electrode. The outer electrode is 10 cm in diameter. The device is operated with four 1.863 μF capacitor in parallel at 38 kV. Neutrons and accelerated particles are analyzed with PADC material detectors (CR-39 Lantrack®) for 2.75 Torr of pressure. A detailed study is made of track diameters when the plastic is chemically etched with, 6N KOH at 60°C (±1) for 18 h. Accelerated deuterons in the range of 1 to 10 MeV are observed.

  11. Measurement of magnetic field and velocity profiles in 3.6 kJ United Nations University/International Center For Theoretical Physics plasma focus fusion device

    SciTech Connect

    Mathuthu, M.; Zengeni, T.G.; Gholap, A.V.

    1996-12-01

    A Mather-type small plasma focus device was operated in air filling in the pressure range of 0.5 to 1.0 Torr and capacitor bank charging voltage of 13{endash}15 kV. A strong focusing action was observed in this pressure range. Magnetic probe signals at various axial positions were used to estimate velocity of current sheet and axial magnetic field distribution profiles. It was observed that under the present experimental conditions the magnetic field remains constant at 0.72 T from {ital z}=0.0 cm to {ital z}=8.0 cm but falls rapidly to 0.52 T at about {ital z}=14.5 cm at a fixed radial distance of 2.65 cm. The magnetic field and velocity measurements indicate a current shedding effect{emdash}only 68.5{percent} of the total injected current flows into the focus region. The rapid drop of the magnetic field at {ital z}=8.0 cm suggests that further (initial shedding is at the insulator) current and mass shedding in the focus tube is significant after this value of {ital z}. Experimental values of velocity of the current sheet are compared with those of the snow plough theoretical model. {copyright} {ital 1996 American Institute of Physics.}

  12. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Cornish, S.; Khachan, J.

    2016-02-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.

  13. Nitrogen soft and hard X-ray emissions using different shapes of anodes in a 4-kJ plasma focus device

    NASA Astrophysics Data System (ADS)

    Mahtab, M.; Habibi, M.

    2013-12-01

    The effect of different anode tip geometries on the intensity of soft and hard X-rays emitted from a 4-kJ plasma focus device is investigated using five different anode tips. The shapes of the uppermost region of these anodes (tips) have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat, and cone-hollow. For time-resolved measurement of the emitted X-rays, several BPX-65 pin diodes covered by different filters and a fast plastic scintillator are used. Experimental results have shown that, the highest intensity of the both soft and hard X-ray is recorded in cone-flat, spherical-convex, and cone-hollow tips, respectively. The use of cone-flat anode tip has augmented the emitted X-ray three times.

  14. Angular distribution of ion beam emitted from a 3.5 kJ plasma focus device using different shapes of anodes

    NASA Astrophysics Data System (ADS)

    Habibi, Morteza

    2016-01-01

    The distribution of argon ion beam emitted from a small plasma focus device (PFD) with four different anode tips i.e., cylindrical with a flat top, cylindrical with a hollow top, cone with a flat top, and cone with a hollow top is studied at various working pressures. The angular distribution of ions is significantly reduced at angles higher than ± 11 ° and the maximum ion emission is between 0° and 11°. The maximum ion flux of about 5.57 ×1012 ions/steradian is obtained with cylindrical-flat anode tip that increases to 9.82 ×1012 ions/steradian per shot for cone-flat anode tip.

  15. Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities

    SciTech Connect

    Batra, Karuna; Mitra, Sugata; Subbarao, D.; Sharma, R.P.; Uma, R.

    2005-01-01

    The task for the present study is to make an investigation of self-similarity in a self-focusing laser beam both theoretically and numerically using graphical user interface based interactive computer simulation model in MATLAB (matrix laboratory) software in the presence of saturating ponderomotive force based and relativistic electron quiver based plasma nonlinearities. The corresponding eigenvalue problem is solved analytically using the standard eikonal formalism and the underlying dynamics of self-focusing is dictated by the corrected paraxial theory for slow self-focusing. The results are also compared with computer simulation of self-focusing by the direct fast Fourier transform based spectral methods. It is found that the self-similar solution obtained analytically oscillates around the true numerical solution equating it at regular intervals. The simulation results are the main ones although a feasible semianalytical theory under many assumptions is given to understand the process. The self-similar profiles are called as self-organized profiles (not in a strict sense), which are found to be close to Laguerre-Gaussian curves for all the modes, the shape being conserved. This terminology is chosen because it has already been shown from a phase space analysis that the width of an initially Gaussian beam undergoes periodic oscillations that are damped when any absorption is added in the model, i.e., the beam width converges to a constant value. The research paper also tabulates the specific values of the normalized phase shift for solutions decaying to zero at large transverse distances for first three modes which can, however, be extended to higher order modes.

  16. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  17. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  18. Simultaneous determination of citalopram, fluoxetine, paroxetine and their metabolites in plasma by temperature-programmed packed capillary liquid chromatography with on-column focusing of large injection volumes.

    PubMed

    Molander, P; Thomassen, A; Kristoffersen, L; Greibrokk, T; Lundanes, E

    2002-01-01

    A miniaturized temperature-programmed packed capillary liquid chromatographic method with on-column large volume injection and UV detection for the simultaneous determination of the three selective serotonin reuptake inhibitors citalopram, fluoxetine, paroxetine and their metabolites in plasma is presented. An established reversed-phase C8 solid-phase extraction method was employed, and the separation was carried out on a 3.5-microm Kromasil C18 0.32x300 mm column with temperature-programming from 35 (3 min) to 100 degrees C (10 min) at 1.3 degrees C/min. The mobile phase consisted of acetonitrile-45 mM ammonium formate (pH 4.00) (25:75, v/v). The non-eluting sample focusing solvent composition acetonitrile-45 mM ammonium formate (pH 4.00) (3:97, v/v) allowed injection of 10 microl or more of the plasma extracts. The method was validated for the concentration range 0.05-5.0 microM, and the calibration curves were linear with coefficients of correlation >0.993. The limits of quantification for the antidepressants and their metabolites ranged from 0.05 to 0.26 microM. The within and between assay precision of relative peak height were in the range 2-22 and 2-15% relative standard deviation, respectively. The within and between assay recoveries were in the 61-99 and 54-92% range for the antidepressants, respectively, and between 52-102 and 51-102% for the metabolites. PMID:11820298

  19. Protein/ionic liquid/glassy carbon sensors following analyte focusing by ionic liquid micelle collapse for simultaneous determination of water soluble vitamins in plasma matrices.

    PubMed

    Abd El-Hady, D; Albishri, H M

    2015-07-01

    Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices. PMID:25882421

  20. Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry.

    PubMed

    Silva, Milithza; Kyser, Kurt; Beauchemin, Diane

    2007-02-19

    A focused microwave digestion system was used to heat a mini-column of sample of crushed rock (hematite) during its successive leaching by repeated 250-microL injections of water, HNO(3) 1%, 10% and 30% (v/v). The mini-column was connected to the nebulizer of an inductively coupled plasma mass spectrometry instrument, which allowed a continuous monitoring of the progressive release of elements by a given leaching reagent. Quantitation of the accessible fraction of Mg, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Sb and Pb was done by calibration using 250-microL injections of standard solutions prepared in the leaching reagent matrices. Total digestion of the sample residue was also done to verify mass balance. With the exception of Mg, V and Co, where the same total amount was released with or without microwave heating, an increased release resulted from focused microwave heating, by up to an order of magnitude. Furthermore, mass balance was verified for more elements using microwave heating, presumably because of a lower relative proportion of spectroscopic interference as a result of an increased release of analytes. Using microwave energy in general resulted in the dissolution of additional phases, as evidenced by significantly different (208)Pb/(206)Pb ratios as well as the increased release of elements with milder reagents. In fact, in the case of Pb, leaching with 30% HNO(3) was no longer necessary as all the Pb was released in the first three leaching reagents. Microwave heating could therefore be used advantageously in on-line leaching for exploration geochemistry and environmental monitoring. PMID:17386636

  1. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2014-10-01

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.

