Sample records for plasma hdl cholesterol

  1. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miida, T.; Fielding, C.J.; Fielding, P.E.

    1990-11-01

    The transfer of ({sup 3}H)cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t{sub 1/2} at 37{degree}C of 51 {plus minus} 8 min and an activation energy of 18.0 kCal mol{sup {minus}1}. There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major {alpha}-migrating class (HDL{sub 2b}) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL{sub 2b} to smaller {alpha}HDL (particularly HDL{sub 3}) driven enzymatically bymore » the lecithin-cholesterol acyltransferase reaction. Rates of transfer among {alpha}HDL were most rapid from the largest {alpha}HDL fraction (HDL{sub 2b}), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the {alpha}HDL pathyway, with little label in pre-{beta}HDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-{beta}HDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol.« less

  2. Metabolism of plasma cholesterol and lipoprotein parameters are related to a higher degree of insulin sensitivity in high HDL-C healthy normal weight subjects.

    PubMed

    Leança, Camila C; Nunes, Valéria S; Panzoldo, Natália B; Zago, Vanessa S; Parra, Eliane S; Cazita, Patrícia M; Jauhiainen, Matti; Passarelli, Marisa; Nakandakare, Edna R; de Faria, Eliana C; Quintão, Eder C R

    2013-11-22

    We have searched if plasma high density lipoprotein-cholesterol (HDL-C) concentration interferes simultaneously with whole-body cholesterol metabolism and insulin sensitivity in normal weight healthy adult subjects. We have measured the activities of several plasma components that are critically influenced by insulin and that control lipoprotein metabolism in subjects with low and high HDL-C concentrations. These parameters included cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), lecithin cholesterol acyl transferase (LCAT), post-heparin lipoprotein lipase (LPL), hepatic lipase (HL), pre-beta-₁HDL, and plasma sterol markers of cholesterol synthesis and intestinal absorption. In the high-HDL-C group, we found lower plasma concentrations of triglycerides, alanine aminotransferase, insulin, HOMA-IR index, activities of LCAT and HL compared with the low HDL-C group; additionally, we found higher activity of LPL and pre-beta-₁HDL concentration in the high-HDL-C group. There were no differences in the plasma CETP and PLTP activities. These findings indicate that in healthy hyperalphalipoproteinemia subjects, several parameters that control the metabolism of plasma cholesterol and lipoproteins are related to a higher degree of insulin sensitivity.

  3. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  4. Reduced Plasma HDL Cholesterol in Hyperthyroid Mice Coincides with Decreased Hepatic ABCA1 Expression

    PubMed Central

    TANCEVSKI, IVAN; WEHINGER, ANDREAS; DEMETZ, EGON; ELLER, PHILIPP; DUWENSEE, KRISTINA; HUBER, JULIA; HOCHEGGER, KATHRIN; SCHGOER, WILFRIED; FIEVET, CATHERINE; STELLAARD, FRANS; RUDLING, MATS; PATSCH, JOSEF R.; RITSCH, ANDREAS

    2010-01-01

    The aim of the study was to investigate the influence of severe hyperthyroidism on plasma high-density lipoprotein cholesterol (HDL-C). Recently, it was shown in mice that increasing doses of triiodothyronine (T3) upregulate hepatic expression of scavenger receptor-BI (SR-BI), resulting in increased clearance of plasma HDL-C. Here we show that severe hyperthyroidism in mice did not affect hepatic expression of SR-BI, but reduced hepatic expression of ATP-binding cassette transporter 1 (ABCA1), accompanied by a 40%-reduction of HDL-C. Sterol content of bile, liver and feces was markedly increased, accompanied by upregulation of hepatic CYP7A1, and ATP-binding cassette half-transporter ABCG5, which is known to promote biliary sterol secretion upon dimerization with ABCG8. Both control and hyperthyroid mice exerted identical plasma clearance of intravenously injected [3H] HDL-C, supporting the view that severe hyperthyroidism does not affect HDL-C clearance, but rather its formation via hepatic ABCA1. PMID:18388200

  5. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    PubMed

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction.

    PubMed

    Zimetti, Francesca; De Vuono, Stefano; Gomaraschi, Monica; Adorni, Maria Pia; Favari, Elda; Ronda, Nicoletta; Ricci, Maria Anastasia; Veglia, Fabrizio; Calabresi, Laura; Lupattelli, Graziana

    2017-10-01

    Acute phase reaction (APR) is a systemic inflammation triggered by several conditions associated with lipid profile alterations. We evaluated whether APR also associates with changes in cholesterol synthesis and absorption, HDL structure, composition, and cholesterol efflux capacity (CEC). We analyzed 59 subjects with APR related to infections, oncologic causes, or autoimmune diseases and 39 controls. We detected no difference in markers of cholesterol synthesis and absorption. Conversely, a significant reduction of LpA-I- and LpAI:AII-containing HDL (-28% and -44.8%, respectively) and of medium-sized HDL (-10.5%) occurred in APR. Total HDL CEC was impaired in APR subjects (-18%). Evaluating specific CEC pathways, we found significant reductions in CEC by aqueous diffusion and by the transporters scavenger receptor B-I and ABCG1 (-25.5, -41.1 and -30.4%, respectively). ABCA1-mediated CEC was not affected. Analyses adjusted for age and gender provided similar results. In addition, correcting for HDL-cholesterol (HDL-C) levels, the differences in aqueous diffusion total and ABCG1-CEC remained significant. APR subjects displayed higher levels of HDL serum amyloid A (+20-folds; P = 0.003). In conclusion, APR does not associate with cholesterol synthesis and absorption changes but with alterations of HDL composition and a marked impairment of HDL CEC, partly independent of HDL-C serum level reduction. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Lipid transfers to HDL are diminished in long-term bedridden patients: association with low HDL-cholesterol and increased inflammatory markers.

    PubMed

    de Oliveira, Wilson Pascoalino Camargo; Tavoni, Thauany Martins; Freitas, Fatima Rodrigues; Silva, Bruna Miranda Oliveira; Maranhão, Raul Cavalcante

    2017-08-01

    Plasma lipids have been extensively studied in sedentary and in subjects practicing exercise training, but not in extreme inactivity as occurs in bedridden patients. This is important for the care of bedridden patients and understanding the overall plasma lipid regulation. Here, we investigated plasma lipids, lipid transfers to HDL and inflammatory markers in bedridden patients. Fasting blood samples were collected from 23 clinically stable bedridden patients under long-term care (>90 days) and 26 normolipidemic sedentary subjects, paired for age and gender. In vitro transfer of four lipids to HDL was performed by incubating plasma with donor nanoparticles containing radioactive lipids. Total (193 ± 36 vs 160 ± 43, p = 0.005), LDL (124 ± 3 vs 96 ± 33 p = 0.003) and HDL-cholesterol (45 ± 10 vs 36 ± 13, p = 0.008), apolipoprotein A-I (134 ± 20 vs 111 ± 24, p = 0.001) and oxidized LDL (53 ± 13 vs 43 ± 12, p = 0.011) were lower in bedridden patients, whereas triglycerides, apolipoprotein B, CETP and LCAT were equal in both groups. Transfers of all lipids, namely unesterified cholesterol, cholesterol esters, triglycerides and phospholipids, to HDL were lower in bedridden patients, probably due to their lower HDL-cholesterol levels. Concentrations of IL-1β, IL-6, IL-8, HGF and NGF were higher in bedridden patients compared to sedentary subjects. In conclusion, inactivity had great impact on HDL, by lowering HDL-cholesterol, apolipoprotein A-I and thereby cholesterol transfers to the lipoprotein, which suggests that inactivity may deteriorate HDL protection beyond the ordinary sedentary condition.

  8. Ciprofibrate therapy in patients with hypertriglyceridemia and low high density lipoprotein (HDL)-cholesterol: greater reduction of non-HDL cholesterol in subjects with excess body weight (The CIPROAMLAT study)

    PubMed Central

    Aguilar-Salinas, Carlos A; Assis-Luores-Vale, Andréia; Stockins, Benjamín; Rengifo, Hector Mario; Filho, José Dondici; Neto, Abrahão Afiune; Rabelo, Lísia Marcílio; Torres, Kerginaldo Paulo; Oliveira, José Egídio Paulo de; Machado, Carlos Alberto; Reyes, Eliana; Saavedra, Victor; Florenzano, Fernando; Hernández, Ma Victoria; Jiménez, Sergio Hernandez; Ramírez, Erika; Vazquez, Cuauhtémoc; Salinas, Saul; Hernández, Ismael; Medel, Octavio; Moreno, Ricardo; Lugo, Paula; Alvarado, Ricardo; Mehta, Roopa; Gutierrez, Victor; Gómez Pérez, Francisco J

    2004-01-01

    Background Hypertriglyceridemia in combination with low HDL cholesterol levels is a risk factor for cardiovascular disease. Our objective was to evaluate the efficacy of ciprofibrate for the treatment of this form of dyslipidemia and to identify factors associated with better treatment response. Methods Multicenter, international, open-label study. Four hundred and thirty seven patients were included. The plasma lipid levels at inclusion were fasting triglyceride concentrations between 1.6–3.9 mM/l and HDL cholesterol ≤ 1.05 mM/l for women and ≤ 0.9 mM/l for men. The LDL cholesterol was below 4.2 mM/l. All patients received ciprofibrate 100 mg/d. Efficacy and safety parameters were assessed at baseline and at the end of the treatment. The primary efficacy parameter of the study was percentage change in triglycerides from baseline. Results After 4 months, plasma triglyceride concentrations were decreased by 44% (p < 0.001). HDL cholesterol concentrations were increased by 10% (p < 0.001). Non-HDL cholesterol was decreased by 19%. A greater HDL cholesterol response was observed in lean patients (body mass index < 25 kg/m2) compared to the rest of the population (8.2 vs 19.7%, p < 0.001). In contrast, cases with excess body weight had a larger decrease in non-HDL cholesterol levels (-20.8 vs -10.8%, p < 0.001). There were no significant complications resulting from treatment with ciprofibrate. Conclusions Ciprofibrate is efficacious for the correction of hypertriglyceridemia / low HDL cholesterol. A greater decrease in non-HDL cholesterol was found among cases with excess body weight. The mechanism of action of ciprofibrate may be influenced by the pathophysiology of the disorder being treated. PMID:15272932

  9. Difference in effect of myristic and stearic acid on plasma HDL cholesterol within 24 h in young men.

    PubMed

    Tholstrup, T; Vessby, B; Sandstrom, B

    2003-06-01

    There is increasing evidence that postprandial triacylglycerol (TAG)-rich lipoproteins (TRL) may be related to atherogenic risk. Little is known about the acute effect of individual dietary saturated fatty acids on plasma lipids and lipoproteins. To investigate the effect of two prevalent dietary saturated fatty acids, stearic and myristic acid on postprandial and 24 h fasting plasma lipoprotein TAG and cholesterol concentrations. Ten young healthy men were served two meals (1.2 g fat/kg body weight) containing fat enriched in either stearic acid (S) (shea butter) or myristic acid (M) (produced by inter-esterification) in a randomised, cross-over study. The meals were given in the morning after 12 h of fasting and again after 8 h (in the afternoon). The S and M containing meals were given at different days separated by a washout period. Blood samples were taken before the meal and 2,4,6,8, and 24 h after the first meal. The M meal resulted in a higher postprandial HDL TAG response than S (P=0.03 I), (diet x time interaction), while no differences were observed in other lipid fractions. Twenty-four hours after the M meal fasting, HDL cholesterol was higher (P=0.05) and HDL TAG lower (P<0.001) than at baseline. Intake of individual dietary SFA may affect fasting HDL cholesterol within 24 h. Thus after this short period HDL cholesterol concentration was higher after myristic acid than stearic acid. Myristic acid resulted in a higher increase in postprandial HDL TAG than stearic acid.

  10. Complex Adaptive System Models and the Genetic Analysis of Plasma HDL-Cholesterol Concentration

    PubMed Central

    Rea, Thomas J.; Brown, Christine M.; Sing, Charles F.

    2006-01-01

    Despite remarkable advances in diagnosis and therapy, ischemic heart disease (IHD) remains a leading cause of morbidity and mortality in industrialized countries. Recent efforts to estimate the influence of genetic variation on IHD risk have focused on predicting individual plasma high-density lipoprotein cholesterol (HDL-C) concentration. Plasma HDL-C concentration (mg/dl), a quantitative risk factor for IHD, has a complex multifactorial etiology that involves the actions of many genes. Single gene variations may be necessary but are not individually sufficient to predict a statistically significant increase in risk of disease. The complexity of phenotype-genotype-environment relationships involved in determining plasma HDL-C concentration has challenged commonly held assumptions about genetic causation and has led to the question of which combination of variations, in which subset of genes, in which environmental strata of a particular population significantly improves our ability to predict high or low risk phenotypes. We document the limitations of inferences from genetic research based on commonly accepted biological models, consider how evidence for real-world dynamical interactions between HDL-C determinants challenges the simplifying assumptions implicit in traditional linear statistical genetic models, and conclude by considering research options for evaluating the utility of genetic information in predicting traits with complex etiologies. PMID:17146134

  11. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Delaney, Bryan; Chadwell, Kim; Moolchandani, Vikas; Kotyla, Timothy; Ponduru, Sridevi; Zheng, Guo-Hua; Hess, Richard; Knutson, Nathan; Curry, Leslie; Kolberg, Lore; Goulson, Melanie; Ostergren, Karen

    2004-10-01

    Consumption of concentrated barley beta-glucan lowers plasma cholesterol because of its soluble dietary fiber nature. The role of molecular weight (MW) in lowering serum cholesterol is not well established. Prior studies showed that enzymatic degradation of beta-glucan eliminates the cholesterol-lowering activity; however, these studies did not evaluate the MW of the beta-glucan. The current study was conducted to evaluate whether barley beta-glucan concentrates, partially hydrolyzed to reduce MW, possess cholesterol-lowering and antiatherogenic activities. The reduced MW fraction was compared with a high MW beta-glucan concentrate from the same barley flour. Concentrated beta-glucan preparations were evaluated in Syrian Golden F(1)B hamsters fed a hypercholesterolemic diet (HCD) with cholesterol, hydrogenated coconut oil, and cellulose. After 2 wk, hamsters were fed HCD or diets that contained high or reduced MW beta-glucan at a concentration of 8 g/100 g at the expense of cellulose. Decreases in plasma total cholesterol (TC) and non-HDL-cholesterol (non-HDL-C) concentrations occurred in the hamsters fed reduced MW and high MW beta-glucan diets. Plasma HDL-C concentrations did not differ. HCD-fed hamsters had higher plasma triglyceride concentrations. Liver TC, free cholesterol, and cholesterol ester concentrations did not differ. Aortic cholesterol ester concentrations were lower in the reduced MW beta-glucan-fed hamsters. Consumption of either high or reduced MW beta-glucan increased concentrations of fecal total neutral sterols and coprostanol, a cholesterol derivative. Fecal excretion of cholesterol was greater than in HCD-fed hamsters only in those fed the reduced MW beta-glucan. Study results demonstrate that the cholesterol-lowering activity of barley beta-glucan may occur at both lower and higher MW.

  12. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    PubMed Central

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  13. HDL cholesterol transport during inflammation.

    PubMed

    van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2007-04-01

    The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.

  14. HDL: The "Good" Cholesterol

    MedlinePlus

    ... and LDL (bad) cholesterol: HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ... cholesterol from your body. LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ...

  15. Intake of up to 3 Eggs/Day Increases HDL Cholesterol and Plasma Choline While Plasma Trimethylamine-N-oxide is Unchanged in a Healthy Population.

    PubMed

    DiMarco, Diana M; Missimer, Amanda; Murillo, Ana Gabriela; Lemos, Bruno S; Malysheva, Olga V; Caudill, Marie A; Blesso, Christopher N; Fernandez, Maria Luz

    2017-03-01

    Eggs are a source of cholesterol and choline and may impact plasma lipids and trimethylamine-N-oxide (TMAO) concentrations, which are biomarkers for cardiovascular disease (CVD) risk. Therefore, the effects of increasing egg intake (0, 1, 2, and 3 eggs/day) on these and other CVD risk biomarkers were evaluated in a young, healthy population. Thirty-eight subjects [19 men/19 women, 24.1 ± 2.2 years, body mass index (BMI) 24.3 ± 2.5 kg/m 2 ] participated in this 14-week crossover intervention. Participants underwent a 2-week washout with no egg consumption, followed by intake of 1, 2, and 3 eggs/day for 4 weeks each. Anthropometric data, blood pressure (BP), dietary records, and plasma biomarkers (lipids, glucose, choline, and TMAO) were measured during each intervention phase. BMI, waist circumference, systolic BP, plasma glucose, and plasma triacylglycerol did not change throughout the intervention. Diastolic BP decreased with egg intake (P < 0.05). Compared to 0 eggs/day, intake of 1 egg/day increased HDL cholesterol (HDL-c) (P < 0.05), and decreased LDL cholesterol (LDL-c) (P < 0.05) and the LDL-c/HDL-c ratio (P < 0.01). With intake of 2-3 eggs/day, these changes were maintained. Plasma choline increased dose-dependently with egg intake (P < 0.0001) while fasting plasma TMAO was unchanged. These results indicate that in a healthy population, consuming up to 3 eggs/day results in an overall beneficial effect on biomarkers associated with CVD risk, as documented by increased HDL-c, a reduced LDL-c/HDL-c ratio, and increased plasma choline in combination with no change in plasma LDL-c or TMAO concentrations.

  16. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers.

    PubMed

    Kächele, Martin; Hennige, Anita M; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs' in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. We could demonstrate that common genetic variation in the PIK3CG locus, possibly via altered PIK3CG gene expression, determines

  17. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    PubMed

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: <25; n = 14) and overweight or obese (≥25; n = 34) participants by using linear mixed models. Results: The almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P < 0.05). No diet effects were observed in the overweight or obese group. Conclusions: Substituting almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable

  18. Prolonged Caloric Restriction in Obese Patients With Type 2 Diabetes Mellitus Decreases Plasma CETP and Increases Apolipoprotein AI Levels Without Improving the Cholesterol Efflux Properties of HDL

    PubMed Central

    Wang, Yanan; Snel, Marieke; Jonker, Jacqueline T.; Hammer, Sebastiaan; Lamb, Hildo J.; de Roos, Albert; Meinders, A. Edo; Pijl, Hanno; Romijn, Johannes A.; Smit, Johannes W.A.; Jazet, Ingrid M.; Rensen, Patrick C.N.

    2011-01-01

    OBJECTIVE Using a mouse model for human-like lipoprotein metabolism, we observed previously that reduction of the hepatic triglyceride (TG) content resulted in a decrease in plasma cholesteryl ester transfer protein (CETP) and an increase in HDL levels. The aim of the current study was to investigate the effects of prolonged caloric restriction in obese patients with type 2 diabetes mellitus, resulting in a major reduction in hepatic TG content, on plasma CETP and HDL levels. RESEARCH DESIGN AND METHODS We studied 27 obese (BMI: 37.2 ± 0.9 kg/m2) insulin-dependent patients with type 2 diabetes mellitus (14 men and 13 women, aged 55 ± 2 years) who received a 16-week very low calorie diet (VLCD). At baseline and after a 16-week VLCD, plasma lipids, lipoproteins, and CETP were measured. Furthermore, functionality of HDL with respect to inducing cholesterol efflux from human monocyte cells (THP-1) was determined. RESULTS A 16-week VLCD markedly decreased plasma CETP concentration (−18%; P < 0.01) and increased plasma apolipoprotein (apo)AI levels (+16%; P < 0.05), without significantly affecting plasma HDL-cholesterol and HDL-phospholipids. Although a VLCD results in HDL that is less lipidated, the functionality of HDL with respect to inducing cholesterol efflux in vitro was unchanged. CONCLUSIONS The marked decrease in hepatic TG content induced by a 16-week VLCD is accompanied by a decrease in plasma CETP concentration and an increase in apoAI levels, without improving the cholesterol efflux properties of HDL in vitro. PMID:21994427

  19. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    PubMed

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively. Copyright © 2016. Publicado por Elsevier España, S.L.U.

  20. Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults

    PubMed Central

    Murguía-Romero, Miguel; Jiménez-Flores, J. Rafael; Sigrist-Flores, Santiago C.; Espinoza-Camacho, Miguel A.; Jiménez-Morales, Mayra; Piña, Enrique; Méndez-Cruz, A. René; Villalobos-Molina, Rafael; Reaven, Gerald M.

    2013-01-01

    Studies in mature adults suggest that the plasma concentration ratio of triglyceride (TG)/HDL-cholesterol (HDL-C) provides a simple way to identify apparently healthy individuals who are insulin resistant (IR) and at increased cardiometabolic risk. This study extends these observations by examining the clinical utility of the TG/HDL-C ratio and the metabolic syndrome (MetS) in 2,244 healthy college students (17–24 years old) of Mexican Mestizo ancestry. The TG/HDL-C ratio separating the 25% with the highest value was used to identify IR and increased cardiometabolic risk. Cardiometabolic risk factors were more adverse in men and women whose TG/HDL-C ratios exceeded 3.5 and 2.5, respectively, and approximately one third were identified as being IR. The MetS identified fewer individuals as being IR, but their risk profile was accentuated. In conclusion, both a higher TG/HDL-C ratio and a diagnosis of the MetS identify young IR individuals with an increased cardiometabolic risk profile. The TG/HDL-C ratio identified a somewhat greater number of “high risk” subjects, whereas the MetS found a group whose risk profile was somewhat magnified. These findings suggest that the TG/HDL-C ratio may serve as a simple and clinically useful approach to identify apparently healthy, young individuals who are IR and at increased cardiometabolic risk. PMID:23863983

  1. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function12

    PubMed Central

    Millar, Courtney L; Duclos, Quinn

    2017-01-01

    Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function. PMID:28298268

  2. The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL)).

    PubMed

    Dobiásová, M; Frohlich, J

    2001-10-01

    To evaluate if logarithm of the ratio of plasma concentration of triglycerides to HDL-cholesterol (Log[TG/HDL-C]) correlates with cholesterol esterification rates in apoB-lipoprotein-depleted plasma (FER(HDL)) and lipoprotein particle size. We analyzed previous data dealing with the parameters related to the FER(HDL) (an indirect measure of lipoprotein particle size). In a total of 1433 subjects from 35 cohorts with various risk of atherosclerosis (cord plasma, children, healthy men and women, pre- and postmenopausal women, patients with hypertension, type 2 diabetes, dyslipidemia and patients with positive or negative angiography findings) were studied. The analysis revealed a strong positive correlation (r = 0.803) between FER(HDL) and Log(TG/HDL-C). This parameter, which we propose to call "atherogenic index of plasma" (AIP) directly related to the risk of atherosclerosis in the above cohorts. We also confirmed in a cohort of 35 normal subjects a significant inverse correlation of LDL size with FER(HDL) (r = -0.818) and AIP (r = -0.776). Values of AIP correspond closely to those of FER(HDL) and to lipoprotein particle size and thus could be used as a marker of plasma atherogenicity.

  3. HDL2-cholesterol/HDL3-cholesterol ratio was associated with insulin resistance, high-molecular-weight adiponectin, and components for metabolic syndrome in Japanese.

    PubMed

    Moriyama, Kengo; Negami, Masako; Takahashi, Eiko

    2014-11-01

    Recent data have suggested a relationship between the high-density lipoprotein (HDL) subclass ratio and metabolic syndrome (MetS). However, limited information is available regarding the relationships between the HDL subclass ratio and insulin resistance, associated adipocytokine levels, and MetS components. The associations of the high-density lipoprotein 2 cholesterol (HDL2-C) to high-density lipoprotein 3 cholesterol (HDL3-C) ratio with the homeostasis model assessment of insulin resistance (HOMA-IR) index, high-molecular-weight adiponectin (HMW-Ad) levels, and MetS components were examined. The study included 1155 Japanese subjects who met our inclusion criteria and underwent an annual health examination that included an HDL subclass analysis. The HDL2-C/HDL3-C ratio and the HMW-Ad level gradually decreased as the number of MetS components increased. In contrast, HOMA-IR gradually increased as the number of MetS components increased. The HDL2-C/HDL3-C ratio correlated inversely with HOMA-IR and positively with the HMW-Ad level. A strong positive correlation was observed between the HDL2-C/HDL3-C ratio and the HDL-C level. The HDL2-C/HDL3-C ratio exhibited moderate negative correlations with the body mass index, waist circumference, and triglyceride level. Weak negative correlations were observed for the HDL2-C/HDL3-C ratio with the systolic and diastolic blood pressure and fasting plasma glucose levels. Our data indicated that the HDL2-C/HDL3-C ratio was associated with insulin resistance, the HMW-Ad level, and MetS components, and it was useful for evaluating MetS in Japanese individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  5. Association of cholesterol, LDL, HDL, cholesterol/ HDL and triglyceride with all-cause mortality in life insurance applicants.

    PubMed

    Fulks, Michael; Stout, Robert L; Dolan, Vera F

    2009-01-01

    Determine the relationship between various lipid tests and all-cause mortality in life insurance applicants stratified by age and sex. By use of the Social Security Death Master File, mortality was determined in 1,488,572 life insurance applicants from whom blood samples were submitted to Clinical Reference Laboratory. There were 41,020 deaths observed in this healthy adult population during a median follow-up of 12 years (range 10 to 14 years). Results were stratified by 4 age-sex subpopulations: females, ages 20 to 59 or 60+; and males, ages 20 to 59 or 60+. Those with serum albumin < 3.6 mg/dL or fructosamine > or = 2.1 mmol/L were excluded. The middle 50% of lipid values specific to each of these 4 age-sex subpopulations was used as the reference band. The mortality rates in bands representing other percentiles of lipid values were compared with the mortality rate in the reference band within each age-sex subpopulation. In contrast to some published findings from general populations, lipid test results are only moderately predictive of all-cause mortality risk in a life insurance applicant population and that risk is dependent on age and sex. At ages below 60, HDL values are associated with a "J" shaped mortality curve and at ages 60+, total cholesterol is associated with a "U" shaped curve. The total cholesterol/HDL ratio may serve as a useful single measure to predict mortality risk, but only if stratified by age and sex, and only if high HDL values at younger ages and lower total cholesterol values at ages 60+ are recognized as being associated with increased risk as well. Using LDL or non-HDL cholesterol instead of total cholesterol does not improve mortality risk discrimination; neither does using total cholesterol or triglyceride values in addition to the total cholesterol/HDL ratio. The total cholesterol/HDL ratio is the best single measure of all-cause mortality risk among the various lipid tests but is useful only if viewed on an age- and sex

  6. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling

    PubMed Central

    Assanasen, Chatchawin; Mineo, Chieko; Seetharam, Divya; Yuhanna, Ivan S.; Marcel, Yves L.; Connelly, Margery A.; Williams, David L.; de la Llera-Moya, Margarita; Shaul, Philip W.; Silver, David L.

    2005-01-01

    The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane. PMID:15841181

  7. HDL (Good), LDL (Bad) Cholesterol and Triglycerides

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More HDL (Good), LDL (Bad) Cholesterol and Triglycerides Updated:May 3,2018 Cholesterol isn’ ... be measured by a blood test. LDL (Bad) Cholesterol LDL cholesterol is called “bad” cholesterol. Think of ...

  8. Low HDL-cholesterol among normal weight, normoglycemic offspring of individuals with type 2 diabetes mellitus.

    PubMed

    Praveen, Edavan P; Kulshreshtha, Bindu; Khurana, Madan L; Sahoo, Jayaprakash; Gupta, Nandita; Kumar, Guresh; Ammini, Ariachery; Knadgawat, Rajech

    2011-01-01

    Offspring of type 2 diabetics have an increased risk of dyslipidemia, glucose intolerance and obesity. The aim of this study was to assess the lipid levels in the offspring of diabetics with normal glucose tolerance and normal body weight. Normal weight offspring of patients with type 2 diabetes mellitus (DM) who had normal glucose tolerance, and healthy gender matched controls of comparable age without a family history of diabetes mellitus, were the subjects of this study. Lipid profiles were determined in cases and controls. The study included 114 subjects (64 males and 50 females) in each group, aged (mean ± SD) 24.0 ± 7.9 in cases and 24.1 ± 8.0 years in controls. The body mass index (BMI) was 20.8 ± 3.0 and 20.2 ± 3.1 kg/m2 in cases and controls, respectively. Serum total cholesterol, triglycerides, plasma glucose, fasting insulin, C-peptide and proinsulin levels were comparable in cases and controls. Serum high density lipoprotein (HDL) cholesterol was lower (p <0.001), whilst the serum triglyceride/HDL ratio, low density lipoprotein (LDL) cholesterol and area under the curve for insulin and proinsulin during an oral glucose tolerance test were higher in cases compared to controls. HDL cholesterol showed no significant correlation with plasma glucose, insulin or proinsulin. Plasma HDL cholesterol is low among normal weight, normoglycemic offspring of subjects with type 2 diabetes mellitus. The implications of this finding are not apparent.

  9. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

    USDA-ARS?s Scientific Manuscript database

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C l...

  10. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.

    PubMed

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B; Hancock-Cerutti, William F; Millar, John S; Cuchel, Marina; DerOhannessian, Stephanie; Kontush, Anatol; Surendran, Praveen; Saleheen, Danish; Trompet, Stella; Jukema, J Wouter; De Craen, Anton; Deloukas, Panos; Sattar, Naveed; Ford, Ian; Packard, Chris; Majumder, Abdullah al Shafi; Alam, Dewan S; Di Angelantonio, Emanuele; Abecasis, Goncalo; Chowdhury, Rajiv; Erdmann, Jeanette; Nordestgaard, Børge G; Nielsen, Sune F; Tybjærg-Hansen, Anne; Schmidt, Ruth Frikke; Kuulasmaa, Kari; Liu, Dajiang J; Perola, Markus; Blankenberg, Stefan; Salomaa, Veikko; Männistö, Satu; Amouyel, Philippe; Arveiler, Dominique; Ferrieres, Jean; Müller-Nurasyid, Martina; Ferrario, Marco; Kee, Frank; Willer, Cristen J; Samani, Nilesh; Schunkert, Heribert; Butterworth, Adam S; Howson, Joanna M M; Peloso, Gina M; Stitziel, Nathan O; Danesh, John; Kathiresan, Sekar; Rader, Daniel J

    2016-03-11

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant). Copyright © 2016, American Association for the Advancement of Science.

  11. Plasma 27-hydroxycholesterol/cholesterol ratio is increased in low high density lipoprotein-cholesterol healthy subjects.

    PubMed

    Nunes, Valéria S; Leança, Camila C; Panzoldo, Natália B; Parra, Eliane; Zago, Vanessa; Cazita, Patrícia M; Nakandakare, Edna R; de Faria, Eliana C; Quintão, Eder C R

    2013-10-01

    Sterol 27-hydroxylase converts cholesterol to 27-hydroxycholesterol (27-OHC) which is widely distributed among tissues and is expressed at high levels in the vascular endothelium and macrophages. There is a continuous flow of this oxysterol from the tissues into the liver, where it is converted to bile acids. Measure plasma concentrations of 27-OHC in subjects that differ according to their plasma HDL-C concentration. Healthy men presenting low HDL-C (<1.03 mmol/L), n=18 or high HDL-C (>1.55 mmol/L), n=18, BMI<30 kg/m² were recruited after excluding secondary causes that might interfere with their plasma lipid concentrations such as smoking, heavy drinking and diabetes. Blood samples were drawn after a 12h fasting period for the measurement of 27-OHC by the combined GC/MS analysis utilizing deuterium-label internal standards. The plasma ratio 27-OHC/total cholesterol (median and range nmoL/mmoL) was 50.41 (27.47-116.00) in the High HDL-C subjects and 63.34 (36.46-91.18) in the Low HDL-C subjects (p=0.0258). Our data indicate that the production of 27-OHC by extrahepatic tissues and its transport to the liver may represent an alternative pathway for a deficient reverse cholesterol transport system when plasma HDL-C is low. © 2013.

  12. Long-term consumption of a raw food diet is associated with favorable serum LDL cholesterol and triglycerides but also with elevated plasma homocysteine and low serum HDL cholesterol in humans.

    PubMed

    Koebnick, Corinna; Garcia, Ada L; Dagnelie, Pieter C; Strassner, Carola; Lindemans, Jan; Katz, Norbert; Leitzmann, Claus; Hoffmann, Ingrid

    2005-10-01

    High consumption of vegetables and fruits is associated with reduced risk for cardiovascular disease. However, little information is available about diets based predominantly on consumption of fruits and their health consequences. We investigated the effects of an extremely high dietary intake of raw vegetables and fruits (70-100% raw food) on serum lipids and plasma vitamin B-12, folate, and total homocysteine (tHcy). In a cross-sectional study, the lipid, folate, vitamin B-12, and tHcy status of 201 adherents to a raw food diet (94 men and 107 women) were examined. The participants consumed approximately 1500-1800 g raw food of plant origin/d mainly as vegetables or fruits. Of the participants, 14% had high serum LDL cholesterol concentrations, 46% had low serum HDL cholesterol, and none had high triglycerides. Of raw food consumers, 38% were vitamin B-12 deficient, whereas 12% had an increased mean corpuscular volume (MCV). Plasma tHcy concentrations were correlated with plasma vitamin B-12 concentrations (r = -0.450, P < 0.001), but not with plasma folate. Plasma tHcy and MCV concentrations were higher in those in the lowest quintile of consumption of food of animal origin (P(trend) < 0.001). This study indicates that consumption of a strict raw food diet lowers plasma total cholesterol and triglyceride concentrations, but also lowers serum HDL cholesterol and increases tHcy concentrations due to vitamin B-12 deficiency.

  13. HDL-cholesterol and the incidence of lung cancer in the Atherosclerosis Risk in Communities (ARIC) study

    PubMed Central

    Kucharska-Newton, Anna M.; Rosamond, Wayne D.; Schroeder, Jane C.; McNeill, Ann Marie; Coresh, Josef; Folsom, Aaron R.

    2008-01-01

    Summary This study examined prospectively the association of baseline plasma HDL-cholesterol levels with incidence of lung cancer in 14, 547 members of the Atherosclerosis Risk in Communities (ARIC) cohort. There were 259 cases of incident lung cancer identified during follow-up from 1987 through 2000. Results of this study indicated a relatively weak inverse association of HDL-cholesterol with lung cancer that was dependent on smoking status. The hazard ratio of lung cancer incidence in relation to low HDL-cholesterol, adjusted for race, gender, exercise, alcohol consumption, body mass index, triglycerides, age, and cigarette pack-years of smoking, was 1.45 (95% confidence interval 1.10, 1.92). This association was observed among former smokers (hazard ratio: 1.77, 95% confidence interval 1.05, 2.97), but not current smokers. The number of cases among never smokers in this study was too small (n=13) for meaningful interpretation of effect estimates. Excluding cases occurring within five years of baseline did not appreciably change the point estimates, suggesting lack of reverse causality. The modest association of low plasma HDL-cholesterol with greater incident lung cancer observed in this study is in agreement with existing case-control studies. PMID:18342390

  14. Dietary isohumulones, the bitter components of beer, raise plasma HDL-cholesterol levels and reduce liver cholesterol and triacylglycerol contents similar to PPARalpha activations in C57BL/6 mice.

    PubMed

    Miura, Yutaka; Hosono, Mayu; Oyamada, Chiaki; Odai, Hideharu; Oikawa, Shinichi; Kondo, Keiji

    2005-04-01

    The effects of dietary isohumulones, the main components accounting for the bitter taste of beer, on lipid metabolism were examined. Young female C57BL/6N mice were fed diets containing isomerized hop extract (IHE), which consists mainly of isohumulones. Administration of IHE with an atherogenic (high-fat and high-cholesterol) diet for 2 weeks resulted in a significant increase in plasma HDL-cholesterol (P<0.01), along with a concomitant reduction in the atherosclerosis index, an increase in liver weight and a decrease in body weight gain in a dose-dependent manner. When animals received IHE with either a cholesterol or a basal diet for 1 week, significant decreases in the liver content of cholesterol (P<0.01) and triacylglycerol (cholesterol diet, P<0.01) were observed. Quantitative analyses of hepatic mRNA levels revealed that IHE administration resulted in up-regulation of mRNA for acyl-CoA oxidase, acyl-CoA synthetase, hydroxymethylglutaryl-CoA synthetase, lipoprotein lipase and fatty acid transport protein, and down-regulation of mRNA for Apo CIII and Apo AI. Administration of purified isohumulones effectively resulted in the same changes as IHE. Administration of fenofibrate, an agonist for PPARalpha, with a cholesterol diet caused marked hepatomegaly, an increase in plasma HDL-cholesterol, a decrease in hepatic cholesterol content, and alterations in hepatic mRNA levels similar to those observed in mice given IHE. Taken together, these results suggest that the modulation of lipid metabolism observed in mice fed diets containing isohumulones is, at least in part, mediated by activation of PPARalpha.

  15. Determinants of HDL Cholesterol Efflux Capacity after Virgin Olive Oil Ingestion: Interrelationships with Fluidity of HDL Monolayer.

    PubMed

    Fernández-Castillejo, Sara; Rubió, Laura; Hernáez, Álvaro; Catalán, Úrsula; Pedret, Anna; Valls, Rosa-M; Mosele, Juana I; Covas, Maria-Isabel; Remaley, Alan T; Castañer, Olga; Motilva, Maria-José; Solá, Rosa

    2017-12-01

    Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. Post-hoc analyses from the VOHF study, a crossover intervention with three types of VOO. We assessed the relationship of 3-week changes in HDL-related variables after intervention periods with independence of the type of VOO. After univariate analyses, mixed linear models were fitted with variables related with CEC and fluidity. Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL mean size, were associated to HDL fluidity. HDL fluidity, ApoA-I concentration, and oxidative status are major determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL functionality in humans through nutritional or pharmacological interventions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile

    PubMed Central

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-01-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3H]cholesterol from HDL-[3H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2−/− mice. Increased flux of HDL-[3H]CE to biliary FC was noted with FABP1 overexpression and in SCP2−/− mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3H]CE to biliary FC or bile acids in FABP1−/− mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  18. HDL cholesterol, apolipoproteins, and cardiovascular risk in hemodialysis patients.

    PubMed

    Silbernagel, Günther; Genser, Bernd; Drechsler, Christiane; Scharnagl, Hubert; Grammer, Tanja B; Stojakovic, Tatjana; Krane, Vera; Ritz, Eberhard; Wanner, Christoph; März, Winfried

    2015-02-01

    High concentrations of HDL cholesterol are considered to indicate efficient reverse cholesterol transport and to protect from atherosclerosis. However, HDL has been suggested to be dysfunctional in ESRD. Hence, our main objective was to investigate the effect of HDL cholesterol on outcomes in maintenance hemodialysis patients with diabetes. Moreover, we investigated the associations between the major protein components of HDL (apoA1, apoA2, and apoC3) and end points. We performed an exploratory, post hoc analysis with 1255 participants (677 men and 578 women) of the German Diabetes Dialysis study. The mean age was 66.3 years and the mean body mass index was 28.0 kg/m(2). The primary end point was a composite of cardiac death, myocardial infarction, and stroke. The secondary end point included all-cause mortality. The mean duration of follow-up was 3.9 years. A total of 31.3% of the study participants reached the primary end point and 49.1% died from any cause. HDL cholesterol and apoA1 and apoC3 quartiles were not related to end points. However, there was a trend toward an inverse association between apoA2 and all-cause mortality. The hazard ratio for death from any cause in the fourth quartile compared with the first quartile of apoA2 was 0.63 (95% confidence interval, 0.40 to 0.89). The lack of an association between HDL cholesterol and cardiovascular risk may support the concept of dysfunctional HDL in hemodialysis. The possible beneficial effect of apoA2 on survival requires confirmation in future studies. Copyright © 2015 by the American Society of Nephrology.

  19. HDL Cholesterol, Apolipoproteins, and Cardiovascular Risk in Hemodialysis Patients

    PubMed Central

    Genser, Bernd; Drechsler, Christiane; Scharnagl, Hubert; Grammer, Tanja B.; Stojakovic, Tatjana; Krane, Vera; Ritz, Eberhard; Wanner, Christoph; März, Winfried

    2015-01-01

    High concentrations of HDL cholesterol are considered to indicate efficient reverse cholesterol transport and to protect from atherosclerosis. However, HDL has been suggested to be dysfunctional in ESRD. Hence, our main objective was to investigate the effect of HDL cholesterol on outcomes in maintenance hemodialysis patients with diabetes. Moreover, we investigated the associations between the major protein components of HDL (apoA1, apoA2, and apoC3) and end points. We performed an exploratory, post hoc analysis with 1255 participants (677 men and 578 women) of the German Diabetes Dialysis study. The mean age was 66.3 years and the mean body mass index was 28.0 kg/m2. The primary end point was a composite of cardiac death, myocardial infarction, and stroke. The secondary end point included all-cause mortality. The mean duration of follow-up was 3.9 years. A total of 31.3% of the study participants reached the primary end point and 49.1% died from any cause. HDL cholesterol and apoA1 and apoC3 quartiles were not related to end points. However, there was a trend toward an inverse association between apoA2 and all-cause mortality. The hazard ratio for death from any cause in the fourth quartile compared with the first quartile of apoA2 was 0.63 (95% confidence interval, 0.40 to 0.89). The lack of an association between HDL cholesterol and cardiovascular risk may support the concept of dysfunctional HDL in hemodialysis. The possible beneficial effect of apoA2 on survival requires confirmation in future studies. PMID:25012163

  20. Increased HDL cholesterol levels in mice with XX versus XY sex chromosomes

    PubMed Central

    Link, Jenny C.; Chen, Xuqi; Prien, Christopher; Borja, Mark S.; Hammerson, Bradley; Oda, Michael N.; Arnold, Arthur P.; Reue, Karen

    2015-01-01

    Objective The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. Approach and Results We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the Four Core Genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male–female gonadal sex and XX–XY chromosome complement. Gonadectomy of adult mice revealed that the male–female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male–female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared to a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with two X chromosomes compared to mice with an X and Y chromosome. By generating mice with XX, XY and XXY chromosome complements, we determined that the presence of two X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. Conclusions We demonstrate that having two X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. PMID:26112012

  1. CETP genotypes and HDL-cholesterol phenotypes in the HERITAGE Family Study.

    PubMed

    Spielmann, Nadine; Leon, Arthur S; Rao, D C; Rice, Treva; Skinner, James S; Bouchard, Claude; Rankinen, Tuomo

    2007-09-19

    Associations between cholesteryl ester transfer protein (CETP) polymorphisms and high-density lipoprotein cholesterol (HDL-c) levels before and after 20 wk of endurance training were investigated in the HERITAGE Family Study. Plasma HDL-c, HDL(2)-c, HDL(3)-c, and apolipoprotein (apo)A1 levels were measured, and 13 CETP single nucleotide polymorphisms (SNPs) were genotyped in 265 blacks and 486 whites. Three haplotypes defined by SNPs at the -1337, -971, and -629 sites were strongly associated with baseline HDL-c levels in whites. Both C-1337T and C-629A were associated with baseline HDL-c (P < 0.001) and apoA1 (P < 0.01) when tested separately. However, only C-629A remained significant in a combined model. G-971A was not associated with HDL phenotypes, but showed significant interactions with C-629A (P = 0.002) on baseline traits. Genotype-by-sex interactions were observed at the -629 locus for HDL(3)-c (P = 0.004) and apoA1 (P = 0.02) training responses in whites. In women, the -629 A/A homozygotes showed greater increases in HDL(3)-c (P = 0.02) and apoA1 (P = 0.02) levels than the other genotypes. Finally, apolipoprotein E (APOE) genotype and the CETP C-629A locus contributed independently and in additive fashion to the HDL traits, explaining 6.0-8.8% of the variance. The CETP -1337T and -629A alleles are associated with higher baseline HDL-c and apoA1 levels. The beneficial effects of endurance training on plasma HDL(3)-c and apoA1 levels are evident in white women homozygous for the -629A allele. The CETP and APOE genotypes account for up to 9% of the variance in HDL-c phenotypes in the HERITAGE Family Study.

  2. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome

    PubMed Central

    Fernandez, Maria Luz; Murillo, Ana Gabriela

    2016-01-01

    It is well known that plasma lipids, waist circumference (WC) and blood pressure (BP) increase following menopause. In addition, there is a perceived notion that plasma high-density lipoprotein-cholesterol (HDL-C) concentrations also decrease in postmenopausal women. In this cross-sectional study, we evaluated plasma lipids, fasting glucose, anthropometrics and BP in 88 post and 100 pre-menopausal women diagnosed with metabolic syndrome. No differences were observed in plasma low-density lipoprotein-cholesterol cholesterol, triglycerides, fasting glucose or systolic and diastolic BP between groups. However, plasma HDL-C was higher (p < 0.01) in postmenopausal women and the percentage of women who had low HDL (<50 mg/dL) was higher (p < 0.01) among premenopausal women. In addition, negative correlations were found between WC and HDL-C (r = −0.148, p < 0.05) and BMI and HDL-C (r = −0.258, p < 0.01) for all subjects indicating that increases in weight and abdominal fat have a deleterious effect on plasma HDL-C. Interestingly, there was a positive correlation between age and plasma HDL-C (r = 0.237 p < 0.01). The results from this study suggest that although HDL is decreased by visceral fat and overall weight, low HDL is not a main characteristic of metabolic syndrome in postmenopausal women. Further, HDL appears to increase, not decrease, with age. PMID:27417608

  3. Beneficial Effect of Higher Dietary Fiber Intake on Plasma HDL-C and TC/HDL-C Ratio among Chinese Rural-to-Urban Migrant Workers

    PubMed Central

    Zhou, Quan; Wu, Jiang; Tang, Jie; Wang, Jia-Ji; Lu, Chu-Hong; Wang, Pei-Xi

    2015-01-01

    Research has shown that high-dose supplemental dietary fiber intake has beneficial effects on cardiovascular risk factors. To clarify such a relationship, we examined the association between daily dietary fiber intake and plasma lipids using a cross-sectional design including 1034 (M 502, F 532) rural-to-urban workers in China. We found a dose-response relationship between increased dietary fiber intakes and increase of HDL cholesterol in male workers. There was also a dose-response relationship between increased dietary fiber intake and decreased total cholesterol to HDL cholesterol (TC/HDL-C) ratio in both male and female workers, after adjusting for potential confounders (p for trend, all p < 0.05). When the average dietary fiber intake increased from less than 18 g/day to over 30 g/day, the average HDL cholesterol level increased by 10.1%, and the TC/HDL-C ratio decreased by 14.4% for males (p = 0.020) and by 11.1% for females (p = 0.048). In conclusion, higher daily dietary fiber consumption is associated with beneficial effect on cholesterol for rural-to-urban workers in China, suggesting its potential beneficial effect on decreasing the risk of cardiovascular diseases. PMID:25938914

  4. Beneficial Effect of Higher Dietary Fiber Intake on Plasma HDL-C and TC/HDL-C Ratio among Chinese Rural-to-Urban Migrant Workers.

    PubMed

    Zhou, Quan; Wu, Jiang; Tang, Jie; Wang, Jia-Ji; Lu, Chu-Hong; Wang, Pei-Xi

    2015-04-29

    Research has shown that high-dose supplemental dietary fiber intake has beneficial effects on cardiovascular risk factors. To clarify such a relationship, we examined the association between daily dietary fiber intake and plasma lipids using a cross-sectional design including 1034 (M 502, F 532) rural-to-urban workers in China. We found a dose-response relationship between increased dietary fiber intakes and increase of HDL cholesterol in male workers. There was also a dose-response relationship between increased dietary fiber intake and decreased total cholesterol to HDL cholesterol (TC/HDL-C) ratio in both male and female workers, after adjusting for potential confounders (p for trend, all p < 0.05). When the average dietary fiber intake increased from less than 18 g/day to over 30 g/day, the average HDL cholesterol level increased by 10.1%, and the TC/HDL-C ratio decreased by 14.4% for males (p = 0.020) and by 11.1% for females (p = 0.048). In conclusion, higher daily dietary fiber consumption is associated with beneficial effect on cholesterol for rural-to-urban workers in China, suggesting its potential beneficial effect on decreasing the risk of cardiovascular diseases.

  5. Serum HDL cholesterol concentration in patients with squamous cell and small cell lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-09-01

    Cancer patients often present altered serum lipid profile including changes of HDL cholesterol level. The aim of our work was to evaluate serum level of HDL cholesterol in patients with squamous cell and small cell lung cancer and its dependence on histological type and clinical stage of lung cancer. Fasting serum level of HDL cholesterol was analysed in 135 patients with newly diagnosed lung cancer and compared to a control group of healthy men. All lung cancer patients, as well as subgroups of squamous cell and small cell lung cancer had statistically significantly lower HDL cholesterol concentration than controls. There were no statistically significant differences of HDL cholesterol level between the histological types or between clinical stages of each histological type of lung cancer.

  6. Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect?

    PubMed

    Dobiášová, M

    2017-05-04

    The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers - FER(HDL) (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.

  7. Comparison of human plasma low- and high-density lipoproteins as substrates for lecithin: cholesterol acyltransferase.

    PubMed

    Barter, P J; Hopkins, G J; Gorjatschko, L

    1984-01-17

    A recent observation that lecithin: cholesterol acyltransferase (EC 2.3.1.43) interacts with both low-density lipoproteins (LDL) and high-density lipoproteins (HDL) in human plasma is in apparent conflict with an earlier finding that the purified enzyme, while highly reactive with isolated HDL, was only minimally reactive with LDL. There is evidence, however, that lecithin: cholesterol acyltransferase may exist physiologically as a component of a complex with other proteins and that studies with the isolated enzyme may therefore provide misleading results. Consequently, interactions of the enzyme with isolated human lipoproteins have been re-examined in incubations containing lecithin: cholesterol acyltransferase as a component of human lipoprotein-free plasma in which a physiologically active complex of the enzyme with other proteins may have been preserved. In this system there was a ready esterification of the free cholesterol associated with both LDL and HDL-subfraction 3 (HDL3) in reactions that obeyed typical enzyme-saturation kinetics. For a given preparation of lipoprotein-free plasma the Vmax values with LDL and with HDL3 were virtually identical. The apparent Km for free cholesterol associated with HDL3 was 5.6 X 10(-5) M, while for that associated with LDL it was 4.1 X 10(-4) M. This implied that, in terms of free cholesterol concentration, the affinity of HDL3 for lecithin: cholesterol acyltransferase was about 7-times greater than that of LDL. When expressed in terms of lipoprotein particle concentration, however, it was apparent that the affinity of LDL for the enzyme was considerably greater than that of HDL3. When the lipoprotein fractions were equated in terms of lipoprotein surface area, the apparent affinities of the two fractions for the enzyme were found to be comparable.

  8. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial

    PubMed Central

    Mietus-Snyder, Michele L.; Shigenaga, Mark K.; Suh, Jung H.; Shenvi, Swapna V.; Lal, Ashutosh; McHugh, Tara; Olson, Don; Lilienstein, Joshua; Krauss, Ronald M.; Gildengoren, Ginny; McCann, Joyce C.; Ames, Bruce N.

    2012-01-01

    Dietary intake modulates disease risk, but little is known how components within food mixtures affect pathophysiology. A low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins and minerals, fruit polyphenolics, β-glucan, docosahexaenoic acid) appropriate for deconstruction and mechanistic studies is described and evaluated in a pilot trial. The bar was developed in collaboration with the U.S. Department of Agriculture. Changes in cardiovascular disease and diabetes risk biomarkers were measured after 2 wk twice-daily consumption of the bar, and compared against baseline controls in 25 healthy adults. Plasma HDL-cholesterol (HDL-c) increased 6.2% (P=0.001), due primarily to a 28% increase in large HDL (HDL-L; P<0.0001). Total plasma homocysteine (Hcy) decreased 19% (P=0.017), and glutathione (GSH) increased 20% (P=0.011). The changes in HDL and Hcy are in the direction associated with decreased risk of cardiovascular disease and cognitive decline; increased GSH reflects improved antioxidant defense. Changes in biomarkers linked to insulin resistance and inflammation were not observed. A defined food-based supplement can, within 2 wk, positively impact metabolic biomarkers linked to disease risk. These results lay the groundwork for mechanistic/deconstruction experiments to identify critical bar components and putative synergistic combinations responsible for observed effects.—Mietus-Snyder, M. L., Shigenaga, M. K., Suh, J. H., Shenvi, S. V., Lal, A., McHugh, T., Olson, D., Lilienstein, J., Krauss, R. M., Gildengoren, G., McCann, J. C., Ames, B. N. A nutrient-dense, high-fiber, fruit-based supplement bar increases HDL cholesterol, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-wk trial. PMID:22549511

  9. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters.

    PubMed

    Zhao, Yimin; Liu, Jianhui; Hao, Wangjun; Zhu, Hanyue; Liang, Ning; He, Zouyan; Ma, Ka Ying; Chen, Zhen-Yu

    2017-12-20

    Previous studies have shown that short-chain fatty acids (SCFAs) are capable of decreasing plasma cholesterol. However, the relative plasma-cholesterol-lowering activity of individual SCFAs and the underlying mechanisms by which SCFAs decrease plasma cholesterol remain largely unknown. The present study was done to compare the plasma-cholesterol-lowering potencies of four common SCFAs with 2-5 carbons and to investigate their interactions with gene expressions of key regulatory factors involved in cholesterol metabolism. For 6 weeks, five groups of male Golden hamsters were fed either a control high-cholesterol diet (HCD) or one of the four experimental HCDs containing 0.5 mol of acetate (Ac), propionate (Pr), butyrate (Bu), or valerate (Va) per kilogram of the diet. The results showed that Ac, Pr, and Bu significantly reduced plasma total cholesterol (TC) by 24, 18, and 17% (P < 0.05), respectively. All four SCFAs could decrease non-HDL cholesterol (non-HDL-C) and the non-HDL-C/HDL-C ratio. The addition of Ac, Pr, or Bu into the diet significantly promoted fecal excretion of bile acids by 121, 113, or 120% (P < 0.05), respectively, and upregulated the gene expressions of sterol-regulatory-element-binding protein 2 (SREBP2), low-density-lipoprotein receptor (LDLR), and cholesterol 7α-hydroxylase (CYP7A1) in the liver. It was concluded that SCFAs with 2-4 carbons (Ac, Pr, and Bu) are more hypocholesterolemic than Va, which has 5 carbons, via enhancing fecal excretion of bile acids and promoting the hepatic uptake of cholesterol from the blood.

  10. Dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), alters plasma high-density lipoprotein-cholesterol levels and hepatic gene expression in rats.

    PubMed

    Aizawa, Koichi; Inakuma, Takahiro

    2009-12-01

    The effects of dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), on lipid metabolism were examined. Young male Wistar rats were fed diets containing paprika powder, paprika organic solvent extract, residue of paprika extract, and purified capsanthin. Administration of purified capsanthin for 2 weeks resulted in a significant increase in plasma HDL-cholesterol (P < 0.05) without detectable differences in plasma total cholesterol and TAG concentrations. A statistically significant correlation (r 0.567; P < 0.001) was found between dietary capsanthin concentrations and plasma HDL-cholesterol concentrations. Animals receiving diets containing two different capsanthin concentrations exhibited dose-dependent increases in plasma HDL-cholesterol (r 0.597; P < 0.005). While capsanthin was absent in the liver of animals fed the basal diet, it increased markedly in capsanthin-fed animals (P < 0.001). Quantitative analyses of hepatic mRNA levels revealed that capsanthin administration resulted in up-regulation of mRNA for apoA5 and lecithin cholesterol acyltransferase (LCAT), without significant differences in other mRNA levels related to HDL-cholesterol metabolism. These results suggest that capsanthin had an HDL-cholesterol-raising effect on plasma, and the potential to increase cholesterol efflux to HDL particles by increasing apoA5 levels and/or enhancement of LCAT activity.

  11. High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golay, A.; Zech, L.; Shi, M.Z.

    1987-09-01

    High density lipoprotein (HDL) kinetics were studied by injecting (/sup 3/H)apoprotein A-I (apoA-I)/HDL into 12 subjects with normal glucose tolerance and 12 patients with noninsulin-dependent diabetes mellitus (NIDDM). The results indicate that the mean fractional catabolic rate (FCR) of apoA-I/HDL was significantly faster (0.63 +/- 0.07 (+/- SEM) vs. 0.39 +/- 0.02 1/day; P less than 0.001) and the apoA-I/HDL synthetic rate greater (29.4 +/- 2.9 vs. 22.9 +/- 1.3 mg/kg X day; P less than 0.02) in patients with NIDDM than in normal subjects. Furthermore, there were statistically significant inverse relationships between apoA-I/HDL FCR and plasma levels of bothmore » HDL cholesterol (r = -0.71; P less than 0.001) and apoA-I (r = -0.63; P less than 0.001). In addition, the increase in apoA-I/HDL FCR was directly related to fasting plasma glucose (r = 0.78; P less than 0.001) and insulin (r = 0.76; P less than 0.001) concentrations. These data support the view that the decrease in plasma HDL cholesterol and apoA-I levels commonly found in patients with noninsulin-dependent diabetes is due to an increase in the catabolic rate of apoA-I/HDL secondary to the defects in carbohydrate metabolism present in these patients.« less

  12. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  13. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGES

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  14. Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome.

    PubMed

    Casella-Filho, Antonio; Chagas, Antonio Carlos P; Maranhão, Raul C; Trombetta, Ivani C; Cesena, Fernando H Y; Silva, Vanessa M; Tanus-Santos, Jose Eduardo; Negrão, Carlos E; da Luz, Protasio L

    2011-04-15

    Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions' antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Dietary Almonds Increase Serum HDL Cholesterol in Coronary Artery Disease Patients in a Randomized Controlled Trial.

    PubMed

    Jamshed, Humaira; Sultan, Fateh Ali Tipoo; Iqbal, Romaina; Gilani, Anwar Hassan

    2015-10-01

    More than one-half of coronary artery disease (CAD) patients have low HDL cholesterol despite having well-managed LDL cholesterol. Almond supplementation has not been shown to elevate circulating HDL cholesterol concentrations in clinical trials, perhaps because the baseline HDL cholesterol of trial subjects was not low. This clinical trial was designed to test the effect of almond supplementation on low HDL cholesterol in CAD patients. A total of 150 CAD patients (50 per group), with serum LDL cholesterol ≤100 mg/dL and HDL cholesterol ≤40 mg/dL in men and ≤50 mg/dL in women, were recruited from the Aga Khan University Hospital. After recording vital signs and completing a dietary and physical activity questionnaire, patients were randomly assigned to 1 of the following 3 groups: the no-intervention group (NI), the Pakistani almonds group (PA), and the American almonds group (AA). The respective almond varieties (10 g/d) were given to patients with instructions to soak them overnight, remove the skin, and eat them before breakfast. Blood samples for lipid profiling, body weight, and blood pressure were collected, and assessment of dietary patterns was done at baseline, week 6, and week 12. Almonds significantly increased HDL cholesterol. At weeks 6 and 12, HDL cholesterol was 12-14% and 14-16% higher, respectively, in the PA and AA than their respective baselines. In line with previous reports, serum concentrations of total cholesterol, triglycerides, LDL cholesterol, and VLDL cholesterol; total-to-HDL and LDL-to-HDL cholesterol ratios, and the atherogenic index were reduced in both the PA and AA at weeks 6 and 12 compared with baseline (P < 0.05). Effects on serum lipids did not differ between the 2 almond groups. Dietary patterns, body weight, and blood pressure did not change in any of the 3 groups during the trial. A low dose of almonds (10 g/d) consumed before breakfast can increase HDL cholesterol, in addition to improving other markers of abnormal

  16. How Do Elevated Triglycerides and Low HDL-Cholesterol Affect Inflammation and Atherothrombosis?

    PubMed Central

    Welty, Francine K.

    2015-01-01

    This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The “functionality” of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C. PMID:23881582

  17. Maternal plasma cholesterol and duration of pregnancy: A prospective cohort study in Ghana.

    PubMed

    Oaks, Brietta M; Stewart, Christine P; Laugero, Kevin D; Adu-Afarwuah, Seth; Lartey, Anna; Vosti, Stephen A; Ashorn, Per; Dewey, Kathryn G

    2017-10-01

    Low plasma cholesterol may be associated with preterm birth; however, results are mixed and limited primarily to high-income countries. Our objective was to determine whether maternal plasma lipid concentrations are associated with pregnancy duration. We performed a nested cohort (n = 320) study of pregnant Ghanaian women enrolled in a randomized controlled trial. Total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and triglyceride concentrations were analyzed in plasma at ≤20and 36 weeks gestation as continuous variables and also categorized into low, referent, or high (<10th, 10th-90th, >90th percentile). At ≤20 weeks, plasma lipid concentrations were not associated with pregnancy duration. At 36 weeks, total cholesterol and triglyceride concentrations were not associated with pregnancy duration. Higher HDL-C at 36 weeks was associated with a longer pregnancy duration (adjusted β-coefficient ± standard error: 0.05 ± 0.02 days mg -1 /dL, p = .02); pregnancy duration was 5.9 ± 2.0 (mean ± standard error) days shorter among women with low HDL-C compared with the referent group (10th-90th percentile) (p = .02) and 8.6 ± 2.6 days shorter when compared with the high HDL-C group (p = .003). Pregnancy duration was 4.9 ± 2.1 days longer among women with low low-density lipoprotein cholesterol at 36 weeks gestation when compared with the referent group (p = .051). Our data suggest that low HDL-C in the third trimester of pregnancy is associated with a shorter duration of pregnancy in this study population but do not support the hypothesis that low total cholesterol is associated with a shorter pregnancy duration. © 2016 John Wiley & Sons Ltd.

  18. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio.

    PubMed

    Lemos, Bruno S; Medina-Vera, Isabel; Blesso, Christopher N; Fernandez, Maria Luz

    2018-02-24

    Cardiovascular disease (CVD) risk is associated with high concentrations of low-density lipoprotein cholesterol (LDL-C). The impact of dietary cholesterol on plasma lipid concentrations still remains a concern. The effects of egg intake in comparison to choline bitartrate supplement was studied in a young, healthy population. Thirty participants were enrolled for a 13-week intervention. After a 2-week run-in period, subjects were randomized to consume either 3 eggs/day or a choline bitartrate supplement (~400 mg choline for both treatments) for 4-weeks each. After a 3-week washout period, they were allocated to the alternate treatment. Dietary records, plasma lipids, apolipoproteins (apo) concentrations, and peripheral blood mononuclear cell expression of regulatory genes for cholesterol homeostasis were assessed at the end of each intervention. Dietary intakes of saturated and monounsaturated fat were higher with the consumption of eggs compared to the choline period. In addition, higher plasma concentrations of total cholesterol (7.5%), high density lipoprotein cholesterol (HDL-C) (5%) and LDL-C (8.1%) were observed with egg consumption ( p < 0.01), while no change was seen in LDL-C/HDL-C ratio, a key marker of heart disease risk. Compared to choline supplementation, intake of eggs resulted in higher concentrations of plasma apoA-I (8%) and apoE (17%) with no changes in apoB. Sterol regulatory element-binding protein 2 and 3-hydroxy-3-methylglutaryl-CoA reductase expression were lower with egg consumption by 18% and 31%, respectively ( p < 0.05), suggesting a compensation to the increased dietary cholesterol load. Therefore, dietary cholesterol from eggs appears to regulate endogenous synthesis of cholesterol in such a way that the LDL-C/HDL-C ratio is maintained.

  19. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio

    PubMed Central

    Lemos, Bruno S

    2018-01-01

    Cardiovascular disease (CVD) risk is associated with high concentrations of low-density lipoprotein cholesterol (LDL-C). The impact of dietary cholesterol on plasma lipid concentrations still remains a concern. The effects of egg intake in comparison to choline bitartrate supplement was studied in a young, healthy population. Thirty participants were enrolled for a 13-week intervention. After a 2-week run-in period, subjects were randomized to consume either 3 eggs/day or a choline bitartrate supplement (~400 mg choline for both treatments) for 4-weeks each. After a 3-week washout period, they were allocated to the alternate treatment. Dietary records, plasma lipids, apolipoproteins (apo) concentrations, and peripheral blood mononuclear cell expression of regulatory genes for cholesterol homeostasis were assessed at the end of each intervention. Dietary intakes of saturated and monounsaturated fat were higher with the consumption of eggs compared to the choline period. In addition, higher plasma concentrations of total cholesterol (7.5%), high density lipoprotein cholesterol (HDL-C) (5%) and LDL-C (8.1%) were observed with egg consumption (p < 0.01), while no change was seen in LDL-C/HDL-C ratio, a key marker of heart disease risk. Compared to choline supplementation, intake of eggs resulted in higher concentrations of plasma apoA-I (8%) and apoE (17%) with no changes in apoB. Sterol regulatory element-binding protein 2 and 3-hydroxy-3-methylglutaryl-CoA reductase expression were lower with egg consumption by 18% and 31%, respectively (p < 0.05), suggesting a compensation to the increased dietary cholesterol load. Therefore, dietary cholesterol from eggs appears to regulate endogenous synthesis of cholesterol in such a way that the LDL-C/HDL-C ratio is maintained. PMID:29495288

  20. The Triglyceride-to-HDL Cholesterol Ratio

    PubMed Central

    Giannini, Cosimo; Santoro, Nicola; Caprio, Sonia; Kim, Grace; Lartaud, Derek; Shaw, Melissa; Pierpont, Bridget; Weiss, Ram

    2011-01-01

    OBJECTIVE We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. RESEARCH DESIGN AND METHODS Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. RESULTS In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798–12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. CONCLUSIONS The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity. PMID:21730284

  1. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake.

    PubMed

    Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A

    1993-12-01

    To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.

  2. Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9

    PubMed Central

    2013-01-01

    Background Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Methods Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. Results APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. Conclusions In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume. PMID:23883163

  3. Higher HDL cholesterol is associated with better cognitive function: the Maine-Syracuse study.

    PubMed

    Crichton, Georgina E; Elias, Merrill F; Davey, Adam; Sullivan, Kevin J; Robbins, Michael A

    2014-11-01

    Few studies have examined associations between different subcategories of cholesterol and cognitive function. We examined relationships between total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride levels and cognitive performance in the Maine-Syracuse Longitudinal Study, a community-based study of cardiovascular risk factors. Cross-sectional analyses were undertaken on data from 540 participants, aged 60 to 98 years, free of dementia and stroke. TC, HDL, LDL, and triglyceride levels were obtained. Cognitive function was assessed using a thorough neuropsychological test battery, including domains of cognitive function indexed by multiple cognitive tests. The cognitive outcomes studied were as follows: Visual-Spatial Memory and Organization, Verbal and Working Memory, Scanning and Tracking, Abstract Reasoning, a Global Composite score, and the Mini-Mental State Examination (MMSE). Significant positive associations were observed between HDL-cholesterol and the Global Composite score, Working Memory, and the MMSE after adjustment for demographic and cardiovascular risk factors. Participants with desirable levels of HDL (≥60 mg/dL) had the highest scores on all cognitive outcomes. There were no significant associations observed between TC, LDL, or triglyceride concentrations and cognition. In older individuals, HDL-cholesterol was related to a composite of Working Memory tests and for general measures of cognitive ability when adjusted for cardiovascular variables. We speculate that persons over 60 are survivors and thus less likely to show cognitive deficit in relation to TC, LDL-cholesterol, and triglycerides. Longitudinal studies are needed to examine relations between specific cognitive abilities and the different subcategories of cholesterol.

  4. High Pre-β1 HDL Concentrations and Low Lecithin: Cholesterol Acyltransferase Activities Are Strong Positive Risk Markers for Ischemic Heart Disease and Independent of HDL-Cholesterol

    PubMed Central

    Sethi, Amar A.; Sampson, Maureen; Warnick, Russell; Muniz, Nehemias; Vaisman, Boris; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Remaley, Alan T.

    2016-01-01

    BACKGROUND We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors. METHODS Individuals with IHD (Copenhagen University Hospital) and either high HDL-C (n = 53; women ≥735 mg/L; men ≥619 mg/L) or low HDL-C (n = 42; women ≤387 mg/L; men ≤341 mg/L) were compared with individuals without IHD (Copenhagen City Heart Study) matched by age, sex, and HDL-C concentrations (n = 110). All participants had concentrations within reference intervals for LDL-C (<1600 mg/L) and triglyceride (<1500 mg/L), and none were treated with lipid-lowering medications. Pre-β1 HDL and phospholipid transfer protein concentrations were measured by using commercial kits and lecithin:cholesterol acyltransferase (LCAT) activity by using a proteoliposome cholesterol esterification assay. RESULTS Pre-β1 HDL concentrations were 2-fold higher in individuals with IHD vs no IHD in both the high [63 (5.7) vs 35 (2.3) mg/L; P < 0.0001] and low HDL-C [49 (5.0) vs 27 (1.5) mg/L; P = 0.001] groups. Low LCAT activity was also associated with IHD in the high [95.2 (6.7) vs 123.0 (5.3) μmol · L−1 · h−1; P = 0.002] and low [93.4 (8.3) vs 113.5 (4.9) μmol · L−1 · h−1; P = 0.03] HDL-C groups. ROC curves for pre-β1 HDL in the high–HDL-C groups yielded an area under the curve of 0.71 (95% CI: 0.61–0.81) for predicting IHD, which increased to 0.92 (0.87–0.97) when LCAT was included. Similar results were obtained for low HDL-C groups. An inverse correlation between LCAT activity and pre-β1 HDL was observed (r2 = 0.30; P < 0.0001) in IHD participants, which was stronger in the low HDL-C group (r2 = 0.56; P < 0.0001). CONCLUSIONS IHD was associated with high pre-β1 HDL concentrations and low LCAT levels, yielding correct classification in more than 90% of the IHD cases for which both were measured, thus making pre-β1 HDL concentration and LCAT activity level potentially

  5. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity.

    PubMed

    Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol

    2017-09-01

    High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low

  6. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  7. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    PubMed

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  8. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo

    PubMed Central

    Brunham, Liam R.; Kruit, Janine K.; Iqbal, Jahangir; Fievet, Catherine; Timmins, Jenelle M.; Pape, Terry D.; Coburn, Bryan A.; Bissada, Nagat; Staels, Bart; Groen, Albert K.; Hussain, M. Mahmood; Parks, John S.; Kuipers, Folkert; Hayden, Michael R.

    2006-01-01

    Plasma HDL cholesterol levels are inversely related to risk for atherosclerosis. The ATP-binding cassette, subfamily A, member 1 (ABCA1) mediates the rate-controlling step in HDL particle formation, the assembly of free cholesterol and phospholipids with apoA-I. ABCA1 is expressed in many tissues; however, the physiological functions of ABCA1 in specific tissues and organs are still elusive. The liver is known to be the major source of plasma HDL, but it is likely that there are other important sites of HDL biogenesis. To assess the contribution of intestinal ABCA1 to plasma HDL levels in vivo, we generated mice that specifically lack ABCA1 in the intestine. Our results indicate that approximately 30% of the steady-state plasma HDL pool is contributed by intestinal ABCA1 in mice. In addition, our data suggest that HDL derived from intestinal ABCA1 is secreted directly into the circulation and that HDL in lymph is predominantly derived from the plasma compartment. These data establish a critical role for intestinal ABCA1 in plasma HDL biogenesis in vivo. PMID:16543947

  9. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters.

    PubMed

    Wilson, T A; DeSimone, A P; Romano, C A; Nicolosi, R J

    2000-09-01

    The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol

  10. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population.

    PubMed

    Cold, Frederik; Winther, Kristian H; Pastor-Barriuso, Roberto; Rayman, Margaret P; Guallar, Eliseo; Nybo, Mads; Griffin, Bruce A; Stranges, Saverio; Cold, Søren

    2015-12-14

    Although cross-sectional studies have shown a positive association between Se and cholesterol concentrations, a recent randomised controlled trial in 501 elderly UK individuals of relatively low-Se status found that Se supplementation for 6 months lowered total plasma cholesterol. The Danish PRECISE (PREvention of Cancer by Intervention with Selenium) pilot study (ClinicalTrials.gov ID: NCT01819649) was a 5-year randomised, double-blinded, placebo-controlled trial with four groups (allocation ratio 1:1:1:1). Men and women aged 60-74 years (n 491) were randomised to 100 (n 124), 200 (n 122) or 300 (n 119) μg Se-enriched yeast or matching placebo-yeast tablets (n 126) daily for 5 years. A total of 468 participants continued the study for 6 months and 361 participants, equally distributed across treatment groups, continued for 5 years. Plasma samples were analysed for total and HDL-cholesterol and for total Se concentrations at baseline, 6 months and 5 years. The effect of different doses of Se supplementation on plasma lipid and Se concentrations was estimated by using linear mixed models. Plasma Se concentration increased significantly and dose-dependently in the intervention groups after 6 months and 5 years. Total cholesterol decreased significantly both in the intervention groups and in the placebo group after 6 months and 5 years, with small and nonsignificant differences in changes in plasma concentration of total cholesterol, HDL-cholesterol, non-HDL-cholesterol and total:HDL-cholesterol ratio between intervention and placebo groups. The effect of long-term supplementation with Se on plasma cholesterol concentrations or its sub-fractions did not differ significantly from placebo in this elderly population.

  11. Alcohol consumption stimulates early steps in reverse cholesterol transport.

    PubMed

    van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F

    2001-12-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage

  12. Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio.

    PubMed

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Aizpurúa, Marcelo; Maciel, Pablo M; Reaven, Gerald M

    2014-02-01

    The plasma concentration ratio of triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) can identify cardiometabolic risk and cardiovascular disease. The visceral adiposity index is a sex-specific index, in which measurements of body mass index and waist circumference are combined with TG and HDL-C concentrations. The current analysis was initiated to see if the visceral adiposity index would improve the ability of the TG/HDL-C to identify increased cardiometabolic risk and outcome. Cardiometabolic data were obtained in 2003 from 926 apparently healthy individuals, 796 of whom were evaluated in 2012 for evidence of incident cardiovascular disease. The relationship between TG/HDL-C and values for visceral adiposity index was evaluated by Pearson's correlation coefficient. The relative risks for first cardiovascular event between individuals above and below the TG/HDL-C sex-specific cut points, and in the top quartile of visceral adiposity index versus the remaining 3 quartiles, were estimated using Cox proportional hazard models. TG/HDL-C concentration and visceral adiposity index were highly correlated (r = 0.99) in both men and women. Although more men (133 vs121) and women (73 vs 59) were identified as being at "high risk" by an elevated TG/HDL-C ratio, the individual cardiometabolic risk factors were essentially identical with either index used. However, the hazard ratio of developing cardiovascular disease was significantly increased in individuals with an elevated TG/HDL-C, whereas it was not the case when the visceral adiposity index was used to define "high risk." The visceral adiposity index does not identify individuals with an adverse cardiometabolic profile any better than the TG/HDL-C. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients.

    PubMed

    Mellor, D D; Sathyapalan, T; Kilpatrick, E S; Beckett, S; Atkin, S L

    2010-11-01

    To examine the effects of chocolate on lipid profiles, weight and glycaemic control in individuals with Type 2 diabetes. Twelve individuals with Type 2 diabetes on stable medication were enrolled in a randomized, placebo-controlled double-blind crossover study. Subjects were randomized to 45 g chocolate with or without a high polyphenol content for 8 weeks and then crossed over after a 4-week washout period. Changes in weight, glycaemic control, lipid profile and high-sensitivity C-reactive protein were measured at the beginning and at the end of each intervention. HDL cholesterol increased significantly with high polyphenol chocolate (1.16 ± 0.08 vs. 1.26 ± 0.08 mmol/l, P = 0.05) with a decrease in the total cholesterol: HDL ratio (4.4 ± 0.4 vs. 4.1 ± 0.4 mmol/l, P = 0.04). No changes were seen with the low polyphenol chocolate in any parameters. Over the course of 16 weeks of daily chocolate consumption neither weight nor glycaemic control altered from baseline. High polyphenol chocolate is effective in improving the atherosclerotic cholesterol profile in patients with diabetes by increasing HDL cholesterol and improving the cholesterol:HDL ratio without affecting weight, inflammatory markers, insulin resistance or glycaemic control.

  14. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation.

    PubMed

    Shamburek, R D; Pentchev, P G; Zech, L A; Blanchette-Mackie, J; Carstea, E D; VandenBroek, J M; Cooper, P S; Neufeld, E B; Phair, R D; Brewer, H B; Brady, R O; Schwartz, C C

    1997-12-01

    Niemann-Pick C disease (NP-C) is a rare inborn error of metabolism with hepatic involvement and neurological sequelae that usually manifest in childhood. Although in vitro studies have shown that the lysosomal distribution of LDL-derived cholesterol is defective in cultured cells of NP-C subjects, no unusual characteristics mark the plasma lipoprotein profiles. We set out to determine whether anomalies exist in vivo in the cellular distribution of newly synthesized, HDL-derived or LDL-derived cholesterol under physiologic conditions in NP-C subjects. Three affected and three normal male subjects were administered [14C]mevalonate as a tracer of newly synthesized cholesterol and [3H]cholesteryl linoleate in either HDL or LDL to trace the distribution of lipoprotein-derived free cholesterol. The rate of appearance of free [14C]- and free [3H]cholesterol in the plasma membrane was detected indirectly by monitoring their appearance in plasma and bile. The plasma disappearance of [3H]cholesteryl linoleate was slightly faster in NP-C subjects regardless of its lipoprotein origin. Appearance of free [14C] cholesterol ill the plasma (and in bile) was essentially identical in normal and affected individuals as was the initial appearance of free [3H]cholesterol derived from HDL, observed before extensive exchange occurred of the [3H]cholesteryl linoleate among lipoproteins. In contrast, the rate of appearance of LDL-derived free [3H]cholesterol in the plasma membrane of NP-C subjects, as detected in plasma and bile, was retarded to a similar extent that LDL cholesterol metabolism was defective in cultured fibroblasts of these affected subjects. These findings show that intracellular distribution of both newly synthesized and HDL-derived cholesterol are essentially unperturbed by the NP-C mutation, and therefore occur by lysosomal-independent paths. In contrast, in NP-C there is defective trafficking of LDL-derived cholesterol to the plasma membrane in vivo as well as in vitro

  15. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway[S

    PubMed Central

    Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.

    2016-01-01

    Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204

  16. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol.

    PubMed

    Erlund, Iris; Koli, Raika; Alfthan, Georg; Marniemi, Jukka; Puukka, Pauli; Mustonen, Pirjo; Mattila, Pirjo; Jula, Antti

    2008-02-01

    Berries are a particularly rich source of polyphenols. They also contain other bioactive substances, such as vitamin C. Previous studies indicated that the consumption of polyphenol-rich foods (eg, cocoa, tea, and red wine) may induce beneficial changes in pathways related to cardiovascular health. Whether the consumption of berries has similar effects is unknown. We aimed to investigate the effects of berry consumption on hemostatic function, serum lipids, and blood pressure (BP). Middle-aged unmedicated subjects (n = 72) with cardiovascular risk factors consumed moderate amounts of berry or control products for 8 wk in a single-blind, randomized, placebo-controlled intervention trial. Berry consumption inhibited platelet function as measured with a platelet function analyzer (using collagen and ADP as platelet activator) [changes: 11% and -1.4% in the berry and control groups, respectively; P = 0.018, analysis of covariance (ANCOVA)]. Plasma biomarkers of platelet activation, coagulation, and fibrinolysis did not change during the intervention. Serum HDL-cholesterol concentrations increased significantly more (P = 0.006, ANCOVA) in the berry than in the control group (5.2% and 0.6%, respectively), but total cholesterol and triacylglycerol remained unchanged. Systolic BP decreased significantly (P = 0.050, ANCOVA); the decrease mostly occurred in subjects with high baseline BP (7.3 mm Hg in highest tertile; P = 0.024, ANCOVA). Polyphenol and vitamin C concentrations in plasma increased, whereas other nutritional biomarkers (ie, folate, tocopherols, sodium, and potassium) were unaffected. The consumption of moderate amounts of berries resulted in favorable changes in platelet function, HDL cholesterol, and BP. The results indicate that regular consumption of berries may play a role in the prevention of cardiovascular disease.

  17. Triglyceride-to-HDL-cholesterol ratio and metabolic syndrome as contributors to cardiovascular risk in overweight patients.

    PubMed

    Marotta, Teodoro; Russo, Barbara F; Ferrara, L Aldo

    2010-08-01

    Insulin resistance increases cardiovascular risk of obese patients. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL) >or=3.0 (in mg/dl) is a marker of insulin resistance in overweight persons. We aimed at assessing cardiovascular risk profile in 301 overweight elderly Neapolitan outpatients, according to TG/HDL ratio and metabolic syndrome (MS), diagnosed by National Cholesterol Education Program (NCEP) and International Diabetes Federation (IDF) criteria. TG/HDL ratio was >or=3.0 in 97 patients (group A) and <3.0 in 204 (group B). Overall, 93-97% of group A patients and 38-51% of group B patients had MS, depending on the diagnostic criterion. Group A patients with MS had significantly higher waist-to-hip ratio, total and non-HDL cholesterol than group B patients with MS. In group B, MS and non-MS patients had similar waist-to-hip ratio, blood pressure, total and non-HDL cholesterol. Ten year coronary risk, calculated by the Framingham equations (n = 243), was 10.3 +/- 5% in group B, non-MS patients; 13.1 +/- 6% in group B, MS patients; 19.9 +/- 8% in group A (F = 32.8; P < 0.001). At the multiple regression analysis, TG/HDL ratio was associated with coronary risk (r(2) = 0.227) more closely than gender, blood pressure, waist-to-hip ratio, non HDL cholesterol, and MS considered as a whole. A separate regression analysis showed that the logarithmically transformed TG/HDL ratio, an index of the HDL cholesterol esterification rate, is also associated with coronary risk (r(2) = 0.252). Thus, TG/HDL ratio could help to characterize high-risk overweight patients deserving a special therapeutic effort. Cardiovascular risk profile of insulin-sensitive patients, identified by lower values of this parameter, is only moderately affected by MS.

  18. High hydrostatic pressure extract of garlic increases the HDL cholesterol level via up-regulation of apolipoprotein A-I gene expression in rats fed a high-fat diet

    PubMed Central

    2012-01-01

    Background Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Methods Male Sprague–Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. Results In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. Conclusions These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet. PMID:22713542

  19. High hydrostatic pressure extract of garlic increases the HDL cholesterol level via up-regulation of apolipoprotein A-I gene expression in rats fed a high-fat diet.

    PubMed

    Lee, Seohyun; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2012-06-19

    Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Male Sprague-Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet.

  20. Streptococcal Serum Opacity Factor Increases Hepatocyte Uptake of Human Plasma High Density Lipoprotein-Cholesterol1

    PubMed Central

    Gillard, Baiba K.; Rosales, Corina; Pillai, Biju K.; Lin, Hu Yu; Courtney, Harry S.; Pownall, Henry J.

    2010-01-01

    Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM), that contains the cholesterol esters (CE) of up to ~400,000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. [3H]CE uptake by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was respectively 2.4 and 4.5 times faster than from control HDL. CERM-[3H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[3H]CE uptake by both receptors. RAP and heparin inhibit CERM-[3H]CE but not HDL-[3H]CE uptake thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase hepatic disposal of plasma cholesterol in a way that is therapeutically useful. PMID:20879789

  1. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    PubMed

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  2. Comparison of vegetarian diets and omnivorous diets on plasma level of HDL-c: a meta-analysis.

    PubMed

    Zhang, Zili; Wang, Jian; Chen, Sifan; Wei, Zhaoyu; Li, Zhengtu; Zhao, Siwen; Lu, Wenju

    2014-01-01

    Low plasma level of high density lipoprotein cholesterol (HDL-c) was an independent risk factor for cardio vascular disorder, and associated with poor outcomes in pulmonary arterial hypertension. To compare the effects of vegetarian diets and omnivorous diets on HDL-c in plasma, we identified cross-sectional and cohort studies related to HDL-c listed on PubMed and ISI Web of Knowledge as well as the corresponding references (until Nov, 2013). Twelve studies with a total of 4177 individuals were selected for meta-analysis. This meta-analysis indicates that vegetarian diets did not alter plasma HDL-c concentrations, as it wasn't initially expected by the authors [Standardized Mean Difference (SMD) = 0.02 mmol/l; 95% confidence interval (CI): -0.19 to 0.22 mmol/l]. In Asia and Latin America countries, no significant differences in HDL-c levels between vegetarians and omnivores were found (SMD = -0.09 mmol/l; 95% CI: -0.43 to 0.25 mmol/l). In Europe and North America countries, the plasma level of HDL-c was also not different between the two diets (SMD = 0.09 mmol/l; 95% CI: -0.19 to 0.36 mmol/l). In light of this meta-analysis, we conclude that there is no evidence that plasma HDL-c levels differs in vegetarians and omnivores, even after adjusting for cultural circumstances.

  3. Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial.

    PubMed

    Neufingerl, Nicole; Zebregs, Yvonne E M P; Schuring, Ewoud A H; Trautwein, Elke A

    2013-06-01

    Evidence from clinical studies has suggested that cocoa may increase high-density lipoprotein (HDL)-cholesterol concentrations. However, it is unclear whether this effect is attributable to flavonoids or theobromine, both of which are major cocoa components. We investigated whether pure theobromine increases serum HDL cholesterol and whether there is an interaction effect between theobromine and cocoa. The study had a 2-center, double-blind, randomized, placebo-controlled, full factorial parallel design. After a 2-wk run-in period, 152 healthy men and women (aged 40-70 y) were randomly allocated to consume one 200-mL drink/d for 4 wk that contained 1) cocoa, which naturally provided 150 mg theobromine and 325 mg flavonoids [cocoa intervention (CC)], 2) 850 mg pure theobromine [theobromine intervention (TB)], 3) cocoa and added theobromine, which provided 1000 mg theobromine and 325 mg flavonoids [theobromine and cocoa intervention (TB+CC)], or 4) neither cocoa nor theobromine (placebo). Blood lipids and apolipoproteins were measured at the start and end of interventions. In a 2-factor analysis, there was a significant main effect of the TB (P < 0.0001) but not CC (P = 0.1288) on HDL cholesterol but no significant interaction (P = 0.3735). The TB increased HDL-cholesterol concentrations by 0.16 mmol/L (P < 0.0001). Furthermore, there was a significant main effect of the TB on increasing apolipoprotein A-I (P < 0.0001) and decreasing apolipoprotein B and LDL-cholesterol concentrations (P < 0.02). Theobromine independently increased serum HDL-cholesterol concentrations by 0.16 mmol/L. The lack of significant cocoa and interaction effects suggested that theobromine may be the main ingredient responsible for the HDL cholesterol-raising effect. This trial was registered at clinicaltrials.gov as NCT01481389.

  4. Total HDL cholesterol efflux capacity in healthy children - Associations with adiposity and dietary intakes of mother and child.

    PubMed

    Khalil, H; Murrin, C; O'Reilly, M; Viljoen, K; Segurado, R; O'Brien, J; Somerville, R; McGillicuddy, F; Kelleher, C C

    2017-01-01

    High-density lipoprotein (HDL) cholesterol efflux capacity in adults may be a measure of the atheroprotective property of HDL. Little however, is known about HDL cholesterol efflux capacity in childhood. We aimed to investigate the relationship between HDL cholesterol efflux capacity and childhood anthropometrics in a longitudinal study. Seventy-five children (mean age = 9.4 ± 0.4 years) were followed from birth until the age of 9 years. HDL cholesterol efflux capacity was determined at age 9 by incubating serum-derived HDL-supernatants with 3 H-cholesterol labeled J774 macrophages and percentage efflux determined. Mothers provided dietary information by completing food frequency questionnaires in early pregnancy and then 5 years later on behalf of themselves and their children. Pearson's correlations and multiple regression analyses were conducted to confirm independent associations with HDL efflux. There was a negative correlation between HDL cholesterol efflux capacity and waist circumference at age 5 (r = -0.3, p = 0.01) and age 9 (r = -0.24, p = 0.04) and BMI at age 5 (r = -0.45, p = 0.01) and age 9 (r = -0.19, p = 0.1). Multiple regression analysis showed that BMI at age 5 remained significantly associated with reduced HDL cholesterol efflux capacity (r = -0.45, p < 0.001). HDL-C was negatively correlated with energy-adjusted fat intake (r = -0.24, p = 0.04) and positively correlated with energy-adjusted protein (r = 0.24, p = 0.04) and starch (r = 0.29, p = 0.01) intakes during pregnancy. HDL-C was not significantly correlated with children dietary intake at age 5. There were no significant correlations between maternal or children dietary intake and HDL cholesterol efflux capacity. This novel analysis shows that efflux capacity is negatively associated with adiposity in early childhood independent of HDL-C. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the

  5. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux.

    PubMed

    Daniil, Georgios; Zannis, Vassilis I; Chroni, Angeliki

    2013-01-01

    ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.

  6. The Comparison of Gemfibrozil and Lovastatin Therapy in Patients with High LDL and Low HDL Cholesterol Levels

    DTIC Science & Technology

    1990-08-01

    cholesterol with same method as for TC; however, precision of the HDL measurements were (±SD) ±1.5 mg/dl. Triglycerides ( TG ) were...placebo lipid levels (TC and TG levels), lipoprotein cholesterol levels (LDL, VLDL, and HDL cholesterol levels), and the cholesterol ratios between... high density lipoprotein cholesterol in the serum and risk of mortality: evidence of a threshold effect. Br Med J. 1985; 290:1239-43. 7. Gordon

  7. Effects of glycemic control upon serum lipids and lipid transfers to HDL in patients with type 2 diabetes mellitus: novel findings in unesterified cholesterol status.

    PubMed

    Laverdy, O G; Hueb, W A; Sprandel, M C O; Kalil-Filho, R; Maranhão, R C

    2015-04-01

    Investigate the relations of glycemic levels with plasma lipids and in vitro lipid transfers to HDL in patients with type 2 diabetes mellitus. 143 patients with type 2 diabetes not taking anti-lipidemic drugs were separated into 2 groups: group A included 62 patients with glycated hemoglobin (HbA₁c)≤6.5% (48 mmol/mol) and group B 81 patients with HbA₁c>6.5%. In vitro transfer of lipids was determined by 1 h incubation of a donor nanoemulsion containing radioactively labeled unesterified and esterified cholesterol, phospholipids and triglycerides with whole plasma followed by chemical precipitation and radioactive counting in the supernatant (HDL). LDL and HDL cholesterol were similar in Group A and B, but group B had higher triglycerides (2.31±1.30 vs. 1.58±0.61 mmol/l, P<0.0001) and total and non-HDL unesterified cholesterol (36.3±7.8 vs. 33.9±5.9 mmol/l, P<0,05; 30.6±7.9 vs. 27.6±6.2 mmol/l, P<0,05; respectively) than group A and a non-significant trend to increased apolipoprotein B (103±20 vs. 97±20 mg/dl, P=0.08). 36 patients with the highest, ≥8.0% (64 mmol/mol), HbA₁c also showed non-significant trend of elevated non-esterified fatty acids (NEFA) compared to 37 with lowest, ≤6.0% (42 mmol/mol), HbA₁c (P=0.08). Patients with higher NEFA had higher triglycerides than those with lower NEFA levels (P<0.01).Transfers of all lipids from nanoemulsion to HDL and lipid composition of HDL were equal in both groups. For the first time it was shown that in addition to triglycerides, unesterified cholesterol is also a marker of poor glycemic control. In vitro HDL lipid transfers, an important aspect of HDL metabolism, were not related with the glycemic control. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Plasma kinetics of chylomicron-like emulsion and lipid transfers to high-density lipoprotein (HDL) in lacto-ovo vegetarian and in omnivorous subjects.

    PubMed

    Vinagre, Juliana C; Vinagre, Carmen C G; Pozzi, Fernanda S; Zácari, Cristiane Z; Maranhão, Raul C

    2014-04-01

    Previously, it was showed that vegan diet improves the metabolism of triglyceride-rich lipoproteins by increasing the plasma clearance of atherogenic remnants. The aim of the current study was to investigate this metabolism in lacto-ovo vegetarians whose diet is less strict, allowing the ingestion of eggs and milk. Transfer of lipids to HDL, an important step in HDL metabolism, was tested in vitro. Eighteen lacto-ovo vegetarians and 29 omnivorous subjects, all eutrophic and normolipidemic, were intravenously injected with triglyceride-rich emulsions labeled with ¹⁴C-cholesterol oleate and ³H-triolein. Fractional clearance rates (FCR, in min⁻¹) were calculated from samples collected during 60 min. Lipid transfer to HDL was assayed by incubating plasma samples with a donor nanoemulsion labeled with radioactive lipids. LDL cholesterol was lower in vegetarians than in omnivores (2.1 ± 0.8 and 2.7 ± 0.7 mmol/L, respectively, p < 0.05), but HDL cholesterol and triglycerides were equal. Cholesteryl ester FCR was greater in vegetarians than in omnivores (0.016 ± 0.012, 0.003 ± 0.003, p < 0.01), whereas triglyceride FCR was equal. Cholesteryl ester transfer to HDL was lower in vegetarians than in omnivores (2.7 ± 0.6, 3.5 ± 1.5 %, p < 0.05), but free cholesterol, triglyceride and phospholipid transfers and HDL size were equal. Similarly to vegans, lacto-ovo vegetarian diet increases remnant removal, as indicated by cholesteryl oleate FCR, which may favor atherosclerosis prevention, and has the ability to change lipid transfer to HDL.

  9. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice[S

    PubMed Central

    Thacker, Seth G.; Rousset, Xavier; Esmail, Safiya; Zarzour, Abdalrahman; Jin, Xueting; Collins, Heidi L.; Sampson, Maureen; Stonik, John; Demosky, Stephen; Malide, Daniela A.; Freeman, Lita; Vaisman, Boris L.; Kruth, Howard S.; Adelman, Steven J.; Remaley, Alan T.

    2015-01-01

    LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles. PMID:25964513

  10. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    Our laboratory has reported that the hypolipidemic effect of rice bran oil (RBO) is not entirely explained by its fatty acid composition. Because RBO has a greater content of the unsaponifiables, which also lower cholesterol compared to most vegetable oils, we wanted to know whether oryzanol or ferulic acid, two major unsaponifiables in RBO, has a greater cholesterol-lowering activity. Forty-eight F(1)B Golden Syrian hamsters (Mesocricetus auratus) (BioBreeders, Watertown, MA) were group housed (three per cage) in cages with bedding in an air-conditioned facility maintained on a 12-h light/dark cycle. The hamsters were fed a chow-based hypercholesterolemic diet (HCD) containing 10% coconut oil and 0.1% cholesterol for 2 weeks, at which time they were bled after an overnight fast (16 h) and segregated into 4 groups of 12 with similar plasma cholesterol concentrations. Group 1 (control) continued on the HCD, group 2 was fed the HCD containing 10% RBO in place of coconut oil, group 3 was fed the HCD plus 0.5% ferulic acid and group 4 was fed the HCD plus 0.5% oryzanol for an additional 10 weeks. After 10 weeks on the diets, plasma total cholesterol (TC) and non-high-density lipoprotein cholesterol (HDL-C) (very low- and low-density lipoprotein) concentrations were significantly lower in the RBO (-64% and -70%, respectively), the ferulic acid (-22% and -24%, respectively) and the oryzanol (-70% and -77%, respectively) diets compared to control. Plasma TC and non-HDL-C concentrations were also significantly lower in the RBO (-53% and -61%, respectively) and oryzanol (-61% and -70%, respectively) diets compared to the ferulic acid. Compared to control and ferulic acid, plasma HDL-C concentrations were significantly higher in the RBO (10% and 20%, respectively) and oryzanol (13% and 24%, respectively) diets. The ferulic acid diet had significantly lower plasma HDL-C concentrations compared to the control (-9%). The RBO and oryzanol diets were significantly lower for

  11. Pla2g12b and Hpn Are Genes Identified by Mouse ENU Mutagenesis That Affect HDL Cholesterol

    PubMed Central

    Aljakna, Aleksandra; Choi, Seungbum; Savage, Holly; Hageman Blair, Rachael; Gu, Tongjun; Svenson, Karen L.; Churchill, Gary A.; Hibbs, Matt; Korstanje, Ron

    2012-01-01

    Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3′ splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism. PMID:22912808

  12. Differences in the triglyceride to HDL-cholesterol ratio between Palestinian and Israeli adults.

    PubMed

    Weiss, Ram; Nassar, Hisham; Sinnreich, Ronit; Kark, Jeremy D

    2015-01-01

    To evaluate differences in the triglyceride to HDL-cholesterol ratio (TG/HDL), thought to be a proxy measure of insulin resistance, between Palestinian and Israeli adults in view of the greater incidence of coronary heart disease and high prevalence of diabetes in Palestinian Arabs. A population-based observational prevalence study of cardiovascular and diabetes risk factors in Jerusalem. Participants (968 Palestinians, 707 Israelis, sampled at ages 25-74 years) underwent fasting and 2 h post-75 g oral challenge plasma glucose determinations. Metabolic risk was assessed using the surrogate index TG/HDL. Sex-specific comparisons were stratified by categories of body mass index and sex-specific waist circumference quartiles, adjusted by regression for age, glucose tolerance status and use of statins. Prevalence of overweight and obesity was substantially larger in Palestinians (p = 0.005). Prevalence of diabetes was 2.4 and 4 fold higher among Palestinian men and women, respectively (p<0.001). Adjusted TG/HDL was higher in Palestinians than Israelis across BMI and waist circumference categories (p<0.001 for both). Higher TG/HDL in Palestinians persisted in analyses restricted to participants with normal glucose tolerance and off statins. Notably, higher TG/HDL among Palestinians prevailed at a young age (25-44 years) and in normal weight individuals of both sexes. Palestinians have a higher TG/HDL ratio than Israelis. Notably, this is evident also in young, healthy and normal weight participants. These findings indicate the need to study the determinants of this biomarker and other measures of insulin resistance in urban Arab populations and to focus research attention on earlier ages: childhood and prenatal stages of development.

  13. Differences in the Triglyceride to HDL-Cholesterol Ratio between Palestinian and Israeli Adults

    PubMed Central

    Weiss, Ram; Nassar, Hisham; Sinnreich, Ronit; Kark, Jeremy D.