  2. Overcritical plasma ignition and diagnostics from oncoming interaction of two color low energy tightly focused femtosecond laser pulses inside fused silica

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Bezsudnova, Yu I.; Mareev, E. I.; Starostin, V. M.; Platonenko, V. T.; Gordienko, V. M.

    2016-04-01

    We report overcritical (3.3  ×  1021 cm-3) microplasma produced by low energy colliding IR (infrared) (1.24 μm) and visible (0.62 μm) femtosecond pulses tightly focused (NA  =  0.5) into the bulk of fused silica with on-line monitoring based on third harmonic generated by the IR beam. It was established that the absorbed energy density is the key parameter that determines the micromodification formation threshold and in our experimental conditions it is close to 4.5 kJ cm-3. Non-monotonic behavior of the third harmonic signal as a function of time delay between visible (0.62 μm) and IR (1.24 μm) femtosecond pulses demonstrates the qualitative differences about the two phenomena: one is the seed electrons generation by the visible pulse via multiphoton ionization and second is the avalanche ionization by the IR pulse. We predict that the tandem two-color excitation of wide-bandgap dielectric in comparison with single-color pulse interaction regime allows providing a much higher absorbed energy density and overcritical plasma.

  3. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    SciTech Connect

    Auluck, S. K. H.

    2014-10-15

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.

  4. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    SciTech Connect

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  5. Energy- and time-resolved measurements of fast ions emitted from plasma-focus discharges by means of a Thomson spectrometer

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, R.; Czaus, K.; Paduch, M.; Sadowski, M. J.; Skladnik-Sadowska, E.; Zaloga, D. R.; Zielinska, E.; Żebrowski, J.

    2015-09-01

    The paper presents results of time-resolved measurements of fast deuterons emitted from high-current discharges of the Plasma-Focus (PF) type. The measurements were performed in a modified PF-1000U facility which is operated at the IFPiLM in Warsaw, Poland. The device was equipped with a fast-acting gas valve placed inside the inner electrode and oriented along the z-axis. The valve could inject a small volume of a chosen gas in front of this electrode. The PF discharges were initiated at the initial deuterium pressure equal to 1.6 or 2 hPa, with or without the use of the gas-puffing. Such discharges emitted intense beams of accelerated primary ions and X-ray pulses as well as products of nuclear fusion reactions. The reported measurements of the fast ion beams were performed by means of a Thomson-type spectrometer located at a chosen distance at the z-axis and equipped with miniature scintillation detectors. These detectors were placed in different points upon the deuteron parabola which corresponded to determined energy values. The detectors configuration allowed us to determine instants of the ion emission (using a TOF technique) and to compare them with instants of the X-ray emission. The collected data provided important information about emission characteristics of the modified PF-1000U facility.

  6. Preliminary Results of IS Plasma Focus as a Breeder of Short-Lived Radioisotopes 12C(d,n)13N

    NASA Astrophysics Data System (ADS)

    Sadat Kiai, S. M.; Elahi, M.; Adlparvar, S.; Shahhoseini, E.; Sheibani, S.; Ranjber akivaj, H.; Alhooie, S.; Safarien, A.; Farhangi, S.; Aghaei, N.; Amini, S.; Khalaj, M. M.; Zirak, A. R.; Dabirzadeh, A. A.; Soleimani, J.; Torkzadeh, F.; Mousazadeh, M. M.; Moradi, K.; Abdollahzadeh, M.; Talaei, A.; Zaeem, A. A.; Moslehi, A.; Kashani, A.; Babazadeh, A. R.; Bagiyan, F.; Ardestani, M.; Roozbahani, A.; Pourbeigi, H.; Tajik Ahmadi, H.; Ahmadifaghih, M. A.; Mahlooji, M. S.; Mortazavi, B. N.; Zahedi, F.

    2011-04-01

    Modified IS (Iranian Sun) plasma focus (10 kJ,15 kV, 94 μF, 0.1 Hz) has been used to produce the short-lived radioisotope 13N (half-life of 9.97 min) through 12C(d,n)13N nuclear reaction. The filling gas was 1.5-3 torr of hydrogen (60%) deuterium (40%) mixture. The target was solid nuclear grade graphite with 5 mm thick, 9 cm width and 13 in length. The activations of the exogenous target on average of 20 shots (only one-third acceptable) through 10-13 kV produced the 511 keV gamma rays. Another peak found at the 570 keV gamma of which both was measured by a NaI portable gamma spectrometer calibrated by a 137Cs 0.25 μCi sealed reference source with its single line at 661.65 keV and 22Na 0.1 μCi at 511 keV. To measure the gamma rays, the graphite target converts to three different phases; solid graphite, powder graphite, and powder graphite in water solution. The later phase approximately has a doubled activity with respect to the solid graphite target up to 0.5 μCi of 511 keV and 1.1 μCi of 570 keV gamma lines were produced. This increment in activity was perhaps due to structural transformation of graphite powder to nano-particles characteristic in liquid water.

  7. A 10(9) neutrons/pulse transportable pulsed D-D neutron source based on flexible head plasma focus unit.

    PubMed

    Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C

    2016-03-01

    A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head. PMID:27036774

  8. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelectric focusing followed by nano-LC-MS/MS.

    PubMed

    Michel, Philippe E; Crettaz, David; Morier, Patrick; Heller, Manfred; Gallot, Denis; Tissot, Jean-Daniel; Reymond, Frédéric; Rossier, Joel S

    2006-03-01

    This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets. PMID:16470776

  9. Plasma sheath driven targets

    NASA Astrophysics Data System (ADS)

    Brownell, J. H.; Freeman, B. L.

    1980-02-01

    Plasma focus driven target implosions are simulated using hydrodynamic-burn codes. Support is given to the idea that the use of a target in a plasma focus should allow 'impedance matching' between the fuel and gun, permitting larger fusion yields from a focus-target geometry than the scaling laws for a conventional plasma focus would predict.

  10. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    SciTech Connect

    Mikhail, Dorf A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2010-02-02

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe . Here, ωce and ω pe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/ c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ω cr ce = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  11. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  12. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  13. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping

    NASA Astrophysics Data System (ADS)

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Shi, Xueshong; Wang, Qingsong; Wang, Guoyan; Lu, Yongfeng

    2016-03-01

    The light-speed propagation of a focused femtosecond (fs) laser pulse in air was recorded by a pump-probe shadowgraph imaging technique with femtosecond time resolution. The ultrafast dynamics of the laser-ionized electrons were studied, which revealed a strong reshaping of the laser field due to laser-air nonlinear interaction. The influence of laser fluence and focusing conditions on the pulse reshaping was studied, and it was found that: (1) double foci are formed due to the refocusing effect when the laser fluence is higher than 500 J/cm2 and the focusing numeric aperture (NA) is higher than 0.30; and (2) a higher NA focusing lens can better inhibit the prefocusing effect and nonlinear distortion in the Gaussian beam waist.

  14. PAPERS DEVOTED TO THE MEMORY OF ACADEMICIAN A M PROKHOROV: Dynamics of plasma production and development in gases and transparent solids irradiated by high-intensity, tightly focused picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garnov, Sergei V.; Konov, Vitalii I.; Malyutin, A. A.; Tsar'kova, O. G.; Yatskovskii, I. S.; Dausinger, F.