    2015-01-01

    Aims To evaluate differences in the triglyceride to HDL-cholesterol ratio (TG/HDL), thought to be a proxy measure of insulin resistance, between Palestinian and Israeli adults in view of the greater incidence of coronary heart disease and high prevalence of diabetes in Palestinian Arabs. Research Methods A population-based observational prevalence study of cardiovascular and diabetes risk factors in Jerusalem. Participants (968 Palestinians, 707 Israelis, sampled at ages 25-74 years) underwent fasting and 2h post-75g oral challenge plasma glucose determinations. Metabolic risk was assessed using the surrogate index TG/HDL. Sex-specific comparisons were stratified by categories of body mass index and sex-specific waist circumference quartiles, adjusted by regression for age, glucose tolerance status and use of statins. Results Prevalence of overweight and obesity was substantially larger in Palestinians (p = 0.005). Prevalence of diabetes was 2.4 and 4 fold higher among Palestinian men and women, respectively (p<0.001). Adjusted TG/HDL was higher in Palestinians than Israelis across BMI and waist circumference categories (p<0.001 for both). Higher TG/HDL in Palestinians persisted in analyses restricted to participants with normal glucose tolerance and off statins. Notably, higher TG/HDL among Palestinians prevailed at a young age (25-44 years) and in normal weight individuals of both sexes. Conclusions Palestinians have a higher TG/HDL ratio than Israelis. Notably, this is evident also in young, healthy and normal weight participants. These findings indicate the need to study the determinants of this biomarker and other measures of insulin resistance in urban Arab populations and to focus research attention on earlier ages: childhood and prenatal stages of development. PMID:25635396

  14. Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

    PubMed Central

    Postmus, Iris; Warren, Helen R; Trompet, Stella; Arsenault, Benoit J; Avery, Christy L; Bis, Joshua C; Chasman, Daniel I; de Keyser, Catherine E; Deshmukh, Harshal A; Evans, Daniel S; Feng, QiPing; Li, Xiaohui; Smit, Roelof AJ; Smith, Albert V; Sun, Fangui; Taylor, Kent D; Arnold, Alice M; Barnes, Michael R; Barratt, Bryan J; Betteridge, John; Boekholdt, S Matthijs; Boerwinkle, Eric; Buckley, Brendan M; Chen, Y-D Ida; de Craen, Anton JM; Cummings, Steven R; Denny, Joshua C; Dubé, Marie Pierre; Durrington, Paul N; Eiriksdottir, Gudny; Ford, Ian; Guo, Xiuqing; Harris, Tamara B; Heckbert, Susan R; Hofman, Albert; Hovingh, G Kees; Kastelein, John JP; Launer, Leonore J; Liu, Ching-Ti; Liu, Yongmei; Lumley, Thomas; McKeigue, Paul M; Munroe, Patricia B; Neil, Andrew; Nickerson, Deborah A; Nyberg, Fredrik; O’Brien, Eoin; O’Donnell, Christopher J; Post, Wendy; Poulter, Neil; Vasan, Ramachandran S; Rice, Kenneth; Rich, Stephen S; Rivadeneira, Fernando; Sattar, Naveed; Sever, Peter; Shaw-Hawkins, Sue; Shields, Denis C; Slagboom, P Eline; Smith, Nicholas L; Smith, Joshua D; Sotoodehnia, Nona; Stanton, Alice; Stott, David J; Stricker, Bruno H; Stürmer, Til; Uitterlinden, André G; Wei, Wei-Qi; Westendorp, Rudi GJ; Whitsel, Eric A; Wiggins, Kerri L; Wilke, Russell A; Ballantyne, Christie M; Colhoun, Helen M; Cupples, L Adrienne; Franco, Oscar H; Gudnason, Vilmundur; Hitman, Graham; Palmer, Colin NA; Psaty, Bruce M; Ridker, Paul M; Stafford, Jeanette M; Stein, Charles M; Tardif, Jean-Claude; Caulfield, Mark J; Jukema, J Wouter; Rotter, Jerome I; Krauss, Ronald M

    2017-01-01

    Background In addition to lowering low density lipoprotein-cholesterol (LDL-C), statin therapy also raises high density lipoprotein-cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. Methods and Results We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced HDL-C changes. The 123 most promising signals with P<1×10−4 from the 16,769 statin-treated participants in the first analysis stage were followed up in an independent group of 10,951 statin-treated individuals, providing a total sample size of 27,720 individuals. The only associations of genome-wide significance (P<5×10−8) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment. Conclusion Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels. PMID:27587472

  15. The cis-9,trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic atherosclerosis in diabetic apoE-deficient mice.

    PubMed

    Nestel, Paul; Fujii, Akihiko; Allen, Terri

    2006-12-01

    Reduction in atherosclerosis has been reported in experimental animals fed mixtures of conjugated linoleic acid (CLA). In this study, the major naturally occurring CLA isomer (cis-9,trans-11) was tested in an atherosclerosis-prone mouse model. In a model of insulin deficient apoE deficient mice, 16 animals were fed for 20 weeks with supplemental CLA (09.%, w/w) and compared with a similar number of mice of this phenotype. A control comparison was made of metabolic changes in non-diabetic apoE deficient mice that develop little atherosclerosis over 20 weeks. At 20 weeks, plasma lipids were measured and aortic atherosclerosis quantified by Sudan staining in the arch, thoracic and abdominal segments. The diabetic apoE deficient mice developed marked dyslipidemia, primarily as cholesterol-enriched chylomicron and VLDL-sized lipoproteins and atherosclerosis in the aortic arch. However, there were no significant differences between CLA fed and non-CLA fed mice in either phenotype in plasma cholesterol concentration (in diabetic: 29.4+/-7.7 and 29.5+/-5.9 mmol/L, respectively) or in the area of aortic arch atherosclerosis (in diabetic: 24.8+/-10.3 and 27.6+/-7.7%, respectively). However, among diabetic mice the triglyceride concentration in triglyceride-rich lipoproteins was significantly lower in those fed CLA (for plasma 2.2+/-0.8 to 1.1+/-0.3 mmol/L; P<0.001), a significant difference that was seen also in the non-diabetic mice in which HDL cholesterol increased significantly with CLA (0.35+/-0.12-0.56+/-0.15 mmol/L). In this atherosclerosis-prone model, the diabetic apoE deficient mouse, supplemental 0.9% CLA (cis-9,trans-11) failed to reduce the severity of aortic atherosclerosis, although plasma triglyceride concentration was substantially lowered and HDL cholesterol raised.

  16. Low HDL and High LDL Serum Cholesterol Are Associated With Cerebral Amyloidosis

    PubMed Central

    Reed, Bruce; Villeneuve, Sylvia; Mack, Wendy; DeCarli, Charles; Chui, Helena C.; Jagust, William

    2014-01-01

    Importance Because deposition of cerebral beta amyloid (Aβ) appears to be a key initiating event in Alzheimer’s disease, factors associated with increased deposition are of great interest. Whether or not elevated serum cholesterol acts as such a factor is unknown. Objective To investigate the relationship between serum cholesterol levels and cerebral Aβ during life, early in the AD process. Design Cross sectional analysis of potential associations between contemporaneously measured total serum cholesterol, HDL cholesterol, LDL cholesterol and cerebral Aβ, measured using PIB PET. Setting Multi-site, university medical center based study of vascular contributions to dementia. Participants 74 persons, mean age 78, recruited via direct outreach in stroke clinics and community senior facilities following a protocol designed to obtain a cohort enriched for cerebrovascular disease and elevated vascular risk. Three cases had mild dementia. All others were clinically normal (33 cases) or had mild cognitive impairment (38 cases). Results Cerebral Aβ was quantified using a global PIB index, which averages PIB retention in cortical areas prone to amyloidosis. Statistical models that controlled for age and the apoE ε4 allele showed independent associations between LDL cholesterol, HDL cholesterol and PIB index. Higher LDL and lower HDL were both associated with higher PIB index. No association was found between total cholesterol and PIB index. No association was found between statin use and PIB index, nor did controlling for cholesterol treatment in the statistical models alter the basic findings. Conclusions and Relevance Elevated cerebral Aβ was associated with cholesterol fractions in a pattern analogous to that found in coronary artery disease. This finding, in living, non-demented humans, is consistent with prior autopsy reports, with epidemiological findings, and with both animal and in vitro work suggesting an important role for cholesterol in Aβ processing

  17. Nonlinear Associations between Plasma Cholesterol Levels and Neuropsychological Function

    PubMed Central

    Wendell, Carrington R.; Zonderman, Alan B.; Katzel, Leslie I.; Rosenberger, William F.; Plamadeala, Victoria V.; Hosey, Megan M.; Waldstein, Shari R.

    2016-01-01

    Objective Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Method Participants were 190 older adults (53% men, ages 54–83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed/dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. Results A significant quadratic effect of total cholesterol2 × age was identified for Logical Memory II (b=−.0013, p=.039), such that the 70+ group performed best at high and low levels of total cholesterol than at mid-range total cholesterol (U-shaped), and the <70 group performed worse at high and low levels of total cholesterol than at mid-range total cholesterol (inverted U-shape). Similarly, significant U- and J-shaped effects of LDL cholesterol2 × age were identified for Visual Reproduction II (b=−.0020, p=.026) and log of Trails B (b=.0001, p=.044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Conclusions Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. PMID:27280580

  18. Nonlinear associations between plasma cholesterol levels and neuropsychological function.

    PubMed

    Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R

    2016-11-01

    Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as <70 vs. 70+) as an effect modifier. A significant quadratic effect of Total Cholesterol² × Age was identified for Logical Memory II ( b = -.0013, p = .039), such that the 70+ group performed best at high and low levels of total cholesterol than at midrange total cholesterol (U-shaped) and the <70 group performed worse at high and low levels of total cholesterol than at midrange total cholesterol (inverted U shape). Similarly, significant U- and J-shaped effects of LDL Cholesterol² × Age were identified for Visual Reproduction II ( b = -.0020, p = .026) and log of the Trail Making Test, Part B (b = .0001, p = .044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. [Effect of healthy diet and physical activity on the level of non-HDL cholesterol in obese subjects without cardiovascular disease and diabetes mellitus].

    PubMed

    Móczár, Csaba

    2015-10-18

    Prevention program including lifestyle changes was initiated with the participation of obese and overweight subjects recruited from the practices of 29 family doctors. The aim of the author was to analyse changes of non-HDL-cholesterol levels, especially when triglyceride levels were above 2.26 mmol/l, and when non-HDL cholesterol levels were high in association with low HDL-cholesterol levels in overweight or obese subjects who had no cardiovascular disease and diabetes mellitus. Data obtained from 1192 subjects (424 men and 768 women) before and 12 month after inclusion into the prevention program was analysed. The average level of non-HDL-cholesterol in the whole group of subjects decreased from 4.74 to 4.64 mmol/l, but the change was not significant. However, the average concentration of non-HDL-cholesterol was reduced significantly from 4.87 to 4.4 mmol/l in men, whereas no significant change was detected in women. In cases when triglyceride levels were higher than 2.26 mmol/l, the non-HDL-cholesterol level was reduced by 0.65 mmol/l. In cases when the non-HDL-cholesterol level was high in association with low HDL-cholesterol level, the non-HDL-cholesterol was significantly decreased from 5.22 to 4.48 mmol/l. In addition, in cases when HDL-cholesterol levels were low, the average level of the HDL-cholesterol significantly increased from 0.84 to 1.3 mmol/l. Lifestyle changes decrease the level of atherogenic lipid fractions, particularly in men with high triglyceride levels. Improvement of the atherogenic lipid profile in response to lifestyle changes is related not only to the reduction of atherogenic lipid fractions, but also to the increase of HDL-cholesterol level.

  20. May alcohol-induced increase of HDL be considered as atheroprotective?

    PubMed

    Králová Lesná, I; Suchánek, P; Stávek, P; Poledne, R

    2010-01-01

    It is well known that the consumption of moderate doses of alcohol leads to the increase of HDL-cholesterol (HDL-C). Atheroprotectivity of HDL particles is based primarily on their role in reverse cholesterol transport (RCT). In the study with a cross-over design 13 male volunteers were studied in two different regimens: i) drinking of 36 g alcohol daily and ii) drinking only non-alcoholic beverages, to test whether alcohol-induced increase of HDL cholesterol can affect cholesterol efflux (CHE) from cell culture of labeled human macrophages. Alcohol consumption induced significant (p < 0.05) increases of HDL cholesterol from 1.25 +/- 0.32 to 1.34 +/- 0.38 mmol/l and Apo A1 from 1.34 +/- 0.16 to 1.44 +/- 0.19 g/l. These changes were combined with a slight increase of cholesterol efflux from 13.8 +/- 2.15 to 14.9 +/- 1.85 % (p = 0.059). There were significant correlations between individual changes of HDL-C and Apo A1 concentrations and individual changes of CHE (0.51 and 0.60, respectively). In conclusion, moderate alcohol consumption changes the capacity of plasma to induce CHE only at a border line significance.

  1. HDL-associated dehydroepiandrosterone fatty acyl esters: enhancement of vasodilatory effect of HDL.

    PubMed

    Paatela, Hanna; Mervaala, Eero; Deb, Somdatta; Wähälä, Kristiina; Tikkanen, Matti J

    2009-10-01

    Dehydroepiandrosterone (DHEA) and high-density lipoprotein (HDL) are both vascular relaxants. In the circulation, HDL transports DHEA fatty acyl esters (DHEA-FAEs), which are naturally occurring lipophilic derivatives of DHEA. We studied in isolated rat mesenteric arteries whether HDL-associated DHEA-FAE improves the vasodilatory effect of HDL. To prepare DHEA-FAE-enriched HDL, we incubated DHEA with human plasma. After incubation, HDL was isolated, purified, and added in cumulative doses (0.1-125 microg/ml) to noradrenaline-precontracted rat arterial rings. DHEA-FAE-enriched HDL caused a dose-dependent relaxation (maximal 43+/-4%), which was significantly stronger than the effect of HDL from the control incubation without addition of DHEA (25+/-2%, p<0.001). When plasma incubation of DHEA was carried out in the presence of lecithin:cholesterol acyltransferase (LCAT) inhibitor, the relaxation response to HDL (25+/-3%) did not differ from the control HDL (p=0.98). Pretreatment of the arterial rings with nitric oxide synthase (NOS) antagonist impaired the relaxation response to DHEA-FAE-enriched HDL (43+/-4% vs. 30+/-3%, p=0.008). Similar experiments were performed with 17beta-estradiol (E(2)). Compared to control HDL, E(2)-FAE-enriched HDL induced slightly but non-significantly stronger relaxation. DHEA-FAE-enriched HDL was a stronger vasodilator than native HDL, and vascular relaxation was in part mediated by NOS, suggesting that DHEA-FAE may improve HDL's antiatherogenic function.

  2. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  3. Novel natural food colourant G8000 benefits LDL- and HDL-cholesterol in humans.

    PubMed

    Peres, Rogerio Correa; Gollücke, Andrea Pitelli Boiago; Soares, Clayton; Machado, Patricia; Viveiros Filho, Vitor; Rocha, Silvana; Morais, Damila Rodrigues; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Ribeiro, Daniel Araki

    2015-01-01

    The aim of this study was to investigate the phenolic composition of a natural food colourant (G8000™) as well as its effects on plasma markers after 28-day consumption by healthy individuals at a dietary dose (70 g). Parameters of total cholesterol and its fractions, triglycerides and plasma enzymes biomarkers of muscle injury were measured. Major compounds identified in G8000™ by ESI-MS showed the presence of anthocyanins, organic acids, phenolic acids as well as monosaccharides. HDL levels significantly increased from 43 ± 10.2 mg/dL to 95 ± 16.9 mg/dL. LDL levels significantly decreased from 110 ± 40.9 mg/dL to 69 ± 39 mg/dL (p < 0.001). No significant statistical differences (p > 0.05) were observed for total cholesterol, triglycerides and VLDL. After the intake, plasma enzyme CK-MB decreased from 20 ± 12.1 U/L to 10 ± 1.9 U/L while LDH levels increased from 275 ± 124.4 U/L to 317 ± 114.7 U/L (p < 0.005). No significant differences were observed for CK levels. Taken together, dietary intake of natural colourant G8000™ was able to exert beneficial effects on atherosclerosis biomarkers.

  4. Expression of the human apolipoprotein A-I gene in transgenic mice alters high density lipoprotein (HDL) particle size distribution and diminishes selective uptake of HDL cholesteryl esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chajekshaul, T.; Hayek, T.; Walsh, A.

    1991-08-01

    Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to bemore » primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.« less

  5. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  6. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body.

    PubMed

    Yokoyama, S

    2000-12-15

    Most mammalian somatic cells are unable to catabolize cholesterol and therefore need to export it in order to maintain sterol homeostasis. This mechanism may also function to reduce excessively accumulated cholesterol, which would thereby contribute to prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) has been believed to play a main role in this reaction based on epidemiological evidence and in vitro experimental data. At least two independent mechanisms are identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from cell surface. Cholesterol molecules desorbed from cells can be trapped by various extracellular acceptors including various lipoproteins and albumin, and extracellular cholesterol esterification mainly on HDL may provide a driving force for the net removal of cell cholesterol by maintaining a cholesterol gradient between lipoprotein surface and cell membrane. The other is apolipoprotein-mediated process to generate new HDL by removing cellular phospholipid and cholesterol. The reaction is initiated by the interaction of lipid-free or lipid-poor helical apolipoproteins with cellular surface resulting in assembly of HDL particles with cellular phospholipid and incorporation of cellular cholesterol into the HDL being formed. Thus, HDL has dual functions as an active cholesterol acceptor in the diffusion-mediated pathway and as an apolipoprotein carrier for the HDL assembly reaction. The impairment of the apolipoprotein-mediated reaction was found in Tangier disease and other familial HDL deficiencies to strongly suggest that this is a main mechanism to produce plasma HDL. The causative mutations for this defect was identified in ATP binding cassette transporter protein A1, as a significant step for further understanding of the reaction and cholesterol homeostasis.

  7. Triglycerides-to-HDL cholesterol ratio as screening tool for impaired glucose tolerance in obese children and adolescents.

    PubMed

    Manco, Melania; Grugni, Graziano; Di Pietro, Mario; Balsamo, Antonio; Di Candia, Stefania; Morino, Giuseppe Stefano; Franzese, Adriana; Di Bonito, Procolo; Maffeis, Claudio; Valerio, Giuliana

    2016-06-01

    To identify metabolic phenotypes at increased risk of impaired glucose tolerance (IGT) in Italian overweight/obese children (n = 148, age 5-10 years) and adolescents (n = 531, age 10-17.9 year). Phenotypes were defined as follows: obesity by the 95th cut-points of the Center for Disease Control body mass index reference standards, impaired fasting glucose (fasting plasma glucose ≥100 mg/dl), high circulating triglycerides (TG), TG/HDL cholesterol ≥2.2, waist-to-height ratio (WTHR) >0.6, and combination of the latter with high TG or TG/HDL cholesterol ≥2.2. In the 148 obese children, TG/HDL-C ≥ 2.2 (OR 20.19; 95 % CI 2.50-163.28, p = 0.005) and the combination of TG/HDL-C ≥ 2.2 and WTHR > 0.60 (OR 14.97; 95 % CI 2.18-102.76, p = 0.006) were significantly associated with IGT. In the 531 adolescents, TG/HDL-C ≥ 2.2 (OR 1.991; 95 % CI 1.243-3.191, p = 0.004) and the combination with WTHR > 0.60 (OR 2.24; 95 % CI 1.29-3.87, p = 0.004) were associated with significantly increased risk of IGT. In the whole sample, having high TG levels according to the NIH National Heart, Lung and Blood Institute Expert Panel was not associated with an increased risk of presenting IGT. TG/HDL-C ratio can be useful, particularly in children, to identify obese young patients at risk of IGT. Its accuracy as screening tool in a general population needs to be verified. The combination of TG/HDL-C ratio and WTHR > 0.6 did not improve prediction. Having high TG according to the NIH definition was not associated with increased risk of developing IGT.

  8. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides.

    PubMed

    Rayner, Katey J; Esau, Christine C; Hussain, Farah N; McDaniel, Allison L; Marshall, Stephanie M; van Gils, Janine M; Ray, Tathagat D; Sheedy, Frederick J; Goedeke, Leigh; Liu, Xueqing; Khatsenko, Oleg G; Kaimal, Vivek; Lees, Cynthia J; Fernandez-Hernando, Carlos; Fisher, Edward A; Temel, Ryan E; Moore, Kathryn J

    2011-10-19

    Cardiovascular disease remains the leading cause of mortality in westernized countries, despite optimum medical therapy to reduce the levels of low-density lipoprotein (LDL)-associated cholesterol. The pursuit of novel therapies to target the residual risk has focused on raising the levels of high-density lipoprotein (HDL)-associated cholesterol in order to exploit its atheroprotective effects. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of lipid metabolism and are thus a new class of target for therapeutic intervention. MicroRNA-33a and microRNA-33b (miR-33a/b) are intronic miRNAs whose encoding regions are embedded in the sterol-response-element-binding protein genes SREBF2 and SREBF1 (refs 3-5), respectively. These miRNAs repress expression of the cholesterol transporter ABCA1, which is a key regulator of HDL biogenesis. Recent studies in mice suggest that antagonizing miR-33a may be an effective strategy for raising plasma HDL levels and providing protection against atherosclerosis; however, extrapolating these findings to humans is complicated by the fact that mice lack miR-33b, which is present only in the SREBF1 gene of medium and large mammals. Here we show in African green monkeys that systemic delivery of an anti-miRNA oligonucleotide that targets both miR-33a and miR-33b increased hepatic expression of ABCA1 and induced a sustained increase in plasma HDL levels over 12 weeks. Notably, miR-33 antagonism in this non-human primate model also increased the expression of miR-33 target genes involved in fatty acid oxidation (CROT, CPT1A, HADHB and PRKAA1) and reduced the expression of genes involved in fatty acid synthesis (SREBF1, FASN, ACLY and ACACA), resulting in a marked suppression of the plasma levels of very-low-density lipoprotein (VLDL)-associated triglycerides, a finding that has not previously been observed in mice. These data establish, in a model that is highly relevant to humans, that pharmacological inhibition

  9. Hepatic Overexpression of Endothelial Lipase Lowers HDL (High-Density Lipoprotein) but Maintains Reverse Cholesterol Transport in Mice: Role of SR-BI (Scavenger Receptor Class B Type I)/ABCA1 (ATP-Binding Cassette Transporter A1)-Dependent Pathways.

    PubMed

    Takiguchi, Shunichi; Ayaori, Makoto; Yakushiji, Emi; Nishida, Takafumi; Nakaya, Kazuhiro; Sasaki, Makoto; Iizuka, Maki; Uto-Kondo, Harumi; Terao, Yoshio; Yogo, Makiko; Komatsu, Tomohiro; Ogura, Masatsune; Ikewaki, Katsunori

    2018-05-10

    Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3 H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3 H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3 HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3 H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways. © 2018 American Heart Association, Inc.

  10. HDL-cholesterol and physical performance: results from the ageing and longevity study in the sirente geographic area (ilSIRENTE Study).

    PubMed

    Landi, Francesco; Russo, Andrea; Cesari, Matteo; Pahor, Marco; Bernabei, Roberto; Onder, Graziano

    2007-09-01

    High-density lipoprotein (HDL) cholesterol has been hypothesised to be a reliable marker of frailty and poor prognosis among the oldest elderly. We evaluate the relationship of HDL-cholesterol with measures of physical performance, muscle strength, and functional status in older persons aged 80years or older. Data are from baseline evaluation of the ageing and longevity study in the Sirente geographic area (ilSIRENTE study) (n = 364). Physical performance was assessed using the physical performance battery score [short physical performance battery (SPPB)], which is based on three-timed tests: 4-m walking-speed, balance, and chair-stand tests. Muscle strength was measured by hand-grip strength. Analyses of covariance were performed to evaluate the relationship of different HDL-cholesterol levels with physical function. In the unadjusted analyses, physical function (as measured by the 4-m walking-speed, theSPPB score, the basic and instrumental activities of daily living scales scores), but not hand-grip strength, improved significantly as HDL-cholesterol tertiles increased. After adjustment for potential confounders, which included age, gender, living alone, alcohol abuse, physical activity, congestive heart failure, diabetes, cerebrovascular diseases, osteoarthritis, albumin, urea, C-reactive protein and LDL cholesterol, the association of HDL-cholesterol tertiles with the 4-m walking-speed and the SPPB score was still consistent. The present study suggests that among very old subjects living in the community the higher levels of HDL-cholesterol are associated with better functional performance.

  11. [Triglycerides/HDL-cholesterol ratio: in adolescents without cardiovascular risk factors].

    PubMed

    Soutelo, Jimena; Graffigna, Mabel; Honfi, Margarita; Migliano, Marta; Aranguren, Marcela; Proietti, Adrian; Musso, Carla; Berg, Gabriela

    2012-06-01

    Triglycerides/HDL-cholesterol ratio (TG/HDL) is an easy resource determination and it has good correlation with the HOMA index in adults. Due to physiological insulin resistance (IR) in adolescence it is necessary to find markers of IR independent of age, sex and pubertal stage. The objective was to identify reference values of TG/HDL ratio in a population of adolescents without cardiovascular risk factors. We evaluated 943 adolescents, 429 females and 514 males between 11 and 14. Anthropometric measures were determined and body mass index was calculated (BMI). Blood was extracted after 12 hours of fasting to determine glucose, triglycerides, HDL. The metabolic syndrome (MS) was diagnosed according to criteria of NCEP/ATP III modified by Cook. We excluded adolescents with MS or any component of it. We evaluated 562 adolescents (289 women and 273 men) with a weight of 48.91 +/- 6.51kg, BMI: 18.95 +/- 1.78, systolic blood pressure of 108.12 +/- 13.60 mmHg, diastolic blood pressure: 63.82 +/- 9.43 and waist circumference: 65.09 +/- 4.54 cm. TG/HDL ratio was 1.25 +/- 0.43, with a 95 percentile of 2.05. In adults, TG/HDL ratio greater than 3 is a marker of insulin resistance. We believe that a higher value to 2.05 might be a good index of insulin resistance in adolescence. TG/HDL ratio has the advantage of being methodologically simpler, more economical and independent of pubertal stage.

  12. HDL cholesterol and bone mineral density: Is there a genetic link?

    PubMed Central

    Ackert-Bicknell, Cheryl L.

    2011-01-01

    Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493

  13. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials.

    PubMed

    Ho, Hoang V T; Sievenpiper, John L; Zurbau, Andreea; Blanco Mejia, Sonia; Jovanovski, Elena; Au-Yeung, Fei; Jenkins, Alexandra L; Vuksan, Vladimir

    2016-10-01

    Oats are a rich source of β-glucan, a viscous, soluble fibre recognised for its cholesterol-lowering properties, and are associated with reduced risk of CVD. Our objective was to conduct a systematic review and meta-analysis of randomised-controlled trials (RCT) investigating the cholesterol-lowering potential of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for the risk reduction of CVD. MEDLINE, Embase, CINAHL and Cochrane CENTRAL were searched. We included RCT of ≥3 weeks of follow-up, assessing the effect of diets enriched with oat β-glucan compared with controlled diets on LDL-cholesterol, non-HDL-cholesterol or apoB. Two independent reviewers extracted data and assessed study quality and risk of bias. Data were pooled using the generic inverse-variance method with random effects models and expressed as mean differences with 95 % CI. Heterogeneity was assessed by the Cochran's Q statistic and quantified by the I 2-statistic. In total, fifty-eight trials (n 3974) were included. A median dose of 3·5 g/d of oat β-glucan significantly lowered LDL-cholesterol (-0·19; 95 % CI -0·23, -0·14 mmol/l, P<0·00001), non-HDL-cholesterol (-0·20; 95 % CI -0·26, -0·15 mmol/l, P<0·00001) and apoB (-0·03; 95 % CI -0·05, -0·02 g/l, P<0·0001) compared with control interventions. There was evidence for considerable unexplained heterogeneity in the analysis of LDL-cholesterol (I 2=79 %) and non-HDL-cholesterol (I 2=99 %). Pooled analyses showed that oat β-glucan has a lowering effect on LDL-cholesterol, non-HDL-cholesterol and apoB. Inclusion of oat-containing foods may be a strategy for achieving targets in CVD reduction.

  14. Intake of up to 3 Eggs per Day Is Associated with Changes in HDL Function and Increased Plasma Antioxidants in Healthy, Young Adults.

    PubMed

    DiMarco, Diana M; Norris, Gregory H; Millar, Courtney L; Blesso, Christopher N; Fernandez, Maria Luz

    2017-03-01

    Background: HDL function may be more important than HDL concentration in determining risk for cardiovascular disease. In addition, HDL is a carrier of carotenoids and antioxidant enzymes, which protect HDL and LDL particles against oxidation. Objective: The goal of this study was to determine the impact of consuming 0-3 eggs/d on LDL and HDL particle size, HDL function, and plasma antioxidants in a young, healthy population. Methods: Thirty-eight healthy men and women [age 18-30 y, body mass index (in kg/m 2 ) 18.5-29.9] participated in this 14-wk crossover intervention. Subjects underwent a 2-wk washout (0 eggs/d) followed by sequentially increasing intake of 1, 2, and 3 eggs/d for 4 wk each. After each period, fasting blood was collected for analysis of lipoprotein subfractions, plasma apolipoprotein (apo) concentration, lutein and zeaxanthin concentration, and activities of lecithin-cholesterol acyltransferase, cholesteryl ester transfer protein, and paraoxonase-1. Results: Compared with intake of 0 eggs/d, consuming 1-3 eggs/d resulted in increased large-LDL (21-37%) and large-HDL (6-13%) particle concentrations, plasma apoAI (9-15%), and lecithin-cholesterol acyltransferase activity (5-15%) ( P < 0.05 for all biomarkers). Intake of 2-3 eggs/d also promoted an 11% increase in apoAII ( P < 0.05) and a 20-31% increase in plasma lutein and zeaxanthin ( P < 0.05), whereas intake of 3 eggs/d resulted in a 9-16% increase in serum paraoxonase-1 activity compared with intake of 1-2 eggs/d ( P < 0.05). Egg intake did not affect cholesteryl ester transfer protein activity. Conclusions: Intake of 1 egg/d was sufficient to increase HDL function and large-LDL particle concentration; however, intake of 2-3 eggs/d supported greater improvements in HDL function as well as increased plasma carotenoids. Overall, intake of ≤3 eggs/d favored a less atherogenic LDL particle profile, improved HDL function, and increased plasma antioxidants in young, healthy adults. This trial was

  15. Differential effects of simple vs. complex carbohydrates on VLDL secretion rates and HDL metabolism in the guinea pig.

    PubMed

    Fernandez, M L; Abdel-Fattah, G; McNamara, D J

    1995-04-28

    Guinea pigs were fed isocaloric diets containing 52% (w/w) carbohydrate, either sucrose or starch, to investigate effects of simple vs. complex carbohydrates on plasma VLDL and HDL metabolism. Plasma cholesterol concentrations were not different between dietary groups while plasma triacylglycerol (TAG) and VLDL cholesterol levels were significantly increased in animals fed the sucrose diet (P < 0.05). Hepatic VLDL TAG secretion rates measured following intravenous injection of Triton WR-1339 were not affected by carbohydrate type whereas the rate of apo B secretion was 1.9-fold higher in sucrose fed animals (P < 0.02). Nascent VLDL from the sucrose group contained less TAG per apo B suggesting that the higher plasma TAG in animals fed simple carbohydrates results from increased secretion of VLDL particles with lower TAG content. Sucrose fed animals exhibited higher concentrations of hepatic free cholesterol (P < 0.01) while hepatic TAG levels and acyl CoA:cholesterol acyltransferase (ACAT) activity were not different between groups. Plasma HDL cholesterol concentrations and composition, and plasma lecithin cholesterol acyltransferase (LCAT) activity were not affected by diet yet there was a positive correlation between HDL cholesteryl ester content and LCAT activities (r = 0.70, P < 0.05). Hepatic membranes from the sucrose group had a higher hepatic HDL binding protein number (Bmax) with no changes in the dissociation constant (Kd). These results suggest that at the same carbohydrate energy intake, simple sugars induce modest changes in HDL metabolism while VLDL metabolism is affected at multiple sites, as indicated by the higher concentrations of hepatic cholesterol, dissociation in the synthesis rates of VLDL components, and compositional changes in nascent and mature VLDL.

  16. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    PubMed

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  17. FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents.

    PubMed

    Dumont, Julie; Huybrechts, Inge; Spinneker, Andre; Gottrand, Frédéric; Grammatikaki, Evangelia; Bevilacqua, Noemi; Vyncke, Krishna; Widhalm, Kurt; Kafatos, Anthony; Molnar, Denes; Labayen, Idoia; Gonzalez-Gross, Marcela; Amouyel, Philippe; Moreno, Luis A; Meirhaeghe, Aline; Dallongeville, Jean

    2011-07-01

    Two rate-limiting enzymes in PUFA biosynthesis, Δ5- and Δ6-desaturases, are encoded by the FADS1 and FADS2 genes, respectively. Genetic variants in the FADS1-FADS2 gene cluster are associated with changes in plasma concentrations of PUFA, HDL- and LDL-cholesterol, and TG. However, little is known about whether dietary PUFA intake modulates these associations, especially in adolescents. We assessed whether dietary linoleic acid (LA) or α-linolenic acid (ALA) modulate the association between the FADS1 rs174546 polymorphism and concentrations of PUFA, other lipids, and lipoproteins in adolescents. Dietary intakes of LA and ALA, FADS1 rs174546 genotypes, PUFA levels in serum phospholipids, and serum concentrations of TG, cholesterol, and lipoproteins were determined in 573 European adolescents from the HELENA study. The sample was stratified according to the median dietary LA (≤9.4 and >9.4 g/d) and ALA (≤1.4 and >1.4 g/d) intakes. The associations between FADS1 rs174546 and concentrations of PUFA, TG, cholesterol, and lipoproteins were not affected by dietary LA intake (all P-interaction > 0.05). Similarly, the association between the FADS1 rs174546 polymorphism and serum phospholipid concentrations of ALA or EPA was not modified by dietary ALA intake (all P-interaction > 0.05). In contrast, the rs174546 minor allele was associated with lower total cholesterol concentrations (P = 0.01 under the dominant model) and non-HDL-cholesterol concentrations (P = 0.02 under the dominant model) in the high-ALA-intake group but not in the low-ALA-intake group (P-interaction = 0.01). These results suggest that dietary ALA intake modulates the association between FADS1 rs174546 and serum total and non-HDL-cholesterol concentrations at a young age.

  18. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial.

    PubMed

    Kim, Ji-Eun; Jeon, Seon-Min; Park, Ki Hun; Lee, Woo Song; Jeong, Tae-Sook; McGregor, Robin A; Choi, Myung-Sook

    2011-09-21

    Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing Glycine max leaves extract (EGML) or Garcinia cambogia extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles. Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 < 29) were randomly assigned to three groups and administered tablets containing EGML (2 g/day), GCE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. At baseline and after 10 weeks, body composition, plasma cholesterol and diet were assessed. Blood analysis was also conducted to examine plasma lipoproteins, triglycerides, adipocytokines and antioxidants. EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p < 0.05). EGML and GCE had no effect on triglycerides, non-HDL-C, adipocytokines or antioxidants when compared to placebo supplementation. However, HDL-C was higher in the EGML group (p < 0.001) after 10 weeks compared to the placebo group. Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis.

  19. MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review

    PubMed Central

    Giacosa, Attilio; Morazzoni, Paolo; Guido, Davide; Grassi, Mario; Morandi, Gabriella; Bologna, Chiara; Allegrini, Pietro

    2016-01-01

    Background. High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods. A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results. The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions. Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects. PMID:27882320

  20. MediterrAsian Diet Products That Could Raise HDL-Cholesterol: A Systematic Review.

    PubMed

    Rondanelli, Mariangela; Giacosa, Attilio; Morazzoni, Paolo; Guido, Davide; Grassi, Mario; Morandi, Gabriella; Bologna, Chiara; Riva, Antonella; Allegrini, Pietro; Perna, Simone

    2016-01-01

    Background . High HDL-cholesterol (HDL-C) values are negatively correlated with cardiovascular diseases. This review analyses the effect of the supplementation with various Mediterranean diet products (artichoke, bergamot, and olive oil) and Asian diet products (red yeast rice) on the HDL-C value in dyslipidemic subjects. Methods . A systematic review has been done involving all the English written studies published from the 1st of January 1958 to the 31st of March 2016. Results . The results of this systematic review indicate that the dietary supplementation with red yeast rice, bergamot, artichoke, and virgin olive oil has promising effects on the increase of HDL-C serum levels. The artichoke leaf extract and virgin olive oil appear to be particularly interesting, while bergamot extract needs further research and the effect of red yeast rice seems to be limited to patients with previous myocardial infarction. Conclusions . Various MediterrAsian diet products or natural extracts may represent a potential intervention treatment to raise HDL-C in dyslipidemic subjects.

  1. Endothelial lipase is a major determinant of HDL level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However,more » the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to

  2. Phospholipase A2-treated human high-density lipoprotein and cholesterol movements: exchange processes and lecithin: cholesterol acyltransferase reactivity.

    PubMed

    Chollet, F; Perret, B P; Chap, H; Douste-Blazy, L

    1986-02-12

    Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase

  3. Associations between HDL-cholesterol and polymorphisms in hepatic lipase and lipoprotein lipase genes are modified by dietary fat intake in African American and White Adults 123

    PubMed Central

    Nettleton, Jennifer A.; Steffen, Lyn M.; Ballantyne, Christie M.; Boerwinkle, Eric; Folsom, Aaron R.

    2008-01-01

    Polymorphisms in genes involved in HDL-cholesterol (HDL-C) metabolism influence plasma HDL-C concentrations. We examined whether dietary fat intake modified relations between HDL-C and polymorphisms in hepatic lipase (LIPC-514C→T), cholesteryl ester transfer protein (CETP TaqIB), and lipoprotein lipase (LPL S447X) genes. Diet (food frequency questionnaire), plasma lipids, and LIPC, CETP, and LPL genotypes were assessed in ~12,000 White and African American adults. In both races and all genotypes studied, minor allele homozygotes had highest HDL-C concentrations compared to the other genotypes (P <0.001). However, main effects were modified by usual dietary fat intake. In African Americans— women somewhat more strongly than men— LIPC TT homozygotes with fat intake ≥33.2% of energy had ~3-4 mg/dL higher HDL-C concentrations than CC and CT genotypes. In contrast, when fat intake was <33.2% of energy, TT homozygotes had HDL-C concentrations ~3.5 mg/dL greater than those with the CC genotype but not different from those with the CT genotype (Pinteraction =0.013). In Whites, LPL GG homozygotes had greatest HDL-C at lower total, saturated, and monounsaturated fat intakes but lowest HDL-C at higher intakes of these fats (Pinteraction ≤0.002). Dietary fat did not modify associations between CETP and HDL-C. In conclusion, these data show that plasma HDL-C differs according to LIPC, LPL, and CETP genotypes. In the case of LIPC and LPL, data suggest dietary fat modifies these relations. PMID:17157861

  4. Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys[S

    PubMed Central

    Brodeur, Mathieu R.; Rhainds, David; Charpentier, Daniel; Mihalache-Avram, Teodora; Mecteau, Mélanie; Brand, Geneviève; Chaput, Evelyne; Perez, Anne; Niesor, Eric J.; Rhéaume, Eric; Maugeais, Cyrille; Tardif, Jean-Claude

    2017-01-01

    Inhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys. New Zealand White rabbits and vervet monkeys received dalcetrapib and anacetrapib. In rabbits, CETPis increased HDL-C, raised small and large α-migrating HDL, and increased ABCA1-induced cholesterol efflux. In vervet monkeys, although anacetrapib produced similar results, dalcetrapib caused opposite effects because the LDL-C level was increased by 42% and HDL-C decreased by 48% (P < 0.01). The levels of α- and preβ-HDL were reduced by 16% (P < 0.001) and 69% (P < 0.01), resulting in a decrease of the serum cholesterol efflux capacity. CETPis modulate the plasma levels of mature and small HDL in vivo and consequently the cholesterol efflux capacity. The opposite effects of dalcetrapib in different species indicate that its impact on HDL metabolism could vary greatly according to the metabolic environment. PMID:28515138

  5. Comparison of non-HDL-cholesterol versus triglycerides-to-HDL-cholesterol ratio in relation to cardiometabolic risk factors and preclinical organ damage in overweight/obese children: the CARITALY study.

    PubMed

    Di Bonito, P; Valerio, G; Grugni, G; Licenziati, M R; Maffeis, C; Manco, M; Miraglia del Giudice, E; Pacifico, L; Pellegrin, M C; Tomat, M; Baroni, M G

    2015-05-01

    Lipid ratios to estimate atherosclerotic disease risk in overweight/obese children are receiving great attention. We aimed to compare the performance of non-high-density lipoprotein-cholesterol (HDL-C) versus triglycerides-to-HDL-C ratio (Tg/HDL-C) in identifying cardiometabolic risk factors (CMRFs) or preclinical signs of organ damage in outpatient Italian overweight/obese children. In this retrospective, cross-sectional study, 5505 children (age 5-18 years) were recruited from 10 Italian centers for the care of obesity, of which 4417 (78%) showed obesity or morbid obesity. Anthropometric, biochemical, and blood pressure variables were analyzed in all children. Liver ultrasound scan, carotid artery ultrasound, and echocardiography were performed in 1257, 601, and 252 children, respectively. The entire cohort was divided based on the 75th percentile of non-HDL-C (≥130 mg/dl) or Tg/HDL-C ratio (≥2.2). The odds ratio for insulin resistance, high blood pressure, metabolic syndrome, presence of liver steatosis, increased levels of carotid intima-media thickness (cIMT) and concentric left ventricular hypertrophy (cLVH) was higher in children with high levels of Tg/HDL-C with respect to children with high levels of non-HDL-C. In an outpatient setting of overweight/obese children, Tg/HDL-C ratio discriminated better than non-HDL-C children with CMRFs or preclinical signs of liver steatosis, and increased cIMT and cLVH. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial

    PubMed Central

    2011-01-01

    Background Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing Glycine max leaves extract (EGML) or Garcinia cambogia extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles. Methods Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 < 29) were randomly assigned to three groups and administered tablets containing EGML (2 g/day), GCE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. At baseline and after 10 weeks, body composition, plasma cholesterol and diet were assessed. Blood analysis was also conducted to examine plasma lipoproteins, triglycerides, adipocytokines and antioxidants. Results EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p < 0.05). EGML and GCE had no effect on triglycerides, non-HDL-C, adipocytokines or antioxidants when compared to placebo supplementation. However, HDL-C was higher in the EGML group (p < 0.001) after 10 weeks compared to the placebo group. Conclusions Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis. PMID:21936892

  7. Association between triglyceride/HDL cholesterol ratio and carotid atherosclerosis in postmenopausal middle-aged women.

    PubMed

    Masson, Walter; Siniawski, Daniel; Lobo, Martín; Molinero, Graciela; Huerín, Melina

    2016-01-01

    The triglyceride/HDL cholesterol ratio, as a surrogate marker of insulin resistance, may be associated to presence of subclinical carotid atherosclerosis in postmenopausal women. The aim of this study was to explore this association. Women (last menstrual period≥2 years) in primary prevention up to 65 years of age were recruited. Association between the triglyceride/HDL cholesterol (HDL-C) ratio and presence of carotid plaque, assessed by ultrasonography, was analyzed. ROC analysis was performed, determining the precision of this ratio to detect carotid plaque. A total of 332 women (age 57±5 years) were recruited. Triglyceride/HDL-C ratio was 2.35±1.6. Prevalence of carotid plaque was 29%. Women with carotid plaque had higher triglyceride/HDL-C ratios (3.33±1.96 vs. 2.1±1.2, P<.001) than women with no carotid plaque. A positive relationship was seen between quintiles of this ratio and prevalence of carotid plaque (p<.001). Regardless of other risk factors, women with higher triglyceride/HDL-C ratios were more likely to have carotid plaque (odds ratio 1.47, 95% confidence interval 1.20-1.79, P<.001). The area under the curve of the triglyceride/HDL-C ratio to detect carotid plaque was .71 (95% confidence interval .65 to .76), and the optimal cut-off point was 2.04. In postmenopausal women in primary prevention, insulin resistance, estimated from the triglyceride/HDL-C ratio, was independently associated to a greater probability of carotid plaque. A value of such ratio greater than 2 may be used for assessing cardiovascular risk in this particular group of women. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol

    PubMed Central

    Marques, Leandro R.; Diniz, Tiego A.; Antunes, Barbara M.; Rossi, Fabrício E.; Caperuto, Erico C.; Lira, Fábio S.; Gonçalves, Daniela C.

    2018-01-01

    Dyslipidemia (high concentrations of LDL-c and low concentrations of HDL-c) is a major cause of cardiovascular events, which are the leading cause of death in the world. On the other hand, nutrition and regular exercise can be an interesting strategy to modulate lipid profile, acting as prevention or treatment, inhibiting the risk of diseases due to its anti-inflammatory and anti-atherogenic characteristics. Additionally, the possibility of controlling different training variables, such as type, intensity and recovery interval, can be used to maximize the benefits of exercise in promoting cardiovascular health. However, the mechanisms by which exercise and nutrients act in the regulation of cholesterol and its fractions, such as reverse cholesterol transport, receptors and transcription factors involved, such as PPARs and their role related to exercise, deserve further discussion. Therefore, the objective of this review is to debate about non-medical approaches to increase HDL-c, such as nutritional and training strategies, and to discuss the central mechanisms involved in the modulation of lipid profile during exercise, as well as that can be controlled by physical trainers or sports specialists in attempt to maximize the benefits promoted by exercise. The search for papers was performed in the databases: Medline (Pubmed), Science Direct, Scopus, Sport Discus, Web of Science, Scielo and Lilacs until February 2016. PMID:29867567

  9. Changes in body weight are significantly associated with changes in fasting plasma glucose and HDL cholesterol in Japanese men without abdominal obesity (waist circumference < 85 cm).

    PubMed

    Oda, Eiji; Kawai, Ryu

    2011-06-01

    The aims are to examine whether changes in body weight (dBW) are associated with changes in cardiovascular risk factors in Japanese men without abdominal obesity (waist circumference (WC) < 85 cm) and which anthropometric index, dBW or changes in WC (dWC), is more strongly associated with changes in cardiovascular risk factors in men without abdominal obesity. It is a retrospective study in 692 Japanese men without abdominal obesity who took annual health screening tests consecutively over one year. Standardized linear regression coefficients (SRCs) of dBW and dWC were calculated for changes in systolic blood pressure (dSBP), diastolic blood pressure (dDBP), fasting plasma glucose (dFPG), triglycerides (dTG), HDL cholesterol (dHDL), and high-sensitivity C-reactive protein (dCRP). The SRCs of dBW for dFPG and dHDL were significant in all men and in men with each risk factor corresponding to the component of metabolic syndrome (MetS). The SRCs of dWC for dTG and dCRP were significant in all men but not in men with each risk factor corresponding to the MetS component. In conclusions, dBW were significantly associated with dFPG and dHDL in Japanese men without abdominal obesity. Therefore, abdominal obesity should not be considered as a necessary component of MetS in Japanese men. dBW may be more useful than dWC as a marker of changes in cardiovascular risk factors in lifestyle intervention programs.

  10. A novel compound inhibits rHDL assembly and blocks nascent HDL biogenesis downstream of apoAI binding to ABCA1 expressing cells

    PubMed Central

    Lyssenko, Nicholas N.; Brubaker, Gregory; Smith, Bradley D.; Smith, Jonathan D.

    2011-01-01

    Objective Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. Methods and Results Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that two compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate), the more active of the two, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein (AcLDL) and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. Conclusions The inhibitory effects of compound 1 support a three-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells. PMID:21836073

  11. Background diet and fat type alters plasma lipoprotein response but not aortic cholesterol accumulation in F1B Golden Syrian hamsters.

    PubMed

    Dillard, Alice; Matthan, Nirupa R; Spartano, Nicole L; Butkowski, Ann E; Lichtenstein, Alice H

    2013-12-01

    Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (-47 and -45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.

  12. Historical milestones in measurement of HDL-cholesterol: impact on clinical and laboratory practice.

    PubMed

    Langlois, Michel R; Blaton, Victor H

    2006-07-23

    High-density lipoprotein cholesterol (HDL-C) comprises a family of particles with differing physicochemical characteristics. Continuing progress in improving HDL-C analysis has originated from two separate fields-one clinical, reflecting increased attention to HDL-C in estimating risk for coronary heart disease (CHD), and the other analytical, reflecting increased emphasis on finding more reliable and cost-effective HDL-C assays. Epidemiologic and prospective studies established the inverse association of HDL-C with CHD risk, a relationship that is consistent with protective mechanisms demonstrated in basic research and animal studies. Atheroprotective and less atheroprotective HDL subpopulations have been described. Guidelines on primary and secondary CHD prevention, which increased the workload in clinical laboratories, have led to a revolution in HDL-C assay technology. Many analytical techniques including ultracentrifugation, electrophoresis, chromatography, and polyanion precipitation methods have been developed to separate and quantify HDL-C and HDL subclasses. More recently developed homogeneous assays enable direct measurement of HDL-C on an automated analyzer, without the need for manual pretreatment to separate non-HDL. Although homogeneous assays show improved accuracy and precision in normal serum, discrepant results exist in samples with atypical lipoprotein characteristics. Hypertriglyceridemia and monoclonal paraproteins are important interfering factors. A novel approach is nuclear magnetic resonance spectroscopy that allows rapid and reliable analysis of lipoprotein subclasses, which may improve the identification of individuals at increased CHD risk. Apolipoprotein A-I, the major protein of HDL, has been proposed as an alternative cardioprotective marker avoiding the analytical limitations of HDL-C.

  13. Effect of Theobromine Consumption on Serum Lipoprotein Profiles in Apparently Healthy Humans with Low HDL-Cholesterol Concentrations

    PubMed Central

    Jacobs, Doris M.; Smolders, Lotte; Lin, Yuguang; de Roo, Niels; Trautwein, Elke A.; van Duynhoven, John; Mensink, Ronald P.; Plat, Jogchum; Mihaleva, Velitchka V.

    2017-01-01

    Scope: Theobromine is a major active compound in cocoa with allegedly beneficial effect on high-density-lipoprotein-cholesterol (HDL-CH). We have investigated the effect of theobromine (TB) consumption on the concentrations of triglyceride (TG) and cholesterol (CH) in various lipoprotein (LP) subclasses. Methods: In a randomized, double-blind, placebo-controlled, cross-over study, 44 apparently healthy women and men (age: 60 ± 6 years, BMI: 29 ± 3 kg/m2) with low baseline HDL-CH concentrations consumed a drink supplemented with 500 mg/d theobromine for 4 weeks. TG and CH concentrations in 15 LP subclasses were predicted from diffusion-edited 1H NMR spectra of fasting serum. Results: The LP phenotype of the subjects was characterized by low CH concentrations in the large HDL particles and high TG concentrations in large VLDL and chylomicron (CM) particles, which clearly differed from a LP phenotype of subjects with normal HDL-CH. TB only reduced CH concentrations in the LDL particles by 3.64 and 6.79%, but had no effect on TG and CH in any of the HDL, VLDL and CM subclasses. Conclusion: TB was not effective on HDL-CH in subjects with a LP phenotype characterized by low HDL-CH and high TG in VLDL. PMID:28971099

  14. The association of 83 plasma proteins with CHD mortality, BMI, HDL-, and total-cholesterol in men: applying multivariate statistics to identify proteins with prognostic value and biological relevance.

    PubMed

    Heidema, A Geert; Thissen, Uwe; Boer, Jolanda M A; Bouwman, Freek G; Feskens, Edith J M; Mariman, Edwin C M

    2009-06-01

    In this study, we applied the multivariate statistical tool Partial Least Squares (PLS) to analyze the relative importance of 83 plasma proteins in relation to coronary heart disease (CHD) mortality and the intermediate end points body mass index, HDL-cholesterol and total cholesterol. From a Dutch monitoring project for cardiovascular disease risk factors, men who died of CHD between initial participation (1987-1991) and end of follow-up (January 1, 2000) (N = 44) and matched controls (N = 44) were selected. Baseline plasma concentrations of proteins were measured by a multiplex immunoassay. With the use of PLS, we identified 15 proteins with prognostic value for CHD mortality and sets of proteins associated with the intermediate end points. Subsequently, sets of proteins and intermediate end points were analyzed together by Principal Components Analysis, indicating that proteins involved in inflammation explained most of the variance, followed by proteins involved in metabolism and proteins associated with total-C. This study is one of the first in which the association of a large number of plasma proteins with CHD mortality and intermediate end points is investigated by applying multivariate statistics, providing insight in the relationships among proteins, intermediate end points and CHD mortality, and a set of proteins with prognostic value.

  15. Bioinformatic Analysis of Plasma Apolipoproteins A-I and A-II Revealed Unique Features of A-I/A-II HDL Particles in Human Plasma

    PubMed Central

    Kido, Toshimi; Kurata, Hideaki; Kondo, Kazuo; Itakura, Hiroshige; Okazaki, Mitsuyo; Urata, Takeyoshi; Yokoyama, Shinji

    2016-01-01

    Plasma concentration of apoA-I, apoA-II and apoA-II-unassociated apoA-I was analyzed in 314 Japanese subjects (177 males and 137 females), including one (male) homozygote and 37 (20 males and 17 females) heterozygotes of genetic CETP deficiency. ApoA-I unassociated with apoA-II markedly and linearly increased with HDL-cholesterol, while apoA-II increased only very slightly and the ratio of apoA-II-associated apoA-I to apoA-II stayed constant at 2 in molar ratio throughout the increase of HDL-cholesterol, among the wild type and heterozygous CETP deficiency. Thus, overall HDL concentration almost exclusively depends on HDL with apoA-I without apoA-II (LpAI) while concentration of HDL containing apoA-I and apoA-II (LpAI:AII) is constant having a fixed molar ratio of 2 : 1 regardless of total HDL and apoA-I concentration. Distribution of apoA-I between LpAI and LpAI:AII is consistent with a model of statistical partitioning regardless of sex and CETP genotype. The analysis also indicated that LpA-I accommodates on average 4 apoA-I molecules and has a clearance rate indistinguishable from LpAI:AII. Independent evidence indicated LpAI:A-II has a diameter 20% smaller than LpAI, consistent with a model having two apoA-I and one apoA-II. The functional contribution of these particles is to be investigated. PMID:27526664

  16. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: A systematic in-depth review

    PubMed Central

    Boes, Eva; Coassin, Stefan; Kollerits, Barbara; Heid, Iris M.; Kronenberg, Florian

    2009-01-01

    High-density lipoprotein (HDL) particles exhibit multiple antiatherogenic effects. They are key players in the reverse cholesterol transport which shuttles cholesterol from peripheral cells (e.g. macrophages) to the liver or other tissues. This complex process is thought to represent the basis for the antiatherogenic properties of HDL particles. The amount of cholesterol transported in HDL particles is measured as HDL cholesterol (HDLC) and is inversely correlated with the risk for coronary artery disease: an increase of 1 mg/dL of HDLC levels is associated with a 2% and 3% decrease of the risk for coronary artery disease in men and women, respectively. Genetically determined conditions with high HDLC levels (e.g. familial hyperalphalipoproteinemia) often coexist with longevity, and higher HDLC levels were found among healthy elderly individuals. HDLC levels are under considerable genetic control with heritability estimates of up to 80%. The identification and characterization of genetic variants associated with HDLC concentrations can provide new insights into the background of longevity. This review provides an extended overview on the current genetic-epidemiological evidence from association studies on genes involved in HDLC metabolism. It provides a path through the jungle of association studies which are sometimes confusing due to the varying and sometimes erroneous names of genetic variants, positions and directions of associations. Furthermore, it reviews the recent findings from genome-wide association studies which have identified new genes influencing HDLC levels. The yet identified genes together explain only a small amount of less than 10% of the HDLC variance, which leaves an enormous room for further yet to be identified genetic variants. This might be accomplished by large population-based genome-wide meta-analyses and by deep-sequencing approaches on the identified genes. The resulting findings will probably result in a re-drawing and extension of

  17. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    PubMed

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (P<0.05). Similarly, hamsters fed the OCC and COC diets reduced their plasma nonHDL cholesterol levels by 47% and 57%, respectively (P<0.05), compared to hamsters fed the HCD after 2 weeks of dietary treatment. Although hamsters fed the OCC (-26%) and COC (-32%) had significantly lower plasma HDL levels compared to HCD, (P<0.05), the plasma nonHDL/HDL cholesterol ratio was significantly lower (P<0.05) compared to the HCD for the OCC-fed (-27%) and the COC-fed (-38%) hamsters, respectively. Compared to the HCD group, aortic esterified cholesterol was 20% and 53% lower for the OCC and COC groups, respectively, with the latter reaching statistical significance, P<0.05. In conclusion, the hamsters fed the structured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  18. Effects of curcumin on HDL functionality.

    PubMed

    Ganjali, Shiva; Blesso, Christopher N; Banach, Maciej; Pirro, Matteo; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-05-01

    Curcumin, a bioactive polyphenol, is a yellow pigment of the Curcuma longa (turmeric) plant. Curcumin has many pharmacologic effects including antioxidant, anti-carcinogenic, anti-obesity, anti-angiogenic and anti-inflammatory properties. Recently, it has been found that curcumin affects lipid metabolism, and subsequently, may alleviate hyperlipidemia and atherosclerosis. Plasma HDL cholesterol (HDL-C) is an independent negative risk predictor of cardiovascular disease (CVD). However, numerous clinical and genetic studies have yielded disappointing results about the therapeutic benefit of raising plasma HDL-C levels. Therefore, research efforts are now focused on improving HDL functionality, independent of HDL-C levels. The quality of HDL particles can vary considerably due to heterogeneity in composition. Consistent with its complexity in composition and metabolism, a wide range of biological activities is reported for HDL, including antioxidant, anti-glycation, anti-inflammatory, anti-thrombotic, anti-apoptotic and immune modulatory activities. Protective properties of curcumin may influence HDL functionality; therefore, we reviewed the literature to determine whether curcumin can augment HDL function. In this review, we concluded that curcumin may modulate markers of HDL function, such as apo-AI, CETP, LCAT, PON1, MPO activities and levels. Curcumin may subsequently improve conditions in which HDL is dysfunctional and may have potential as a therapeutic drug in future. Further clinical trials with bioavailability-improved formulations of curcumin are warranted to examine its effects on lipid metabolism and HDL function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.

    PubMed

    Drobnik, Wolfgang; Borsukova, Hana; Böttcher, Alfred; Pfeiffer, Alexandra; Liebisch, Gerhard; Schütz, Gerhard J; Schindler, Hansgeorg; Schmitz, Gerd

    2002-04-01

    We have investigated whether a raft heterogeneity exists in human monocyte-derived macrophages and fibroblasts and whether these microdomains are modulated by lipid efflux. Triton X-100 (Triton) or Lubrol WX (Lubrol) detergent-resistant membranes from cholesterol-loaded monocytes were associated with the following findings: (i) Lubrol-DRM contained most of the cellular cholesterol and at least 75% of Triton-detergent-resistant membranes. (ii) 'Lubrol rafts', defined by their solubility in Triton but insolubility in Lubrol, were enriched in unsaturated phosphatidylcholine and showed a lower cholesterol to choline-phospholipid ratio compared to Triton rafts. (iii) CD14 and CD55 were recovered in Triton- and Lubrol-detergent-resistant membranes, whereas CD11b was found exclusively in Triton DRM. ABCA1 implicated in apo AI-mediated lipid efflux and CDC42 were partially localized in Lubrol- but not in Triton-detergent-resistant membranes. (iv) Apo AI preferentially depleted cholesterol and choline-phospholipids from Lubrol rafts, whereas HDL3 additionally decreased the cholesterol content of Triton rafts. In fibroblasts, neither ABCA1 nor CDC42 was found in Lubrol rafts, and both apo AI and HDL3 reduced the lipid content in Lubrol- as well as in Triton-detergent-resistant membranes. In summary, we provide evidence for the existence of compositionally distinct membrane microdomains in human cells and their modulation by apo AI/ABCA1-dependent and HDL3-mediated lipid efflux.

  20. Inverse association between triglycerides-to-HDL-cholesterol ratio and alcohol drinking in middle-aged Japanese men.

    PubMed

    Wakabayashi, Ichiro

    2012-11-01

    Triglycerides-to-high-density-lipoprotein (HDL)-cholesterol ratio (TG/HDL-C ratio) has been proposed to be a useful predictor of cardiovascular disease. Habitual alcohol drinking causes elevation of triglycerides and HDL cholesterol levels. The purpose of this study was to determine how the TG/HDL-C ratio is influenced by alcohol intake. Subjects were 21,572 Japanese men (age range: 35-60 years) who were divided into non-, light (<22 g ethanol/day), heavy (≥22 but <44 g ethanol/day), and very heavy (≥44 g ethanol/day) drinkers. The relationship between alcohol intake and TG/HDL-C ratio was investigated by using analysis of covariance and logistic regression analysis. Log-transformed TG/HDL-C ratio was significantly lower in light, heavy, and very heavy drinkers than in nondrinkers and was lowest in light drinkers. Odds ratios for high TG/HDL-C ratios in light and heavy drinkers versus nondrinkers were significantly lower than a reference level of 1.00 (light drinkers: 0.63, 95% CI [0.57, 0.71],p < .01); heavy drinkers: 0.75, 95% CI [0.69, 0.81],p < .01]). Odds ratios for high waist-to-height ratio of subjects with versus subjects without high TG/HDL-C ratios were significantly higher than the reference level in non-, light, heavy, and very heavy drinkers and were significantly lower in heavy and very heavy drinkers than in nondrinkers (nondrinkers: 3.84 [3.42,4.31]; light drinkers: 3.65 [2.97,4.48]; heavy drinkers: 3.17 [2.84, 3.54],p < .05 compared with nondrinkers; very heavy drinkers: 2.61 [2.29, 2.97],p < .01 compared with nondrinkers). Alcohol drinking is inversely associated with TG/ HDL-C ratio and confounds the relationship between TG/HDL-C ratio and obesity.

  1. ABCA1 and biogenesis of HDL.

    PubMed

    Yokoyama, Shinji

    2006-02-01

    Mammalian somatic cells do not catabolize cholesterol and therefore export it for sterol homeostasis at cell and whole body levels. This mechanism may reduce intracellularly accumulated excess cholesterol, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) plays a central role in this reaction by removing cholesterol from cells and transporting it to the liver, the major cholesterol catabolic site. Two independent mechanisms have been identified for cellular cholesterol release. The first is non-specific diffusion-mediated cholesterol "efflux" from the cell surface, in which cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification of HDL provides a driving force for the net removal of cell cholesterol by this pathway, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate new HDL particles by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ATP-binding cassette transporter A1 (ABCA1), and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step and the latter requires further intracellular events. ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional and post-transcriptional factors. Post-transcriptional regulation of ABCA1 involves modulation of its calpain-mediated degradation.

  2. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial.

    PubMed

    Ridker, Paul M; Genest, Jacques; Boekholdt, S Matthijs; Libby, Peter; Gotto, Antonio M; Nordestgaard, Børge G; Mora, Samia; MacFadyen, Jean G; Glynn, Robert J; Kastelein, John J P

    2010-07-31

    HDL-cholesterol concentrations are inversely associated with occurrence of cardiovascular events. We addressed, using the JUPITER trial cohort, whether this association remains when LDL-cholesterol concentrations are reduced to the very low ranges with high-dose statin treatment. Participants in the randomised placebo-controlled JUPITER trial were adults without diabetes or previous cardiovascular disease, and had baseline concentrations of LDL cholesterol of less than 3.37 mmol/L and high-sensitivity C-reactive protein of 2 mg/L or more. Participants were randomly allocated by a computer-generated sequence to receive rosuvastatin 20 mg per day or placebo, with participants and adjudicators masked to treatment assignment. In the present analysis, we divided the participants into quartiles of HDL-cholesterol or apolipoprotein A1 and sought evidence of association between these quartiles and the JUPITER primary endpoint of first non-fatal myocardial infarction or stroke, hospitalisation for unstable angina, arterial revascularisation, or cardiovascular death. This trial is registered with ClinicalTrials.gov, number NCT00239681. For 17,802 patients in the JUPITER trial, rosuvastatin 20 mg per day reduced the incidence of the primary endpoint by 44% (p<0.0001). In 8901 (50%) patients given placebo (who had a median on-treatment LDL-cholesterol concentration of 2.80 mmol/L [IQR 2.43-3.24]), HDL-cholesterol concentrations were inversely related to vascular risk both at baseline (top quartile vs bottom quartile hazard ratio [HR] 0.54, 95% CI 0.35-0.83, p=0.0039) and on-treatment (0.55, 0.35-0.87, p=0.0047). By contrast, among the 8900 (50%) patients given rosuvastatin 20 mg (who had a median on-treatment LDL-cholesterol concentration of 1.42 mmol/L [IQR 1.14-1.86]), no significant relationships were noted between quartiles of HDL-cholesterol concentration and vascular risk either at baseline (1.12, 0.62-2.03, p=0.82) or on-treatment (1.03, 0.57-1.87, p=0.97). Our analyses

  3. The effects of ABCG5/G8 polymorphisms on plasma HDL cholesterol concentrations depend on smoking habit in the Boston Puerto Rican Health Study

    USDA-ARS?s Scientific Manuscript database

    Background-Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk for atherosclerosis and concentrations are modulated by genetic and environmental factors such as smoking. Objective- To assess whether the association of common single nucleotide polymorphisms (SNPs...

  4. The atherogenic and metabolic impact of non-HDL cholesterol versus other lipid sub-components among non-diabetic and diabetic Saudis

    PubMed Central

    Al-Daghri, Nasser M; Al-Attas, Omar S; Al-Rubeaan, Khalid

    2007-01-01

    Background Several trials from different populations have reported that non-high density lipoprotein cholesterol (non-HDL-C) has more predictive power than low-density lipoprotein cholesterol (LDL-C) in detecting coronary heart disease (CHD) and none in any Arab community whose propensity to develop CHD is higher compared to other ethnicities. This study aims to determine and compare the impact of non-HDL-C versus other lipid parameters, in predicting coronary heart disease among diabetic versus non-diabetic adult Saudis and identify the lipid parameters which make a significant contribution in the development of coronary heart disease, diabetes mellitus, and metabolic syndrome. 733 adult Saudis were recruited and divided into groups of diabetics and non-diabetics. Each participant completed a questionnaire, underwent physical exam including 12-L ECG, and submitted a fasting blood sample where glucose and lipid parameters were analyzed using routine procedures. Results 462 subjects (age 45.03 ± 11.52; BMI 28.91 ± 6.07) were classified non-diabetics while the remaining 271 (age 52.73 ± 11.45, BMI 30.15 ± 6.62) were diabetics. 99 out of 465 (21.3%) of non-diabetics had CHD and 114 out of 271 (52.5%) in the diabetics. Non-HDL cholesterol was the best predictor among the non-diabetics (odds-ratio 2.89, CI 1.10–7.58, p-0.03). Total cholesterol was the highest single predictor for the development of CHD among the lipids (odds-ratio 1.36, CI 0.68–2.71, p-0.39) but HDL-cholesterol although small was significant (odds-ratio 0.52, CI 0.27–0.99, p-0.05). Conclusion This study supports the use of non-HDL cholesterol as the more practical and reliable target for lipid lowering therapy among the Saudi population. PMID:17408471

  5. Serum HDL-C levels, log (TG/HDL-C) values and serum total cholesterol/HDL-C ratios significantly correlate with radiological extent of disease in patients with community-acquired pneumonia.

    PubMed

    Deniz, Omer; Tozkoparan, Ergun; Yaman, Halil; Cakir, Erdinc; Gumus, Seyfettin; Ozcan, Omer; Bozlar, Ugur; Bilgi, Cumhur; Bilgic, Hayati; Ekiz, Kudret

    2006-03-01

    In several studies, it was shown that there was a marked decrease in serum levels of HDL-C during infection and inflammation in general. In particular, a decrease in the level of serum HDL-C was also shown in pneumonia. Correlations between inflammatory markers such as acute phase proteins, cytokines and serum HDL-C levels were shown. However, there are no studies indicating a correlation between serum HDL-C levels and the radiological extent of the disease (RED) in community-acquired pneumonia (CAP). We hypothesized that there could be a relationship between serum HDL-C levels and RED in CAP. A case-controlled study, including 97 patients with CAP and 45 healthy subjects, was performed. Chest X-rays of CAP patients were scored for RED, and correlations were investigated between RED scores, serum lipid parameters, the erythrocyte sedimentation rate (ESR) and serum albumin levels. The mean serum HDL-C level was lower in CAP patients than in controls. A significant and negative correlation between RED scores (REDS) and serum HDL-C levels was detected (r = -0.64, P = 0.0001). There were also significant correlations between REDS and other lipid parameters. Significant correlations between ESR and serum HDL-C levels and between ESR and other serum lipid parameters were also found. It appears that serum HDL-C levels are generally lower in CAP cases than in healthy controls. Serum HDL-C levels and serum albumin levels might decrease and serum total cholesterol/HDL-C ratios and log (TG/HDL-C) values might increase proportionally with RED in CAP patients. These results might have some significance for individuals having long-standing and/or recurrent pneumonia and other cardiovascular risk factors.

  6. Ten years cardiovascular risk estimation according to Framingham score and non HDL-cholesterol in blood donors.

    PubMed

    Graffigna, Mabel Nora; Berg, Gabriela; Migliano, Marta; Salgado, Pablo; Soutelo, Jimena; Musso, Carla

    2015-01-01

    Cardiovascular disease (CVD) is currently the primary cause of morbidity and mortality. (1) Assess the 10 years risk for CVD in Argentinean blood donors, according to Framingham score (updated by ATP III), (2) evaluate the prevalence of the MS, (3) evaluate non HDL-cholesterol level in this population as other risk for CVD. A prospective, epidemiological, transversal study was performed to evaluate 585 volunteer blood donors for two years. Non HDL-C was calculated as total cholesterol minus HDL-C and we evaluated the 10 years risk for CVD according to Framingham score (updated by ATP III). Metabolic syndrome prevalence was estimated according to ATP III and IDF criteria. Non HDL-C was (media±SD) 178.3±48.0 mg/dl in participants with MS and 143.7±39.3 mg/dl without MS (ATPIII) and 160.1±43.6 mg/dl in participants with MS and 139.8±43.1 mg/dl without MS (IDF). Participants with MS presented an OR of 3.1; IC 95% (2-5) of CVD according to de Framingham score. Individuals with MS and elevated non HDL-C are at a higher estimated risk for cardiovascular events in the next 10 years according to the Framingham risk score. Copyright © 2014. Published by Elsevier Ltd.

  7. Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice.

    PubMed

    Qu, Shen; Perdomo, German; Su, Dongming; D'Souza, Fiona M; Shachter, Neil S; Dong, H Henry

    2007-07-01

    Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and alpha-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism.

  8. The association of the triglyceride-to-HDL cholesterol ratio with insulin resistance in White European and South Asian men and women.

    PubMed

    Mostafa, Samiul A; Davies, Melanie J; Morris, Danielle H; Yates, Tom; Srinivasan, Balasubramanian Thiagarajan; Webb, David; Brady, Emer; Khunti, Kamlesh

    2012-01-01

    There is recent interest surrounding the use of the triglyceride-to-HDL cholesterol ratio as a surrogate marker of insulin resistance in clinical practice, as it may identify people at high risk of developing diabetes or its complications. However, it has been suggested using this lipid ratio may not be appropriate for measuring insulin resistance in African-Americans, particularly women. We investigated if this inconsistency extended to South Asian women in a UK multi-ethnic cohort of White Europeans and South Asians. Cross-sectional analysis was done of 729 participants from the ADDITION-Leicester study from 2005 to 2009. The association between tertiles of triglyceride-to-HDL cholesterol ratio to fasting insulin, homeostatic model of assessment for insulin resistance (HOMA1-IR), quantitative insulin sensitivity check index (QUICKI) and glucose: insulin ratio was examined with adjustment for confounding variables. Incremental tertiles of the triglyceride-to-HDL cholesterol ratio demonstrated a significant positive association with levels of fasting insulin, HOMA1-IR, glucose: insulin ratio and a negative association with QUICKI in White European men (n = 255) and women (n = 250) and South Asian men (n = 124) (all p<0.05), but not South Asian women (n = 100). A significant interaction was demonstrated between sex and triglyceride-to-HDL cholesterol ratio tertiles in South Asians only (p<0.05). The area under the receiver operating characteristic curve for triglyceride-to-HDL cholesterol ratio to detect insulin resistance, defined as the cohort HOMA1-IR ≥ 75(th) percentile (3.08), was 0.74 (0.67 to 0.81), 0.72 (0.65 to 0.79), 0.75 (0.66 to 0.85) and 0.67 (0.56 to 0.78) in White European men and women, South Asian men and women respectively. The optimal cut-points for detecting insulin resistance were 0.9-1.7 in mmol/l (2.0-3.8 in mg/dl) for the triglyceride-to-HDL ratio. In South Asian women the triglyceride-to-HDL cholesterol ratio was not associated with

  9. Lipid Oxidation in Carriers of Lecithin:Cholesterol Acyltransferase Gene Mutations

    PubMed Central

    Holleboom, Adriaan G.; Daniil, Georgios; Fu, Xiaoming; Zhang, Renliang; Hovingh, G. Kees; Schimmel, Alinda W.; Kastelein, John J.P.; Stroes, Erik S.G.; Witztum, Joseph L.; Hutten, Barbara A.; Tsimikas, Sotirios; Hazen, Stanley L.; Chroni, Angeliki; Kuivenhoven, Jan Albert

    2013-01-01

    Objective Lecithin:cholesterol acyltransferase (LCAT) has been shown to play a role in the depletion of lipid oxidation products, but this has so far not been studied in humans. In this study, we investigated processes and parameters relevant to lipid oxidation in carriers of functional LCAT mutations. Methods and Results In 4 carriers of 2 mutant LCAT alleles, 63 heterozygotes, and 63 family controls, we measured activities of LCAT, paraoxonase 1, and platelet-activating factor-acetylhydrolase; levels of lysophosphatidylcholine molecular species, arachidonic and linoleic acids, and their oxidized derivatives; immunodetectable oxidized phospholipids on apolipoprotein (apo) B–containing and apo(a)-containing lipoproteins; IgM and IgG autoantibodies to malondialdehyde-low-density lipoprotein and IgG and IgM apoB-immune complexes; and the antioxidant capacity of high-density lipoprotein (HDL). In individuals with LCAT mutations, plasma LCAT activity, HDL cholesterol, apoA-I, arachidonic acid, and its oxidized derivatives, oxidized phospholipids on apo(a)-containing lipoproteins, HDL-associated platelet-activating factor-acetylhydrolase activity, and the antioxidative capacity of HDL were gene-dose–dependently decreased. Oxidized phospholipids on apoB-containing lipoproteins was increased in heterozygotes (17%; P<0.001) but not in carriers of 2 defective LCAT alleles. Conclusion Carriers of LCAT mutations present with significant reductions in LCAT activity, HDL cholesterol, apoA-I, platelet-activating factor-acetylhydrolase activity, and antioxidative potential of HDL, but this is not associated with parameters of increased lipid peroxidation; we did not observe significant changes in the oxidation products of arachidonic acid and linoleic acid, immunoreactive oxidized phospholipids on apo(a)-containing lipoproteins, and IgM and IgG autoantibodies against malondialdehyde-low-density lipoprotein. These data indicate that plasma LCAT activity, HDL

  10. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross.

    PubMed

    Leduc, Magalie S; Blair, Rachael Hageman; Verdugo, Ricardo A; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A; Paigen, Beverly

    2012-06-01

    A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.

  11. Plasma non-cholesterol sterols.

    PubMed

    Kuksis, A

    2001-11-23

    Increased levels of plasma sterols other than cholesterol can serve as markers for abnormalities in lipid metabolism associated with clinical disease. Premature atherosclerosis and xanthomatosis occur in two rare lipid storage diseases, Cerebrotendinous xanthomatosis (CTX) and sitosterolemia. In CTX, cholestanol is present in all tissues. In sitosterolemia, dietary campesterol and sitosterol accumulate in plasma and red blood cells. Plasma accumulation of oxo-sterols is associated with inhibition of bile acid synthesis and other abnormalities in plasma lipid metabolism. Inhibition of cholesterol biosynthesis is associated with plasma appearance of precursor sterols. The increases in non-cholesterol sterols, while highly significant, represent only minor changes in plasma sterols, which require capillary gas-liquid chromatography and MS for effective detection, identification and quantification.

  12. Alpinumisoflavone and abyssinone V 4'-methylether derived from Erythrina lysistemon (Fabaceae) promote HDL-cholesterol synthesis and prevent cholesterol gallstone formation in ovariectomized rats.

    PubMed

    Mvondo, Marie A; Njamen, Dieudonné; Kretzschmar, Georg; Imma Bader, Manuela; Tanee Fomum, Stephen; Wandji, Jean; Vollmer, Günter

    2015-07-01

    Erythrina lysistemon was found to improve lipid profile in ovariectomized rats. Alpinumisoflavone (AIF) and abyssinone V 4'-methylether (AME) derived from this plant induced analogous effects on lipid profile and decreased atherogenic risks. To highlight the molecular mechanism of action of these natural products, we evaluated their effects on the expression of some estrogen-sensitive genes associated with cholesterol synthesis (Esr1 and Apoa1) and cholesterol clearance (Ldlr, Scarb1 and Cyp7a1). Ovariectomized rats were subcutaneously treated for three consecutive days with either compound at the daily dose of 0.1, 1 and 10 mg/kg body weight (BW). Animals were sacrificed thereafter and their liver was collected. The mRNA of genes of interest was analysed by quantitative real-time polymerase chain reaction. Both compounds downregulated the mRNA expression of Esr1, a gene associated with cholesterogenesis and cholesterol gallstone formation. AME leaned the Apoa1/Scarb1 balance in favour of Apoa1, an effect promoting high-density lipoprotein (HDL)-cholesterol formation. It also upregulated the mRNA expression of Ldlr at 1 mg/kg/BW per day (25%) and 10 mg/kg/BW per day (133.17%), an effect favouring the clearance of low-density lipoprotein (LDL)-cholesterol. Both compounds may also promote the conversion of cholesterol into bile acids as they upregulated Cyp7a1 mRNA expression. AIF and AME atheroprotective effects may result from their ability to upregulate mechanisms promoting HDL-cholesterol and bile acid formation. © 2015 Royal Pharmaceutical Society.

  13. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm

    2014-12-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.

  14. Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion

    PubMed Central

    Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.

    2014-01-01

    On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800

  15. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.

    PubMed

    Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J

    2013-04-01

    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.

  16. Effects of apoA-V on HDL and VLDL metabolism in APOC3 transgenic mice1

    PubMed Central

    Qu, Shen; Perdomo, German; Su, Dongming; D’Souza, Fiona M.; Shachter, Neil S.; Dong, H. Henry

    2009-01-01

    Apolipoprotein A-V (apoA-V) and apoC-III are exchangeable constituents of VLDL and HDL. ApoA-V counteracts the effect of apoC-III on triglyceride (TG) metabolism with poorly defined mechanisms. To better understand the effects of apoA-V on TG and cholesterol metabolism, we delivered apoA-V cDNA into livers of hypertriglyceridemic APOC3 transgenic mice by adenovirus-mediated gene transfer. In response to hepatic apoA-V production, plasma TG levels were reduced significantly as a result of enhanced VLDL catabolism without alternations in VLDL production. This effect was associated with reduced apoC-III content in VLDL. Increased apoA-V production also resulted in decreased apoC-III and increased apoA-I content in HDL. Furthermore, apoA-V-enriched HDL was associated with enhanced LCAT activity and increased cholesterol efflux. This effect, along with apoE enrichment in HDL, contributed to HDL core expansion and α-HDL formation, accounting for significant increases in both the number and size of HDL particles. As a result, apoA-V-treated APOC3 transgenic mice exhibited decreased VLDL-cholesterol and increased HDL-cholesterol levels. ApoA-V-mediated reduction of apoC-III content in VLDL represents an important mechanism by which apoA-V acts to ameliorate hypertriglyceridemia in adult APOC3 transgenic mice. In addition, increased apoA-V levels accounted for cholesterol redistribution from VLDL to larger HDL particles. These data suggest that in addition to its TG-lowering effect, apoA-V plays a significant role in modulating HDL maturation and cholesterol metabolism PMID:17438339

  17. Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet.

    PubMed

    Engel, Sara; Tholstrup, Tine

    2015-08-01

    Butter is known to have a cholesterol-raising effect and, therefore, has often been included as a negative control in dietary studies, whereas the effect of moderate butter intake has not been elucidated to our knowledge. We compared the effects of moderate butter intake, moderate olive oil intake, and a habitual diet on blood lipids, high-sensitivity C-reactive protein (hsCRP), glucose, and insulin. The study was a controlled, double-blinded, randomized 2 × 5-wk crossover dietary intervention study with a 14-d run-in period during which subjects consumed their habitual diets. The study included 47 healthy men and women (mean ± SD total cholesterol: 5.22 ± 0.90 mmol/L) who substituted a part of their habitual diets with 4.5% of energy from butter or refined olive oil. Study subjects were 70% women with a mean age and body mass index (in kg/m²) of 40.4 y and 23.5, respectively. Butter intake increased total cholesterol and LDL cholesterol more than did olive oil intake (P < 0.05) and the run-in period (P < 0.005 and P < 0.05, respectively) and increased HDL cholesterol compared with the run-in period (P < 0.05). No difference in effects was observed for triacylglycerol, hsCRP, insulin, and glucose concentrations. The intake of saturated fatty acids was significantly higher in the butter period than in the olive oil and run-in periods (P < 0.0001). Moderate intake of butter resulted in increases in total cholesterol and LDL cholesterol compared with the effects of olive oil intake and a habitual diet (run-in period). Furthermore, moderate butter intake was also followed by an increase in HDL cholesterol compared with the habitual diet. We conclude that hypercholesterolemic people should keep their consumption of butter to a minimum, whereas moderate butter intake may be considered part of the diet in the normocholesterolemic population. © 2015 American Society for Nutrition.

  18. Association of the TG/HDL-C and Non-HDL-C/HDL-C Ratios with Chronic Kidney Disease in an Adult Chinese Population.

    PubMed

    Wen, Jia; Chen, Yiyin; Huang, Yun; Lu, Yao; Liu, Xing; Zhou, Honghao; Yuan, Hong

    2017-01-01

    Evidence indicates a role for dyslipidemia in the development of chronic kidney disease (CKD). However, the association of lipid abnormalities and their ratios with kidney disease using the new CKD Epidemiology Collaboration (CKD-EPI) equation is not well understood. This cross-sectional study included 48,054 adult subjects. CKD was defined as an estimated glomerular filtration rate <60 ml/min/1.73 m2 or dipstick-positive proteinuria. Logistic regression models were used to examine the relationship between lipid variables and CKD. The prevalence of CKD in this study was 3.7%. When the participants exhibited higher serum triglyceride (TG), a higher TG/high-density lipoprotein cholesterol (TG/HDL-c) ratio or a higher non-HDL-c/HDL-c ratio or HDL-c in a lower quartile, the prevalence of CKD tended to be higher. The multivariate adjusted odds ratios for CKD per 1 standard deviation increase in lipid level were 1.17 (1.10-1.23) for TG, 0.86 (0.79-0.93) for HDL-c, 1.21 (1.13-1.31) for the TG/HDL-c ratio, and 1.14 (1.06-1.22) for the non-HDL-c/HDL-c ratio. No significant association was detected between CKD and total cholesterol (TC), non-HDL-c or the low-density lipoprotein cholesterol/HDL-c (LDL-c/HDL-c) ratio. In this relatively healthy adult Chinese population, the CKD-EPI equation determined that the TG/HDL-c and non-HDL-c/HDL-c ratios as well as TG and HDL-c correlate with the prevalence of CKD. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study.

    PubMed

    Kunutsor, Setor K; Zaccardi, Francesco; Karppi, Jouni; Kurl, Sudhir; Laukkanen, Jari A

    2017-06-01

    Low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), which are components of total cholesterol, have each been suggested to be linked to the risk of sudden cardiac death (SCD). However, the relationship between LDL-c/HDL-c ratio and the risk of SCD has not been previously investigated. We aimed to assess the associations of LDL-c, HDL-c, and the ratio of LDL-c/HDL-c with the risk of SCD. Serum lipoprotein concentrations were assessed at baseline in the Finnish Kuopio Ischemic Heart Disease prospective cohort study of 2,616 men aged 42-61 years at recruitment. Hazard ratios (HRs) (95% confidence intervals [CI]) were assessed. During a median follow-up of 23.0 years, a total of 228 SCDs occurred. There was no significant evidence of an association of LDL-c or HDL-c with the risk of SCD. In analyses adjusted for age, examination year, body mass index, systolic blood pressure, smoking, alcohol consumption, physical activity, years of education, diabetes, previous myocardial infarction, family history of coronary heart disease, and serum high sensitivity C-reactive protein, there was approximately a two-fold increase in the risk of SCD (HR 1.94, 95% CI 1.21-3.11; p=0.006), comparing the top (>4.22) versus bottom (≤2.30) quintile of serum LDL-c/HDL-c ratio. In this middle-aged male population, LDL-c or HDL-c was not associated with the risk of SCD. However, a high serum LDL-c/HDL-c ratio was found to be independently associated with an increased risk of SCD. Further research is warranted to understand the mechanistic pathways underlying this association.

  20. Effects of aspirin in combination with EPA and DHA on HDL-C cholesterol and ApoA1 exchange in individuals with type 2 diabetes mellitus.

    PubMed

    Block, Robert C; Holub, Ashley; Abdolahi, Amir; Tu, Xin M; Mousa, Shaker A; Oda, Michael N

    2017-11-01

    Low-dose aspirin is an effective drug for the prevention of cardiovascular disease (CVD) events but individuals with diabetes mellitus can be subject to 'aspirin resistance'. Thus, aspirin's effect in these individuals is controversial. Higher blood levels of seafood-derived omega-3 polyunsaturated fatty acids (ω3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also have beneficial effects in reducing risk of CVD events but few studies have examined the interaction of plasma EPA and DHA with aspirin ingestion. Our study examined the combinatory effects of EPA, DHA, and aspirin ingestion on HDL-cholesterol (HDL-C) and apoA-I exchange (shown to be associated with CVD event risk). 30 adults with Type 2 diabetes mellitus ingested aspirin (81mg/day) for 7 consecutive days, EPA+DHA (2.6g/day) for 28 days, then both for 7 days. Plasma was collected at baseline and at 5 subsequent visits including 4h after each aspirin ingestion. Mixed model methods were used to determine HDL-C-concentrations and apoA-I exchange compared to the baseline visit values. LOWESS curves were used for non-linear analyses of outcomes to help discern change patterns, which was followed by piecewise linear functions for formal testing of curvilinear relationships. Significant changes (p < 0.05) compared to baseline in both HDL-C-concentrations and apoA-I exchange were present at different times. After 7 days of aspirin-only ingestion, apoA-I exchange was significantly modified by increasing levels of DHA concentration, with increased apoA-I exchange observed up until log(DHA) of 4.6 and decreased exchange thereafter (p = 0.03). These LOWESS curve effects were not observed for EPA or HDL-C (p > 0.05). Aspirin's effects on apoA-I exchange were the greatest when EPA or DHA concentrations were moderate compared to high or low. Comparison of EPA, DHA, and EPA+DHA LOWESS curves, demonstrated that the majority of the effect is due to DHA. Our results strongly suggest that plasma concentrations

  1. Potential for increasing high-density lipoprotein cholesterol, subfractions HDL2-C and HDL3-C, and apoprotein AI among middle-age women.

    PubMed

    Meilahn, E N; Kuller, L H; Matthews, K A; Wing, R R; Caggiula, A W; Stein, E A

    1991-07-01

    Studies have shown high-density lipoprotein cholesterol (HDL-C) to be a strong predictor of cardiovascular disease (CVD) risk. Determinants of HDL-C and apoprotein AI concentrations were evaluated cross-sectionally in 1987 among 429 women, ages 45-54, from a population-based study of CVD risk factors through menopause (the Healthy Women Study, University of Pittsburgh). Subjects were healthy and not taking hormone replacement therapy. Results showed levels of HDL-C (mg/dl) to range from 23 to 117, HDL2-C from 0 to 53, HDL3-C from 16 to 66, and apoprotein AI from 87 to 204. Multivariate analyses which included age, cigarettes/day, alcohol intake (g/day), physical activity (Paffenbarger questionnaire), body mass index (BMI), and waist/hip ratio (WHR) showed that women who smoked greater than or equal to 20 cigarettes a day, reported little or no alcohol intake, expended less than 500 kcal/week, and were in the highest quintile of BMI and WHR had, on average, 33 mg/dl lower HDL-C than slender, nonsmoking women who drank moderately and exercised. HDL2-C showed a similar pattern, whereas the HDL3-C concentration had only a modest association with these factors. HDL-C was somewhat lower among women who had stopped menstruating than among premenopausal women. The apoprotein AI level was associated with alcohol intake (positively) and BMI (negatively). Theoretically, by raising their HDL-C by 10 mg/dl, women could reduce their CVD risk by as much as one-third (based on results from the Framingham Heart Study). As CVD is the leading cause of death among postmenopausal women, the potential impact of such a reduction in risk would be large.

  2. Plasma lipids, lipoprotein metabolism and HDL lipid transfers are equally altered in metabolic syndrome and in type 2 diabetes.

    PubMed

    Silva, Vanessa M; Vinagre, Carmen G C; Dallan, Luis A O; Chacra, Ana P M; Maranhão, Raul C

    2014-07-01

    Metabolic syndrome (MetS) refers to states of insulin resistance that predispose to development of cardiovascular disease and type 2 diabetes (T2DM). The aim was to investigate whether plasma lipids and lipid metabolism differ in MetS patients compared to those with T2DM with poor glycemic control (glycated hemoglobin > 7.0). Eighteen patients with T2DM, 18 with MetS and 14 controls, paired for age (40-70 years) and body mass index (BMI), were studied. Plasma lipids and the kinetics of a triacylglycerol-rich emulsion labeled with [(3)H]-triolein ([(3)H]-TAG) and [(14)C]-cholesteryl esters ([(14)C]-CE) injected intravenously followed by one-hour blood sampling were determined. Lipid transfers from an artificial nanoemulsion donor to high-density lipoprotien (HDL) were assayed in vitro. Low-density lipoprotein (LDL) and HDL cholesterol (mg/dl) were not different in T2DM (128 ± 7; 42 ± 7) and MetS (142 ± 6; 39 ± 3), but triacylglycerols were even higher in MetS (215 ± 13) than in T2DM (161 ±11, p < 0.05). Fractional clearance rate (FCR, in min(1)) of [(3)H]-TAG and [(14)C]-CE were equal in T2DM (0.008 ± 0.018; 0.005 ± 0.024) and MetS (0.010 ± 0.016; 0.006 ± 0.013), and both were reduced compared to controls. The transfer of non-esterified cholesterol, phospholipids and triacylglycerols to HDL was higher in MetS and T2DM than in controls (p < 0.01). Cholesteryl ester transfer and HDL size were equal in all groups. Results imply that MetS is equal to poorly controlled T2DM concerning the disturbances of plasma lipid metabolism examined here, and suggest that there are different thresholds for the insulin action on glucose and lipids. These findings highlight the magnitude of the lipid disturbances in MetS, and may have implications in the prevention of cardiovascular diseases.

  3. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ × SM/J intercross[S

    PubMed Central

    Leduc, Magalie S.; Blair, Rachael Hageman; Verdugo, Ricardo A.; Tsaih, Shirng-Wern; Walsh, Kenneth; Churchill, Gary A.; Paigen, Beverly

    2012-01-01

    A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification. PMID:22498810

  4. Altered relationship of plasma triglycerides to HDL cholesterol in patients with HIV/HAART-associated dyslipidemia: further evidence for a unique form of metabolic syndrome in HIV patients.

    PubMed

    Vu, Catherine N; Ruiz-Esponda, Raul; Yang, Eric; Chang, Evelyn; Gillard, Baiba; Pownall, Henry J; Hoogeveen, Ron C; Coraza, Ivonne; Balasubramanyam, Ashok

    2013-07-01

    Plasma triglycerides (TG) and HDL-C are inversely related in Metabolic Syndrome (MetS), due to exchange of VLDL-TG for HDL-cholesteryl esters catalyzed by cholesteryl ester transfer protein (CETP). We investigated the relationship of TG to HDL-C in highly-active antiretroviral drug (HAART)-treated HIV patients. Fasting plasma TG and HDL-C levels were compared in 179 hypertriglyceridemic HIV/HAART patients and 71 HIV-negative persons (31 normotriglyceridemic (NL) and 40 hypertriglyceridemic due to type IV hyperlipidemia (HTG)). CETP mass and activity were compared in 19 NL and 87 HIV/HAART subjects. Among the three groups, a plot of HDL-C vs. TG gave similar slopes but significantly different y-intercepts (9.24±0.45, 8.16±0.54, 6.70±0.65, sqrt(HDL-C) for NL, HIV and HTG respectively; P<0.001); this difference persisted after adjusting HDL-C for TG, age, BMI, gender, glucose, CD4 count, viral load and HAART strata (7.18±0.20, 6.20±0.05 and 4.55±0.15 sqrt(HDL-C) for NL, HIV and HTG, respectively, P<0.001). CETP activity was not different between NL and HIV, but CETP mass was significantly higher in HIV (1.47±0.53 compared to 0.93±0.27μg/mL, P<0.0001), hence CETP specific activity was lower in HIV (22.67±13.46 compared to 28.46±8.24nmol/μg/h, P=0.001). Dyslipidemic HIV/HAART patients have a distinctive HDL-C plasma concentration adjusted for TG. The weak inverse relationship between HDL-C and TG is not explained by altered total CETP activity; it could result from a non-CETP-dependent mechanism or a decrease in CETP function due to inhibitors of CETP activity in HIV patients' plasma. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Differential effects of gemfibrozil and fenofibrate on reverse cholesterol transport from macrophages to feces in vivo.

    PubMed

    Rotllan, Noemí; Llaverías, Gemma; Julve, Josep; Jauhiainen, Matti; Calpe-Berdiel, Laura; Hernández, Cristina; Simó, Rafael; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2011-02-01

    Gemfibrozil and fenofibrate, two of the fibrates most used in clinical practice, raise HDL cholesterol (HDLc) and are thought to reduce the risk of atherosclerotic cardiovascular disease. These drugs act as PPARα agonists and upregulate the expression of genes crucial in reverse cholesterol transport (RCT). In the present study, we determined the effects of these two fibrates on RCT from macrophages to feces in vivo in human apoA-I transgenic (hApoA-ITg) mice. [(3)H]cholesterol-labeled mouse macrophages were injected intraperitoneally into hApoA-ITg mice treated with intragastric doses of fenofibrate, gemfibrozil or a vehicle solution for 17days, and radioactivity was determined in plasma, liver and feces. Fenofibrate, but not gemfibrozil, enhanced [(3)H]cholesterol flux to plasma and feces of female hApoA-ITg mice. Fenofibrate significantly increased plasma HDLc, HDL phospholipids, hApoA-I levels and phospholipid transfer protein activity, whereas these parameters were not altered by gemfibrozil treatment. Unlike gemfibrozil, fenofibrate also induced the generation of larger HDL particles, which were more enriched in cholesteryl esters, together with higher potential to generate preβ-HDL formation and caused a significant increase in [(3)H]cholesterol efflux to plasma. Our findings demonstrate that fenofibrate promotes RCT from macrophages to feces in vivo and, thus, highlight a differential action of this fibrate on HDL. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Positive correlation between serum IGF-1 and HDL-C in type 2 diabetes mellitus.

    PubMed

    Song, Xiaofei; Teng, Jiali; Wang, Aihong; Li, Xiang; Wang, Jing; Liu, Yanjun

    2016-08-01

    Dyslipidemia and low levels of high density lipoprotein cholesterol (HDL-C) can increase the risk of atherosclerosis development in people with type 2 diabetes mellitus (T2DM). This study aimed to investigate the correlation between serum HDL-C and insulin-like growth factor-1 (IGF-1), which are crucially involved inT2DM. Serum concentrations of IGF-1, total cholesterol, triglyceride, low density lipoprotein cholesterol, and HDL-C were measured in 498 participants with T2DM without any lipid-modifying medicine prior to study. Participants were divided into three groups according to the 25th and 75th percentile of IGF-1 levels: low IGF-1 group (G1), middle IGF-1 group (G2), and high IGF-1 group (G3), respectively. Serum levels of HDL-C were compared among the three groups. G1 presented a higher body mass index and higher fasting plasma insulin (FINS) than G2 (P<0.05), yet a lower HDL-C than G2 (P<0.05). Moreover, HDL-C, postprandial blood glucose, FINS, postprandial plasma insulin (PINS), hip circumference ratio, glycated hemoglobin A1c were significantly lower in G3 than in G2 (P<0.05). After adjusting for age and gender, serum levels of IGF-1 were negatively correlated with age, duration of disease, waist circumference, FINS, PINS, and insulin resistance, but positively correlated with HDL-C. Each increase of 2.71ng/dl in IGF-I concentration was associated with an increase of 1.34mg/dl in HDL level. IGF-1 serum level in people with T2DM is correlated positively with HDL-C. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. [Relation of variant rs180077 of gen cholesterol ester transfer protein variant, with fat mass, HDL-cholesterol in obese subjects with diabetes mellitus type 2].

    PubMed

    De Luis, Daniel Antonio; Izaola, Olatz; Primo, David; García Calvo, Susana; Gómez Hoyos, Emilia; López Gómez, Juan José; Ortola, Ana; Serrano, Cristina; Delgado, Esther; Torres Torres, Beatriz

    2017-11-14

    There is few evidence of cholesterol ester transfer protein (CETP) in subjects with obesity and diabetes mellitus. We examined the association of the polymorphism (rs1800777) of CETP gene on anthropometric parameters, lipid profile and adipokines in subjects with obesity and diabetes mellitus type 2. A population of 229 obese subjects with diabetes mellitus type 2 was enrolled. An electrical bioimpedance, blood pressure, dietary intake, exercise and biochemical analyses were recorded. Two hundred and seventeen subjects (94.8%) had genotype GG and 12 GA (5.2%) (genotype AA was not detected). Weight (delta: 14.4 ± 2.1 kg, p = 0.01), body mass index (delta: 2.2 ± 1.1 kg/m2, p = 0.01), fat mass (delta: 11.2 ± 3.1 kg, p = 0.02), waist circumference (delta: 3.9 ± 2.0 cm, p = 0.02), waist to hip ratio (delta: 0.04 ± 0.02 cm; p = 0.01), tryglicerides (delta: 48.6 ± 9.1 mg / dl, p = 0.03) and leptin levels (delta: 58.6 ± 15.9 mg/dl, p = 0.02) were higher in A allele carriers than non A allele carriers. Levels of HDL-cholesterol were lower in A allele carriers than non-carriers (delta: 5.6 ± 1.1 mg/dl, p = 0.03). In regression analysis, HDl cholesterol, weight and fat mass remained in the model with the SNP. Our results show an association of this CETP variant at position +82 on HDL cholesterol, levels and adiposity parameters in obese subjects with diabetes mellitus type 2.

  8. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B.

    PubMed

    Ho, Hoang Vi Thanh; Jovanovski, Elena; Zurbau, Andreea; Blanco Mejia, Sonia; Sievenpiper, John L; Au-Yeung, Fei; Jenkins, Alexandra L; Duvnjak, Lea; Leiter, Lawrence; Vuksan, Vladimir

    2017-05-01

    Background: Evidence from randomized controlled trials (RCTs) suggests the consumption of konjac glucomannan (KJM), a viscous soluble fiber, for improving LDL-cholesterol concentrations. It has also been suggested that the cholesterol-lowering potential of KJM may be greater than that of other fibers. However, trials have been relatively scarce and limited in sample size and duration, and the effect estimates have been inconsistent. The effect of KJM on new lipid targets of cardiovascular disease (CVD) risk is also unknown. Objective: This systematic review and meta-analysis aimed to assess the effect of KJM on LDL cholesterol, non-HDL cholesterol, and apolipoprotein B. Design: Medline, Embase, CINAHL, and the Cochrane Central databases were searched. We included RCTs with a follow-up of ≥3 wk that assessed the effect of KJM on LDL cholesterol, non-HDL cholesterol, or apolipoprotein B. Data were pooled by using the generic inverse-variance method with random-effects models and expressed as mean differences (MDs) with 95% CIs. Heterogeneity was assessed by the Cochran Q statistic and quantified by the I 2 statistic. Results: Twelve studies ( n = 370), 8 in adults and 4 in children, met the inclusion criteria. KJM significantly lowered LDL cholesterol (MD: -0.35 mmol/L; 95% CI: -0.46, -0.25 mmol/L) and non-HDL cholesterol (MD: -0.32 mmol/L; 95% CI: -0.46, -0.19 mmol/L). Data from 6 trials suggested no impact of KJM on apolipoprotein B. Conclusions: Our findings support the intake of ∼3 g KJM/d for reductions in LDL cholesterol and non-HDL cholesterol of 10% and 7%, respectively. The information may be of interest to health agencies in crafting future dietary recommendations related to reduction in CVD risk. This study was registered at clinicaltrials.gov as NCT02068248. © 2017 American Society for Nutrition.