    2003-09-01

    The results of experimental studies of the dynamics of formation and development of a laser plasma produced in microvolumes of gases (air) and transparent solids (fused silica) by high-intensity [I⋍(1-2)×1014 W cm-2], ~22-ps, 539-nm laser pulses tightly focused in a region of diameter 4 μm are presented. The spatiotemporal distributions of the refractive index and the electron density are studied by the interferometric method with a spatial resolution of ~1.6 μm and a temporal resolution of ~3 ps directly during the action of excitation picosecond laser pulses. An almost complete ionisation of the initial gas was shown to occur even in the initial stage of air plasma formation, within a few picoseconds after plasma production. The irradiation of solid transparent dielectrics (fused silica) by picosecond laser pulses resulted in a reversible production of a plasma with an electron density above 1020 cm-3, which did not cause the damage of dielectrics.

  15. Characterization of human plasma apolipoprotein E-containing lipoproteins in the high density lipoprotein size range: focus on pre-beta1-LpE, pre-beta2-LpE, and alpha-LpE.

    PubMed

    Krimbou, L; Tremblay, M; Davignon, J; Cohn, J S

    1997-01-01

    We have used two-dimensional gel electrophoresis to separate and characterize human plasma apolipoprotein (apo) E-containing lipoproteins in the high density lipoprotein (HDL) size range. Lipoproteins were separated from whole plasma by electrophoresis (according to charge) in a 0.75% agarose gel, and then in the second dimension (according to size) in a 2-15% non-denaturing polyacrylamide gradient gel. ApoE-containing lipoproteins were detected by radiography after electrotransfer of lipoproteins to nitrocellulose membranes and incubation with 125I-labeled affinity-purified polyclonal apoE antibody. ApoE-containing lipoproteins in the HDL size range had a particle size ranging from 9 to 18.5 nm in diameter and could be characterized as having either gamma, pre-beta1-, pre-beta2- or alpha-electrophoretic mobility (designated gamma-LpE, pre-beta1-LpE, pre-beta2LpE, and alpha-LpE respectively). gamma-LpE and a substantial proportion of pre-beta1- and pre-beta2-LpE did not co-migrate with apoA-I, apoA-II, apoC-III, or apoB-100. Subsequent experiments focused on the pre-beta1-LpE, pre-beta2LpE, and alpha-LpE subfractions, which represented > 95% of apoE in HDL-sized lipoproteins. Storage of plasma at 4 degrees C or in vitro incubation of plasma at 37 degrees C caused a relative decrease in pre-beta1-LpE and increase in alpha-LpE. Normolipidemic patients with an apoE 2/2 phenotype tended to have increased levels of alpha-LpE, whereas apoE 4/4 subjects tended to have a greater proportion of HDL-apoE as pre-beta1-LpE. Decrease in plasma HDL apoE concentration after an oral fat load was associated with a reduction in the plasma concentration of all HDL-apoE subfractions. These results demonstrate that: 1) apoE-containing HDL are heterogeneous in size and charge; 2) pre-beta1-LpE is a relatively labile HDL subfraction; 3) HDL-apoE subfraction distribution is dependent on apoE phenotype; and 4) all apoE-containing HDL subfractions participate in the plasma transfer of apo

  16. Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC-MS-MS with a focus on their role in forensic cases.

    PubMed

    Deeb, Shaza; McKeown, Denise A; Torrance, Hazel J; Wylie, Fiona M; Logan, Barry K; Scott, Karen S

    2014-10-01

    In recent years, there has been a growth in reports of antiepileptic drugs (AEDs) being misused on their own or in combination with other drugs of abuse in a variety of toxicological case types such as drug abuse, suicide, overdose and drug facilitated crime. To our knowledge, there are no simultaneous quantification methods for the analysis of the most commonly encountered AEDs in postmortem whole blood and clinical plasma/serum samples at the same time. A simple, accurate and cost-effective liquid chromatography-tandem mass spectrometric (LC-MS-MS) method has been developed and validated for the simultaneous quantification of carbamazepine (CBZ) and its metabolite CBZ-10,11-epoxide, eslicarbazepine acetate, oxcarbazepine and S-licarbazepine as a metabolite, gabapentin, lacosamide, lamotrigine, levetiracetam, pregabalin, phenobarbital, phenytoin and its metabolite 5-(p-hydroxyphenyl)-5-phenylhydantoin, retigabine (ezogabine) and its metabolite N-acetyl retigabine, rufinamide, stiripentol, topiramate, tiagabine, valproic acid, vigabatrin and zonisamide in postmortem whole blood, serum and plasma which would be suitable for routine forensic toxicological analysis and therapeutic drug monitoring. All AEDs were detected and quantified within 17 min without endogenous interferences. The correlation coefficient (R(2)) was >0.995 for all AEDs with accuracy ranging from 90 to 113% and precision <13% for all analytes. The recovery ranged from 70 to 98%. No carryover was observed in a blank control injected after the highest standard and the matrix effect was acceptable and ranged from 90 to 120%. The method has been successfully verified using authentic case samples that had previously been quantified using different methods. PMID:25217536

  17. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  18. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  19. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    PubMed Central

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This

  20. Tsunami focusing

    NASA Astrophysics Data System (ADS)

    Spillane, M. C.; Titov, V. V.; Moore, C. W.; Aydin, B.; Kanoglu, U.; Synolakis, C. E.

    2010-12-01

    Tsunamis are long waves generated by impulsive disturbances of the seafloor or coastal topography caused by earthquakes, submarine/subaerial mass failures. They evolve substantially through three dimensional - 2 spatial+1 temporal - spreading as the initial surface deformation propagates. This is referred to as its directivity and focusing. A directivity function was first defined by Ben-Menahem (1961, Bull. Seismol. Soc. Am. 51, 401-435) using the source length and the rupture velocity. Okal (2003, Pure Appl. Geophys. 160, 2189-2221) discussed the details of the analysis of Ben-Menahem (1961) and demonstrated the distinct difference between the directivity patterns of landslide and earthquake generated tsunamis. Marchuk and Titov (1989, Proc. IUGG/IOC International Tsunami Symposium, July 31 - August 3, 1989, Novosibirsk, USSR. p.11-17) described the process of tsunami focusing for a rectangular initial deformation combining positive and negative surface displacements. They showed the existence of a focusing point where abnormal tsunami wave height can be registered. Here, first, we describe and quantify numerically tsunami focusing processes for a combined positive and negative - N-wave type - strip source representing the 17 July 1998 Papua New Guinea and 17 July 2006 Java events. Specifically, considering field observations and tsunami focusing, we propose a source mechanism for the 17 July 2006 Java event. Then, we introduce a new analytical solution for a strip source propagating over a flat bottom using the linear shallow-water wave equation. The analytical solution of Carrier and Yeh (2005, Computer Modeling In Engineering & Sciences, 10(2), 113-121) appears to have two drawbacks. One, the solution involves singular complete elliptic integral of the first kind which results in a self-similar approximate solution for the far-field at large times. Two, only the propagation of Gaussian shaped finite-crest wave profiles can be modeled. Our solution is not only

  1. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  2. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  3. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.; Saw, S. H.; Lee, S.

    2015-12-01

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  4. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    SciTech Connect

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.; Mahabadi, T. D.; Saw, S. H.; Lee, S.

    2015-12-15

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  5. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  6. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  7. Results of the LLNL plasma focus project

    SciTech Connect

    Wainwright, T.; Pickles, W.; McClure, J.; Price, D.; Eltgroth, P.

    1981-08-01

    The following chapters are included: (1) detailed description of PF operation prior to pinch, (2) PF experiments with DT-filled microballoons, (3) diagnosis of electron beam produced by PF (x rays), and (4) PF experiments with solid objects at pinch location. (MOW)

  8. Basic plasma physics II

    NASA Astrophysics Data System (ADS)

    Galeev, A. A.; Sudan, R. N.