  9. The relationship of plasma catestatin concentrations with metabolic and vascular parameters in untreated hypertensive patients: Influence on high-density lipoprotein cholesterol

    PubMed Central

    Durakoğlugil, Murtaza Emre; Ayaz, Teslime; Kocaman, Sinan Altan; Kırbaş, Aynur; Durakoğlugil, Tuğba; Erdoğan, Turan; Çetin, Mustafa; Şahin, Osman Zikrullah; Çiçek, Yüksel

    2015-01-01

    Objective: Catestatin has several cardiovascular actions, in addition to diminished sympatho-adrenal flow. Decreased plasma catestatin levels may reflect a predisposition for the development of hypertension and metabolic disorders. We planned to investigate the possible roles of catestatin in untreated hypertensive patients. As a secondary objective, we compared catestatin concentrations of healthy subjects with those of hypertensive patients in order to understand whether catestatin is increased reactively or diminished at onset. Methods: Our study was cross-sectional and observational. The patient group, comprising 109 consecutive untreated hypertensive patients without additional systemic or coronary heart disease, underwent evaluations of plasma catestatin, waist circumference, lipid parameters, left ventricular mass, carotid intima-media thickness, and flow-mediated dilation of the brachial artery. Additionally, we measured catestatin concentrations of 38 apparently healthy subjects without any disease using a commercial enzyme-linked immunosorbent assay kit. Results: We documented increased catestatin concentrations in previously untreated hypertensive patients compared to healthy controls (2.27±0.83 vs. 1.92±0.49 ng/mL, p=0.004). However, this association became insignificant after adjustments for age, gender, height, and weight. Within the patient group, catestatin levels were significantly higher in females. Among all study parameters, age, high-density lipoprotein cholesterol (HDL-C) correlated positively to plasma catestatin, whereas triglycerides, hemoglobin, and left ventricular mass correlated negatively to plasma catestatin. We could not detect an association between vascular parameters and catestatin. Catestatin levels were significantly elevated with increasing HDL-C (1.91±0.37, 2.26±0.79, and 3.1±1.23 ng/mL in patients with HDL-C <40, 40-60, and >60 mg/dL, respectively). Multiple linear regression analysis revealed age (beta: 0.201, p=0

  10. Novel HDL-directed pharmacotherapeutic strategies

    PubMed Central

    deGoma, Emil M.; Rader, Daniel J.

    2011-01-01

    The burden of atherothrombotic cardiovascular disease remains high despite currently available optimum medical therapy. To address this substantial residual risk, the development of novel therapies that attempt to harness the atheroprotective functions of HDL is a major goal. These functions include the critical role of HDL in reverse cholesterol transport, and its anti-inflammatory, antithrombotic, and antioxidant activities. Discoveries in the past decade have shed light on the complex metabolic and antiatherosclerotic pathways of HDL. These insights have fueled the development of HDL-targeted drugs, which can be classified among four different therapeutic approaches: directly augmenting apolipoprotein A-I (apo A-I) levels, such as with apo A-I infusions and upregulators of endogenous apo A-I production; indirectly augmenting apo A-I and HDL-cholesterol levels, such as through inhibition of cholesteryl ester transfer protein or endothelial lipase, or through activation of the high-affinity niacin receptor GPR109A; mimicking the functionality of apo A-I with apo A-I mimetic peptides; and enhancing steps in the reverse cholesterol transport pathway, such as via activation of the liver X receptor or of lecithin–cholesterol acyltransferase. PMID:21243009

  11. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of VCO and olive oil on HDL, LDL, and cholesterol level of hyperglycemic Rattus Rattus Norvegicus

    NASA Astrophysics Data System (ADS)

    Yusuf Wachidah Yuiwarti, Enny; Rini Saraswati, Tyas; Kusdiyantini, Endang

    2018-05-01

    Virgin coconut oil (VCO) and olive oil are edible oil containing an antioxidant that can prevent free radicals in Rattus rattus norvegicus hypoglycemic due to the damage of pancreatic beta cell after alloxan injection. Virgin coconut oil and olive oil are fatty acids when being consumed will affect lipid metabolism particularly HDL, LDL and cholesterol in serum. This research aims to determine the effect of VCO and Olive oil on cholesterol levels in hyperglycemic rats. Research materials were twenty male Rattus rattus norvegicus. Randomized Factorial Design was used in four treatment groups including P1(control), P2 (mice injected with alloxan), P3 (mice injected with alloxan plus 0.1 ml/BW of each VCO and vitamin E) and P4 (mice injected with alloxan plus 0.1 ml/BW of each olive oil and vitamin E. Each treatment was replicated 5 times. Feed and water were provided adlibitum for four weeks. The result showed that there was no significant difference in the level of HDL serum across the treatments, but P4 had a significantly higher LDL than the other treatments. Moreover, total cholesterol was significantly increased in P4 compared to the other groups. It can be concluded that olive oil could increase the level of cholesterol and LDL in serum, while VCO did not increase the level of cholesterol and LDL so VCO more potential to maintain cholesterol in hyperglycemic Rattus rattus norvegicus.

  13. Dysfunctional HDL as a therapeutic target for atherosclerosis prevention.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Giorgio, Eleonora; Calabresi, Laura; Gomaraschi, Monica

    2018-03-15

    Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia

    PubMed Central

    Tan, Ricardo; Giral, Philippe; Robillard, Paul; Kontush, Anatol; Chapman, M. John

    2016-01-01

    Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (−41%) and LDL-cholesterol (−38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3. PMID:27581680

  15. Size, density and cholesterol load of HDL predict microangiopathy, coronary artery disease and β-cell function in men with T2DM.

    PubMed

    Hermans, Michel P; Amoussou-Guenou, K Daniel; Bouenizabila, Evariste; Sadikot, Shaukat S; Ahn, Sylvie A; Rousseau, Michel F

    The role of high-density lipoprotein cholesterol (HDL-C) as modifiable risk factor for cardiovascular (CV) disease is increasingly debated, notwithstanding the finding that small-dense and dysfunctional HDL are associated with the metabolic syndrome and T2DM. In order to better clarify the epidemiological risk related to HDL of different size/density, without resorting to direct measures, it would seem appropriate to adjust HDL-C to the level of its main apolipoprotein (apoA-I), thereby providing an [HDL-C/apoA-I] ratio. The latter allows not only to estimate an average size for HDLs, but also to derive indices on particle number, cholesterol load, and density. So far, the potential usefulness of this ratio in diabetes is barely addressed. To this end, we sorted 488 male patients with T2DM according to [HDL-C/apoA-I] quartiles (Q), to determine how the ratio relates to cardiometabolic risk, β-cell function, glycaemic control, and micro- and macrovascular complications. Five lipid parameters were derived from the combined determination of HDL-C and apoA-I, namely HDL size; particle number; cholesterol load/particle; apoA-I/particle; and particle density. An unfavorable cardiometabolic profile characterized patients from QI and QII, in which HDLs were pro-atherogenic, denser and apoA-I-depleted. By contrast, QIII patients had an [HDL-C/apoA-I] ratio close to that of non-diabetic controls. QIV patients had better than average HDL size and composition, and in those patients whose [HDL-C/apoA-I] ratio was above normal, a more favorable phenotype was observed regarding lifestyle, anthropometry, metabolic comorbidities, insulin sensitivity, MetS score/severity, glycaemic control, and target-organ damage pregalence in small or large vessels. In conclusion, [HDL-C/apoA-I] and the resulting indices of HDL composition and functionality predict macrovascular risk and β-cell function decline, as well as overall microangiopathic risk, suggesting that this ratio could serve

  16. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance.

    PubMed

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Leiva Sisnieguez, Carlos E; March, Carlos E; Balbín, Eduardo; Dulbecco, Carlos A; Aizpurúa, Marcelo; Marillet, Alberto G; Reaven, Gerald M

    2013-07-01

    This study compares the ability of an elevated triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio, using sex-specific cut-points, to identify insulin-resistant individuals within a population without known cardiac disease or diabetes with that obtained using the diagnostic criteria of the metabolic syndrome (MetS). Measurements were made of waist circumference (WC), systolic and diastolic blood pressure, fasting plasma glucose, fasting plasma insulin (FPI), plasma TG and plasma HDL-C concentrations in 1102 women and 464 men. These data were used to classify subjects as being insulin resistant (FPI concentration in the upper quartile) and having the MetS or an elevated TG/HDL-C ratio (>2.5 and >3.5 for women and men, respectively). The sensitivity and specificity with which the two indices identified insulin-resistant subjects were similar (43% and 81% for TG/HDL-C ratio and 45% and 82% for MetS), as the number of individuals was found with either an elevated TG/HDL-C ratio (n = 386) or the MetS (n = 384). Eighty-one per cent of the individuals were identified concordantly. Cardio-metabolic risk profiles in 'low-risk' individuals identified by a low TG/HDL-C ratio were comparable to those who did not have the MetS, and this was also the case when comparing 'high-risk' groups identified by having the MetS or an elevated TG/HDL-C ratio. These findings suggest that TG/HDL-C concentration ratio is as adequate as MetS diagnosis to identify insulin-resistant subjects.

  17. Consuming Two Eggs per Day, as Compared to an Oatmeal Breakfast, Decreases Plasma Ghrelin while Maintaining the LDL/HDL Ratio.

    PubMed

    Missimer, Amanda; DiMarco, Diana M; Andersen, Catherine J; Murillo, Ana Gabriela; Vergara-Jimenez, Marcela; Fernandez, Maria Luz

    2017-01-29

    Eggs contain high quality protein, vitamins, minerals and antioxidants, yet regular consumption is still met with uncertainty. Therefore, the purpose of this study was to compare the effects of consuming two eggs per day or a heart-healthy oatmeal breakfast on biomarkers of cardiovascular disease (CVD) risk and satiety measures in a young, healthy population. Fifty subjects participated in a randomized crossover clinical intervention; subjects were randomly allocated to consume either two eggs or one packet of oatmeal per day for breakfast for four weeks. After a three-week washout period, participants were allocated to the alternative breakfast. Fasting blood samples were collected at the end of each intervention period to assess plasma lipids and plasma ghrelin. Subjects completed visual analog scales (VAS) concurrent to dietary records to assess satiety and hunger. Along with an increase in cholesterol intake, there were significant increases in both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol following the egg consumption period ( p < 0.01). However, there was no difference in the LDL/HDL ratio, a recognized biomarker of CVD risk, nor in the plasma glucose, triglycerides or liver enzymes, between diet periods. Several self-reported satiety measures were increased following the consumption of eggs, which were associated with lower plasma ghrelin concentrations ( p < 0.05). These results demonstrate that compared to an oatmeal breakfast, two eggs per day do not adversely affect the biomarkers associated with CVD risk, but increase satiety throughout the day in a young healthy population.

  18. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1984-1994.

    PubMed

    Ferrara, A; Barrett-Connor, E; Shan, J

    1997-07-01

    The purpose of the present study was to study the effects of age, weight change, and covariates on lipid and lipoprotein levels cross-sectionally and prospectively in an elderly population. A community-based sample of 1041 men and 1303 women aged 50 to 93 years was studied cross-sectionally in 1984 to 1987, with follow-up of 372 men and 545 women 8 years later. In the cross-sectional study, levels of total cholesterol (TC) and LDL cholesterol (LDL-C) decreased and levels of HDL cholesterol (HDLC) increased with age in men (all P < .001) but not in women. In the prospective study, TC, LDL-C, and HDL-C levels all decreased in both men and women, in all age groups (50 to 64 years, 65 to 74 years, and > or = 75 years) and in all weight change groups (> 2.5-kg loss, change within 2.5 kg, and > 2.5-kg gain) and in all waist girth change groups, for an overall decrement of approximately 1% per year. In multiple linear regression models, change in weight was the most important independent and consistent predictor of changes in TC, LDL-C, and HDL-C. Similar results were obtained in analyses excluding subjects taking lipid-lowering drugs or estrogen and in analyses adjusted for changes in cigarette smoking, alcohol intake, physical activity, medication use, and incident myocardial infarction, cancer, or diabetes. Cross-sectional decrements in TC and LDL-C with age in men are not explained by survivor bias because they are also observed prospectively. Although weight change was the most important explanatory variable, TC, LDL-C, and HDL-C levels also decreased in those who lost or gained weight. Age was not an independent predictor of change. Other prospective studies are recommended to better define the causes and consequences of cholesterol and lipoprotein changes in old age.

  19. Use of the plasma triglyceride/high-density lipoprotein cholesterol ratio to identify cardiovascular disease in hypertensive subjects.

    PubMed

    Salazar, Martin R; Carbajal, Horacio A; Espeche, Walter G; Aizpurúa, Marcelo; Leiva Sisnieguez, Carlos E; Leiva Sisnieguez, Betty C; March, Carlos E; Stavile, Rodolfo N; Balbín, Eduardo; Reaven, Gerald M

    2014-10-01

    This analysis evaluated the hypothesis that the plasma triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) concentration ratio can help identify patients with essential hypertension who are insulin-resistant, with the cardiovascular disease (CVD) risk profile associated with that defect. Data from a community-based study developed between 2003 and 2012 were used to compare CVD risk factors and outcome. Plasma TG/HDL-C cut-points of 2.5 (women) and 3.5 (men) subdivided normotensive (n = 574) and hypertensive (n = 373) subjects into "high" and "low" risk groups. Metabolic syndrome criteria (MetS) were also used to identify "high" and "low" risk groups. The baseline cardio-metabolic profile was significantly more adverse in 2003 in "high" risk subgroups, irrespective of BP classification or definition of risk (TG/HDL-C ratio vs. MetS criteria). Crude incidence of combined CVD events increased across risk groups, ranging from 1.9 in normotensive-low TG/HDL-C subjects to 19.9 in hypertensive-high TG/HDL-C ratio individuals (P for trends <.001). Adjusted hazard ratios for CVD events also increased with both hypertension and TG/HDL-C. Comparable findings were seen when CVD outcome was predicted by MetS criteria. The TG/HDL-C concentration ratio and the MetS criteria identify to a comparable degree hypertensive subjects who are at greatest cardio-metabolic risk and develop significantly more CVD.

  20. Self-rated health showed a consistent association with serum HDL-cholesterol in the cross-sectional Oslo Health Study

    PubMed Central

    Tomten, Sissel E.; Høstmark, Arne T.

    2007-01-01

    Objective: To examine the association between serum HDL-cholesterol concentration (HDL-C) and self rated health (SRH) in several age groups of men and women. Study design and setting: The study had a cross-sectional design and included 18,770 men and women of the Oslo Health Study aged 30; 40 and 45; 69-60; 75-76 years. Results: In both sexes and all age groups, SRH (3 categories: poor, good, very good) was positively correlated with HDL-C. Logistic regression analysis on dichotomized values of SRH (i.e. poor vs. good health) in each age group of men and women showed that increasing HDL-C values were associated with increasing odds for reporting good health; the odds ratio (OR) was highest in young men, and was generally lower in women than in men. Odds ratios in the 4 age groups of men were 4.94 (2.63-9.29), 2.25 (1.63-3.09), 2.12 (1.58-2.86), 1.87 (1.37-2.54); and in women: 3.58 (2.46-5.21), 2.81 (2.23-3.53), 2.28 (1.84-2.82), 1.61 (1.31-1.99). In the whole material, 1 mmol/L increase in HDL-C increased the odds for reporting good health by 2.27 (2.06-2.50; p<0.001), when adjusting for sex, age group, time since food intake and use of cholesterol lowering drugs. Chronic diseases, pain, psychological distress, smoking, alcohol, length of education, and dietary items did not have any major influence on the pattern of the HDL-C vs. SRH association. Conclusion: There was a consistent positive association between HDL-C and SRH, in both men and women in four different age groups, with the strongest association in young people. PMID:18071582

  1. Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C.

    PubMed

    Chapman, M John; Assmann, Gerd; Fruchart, Jean-Charles; Shepherd, James; Sirtori, Cesare

    2004-08-01

    Reduction of low-density lipoprotein cholesterol (LDL-C) is presently the primary focus of lipid-lowering therapy for prevention and treatment of coronary heart disease (CHD). However, the high level of residual risk among statin-treated patients in recent coronary prevention studies indicates the need for modification of other major components of the atherogenic lipid profile. There is overwhelming evidence that a low plasma level of high-density lipoprotein cholesterol (HDL-C) is an important independent risk factor for CHD. Moreover, a substantial proportion of patients with or at risk of developing premature CHD typically exhibit distinct lipid abnormalities, including low HDL-C levels. Thus, therapeutic intervention aimed at raising HDL-C, within the context of reducing global cardiovascular risk, would benefit such patients, a viewpoint increasingly adopted by international treatment guidelines. Therapeutic options for patients with low HDL-C include treatment with statins, fibrates and nicotinic acid, either as monotherapy or in combination. Of these options, nicotinic acid is not only the most potent agent for raising HDL-C but is also effective in reducing key atherogenic lipid components including triglyceride-rich lipoproteins (mainly very low-density lipoproteins [VLDL] and VLDL remnants), LDL-C, and lipoprotein(a). The principal features of the atherogenic lipid profile in type 2 diabetes and the metabolic syndrome make them logical targets for nicotinic acid therapy, either alone or in combination with a statin. The lack of comprehensive European data on the prevalence of low HDL-C levels highlights a critical need for education on the importance of raising HDL-C in CHD prevention and treatment. The development of a reliable and accurate assay for HDL-C, as well as clarification of criteria for low and optimal levels of HDL-C in both men and women, constitute critical factors in the reliable identification and treatment of patients at elevated risk of

  2. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The Very Large Database of Lipids-4 (VLDL-4) study.

    PubMed

    Quispe, Renato; Manalac, Raoul J; Faridi, Kamil F; Blaha, Michael J; Toth, Peter P; Kulkarni, Krishnaji R; Nasir, Khurram; Virani, Salim S; Banach, Maciej; Blumenthal, Roger S; Martin, Seth S; Jones, Steven R

    2015-09-01

    High levels of the triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio are associated with obesity, metabolic syndrome, and insulin resistance. We evaluated variability in the remaining lipid profile, especially remnant lipoprotein particle cholesterol (RLP-C) and its components (very low-density lipoprotein cholesterol subfraction 3 and intermediate-density lipoprotein cholesterol), with variability in the TG/HDL-C ratio in a very large study cohort representative of the general U.S. We examined data from 1,350,908 US individuals who were clinically referred for lipoprotein cholesterol ultracentrifugation (Atherotech, Birmingham, AL) from 2009 to 2011. Demographic information other than age and sex was not available. Changes to the remaining lipid profile across percentiles of the TG/HDL-C ratio were quantified, as well as by three TG/HDL-C cut-off points previously proposed in the literature: 2.5 (male) and 2 (female), 3.75 (male) and 3 (female), and 3.5 (male and female). The mean age of our study population was 58.7 years, and 48% were men. The median TG/HDL-C ratio was 2.2. Across increasing TG/HDL-C ratios, we found steadily increasing levels of RLP-C, non-HDL-C and LDL density. Among the lipid parameters studied, RLP-C and LDL density had the highest relative increase when comparing individuals with elevated TG/HDL-C levels to those with lower TG/HDL-C levels using established cut-off points. Approximately 47% of TG/HDL-C ratio variance was attributable to RLP-C. In the present analysis, a higher TG/HDL-C ratio was associated with an increasingly atherogenic lipid phenotype, characterized by higher RLP-C along with higher non-HDL-C and LDL density. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Triglyceride-to-HDL cholesterol ratio. Predictive value for CHD severity and new-onset heart failure.

    PubMed

    Yunke, Z; Guoping, L; Zhenyue, C

    2014-02-01

    This study aimed to explore the association between the triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio and the severity of coronary heart disease (CHD). It also evaluated the clinical role of the TG/HDL-C ratio in predicting in-hospital CHD events and the long-term prognosis of CHD patients. According to the results of coronary angiography examinations, 317 patients were enrolled in the study and classified into a CHD group (n=233) and a control group (n=84). The TG/HDL-C ratio was calculated at baseline. The CHD group was then further classified into cases of single-branch stenosis (n=79), double-branch stenosis (n=73), and multi-branch stenosis (n=81). The Gensini score was calculated for each group to analyze the relationship between the TG/HDL-C ratio and the severity of CHD. The TG/HDL-C ratio in the CHD group was significantly higher than in the normal group (P < 0.001). The TG/HDL-C ratio was positively correlated with the Gensini score. The ratio was significantly higher in patients with new-onset heart failure than in those without heart failure events (P < 0.05). An average 3-year follow-up showed that the serum TG/HDL-C ratios of patients with adverse events were significantly higher than other patients (P <  0.01). The TG/HDL-C ratio is predictive of the severity of CHD. It could also help predict in-hospital new-onset heart failure incidents of CHD patients.

  4. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  5. Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease

    PubMed Central

    Yu, Haiyi; Li, Lei; He, Liyun; Gao, Wei; Liu, Xiaodan; Guo, Yanhong; Byun, Jaeman; Zhang, Jifeng; Chen, Y. Eugene

    2018-01-01

    High density lipoprotein (HDL) cholesterol levels and cholesterol efflux capacity (CEC) are inversely correlated with coronary artery disease (CAD) risk. Myeloperoxidase (MPO) derived oxidants and HDL proteome changes are implicated in HDL dysfunction in subjects with CAD in the United States; however, the effect of MPO on HDL function and HDL proteome in ethnic Chinese population is unknown. We recruited four matched ethnic Chinese groups (20 patients each): subjects with 1) low HDL levels (HDL levels in men <40mg/dL and women <50mg/dL) and non-CAD (identified by coronary angiography or cardiac CT angiography); 2) low HDL and CAD; 3) high HDL (men >50mg/dL; women >60mg/dL) with no CAD; and 4) high HDL with CAD. Serum cytokines, serum MPO levels, serum CEC, MPO-oxidized HDL tyrosine moieties, and HDL proteome were assessed by mass spectrometry individually in the four groups. The cytokines, MPO levels, and HDL proteome profiles were not significantly different between the four groups. As expected, CEC was depressed in the entire CAD group but more specifically in the CAD low-HDL group. HDL of CAD subjects had significantly higher 3-nitrotyrosine than non-CAD subjects, but the MPO-specific 3-chlorotyrosine was unchanged; CEC in the CAD low-HDL group did not correlate with either HDL 3-chlorotyrosine or 3-nitrotyrosine levels. Neither 3-chlorotyrosine, which is MPO-specific, nor 3-nitrotyrosine generated from MPO or other reactive nitrogen species was associated with CEC. MPO mediated oxidative stress and HDL proteome composition changes are not the primary cause HDL dysfunction in Chinese subjects with CAD. These studies highlight ethnic differences in HDL dysfunction between United States and Chinese cohorts raising possibility of unique pathways of HDL dysfunction in this cohort. PMID:29505607

  6. Lipoprotein-cholesterol levels in infertile women with luteal phase deficiency.

    PubMed

    Hansen, K K; Knopp, R H; Soules, M R

    1991-05-01

    To determine if reductions in plasma progesterone (P) secretion seen in luteal phase deficiency (LPD) might be because of reduced availability of circulating low-density lipoprotein (LDL) or high-density lipoprotein (HDL), known substrates for corpus luteum P synthesis. We measured plasma lipoproteins in the luteal phase of the menstrual cycle in 39 infertile women. These women were divided into two groups on the basis of endometrial biopsies; the LPD group had biopsies that were greater than or equal to 3 days out-of-phase. All participants were recruited from the Reproductive Endocrinology and Infertility Clinic at the University of Washington, an institutional tertiary care center. Eighteen women had in-phase and 21 had out-of-phase LPD biopsies. Lipoprotein levels were obtained in a fasted state on the day of the luteal phase on which the biopsy was performed. No difference in covariates that affect lipoprotein levels such as obesity, age, and alcohol use were observed between the two groups. No significant differences between groups were found for triglycerides, total cholesterol, very low density lipoprotein, LDL, HDL, HDL2, and HDL3 concentrations. However, LPD was associated with a reduction in the extent to which: age and obesity are associated with higher triglycerides; obesity is associated with a lower HDL2; and alcohol is associated with a higher HDL3-cholesterol. Lipoproteins on average are not different in LPD, suggesting reasons other than a deficient plasma lipoprotein cholesterol source as the explanation for decreased P secretion. A lesser interaction between LDL or HDL and obesity, age, and alcohol in LPD could signify an influence of the altered hormonal milieu of LPD on the way lipoproteins interact with covariates and could lead to differences in lipoproteins between normal and LPD subjects at the extremes of the lipoprotein distribution.

  7. HDL and Cognition in Neurodegenerative Disorders

    PubMed Central

    Hottman, David A.; Chernick, Dustin; Cheng, Shaowu; Wang, Zhe; Li, Ling

    2014-01-01

    High-density lipoproteins (HDL) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function. PMID:25131449

  8. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters

    PubMed Central

    Lin, Yuguang; Vermeer, Mario A.; Trautwein, Elke A.

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols. PMID:19228775

  9. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters.

    PubMed

    Lin, Yuguang; Vermeer, Mario A; Trautwein, Elke A

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.

  10. Increased serum triglycerides and reduced HDL cholesterol in male rats after intake of ammonium chloride for 3 weeks

    PubMed Central

    2013-01-01

    Background Previous data suggested that intake of sodas and other acid beverages might be associated with increased levels of serum triglycerides, lowered HDL cholesterol, and increased formation of mono unsaturated fatty acids, which are the preferred ones for triglyceride synthesis. The present work is an extension of these studies. Methods Thirty male rats were divided into 3 groups. All groups were given the same food, but various beverages: water (W), ammonium chloride, 200 mmol/L (AC), or sodium bicarbonate, 200 mmol/L (SB). Serum triglycerides, HDL cholesterol, and the fatty acid distribution in total serum lipids were determined. Delta9-desaturase in serum lipids was estimated by the ratio of palmitoleic to palmitic acid, and by the oleic/stearic acid ratio. Correlation and ANOVA were used to study associations and group differences. Results After 3 weeks, the AC group had higher triglyceride concentration and higher Delta9 desaturase indexes, but lower serum HDL and body weight as compared with the SB and W groups. In each of the groups, the oleic acid/stearic acid ratio correlated positively with serum triglycerides; in the pooled group the correlation coefficient was r = 0.963, p<0.01. Conclusions Rats ingesting ammonium chloride as compared with sodium bicarbonate responded with increased desaturase indexes, increased serum triglycerides, and lowered HDL cholesterol concentration, thereby possibly contributing to explain the increased triglyceride concentration previously observed in subjects with a frequent intake of acid beverages, such as sodas containing carbonic acid, citric acid, and phosphoric acid. PMID:23800210

  11. LDL: The "Bad" Cholesterol

    MedlinePlus

    ... and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because ... cholesterol in your arteries. HDL stands for high-density lipoproteins. It is called the "good" cholesterol because ...

  12. The Role of Plasma Triglyceride/High-Density Lipoprotein Cholesterol Ratio to Predict New Cardiovascular Events in Essential Hypertensive Patients.

    PubMed

    Turak, Osman; Afşar, Barış; Ozcan, Fırat; Öksüz, Fatih; Mendi, Mehmet Ali; Yayla, Çagrı; Covic, Adrian; Bertelsen, Nathan; Kanbay, Mehmet

    2016-08-01

    Triglyceride (TG) to high-density lipoprotein cholesterol (HDL-C) ratio (TG/HDL-C) has been suggested as a simple method to identify unfavorable cardiovascular outcomes in the general population. The effect of the TG/HDL-C ratio on essential hypertensive patients is unclear. About 900 consecutive essential hypertensive patients (mean age 52.9±12.6 years, 54.2% male) who visited our outpatient hypertension clinic were analyzed. Participants were divided into quartiles based on baseline TG/HDL-C ratio and medical records were obtained periodically for the occurrence of fatal events and composite major adverse cardiovascular events (MACEs) including transient ischemic attack, stroke, aortic dissection, acute coronary syndrome, and death. Participants were followed for a median of 40 months (interquartile range, 35-44 months). Overall, a higher quartile of TG/HDL-C ratio at baseline was significantly linked with higher incidence of fatal and nonfatal cardiovascular events. Using multivariate Cox regression analysis, plasma TG/HDL-C ratio was independently associated with increased risk of fatal events (hazard ratio [HR], 1.25; 95% confidence interval [CI], 1.13-1.37; P≤.001] and MACEs (HR, 1.13; 95% CI, 1.06-1.21; P≤.001). Increased plasma TG/HDL-C ratio was associated with more fatal events and MACEs in essential hypertensive patients. © 2015 Wiley Periodicals, Inc.

  13. Association between variations in the TLR4 gene and incident type 2 diabetes is modified by the ratio of total cholesterol to HDL-cholesterol

    PubMed Central

    Kolz, Melanie; Baumert, Jens; Müller, Martina; Khuseyinova, Natalie; Klopp, Norman; Thorand, Barbara; Meisinger, Christine; Herder, Christian; Koenig, Wolfgang; Illig, Thomas

    2008-01-01

    Background Toll-like receptor 4 (TLR4), the signaling receptor for lipopolysaccharides, is an important member of the innate immunity system. Since several studies have suggested that type 2 diabetes might be associated with changes in the innate immune response, we sought to investigate the association between genetic variants in the TLR4 gene and incident type 2 diabetes. Methods A case-cohort study was conducted in initially healthy, middle-aged subjects from the MONICA/KORA Augsburg studies including 498 individuals with incident type 2 diabetes and 1,569 non-cases. Seven SNPs were systematically selected in the TLR4 gene and haplotypes were reconstructed. Results The effect of TLR4 SNPs on incident type 2 diabetes was modified by the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C). In men, four out of seven TLR4 variants showed significant interaction with TC/HDL-C after correction for multiple testing (p < 0.01). The influence of the minor alleles of those variants on the incidence of type 2 diabetes was observed particularly for male patients with high values of TC/HDL-C. Consistent with these findings, haplotype-based analyses also revealed that the effect of two haplotypes on incident type 2 diabetes was modified by TC/HDL-C in men (p < 10-3). However, none of the investigated variants or haplotypes was associated with type 2 diabetes in main effect models without assessment of effect modifications. Conclusion We conclude that minor alleles of several TLR4 variants, although not directly associated with type 2 diabetes might increase the risk for type 2 diabetes in subjects with high TC/HDL-C. Additionally, our results confirm previous studies reporting sex-related dissimilarities in the development of type 2 diabetes. PMID:18298826

  14. HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2.

    PubMed

    Cui, Mingxuan; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2017-08-22

    To investigate whether HDL-C level in pregnant Chinese Han women of late second trimester correlated with loci in high-density lipoprotein-cholesterol (HDL-C)-related genes found in genome-wide association studies (GWAS). Seven single-nucleotide polymorphisms (rs3764261 in CETP , rs1532085 in LIPC , rs7241918 in LIPG , rs1883025 in ABCA1 , rs4225 in APOC3 , rs1059611 in LPL , and rs16851339 in GALNT2 ) were genotyped using the Sequenom MassArray system for 1,884 pregnant women. The following polymorphisms were statistically associated with HDL-C level after adjusting for age, gestational week, pre-pregnancy BMI and state of GDM or HOMAIR: (i) rs3764261 (b = -0.055 mmol/L, 95% CI -0.101 to -0.008, p = 0.021), (ii) rs1883025 (b = -0.054 mmol/L, 95% CI -0.097 to -0.012, p = 0.013), (iii) rs4225 (b = -0.071 mmol/L, 95% CI -0.116 to -0.027, p = 1.79E-3) and (iv) rs16851339 (b = -0.064 mmol/L, 95% CI -0.120 to -0.008, p = 0.025). The more risk alleles the pregnant women have, the lower the plasma HDL-C levels of the subjects are. Several risk alleles found to be related to HDL-C in GWAS are also associated with HDL-C levels in pregnant Chinese Han women and these risk loci contribute additively to low HDL-C levels.

  15. HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2

    PubMed Central

    Cui, Mingxuan; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2017-01-01

    Objective To investigate whether HDL-C level in pregnant Chinese Han women of late second trimester correlated with loci in high-density lipoprotein-cholesterol (HDL-C)-related genes found in genome-wide association studies (GWAS). Methods Seven single-nucleotide polymorphisms (rs3764261 in CETP, rs1532085 in LIPC, rs7241918 in LIPG, rs1883025 in ABCA1, rs4225 in APOC3, rs1059611 in LPL, and rs16851339 in GALNT2) were genotyped using the Sequenom MassArray system for 1,884 pregnant women. Results The following polymorphisms were statistically associated with HDL-C level after adjusting for age, gestational week, pre-pregnancy BMI and state of GDM or HOMAIR: (i) rs3764261 (b = -0.055 mmol/L, 95% CI -0.101 to -0.008, p = 0.021), (ii) rs1883025 (b = -0.054 mmol/L, 95% CI -0.097 to -0.012, p = 0.013), (iii) rs4225 (b = -0.071 mmol/L, 95% CI -0.116 to -0.027, p = 1.79E-3) and (iv) rs16851339 (b = -0.064 mmol/L, 95% CI -0.120 to -0.008, p = 0.025). The more risk alleles the pregnant women have, the lower the plasma HDL-C levels of the subjects are. Conclusions Several risk alleles found to be related to HDL-C in GWAS are also associated with HDL-C levels in pregnant Chinese Han women and these risk loci contribute additively to low HDL-C levels. PMID:28915626

  16. Use of plasma triglyceride/high-density lipoprotein cholesterol ratio to identify increased cardio-metabolic risk in young, healthy South Asians.

    PubMed

    Flowers, Elena; Molina, César; Mathur, Ashish; Reaven, Gerald M

    2015-01-01

    Prevalence of insulin resistance and associated dyslipidaemia [high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) concentrations] are increased in South Asian individuals; likely contributing to their increased risk of type-2 diabetes and cardiovascular disease. The plasma concentration ratio of TG/HDL-C has been proposed as a simple way to identify apparently healthy individuals at high cardio-metabolic risk. This study was carried out to compare the cardio-metabolic risk profiles of high-risk South Asian individuals identified by an elevated TG/HDL-C ratio versus those with a diagnosis of the metabolic syndrome. Body mass index, waist circumference, blood pressure, and fasting plasma glucose, insulin, TG, and HDL-C concentrations were determined in apparently healthy men (n=498) and women (n=526). The cardio-metabolic risk profile of "high risk" individuals identified by TG/HDL-C ratios in men (≥ 3.5) and women (≥2.5) was compared to those identified by a diagnosis of the metabolic syndrome. More concentrations of all cardio-metabolic risk factors were significantly higher in "high risk" groups, identified by either the TG/HDL-C ratio or a diagnosis of the metabolic syndrome. TG, HDL-C, and insulin concentrations were not significantly different in "high risk" groups identified by either criterion, whereas plasma glucose and blood pressure were higher in those with the metabolic syndrome. Apparently healthy South Asian individuals at high cardio-metabolic risk can be identified using either the TG/HDL-C ratio or the metabolic syndrome criteria. The TG/HDL-C ratio may be used as a simple marker to identify such individuals.

  17. Effect of insulin analog initiation therapy on LDL/HDL subfraction profile and HDL associated enzymes in type 2 diabetic patients.

    PubMed

    Aslan, Ibrahim; Kucuksayan, Ertan; Aslan, Mutay

    2013-04-24

    Insulin treatment can lead to good glycemic control and result in improvement of lipid parameters in type 2 diabetic patients. This study was designed to evaluate the effect of insulin analog initiation therapy on low-density lipoprotein (LDL)/ high-density lipoprotein (HDL) sub-fractions and HDL associated enzymes in type 2 diabetic patients during early phase. Twenty four type 2 diabetic patients with glycosylated hemoglobin (HbA1c) levels above 10% despite ongoing combination therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs (0.4 U/kg/day) plus metformin. Glycemic profiles were determined over 72 hours by continuous glucose monitoring system (CGMS) and blood samples were obtained from all patients at 24 and 72 hours. Plasma levels of cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), apolipoprotein B (apoB) and apolipoprotein A-1 (apoA-I) were determined by enzyme-linked immunosorbent assay (ELISA). Measurement of CETP and LCAT activity was performed via fluorometric analysis. Paraoxonase (PON1) enzyme activity was assessed from the rate of enzymatic hydrolysis of phenyl acetate to phenol formation. LDL and HDL subfraction analysis was done by continuous disc polyacrylamide gel electrophoresis. Mean blood glucose, total cholesterol (TC), triglyceride (TG) and very low-density lipoprotein cholesterol (VLDL-C) levels were significantly decreased while HDL-C levels were significantly increased after insulin treatment. Although LDL-C levels were not significantly different before and after insulin initiation therapy a significant increase in LDL-1 subgroup and a significant reduction in atherogenic LDL-3 and LDL-4 subgroups were observed. Insulin analog initiation therapy caused a significant increase in HDL-large, HDL- intermediate and a significant reduction in HDL-small subfractions

  18. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  19. Sphingomyelin phosphodiesterase-1 (SMPD1) coding variants do not contribute to low levels of high-density lipoprotein cholesterol

    PubMed Central

    Dastani, Zari; Ruel, Isabelle L; Engert, James C; Genest, Jacques; Marcil, Michel

    2007-01-01

    Background Niemann-Pick disease type A and B is caused by a deficiency of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. In Niemann-Pick patients, SMPD1 gene defects are reported to be associated with a severe reduction in plasma high-density lipoprotein (HDL) cholesterol. Methods Two common coding polymorphisms in the SMPD1 gene, the G1522A (G508R) and a hexanucleotide repeat sequence within the signal peptide region, were investigated in 118 unrelated subjects of French Canadian descent with low plasma levels of HDL-cholesterol (< 5th percentile for age and gender-matched subjects). Control subjects (n = 230) had an HDL-cholesterol level > the 25th percentile. Results For G1522A the frequency of the G and A alleles were 75.2% and 24.8% respectively in controls, compared to 78.6% and 21.4% in subjects with low HDL-cholesterol (p = 0.317). The frequency of 6 and 7 hexanucleotide repeats was 46.2% and 46.6% respectively in controls, compared to 45.6% and 49.1% in subjects with low HDL-cholesterol (p = 0.619). Ten different haplotypes were observed in cases and controls. Overall haplotype frequencies in cases and controls were not significantly different. Conclusion These results suggest that the two common coding variants at the SMPD1 gene locus are not associated with low HDL-cholesterol levels in the French Canadian population. PMID:18088425

  20. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men

    PubMed Central

    Lamarche, Benoît; Uffelman, Kristine D.; Carpentier, André; Cohn, Jeffrey S.; Steiner, George; Barrett, P. Hugh; Lewis, Gary F.

    1999-01-01

    Triglyceride (TG) enrichment of HDL resulting from cholesteryl ester transfer protein–mediated exchange with TG-rich lipoproteins may enhance the lipolytic transformation and subsequent metabolic clearance of HDL particles in hypertriglyceridemic states. The present study investigates the effect of TG enrichment of HDL on the clearance of HDL-associated apo A-I in humans. HDL was isolated from plasma of six normolipidemic men (mean age: 29.7 ± 2.7 years) in the fasting state and after a five-hour intravenous infusion with a synthetic TG emulsion, Intralipid. Intralipid infusion resulted in a 2.1-fold increase in the TG content of HDL. Each tracer was then whole-labeled with 125I or 131I and injected intravenously into the subject. Apo A-I in TG-enriched HDL was cleared 26% more rapidly than apo A-I in fasting HDL. A strong correlation between the Intralipid-induced increase in the TG content of HDL and the increase in HDL apo A-I fractional catabolic rate reinforced the importance of TG enrichment of HDL in enhancing its metabolic clearance. HDL was separated further into lipoproteins containing apo A-II (LpAI:AII) and those without apo A-II (LpAI). Results revealed that the enhanced clearance of apo A-I from TG-enriched HDL could be largely attributed to differences in the clearance of LpAI but not LpAI:AII. This is, to our knowledge, the first direct demonstration in humans that TG enrichment of HDL enhances the clearance of HDL apo A-I from the circulation. This phenomenon could provide an important mechanism explaining how HDL apo A-I and HDL cholesterol are lowered in hypertriglyceridemic states. PMID:10207171

  1. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Plasma high density lipoprotein (HDL) cholesterol (HDL-C) concentration is highly heritable but is also modifiable by environmental factors including physical activity. HDL-C response to exercise varies among individuals, and this variability may be associated with genetic polymorphism...

  2. microRNAs and HDL life cycle.

    PubMed

    Canfrán-Duque, Alberto; Ramírez, Cristina M; Goedeke, Leigh; Lin, Chin-Sheng; Fernández-Hernando, Carlos

    2014-08-01

    miRNAs have emerged as important regulators of lipoprotein metabolism. Work over the past few years has demonstrated that miRNAs control the expression of most of the genes associated with high-density lipoprotein (HDL) metabolism, including the ATP transporters, ABCA1 and ABCG1, and the scavenger receptor SRB1. These findings strongly suggest that miRNAs regulate HDL biogenesis, cellular cholesterol efflux, and HDL cholesterol (HDL-C) uptake in the liver, thereby controlling all of the steps of reverse cholesterol transport. Recent work in animal models has demonstrated that manipulating miRNA levels including miR-33 can increase circulating HDL-C. Importantly, antagonizing miR-33 in vivo enhances the regression and reduces the progression of atherosclerosis. These findings support the idea of developing miRNA inhibitors for the treatment of dyslipidaemia and related cardiovascular disorders such as atherosclerosis. This review article focuses on how HDL metabolism is regulated by miRNAs and how antagonizing miRNA expression could be a potential therapy for treating cardiometabolic diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  3. Adiponectin and the mediation of HDL-cholesterol change with improved lifestyle: the Look AHEAD Study.

    PubMed

    Belalcazar, L Maria; Lang, Wei; Haffner, Steven M; Hoogeveen, Ron C; Pi-Sunyer, F Xavier; Schwenke, Dawn C; Balasubramanyam, Ashok; Tracy, Russell P; Kriska, Andrea P; Ballantyne, Christie M

    2012-12-01

    Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. We investigated whether the changes in adiponectin with an intensive lifestyle intervention (ILI) for weight loss could potentially mediate the increase in low HDL-cholesterol (HDL-C) with ILI. Adiponectin and its fractions were determined using an ELISA with selective protease treatment in 1,397 participants from Look AHEAD, a trial examining whether ILI will reduce cardiovascular events in overweight/obese subjects with T2DM when compared with a control arm, diabetes support and education (DSE). Multivariable regression and mediational analyses were performed for adiponectin and its high-molecular-weight (HMW) and non-HMW fractions. ILI increased baseline HDL-C by 9.7% and adiponectin by 11.9%; changes with DSE were 1.3% and 0.2%, respectively (P < 0.0001). In a model including changes in weight, fitness, triglycerides, and glucose control and that adjusted for demographics and medical history, adiponectin changes remained significantly associated with HDL-C change. Data supported the contribution of changes in both HMW- and non-HMW-adiponectin to the improvement in HDL-C with ILI.

  4. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial.

    PubMed

    Bundy, Rafe; Walker, Ann F; Middleton, Richard W; Wallis, Carol; Simpson, Hugh C R

    2008-09-01

    Cardiovascular diseases are the chief causes of death in the UK, and are associated with high circulating levels of total cholesterol in the plasma. Artichoke leaf extracts (ALEs) have been reported to reduce plasma lipids levels, including total cholesterol, although high quality data is lacking. The objective of this trial was to assess the effect of ALE on plasma lipid levels and general well-being in otherwise healthy adults with mild to moderate hypercholesterolemia. 131 adults were screened for total plasma cholesterol in the range 6.0-8.0 mmol/l, with 75 suitable volunteers randomised onto the trial. Volunteers consumed 1280 mg of a standardised ALE, or matched placebo, daily for 12 weeks. Plasma total cholesterol decreased in the treatment group by an average of 4.2% (from 7.16 (SD 0.62) mmol/l to 6.86 (SD 0.68) mmol/l) and increased in the control group by an average of 1.9% (6.90 (SD 0.49) mmol/l to 7.03 (0.61) mmol/l), the difference between groups being statistically significant (p=0.025). No significant differences between groups were observed for LDL cholesterol, HDL cholesterol or triglyceride levels. General well-being improved significantly in both the treatment (11%) and control groups (9%) with no significant differences between groups. In conclusion, ALE consumption resulted in a modest but favourable statistically significant difference in total cholesterol after 12 weeks. In comparison with a previous trial, it is suggested that the apparent positive health status of the study population may have contributed to the modesty of the observed response.

  5. Intermittent fasting during Ramadan causes a transient increase in total, LDL, and HDL cholesterols and hs-CRP in ethnic obese adolescents.

    PubMed

    Radhakishun, Nalini; Blokhuis, Charlotte; van Vliet, Mariska; von Rosenstiel, Ines; Weijer, Olivier; Heymans, Martijn; Beijnen, Jos; Brandjes, Dees; Diamant, Michaela

    2014-08-01

    The radical change of lifestyle during Ramadan fast has shown to affect cardiometabolic risk variables in adults. In youth, however, no studies are available. We aimed to evaluate the effect of Ramadan fast on Body Mass Index (BMI) and the cardiometabolic profile of obese adolescents. A prospective cohort study was conducted. We measured weight, height, body composition, blood pressure, heart rate, glucose, insulin, total cholesterol, low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, triglycerides, and high sensitivity C-reactive protein (hs-CRP) levels before, during the last week of and at 6 weeks after Ramadan. Twenty-five obese adolescents were included. BMI and glucose metabolism did not change after Ramadan or at 6 week after cessation of Ramadan. At the end of Ramadan, a significant decrease in body fat percentage was observed, while significant increases in heart rate, total cholesterol, LDL cholesterol, HDL cholesterol, and hs-CRP were found (all P < 0.05). Six weeks after Ramadan, all parameters returned to baseline levels. In this sample of 25 ethnic obese adolescents transient cardiometabolic changes were observed during Ramadan fasting. Since most of these changes were reversible within 6 weeks, there seems no harm or benefit for obese adolescents to participate in Ramadan.

  6. The type 2 diabetes and insulin-resistance locus near IRS1 is a determinant of HDL cholesterol and triglycerides levels among diabetic subjects.

    PubMed

    Sharma, Rajani; Prudente, Sabrina; Andreozzi, Francesco; Powers, Christine; Mannino, Gaia; Bacci, Simonetta; Gervino, Ernest V; Hauser, Thomas H; Succurro, Elena; Mercuri, Luana; Goheen, Elizabeth H; Shah, Hetal; Trischitta, Vincenzo; Sesti, Giorgio; Doria, Alessandro

    2011-05-01

    SNP rs2943641 near the insulin receptor substrate 1 (IRS1) gene has been found to be associated with type 2 diabetes (T2D) and insulin-resistance in genome-wide association studies. We investigated whether this SNP is associated with cardiovascular risk factors and coronary artery disease (CAD) among diabetic individuals. SNP rs2943641 was typed in 2133 White T2D subjects and tested for association with BMI, serum HDL cholesterol and triglycerides, hypertension history, and CAD risk. HDL cholesterol decreased by 1mg/dl (p = 0.004) and serum triglycerides increased by 6 mg/dl (p = 0.016) for each copy of the insulin-resistance allele. Despite these effects, no association was found with increased CAD risk (OR = 1.00, 95% CI 0.88-1.13). The insulin-resistance and T2D locus near the IRS1 gene is a determinant of lower HDL cholesterol among T2D subjects. However, this effect is small and does not translate into a detectable increase in CAD risk in this population. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. ApoA-I/A-II-HDL positively associates with apoB-lipoproteins as a potential atherogenic indicator.

    PubMed

    Kido, Toshimi; Kondo, Kazuo; Kurata, Hideaki; Fujiwara, Yoko; Urata, Takeyoshi; Itakura, Hiroshige; Yokoyama, Shinji

    2017-11-29

    We recently reported distinct nature of high-density lipoproteins (HDL) subgroup particles with apolipoprotein (apo) A-I but not apoA-II (LpAI) and HDL having both (LpAI:AII) based on the data from 314 Japanese. While plasma HDL level almost exclusively depends on concentration of LpAI having 3 to 4 apoA-I molecules, LpAI:AII appeared with almost constant concentration regardless of plasma HDL levels having stable structure with two apoA-I and one disulfide-dimeric apoA-II molecules (Sci. Rep. 6; 31,532, 2016). The aim of this study is further characterization of LpAI:AII with respect to its role in atherogenesis. Association of LpAI, LpAI:AII and other HDL parameters with apoB-lipoprotein parameters was analyzed among the cohort data above. ApoA-I in LpAI negatively correlated with the apoB-lipoprotein parameters such as apoB, triglyceride, nonHDL-cholesterol, and nonHDL-cholesterol + triglyceride, which are apparently reflected in the relations of the total HDL parameters to apoB-lipoproteins. In contrast, apoA-I in LpAI:AII and apoA-II positively correlated to the apoB-lipoprotein parameters even within their small range of variation. These relationships are independent of sex, but may slightly be influenced by the activity-related CETP mutations. The study suggested that LpAI:AII is an atherogenic indicator rather than antiatherogenic. These sub-fractions of HDL are to be evaluated separately for estimating atherogenic risk of the patients.

  8. Genetic regulation of adipose tissue transcript expression is involved in modulating serum triglyceride and HDL-cholesterol.

    PubMed

    Sajuthi, Satria P; Sharma, Neeraj K; Comeau, Mary E; Chou, Jeff W; Bowden, Donald W; Freedman, Barry I; Langefeld, Carl D; Parks, John S; Das, Swapan K

    2017-10-20

    Dyslipidemia is a major contributor to the increased cardiovascular disease and mortality associated with obesity and type 2 diabetes. We hypothesized that variation in expression of adipose tissue transcripts is associated with serum lipid concentrations in African Americans (AAs), and common genetic variants regulate expression levels of these transcripts. Fasting serum lipid levels, genome-wide transcript expression profiles of subcutaneous adipose tissue, and genome-wide SNP genotypes were analyzed in a cohort of non-diabetic AAs (N=250). Serum triglyceride (TRIG) and high density lipoprotein-cholesterol (HDL-C) levels were associated (FDR<0.01) with expression level of 1021 and 1875 adipose tissue transcripts, respectively, but none associated with total cholesterol or LDL-C levels. Serum HDL-C-associated transcripts were enriched for salient biological pathways, including branched-chain amino acid degradation, and oxidative phosphorylation. Genes in immuno-inflammatory pathways were activated among individuals with higher serum TRIG levels. We identified significant cis-regulatory SNPs (cis-eSNPs) for 449 serum lipid-associated transcripts in adipose tissue. The cis-eSNPs of 12 genes were nominally associated (p<0.001) with serum lipid level in genome wide association studies in Global Lipids Genetics Consortium (GLGC) cohorts. Allelic effect direction of cis-eSNPs on expression of MARCH2, BEST1 and TMEM258 matched with effect direction of these SNP alleles on serum TRIG or HDL-C levels in GLGC cohorts. These data suggest that expressions of serum lipid-associated transcripts in adipose tissue are dependent on common cis-eSNPs in African Americans. Thus, genetically-mediated transcriptional regulation in adipose tissue may play a role in reducing HDL-C and increasing TRIG in serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [High-density lipoproteins (HDL) size and composition are modified in the rat by a diet supplemented with "Hass" avocado (Persea americana Miller)].

    PubMed

    Pérez Méndez, Oscar; García Hernández, Lizbeth

    2007-01-01

    To determine the effects of dietary avocado on HDL structure and their associated enzyme, paraoxonase 1 (PON1). Fifteen Wistar male rats received avocado as part of their daily meal (5 g by 17.5 g chow diet), keeping the caloric intake similar to the control group (n=15) that received their usual chow diet. After 5 weeks, HDL were isolated by sequential ultracentrifugation and their size and chemical composition were analyzed. PON1 was determined in serum spectrophotometrically using phenylacetate as substrate. Rats that received avocado had about 27% lower triglycerides plasma levels whereas their HDL-cholesterol was 17% higher as compared to control group. The mean HDL Stokes diameter was significantly lower in avocado group (11.71 +/- 0.8 vs. 12.27 +/- 0.26 nm, in control group, p < 0.05). The HDL size decrease was associated to a lower content of protein, particularly of apo Al, with a concomitant higher proportion of phospholipids in HDL isolated from avocado group. HDL structural modifications induced by avocado were not related to modifications of LCAT and PLTP activities, but occurred in parallel with higher serum levels of PON1 activity when compared to the controls (57.4 +/- 8.9 vs. 43.0 +/- 5.6 micromol/min/mL serum, p < 0.05). The inclusion of avocado in the diet decreased plasma triglycerides, increased HDL-cholesterol plasma levels and modified HDL structure. The latter effect may enhance the antiatherogenic properties of HDL since PON1 activity also increased as a consequence of avocado.

  10. HDL Function in Rheumatoid Arthritis

    PubMed Central

    Ormseth, Michelle J; Stein, C. Michael

    2015-01-01

    Purpose of review Patients with rheumatoid arthritis (RA) have accelerated atherosclerosis despite the appearance of having a less atherogenic lipid profile; however, lipoprotein function rather than concentration may be a better indicator of atherosclerotic risk. The purpose of this review is to summarize recent findings concerning HDL function in patients with RA. Recent findings Two major activities of HDL, its antioxidant and cholesterol efflux functions have been examined in RA. HDL antioxidant capacity is inversely associated with inflammation and RA disease activity; however, there is no clear consensus if antioxidant capacity is altered significantly in RA compared to control subjects. Moreover, despite numerous studies there is no consensus whether HDL cholesterol efflux capacity is significantly altered in RA compared to control subjects or influenced by inflammation or disease activity. Summary Additional studies will be valuable to consolidate existing data and find consensus. Moreover, studies evaluating the impact of various HDL functions on cardiovascular disease in RA are needed. PMID:26709471

  11. Use of the triglyceride to HDL cholesterol ratio for assessing insulin sensitivity in overweight and obese children in rural Appalachia

    PubMed Central

    Bridges, Kristie Grove; Jarrett, Traci; Thorpe, Anthony; Baus, Adam; Cochran, Jill

    2015-01-01

    Background Studies have suggested that triglyceride to HDL-cholesterol ratio (TRG/HDL) is a surrogate marker of insulin resistance (IR), but information regarding its use in pediatric patients is limited. Objective This study investigated the ability of TRG/HDL ratio to assess IR in obese and overweight children. Subjects The sample consisted of de-identified electronic medical records of patients aged 10–17 years (n = 223). Materials and methods Logistic regression was performed using TRG/HDL ratio as a predictor of hyperinsulinemia or IR defined using homeostasis model assessment score. Results TRG/HDL ratio had limited ability to predict hyperinsulinemia (AUROC 0.71) or IR (AUROC 0.72). Although females had higher insulin levels, male patients were significantly more likely to have hypertriglyceridemia and impaired fasting glucose. Conclusions TRG/HDL ratio was not adequate for predicting IR in this population. Gender differences in the development of obesity-related metabolic abnormalities may impact the choice of screening studies in pediatric patients. PMID:26352085

  12. Small high-density lipoprotein (HDL) subclasses are increased with decreased activity of HDL-associated phospholipase A₂ in subjects with prediabetes.

    PubMed

    Filippatos, Theodosios D; Rizos, Evangelos C; Tsimihodimos, Vasilios; Gazi, Irene F; Tselepis, Alexandros D; Elisaf, Moses S

    2013-06-01

    Alterations in high-density lipoprotein (HDL) subclass distribution, as well as in the activities of HDL-associated enzymes, have been associated with increased cardiovascular disease (CVD) risk. HDL subclass distribution and the activities of HDL-associated enzymes remain unknown in prediabetic patients, a condition also associated with increased CVD risk. The aim of the present study was to assess any differences in HDL subclass distribution (using polyacrylamide gel electrophoresis) and in activities of HDL-associated enzymes between prediabetic (impaired fasting glucose, IFG, n = 80) and non-prediabetic subjects (n = 105). Subjects with prediabetes had significantly increased waist circumference, blood pressure and triacylglycerol (TAG) levels compared with subjects with fasting glucose levels <100 mg/dL (all p < 0.05). The proportion of small HDL3 over HDL cholesterol (HDL-C) was significantly increased in prediabetic subjects compared with their controls (p < 0.05). The activity of the anti-atherogenic HDL-associated lipoprotein-associated phospholipase A₂ (HDL-LpPLA₂) was significantly lower in subjects with prediabetes (p < 0.05), whereas the activity of paraoxonase 1 (using both paraoxon and phenyl acetate as substrates) did not significantly differ between subjects with or without prediabetes. In a stepwise linear regression analysis, the proportion of small HDL3 over HDL-C concentration was independently associated with the presence of prediabetes and with total cholesterol and TAG concentration (positively), as well as with HDL-C levels (negatively). We also observed a trend of increased small dense low-density lipoprotein cholesterol levels in prediabetic subjects compared with their controls. Subjects with IFG exhibit increased proportion of small HDL3 particles combined with decreased activity of the anti-atherogenic HDL-LpPLA₂.

  13. Effects of Astaxanthin on Reverse Cholesterol Transport and Atherosclerosis in Mice

    PubMed Central

    Zou, Tang-Bin; Zhu, Shan-Shan; Luo, Fei; Li, Wei-Qiao

    2017-01-01

    High plasma level of HDL-cholesterol (HDL-C) has been consistently associated with a decreased risk of atherosclerosis (AS); thus, HDL-C is considered to be an antiatherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the possibility of further reducing the residual AS risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective activity of HDL, which has been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor class B type I (SR-BI) and then transport it back to the liver for excretion into bile and eventually into the feces. In the current study, we investigated the effects of astaxanthin on RCT and AS progression in mice. The results showed that short- and long-term supplementation of astaxanthin promote RCT in C57BL/6J and ApoE−/− mice, respectively. Moreover, astaxanthin can relieve the plaque area of the aortic sinus and aortic cholesterol in mice. These findings suggest that astaxanthin is beneficial for boosting RCT and preventing the development of AS. PMID:29226138

  14. Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals.

    PubMed

    Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin

    2015-01-01

    High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals.

  15. Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals

    PubMed Central

    Wen, Jiang-Hua; Zhong, Yu-Yu; Wen, Zhi-Gang; Kuang, Chao-Qun; Liao, Jie-Rong; Chen, Li-Hua; Wang, Pei-Shen; Wu, Yue-Xia; Ouyang, Chu-Jun; Chen, Zhi-Jin

    2015-01-01

    Objectives: High triglycerides and low high density lipoprotein cholesterol are important cardiovascular risk factors. Triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) has been reported to be useful in predicting cardiovascular disease. Brachial-ankle pulse wave velocity (baPWV) is a valid and reproducible measurement by which to assess arterial stiffness and a surrogate marker of atherosclerosis. However, there is limited evidence about the relationship between them. Therefore, we tested the hypotheses that TG/HDL-C is associated with baPWV in healthy individuals. Methods: Fasting lipid profiles, baPWV and clinical data were measured in 1498 apparently healthy, medication-free subjects (926 men, 572 women) who participated in a routine health screening from 2011 to 2013. Participants were stratified into quartiles of TG/HDL-C ratio. BaPWV > 1400 cm/s was defined as abnormal baPWV, Multivariable logistic regression was used to identify associations of TG/HDL-C quartiles and baPWV, after adjusting for the presence of conventional cardiovascular risk factors. Results: In both genders, we observed positive relationships between TG/HDL-C quartiles and BMI, systolic BP, diastolic BP, fasting glucose, total cholesterol, LDL-C, triglycerides, uric acid, and percentages of high baPWV. Multivariable logistic regression revealed that baPWV abnormality OR value of the highest TG/HDL-C quartiles was 1.91 (95% CI: 1.11-3.30, P < 0.05) and 2.91 (95% CI: 1.02-8.30, P < 0.05) in male and female after adjusting for age, systolic BP, diastolic BP, BMI, fasting plasma glucose, LDL-C, uric acid and estimated glomerular filtration rate when compared with the lowest TG/HDL-C quartiles. Conclusion: Increased TG/HDL-C was independently associated with baPWV abnormality in apparently healthy individuals. PMID:26064351

  16. Properties of the Products Formed by the Activity of Serum Opacity Factor against Human Plasma High Density Lipoproteins

    PubMed Central

    Pownall, Henry J.; Courtney, Harry S.; Gillard, Baiba K.; Massey, John B.

    2010-01-01

    Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of ~100,000 plasma high density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver. PMID:18838065

  17. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds.

    PubMed

    Giannini, Cosimo; Santoro, Nicola; Caprio, Sonia; Kim, Grace; Lartaud, Derek; Shaw, Melissa; Pierpont, Bridget; Weiss, Ram

    2011-08-01

    We evaluated whether the triglyceride-to-HDL cholesterol (TG/HDL-C) ratio is associated with insulin resistance (IR) in a large multiethnic cohort of obese youths. Obese youths (1,452) had an oral glucose tolerance test and a fasting lipid profile. Insulin sensitivity was estimated using the whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA)-IR and evaluated, in a subgroup of 146 obese youths, by the hyperinsulinemic-euglycemic clamp. The cohort was divided by ethnicity (612 whites, 357 Hispanics, and 483 African Americans) and then stratified into ethnicity-specific tertiles of TG/HDL-C ratio. Differences across tertiles were evaluated, and the association between the TG/HDL-C ratio and insulin sensitivity (WBISI) was defined by a multiple stepwise linear regression analysis. The area under the receiver operating characteristic (ROC) curve (AUC) was determined to calculate the TG/HDL-C ratio cutoff to identify insulin-resistant subjects by ethnicity. In each ethnic group and across rising tertiles of TG/HDL-C ratio, insulin sensitivity (WBISI) progressively decreased, whereas 2-h glucose and the AUC-glucose progressively increased. The cutoff for TG/HDL-C ratio was 2.27, and the odds of presenting with IR, in youths with TG/HDL-C ratio higher than the cutoff, was 6.023 (95% CI 2.798-12.964; P < 0.001) in white girls and boys, whereas for both Hispanics and African Americans the AUC-ROCs were not significant, thus not allowing the calculation of an optimal cutoff TG/HDL-C value. The TG/HDL-C ratio is associated with IR mainly in white obese boys and girls and thus may be used with other risk factors to identify subjects at increased risk of IR-driven morbidity.

  18. Cholesterol

    MedlinePlus

    ... fried and processed foods. Eating these fats can raise your LDL (bad) cholesterol. Lack of physical activity, ... lowers HDL cholesterol, especially in women. It also raises your LDL cholesterol. Genetics may also cause people ...

  19. Adiponectin and the mediation of HDL-cholesterol change with improved lifestyle: the Look AHEAD Study[S

    PubMed Central

    Belalcazar, L. Maria; Lang, Wei; Haffner, Steven M.; Hoogeveen, Ron C.; Pi-Sunyer, F. Xavier; Schwenke, Dawn C.; Balasubramanyam, Ashok; Tracy, Russell P.; Kriska, Andrea P.; Ballantyne, Christie M.

    2012-01-01

    Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. We investigated whether the changes in adiponectin with an intensive lifestyle intervention (ILI) for weight loss could potentially mediate the increase in low HDL-cholesterol (HDL-C) with ILI. Adiponectin and its fractions were determined using an ELISA with selective protease treatment in 1,397 participants from Look AHEAD, a trial examining whether ILI will reduce cardiovascular events in overweight/obese subjects with T2DM when compared with a control arm, diabetes support and education (DSE). Multivariable regression and mediational analyses were performed for adiponectin and its high-molecular-weight (HMW) and non-HMW fractions. ILI increased baseline HDL-C by 9.7% and adiponectin by 11.9%; changes with DSE were 1.3% and 0.2%, respectively (P < 0.0001). In a model including changes in weight, fitness, triglycerides, and glucose control and that adjusted for demographics and medical history, adiponectin changes remained significantly associated with HDL-C change. Data supported the contribution of changes in both HMW- and non-HMW-adiponectin to the improvement in HDL-C with ILI PMID:22956782

  20. CER-001, a HDL-mimetic, stimulates the reverse lipid transport and atherosclerosis regression in high cholesterol diet-fed LDL-receptor deficient mice.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2014-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Status of non-HDL-cholesterol and LDL-cholesterol among subjects with and without metabolic syndrome.

    PubMed

    Khan, Sikandar Hayat; Asif, Naveed; Ijaz, Aamir; Manzoor, Syed Mohsin; Niazi, Najumusaquib Khan; Fazal, Nadeem

    2018-04-01

    To to compare non-high-density lipoprotein and low-density lipoprotein cholesterol among subjects with or without metabolic syndrome, glycation status and nephropathic changes. The comparative cross-sectional study was carried out from Dec 21, 2015, to Nov 15, 2016, at the department of pathology and medicine PNS HAFEEZ and department of chemical pathology and clinical endocrinology (AFIP), and comprised patients of either gender visiting the out-patient department for routine screening. They were evaluated for anthropometric indices, blood pressure and sampled for lipid profile, fasting plasma glucose, glycated haemoglobin, insulin, and urine albumin-to-creatinine ratio. Subjects were segregated based upon presence (Group1) or absence (Group2) of metabolic syndrome based upon criteria of National Cholesterol Education Programme and the International Diabetes Federation. Differences in high and low density lipoprotein cholesterols were calculated between the groups. Of the 229 subjects, 120(52.4%) were women and 109(47.6%) were men. Overall, there were 107(46.7%) subjects in Group 1, and 122(53.3%) in Group 2. Non-high-density lipoprotein cholesterol was significantly different between subjects with and without metabolic syndrome as per both the study criteria (p<0.05 each). . Non-high-density lipoprotein cholesterol levels were higher in subjects with metabolic syndrome.

  2. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients

    PubMed Central

    Choi, Jung Ran; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young

    2015-01-01

    Purpose Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). Materials and Methods We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Results Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Conclusion Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD. PMID:26446643

  3. The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients.

    PubMed

    Choi, Jung Ran; Jang, Yangsoo; Kim Yoon, Sungjoo; Park, Jong Keun; Sorn, Sungbin Richard; Park, Mi-Young; Lee, Myoungsook

    2015-11-01

    Adiponectin is expressed in adipose tissue, and is affected by smoking, obesity, and genetic factors, such as CDH13 polymorphism, contributing to the development of coronary vascular diseases (CVDs). We investigated the effect of genetic variations of CDH13 (rs3865188) on blood chemistry and adiponectin levels in 345 CVD patients undergoing statin-free or statin treatment. Genetic variation in CDH13 was significantly correlated with several clinical factors, including adiponectin, diastolic blood pressure, triglyceride (TG), and insulin levels. Subjects with the T allele (mutant form) had significantly lower adiponectin levels than those with the A allele. Total cholesterol (TC), low-density lipoprotein cholesterol (LDLc), TG/high-density lipoprotein cholesterol (HDLc) ratio, and HDL3b subtype were markedly decreased in statin treated subjects regardless of having the A or T allele. TG and TG/HDL in the statin-free group with TT genotype of the rs3865188 was higher than in the others but they were not different in the statin-treated subjects. We observed a significant difference in adiponectin levels between patients with the A and T alleles in the statin-free group; meanwhile, no difference in adiponectin levels was noted in the statin group. Plasma levels of other cytokines, leptin, visfatin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were not different among the CDH13 genotypes according to statin administration. Body mass index (BMI), TG, insulin, HDL3b, and TG/HDL ratio showed negative correlations with adiponectin levels. Plasma adiponectin levels and TG/HDL ratio were significantly different according to variants of CDH13 and statin administration in Korean patients with CVD.

  4. HDL cholesterol as a diagnostic tool for clinical differentiation of GCK-MODY from HNF1A-MODY and type 1 diabetes in children and young adults.

    PubMed

    Fendler, Wojciech; Borowiec, Maciej; Antosik, Karolina; Szadkowska, Agnieszka; Deja, Grazyna; Jarosz-Chobot, Przemyslawa; Mysliwiec, Malgorzata; Wyka, Krystyna; Pietrzak, Iwona; Skupien, Jan; Malecki, Maciej T; Mlynarski, Wojciech

    2011-09-01

    Confirmation of monogenic diabetes caused by glucokinase mutations (GCK-MODY) allows pharmacogenetic intervention in the form of insulin discontinuation. This is especially important among paediatric and young adult populations where GCK-MODY is most prevalent. The study evaluated the utility of lipid parameters in screening for patients with GCK-MODY. Eighty-nine children with type 1 diabetes and 68 with GCK-MODY were screened for triglyceride (TG), total and HDL cholesterol levels. Standardization against a control group of 171 healthy children was applied to eliminate the effect of development. Clinical applicability and cut-off value were evaluated in all available patients with GCK-MODY (n = 148), hepatocyte nuclear factor 1-alpha-MODY (HNF1A MODY) (n = 37) or type 1 diabetes (n = 221). Lower lipid parameter values were observed in GCK-MODY than in patients with type 1 diabetes. Standard deviation scores were -0·22 ± 2·24 vs 1·31 ± 2·17 for HDL cholesterol (P < 0·001), -0·16 ± 2·14 vs 0·60 ± 1·77 for total cholesterol (P = 0·03) and -0·57 ± 0·97 vs-0·22 ± 0·97 for TG (P = 0·05). Validation analysis confirmed that HDL cholesterol was the best parameter for GCK-MODY selection [sensitivity 87%, specificity 54%, negative predictive value (NPV) 86%, positive PV 56%]. A threshold HDL concentration of 1·56 mm offered significantly better diagnostic efficiency than total cholesterol (cut-off value 4·51 mm; NPV 80%; PPV 38%; P < 0·001). TG did not offer a meaningful cut-off value. HDL cholesterol levels measured in individuals with likely monogenic diabetes may be useful in screening for GCK-MODY and differentiation from T1DM and HNF1A-MODY, regardless of treatment or metabolic control. © 2011 Blackwell Publishing Ltd.

  5. Similar cholesterol-lowering properties of rice bran oil, with varied gamma-oryzanol, in mildly hypercholesterolemic men.

    PubMed

    Berger, Alvin; Rein, Dietrich; Schäfer, Angela; Monnard, Irina; Gremaud, Gérard; Lambelet, Pierre; Bertoli, Constantin

    2005-03-01

    The cholesterol lowering properties of rice bran oil (RBO) containing differing amounts of non-saponifiable components have not been studied in humans, to our knowledge. To evaluate cholesterol lowering effects of RBO, with low and high amounts of gamma-oryzanol (ferulated plant sterols) in mildly hypercholesterolemic men. Mildly hypercholesterolemic men, 38-64 y, starting cholesterol 4.9-8.4 mmol/l (n = 30), consumed 50 g/d peanut oil (PNO) in vehicles for 2 wks during a run-in period, then, without wash-out, were randomly equilibrated (based on initial level of cholesterol) into two groups to consume 50 g/d RBO low (0.05 g/d) or high (0.8 g/d) gamma-oryzanol for 4 wks, in a randomized, controlled, parallel design study. Subjects were free-living and consumed habitual diets with some restrictions. Plasma concentrations of total, LDL-,HDL-cholesterol and triacylglycerol were measured at base line and after 2, 4, and 6 wks. The two RBO types were not significantly different with respect to effects on various cholesterol parameters, at 2 and 4 wks, including total cholesterol, LDL-, HDL- and LDL/HDL cholesterol ratio. Low and high gamma-oryzanolcontaining RBO feeding for 4 wks lowered total plasma cholesterol (6.3 %), LDL-C (10.5 %) and the LDL-C/HDL-C ratio (18.9 %). RBO supplementation at ca. 50% total fat intake improved lipoprotein pattern in mildly hypercholesterolemic men. Methylated sterols in gamma-oryzanol are thought to be largely ineffective at inhibiting dietary cholesterol absorption, but could enhance cholesterol-lowering ability of 4-desmethylsterols. Assuming all ferulated sterols become de-ferulated in the gut, low and high gamma-oryzanolcontaining RBOs provided intestinal loads of 453 and 740 mg/d free 4-desmethylsterols, respectively. This intestinal load of 453-740 mg/d of efficacious free plant sterol equivalents had identical effects on lipoproteins.

  6. A complete backbone spectral assignment of human apolipoprotein AI on a 38 kDa preβHDL (Lp1-AI) particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xuefeng; Yang, Yunhuang; Neville, T.

    2007-06-12

    Apolipoprotein A-I (apoAI, 243-residues) is the major protein component of the high-density lipoprotein (HDL) that has been a hot subject of interests because of its anti-atherogenic properties. This important property of apoAI is related to its roles in reverse cholesterol transport pathway. Upon lipid-binding, apoAI undergoes conformational changes from lipid-free to several different HDL-associated states (1). These different conformational states regulate HDL formation, maturation and transportation. Two initial conformational states of apoAI are lipid-free apoAI and apoAI/preβHDL that recruit phospholipids and cholesterol to form HDL particles. In particular, lipid-free apoAI specifically binds to phospholipids to form lipid-poor apoAI, including apoAI/preβ-HDLmore » (~37 kDa). As a unique class of lipid poor HDL, both in vitro and in vivo evidence demonstrates that apoAI/preβ-HDLs are the most effective acceptors specifically for free cholesterol in human plasma and serves as the precursor of HDL particles (2). Here we report a complete backbone spectral assignment of human apoAI/preβHDL. Secondary structure prediction using backbone NMR parameters indicates that apoAI/preβHDL displays a two-domain structure: the N-terminal four helix-bundle domain (residues 1-186) and the C-terminal flexible domain (residues 187-243). A structure of apoAI/preβ-HDL is the first lipid-associated structure of apoAI and is critical for us to understand how apoAI recruits cholesterol to initialize HDL formation. BMRB deposit with accession number: 15093.« less

  7. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    USDA-ARS?s Scientific Manuscript database

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  8. Amide-linked Ethanolamine Conjugate of Gemfibrozil as a Profound HDL Enhancer: Design, Synthesis, Pharmacological Screening and Docking Study.

    PubMed

    Rai, Himanshu; Dhaneshwar, Suneela S

    2015-01-01

    Elevated concentration of any or all types of lipids in the plasma including hypertriglyceridemia and hypercholesterolemia leads to atherosclerotic cardiovascular disease. Effective medication needs multiple drug therapy as recommended cholesterol and triglyceride levels are difficult to achieve by monotherapy and frequently require the use of more than one lipid-lowering medication. Gemfibrozil lowers plasma triglyceride-rich lipoproteins mainly VLDL and increases HDL. It is associated with short plasma half-life (1.5h) and GIT distress on long term use. In a study it was found that ethanolamine decreases serum cholesterol, especially VLDL cholesterol and LDL cholesterol in rats fed an HF/HC diet. In the present work, we thought of exploring the effect of co-drug of gemfibrozil with ethanolamine (GE-I) as a potential combination therapy for the management of mixed hyperlipidemia. Synthesis of GE-I was effected by CDI coupling. Structure was confirmed spectrally. Interestingly kinetic studies revealed that GE-I resisted chemical and enzymatic hydrolysis. In tritoninduced hyperlipidemia, significant lowering of serum lipid levels was observed. The hallmark of GEI was its profound effect on HDL level which was raised above the normal level by 15%. Docking study also supported modulatory effect of GE-I (docking score -7.012) on PPAR-α which was comparable to docking score of gemfibrozil (-9.432). These preliminary observations prompt us to consider GE-I as a novel, serendipitous, hybrid anti-hyperlipidemic new chemical entity which needs be studied extensively to prove it as an HDL enhancing anti-hyperlipidemic agent.

  9. Glucuronic Acid Epimerase Is Associated with Plasma Triglyceride and High Density Lipoprotein Cholesterol Levels in Turks

    PubMed Central

    Hodoğlugil, Uğur; Williamson, David W.; Yu, Yi; Farrer, Lindsay A.; Mahley, Robert W.

    2011-01-01

    Summary We narrowed chromosome 15q21-23 linkage to plasma high density lipoprotein cholesterol (HDL-C) levels in atherogenic dyslipidemic Turkish families by fine mapping, then focused on glucuronic acid epimerase (GLCE), a heparan sulfate proteoglycan (HSPG) biosynthesis enzyme. HSPGs participate in lipid metabolism along with apolipoprotein (apo) E. Of 31 SNPs in the GLCE locus, nine analyzed by haplotype were associated with plasma HDL-C and triglyceride levels (permuted p = 0.006 and 0.013, respectively) in families. Of five tagging GLCE SNPs in two cohorts of unrelated subjects, three (rs16952868, rs11631403, rs3865014) were associated with triglyceride and HDL-C levels in males (non-permuted p < 0.05). The association was stronger in APOE 2/3 subjects (apoE2 has reduced binding to HSPGs) and reached multiple-testing significance (p < 0.05) in both males and females (n = 2612). Similar results were obtained in the second cohort (n = 1164). Interestingly, at the GLCE locus, bounded by recombination hotspots, Turks had a minor allele frequency of SNPs resembling Chinese more than European ancestry; adjoining regions on chromosome 15 resembled the European pattern. Studies of glce+/–apoe–/– mice fed a chow or high-fat diet supported a role for GLCE in lipid metabolism. Thus, SNPs in GLCE are associated with triglyceride and HDL-C levels in Turks, and mouse studies support a role for glce in lipid metabolism. PMID:21488854

  10. HDL mimetic CER-001 targets atherosclerotic plaques in patients.

    PubMed

    Zheng, Kang He; van der Valk, Fleur M; Smits, Loek P; Sandberg, Mara; Dasseux, Jean-Louis; Baron, Rudi; Barbaras, Ronald; Keyserling, Constance; Coolen, Bram F; Nederveen, Aart J; Verberne, Hein J; Nell, Thijs E; Vugts, Danielle J; Duivenvoorden, Raphaël; Fayad, Zahi A; Mulder, Willem J M; van Dongen, Guus A M S; Stroes, Erik S G

    2016-08-01

    Infusion of high-density lipoprotein (HDL) mimetics aimed at reducing atherosclerotic burden has led to equivocal results, which may relate in part to the inability of HDL mimetics to adequately reach atherosclerotic lesions in humans. This study evaluated delivery of recombinant human apolipoprotein A-I (apoA-I) containing HDL mimetic CER-001 in carotid plaques in patients. CER-001 was radiolabeled with the long-lived positron emitter zirconium-89 ((89)Zr) to enable positron emission tomography with computed tomography (PET/CT) imaging. Eight patients with atherosclerotic carotid artery disease (>50% stenosis) received a single infusion of unlabeled CER-001 (3 mg/kg), co-administered with 10 mg of (89)Zr-labeled CER-001 (18 MBq). Serial PET/CT imaging and contrast enhanced-magnetic resonance imaging (CE-MRI) were performed to evaluate targeted delivery of CER-001. One hour after infusion, mean plasma apoA-I levels increased by 9.9 mg/dL (p = 0.026), with a concomitant relative increase in the plasma cholesterol efflux capacity of 13.8% (p < 0.001). Using serial PET/CT imaging, we showed that arterial uptake of CER-001 expressed as target-to-background ratio (TBRmax) increased significantly 24 h after infusion, and remained increased up to 48 h (TBRmax t = 10 min: 0.98; t = 24 h: 1.14 (p = 0.001); t = 48 h: 1.12 (p = 0.007)). TBRmax was higher in plaque compared with non-plaque segments (1.18 vs. 1.05; p < 0.001). Plaque TBRmax correlated with local plaque contrast enhancement (r = 0.56; p = 0.019) as assessed by CE-MRI. Infusion of HDL mimetic CER-001 increases plasma apoA-I concentration and plasma cholesterol efflux capacity. Our data support the concept that CER-001 targets plaque regions in patients, which correlates with plaque contrast enhancement. These clinical findings may also guide future nanomedicine development using HDL particles for drug delivery in atherosclerosis. Netherlands Trial Registry - NTR5178. http

  11. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo.

    PubMed

    Gillard, Baiba K; Rodriguez, Perla J; Fields, David W; Raya, Joe L; Lagor, William R; Rosales, Corina; Courtney, Harry S; Gotto, Antonio M; Pownall, Henry J

    2016-03-01

    Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells *

    PubMed Central

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-01-01

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [3H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. PMID:27458015

  13. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Novel variants at KCTD10, MVK, and MMAB genes interact with dietary carbohydrates to modulate HDL-cholesterol concentrations in the Genetics of Lipid Lowering Drugs and Diet Network Study.

    PubMed

    Junyent, Mireia; Parnell, Laurence D; Lai, Chao-Qiang; Lee, Yu-Chi; Smith, Caren E; Arnett, Donna K; Tsai, Michael Y; Kabagambe, Edmond K; Straka, Robert J; Province, Michael; An, Ping; Borecki, Ingrid; Ordovás, José M

    2009-09-01

    Several genome-wide association studies have identified novel loci (KCTD10, MVK, and MMAB) that are associated with HDL-cholesterol concentrations. Of the environmental factors that determine HDL cholesterol, high-carbohydrate diets have been shown to be associated with low concentrations. The objective was to evaluate the associations of 8 single nucleotide polymorphisms (SNPs) located within the KCTD10, MVK, and MMAB loci with lipids and their potential interactions with dietary carbohydrates. KCTD10, MVK, and MMAB SNPs were genotyped in 920 subjects (441 men and 479 women) who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study. Biochemical measurements were made by using standard procedures. Dietary intakes were estimated by using a validated questionnaire. For the SNPs KCTD10_i5642G-->C and MVK_S52NG-->A, homozygotes for the major alleles (G) had lower HDL-cholesterol concentrations than did carriers of the minor alleles (P = 0.005 and P = 0.019, respectively). For the SNP 12inter_108466061A-->G, homozygotes for the minor allele (G) had higher total cholesterol and LDL-cholesterol concentrations than did AG subjects (P = 0.030 and P = 0.034, respectively). Conversely, homozygotes for the major allele (G) at MMAB_3U3527G-->C had higher LDL-cholesterol concentrations than did carriers of the minor allele (P = 0.034). Significant gene-diet interactions for HDL cholesterol were found (P < 0.001-0.038), in which GG subjects at SNPs KCTD10_i5642G-->C and MMAB_3U3527G-->C and C allele carriers at SNP KCTD10_V206VT-->C had lower concentrations only if they consumed diets with a high carbohydrate content (P < 0.001-0.011). These findings suggest that the KCTD10 (V206VT-->C and i5642G-->C) and MMAB_3U3527G-->C variants may contribute to the variation in HDL-cholesterol concentrations, particularly in subjects with high carbohydrate intakes.

  15. Exchanging partially hydrogenated fat for palmitic acid in the diet increases LDL-cholesterol and endogenous cholesterol synthesis in normocholesterolemic women.

    PubMed

    Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas

    2003-08-01

    Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.

  16. [The effects of simvastatin combined with different antioxidant vitamin regimens on serum lipid profile in patients with low HDL cholesterol levels].

    PubMed

    Pirat, Bahar; Korkmaz, Mehmet Emin; Eroğlu, Serpil; Tayfun, Egemen; Yildirir, Aylin; Uluçam, Melek; Ozin, Bülent; Müderrisoğlu, Haldun

    2004-12-01

    This study was designed to compare the effects of simvastatin versus a combination of simvastatin with vitamin C or E on serum lipid profile, particularly, high-density lipoprotein (HDL)-cholesterol (C) level, in patients with a low HDL-C level. Fifty-nine women and 49 men, who had a baseline HDL-C level equal to or lower than 40 mg/dl were randomized to one of the following study treatment groups: Group S (n=39) simvastatin 20 mg/day, Group S+C (n=33) simvastatin 20 mg/day + vitamin C 500 mg/day, and Group S+E (n=36) simvastatin 20 mg/day + vitamin E 400 IU/day. The groups' lipid profiles were obtained at baseline, 3rd and 6th months. Comparing with baseline values, total-C and low-density cholesterol (LDL-C) values significantly reduced (p<0.001) and HDL-C values significantly increased (Group S--33.9+/-3.9 mg/dl vs. 39.8+/-6.9 mg/dl, Group S+C--34.2+/-3.5 mg/dl vs. 38.1+/-6.1 mg/dl, Group S+E--33.1+/-3.6 mg/dl vs. 34.8+/-5.9 mg/dl, p<0.001) on therapy within the groups; however, there were no significant differences among the groups with regards to these parameters. The HDL-C levels increased from baseline by 14.0%, 11.7% and 10.2% in Group S, S+C, and S+E, respectively (p>0.05). A combination of simvastatin with antioxidant vitamins does not offer any beneficial effect over simvastatin alone. Particularly vitamin E seems to blunt the simvastatin induced HDL-C increase.

  17. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial.

    PubMed

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Campiglia, Pietro; Marinelli, Luciana; Novellino, Ettore

    2017-03-01

    Cardiovascular diseases are nowadays preferential targets of preventive medicine through a straightforward therapy on lipid profile. However, statins, the first-line lipid-lowering drug therapy, specifically act on low-density lipoprotein cholesterol (LDL-C), having a modest effect on plasma high-density lipoprotein cholesterol (HDL-C) concentrations. Today, a number of novel HDL-targeted therapies are emerging, along with unexpected side effects. Thus, novel and possibly safe substances, able to correct impaired lipid profile in humans, are still in great demand. Herein, based on encouraging clinical data, we formulated a nutraceutical product (AppleMetS ® , AMS), based on a polyphenolic extract from Annurca apple, and demonstrated that two capsules a day of AMS, after one month, have a LDL-C lowering outcome equivalent to 40 mg of simvastatin or 10 mg of atorvastatin. Nevertheless, different from statin-based therapy, AMS exerted a notable effect on HDL (+49.2%). Based on the trial results, we can assert that AMS formulation could effectively integrate the current therapeutic arsenal to correct impaired lipid profile in humans. Specifically, AMS may be considered a complementary and/or alternative safe substance suitable for the treatment of mildly hypercholesterolemic subjects who do not present occurrence of atheromatous plaques yet.

  18. A Healthy Balance of Plasma Cholesterol by a Novel Annurca Apple-Based Nutraceutical Formulation: Results of a Randomized Trial

    PubMed Central

    Tenore, Gian Carlo; Caruso, Domenico; Buonomo, Giuseppe; D'Avino, Maria; Campiglia, Pietro; Marinelli, Luciana

    2017-01-01

    Abstract Cardiovascular diseases are nowadays preferential targets of preventive medicine through a straightforward therapy on lipid profile. However, statins, the first-line lipid-lowering drug therapy, specifically act on low-density lipoprotein cholesterol (LDL-C), having a modest effect on plasma high-density lipoprotein cholesterol (HDL-C) concentrations. Today, a number of novel HDL-targeted therapies are emerging, along with unexpected side effects. Thus, novel and possibly safe substances, able to correct impaired lipid profile in humans, are still in great demand. Herein, based on encouraging clinical data, we formulated a nutraceutical product (AppleMetS®, AMS), based on a polyphenolic extract from Annurca apple, and demonstrated that two capsules a day of AMS, after one month, have a LDL-C lowering outcome equivalent to 40 mg of simvastatin or 10 mg of atorvastatin. Nevertheless, different from statin-based therapy, AMS exerted a notable effect on HDL (+49.2%). Based on the trial results, we can assert that AMS formulation could effectively integrate the current therapeutic arsenal to correct impaired lipid profile in humans. Specifically, AMS may be considered a complementary and/or alternative safe substance suitable for the treatment of mildly hypercholesterolemic subjects who do not present occurrence of atheromatous plaques yet. PMID:28296588

  19. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A.

    PubMed

    Rached, Fabiana; Lhomme, Marie; Camont, Laurent; Gomes, Fernando; Dauteuille, Carolane; Robillard, Paul; Santos, Raul D; Lesnik, Philippe; Serrano, Carlos V; Chapman, M John; Kontush, Anatol

    2015-09-01

    Low plasma levels of high-density lipoprotein-cholesterol (HDL-C) are typical of acute myocardial infarction (MI) and predict risk of recurrent cardiovascular events. The potential relationships between modifications in the molecular composition and the functionality of HDL subpopulations in acute MI however remain indeterminate. ST segment elevation MI (STEMI) patients were recruited within 24h after diagnosis (n=16) and featured low HDL-C (-31%, p<0.05) and acute-phase inflammation (determined as marked elevations in C-reactive protein, serum amyloid A (SAA) and interleukin-6) as compared to age- and sex-matched controls (n=10). STEMI plasma HDL and its subpopulations (HDL2b, 2a, 3a, 3b, 3c) displayed attenuated cholesterol efflux capacity from THP-1 cells (up to -32%, p<0.01, on a unit phospholipid mass basis) vs. Plasma HDL and small, dense HDL3b and 3c subpopulations from STEMI patients exhibited reduced anti-oxidative activity (up to -68%, p<0.05, on a unit HDL mass basis). HDL subpopulations in STEMI were enriched in two proinflammatory bioactive lipids, lysophosphatidylcholine (up to 3.0-fold, p<0.05) and phosphatidic acid (up to 8.4-fold, p<0.05), depleted in apolipoprotein A-I (up to -23%, p<0.05) and enriched in SAA (up to +10.2-fold, p<0.05); such changes were most marked in the HDL3b subfraction. In vitro HDL enrichment in both lysophosphatidylcholine and phosphatidic acid exerted deleterious effects on HDL functionality. In the early phase of STEMI, HDL particle subpopulations display marked, concomitant alterations in both lipidome and proteome which are implicated in impaired HDL functionality. Such modifications may act synergistically to confer novel deleterious biological activities to STEMI HDL. Our present data highlight complex changes in the molecular composition and functionality of HDL particle subpopulations in the acute phase of STEMI, and for the first time, reveal that concomitant modifications in both the lipidome and proteome

  20. Comprehensive Evaluation of the Association of APOE Genetic Variation with Plasma Lipoprotein Traits in U.S. Whites and African Blacks

    PubMed Central

    Radwan, Zaheda H.; Wang, Xingbin; Waqar, Fahad; Pirim, Dilek; Niemsiri, Vipavee; Hokanson, John E.; Hamman, Richard F.; Bunker, Clareann H.; Barmada, M. Michael; Demirci, F. Yesim; Kamboh, M. Ilyas

    2014-01-01

    Although common APOE genetic variation has a major influence on plasma LDL-cholesterol, its role in affecting HDL-cholesterol and triglycerides is not well established. Recent genome-wide association studies suggest that APOE also affects plasma variation in HDL-cholesterol and triglycerides. It is thus important to resequence the APOE gene to identify both common and uncommon variants that affect plasma lipid profile. Here, we have sequenced the APOE gene in 190 subjects with extreme HDL-cholesterol levels selected from two well-defined epidemiological samples of U.S. non-Hispanic Whites (NHWs) and African Blacks followed by genotyping of identified variants in the entire datasets (623 NHWs, 788 African Blacks) and association analyses with major lipid traits. We identified a total of 40 sequence variants, of which 10 are novel. A total of 32 variants, including common tagSNPs (≥5% frequency) and all uncommon variants (<5% frequency) were successfully genotyped and considered for genotype-phenotype associations. Other than the established associations of APOE*2 and APOE*4 with LDL-cholesterol, we have identified additional independent associations with LDL-cholesterol. We have also identified multiple associations of uncommon and common APOE variants with HDL-cholesterol and triglycerides. Our comprehensive sequencing and genotype-phenotype analyses indicate that APOE genetic variation impacts HDL-cholesterol and triglycerides in addition to affecting LDL-cholesterol. PMID:25502880

  1. Effects of Chinese Dietary Pattern of Fat Content, n-6/n-3 Polyunsaturated Fatty Acid Ratio, and Cholesterol Content on Lipid Profile in Rats

    PubMed Central

    Zou, Xian-Guo; Huang, Yu-Hua; Xu, Tong-Cheng; Fan, Ya-Wei; Li, Jing

    2018-01-01

    This study aims to investigate the effect of Chinese diet pattern of fat content (30% or 36.06%), n-6/n-3 polyunsaturated fatty acid (PUFA) ratio (5 : 1 or 9 : 1), and cholesterol content (0.04 or 0.057 g/kg total diet) on lipid profile using a rat model. Results showed that rats' body weights (BWs) were controlled by the simultaneous intakes of cholesterol level of 0.04 g/kg total diet and n-6/n-3 ratio of 5 : 1. In addition, under high-fat diet, increased cholesterol feeding led to increased total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels and decreased triacylglycerols (TG) in rats' plasma. However, high density lipoprotein cholesterol (HDL-C) level and the ratios of HDL-C/LDL-C and HDL-C/TC in rats' plasma increased in response to simultaneous intakes of low n-6/n-3 ratio (5 : 1) and cholesterol (0.04 g/kg total diet) even under high-fat diet. Moreover, as the n-6/n-3 PUFA ratio in the diet decreased, the proportion of n-3 PUFAs increased in plasma, liver, and muscle and resulted in the decrease of n-6/n-3 PUFA ratio. PMID:29744358

  2. Metabolism of triglyceride-rich lipoproteins and transfer of lipids to high-density lipoproteins (HDL) in vegan and omnivore subjects.

    PubMed

    Vinagre, J C; Vinagre, C G; Pozzi, F S; Slywitch, E; Maranhão, R C

    2013-01-01

    Vegan diet excludes all foodstuffs of animal origin and leads to cholesterol lowering and possibly reduction of cardiovascular disease risk. The aim was to investigate whether vegan diet improves the metabolic pathway of triglyceride-rich lipoproteins, consisting in lipoprotein lipolysis and removal from circulation of the resulting remnants and to verify whether the diet alters HDL metabolism by changing lipid transfers to this lipoprotein. 21 vegan and 29 omnivores eutrophic and normolipidemic subjects were intravenously injected triglyceride-rich emulsions labeled with (14)C-cholesterol oleate and (3)H-triolein: fractional clearance rates (FCR, in min(-1)) were calculated from samples collected during 60 min for radioactive counting. Lipid transfer to HDL was assayed by incubating plasma samples with a donor nanoemulsion labeled with radioactive lipids; % lipids transferred to HDL were quantified in supernatant after chemical precipitation of non-HDL fractions and nanoemulsion. Serum LDL cholesterol was lower in vegans than in omnivores (2.1 ± 0.8, 2.7 ± 0.7 mmol/L, respectively, p < 0,05), but HDL cholesterol and triglycerides were equal. Cholesteryl ester FCR was greater in vegans than in omnivores (0.016 ± 0.012, 0.003 ± 0.003, p < 0.01), whereas triglyceride FCR was equal (0.024 ± 0.014, 0.030 ± 0.016, N.S.). Cholesteryl ester transfer to HDL was lower in vegans than in omnivores (2.7 ± 0.6, 3.5 ± 1.5%, p < 0,05). Free-cholesterol, triglyceride and phospholipid transfer were equal, as well as HDL size. Remnant removal from circulation, estimated by cholesteryl oleate FCR was faster in vegans, but the lipolysis process, estimated by triglyceride FCR was equal. Increased removal of atherogenic remnants and diminution of cholesteryl ester transfer may favor atherosclerosis prevention by vegan diet. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Persistently high psychological well-being predicts better HDL cholesterol and triglyceride levels: findings from the midlife in the U.S. (MIDUS) longitudinal study.

    PubMed

    Radler, Barry T; Rigotti, Attilio; Ryff, Carol D

    2018-01-03

    Psychological correlates of blood lipid levels have been previously evaluated mostly in cross sectional studies. However, prospectively measured psychological factors might also predict favorable blood lipid profiles, thereby indicating a healthy mind/body interplay that is associated with less disease, better health and longer lives. This paper examined whether longitudinal profiles of psychological well-being over 9-10 years are predictors of blood lipid profiles. Using the MIDUS (Midlife in the U.S.) biological subsample (n = 1054, aged 34 to 84, 55% female), cross-time trajectories of well-being were linked with three lipid outcomes (i.e., HDL cholesterol, triglycerides, and LDL cholesterol), measured for the first time at the 2nd wave of the study. Most adults showed largely stable profiles of well-being, albeit at different levels. Some showed persistently high well-being over time, while others revealed persistently low or moderate well-being. After adjusting for the effect of demographics, health behaviors, medications, and insulin resistance, adults with persistently high levels of environmental mastery and self-acceptance-two components of psychological well-being-had significantly higher levels of HDL as well as significantly lower levels of triglycerides compared to adults with persistently low levels of well-being. Converging with prior findings, no association was found between well-being and LDL cholesterol. Over 9-10 years, persistently high levels of psychological well-being measures predicted high HDL cholesterol and low triglycerides. These findings add longitudinal evidence to the growing body of research showing that positive psychological factors are linked with better lipoprotein profiles. A better blood lipid profile, particularly higher HDL-C, may be key in mediating how psychological well-being positively impacts health and length of life. Additional research is required to further validate this hypothesis as well as to establish potential

  4. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance but not of β cell function in a Chinese population with different glucose tolerance status.

    PubMed

    Zhou, Meicen; Zhu, Lixin; Cui, Xiangli; Feng, Linbo; Zhao, Xuefeng; He, Shuli; Ping, Fan; Li, Wei; Li, Yuxiu

    2016-06-07

    Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-C) ratio was a surrogate marker of IR; however, the relationship of TG/HDL-C with IR might vary by ethnicity. This study aims to investigate whether lipid ratios-TG/HDL-C, cholesterol/high-density lipoprotein-cholesterol (TC/HDL-C) ratio, low-density lipoprotein-cholesterol/high-density lipoprotein-cholesterol (LDL-C/HDL-C)) could be potential clinical markers of insulin resistance (IR) and β cell function and further to explore the optimal cut-offs in a Chinese population with different levels of glucose tolerance. Four hundred seventy-nine subjects without a history of diabetes underwent a 75 g 2 h Oral Glucose Tolerance Test (OGTT). New-onset diabetes (n = 101), pre-diabetes (n = 186), and normal glucose tolerance (n = 192) were screened. IR was defined by HOMA-IR > 2.69. Based on indices (HOMA-β, early-phase disposition index [DI30], (ΔIns30/ΔGlu30)/HOMA-IR and total-phase index [DI120]) that indicated different phases of insulin secretion, the subjects were divided into two groups, and the lower group was defined as having inadequate β cell compensation. Logistic regression models and accurate estimates of the areas under receiver operating characteristic curves (AUROC) were obtained. In all of the subjects, TG/HDL, TC/HDL-C, LDL-C/HDL-C, and TG were significantly associated with IR. The AUROCs of TG/HDL-C and TG were 0.71 (95 % CI: 0.66-0.75) and 0.71 (95 % CI: 0.65-0.75), respectively. The optimal cut-offs of TG/HDL-C and TG for IR diagnosis were 1.11 and 1.33 mmol/L, respectively. The AUROCs of TC/HDL-C and LDL-C/HDL-C were 0.66 and 0.65, respectively, but they were not acceptable for IR diagnosis. TG/HDL-C,LDL-C/HDL-C and TG were significantly associated with HOMA-β, but AUROCs were less than 0.50; therefore, the lipid ratios could not be predictors of basal β cell dysfunction. None of the lipid ratios was associated with early-phase insulin secretion. Only TG/HDL-C and

  5. Dietary protein level and origin (casein and highly purified soybean protein) affect hepatic storage, plasma lipid transport, and antioxidative defense status in the rat.