    The basic physics of classical ideal plasmas is presented in reviews of recent theoretical and experimental investigations, with an emphasis on nonlinear interactions violating the assumptions of weak turbulence. Topics examined include Kolmogorov spectra, parametric instabilities in magnetoactive plasmas, collapse and self-focusing of Langmuir waves, collective dissipation and transport, spontaneous reconnection of magnetic-field lines in a collisionless plasma, collective-beam/plasma interaction, numerical particle simulations, diagnostic techniques based on the interaction of electromagnetic radiation with a plasma, diagnostics for magnetically confined high-temperature plasmas, and relativistic electron-beam/plasma interaction with self-fields. Diagrams, graphs, spectra, and drawings of experimental apparatus are provided.

  9. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma.

    PubMed

    Rafalko, Agnes; Dai, Shujia; Hancock, William S; Karger, Barry L; Hincapie, Marina

    2012-02-01

    Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples. PMID:22098410

  10. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma

    PubMed Central

    Rafalko, Agnes; Dai, Shujia; Hancock, William S.; Karger, Barry L.; Hincapie, Marina

    2013-01-01

    Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC™) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ~1–2.5 ng/mL with a CV of ~13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r2 = 0.9459) was observed between standard clinical ELISA tests and the SRM-based-assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples. PMID:22098410

  11. Simulations of neutralized final focus

    SciTech Connect

    Welch, D.R.; Rose, D.V.; Genoni, T.C.; Yu, S.S.; Barnard, J.J.

    2005-01-18

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to < 3 mm and the pulse length must be compressed to < 10 ns. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method. The final pulse shape at the target can be programmed by an applied velocity tilt. In this paper, neutralized drift compression is investigated. The sensitivity of the compression and focusing to beam momentum spread, plasma, and magnetic field conditions is studied with realistic driver examples. Using the 3D particle-in-cell code, we examine issues associated with self-field generation, stability, and vacuum-neutralized transport transition and focusing.

  12. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  13. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  14. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  15. Plasma Colloquium Travel Grant Program

    SciTech Connect

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  16. "Only" and Focus.

    ERIC Educational Resources Information Center

    Vallduvi, Enric

    The relationship of the word "only," one of a class of words known as scalar particles, focus adverbs, focus inducers, or focus-sensitive particles, with the "focus" of the sentence is examined. It is suggested, based on analysis of discourse structure, that this "association with focus" is not an inherent property of this scalar particle. The…

  17. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  18. Plasmas for medicine

    NASA Astrophysics Data System (ADS)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  19. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  20. Nonlinear mixing of electromagnetic waves in plasmas.

    PubMed

    Stefan, V; Cohen, B I; Joshi, C

    1989-01-27

    Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves. PMID:17799185

  1. Plasma in dentistry

    PubMed Central

    Cha, Seunghee; Park, Young-Seok

    2016-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, decontamination, root canal disinfection and tooth bleaching were reviewed as direct applications with other miscellaneous ones. Non-thermal atmospheric pressure plasma was of particular focus since it is gaining considerable attention due to the possibility for its use in living tissues. Future perspectives have also been discussed briefly. Although it is still not popular among dentists, plasma has shown promises in several areas of dentistry and is now opening a new era of plasma dentistry. PMID:27030818

  2. IEEE International conference on plasma science: Conference record--Abstracts

    SciTech Connect

    Not Available

    1993-01-01

    The conference covered the following topics: basic plasma physics; vacuum electronics; gaseous and electrical gas discharges; laser-produced plasma; space plasmas; computational plasma science; plasma diagnostics; electron, ion and plasma sources; intense electron and ion beams; intense beam microwaves; fast wave M/W devices; microwave-plasma interactions; magnetic fusion; MHD; plasma focus; ultrafast z-pinches and x-ray lasers; plasma processing; fast-opening switches; EM and ETH launchers; solid-state plasmas and switches; plasmas for lighting; ball lightning and spherical plasma configurations; and environmental/energy issues. Separate abstracts were prepared for 379 items in this conference.

  3. International movement of plasma and plasma contracting.

    PubMed

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined. PMID:16050160

  4. Precise formation of geometrically focused ion beams

    SciTech Connect

    Davydenko, V.I.; Ivanov, A.A.; Korepanov, S.A.; Kotelnikov, I.A.

    2006-03-15

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by {approx}50%.

  5. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  6. Plasma physics and controlled thermonuclear fusion

    SciTech Connect

    Krikorian, R. )

    1989-01-01

    This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.

  7. Focus Curriculum Manual; A Focus Dissemination Project.

    ERIC Educational Resources Information Center

    Human Resource Associates, Inc., Hastings, Minn.

    This training manual is for use in preparing staff members to use the Focus Model, which is a "school within a school" for disaffected high school students. The material is designed to be used as a resource aid following participation in an in-service workshop. Information is presented to help implement a contracting system to establish and…

  8. Focus Intonation in Bengali

    ERIC Educational Resources Information Center

    Hasan, Md. Kamrul

    2015-01-01

    This work attempts to investigate the role of prosody in the syntax of focus in Bangla. The aim of this study is to show the intonation pattern of Bangla in emphasis and focus. In order to do that, the author has looked at the pattern of focus without-i/o as well as with the same. Do they really pose any different focus intonation pattern from…

  9. Focus screen optimization.

    PubMed

    Plummer, W T

    1975-11-01

    Ground glass used for camera focus screens often has far from optimum diffusion properties. An analysis of the function of the focus screen shows that a screen with random (Gaussian) diffusion properties can be constructed with both brightness and focus efficiencies above 84%. These considerations have led to the design of an unusually bright and effective focus screen for the Polaroid SX-70 Land camera. PMID:20155099

  10. Plasma turbulence

    SciTech Connect

    Horton, W.; Hu, G.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  11. Alternating phase focused linacs

    DOEpatents

    Swenson, Donald A.

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  12. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  13. Innovations in plasma sensors

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Thomas H.; Gershman, Daniel J.

    2016-04-01

    During the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.

  14. Focusing the surgical microscope.

    PubMed

    Socea, Sergiu D; Barak, Yoreh; Blumenthal, Eytan Z

    2015-01-01

    A well-focused operating microscope addresses several needs that are all secondary to the surgeon's need to see clearly at all times. These needs include: the assistant; the sharpness of the video and monitor; as well as field of view, asthenopia, and focusing issues related to zoom, accommodation, and presbyopia. We provide a practical approach to achieve optimal focus that we call the sloping paper calibration method. PMID:25891029

  15. Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Laroussi, M.; Kong, M. G.; Morfill, G.; Stolz, W.

    2012-05-01

    Foreword R. Satava and R. J. Barker; Part I. Introduction to Non-equilibrium Plasma, Cell Biology, and Contamination: 1. Introduction M. Laroussi; 2. Fundamentals of non-equilibrium plasmas M. Kushner and M. Kong; 3. Non-equilibrium plasma sources M. Laroussi and M. Kong; 4. Basic cell biology L. Greene and G. Shama; 5. Contamination G. Shama and B. Ahlfeld; Part II. Plasma Biology and Plasma Medicine: 6. Common healthcare challenges G. Isbary and W. Stolz; 7. Plasma decontamination of surfaces M. Kong and M. Laroussi; 8. Plasma decontamination of gases and liquids A. Fridman; 9. Plasma-cell interaction: prokaryotes M. Laroussi and M. Kong; 10. Plasma-cell interaction: eukaryotes G. Isbary, G. Morfill and W. Stolz; 11. Plasma based wound healing G. Isbary, G. Morfill and W. Stolz; 12. Plasma ablation, surgery, and dental applications K. Stalder, J. Woloszko, S. Kalghatgi, G. McCombs, M. Darby and M. Laroussi; Index.

  16. Focus: Teaching by Genre.

    ERIC Educational Resources Information Center

    Wimer, Frances N., Ed.

    1974-01-01

    The focus of this bulletin is teaching the various literary genres in the secondary English class. Contents include "The Song Within: An Approach to Teaching Poetry,""Teaching Folk-Rock,""Approaches to Teaching Poetry,""Focus on an Elective Program: Twentieth Century Lyrical Poetry,""Hoffman and Poe: Masters of the Grotesque,""Plays: Shared and…

  17. FOCUS: Sustainable Mathematics Successes

    ERIC Educational Resources Information Center

    Mireles, Selina V.; Acee, Taylor W.; Gerber, Lindsey N.

    2014-01-01

    The FOCUS (Fundamentals of Conceptual Understanding and Success) Co-Requisite Model Intervention (FOCUS Intervention) for College Algebra was developed as part of the Developmental Education Demonstration Projects (DEDP) in Texas. The program was designed to use multiple services, courses, and best practices to support student completion of a…

  18. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  19. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  20. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  1. Flat focusing mirror.

    PubMed

    Cheng, Y C; Kicas, S; Trull, J; Peckus, M; Cojocaru, C; Vilaseca, R; Drazdys, R; Staliunas, K

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  2. Advances in Dusty Plasmas 5.Strongly Coupled Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    We review thermodynamical and dynamical properties of strongly coupled dusty plasmas, focusing on the recent development of molecular dynamics (MD) simulations. In the present paper, dusty plasmas are modeled by the Yukawa system, which is a collection of particles interacting through Yukawa (i.e., screened Coulomb) potentials. The phase diagram, wave dispersion relations and some transport coefficients of Yukawa systems are discussed.

  3. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  4. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  5. Current focusing and steering

    PubMed Central

    Bonham, Ben H.; Litvak, Leonid M.

    2008-01-01

    Current steering and current focusing are stimulation techniques designed to increase the number of distinct perceptual channels available to cochlear implant (CI) users by adjusting currents applied simultaneously to multiple CI electrodes. Previous studies exploring current steering and current focusing stimulation strategies are reviewed, including results of research using computational models, animal neurophysiology, and human psychophysics. Preliminary results of additional neurophysiological and human psychophysical studies are presented that demonstrate the success of current steering strategies in stimulating auditory nerve regions lying between physical CI electrodes, as well as current focusing strategies that excite regions narrower than those stimulated using monopolar configurations. These results are interpreted in the context of perception and speech reception by CI users. Disparities between results of physiological and psychophysical studies are discussed. The differences in stimulation used for physiological and psychophysical studies are hypothesized to contribute to these disparities. Finally, application of current steering and focusing strategies to other types of auditory prostheses is also discussed. PMID:18501539

  6. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  7. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2002

    2002-01-01

    Describes the Hawthorn Court Community Center at Iowa State University, Ames, and the HUB-Robeson Center at Pennsylvania State University. Focuses on the food service offered in these new student-life buildings. Includes photographs. (EV)

  8. Dense Plasma Injectors for the HyperV Plasma Jets

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Bomgardner, Richard; Case, Andrew; Messer, Sarah; Brockington, Samuel

    2008-04-01

    HyperV is developing high velocity dense plasma jets for application to fusion and HEDP. The approach uses symmetric pulsed injection of high density plasma into a coaxial EM accelerator having a cross-section tailored to prevent formation of the blow-by instability. Work to date has focused on injection using ablative plasma sources, such as capillaries and sparkgaps, but injection of pure plasma, such as D and T, or high-Z gases such as Argon, require a different approach. We describe experiments and diagnostic measurements to develop small parallel plate railguns (MiniRailguns) to generate high density plasma pulses for injection into the coax gun. We also present a brief update of latest results from the 112 electrode sparkgap gun and the 64 capillary TwoPi plasma jet merging experiment, both of which have been upgraded with higher energy pulse forming networks to double the mass of ablatively injected plasma.

  9. High harmonics focusing undulator

    SciTech Connect

    Varfolomeev, A.A.; Hairetdinov, A.H.; Smirnov, A.V.; Khlebnikov, A.S.

    1995-12-31

    It was shown in our previous work that there exist a possibility to enhance significantly the {open_quote}natural{close_quote} focusing properties of the hybrid undulator. Here we analyze the actual undulator configurations which could provide such field structure. Numerical simulations using 2D code PANDIRA were carried out and the enhanced focusing properties of the undulator were demonstrated. The obtained results provide the solution for the beam transport in a very long (short wavelength) undulator schemes.

  10. Planar-focusing cathodes.

    SciTech Connect

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  11. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  12. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  13. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  14. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  15. Plasma theory and simulation research

    SciTech Connect

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  16. The 26th IEEE international conference on plasma science

    SciTech Connect

    1999-07-01

    Some of the sessions covered by this conference are: Basic Processes in Fully and Partially Ionized Plasmas; Slow Wave Devices; Laser-Produced Plasma; Non-Equilibrium Plasma Processing; Space Plasmas and Partially Ionized Gases; Microwave Plasmas; Inertial Confinement Fusion; Plasma Diagnostics; Computational Plasma Physics; Microwave Systems; Laser Produced Plasmas and Dense Plasma Focus; Intense Electron and Ion Beams; Fast Wave Devices; Spherical Configurations and Ball Lightning; Thermal Plasma Chemistry and Processing and Environmental Issues in Plasma Science; Plasma, Ion, and Electron Sources; Fast Wave Devices and Intense Beams; Fast Z-pinches and X-ray Lasers; Plasma Opening Switches; Plasma for Lighting; Intense Beams; Vacuum Microwaves; Magnetic Fusion Energy; and Plasma Thrusters and Arcs. Separate abstracts were prepared for some of the papers in this volume.

  17. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  18. IEEE conference record -- abstracts: 1995 IEEE international conference on plasma science

    SciTech Connect

    1995-12-31

    Topics covered at this meeting are: computational plasma physics; slow wave devices; basic phenomena in fully ionized plasmas; microwave-plasma interactions; space plasmas; fast wave devices; plasma processing; plasma, ion, and electron sources; vacuum microelectronics; basic phenomena in partially ionized gases; microwave systems; plasma diagnostics; magnetic fusion theory/experiment; fast opening switches; laser-produced plasmas; dense plasma focus; intense ion and electron beams; plasmas for lighting; fast z-pinches and x-ray lasers; intense beam microwaves; ball lightning/spherical plasma configuration; environmental plasma science; EM and ETH launchers; and environmental/energy issues in plasma science. Separate abstracts were prepared for most of the individual papers.

  19. Wakes in inhomogeneous plasmas.

    PubMed

    Kompaneets, Roman; Ivlev, Alexei V; Nosenko, Vladimir; Morfill, Gregor E

    2014-04-01

    The Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it nonoscillatory and weaker. PMID:24827356

  20. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  1. Sagittal focusing Laue monochromator

    DOEpatents

    Zhong; Zhong , Hanson; Jonathan , Hastings; Jerome , Kao; Chi-Chang , Lenhard; Anthony , Siddons; David Peter , Zhong; Hui

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  2. High energy plasma accelerators

    SciTech Connect

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ..omega../sub 0/, kappa/sub 0/ and ..omega../sub 1/, kappa/sub 1/ shone on a plasma with frequency separation equal to the electron plasma frequency ..omega../sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ..omega../sub pe//e of the order of 1GeV/cm for a plasma density of 10/sup 18/ cm/sup -3/ through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed.

  3. EDITORIAL: Focus on Attosecond Physics

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.