    PubMed

    Madani, S; Prost, J; Belleville, J

    2000-05-01

    The effects of different proportions (10, 20, and 30%) of dietary casein or highly purified soybean protein on lipid metabolism were studied in growing Wistar rats. Hepatic, plasma and lipoprotein lipid, and protein concentrations, plasma thiobarbituric acid-reactive substance (TBARS) levels, and resistance of red blood cells against free-radical attack were determined after a 4-wk dietary regimen. Compared with the 20% casein diet, the 20% soybean protein diet exhibited similar cholesterolemia but lower plasma triacylglycerol concentrations and very-low-density lipoprotein (VLDL) particle number, as measured by diminished contents of VLDL-triacylglycerol, VLDL-protein, and VLDL-apolipoprotein (Apo) B (B-100 and B-48). The soybean protein diet raised high-density lipoprotein (HDL)(2-3) particle number, as measured by enhanced concentrations of HDL(2-3) cholesterol, HDL-phospholipid, and HDL-ApoA-I. Increasing casein or soybean protein level (from 10 to 30%) in the diet involved higher VLDL-ApoB (B-100 and B-48), indicating an increase in the number of VLDL particles. Feeding the 30% casein or 30% soybean protein diet enhanced LDL-HDL(1) cholesterol contents. Despite similar HDL(2-3)-ApoA-I levels, the 30% casein diet enhanced the HDL(2-3) mass and its cholesterol concentrations. In contrast, feeding either the 10 or 30% soybean protein diet significantly lowered HDL(2-3) cholesterol and ApoA-I levels. These effects on cholesterol distribution in lipoprotein fractions occurred despite unchanged total cholesterol concentrations in plasma. Feeding 20% soybean protein versus 20% casein involved lower plasma TBARS concentrations. Decreasing casein or soybean protein levels in the diet were associated with higher plasma TBARS concentrations and had a lower resistance of red blood cells against free-radical attack. The present study shows that dietary protein level and origin play an important role in lipoprotein metabolism and the antioxidative defense status but do not

  6. Blueberry anthocyanins at doses of 0.5 and 1 % lowered plasma cholesterol by increasing fecal excretion of acidic and neutral sterols in hamsters fed a cholesterol-enriched diet.

    PubMed

    Liang, Yintong; Chen, Jingnan; Zuo, Yuanyuan; Ma, Ka Ying; Jiang, Yue; Huang, Yu; Chen, Zhen-Yu

    2013-04-01

    The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of blueberry anthocyanins by examining its effect on fecal sterol excretion and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism. Hamsters were divided into three groups and fed a 0.1 % cholesterol diet containing 0 % (CTL), 0.5 % (BL), and 1.0 % (BH) blueberry anthocyanins, respectively, for six weeks. Plasma total cholesterol (TC), triacylglycerols (TAG), and non-high-density lipoproteins cholesterol (non-HDL-C) were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. GC analysis was used to quantify hepatic cholesterol and fecal acidic and neutral sterols. Dietary supplementation of 0.5 and 1.0 % blueberry anthocyanins for 6 weeks decreased plasma TC concentration by 6-12 % in a dose-dependent manner. This was accompanied by increasing the excretion of fecal neutral and acidic sterols by 22-29 % and 41-74 %, respectively. Real-time PCR analyses demonstrated that incorporation of blueberry anthocyanins into diet down-regulated the genes of NPC1L1, ACAT-2, MTP, and ABCG 8. In addition, blueberry anthocyanins were also able to down-regulate the gene expression of hepatic HMG-CoA reductase. The cholesterol-lowering activity of blueberry anthocyanins was most likely mediated by enhancing the excretion of sterols accompanied with down-regulation on gene expression of intestinal NPC1L1, ACAT-2, MTP, and ABCG 8.

  7. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    PubMed

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Dietary cholesterol, heart disease risk and cognitive dissonance.

    PubMed

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  9. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients.

    PubMed

    Rysz-Górzyńska, Magdalena; Banach, Maciej

    2016-08-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.

  10. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study

    PubMed Central

    Starling, Anne P.; Engel, Stephanie M.; Whitworth, Kristina W.; Richardson, David B.; Stuebe, Alison M.; Daniels, Julie L.; Haug, Line Småstuen; Eggesbø, Merete; Becher, Georg; Sabaredzovic, Azemira; Thomsen, Cathrine; Wilson, Ralph E.; Travlos, Gregory S.; Hoppin, Jane A.; Baird, Donna D.; Longnecker, Matthew P.

    2013-01-01

    Background Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia. Methods This cross-sectional analysis included 891 pregnant women enrolled in the Norwegian Mother and Child (MoBa) Cohort Study in 2003–2004. Non-fasting plasma samples were obtained at mid-pregnancy and analyzed for nineteen PFASs. Total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured in plasma. Linear regression was used to quantify associations between each PFAS exposure and each lipid outcome. A multiple PFAS model was also fitted. Results Seven PFASs were quantifiable in >50% of samples. Perfluorooctane sulfonate (PFOS) concentration was associated with total cholesterol, which increased 4.2 mg/dL per interquartile shift (95% CI=0.8, 7.7) in adjusted models. Five of the seven PFASs studied were positively associated with HDL cholesterol, and all seven had elevated HDL associated with the highest quartile of exposure. Perfluoroundecanoic acid showed the strongest association with HDL: HDL increased 3.7 mg/dL per interquartile shift (95% CI=2.5, 4.9). Conclusion Plasma concentrations of PFASs were positively associated with HDL cholesterol, and PFOS was positively associated with total cholesterol in this sample of pregnant Norwegian women. While elevated HDL is not an adverse outcome per se, elevated total cholesterol associated with PFASs during pregnancy could be of concern if causal. PMID:24189199

  11. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study.

    PubMed

    Starling, Anne P; Engel, Stephanie M; Whitworth, Kristina W; Richardson, David B; Stuebe, Alison M; Daniels, Julie L; Haug, Line Småstuen; Eggesbø, Merete; Becher, Georg; Sabaredzovic, Azemira; Thomsen, Cathrine; Wilson, Ralph E; Travlos, Gregory S; Hoppin, Jane A; Baird, Donna D; Longnecker, Matthew P

    2014-01-01

    Perfluoroalkyl substances (PFASs) are widespread and persistent environmental pollutants. Previous studies, primarily among non-pregnant individuals, suggest positive associations between PFAS levels and certain blood lipids. If there is a causal link between PFAS concentrations and elevated lipids during pregnancy, this may suggest a mechanism by which PFAS exposure leads to certain adverse pregnancy outcomes, including preeclampsia. This cross-sectional analysis included 891 pregnant women enrolled in the Norwegian Mother and Child (MoBa) Cohort Study in 2003-2004. Non-fasting plasma samples were obtained at mid-pregnancy and analyzed for nineteen PFASs. Total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured in plasma. Linear regression was used to quantify associations between each PFAS exposure and each lipid outcome. A multiple PFAS model was also fitted. Seven PFASs were quantifiable in >50% of samples. Perfluorooctane sulfonate (PFOS) concentration was associated with total cholesterol, which increased 4.2mg/dL per inter-quartile shift (95% CI=0.8, 7.7) in adjusted models. Five of the seven PFASs studied were positively associated with HDL cholesterol, and all seven had elevated HDL associated with the highest quartile of exposure. Perfluoroundecanoic acid showed the strongest association with HDL: HDL increased 3.7 mg/dL per inter-quartile shift (95% CI=2.5, 4.9). Plasma concentrations of PFASs were positively associated with HDL cholesterol, and PFOS was positively associated with total cholesterol in this sample of pregnant Norwegian women. While elevated HDL is not an adverse outcome per se, elevated total cholesterol associated with PFASs during pregnancy could be of concern if causal. © 2013.

  12. Evaluation of non-HDL cholesterol as a predictor of non-fatal cardiovascular events in a prospective population cohort.

    PubMed

    Carbayo Herencia, Julio A; Simarro Rueda, Marta; Palazón Bru, Antonio; Molina Escribano, Francisca; Ponce García, Isabel; Artigao Ródenas, Luis Miguel; Caldevilla Bernardo, David; Divisón Garrote, Juan A; Gil Guillén, Vicente Francisco

    Non-HDL cholesterol (non-HDL-C) is becoming relevant both in its participation in cardiovascular risk assessment and as a therapeutic target. The objective of the present study was to assess the independent predictive capacity of both non-HDL-C and LDL-C (the main priority in dyslipidemias to reduce cardiovascular risk), in cardiovascular morbidity in a population-based sample. A prospective cohort study involving 1186 individuals in the non-HDL-C group and 1177 in the LDL-C group, followed for 10.7years (SD=2.2), who had not had any previous cardiovascular event. The predictor variables included in the adjustment were: gender, age, arterial hypertension, diabetes mellitus, smoker status and non-HDL-C in one group. In the other group, consisting of patients presenting TG levels of 400mg/dL, non-HDL-C was replaced by LDL-C. Survival curves (Kaplan-Meier) were calculated and two Cox regression models were applied, one for each group. Non-HDL-C group presented 6.2% of non-fatal cardiovascular episodes during follow-up and the LDL-C group 6.0%. After adjustment, for each 30mg/dL increase in non-HDL-C, the incidence of new non-fatal cardiovascular events increased by 31% (HR=1.31, 95%CI: 1.06-1.61; P=.018) and in the LDL-C group by 27% (HR=1.27, 95%CI: 0.97-1.61, P=.068). After a follow-up of 10.7years, non-HDL-C has been shown in our population as a prognostic factor of non-fatal cardiovascular disease, but not LDL-C, although its HR is close to statistical significance. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase.

    PubMed

    Taniyama, Y; Shibata, S; Kita, S; Horikoshi, K; Fuse, H; Shirafuji, H; Sumino, Y; Fujino, M

    1999-04-02

    Lecithin cholesterol acyltransferase (LCAT) is the key enzyme in the esterification of plasma cholesterol and in the reverse cholesterol transport on high-density lipoprotein (HDL). We have found a novel LCAT-related gene among differentially expressed cDNA fragments between two types of foam cells derived from THP-1 cells, which are different in cholesterol efflux ability, using a subtractive PCR technique. The deduced 412-amino-acid sequence has 49% amino acid sequence similarity with human LCAT. In contrast to the liver-specific expression of LCAT, mRNA expression of the gene was observed mainly in peripheral tissues including kidney, placenta, pancreas, testis, spleen, heart, and skeletal muscle. The protein exists in human plasma and is probably associated with HDL. Moreover, we discovered that the recombinant protein hydrolyzed lysophosphatidylcholine (lysoPC), a proatherogenic lipid, to glycerophosphorylcholine and a free fatty acid. We have therefore named this novel enzyme LCAT-like lysophospholipase (LLPL), through which a new catabolic pathway for lysoPC on lipoproteins could be elucidated. Copyright 1999 Academic Press.

  14. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease

    PubMed Central

    2010-01-01

    Background The search for sickle cell disease (SCD) prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C) in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P < 0.001), hematocrit (P < 0.001) and total cholesterol (P < 0.001) and a negative significant association with reticulocytes (P = 0.046), leukocytes (P = 0.015), monocytes (P = 0.004) and platelets (P = 0.005), bilirubins [total bilirubin (P < 0.001), direct bilirubin (P < 0.001) and indirect bilirubin (P < 0.001], iron (P < 0.001), aminotransferases [aspartate aminotransferase (P = 0.004), alanine aminotransferase (P = 0.035)], lactate dehydrogenase (P < 0.001), urea (P = 0.030), alpha 1-antitrypsin (P < 0.001), very low-density lipoprotein cholesterol (P = 0.003), triglycerides (P = 0.005) and hemoglobin S (P = 0.002). Low high-density lipoprotein cholesterol concentration was associated with the history of cardiac abnormalities (P = 0.025), pneumonia (P = 0.033) and blood transfusion use (P = 0.025). Lipids and inflammatory markers were associated with the presence of cholelithiasis. Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic

  15. Regulation of reverse cholesterol transport - a comprehensive appraisal of available animal studies

    PubMed Central

    2012-01-01

    Plasma levels of high density lipoprotein (HDL) cholesterol are strongly inversely correlated to the risk of atherosclerotic cardiovascular disease. A major recognized functional property of HDL particles is to elicit cholesterol efflux and consequently mediate reverse cholesterol transport (RCT). The recent introduction of a surrogate method aiming at determining specifically RCT from the macrophage compartment has facilitated research on the different components and pathways relevant for RCT. The current review provides a comprehensive overview of studies carried out on macrophage-specific RCT including a quick reference guide of available data. Knowledge and insights gained on the regulation of the RCT pathway are summarized. A discussion of methodological issues as well as of the respective relevance of specific pathways for RCT is also included. PMID:22458435

  16. Association of a cholesteryl ester transfer protein variant (rs1800777) with fat mass, HDL cholesterol levels, and metabolic syndrome.

    PubMed

    de Luis, Daniel; Izaola, Olatz; Primo, David; Gomez, Emilia; Lopez, Juan Jose; Ortola, Ana; Aller, Rocio

    2018-04-25

    There is little evidence of the association between CETP SNPs and obesity and/or related metabolic parameters. To analyze the association of the polymorphism rs1800777 of the CETP gene with anthropometric parameters, lipid profile, metabolic syndrome and its components, and adipokine levels in obese subjects without type 2 diabetes mellitus or hypertension. A population of 1005 obese subjects was analyzed. Electrical bioimpedance was performed, and blood pressure, presence of metabolic syndrome, dietary intake, physical activity, and biochemical tests were recorded. Nine hundred and sixty eight patients (96.3%) had the GG genotype, 37 patients the GA genotype (3.7%) (no AA genotype was detected). Fat mass (delta: 4.4±1.1kg; p=0.04), waist circumference (delta: 5.6±2.1cm; p=0.02), and waist to hip ratio (delta: 0.04±0.01cm; p=0.01) were higher in A allele carriers than in non-A allele carriers. HDL cholesterol levels were lower in A allele carriers than in non-A allele carriers (delta: 4.2±1.0mg/dL; p=0.04). In the logistic regression analysis, the GA genotype was associated to an increased risk of central obesity (OR 7.55, 95% CI 1.10-55.70, p=0.02) and low HDL cholesterol levels (OR 2.46, 95% CI 1.23-4.91, p=0.014). The CETP variant at position +82 is associated to lower HDL cholesterol levels, increased fat mass, and central obesity in obese subjects. These results may suggest a potential role of this variant gene in pathophysiology of adipose tissue. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes

    PubMed Central

    Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier

    2016-01-01

    Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677

  18. Maternal plasma polyunsaturated fatty acid levels during pregnancy and childhood lipids and insulin levels

    PubMed Central

    Vidakovic, Aleksandra Jelena; Jaddoe, Vincent WV; Voortman, Trudy; Demmelmair, Hans; Koletzko, Berthold; Gaillard, Romy

    2017-01-01

    Background and Aims Maternal polyunsaturated fatty acid (PUFA) levels are associated with cord blood lipid and insulin levels. Not much is known about the influence of maternal PUFAs during pregnancy on long-term offspring lipid and insulin metabolism. We examined the associations of maternal plasma n-3 and n-6 PUFA levels during pregnancy with childhood lipids and insulin levels. Methods and Results In a population-based prospective cohort study among 3,230 mothers and their children, we measured maternal second trimester n-3 and n-6 PUFA plasma levels. At the median age of 6.0 years (95% range, 5.6-7.9), we measured childhood total-cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, triglycerides, insulin and c-peptide levels. Higher maternal total n-3 PUFA levels, and specifically DHA levels, were associated with higher childhood total-cholesterol, HDL-cholesterol and insulin levels (p-values <0.05), but not with LDL-cholesterol and triglycerides. Maternal total n-6 PUFA levels were not associated with childhood outcomes, but higher levels of the individual n-6 PUFAs, EDA and DGLA were associated with a lower childhood HDL-cholesterol, and higher AA levels with higher childhood total-cholesterol and HDL-cholesterol levels (all p-values <0.05). A higher maternal n-6/n-3 PUFA ratio was only associated with lower childhood HDL-cholesterol and insulin levels (p-values <0.05). These associations were not explained by childhood body mass index. Conclusions Higher maternal total n-3 PUFAs and specifically DHA levels during pregnancy are associated with higher childhood total-cholesterol, HDL-cholesterol and insulin levels. Only individual maternal n-6 PUFAs, not total maternal n-6 PUFA levels, tended to be associated with childhood lipids and insulin levels. PMID:27919543

  19. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  20. High-Density Lipoproteins (HDL) – Nature’s Multi-Functional Nanoparticles

    PubMed Central

    Kuai, Rui; Li, Dan; Chen, Y. Eugene; Moon, James J.; Schwendeman, Anna

    2016-01-01

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well known as the ―good‖ cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and anti-oxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultra-small size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 hours), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize: a) clinical pharmacokinetics and safety of reconstituted HDL products, b) comparison of HDL with inorganic and other organic nanoparticles, c) the rationale for using HDL as drug delivery vehicles for important therapeutic indications, d) the current state-of-the-art in HDL production, and e) HDL-based drug delivery strategies for small molecules, peptides/proteins, nucleic acids, and imaging agents targeted to various organs. PMID:26889958

  1. Effects of short-term niacin treatment on plasma lipoprotein concentrations in African green monkeys (Chlorocebus aethiops).

    PubMed

    Chauke, Chesa G; Arieff, Zainunisha; Kaur, Mandeep; Seier, Jurgen V

    2014-02-01

    Niacin is the most effective drug available for raising levels of high-density lipoprotein (HDL) cholesterol. To evaluate its effects on plasma lipid concentrations, the authors administered a low dose of niacin to healthy, adult, female African green monkeys for 3 months. In the treated monkeys, low-density lipoprotein cholesterol concentrations decreased by 43% from baseline, whereas concentrations of HDL cholesterol and apolipoprotein A-I increased by 49% and 34%, respectively. The results suggest that in this primate model, a low dose of niacin can effectively increase concentrations of HDL cholesterol.

  2. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    PubMed Central

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K.; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D.; de Ángeles Granados-Silvestre, Ma; Montufar-Robles, Isela; Tito-Alvarez, Ana M.; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P.; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L.; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Lisker, Ruben; Moises, Regina S.; Menjivar, Marta; Salzano, Francisco M.; Knowler, William C.; Bortolini, M. Cátira; Hayden, Michael R.; Baier, Leslie J.; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  3. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    PubMed

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol.

    PubMed

    Abbasi, Fahim; Reaven, Gerald M

    2011-12-01

    The objective was to compare relationships between insulin-mediated glucose uptake and surrogate estimates of insulin action, particularly those using fasting triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations. Insulin-mediated glucose uptake was quantified by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test in 455 nondiabetic subjects. Fasting TG, HDL-C, glucose, and insulin concentrations were measured; and calculations were made of the following: (1) plasma concentration ratio of TG/HDL-C, (2) TG × fasting glucose (TyG index), (3) homeostasis model assessment of insulin resistance, and (4) insulin area under the curve (insulin-AUC) during a glucose tolerance test. Insulin-AUC correlated most closely with SSPG (r ∼ 0.75, P < .001), with lesser but comparable correlations between SSPG and TG/HDL-C ratio, TyG index, homeostasis model assessment of insulin resistance, and fasting TG and insulin (r ∼ 0.60, P < .001). Calculations of TG/HDL-C ratio and TyG index correlated with SSPG concentration to a similar degree, and the relationships were comparable to estimates using fasting insulin. The strongest relationship was between SSPG and insulin-AUC. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis

    PubMed Central

    Yamauchi, Yoshio; Yokoyama, Shinji; Chang, Ta-Yuan

    2016-01-01

    Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway. PMID:26497474

  6. The Effect of Cloud Ear Fungus (Auricularia polytricha) on Serum Total Cholesterol, LDL And HDL Levels on Wistar Rats Induced by Reused Cooking Oil

    NASA Astrophysics Data System (ADS)

    Budinastiti, Ratih; Sunoko, Henna Rya; Widiastiti, Nyoman Suci

    2018-02-01

    The usage of reused cooking oil affects the increase of serum total cholesterol (TC) and LDL, also the decrease of serum HDL. This condition escalates the risk of atherosclerosis, which could lead to the incidence of cardiovascular disease. Cloud ear fungus is a natural antioxidant that contains polysaccharides, flavonoids, niacin, and vitamin C, which can improve the lipid profiles. Objective of this research is to analyze the impact of water from boiled cloud ear fungus on total cholesterol, LDL, and HDL level of Wistar rats that have been given reused cooking oil. This study is a true experimental research with post test only control group design, using 12 weeks-aged male Wistar rats (n = 24) that were randomly divided into 4 groups. K1 as the negative control, K2 was given reused cooking oil and standard diet, K3 was given water from boiled cloud ear fungus and standard diet, and K4 was given reused cooking oil, water from boiled cloud ear fungus and standard diet. Serum total cholesterol, LDL, and HDL levels were measured by the CHOD-PAP method after 28 days treatment. The study showed that TC mean value of K1 (80.2217 ± 3.61 mg / dL), K2 (195.8483 ± 5.47 mg / dL), K3 (75.5800 ± 4.02 mg / dL), and K4 (110.8683 ± 5.82 mg / dL); p = 0.000. LDL mean value of K1 (29.9200 ± 1.53 mg / dL), K2 (78.4167 ± 1.77 mg / dL), K3 (24.3167 ± 1.77 mg / dL), and K4 (40, 1617 ± 2.84 mg / dL); p = 0.000. HDL mean value of K1 (65.8950 ± 1.99 mg / dL), K2 (24.3233 ± 1.44 mg / dL), K3 (73.2300 ± 1.92 mg / dL), and K4 (54, 9550 ± 2.04 mg / dL); p= 0.000. Conclusion: Water from boiled cloud ear fungus decreases the serum total cholesterol and LDL, 06006 increases serum HDL levels of Wistar rats that has been given reused cooking oil.

  7. Regulation of plasma cholesterol by hepatic low-density lipoprotein receptors.

    PubMed

    Kovanen, P T

    1987-02-01

    The endogenous lipoprotein system (very low-density lipoprotein [VLDL], intermediate-density lipoprotein [IDL], low-density lipoprotein [LDL] cascade) holds the key to understanding the mechanisms by which hormones, diet, and drugs interact to regulate the plasma cholesterol level. Crucial components of this system are hepatic LDL receptors that mediate the uptake and degradation of plasma LDL. With experimental animals, it has been possible to demonstrate that hepatic LDL receptors are sensitive to hormonal, dietary, and pharmacologic manipulation. The decrease in number of hepatic LDL receptors in hypothyroidism or after cholesterol feeding leads to elevation of plasma LDL cholesterol levels. Conversely, the increase in number of hepatic LDL receptors results in lowering of plasma LDL cholesterol levels. This can be observed in hyperthyroidism, during administration of pharmacologic doses of 17 alpha-ethinyl estradiol, or during treatment with cholesterol-lowering drugs such as the bile acid-binding resins and cholesterol-synthesis inhibitors. Since cholesterol excretion from the body occurs via the liver, the increased efficiency of disposal of plasma cholesterol by increasing hepatic LDL receptors will ultimately lead to depletion of excessive body cholesterol. Pharmacologic regulation of hepatic LDL receptors should be a valuable tool in the prevention and therapy of atherosclerosis.

  8. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  9. Ability of the plasma concentration ratio of triglyceride/high-density lipoprotein cholesterol to identify increased cardio-metabolic risk in an east Asian population.

    PubMed

    Sung, Ki-Chul; Reaven, Gerald; Kim, Sun

    2014-07-01

    The plasma concentration ratio of triglyceride (TG)/high-density lipoprotein cholesterol (HDL-C) has identified increased cardio-metabolic risk and outcome in European populations. The goal of this study was to see if this ratio would also have clinical utility in identifying cardio-metabolic risk in an East Asian population. Measurements of various cardio-metabolic risk factors, including coronary calcium scores, were available on 12,166 apparently healthy Korean adults. Approximately 25% of men and women with the highest TG/HDL-C ratios were classified as being at high cardio-metabolic risk, and their risk factor profiles compared to the remainder of the population, as well as to individuals with the metabolic syndrome (MetS). High cardio-metabolic risk (upper 25%) was defined as a TG/HDL-C ratio ≥3.5 (men) or ≥2.0 (women), and all cardio-metabolic risk factors measured, including coronary calcium scores, were significantly more adverse when compared to individuals beneath these cut-points. Although cardio-metabolic risk profiles appeared reasonably comparable in subjects identified by either a high TG/HDL-C or a diagnosis of MetS, use of the TG/HDL-C increased the numbers at high risk. Evidence that determination of the plasma TG/HDL-C concentration ratio provides a simple way to identify individual at increased cardio-metabolic risk has been extended to an East Asian population. The ability of an elevated TG/HDL-C ratio to accomplish this goal is comparable to that achieved using the more complicated MetS criteria. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Extremely elevated HDL-cholesterol levels are not associated with increased carotid intima-media thickness: data from ELSA Brasil.

    PubMed

    Laurinavicius, Antonio G; Santos, Itamar S; Santos, Raul D; Bensenor, Isabela M; Conceição, Raquel D; Lotufo, Paulo A

    2016-01-01

    There is evidence that extremely elevated high-density lipoprotein cholesterol (HDL-c), that is, hyperalphalipoproteinemia (HALP) may indicate dysfunctional HDL, conferring increased cardiovascular risk. We studied carotid intima-media thickness (cIMT) a marker of subclinical vascular disease according to HDL-c distribution. cIMT was studied in subjects with "normal" HDL-c levels (HDL-c 40-50 mg/dL for men; 50-60 mg/dL for women, mean 49.6 ± 5.7 mg/dL, n = 3226); in those with HALP (HDL-c ≥90 mg/dL for both sexes, mean 101.2 ± 10 mg/dL, n = 264) and according to HDL-c quintile distribution (n = 9779). Multiple linear regression was used to test the association of HDL-c and cIMT. Subjects with HALP were older (54.5 ± 9.6 vs 51.1 ± 8.8 years, P < .001); more frequently females (86.4% vs 49%, P < .001); and presented a lower burden of risk factors: hypertension (24.6% vs 32.7%, P = .009), diabetes (10.2% vs 20.4%, P < .001), and obesity (18.6% vs 37.6%, P < .001). A similar profile was seen with higher HDL-c quintiles in the whole study population. When compared to normal HDL-c values, HALP was associated with lower maximal cIMT (0.779 ± 0.189 mm vs 0.818 ± 0.200 mm, P = .002), and there was a lower prevalence of individuals with cIMT ≥ 75(th) percentile for age and gender or high cIMT (17.5% vs 26.2%, P = .003). After multivariate analysis, no association was seen between HALP and increasing cIMT values, indeed the 5(th) HDL-c quintile was associated with lower risk of high cIMT (OR = 0.80; 95% CI = 0.68-0.95). HALP is associated with lower cIMT and does not indicate a pro-atherogenic phenotype. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  11. Mining the LIPG Allelic Spectrum Reveals the Contribution of Rare and Common Regulatory Variants to HDL Cholesterol

    PubMed Central

    Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O.; Demissie, Serkalem; Manning, Alisa K.; DerOhannessian, Stephanie L.; Wolfe, Megan L.; Cupples, L. Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J.

    2011-01-01

    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5′ UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5′ UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694

  12. Longitudinal Changes in Cholesterol Efflux Capacities in Patients With Coronary Artery Disease Undergoing Lifestyle Modification Therapy.

    PubMed

    Boyer, Marjorie; Lévesque, Valérie; Poirier, Paul; Marette, André; Mitchell, Patricia L; Mora, Samia; Mathieu, Patrick; Després, Jean-Pierre; Larose, Éric; Arsenault, Benoit J

    2018-06-01

    Our objective was to identify the determinants of high-density lipoprotein cholesterol efflux capacity (HDL-CEC) changes in patients with coronary artery disease who participated in a lifestyle modification program aimed at increasing physical activity levels and improving diet quality. A total of 86 men with coronary artery disease aged between 35 and 80 years participated in a 1-year lifestyle modification program that aimed to achieve a minimum of 150 minutes of aerobic physical activity weekly and improve diet quality. HDL-CECs were measured before and after the 1-year intervention using 3 H-cholesterol-labeled J774 and HepG2 cells. Visceral, subcutaneous, and cardiac adipose tissue levels were assessed before and after the intervention using magnetic resonance imaging. Lipoprotein particle size and concentrations were measured by proton nuclear magnetic resonance spectroscopy and a complete lipoprotein-lipid profile was obtained. At baseline, the best correlate of HDL-CECs were apolipoprotein AI ( R 2 =0.35, P <0.0001) and high-density lipoprotein cholesterol ( R 2 =0.21, P <0.0001) for J774-HDL-CECs and HepG2-HDL-CECs, respectively. Baseline and longitudinal changes in HDL-CECs were associated with several lipoprotein size and concentration indices, although high-density lipoprotein cholesterol was the best predictor of longitudinal changes in J774-HDL-CECs ( R 2 =0.18, P =0.002) and apolipoprotein AI was found to be the best predictor of longitudinal changes in HepG2 cholesterol efflux capacities ( R 2 =0.21, P =0.002). Results of this study suggest that increases in high-density lipoprotein cholesterol and apolipoprotein AI levels typically observed in patients with coronary artery disease undergoing healthy lifestyle modification therapy may be indicative of higher plasma concentrations of functional high-density lipoprotein particles. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet.

    PubMed

    Potì, Francesco; Ceglarek, Uta; Burkhardt, Ralph; Simoni, Manuela; Nofer, Jerzy-Roch

    2015-05-01

    Sphingosine 1-phosphate (S1P) is a lysosphingolipid associated with high-density lipoproteins (HDL) that contributes to their anti-atherogenic potential. We investigated whether a reduction in S1P plasma levels affects atherosclerosis in low-density lipoprotein receptor deficient (LDL-R-/-) mice. LDL-R-/- mice on Western diet containing low (0.25% w/w) or high (1.25% w/w) cholesterol were treated for 16 weeks with SKI-II, a sphingosine kinase 1 inhibitor that significantly reduced plasma S1P levels. SKI-II treatment increased atherosclerotic lesions in the thoracic aorta in mice on high but not low cholesterol diet. This compound did not affect body weight, blood cell counts and plasma total and HDL cholesterol, but decreased triglycerides. In addition, mice on high cholesterol diet receiving SKI-II showed elevated levels of tumor necrosis factor-α and endothelial adhesion molecules (sICAM-1, sVCAM-1). Prolonged lowering of plasma S1P produces pro-atherogenic effects in LDL-R-/- mice that are evident under condition of pronounced hypercholesterolemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict cardiovascular outcomes in chronic kidney disease.

    PubMed

    Sonmez, Alper; Yilmaz, Mahmut Ilker; Saglam, Mutlu; Unal, Hilmi Umut; Gok, Mahmut; Cetinkaya, Hakki; Karaman, Murat; Haymana, Cem; Eyileten, Tayfun; Oguz, Yusuf; Vural, Abdulgaffar; Rizzo, Manfredi; Toth, Peter P

    2015-04-16

    Cardiovascular disease (CVD) risk is substantially increased in subjects with chronic kidney disease (CKD). The Triglycerides (TG) to High-Density Lipoprotein Cholesterol (HDL-C) ratio is an indirect measure of insulin resistance and an independent predictor of cardiovascular risk. No study to date has been performed to evaluate whether the TG/HDL-C ratio predicts CVD risk in patients with CKD. A total of 197 patients (age 53±12 years) with CKD Stages 1 to 5, were enrolled in this longitudinal, observational, retrospective study. TG/HDL-C ratio, HOMA-IR indexes, serum asymmetric dimethyl arginine (ADMA), high sensitivity C-reactive protein (CRP), parathyroid hormone (PTH), calcium, phosphorous, estimated glomerular filtration rate (eGFR), and albumin levels were measured. Flow mediated vasodilatation (FMD) of the brachial artery was assessed by using high-resolution ultrasonography. A total of 11 cardiovascular (CV) deaths and 43 nonfatal CV events were registered in a mean follow-up period of 30 (range 9 to 35) months. Subjects with TG/HDL-C ratios above the median values (>3.29) had significantly higher plasma ADMA, PTH, and phosphorous levels (p=0.04, p=0.02, p=0.01 respectively) and lower eGFR and FMD values (p=0.03, p<0.001 respectively). The TG/HDL-C ratio was an independent determinant of FMD (β=-0.25 p=0.02) along with TG, HDL-C, hsCRP, serum albumin, phosphate levels, systolic blood pressure, PTH, eGFR and the presence of diabetes mellitus. The TG/HDL-C ratio was also a significant independent determinant of cardiovascular outcomes [HR: 1.36 (1.11-1.67) (p=0.003)] along with plasma ADMA levels [HR: 1.31 (1.13-1.52) (p<0.001)] and a history of diabetes mellitus [HR: 4.82 (2.80-8.37) (p<0.001)]. This study demonstrates that the elevated TG/HDL-C ratio predicts poor CVD outcome in subjects with CKD. Being a simple, inexpensive, and reproducible marker of CVD risk, the TG/HDL-C ratio may emerge as a novel and reliable indicator among the many well

  15. Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice.

    PubMed

    Rocco, D D F M; Okuda, L S; Pinto, R S; Ferreira, F D; Kubo, S K; Nakandakare, E R; Quintão, E C R; Catanozi, S; Passarelli, M

    2011-07-01

    We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.

  16. Non-high-density lipoprotein cholesterol vs low-density lipoprotein cholesterol as a risk factor for ischemic stroke: a result from the Kailuan study.

    PubMed

    Wu, Jianwei; Chen, Shengyun; Liu, Liping; Gao, Xiang; Zhou, Yong; Wang, Chunxue; Zhang, Qian; Wang, Anxin; Hussain, Mohammed; Sun, Baoying; Wu, Shouling; Zhao, Xingquan

    2013-06-01

    To compare the predictive value of serum low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol levels for ischemic stroke in the Chinese population. We performed a four-year cohort study of 95 778 men and women, aged 18-98 years, selected from the Kailuan study (2006-2007). Baseline LDL cholesterol levels were estimated using direct test method. Total cholesterol levels were estimated using endpoint test method. The predictive values of LDL cholesterol and non-HDL cholesterol for ischemic stroke were compared. During the follow-up period, there were 1153 incident cases of ischemic stroke. The hazard ratio (HR) for ischemic stroke in the top quintile of LDL cholesterol was the highest among five quintiles (HR: 1·25; 95% confidence interval (CI), 1·01-1·53). The HR in the top quintile of non-HDL cholesterol for ischemic stroke was also the highest among five quintiles (HR: 1·53; 95% CI, 1·24-1·88). Analysis of trends showed a significant positive relationship between ischemic stroke incidence and serum LDL cholesterol level, and non-HDL cholesterol level, respectively (both P < 0·05). The area under the curve of LDL cholesterol and non-HDL cholesterol for ischemic stroke was 0·51 and 0·56, respectively (P < 0·05 for the difference). Serum Non-HDL cholesterol level is a stronger predictor for the risk of ischemic stroke than serum LDL cholesterol level in the Chinese population.

  17. 2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice.

    PubMed

    Andersen, Charlotte; Schjoldager, Janne G; Tortzen, Christian G; Vegge, Andreas; Hufeldt, Majbritt R; Skaanild, Mette T; Vogensen, Finn K; Kristiansen, Karsten; Hansen, Axel K; Nielsen, John

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice.

  18. 2-Heptyl-Formononetin Increases Cholesterol and Induces Hepatic Steatosis in Mice

    PubMed Central

    Andersen, Charlotte; Schjoldager, Janne G.; Tortzen, Christian G.; Vegge, Andreas; Hufeldt, Majbritt R.; Skaanild, Mette T.; Vogensen, Finn K.; Kristiansen, Karsten; Hansen, Axel K.; Nielsen, John

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice. PMID:23738334

  19. Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach.

    PubMed

    Gadkar, Kapil; Lu, James; Sahasranaman, Srikumar; Davis, John; Mazer, Norman A; Ramanujan, Saroja

    2016-01-01

    The recent failures of cholesteryl ester transport protein inhibitor drugs to decrease CVD risk, despite raising HDL cholesterol (HDL-C) levels, suggest that pharmacologic increases in HDL-C may not always reflect elevations in reverse cholesterol transport (RCT), the process by which HDL is believed to exert its beneficial effects. HDL-modulating therapies can affect HDL properties beyond total HDL-C, including particle numbers, size, and composition, and may contribute differently to RCT and CVD risk. The lack of validated easily measurable pharmacodynamic markers to link drug effects to RCT, and ultimately to CVD risk, complicates target and compound selection and evaluation. In this work, we use a systems pharmacology model to contextualize the roles of different HDL targets in cholesterol metabolism and provide quantitative links between HDL-related measurements and the associated changes in RCT rate to support target and compound evaluation in drug development. By quantifying the amount of cholesterol removed from the periphery over the short-term, our simulations show the potential for infused HDL to treat acute CVD. For the primary prevention of CVD, our analysis suggests that the induction of ApoA-I synthesis may be a more viable approach, due to the long-term increase in RCT rate. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Triglyceride to high-density lipoprotein cholesterol (HDL-C) ratio and arterial stiffness in Japanese population: a secondary analysis based on a cross-sectional study.

    PubMed

    Chen, Chi; Dai, Jia-Lin

    2018-05-29

    Previous studies have revealed that triglyceride to high-density lipoprotein cholesterol (HDL-C) ratio (henceforth TG/HDL-C) is one of major risk factors of cardiovascular diseases, insulin resistance and metabolism syndrome. However, there are fewer scientific dissertations about the correlation between TG/HDL-C and bapWV. This study was undertaken to investigate the relationship between Triglyceride (TG) to high-density lipoprotein cholesterol (HDL-C) ratio and brachial-ankle pulse wave velocity (baPWV) in Japanese. The present study was a cross-sectional study. 912 Japanese men and women, aging 24-84 years old, received a health medical a health check-up program including the results from baPWV inspection and various standardized questionnaire in a health examination Center in Japan. Main outcome measures included TG/HDL-C ratio, baPWV, fatty liver, postmenopausal status. Abdominal ultrasonography was used to diagnose fatty liver. Postmenopausal state was defined as beginning 1 year after the cessation of menses. It was noted that the entire study was completed by Fukuda et al., and uploaded the data to the DATADRYAD website. The author only used this data for secondary analysis. After adjusting potential confounders (age, sex, BMI, SBP, DBP, AST, ALT, GGT, uric acid, fasting glucose, TC, LDL, eGFR, smoking and exercise status, fatty liver, alcohol consumption and ABI), non-linear relationship was detected between TG/HDL-C and baPWV, whose point was 5.6. The effect sizes and the confidence intervals on the left and right sides of inflection point were 12.7 (1.9 to 23.5) and - 16.7 (- 36.8 to 3.3), respectively. Subgroup analysis showed, in participants with excessive alcohol consumption (more than 280 g/week), that TG/HDL-C had a negative correlation with BAPWV (β = - 30.7, 95%CI (- 53.1, - 8.4)), and the P for interaction was less than 0.05, CONCLUSION: The relationship between TG/HDL-C and baPWV is non-linear. TG/HDL-C was positively

  1. Cashew Nut Consumption Increases HDL Cholesterol and Reduces Systolic Blood Pressure in Asian Indians with Type 2 Diabetes: A 12-Week Randomized Controlled Trial.

    PubMed

    Mohan, Viswanathan; Gayathri, Rajagopal; Jaacks, Lindsay M; Lakshmipriya, Nagarajan; Anjana, Ranjit Mohan; Spiegelman, Donna; Jeevan, Raman Ganesh; Balasubramaniam, Kandappa K; Shobana, Shanmugam; Jayanthan, Mathialagan; Gopinath, Viswanathan; Divya, Selvakumar; Kavitha, Vasudevan; Vijayalakshmi, Parthasarathy; Bai R, Mookambika Ramya; Unnikrishnan, Ranjit; Sudha, Vasudevan; Krishnaswamy, Kamala; Salas-Salvadó, Jordi; Willett, Walter C

    2018-01-01

    There is increasing evidence that nut consumption decreases the risk of cardiovascular disease. However, there are few data on the health effects of cashew nuts among adults with type 2 diabetes (T2DM). The study aimed to investigate the effects of cashew nut supplementation on glycemia, body weight, blood pressure, and lipid profile in Asian Indians with T2DM. In a parallel-arm, randomized controlled trial, 300 adults with T2DM [mean ± SD age: 51 ± 9.3 y; body mass index (BMI; in kg/m2): 26.0 ± 3.4; 55% male] were randomly assigned to receive advice to follow a standard diabetic diet (control) or similar advice plus 30 g cashew nuts/d (intervention) for 12 wk. The macronutrient composition of the prescribed diabetic diet was 60-65% energy from carbohydrates, 15-25% from fat, and the rest from protein. Differences between groups in changes in anthropometric and biochemical variables were analyzed using linear models with robust variance estimation under an assumed independence working correlation. Participants in the intervention group had a greater decrease in systolic blood pressure from baseline to 12 wk than did controls (-4.9 ± 13.7 compared with -1.7 ± 11.6 mm Hg; P = 0.04) and a greater increase in plasma HDL cholesterol compared with controls (+1.7 ± 5.6 compared with +0.1 ± 4.6 mg/dL; P = 0.01). There were no differences between the groups with respect to changes in body weight, BMI, blood lipid, and glycemic variables. Plasma oleic acid concentrations and self-reported dietary intake of nuts, oleic acid, and monounsaturated fatty acids suggested excellent compliance with the nut consumption. Cashew nut supplementation in Asian Indians with T2DM reduced systolic blood pressure and increased HDL cholesterol concentrations with no deleterious effects on body weight, glycemia, or other lipid variables. This study was registered at the clinical trial registry of India as CTRI/2017/07/009022. © 2018 American Society for Nutrition. All rights reserved.

  2. Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach[S

    PubMed Central

    Gadkar, Kapil; Lu, James; Sahasranaman, Srikumar; Davis, John; Mazer, Norman A.; Ramanujan, Saroja

    2016-01-01

    The recent failures of cholesteryl ester transport protein inhibitor drugs to decrease CVD risk, despite raising HDL cholesterol (HDL-C) levels, suggest that pharmacologic increases in HDL-C may not always reflect elevations in reverse cholesterol transport (RCT), the process by which HDL is believed to exert its beneficial effects. HDL-modulating therapies can affect HDL properties beyond total HDL-C, including particle numbers, size, and composition, and may contribute differently to RCT and CVD risk. The lack of validated easily measurable pharmacodynamic markers to link drug effects to RCT, and ultimately to CVD risk, complicates target and compound selection and evaluation. In this work, we use a systems pharmacology model to contextualize the roles of different HDL targets in cholesterol metabolism and provide quantitative links between HDL-related measurements and the associated changes in RCT rate to support target and compound evaluation in drug development. By quantifying the amount of cholesterol removed from the periphery over the short-term, our simulations show the potential for infused HDL to treat acute CVD. For the primary prevention of CVD, our analysis suggests that the induction of ApoA-I synthesis may be a more viable approach, due to the long-term increase in RCT rate. PMID:26522778

  3. Impact of a 1-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia.

    PubMed

    Boyer, Marjorie; Mitchell, Patricia L; Poirier, Dr Paul; Alméras, Natalie; Tremblay, Angelo; Bergeron, Jean; Despres, Jean-Pierre; Arsenault, Benoit J

    2018-06-05

    Cholesterol efflux capacities (CECs) are negatively associated with cardiovascular disease risk, irrespective of plasma high-density lipoprotein (HDL) cholesterol levels. Whether interventions targeting lifestyle improve HDL-CECs is unknown. Our objective was to determine whether improving dietary quality and increasing physical activity levels improves HDL-CECs in abdominally obese men with dyslipidemia. Our study sample included men (488.5 years) with an elevated waist circumference ({greater than or equal to}90 cm) associated with dyslipidemia (triglycerides {greater than or equal to}1.69 and/or HDL cholesterol <1.03 mmol/l); 113 men completed a 1-year intervention, consisting of a healthy eating and physical activity/exercise program and 32 were included in a control group. An oral lipid tolerance test (OLTT) was performed in a subsample of 28 men who completed the intervention and blood was collected every 2 hours during 8 hours. HDL-CECs were measured using 3 H cholesterol labeled J774 macrophages and HepG2 hepatocytes. The lifestyle modification program led to an overall improvement in the cardiometabolic risk profile, increases in J774-HDL-CEC by 14.1% (+0.881.09%, p<0.0001), HepG2-HDL-CEC by 3.4% (+0.170.75%, p=0.01), HDL-C and apolipoprotein A-1 levels (13.5%, p<0.0001 and 14.9%, p<0.0001, respectively). J774-HDL-CECs and HepG2-HDL-CECs did not change in the control group. The best predictor for changes in HDL-CEC was Apo A1 level. The lifestyle modification program also improved HDL-CECs response in postprandial lipemia during an OLTT. HDL-CEC did not change during the OLTT. Our results suggest that increasing physical activity levels and improving diet quality can have a positive impact on both HDL quantity and quality in abdominally obese men with dyslipidemia.

  4. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update.

    PubMed

    Reiner, Z

    2013-09-01

    Cardiovascular disease (CVD) is a significant cause of death in Europe. In addition to patients with proven CVD, those with type 2 diabetes (T2D) are at a particularly high-risk of CVD and associated mortality. Treatment for dyslipidaemia, a principal risk factor for CVD, remains a healthcare priority; evidence supports the reduction of low-density lipoprotein cholesterol (LDL-C) as the primary objective of dyslipidaemia management. While statins are the treatment of choice for lowering LDL-C in the majority of patients, including those with T2D, many patients retain a high CVD risk despite achieving the recommended LDL-C targets with statins. This 'residual risk' is mainly due to elevated triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) levels. Following statin therapy optimisation additional pharmacotherapy should be considered as part of a multifaceted approach to risk reduction. Fibrates (especially fenofibrate) are the principal agents recommended for add-on therapy to treat elevated TG or low HDL-C levels. Currently, the strongest evidence of benefit is for the addition of fenofibrate to statin treatment in high-risk patients with T2D and dyslipidaemia. An alternative approach is the addition of agents to reduce LDL-C beyond the levels attainable with statin monotherapy. Here, addition of fibrates and niacin to statin therapy is discussed, and novel approaches being developed for HDL-C and TG management, including cholesteryl ester transfer protein inhibitors, Apo A-1 analogues, mipomersen, lomitapide and monoclonal antibodies against PCSK9, are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. 2H2O-Based HDL Turnover Method for the Assessment of Dynamic HDL Function in Mice

    PubMed Central

    Kasumov, Takhar; Willard, Belinda; Li, Ling; Li, Min; Conger, Heather; Buffa, Jennifer A.; Previs, Stephen; McCullough, Arthur; Hazen, Stanley L.; Smith, Jonathan D.

    2014-01-01

    Objective High-density lipoprotein (HDL) promotes reverse cholesterol transport (RCT) from peripheral tissues to the liver for clearance. Reduced HDL-cholesterol (HDLc) is associated with atherosclerosis; however, as a predictor of cardiovascular disease, HDLc has limitations as it is not a direct marker of HDL functionality. Our objective was to develop a mass spectrometry based method for the simultaneous measurement of HDLc and ApoAI kinetics in mice using a single 2H2O tracer, and use it to examine genetic and drug perturbations on HDL turnover in vivo. Approach and Results Mice were given 2H2O in the drinking water and serial blood samples were collected at different time points. HDLc and ApoAI gradually incorporated 2H, allowing experimental measurement of fractional catabolic rates (FCR) and production rates (PR) for HDLc and ApoA1. ApoE−/− mice displayed increased FCR (p<0.01) and reduced PR of both HDLc and ApoAI (p<0.05) compared to controls. In human ApoAI transgenic mice, levels and PRs of HDLc and human ApoAI were strikingly higher than in wild type mice. Myriocin, an inhibitor of sphingolipid synthesis, significantly increased both HDL flux and macrophage-to-feces RCT, indicating compatibility of this HDL turnover method with the macrophage specific RCT assay. Conclusions 2H2O-labeling can be used to measure HDLc and ApoAI flux in vivo, and to assess the role of genetic and pharmacological interventions on HDL turnover in mice. Safety, simplicity, and low cost of the 2H2O-based HDL turnover approach suggest that this assay can be scaled for human use to study effects of HDL targeted therapies on dynamic HDL function. PMID:23766259

  6. Metabolic and functional relevance of HDL subspecies

    USDA-ARS?s Scientific Manuscript database

    Though the association of high-density lipoprotein cholesterol (HDL-C) with cardiovascular disease (CVD) was described as early as 1950, HDL’s role in CVD still remains to be fully elucidated. There are numerous publications showing the inverse relationship between HDL-C and CVD risk; however, in t...

  7. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester.

    PubMed

    Gillard, Baiba K; Bassett, G Randall; Gotto, Antonio M; Rosales, Corina; Pownall, Henry J

    2017-05-26

    Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[ 3 H]CE labeled with [ 125 I]apoAI or [ 125 I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR -/- ) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Effects of a New Nutraceutical Formulation (Berberine, Red Yeast Rice and Chitosan) on Non-HDL Cholesterol Levels in Individuals with Dyslipidemia: Results from a Randomized, Double Blind, Placebo-Controlled Study

    PubMed Central

    Spigoni, Valentina; Antonini, Monica; Micheli, Maria Maddalena; Fantuzzi, Federica; Fratter, Andrea; Pellizzato, Marzia; Derlindati, Eleonora; Zavaroni, Ivana; Bonadonna, Riccardo C.; Dei Cas, Alessandra

    2017-01-01

    Increased non high-density lipoprotein (HDL)/low-density lipoprotein (LDL) cholesterol levels are independent risk factors for cardiovascular (CV) mortality with no documented threshold. A new combination of nutraceuticals (berberine 200 mg, monacolin K 3 mg, chitosan 10 mg and coenzyme Q 10 mg) with additive lipid-lowering properties has become available. The aim of the study is to test the efficacy of the nutraceutical formulation (one daily) in lowering non-HDL cholesterol vs. placebo at 12 weeks in individuals with non-HDL-cholesterol levels ≥160 mg/dL. 39 subjects (age 52 ± 11 years; 54% females; body mass index 27 ± 4 kg/m2) were randomized (3:1) in a double blind phase II placebo-controlled study. At baseline, 4 and 12 weeks main clinical/biohumoral parameters, pro-inflammatory cytokines, (gut)-hormones, proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and endothelial progenitor cell (EPC) number were assessed. Baseline characteristics were comparable in the two groups. The intervention significantly decreased non-HDL cholesterol (−30 ± 20 mg/dL; p = 0.012), LDL cholesterol (−31 ± 18 mg/dL, p = 0.011) and apolipoprotein (Apo) B (−14 ± 12 mg/dL, p = 0.030) levels compared to the placebo. Pro-inflammatory, hormonal, PCSK9 and EPC levels remained stable throughout the study in both groups. The intervention was well tolerated. Three adverse events occurred: Epstein Barr virus infection, duodenitis and asymptomatic but significant increase in creatine phosphokinase (following intense physical exercise) which required hospitalization. The tested nutraceutical formulation may represent a possible therapeutic strategy in dyslipidemic individuals in primary prevention. PMID:28704936

  9. Effects of a New Nutraceutical Formulation (Berberine, Red Yeast Rice and Chitosan) on Non-HDL Cholesterol Levels in Individuals with Dyslipidemia: Results from a Randomized, Double Blind, Placebo-Controlled Study.