    2008-02-01

    future involve using overdense plasmas. Electronic processes on sub-atomic spatio-temporal scales are the basis of chemical physics, atomic, molecular, and optical physics, materials science, and even some life science processes. Research in these areas using the new attosecond tools will advance together with the ability to control electrons themselves. Indeed, we expect that developments will advance in a way that is similar to advances that have occurred on the femtosecond time scale, in which much previous experimental and theoretical work on the interaction of coherent light sources has led to the development of means for 'coherent control' of nuclear motion in molecules. This focus issue of New Journal of Physics is centered on experimental and theoretical advances in the development of new methodologies and tools for electron control on the attosecond time scale. Topics such as the efficient generation of harmonics; the generation of attosecond pulses, including those having only a few cycles and those produced from overdense plasmas; the description of various nonlinear, nonperturbative laser-matter interactions, including many-electron effects and few-cycle pulse effects; the analysis of ultrashort propagation effects in atomic and molecular media; and the development of inversion methods for electron tomography, as well as many other topics, are addressed in the current focus issue dedicated to the new field of 'Attosecond Physics'. Focus on Attosecond Physics Contents Observing the attosecond dynamics of nuclear wavepackets in molecules by using high harmonic generation in mixed gases Tsuneto Kanai, Eiji J Takahashi, Yasuo Nabekawa and Katsumi Midorikawa Core-polarization effects in molecular high harmonic generation G Jordan and A Scrinzi Interferometric autocorrelation of an attosecond pulse train calculated using feasible formulae Y Nabekawa and K Midorikawa Attosecond pulse generation from aligned molecules—dynamics and propagation in H2+ E Lorin, S

  4. Deliberative Discussion Focus Groups.

    PubMed

    Rothwell, Erin; Anderson, Rebecca; Botkin, Jeffrey R

    2016-05-01

    This article discusses a new approach for the conduct of focus groups in health research. Identifying ways to educate and inform participants about the topic of interest prior to the focus group discussion can promote more quality data from informed opinions. Data on this deliberative discussion approach are provided from research within three federally funded studies. As healthcare continues to improve from scientific and technological advancements, educating the research participants prior to data collection about these complexities is essential to gather quality data. PMID:26078330

  5. Lifelong Learning. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the need for adult literacy programs, as well as recent innovations in literacy education. "Adult Literacy and Leadership: Current Innovations" (Aurelio M. Montemayor) describes an adult literacy outreach program in Texas, and discusses the importance of family literacy for parents' involvement in their children's…

  6. Homework. Focus On

    ERIC Educational Resources Information Center

    Rahal, Michelle Layer

    2010-01-01

    Homework has been an integral part of the educational system for over 100 years. What likely began as simple memorization tasks has evolved into complex projects and sparked an increasingly heated debate over the purpose and value of homework assignments. This "Focus On" examines the purpose of homework, how to create homework that has value,…

  7. Young Children. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue includes five articles that focus on educational, cognitive, and brain research with implications for early childhood educators, including those who work with limited-English-proficient, minority, and economically disadvantaged children. "Coming to Grips with Reading Instruction at the Early Grades" (Christie L. Goodman) reports…

  8. Theme: Focus on Teaching.

    ERIC Educational Resources Information Center

    Connors, James J.; And Others

    1996-01-01

    Includes "The More Things Change..." (Connors); "Students--Bored of Education?" (Earle); "Yesterday, Today and Tomorrow" (Wesch et al.); "Attitude and the Value of Environment" (Foster); "Fins, Feathers and Fur" (Crank); "Greenhouse as a Focus for Agriscience" (Hurst); and "Agricultural and Environmental Education at Milton Hershey School"…

  9. Focusing on the Invisible

    ERIC Educational Resources Information Center

    Haley, Tim R.

    2008-01-01

    This article seeks to answer the question of whether or not the design and development of an educational laboratory really changes when the focus is on nanotechnology. It explores current laboratory building trends and the added considerations for building a nanotechnology laboratory. The author leaves the reader with additional points to consider…

  10. Focus on Distance Education.

    ERIC Educational Resources Information Center

    Grenzky, Janet; Maitland, Christine

    2001-01-01

    As a followup to a survey of distance education faculty, the National Education Association conducted two 3-hour focus groups with 12 higher education faculty members in June 2000. The purpose of the groups was to gain more understanding of the complexity of feelings and opinions expressed in a telephone survey conducted in March 2000. The…

  11. Focusing on Mathematical Arguments

    ERIC Educational Resources Information Center

    Singletary, Laura M.; Conner, AnnaMarie

    2015-01-01

    "Collective argumentation" occurs when a group works together to arrive at a conclusion (supporting it with evidence). Simplistically, this occurs when students give answers to questions and tell how they arrived at the answer, perhaps prompted by a teacher. But collective argumentation can be much richer, with a focus on the process of…

  12. Youth Leadership. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on motivating young people to learn by providing leadership opportunities in school. "Coca-Cola Valued Youth Program: Assessing Progress" (Josie Danini Supik) examines the program's success. This program, which trains high-risk middle and high school students as tutors of younger children, has dramatically lowered dropout…

  13. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  14. Instructional Technology. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1997

    1997-01-01

    This theme issue includes five articles that focus on implementing instructional technology in ways that benefit all students, including limited-English-proficient, minority, economically disadvantaged, and at-risk students. "Cruising the Web with English Language Learners" (Laura Chris Green) presents three scenarios using the World Wide Web in…

  15. Focused on Student Success

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    In January 2011, the California Community Colleges Board of Governors formed a task force to chart a roadmap for system-wide focus on student success. The task force identified best practices and designed evidence-based recommendations to ensure student success is a driving theme in colleges. This comprehensive plan, known as the Student Success…

  16. Design-Focused Evaluation

    ERIC Educational Resources Information Center

    Smith, Calvin

    2008-01-01

    In this paper an approach to the writing of evaluation questions is outlined and developed which focuses attention on the question of the effectiveness of an educational design for bringing about the learning it is intended to facilitate. The approach develops from the idea that all educational designs rely on instructional alignment, implicitly…

  17. [Focus: Family Communication].

    ERIC Educational Resources Information Center

    Barnes, Richard E., Ed.

    1977-01-01

    This issue of the "Journal of the Wisconsin Communication Association" focuses on family communication and contains the following articles: "Marital Typologies: An Alternative Approach to the Study of Communication in Enduring Relations" by Mary Anne Fitzpatrick, "Intimate Communication and the Family" by Marilyn D. LaCourt, and "A Study in…

  18. Focus on First Graders.

    ERIC Educational Resources Information Center

    Schwartz, Shari S.

    The result of a collaboration between the El Paso, Texas, school district and community agencies, the Focus on First Graders program provides early intervention and prevention using a comprehensive approach to providing a variety of services at the school to at-risk first graders from low income families. Teachers and parents were surveyed to…

  19. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 1996

    1996-01-01

    In an interview, the incoming president of the Association of Schools and Colleges of Optometry (ASCO), Thomas L. Lewis, discusses his goals for the association, the challenges facing optometric education in the next decade, cooperation between ASCO and other professional organizations in optometry, his mentors in the profession, his focus as a…

  20. Focus on the President.

    ERIC Educational Resources Information Center

    Optometric Education, 2000

    2000-01-01

    An interview with the new president of the Association of Schools and Colleges of Optometry, John Schoessler, considers issues the president wishes to focus on during his presidency, changes in optometry students over the years, people who influenced his educational ideas, and research currently being conducted at Ohio State University College of…

  1. Quality-Focused Management.

    ERIC Educational Resources Information Center

    Needham, Robbie Lee

    1993-01-01

    Presents the quality-focused management (QFM) system and explains the departure QFM makes from established community college management practices. Describes the system's self-directed teams engaged in a continuous improvement process driven by customer demand and long-term commitment to quality and cost control. (13 references.) (MAB)

  2. Focus on stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

    2016-02-01

    We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

  3. Focus on Rashomon.

    ERIC Educational Resources Information Center

    Richie, Donald S., Ed.

    This Film Focus series is a collection of reviews, essays, and commentaries on the Japanese film Rashomon. The plot consists of an attack, a rape, and a robbery, all of which probably occurred during the Middle Ages. Each character relates his own version of what happened, or might have happened, revealing the outward and inner driving forces,…

  4. Bilingual Education. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1998

    1998-01-01

    This theme issue focuses on instructional practices, evaluation, and the state of bilingual education. "Effective Implementation of Bilingual Programs: Reflections from the Field" (Abelardo Villarreal, Adela Solis) describes the key characteristics of successful bilingual programs: vision and goals; program leadership; linkage to central office…

  5. Apartheid: Focus on Health

    PubMed Central

    Dines, George B.

    1979-01-01

    This paper focuses on health in the Republic of South Africa and calls not only for technical warfare against disease, poverty, and bigotry but also for attention to predisposing causes of disease and ill health among the African majority. PMID:522192

  6. Focus: Economic Systems.

    ERIC Educational Resources Information Center

    McCorkle, Sarapage; Meszaros, Bonnie T.; Odorzynski, Sandra J.; Schug, Mark C.; Watts, Michael

    The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly personalized…

  7. Focusing educational initiatives

    NASA Technical Reports Server (NTRS)

    Parks, George K.

    1990-01-01

    The United States will soon be facing a critical shortage of aerospace scientists and engineers. To address this problem, Space Grant Colleges can assist in focusing interest in existing educational initiatives and in creating new educational opportunities, particularly for women and underrepresented minorities.

  8. Focus: International Economics.

    ERIC Educational Resources Information Center

    Lynch, Gerald J.; Watts, Michael W.; Wentworth, Donald R.

    The "Focus" series, part of the National Council on Economic Education's (NCEE) EconomicsAmerica program, uses economics to enhance learning in subjects such as history, geography, civics, and personal finance, as well as economics. Activities are interactive, reflecting the belief that students learn best through active, highly personalized…

  9. Policy Update. IDRA Focus.

    ERIC Educational Resources Information Center

    IDRA Newsletter, 1995

    1995-01-01

    This theme issue focuses on the drastic revision of the Texas education code undertaken during the 1995 state legislative session. "Education Policy Reform: Key Points for Districts" (Albert Cortez, Mikki Symonds) outlines critical issues in the legislation that have an impact on educational quality: charter schools exempt from state regulations;…

  10. Focus on Efficient Management.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Resource Management.

    Compiled as a workshop handbook, this guide presents information to help food service program administrators comply with federal regulations and evaluate and upgrade their operations. Part I discusses requirements of the National School Lunch Program, focusing on the "offer versus serve" method of service enacted in 1976 to reduce waste. After an…

  11. Transport processes in space plasmas

    SciTech Connect

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  12. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  13. Quantum focusing conjecture

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, Aron C.

    2016-03-01

    We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface σ that need not lie on a horizon, we define a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to σ , the rate of change of Sgen per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N . This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.

  14. Focus on quantum efficiency

    NASA Astrophysics Data System (ADS)

    Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas

    2014-10-01

    Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.

  15. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  16. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  17. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  18. Gabor lens focusing of a negative ion beam

    SciTech Connect

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  19. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  20. Transverse field focused system

    DOEpatents

    Anderson, Oscar A.

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  1. Digital focusing schlieren imaging

    NASA Astrophysics Data System (ADS)

    Buckner, Benjamin D.; Trolinger, James D.; L'Esperance, Drew

    2015-09-01

    Since its invention in the 19th century, schlieren imaging has been an essential method for studying many aerodynamic effects, particularly convection and shock waves, but the classical method using parabolic mirrors is extremely difficult to set up and very expensive for large fields of view. Focusing schlieren methods have made large- area schlieren more feasible but have tended to be difficult to align and set up, limiting their utility in many applications We recently developed an alternative approach which utilizes recent advances in digital display technology to produce simpler schlieren system that yields similar sensitivity with greater flexibility.

  2. Dielectrophoretic columnar focusing device

    DOEpatents

    James, Conrad D.; Galambos, Paul C.; Derzon, Mark S.

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  3. Focus on PTEN Regulation

    PubMed Central

    Bermúdez Brito, Miriam; Goulielmaki, Evangelia; Papakonstanti, Evangelia A.

    2015-01-01

    The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases. PMID:26284192

  4. Isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.; Egen, N. B.; Mosher, R. A.; Twitty, G. E.

    1982-01-01

    The potential of space electrophoresis is conditioned by the fact that all electrophoretic techniques require the suppression of gravity-caused convection. Isoelectric focusing (IEF) is a powerful variant of electrophoresis, in which amphoteric substances are separated in a pH gradient according to their isoelectric points. A new apparatus for large scale IEF, utilizing a recycling principle, has been developed. In the ground-based prototype, laminar flow is provided by a series of parallel filter elements. The operation of the apparatus is monitored by an automated array of pH and ultraviolet absorption sensors under control of a desk-top computer. The apparatus has proven to be useful for the purification of a variety of enzymes, snake venom proteins, peptide hormones, and other biologicals, including interferon produced by genetic engineering techniques. In planning for a possible space apparatus, a crucial question regarding electroosmosis needs to be addressed To solve this problem, simple focusing test modules are planned for inclusion in an early Shuttle flight.

  5. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  6. Focused Ultrasound and Lithotripsy.

    PubMed

    Ikeda, Teiichiro; Yoshizawa, Shin; Koizumi, Norihiro; Mitsuishi, Mamoru; Matsumoto, Yoichiro

    2016-01-01

    Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural

  7. Retroreflection Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Heineck, James T. (Inventor)

    1996-01-01

    A retroreflective type focusing schlieren system which permits the light source to be positioned on the optic side of the system is introduced. The system includes an extended light source, as opposed to a point source, located adjacent to a beam splitter which projects light through the flow field onto a reflecting grating in the form of a grid which generates sheets of light that are directed back through the flow field and the beam splitter onto a primary lens behind which is located a cut-off grid having a grid pattern which corresponds to the grid pattern of the reflecting grating. The cut-off grid is adjustably positioned behind the primary lens and an image plane for imaging the turbulence is adjustably located behind the cut-off grid.

  8. Alliance-focused training.

    PubMed

    Eubanks-Carter, Catherine; Muran, J Christopher; Safran, Jeremy D

    2015-06-01

    Alliance-focused training (AFT) aims to increase therapists' ability to recognize, tolerate, and negotiate alliance ruptures by increasing the therapeutic skills of self-awareness, affect regulation, and interpersonal sensitivity. In AFT, therapists are encouraged to draw on these skills when metacommunicating about ruptures with patients. In this article, we present the 3 main supervisory tasks of AFT: videotape analysis of rupture moments, awareness-oriented role-plays, and mindfulness training. We describe the theoretical and empirical support for each supervisory task, provide examples based on actual supervision sessions, and present feedback about the usefulness of the techniques from trainees in our program. We also note some of the challenges involved in conducting AFT and the importance of maintaining a strong supervisory alliance when using this training approach. PMID:25150677

  9. Focusing on customer service.

    PubMed

    1996-01-01

    This booklet is devoted to a consideration of how good customer service in family planning programs can generate demand for products and services, bring customers back, and reduce costs. Customer service is defined as increasing client satisfaction through continuous concern for client preferences, staff accountability to clients, and respect for the rights of clients. Issues discussed include the introduction of a customer service approach and gaining staff commitment. The experience of PROSALUD in Bolivia in recruiting appropriate staff, supervising staff, soliciting client feedback, and marketing services is offered as an example of a successful customer service approach. The key customer service functions are described as 1) establishing a welcoming atmosphere, 2) streamlining client flow, 3) personalizing client services, and 4) organizing and providing clear information to clients. The role of the manager in developing procedures is explored, and the COPE (Client-Oriented Provider-Efficient) process is presented as a good way to begin to make improvements. Techniques in staff training in customer service include brainstorming, role playing, using case studies (examples of which are provided), and engaging in practice sessions. Training also leads to the development of effective customer service attitudes, and the differences between these and organizational/staff-focused attitudes are illustrated in a chart. The use of communication skills (asking open-ended questions, helping clients express their concerns, engaging in active listening, and handling difficult situations) is considered. Good recovery skills are important when things go wrong. Gathering and using client feedback is the next topic considered. This involves identifying, recording, and discussing customer service issues as well as taking action on these issues and evaluating the results. The booklet ends by providing a sample of customer service indicators, considering the maintenance of a

  10. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  11. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  12. Focusing on flu

    PubMed Central

    Short, Mary B; Middleman, Amy B

    2014-01-01

    Introduction: To describe adolescents' perspectives regarding the use of school-located immunization programs (SLIP) for influenza vaccination. More importantly, adolescents were asked what factors would make them more or less likely to use a SLIP offering influenza vaccine. Results: Participants were generally found to be knowledgeable about influenza and to have positive attitudes toward receiving the vaccine via SLIP. Students were more willing to participate in a SLIP if it were low cost or free, less time-consuming than going to a doctor, and if they felt they could trust vaccinators. Overall, high school and middle school students ranked the benefits of SLIP similarly to each other. Methods: Focus groups using nominal group method were conducted with middle and high school students in a large, urban school district. Responses were recorded by each school, and then, responses were ranked across all participating schools for each question. Conclusions: A wide range of issues are important to middle and high school students when considering participation in SLIPs including convenience, public health benefits, trust in the program, program safety, and sanitary issues. Further research will be needed regarding the generalizability of these findings to larger populations of students. PMID:24018398

  13. Focusing on flu

    PubMed Central

    Middleman, Amy B.; Short, Mary B.; Doak, Jean S.

    2012-01-01

    School-located immunization programs (SLIP) will only be successful if parents consent to their children's participation. It is critical to understand parent perspectives regarding the factors that make them more or less likely to provide that consent. Organizations creating SLIPs will be able to capitalize on the aspects of SLIPs that parents appreciate, and address and correct issues that may give rise to parent concerns. This study involved five focus groups among the parents of school students in a large, urban school district. Findings highlight the broad range of concepts important to parents when considering participation in a SLIP. The safety and trust issues regarding vaccines in general that are so important to parents are also important to parents when considering participation in a SLIP. Effective communication strategies that include assurances regarding tracking of information and the competence and experience of immunizers will be helpful when addressing parents regarding SLIPs. In addition, parents were very cognizant of and positive regarding the public health benefits associated with SLIPs. Further study among larger populations of parents will further refine these ideas and aid in the development of successful influenza vaccine SLIPs that directly address and communicate with parents about the issues most important to them. PMID:23095868

  14. COMPRENDO: Focus and Approach

    PubMed Central

    Schulte-Oehlmann, Ulrike; Albanis, Triantafyllos; Allera, Axel; Bachmann, Jean; Berntsson, Pia; Beresford, Nicola; Carnevali, Daniela Candia; Ciceri, Francesca; Dagnac, Thierry; Falandysz, Jerzy; Galassi, Silvana; Hala, David; Janer, Gemma; Jeannot, Roger; Jobling, Susan; King, Isabella; Klingmüller, Dietrich; Kloas, Werner; Kusk, Kresten Ole; Levada, Ramon; Lo, Susan; Lutz, Ilka; Oehlmann, Jörg; Oredsson, Stina; Porte, Cinta; Rand-Weaver, Marian; Sakkas, Vasilis; Sugni, Michela; Tyler, Charles; van Aerle, Ronny; van Ballegoy, Christoph; Wollenberger, Leah

    2006-01-01

    Tens of thousands of man-made chemicals are in regular use and discharged into the environment. Many of them are known to interfere with the hormonal systems in humans and wildlife. Given the complexity of endocrine systems, there are many ways in which endocrine-disrupting chemicals (EDCs) can affect the body’s signaling system, and this makes unraveling the mechanisms of action of these chemicals difficult. A major concern is that some of these EDCs appear to be biologically active at extremely low concentrations. There is growing evidence to indicate that the guiding principle of traditional toxicology that “the dose makes the poison” may not always be the case because some EDCs do not induce the classical dose–response relationships. The European Union project COMPRENDO (Comparative Research on Endocrine Disrupters—Phylogenetic Approach and Common Principles focussing on Androgenic/Antiandrogenic Compounds) therefore aims to develop an understanding of potential health problems posed by androgenic and antiandrogenic compounds (AACs) to wildlife and humans by focusing on the commonalities and differences in responses to AACs across the animal kingdom (from invertebrates to vertebrates). PMID:16818253

  15. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  16. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  17. Unmatter Plasma

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin

    2015-11-01

    ``Unmatter Plasma'' is a novel form of plasma, exclusively made of matter and its antimatter counterpart. An experiment (2015) on matter-antimatter plasma [or unmatter plasma] was recently successful at the Astra Gemini laser facility at the Rutherford Appleton Laboratory, Oxford, United Kingdom. The experiment that was made has produced electron-positron plasma. The positron is the antimatter of the electron, having an opposite charge of the electron, but the other properties are the same. Unmatter is considered as a combination of matter and antimatter. For example electron-positron is a type of unmatter. We coined the word ``unmatter'' (2004) that means neither matter nor antimatter, but something in between. Besides matter and antimatter there may exist unmatter (as a new form of matter) in accordance with the neutrosophy theory that between an entity and its opposite there exist intermediate entities.

  18. Nonlinear plasma and beam physics in plasma wake-fields

    SciTech Connect

    Rosenzweig, J.B.

    1990-02-12

    In experimental studies of the Plasma Wake-field Accelerator performed to date at the Argonne Advanced Accelerator Test Facility, significant nonlinearities in both plasma and beam behavior have been observed. The plasma waves driven in the wake of the intense driving beam in these experiments exhibit three-dimensional nonlinear behavior which has as yet no quantitative theoretical explanation. This nonlinearity is due in part to the self-pinching of the driving beam in the plasma, as the denser self-focused beam can excite larger amplitude plasma waves. The self-pinching is a process with interesting nonlinear aspects: the initial evolution of the beam envelope and the subsequent approach to Bennett equilibrium through phase mixing. 35 refs., 10 figs.

  19. IEEE conference record -- Abstracts: 1996 IEEE international conference on plasma science

    SciTech Connect

    1996-12-31

    This meeting covered the following topics: space plasmas; non-equilibrium plasma processing; computer simulation of vacuum power tubes; vacuum microelectronics; microwave systems; basic phenomena in partially ionized gases -- gaseous electronics, electrical discharges; ball lightning/spherical plasma configuration; plasma diagnostics; plasmas for lighting; dense plasma focus; intense ion and electron beams; plasma, ion, and electron sources; flat panel displays; fast z-pinches and x-ray lasers; environmental/energy issues in plasma science; thermal plasma processing; computational plasma physics; magnetic confinement fusion; microwave-plasma interactions; space plasma engineering; EM and ETH launchers; fast wave devices; intense beam microwaves; slow wave devices; space plasma measurements; basic phenomena in fully ionized plasma -- waves, instabilities, plasma theory, etc; plasma closing switches; fast opening switches; and laser-produced plasma. Separate abstracts were prepared for most papers in this conference.

  20. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.