    PubMed

    Spigoni, Valentina; Aldigeri, Raffaella; Antonini, Monica; Micheli, Maria Maddalena; Fantuzzi, Federica; Fratter, Andrea; Pellizzato, Marzia; Derlindati, Eleonora; Zavaroni, Ivana; Bonadonna, Riccardo C; Dei Cas, Alessandra

    2017-07-12

    Increased non high-density lipoprotein (HDL)/low-density lipoprotein (LDL) cholesterol levels are independent risk factors for cardiovascular (CV) mortality with no documented threshold. A new combination of nutraceuticals (berberine 200 mg, monacolin K 3 mg, chitosan 10 mg and coenzyme Q 10 mg) with additive lipid-lowering properties has become available. The aim of the study is to test the efficacy of the nutraceutical formulation (one daily) in lowering non-HDL cholesterol vs. placebo at 12 weeks in individuals with non-HDL-cholesterol levels ≥160 mg/dL. 39 subjects (age 52 ± 11 years; 54% females; body mass index 27 ± 4 kg/m²) were randomized (3:1) in a double blind phase II placebo-controlled study. At baseline, 4 and 12 weeks main clinical/biohumoral parameters, pro-inflammatory cytokines, (gut)-hormones, proprotein convertase subtilisin/kexin type 9 (PCSK9) levels and endothelial progenitor cell (EPC) number were assessed. Baseline characteristics were comparable in the two groups. The intervention significantly decreased non-HDL cholesterol (-30 ± 20 mg/dL; p = 0.012), LDL cholesterol (-31 ± 18 mg/dL, p = 0.011) and apolipoprotein (Apo) B (-14 ± 12 mg/dL, p = 0.030) levels compared to the placebo. Pro-inflammatory, hormonal, PCSK9 and EPC levels remained stable throughout the study in both groups. The intervention was well tolerated. Three adverse events occurred: Epstein Barr virus infection, duodenitis and asymptomatic but significant increase in creatine phosphokinase (following intense physical exercise) which required hospitalization. The tested nutraceutical formulation may represent a possible therapeutic strategy in dyslipidemic individuals in primary prevention.

  10. Cost-effectiveness of raising HDL cholesterol by adding prolonged-release nicotinic acid to statin therapy in the secondary prevention setting: a French perspective.

    PubMed

    Roze, S; Ferrières, J; Bruckert, E; Van Ganse, E; Chapman, M J; Liens, D; Renaudin, C

    2007-11-01

    To evaluate the cost-effectiveness of raising high-density lipoprotein cholesterol (HDL-C) with add-on nicotinic acid in statin-treated patients with coronary heart disease (CHD) and low HDL-C, from the French healthcare system perspective. Computer simulation economic modelling incorporating two decision analytic submodels was used. The first submodel generated a cohort of 2000 patients and simulated lipid changes using baseline characteristics and treatment effects from the ARterial Biology for the Investigation of the Treatment Effects of Reducing cholesterol (ARBITER 2) study. Prolonged-release (PR) nicotinic acid (1 g/day) was added in patients with HDL-C < 40 mg/dl (1.03 mmol/l) on statin alone. The second submodel used standard Markov techniques to evaluate long-term clinical and economic outcomes based on Framingham risk estimates. Direct medical costs were accounted from a third party payer perspective [2004 Euros (euro)] and discounted by 3%. Addition of PR nicotinic acid to statin therapy resulted in substantial health gain and increased life expectancy, at a cost well within the threshold (< 50,000 euros per life year gained) considered good value for money in Western Europe. Raising HDL-C by adding PR nicotinic acid to statin therapy in CHD patients was cost-effective in France at a level considered to represent good value for money by reimbursement authorities in Europe. This strategy was highly cost-effective in CHD patients with type 2 diabetes.

  11. The effects of amoxicillin and vancomycin on parameters reflecting cholesterol metabolism.

    PubMed

    Baumgartner, S; Reijnders, D; Konings, M C J M; Groen, A K; Lütjohann, D; Goossens, G H; Blaak, E E; Plat, J

    2017-10-01

    Changes in the microbiota composition have been implicated in the development of obesity and type 2 diabetes. However, not much is known on the involvement of gut microbiota in lipid and cholesterol metabolism. In addition, the gut microbiota might also be a potential source of plasma oxyphytosterol and oxycholesterol concentrations (oxidation products of plant sterols and cholesterol). Therefore, the aim of this study was to modulate the gut microbiota by antibiotic therapy to investigate effects on parameters reflecting cholesterol metabolism and oxyphytosterol concentrations. A randomized, double blind, placebo-controlled trial was performed in which 55 obese, pre-diabetic men received oral amoxicillin (broad-spectrum antibiotic), vancomycin (antibiotic directed against Gram-positive bacteria) or placebo (microcrystalline cellulose) capsules for 7days (1500mg/day). Plasma lipid and lipoprotein, non-cholesterol sterol, bile acid and oxy(phyto)sterol concentrations were determined at baseline and after 1-week intervention. Plasma secondary bile acids correlated negatively with cholestanol (marker for cholesterol absorption, r=-0.367; P<0.05) and positively with lathosterol concentrations (marker for cholesterol synthesis, r=0.430; P<0.05). Fasting plasma secondary bile acid concentrations were reduced after vancomycin treatment as compared to placebo treatment (-0.24±0.22μmol/L vs. -0.08±0.29μmol/L; P<0.01). Vancomycin and amoxicillin treatment did not affect markers for cholesterol metabolism, plasma TAG, total cholesterol, LDL-C or HDL-C concentrations as compared to placebo. In addition, both antibiotic treatments did not affect individual isoforms or total plasma oxyphytosterol or oxycholesterol concentrations. Despite strong correlations between plasma bile acid concentrations and cholesterol metabolism (synthesis and absorption), amoxicillin and vancomycin treatment for 7days did not affect plasma lipid and lipoprotein, plasma non-cholesterol sterol and

  12. Cholesterol - what to ask your doctor

    MedlinePlus

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  13. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis.

    PubMed

    Yamauchi, Yoshio; Yokoyama, Shinji; Chang, Ta-Yuan

    2016-01-01

    Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Elevated plasma and urinary concentrations of green tea catechins associated with improved plasma lipid profile in healthy Japanese women.

    PubMed

    Takechi, Ryusuke; Alfonso, Helman; Hiramatsu, Naoko; Ishisaka, Akari; Tanaka, Akira; Tan, La'Belle; Lee, Andy H

    2016-03-01

    This study investigated green tea catechins in plasma and urine and chronic disease biomarkers. We hypothesized that plasma and urinary concentration of green tea catechins are associated with cardiovascular disease and diabetes biomarkers. First void urine and fasting plasma samples were collected from 57 generally healthy females aged 38 to 73 years (mean, 52 ± 8 years) recruited in Himeji, Japan. The concentrations of plasma and urinary green tea catechins were determined by liquid chromatography coupled with mass tandem spectrometer. Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, glucose, insulin, glycated hemoglobin, and C-reactive protein in plasma/serum samples were analyzed by a commercial diagnostic laboratory. Statistical associations were assessed using Spearman correlation coefficients. The results showed weak associations between plasma total catechin and triglyceride (r = -0.30) and LDL cholesterol (r = -0.28), whereas plasma (-)-epigallocatechin-3-gallate, (-)-epigallocatechin, (-)-epicatechin-3-gallate, and (-)-epicatechin exhibited weak to moderate associations with triglyceride or LDL cholesterol, but little associations with HDL cholesterol, body fat, and body mass index were evident. Urinary total catechin was weakly associated with triglyceride (r = -0.19) and LDL cholesterol (r = -0.15), whereas urinary (-)-epigallocatechin-3-gallate (r = -0.33), (-)-epigallocatechin (r = -0.23), and (-)-epicatechin-3-gallate (r = -0.33) had weak to moderate correlations with triglyceride and similarly with body fat and body mass index. Both plasma (r = -0.24) and urinary (r = -0.24) total catechin, as well as individual catechins, were weakly associated with glycated hemoglobin. Plasma total and individual catechins were weakly to moderately associated with C-reactive protein, but not the case for urinary catechins. In conclusion, we found weak to moderate associations between plasma and urinary green tea

  15. Effects of cumin extract on oxLDL, paraoxanase 1 activity, FBS, total cholesterol, triglycerides, HDL-C, LDL-C, Apo A1, and Apo B in in the patients with hypercholesterolemia

    PubMed Central

    Samani, Keihan Ghatreh; Farrokhi, Effat

    2014-01-01

    Objectives Paraoxanase 1 (PON1) plays a protective role against the oxidative modification of plasma lipoproteins and hydrolyzes lipid peroxides in human atherosclerotic lesions. Cumin is the dried seed of the herb Cuminumcyminum that is known as Zeera in Iran. Cumin seeds contain flavonoids which are now generally recognized to have antioxidant activity and improve the antioxidant system. So, they possibly modify PON1 activity and oxidized low density lipoprotein (oxLDL) level. The present study was aimed to evaluate the effects of cumin extract supplementation on oxLDL, paraoxanase 1 activity, FBS, total cholesterol, triglycerides, High density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A1 (Apo A1), and apolipoprotein B (Apo B)in the patients with hypercholesterolemia. Methodology A fasting venous blood sample was obtained from the voluntary persons before and 45±3 days after taking cumin. Glucose, total cholesterol, and triglycerides were assayed using standard enzymatic procedures. HDL-Cand LDL-C were measured by direct method and ApoA1 and ApoB levels by immunoturbidimeteric methods. The levels of arylesterase and paraoxanase activities in the samples were measured by photometry methods and oxLDL by enzyme-linked immunosorbent assay (ELISA) method. 3 to 5 drops of cumin extract were added to the patient’s diet three times a day based on manufacturer’s instruction for 45±3 days. The biochemical parameters were compared before and after taking cumin. Data were analyzed using paired Student’s t-test in SPSS statistical software (version 11.5). Results The results demonstrated that there was a significant decrease in the level of oxLDL after receiving cumin. Paraoxonase and arylesterase activities increased in serum after taking cumin extract. Conclusion Based on the results, cumin reduces oxLDL level and increases both paraoxonase and arylesterase activity. PMID:24899878

  16. Identification of a novel polymorphism in X-linked sterol-4-alpha-carboxylate 3-dehydrogenase (Nsdhl) associated with reduced high-density lipoprotein cholesterol levels in I/LnJ mice.

    PubMed

    Bautz, David J; Broman, Karl W; Threadgill, David W

    2013-10-03

    Loci controlling plasma lipid concentrations were identified by performing a quantitative trait locus analysis on genotypes from 233 mice from a F2 cross between KK/HlJ and I/LnJ, two strains known to differ in their high-density lipoprotein (HDL) cholesterol levels. When fed a standard diet, HDL cholesterol concentration was affected by two significant loci, the Apoa2 locus on Chromosome (Chr) 1 and a novel locus on Chr X, along with one suggestive locus on Chr 6. Non-HDL concentration also was affected by loci on Chr 1 and X along with a suggestive locus on Chr 3. Additional loci that may be sex-specific were identified for HDL cholesterol on Chr 2, 3, and 4 and for non-HDL cholesterol on Chr 5, 7, and 14. Further investigation into the potential causative gene on Chr X for reduced HDL cholesterol levels revealed a novel, I/LnJ-specific nonsynonymous polymorphism in Nsdhl, which codes for sterol-4-alpha-carboxylate 3-dehydrogenase in the cholesterol synthesis pathway. Although many lipid quantitative trait locus have been reported previously, these data suggest there are additional genes left to be identified that control lipid levels and that can provide new pharmaceutical targets.

  17. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content.

    PubMed

    Delgado-Ramírez, Mayra; Sánchez-Armass, Sergio; Meza, Ulises; Rodríguez-Menchaca, Aldo A

    2018-05-01

    Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice

    PubMed Central

    Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.

    2012-01-01

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634

  19. [Cholesterol of the high-density lipoprotein subclasses in the native inhabitants of the Chukchi National Autonomous Okrug].

    PubMed

    Polesskiĭ, V A; Chepurnenko, N V; Koshechkin, V A; Morozov, V V; Gerasimova, E N

    1980-12-01

    The authors studied the content of total cholesterol (Ch), triglycerides (TG), CS of high density lipoprotein (HDL2 and HDL3) subclasses and testosterone in blood plasma of 30-59-year-old males, natives or newcomers of Chukotsk, and compared the results with the corresponding values determined in the male population of Moscow. It was established that the mean HDL Ch concentration in blood plasma was higher and the content of TG and to a lesser degree that of total CS, was lower in the Chukchi males than in the male Moscow population and in the newcomers who were examined. It was also shown that in hypo- and hyper-alphalipoproteinemia in all groups examined, the content of HDL2 Ch changed for the most part (decreased or increased, respectively) while the level of HDL3 Ch remained relatively stable.

  20. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation.

    PubMed

    Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G

    2013-02-15

    Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.

  1. Effects of margarines and butter consumption on lipid profiles, inflammation markers and lipid transfer to HDL particles in free-living subjects with the metabolic syndrome.

    PubMed

    Gagliardi, A C M; Maranhão, R C; de Sousa, H P; Schaefer, E J; Santos, R D

    2010-10-01

    Our purpose was to examine the effects of daily servings of butter, no-trans-fat margarine and plant sterol margarine, within recommended amounts, on plasma lipids, apolipoproteins (Apos), biomarkers of inflammation and endothelial dysfunction, and on the transfer of lipids to HDL particles in free-living subjects with the metabolic syndrome. This was a randomized, single-blind study where 53 metabolic syndrome subjects (62% women, mean age 54 years) received isocaloric servings of butter, no-trans-fat margarine or plant sterol margarine in addition to their usual diets for 5 weeks. The main outcome measures were plasma lipids, Apo, inflammatory and endothelial dysfunction markers (CRP, IL-6, CD40L or E-selectin), small dense LDL cholesterol concentrations and in vitro radioactive lipid transfer from cholesterol-rich emulsions to HDL. Difference among groups was evaluated by analysis of variance. There was a significant reduction in Apo-B (-10.4 %, P=0.043) and in the Apo-B/Apo-A-1 ratio (-11.1%, P=0.034) with plant sterol margarine. No changes in plasma lipids were noticed with butter and no-trans-fat margarine. Transfer rates of lipids to HDL were reduced in the no-trans-fat margarine group: triglycerides -42.0%, (P<0.001 vs butter and sterol margarine) and free cholesterol -16.2% (P=0.006 vs sterol margarine). No significant effects were noted on the concentrations of inflammatory and endothelial dysfunction markers among the groups. In free-living subjects with the metabolic syndrome consumption of plant sterol and no-trans-fat margarines within recommended amounts reduced, respectively, Apo-B concentrations and the ability of HDL to accept lipids.

  2. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice.

    PubMed

    Lee, Junga; Scheri, Richard C; Curtis, Lawrence R

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  3. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells

    PubMed Central

    Gillard, Baiba K.; Lin, Hu-Yu Alice; Massey, John B.; Pownall, Henry J.

    2009-01-01

    Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport. PMID:19635584

  4. High Density Lipoprotein Cholesterol Increasing Therapy: The Unmet Cardiovascular Need

    PubMed Central

    Cimmino, Giovanni; Ciccarelli, Giovanni; Morello, Alberto; Ciccarelli, Michele; Golino, Paolo

    2015-01-01

    Despite aggressive strategies are now available to reduce LDL-cholesterol, the risk of cardiovascular events in patients with coronary artery disease remains substantial. Several preclinical and clinical studies have shown that drug therapy ultimately leads to a regression of the angiographic lesions but also results in a reduction in cardiovascular events. The dramatic failure of clinical trials evaluating the cholesterol ester transfer protein (CEPT) inhibitors, torcetrapib and dalcetrapib, has led to considerable doubt about the value of the current strategy to raise high-density lipoprotein cholesterol (HDL-C) as a treatment for cardiovascular disease. These clinical results, as well as animal studies, have revealed the complexity of HDL metabolism, assessing a more important role of functional quality compared to circulating quantity of HDL. As a result, HDL-based therapeutic interventions that maintain or enhance HDL functionality, such as improving its main property, the reverse cholesterol transport, require closer investigation. In this review, we will discuss HDL metabolism and function, clinical-trial data available for HDL-raising agents, and potential strategies for future HDL-based therapies. PMID:26535185

  5. Severe decrease in high-density lipoprotein cholesterol with the combination of fibrates and ezetimibe: A case series.

    PubMed

    Nobecourt, Estelle; Cariou, Bertrand; Lambert, Gilles; Krempf, Michel

    A sudden and severe drug-induced decrease in plasma high-density lipoprotein cholesterol (HDL-C) is a rare condition. We report 2 patients with familial hypercholesterolemia treated with statins and fibrates and 2 others with mixed dyslipidemia treated with fibrates, who presented with a sudden and severe decrease in HDL-C (from -44% to -95%, compared with baseline). Three of the patients were treated with fibrates and had a sudden decrease in HDL-C after the adjunction of ezetimibe. HDL-C returned to normal levels after discontinuation of the offending therapies. In 2 of these patients, the reintroduction of ezetimibe with no fibrates did not affect HDL-C. In conclusion, we report a new profile of patients who are at risk for a sudden drop of HDL-C related to treatment with a combination of fibrates and ezetimibe. Although a sudden drop of HDL-C is a rare event, we recommend to carefully monitor plasma HDL-C in patients submitted to both drugs. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  6. Relation of plasma lipids to all-cause mortality in Caucasian, African-American and Hispanic elders

    PubMed Central

    Akerblom, Jennifer L.; Costa, Rosann; Luchsinger, Jose A.; Manly, Jennifer J.; Tang, Ming-Xin; Lee, Joseph H; Mayeux, Richard; Schupf, Nicole

    2009-01-01

    Objectives to investigate the relation of plasma lipids to all-cause mortality in a multi-ethnic cohort of non-demented elderly. Setting community-based sample of Medicare recipients, 65 years and older, residing in Northern Manhattan. Participants about two thousand five hundred and fifty-six non-demented elderly, 65–103 years. Among participants, 66.1% were women, 27.6% were White/non-Hispanic, 31.2% were African-American and 41.2% were Hispanic. Methods a standardised assessment, including functional ability, medical history, physical and neurological examination and a neuropsychological battery was conducted. Vital status was ascertained through the National Death Index (NDI). We used survival analyses stratified by race and ethnicity to examine the relation of plasma lipids to subsequent all-cause mortality. Results hispanics had the best overall survival, followed by African-Americans and Whites. Whites and African-Americans in the lowest quartiles of total cholesterol, non-HDL cholesterol and low-density lipoprotein cholesterol (LDL cholesterol) were approximately twice as likely to die as those in the highest quartile (White HR: 2.2, for lowest total cholesterol quartile; HR: 2.3, for lowest non-HDL cholesterol quartile; and HR: 1.8, for lowest LDL cholesterol quartile. African-American HR: 1.9, for lowest total cholesterol, HR: 2.0, for lowest non-HDL cholesterol and HR: 1.9, for lowest LDL cholesterol). In contrast, plasma lipid levels were not related to mortality risk among Hispanics. Conclusions hispanic ethnicity modifies the associations between lipid levels and all-cause mortality in the elderly. PMID:18349015

  7. Apolipoprotein AI Deficiency Inhibits Serum Opacity Factor Activity against Plasma High Density Lipoprotein via a Stabilization Mechanism

    PubMed Central

    Rosales, Corina; Patel, Niket; Gillard, Baiba K.; Yelamanchili, Dedipya; Yang, Yaliu; Courtney, Harry S.; Santos, Raul D.; Gotto, Antonio M.; Pownall, Henry J.

    2016-01-01

    The reaction of Streptococcal serum opacity factor (SOF) against plasma high-density lipoproteins (HDL) produces a large cholesteryl ester-rich microemulsion (CERM), a smaller neo HDL that is apolipoprotein (apo) AI-poor, and lipid-free apo AI. SOF is active vs. both human and mouse plasma HDL. In vivo injection of SOF into mice reduces plasma cholesterol ~40% in 3 hours while forming the same products observed in vitro, but at different ratios. Previous studies supported the hypothesis that labile apo AI is required for the SOF reaction vs. HDL. Here we further tested that hypothesis by studies of SOF against HDL from apo AI-null mice. When injected into apo AI-null mice, SOF reduced plasma cholesterol ~35% in three hours. The reaction of SOF vs. apo AI-null HDL in vitro produced a CERM and neo HDL, but no lipid-free apo. Moreover, according to the rate of CERM formation, the extent and rate of the SOF reaction vs. apo AI-null mouse HDL was less than that against wild-type (WT) mouse HDL. Chaotropic perturbation studies using guanidine hydrochloride showed that apo AI-null HDL was more stable than WT HDL. Human apo AI added to apo AI-null HDL was quantitatively incorporated, giving reconstituted HDL. Both SOF and guanidine hydrochloride displaced apo AI from the reconstituted HDL. These results support the conclusion that apo AI-null HDL is more stable than WT HDL because it lacks apo AI, a labile protein that is readily displaced by physico-chemical and biochemical perturbations. Thus, apo AI-null HDL is less SOF-reactive than WT HDL. The properties of apo AI-null HDL can be partially restored to those of WT HDL by the spontaneous incorporation of human apo AI. It remains to be determined what other HDL functions are affected by apo AI deletion. PMID:25790332

  8. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in PCSK5 and HDL cholesterol.

    PubMed

    Jang, Han Byul; Hwang, Joo-Yeon; Park, Ji Eun; Oh, Ji Hee; Ahn, YounJhin; Kang, Jae-Heon; Park, Kyung-Hee; Han, Bok-Ghee; Kim, Bong Jo; Park, Sang Ick; Lee, Hye-Ja

    2014-12-01

    A low serum level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 5 (PCSK5) modulates HDL-C metabolism through the inactivation of endothelial lipase activity. Therefore, we analysed the effects of PCSK5 on HDL-C and investigated the association between genetic variation in PCSK5 and dietary polyunsaturated fatty acids (PUFAs) intakes in Korean adults and children. This population-based study which was conducted in South Korea included 4205 adults (43% male) aged 40-69 years and 1548 children (48.6% boys) aged 8-13 years. Dietary intake was assessed using a semiquantitative food frequency questionnaire in adults and modified 3-day food records in children. After adjustments for age and body mass index, we identified a significant association between SNP rs1029035 of the PCSK5 gene and HDL-C concentrations specifically for men in both populations (adults, p=0.004; children, p=0.003; meta, p=7×10(-4)). Additionally, the interaction between the PCSK5 rs1029035 genotype and dietary polyunsaturated fatty acids intake influenced serum HDL-C concentrations in men (adults, p=0.001; children, p=0.008). The deleterious effect of the C allele on serum HDL-C was present only when dietary PUFA intake was less than the dichotomised median level (adults, p=0.011; children, p=0.001). Serum HDL-C concentrations were decreased in men with the C allele genotype and low consumption of dietary PUFA including n-3 and n-6. According to these results, men carrying of the C allele were associated with low HDL-C concentrations and might exert beneficial effects on HDL-C concentrations following consumption of a high-PUFA diet. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes.

    PubMed

    Mostafa, Ahmed M; Hamdy, Nadia M; Abdel-Rahman, Sherif Z; El-Mesallamy, Hala O

    2016-07-01

    Many reports suggested that some statins are almost ineffective in reducing triglycerides or enhancing HDL-C plasma levels, although statin treatment was still efficacious in reducing LDL-C. In diabetic dyslipidemic patients, it may therefore be necessary to use a combination therapy with other drugs to achieve either LDL-C- and triglyceride-lowering or HDL-C-enhancing goals. Such ineffectiveness of statins can be attributed to their effect on the liver X receptor (LXR) which regulates the expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. A decrease in the expression of these transporters eventually leads to decreased cholesterol efflux from peripheral tissues leading to low levels of HDL-C. Although manipulating the LXR pathway may complement the effects of statins, LXR synthetic ligands as T091317 have shown significant hypertriglyceridemic action which limits their use. We recently found that the antidiabetic drug vildagliptin stimulates LXR expression leading to increased ABCB1/ABCG1 expression which improves cholesterol efflux from adipocytes. Therefore, a combination of vildagliptin and statin may provide a solution without the hypertriglyceridemic action observed with LXR agonist. We hypothesize that a combination of vildagliptin and pravastatin will improve cholesterol efflux in adipocytes. Statin-treated 3T3-L1 adipocytes were treated with vildagliptin, and the expression of LXR-ABCA1/ABCG1 cascade and the cholesterol efflux were then determined. Our data indicate that a combination of vildagliptin and pravastatin significantly induces the expression of LXR-ABCA1/ABCG1 cascade and improves cholesterol efflux (P > 0.05) in adipocytes. Our data may explain, at least in part, the improvement in HDL-C levels observed in patients receiving both medications. © 2016 IUBMB Life, 68(7):535-543, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  10. Therapeutic effect of probiotic dahi on plasma, aortic, and hepatic lipid profile of hypercholesterolemic rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod Kumar; Shah, Dilip; Nagpal, Ravinder; Kumar, Manoj; Gautam, Sanjeev Kumar; Singh, Birbal; Behare, Pradip Vishnu

    2013-09-01

    This study examined the effects of probiotic dahi prepared by Lactobacillus plantarum Lp9 and dahi culture in buffalo milk on lowering cholesterol in rats fed a hypercholesterolemic basal diet. Male Wistar rats were divided into 3 groups and fed with probiotic dahi, dahi, or buffalo milk for 120 days. Following the consumption of supplements (probiotic dahi, dahi or buffalo milk), the animals were fed a basal hypercholesterolemic diet. Plasma total cholesterol and triglycerides (TAGs) were decreased by 35% and 72% in rats fed with probiotic dahi group, while cholesterol levels increased by 70% and TAGs increased by 97% in buffalo milk and 59% in dahi fed groups. Supplementation of probiotic dahi further lowered plasma low-density lipoprotein (LDL) + very-low-density lipoprotein (VLDL)- cholesterol by 59%, while it elevated plasma high-density lipoprotein (HDL)-cholesterol by 116%. As a result, atherogenic index, the ratio of HDL to LDL + VLDL was markedly improved. Deposition of cholesterol and TAGs in liver and aorta were significantly reduced in rats fed with probiotic dahi. These observations suggest that probiotic dahi may have therapeutic potential to decrease plasma, hepatic and aortic lipid profile, and attenuate diet-induced hypercholesterolemia.

  11. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo.

    PubMed

    Terao, Yoshio; Ayaori, Makoto; Ogura, Masatsune; Yakushiji, Emi; Uto-Kondo, Harumi; Hisada, Tetsuya; Ozasa, Hideki; Takiguchi, Shunichi; Nakaya, Kazuhiro; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Horii, Shunpei; Mochizuki, Seibu; Yoshimura, Michihiro; Ikewaki, Katsunori

    2011-01-01

    Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.

  12. The effect of insulin deficiency on the plasma clearance and exchange of high-density-lipoprotein phosphatidylcholine in rats.

    PubMed Central

    Martins, I J; Redgrave, T G

    1992-01-01

    Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of phospholipid radioactivity from the plasma of insulin-deficient rats was significantly slower than in controls (P less than 0.025). Plasma clearance was similarly slower in insulin-deficient rats after injection of HDL that was previously labelled with radioactive phospholipids. After injection, the phospholipid label redistributed rapidly between the large-particle fraction of plasma lipoproteins (very-low- and low-density lipoproteins), and the lighter and heavier fractions of HDL. Compared with control rats, in insulin-deficient rats less of the phospholipid label was distributed to the lighter HDL fraction and more to the heavier HDL fraction, and this difference was not due to changes in activity of lecithin: cholesterol acyltransferase or in the apparent activity of phospholipid transfer protein. In insulin-deficient rats the changes in HDL phospholipid clearance and exchange appeared to be secondary to the associated hypertriglyceridaemia and the related changes in distribution of phospholipids between classes of plasma lipoproteins. PMID:1536661

  13. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    PubMed

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  14. Reduction in postoperative high-density lipoprotein cholesterol levels in children undergoing the Fontan operation.

    PubMed

    Zyblewski, Sinai C; Argraves, W Scott; Graham, Eric M; Slate, Elizabeth H; Atz, Andrew M; Bradley, Scott M; McQuinn, Tim C; Wilkerson, Brent A; Wing, Shane B; Argraves, Kelley M

    2012-10-01

    Despite the emerging relevance of high-density lipoprotein (HDL) in the inflammatory cascade and vascular barrier integrity, HDL levels in children undergoing cardiac surgery are unexplored. As a measure of HDL levels, the HDL-cholesterol (HDL-C) in single-ventricle patients was quantified before and after the Fontan operation, and it was determined whether relationships existed between the duration and the type of postoperative pleural effusions. The study prospectively enrolled 12 children undergoing the Fontan operation. Plasma HDL-C levels were measured before and after cardiopulmonary bypass. The outcome variables of interest were the duration and type of chest tube drainage (chylous vs. nonchylous). The Kendall rank correlation coefficient and the Wilcoxon rank sum test were used. There were 11 complete observations. The median preoperative HDL-C level for all the subjects was 30 mg/dl (range, 24-53 mg/dl), and the median postcardiopulmonary bypass level was 21 mg/dl (range, 14-46 mg/dl) (p = 0.004). There was a tendency toward a moderate inverse correlation (-0.42) between the postcardiopulmonary bypass HDL-C level and the duration of chest tube drainage, but the result was not statistically significant (p = 0.07). In the chylous effusion group, the median postcardiopulmonary bypass HDL-C tended to be lower (16 vs. 23 mg/dl; p = 0.09). After the Fontan operation, the plasma HDL-C levels in children are significantly reduced. It is reasonable to conclude that the reduction in HDL-C reflects reduced plasma levels of HDL particles, which may have pertinent implications in postoperative pleural effusions given the antiinflammatory and endothelial barrier functions of HDL.

  15. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits.

    PubMed

    Sugano, M; Makino, N; Sawada, S; Otsuka, S; Watanabe, M; Okamoto, H; Kamada, M; Mizushima, A

    1998-02-27

    Cholesteryl ester transfer protein (CETP) is the enzyme that facilitates the transfer of cholesteryl ester from high density lipoprotein (HDL) to apolipoprotein B (apoB)-containing lipoproteins. However, the exact role of CETP in the development of atherosclerosis has not been determined. In the present study, we examined the effect of the suppression of increased plasma CETP by intravenous injection with antisense oligodeoxynucleotides (ODNs) against CETP targeted to the liver on the development of atherosclerosis in rabbits fed a cholesterol diet. The ODNs against rabbit CETP were coupled to asialoglycoprotein (ASOR) carrier molecules, which serve as an important method to regulate liver gene expression. Twenty-two male Japanese White rabbits were used in the experiment. Eighteen animals were fed a standard rabbit chow supplemented with 0.3% cholesterol throughout the experiment for 16 weeks. At 8 weeks, they were divided into three groups (six animals in each group), among which the plasma total and HDL cholesterol concentrations did not significantly change. The control group received nothing, the sense group were injected with the sense ODNs complex, and the antisense group were injected with the antisense ODNs complex, respectively, for subsequent 8 weeks. ASOR. poly(L-lysine) ODNs complex were injected via the ear veins twice a week. Four animals were fed a standard rabbit diet for 16 weeks. The total cholesterol concentrations and the CETP mass in the animals injected with antisense ODNs were all significantly decreased in 12 and 16 weeks compared with those injected with sense ODNs and the control animals. The HDL cholesterol concentrations measured by the precipitation assay did not significantly change among the groups fed a cholesterol diet, and triglyceride concentrations did not significantly change in the four groups. However, at the end of the study, when the HDL cholesterol concentrations were measured after the isolation by ultracentrifugation and

  16. Inflammation modulates human HDL composition and function in vivo

    USDA-ARS?s Scientific Manuscript database

    Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Our study was designed to investigate this relationship. We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-rel...

  17. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    PubMed Central

    Stellaard, Frans

    2017-01-01

    The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath) as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1) The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2) The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3) The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded. PMID:28321334

  18. Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol[S

    PubMed Central

    Kim, Daniel S.; Burt, Amber A.; Ranchalis, Jane E.; Jarvik, Ella R.; Rosenthal, Elisabeth A.; Hatsukami, Thomas S.; Furlong, Clement E.; Jarvik, Gail P.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in developed countries. Plasma cholesterol level is a key risk factor in CVD pathogenesis. Genetic and dietary variation both influence plasma cholesterol; however, little is known about dietary interactions with genetic variants influencing the absorption and transport of dietary cholesterol. We sought to determine whether gut expressed variants predicting plasma cholesterol differentially affected the relationship between dietary and plasma cholesterol levels in 1,128 subjects (772/356 in the discovery/replication cohorts, respectively). Four single nucleotide polymorphisms (SNPs) within three genes (APOB, CETP, and NPC1L1) were significantly associated with plasma cholesterol in the discovery cohort. These were subsequently evaluated for gene-by-environment (GxE) interactions with dietary cholesterol for the prediction of plasma cholesterol, with significant findings tested for replication. Novel GxE interactions were identified and replicated for two variants: rs1042034, an APOB Ser4338Asn missense SNP and rs2072183 (in males only), a synonymous NPC1L1 SNP in linkage disequilibrium with SNPs 5′ of NPC1L1. This study identifies the presence of novel GxE and gender interactions implying that differential gut absorption is the basis for the variant associations with plasma cholesterol. These GxE interactions may account for part of the “missing heritability” not accounted for by genetic associations. PMID:23482652

  19. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized clinical trial.

    PubMed

    Geohas, Jeff; Daly, Anne; Juturu, Vijaya; Finch, Manley; Komorowski, James R

    2007-03-01

    The atherogenic index of plasma (AIP), defined as logarithm [log] of the ratio of plasma concentration of triglycerides to high-density lipoprotein (HDL) cholesterol, has recently been proposed as a predictive marker for plasma atherogenicity and is positively correlated with cardiovascular disease risk. The nutrient combination of chromium picolinate and biotin (CPB) has been previously shown to reduce insulin resistance and hyperglycemia in patients with type 2 diabetes (T2DM). Thirty-six moderately obese subjects with T2DM and with impaired glycemic control were randomized to receive CPB or placebo in addition to their oral hyperglycemic agents for 4 weeks. Measurements of blood lipids (including ratio of triglycerides to HDL cholesterol), fructosamine, glucose, and insulin were taken at baseline and after 4 weeks. At the final visit, the active group had a significantly lower AIP compared to the placebo group (P < 0.05). A significant difference in triglyceride level (P < 0.02) and the ratio of low-density lipoprotein (LDL) to HDL cholesterol (P < 0.05) was also observed between the groups at the final visit. In the active group, the changes in urinary chromium levels were inversely correlated with the change in AIP (P < 0.05). Urinary chromium levels were significantly increased in the CPB group. In the CPB group, glucose levels decreased at 1 hour and 2 hours and glucose area under the curve and fructosamine level were significantly decreased. Ratios of total to HDL cholesterol, LDL to HDL cholesterol, and non-HDL to HDL cholesterol were significantly decreased between the treatments at final visit. No significant adverse events were observed in the CPB or placebo groups. These results suggest that the combination of chromium picolinate and biotin may be a valuable nutritional adjuvant therapy to reduce AIP and correlated CVD risk factors in people with T2DM.

  20. High intake of fatty fish, but not of lean fish, affects serum concentrations of TAG and HDL-cholesterol in healthy, normal-weight adults: a randomised trial.

    PubMed

    Hagen, Ingrid V; Helland, Anita; Bratlie, Marianne; Brokstad, Karl A; Rosenlund, Grethe; Sveier, Harald; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2016-08-01

    The aim of the present study was to examine whether high intake of lean or fatty fish (cod and farmed salmon, respectively) by healthy, normal-weight adults would affect risk factors of type 2 diabetes and CVD when compared with lean meat (chicken). More knowledge is needed concerning the potential health effects of high fish intake (>300 g/week) in normal-weight adults. In this randomised clinical trial, thirty-eight young, healthy, normal-weight participants consumed 750 g/week of lean or fatty fish or lean meat (as control) for 4 weeks at dinner according to provided recipes to ensure similar ways of preparations and choices of side dishes between the groups. Energy and macronutrient intakes at baseline and end point were similar in all groups, and there were no changes in energy and macronutrient intakes within any of the groups during the course of the study. High intake of fatty fish, but not lean fish, significantly reduced TAG and increased HDL-cholesterol concentrations in fasting serum when compared with lean meat intake. When compared with lean fish intake, fatty fish intake increased serum HDL-cholesterol. No differences were observed between lean fish, fatty fish and lean meat groups regarding fasting and postprandial glucose regulation. These findings suggest that high intake of fatty fish, but not of lean fish, could beneficially affect serum concentrations of TAG and HDL-cholesterol, which are CVD risk factors, in healthy, normal-weight adults, when compared with high intake of lean meat.

  1. HDL mimetic peptide CER-522 treatment regresses left ventricular diastolic dysfunction in cholesterol-fed rabbits.

    PubMed

    Merlet, Nolwenn; Busseuil, David; Mihalache-Avram, Teodora; Mecteau, Melanie; Shi, Yanfen; Nachar, Walid; Brand, Genevieve; Brodeur, Mathieu R; Charpentier, Daniel; Rhainds, David; Sy, Gavin; Schwendeman, Anna; Lalwani, Narendra; Dasseux, Jean-Louis; Rhéaume, Eric; Tardif, Jean-Claude

    2016-07-15

    High-density lipoprotein (HDL) infusions induce rapid improvement of experimental atherosclerosis in rabbits but their effect on ventricular function remains unknown. We aimed to evaluate the effects of the HDL mimetic peptide CER-522 on left ventricular diastolic dysfunction (LVDD). Rabbits were fed with a cholesterol- and vitamin D2-enriched diet until mild aortic valve stenosis and hypercholesterolemia-induced LV hypertrophy and LVDD developed. Animals then received saline or 10 or 30mg/kg CER-522 infusions 6 times over 2weeks. We performed serial echocardiograms and LV histology to evaluate the effects of CER-522 therapy on LVDD. LVDD was reduced by CER-522 as shown by multiple parameters including early filling mitral deceleration time, deceleration rate, Em/Am ratio, E/Em ratio, pulmonary venous velocities, and LVDD score. These findings were associated with reduced macrophages (RAM-11 positive cells) in the pericoronary area and LV, and decreased levels of apoptotic cardiomyocytes in CER-522-treated rabbits. CER-522 treatment also resulted in decreased atheromatous plaques and internal elastic lamina area in coronary arteries. CER-522 improves LVDD in rabbits, with reductions of LV macrophage accumulation, cardiomyocyte apoptosis, coronary atherosclerosis and remodelling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  3. Association of Serum Triglyceride to HDL Cholesterol Ratio with All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients.

    PubMed

    Chang, Tae Ik; Streja, Elani; Soohoo, Melissa; Kim, Tae Woo; Rhee, Connie M; Kovesdy, Csaba P; Kashyap, Moti L; Vaziri, Nosratola D; Kalantar-Zadeh, Kamyar; Moradi, Hamid

    2017-04-03

    Elevated serum triglyceride/HDL cholesterol (TG/HDL-C) ratio has been identified as a risk factor for cardiovascular (CV) disease and mortality in the general population. However, the association of this important clinical index with mortality has not been fully evaluated in patients with ESRD on maintenance hemodialysis (MHD). We hypothesized that the association of serum TG/HDL-C ratio with all-cause and CV mortality in patients with ESRD on MHD is different from the general population. We studied the association of serum TG/HDL-C ratio with all-cause and CV mortality in a nationally representative cohort of 50,673 patients on incident hemodialysis between January 1, 2007 and December 31, 2011. Association of baseline and time-varying TG/HDL-C ratios with mortality was assessed using Cox proportional hazard regression models, with adjustment for multiple variables, including statin therapy. During the median follow-up of 19 months (interquartile range, 11-32 months), 12,778 all-cause deaths and 4541 CV deaths occurred, respectively. We found that the 10th decile group (reference: sixth deciles of TG/HDL-C ratios) had significantly lower risk of all-cause mortality (hazard ratio, 0.91 [95% confidence interval, 0.83 to 0.99] in baseline and 0.86 [95% confidence interval, 0.79 to 0.94] in time-varying models) and CV mortality (hazard ratio, 0.83 [95% confidence interval, 0.72 to 0.96] in baseline and 0.77 [95% confidence interval, 0.66 to 0.90] in time-varying models). These associations remained consistent and significant across various subgroups. Contrary to the general population, elevated TG/HDL-C ratio was associated with better CV and overall survival in patients on hemodialysis. Our findings provide further support that the nature of CV disease and mortality in patients with ESRD is unique and distinct from other patient populations. Hence, it is vital that future studies focus on identifying risk factors unique to patients on MHD and decipher the underlying

  4. Association of Serum Triglyceride to HDL Cholesterol Ratio with All-Cause and Cardiovascular Mortality in Incident Hemodialysis Patients

    PubMed Central

    Chang, Tae Ik; Streja, Elani; Soohoo, Melissa; Kim, Tae Woo; Rhee, Connie M.; Kovesdy, Csaba P.; Kashyap, Moti L.; Vaziri, Nosratola D.; Kalantar-Zadeh, Kamyar

    2017-01-01

    Background and objectives Elevated serum triglyceride/HDL cholesterol (TG/HDL-C) ratio has been identified as a risk factor for cardiovascular (CV) disease and mortality in the general population. However, the association of this important clinical index with mortality has not been fully evaluated in patients with ESRD on maintenance hemodialysis (MHD). We hypothesized that the association of serum TG/HDL-C ratio with all-cause and CV mortality in patients with ESRD on MHD is different from the general population. Design, setting, participants, & measurements We studied the association of serum TG/HDL-C ratio with all-cause and CV mortality in a nationally representative cohort of 50,673 patients on incident hemodialysis between January 1, 2007 and December 31, 2011. Association of baseline and time-varying TG/HDL-C ratios with mortality was assessed using Cox proportional hazard regression models, with adjustment for multiple variables, including statin therapy. Results During the median follow-up of 19 months (interquartile range, 11–32 months), 12,778 all-cause deaths and 4541 CV deaths occurred, respectively. We found that the 10th decile group (reference: sixth deciles of TG/HDL-C ratios) had significantly lower risk of all-cause mortality (hazard ratio, 0.91 [95% confidence interval, 0.83 to 0.99] in baseline and 0.86 [95% confidence interval, 0.79 to 0.94] in time-varying models) and CV mortality (hazard ratio, 0.83 [95% confidence interval, 0.72 to 0.96] in baseline and 0.77 [95% confidence interval, 0.66 to 0.90] in time-varying models). These associations remained consistent and significant across various subgroups. Conclusions Contrary to the general population, elevated TG/HDL-C ratio was associated with better CV and overall survival in patients on hemodialysis. Our findings provide further support that the nature of CV disease and mortality in patients with ESRD is unique and distinct from other patient populations. Hence, it is vital that future

  5. Evidence of major genes for plasma HDL, LDL cholesterol and triglyceride levels at baseline and in response to 20 weeks of endurance training: the HERITAGE Family Study.

    PubMed

    An, P; Borecki, I B; Rankinen, T; Després, J-P; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C

    2005-01-01

    This study assessed major gene effects for baseline HDL-C, LDL-C, TG, and their training responses (post-training minus baseline) in 527 individuals from 99 White families and 326 individuals from 113 Black families in the HERITAGE Family Study. The baseline phenotypes were adjusted for the effects of age and BMI, and the training response phenotypes were adjusted for the effects of age, BMI, and their respective baseline values, within each of the sex-by-generation-by-race groups, prior to genetic analyses. In Whites, we found that LDL-C at baseline and HDL-C training response were under influence of major recessive genes (accounting for 2--30 % of the variance) and multifactorial (polygenic and familial environmental) effects. Interactions of these major genes with sex, age, and BMI were tested, and found to be nonsignificant. In Blacks, we found that baseline HDL-C was influenced by a major dominant gene without a multifactorial component. This major gene effect accounted for 45 % of the variance, and exhibited no significant genotype-specific interactions with age, sex, and BMI. Evidence of major genes for the remaining phenotypes at baseline and in response to endurance training were not found in both races, though some were influenced by major effects that did not follow Mendelian expectations or were with ambiguous transmission from parents to offspring. In summary, major gene effects that influence baseline plasma HDL-C and LDL-C levels as well as changes in HDL-C levels in response to regular exercise were detected in the current study.

  6. [Comparative analysis of the lipid-protein spectrum of lipoproteins and fatty acid composition of lipids in plasma and erythrocytes of native populations of Chukotka and Moscow].

    PubMed

    Gerasimova, E N; Levachev, M M; Ozerova, I N; Polesskiĭ, V A; Shcherbakova, I A; Metel'skaia, V A; Kulakova, S N; Astakhova, T I; Nikitin, Iu P; Perova, N V

    1989-01-01

    A lower content of total cholesterol, triglycerides, cholesterol of low density lipoproteins (LDL) and apo B as well as a higher content of cholesterol in high density lipoproteins (HDL) were found in coast and continental Chuckchee land inhabitants as compared with moscowites, which are dissimilar in consumption of polyunsaturated fatty acids n-3. At the same time, the lower content of total cholesterol, LDL cholesterol and higher concentration of HDL cholesterol were detected in blood plasma of coast inhabitants as compared with continental residents of the Chuckchee land, while content of apo B and triglycerides was similar. Concentration of apoA-I was the same in all three groups of the persons examined. The diet of coast Chuchkchee land inhabitants, involving the higher level of unsaturated fatty acids n-3, resulted in the higher ratio between HDL cholesterol and apoA-I, in the higher part of unsaturated fatty acids n-3 in blood plasma lipids (phospholipids and cholesterol esters) and erythrocytes; it led to a relative increase of sphingomyelin and phosphatidyl-ethanolamine and to a decrease of phosphatidylcholine in HDL subfractions. The data obtained suggest that the diet, enriched with polyunsaturated fatty acids n-3, exhibited the generalized effect on fatty acid composition of a number of cell membranes and, hence, on their functions.

  7. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    DOE PAGES

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; ...

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize themore » cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.« less

  8. The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis.

    PubMed

    Hennuyer, Nathalie; Duplan, Isabelle; Paquet, Charlotte; Vanhoutte, Jonathan; Woitrain, Eloise; Touche, Véronique; Colin, Sophie; Vallez, Emmanuelle; Lestavel, Sophie; Lefebvre, Philippe; Staels, Bart

    2016-06-01

    Atherosclerosis is characterized by lipid accumulation and chronic inflammation in the arterial wall. Elevated levels of apolipoprotein (apo) B-containing lipoproteins are a risk factor for cardiovascular disease (CVD). By contrast, plasma levels of functional high-density lipoprotein (HDL) and apoA-I are protective against CVD by enhancing reverse cholesterol transport (RCT). Activation of peroxisome proliferator-activated receptor-α (PPARα), a ligand-activated transcription factor, controls lipid metabolism, cellular cholesterol trafficking in macrophages and influences inflammation. To study whether pharmacological activation of PPARα with a novel highly potent and selective PPARα modulator, pemafibrate, improves lipid metabolism, macrophage cholesterol efflux, inflammation and consequently atherosclerosis development in vitro and in vivo using human apolipoprotein E2 Knock-In (apoE2KI) and human apoA-I transgenic (hapoA-I tg) mice. Pemafibrate treatment decreases apoB secretion in chylomicrons by polarized Caco-2/TC7 intestinal epithelium cells and reduces triglyceride levels in apoE2KI mice. Pemafibrate treatment of hapoA-I tg mice increases plasma HDL cholesterol, apoA-I and stimulates RCT to feces. In primary human macrophages, pemafibrate promotes macrophage cholesterol efflux to HDL and exerts anti-inflammatory activities. Pemafibrate also reduces markers of inflammation and macrophages in the aortic crosses as well as aortic atherosclerotic lesion burden in western diet-fed apoE2KI mice. These results demonstrate that the novel selective PPARα modulator pemafibrate exerts beneficial effects on lipid metabolism, RCT and inflammation resulting in anti-atherogenic properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Chlordecone Altered Hepatic Disposition of [14C]Cholesterol and Plasma Cholesterol Distribution but not SR-BI or ABCG8 Proteins in Livers of C57BL/6 Mice

    PubMed Central

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2011-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATPbinding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism. PMID:18387646

  10. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.

    PubMed

    Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R

    2017-06-06

    Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. NASH resolution is associated with improvements in HDL and triglyceride levels but not improvement in LDL or non-HDL-C levels.

    PubMed

    Corey, K E; Vuppalanchi, R; Wilson, L A; Cummings, O W; Chalasani, N

    2015-02-01

    Nonalcoholic steatohepatitis (NASH) is associated with dyslipidemia and cardiovascular disease (CVD). To determine the relationship between resolution of NASH and dyslipidemia. Individuals in the Pioglitazone vs. Vitamin E vs. Placebo for the Treatment of Nondiabetic Patients with Nonalcoholic Steatohepatitis (PIVENS) trial with paired liver biopsies and fasting lipid levels were included (N = 222). In the PIVENS trial individuals were randomised to pioglitazone 30 mg, vitamin E 800 IU or placebo for 96 weeks. Change in lipid levels at 96 weeks was compared between those with and without NASH resolution. Dyslipidemia at baseline was frequent, with low high-density lipoprotein (HDL) (<40 mg/dL in men or <50 mg/dL in women) in 63%, hypertriglyceridaemia (≥150 mg/dL) in 46%, hypercholesterolaemia (≥200 mg/dL) in 47% and triglycerides (TG)/HDL >5.0 in 25%. Low-density lipoprotein (LD) ≥160 mg/dL was found in 16% and elevated non-HDL cholesterol (non-HDL-C) (≥130 mg/dL) in 73%. HDL increased with NASH resolution but decreased in those without resolution (2.9 mg/dL vs. -2.5 mg/dL, P < 0.001). NASH resolution was associated with significant decreases in TG and TG/HDL ratio compared to those without resolution (TG: -21.1 vs. -2.3 mg/dL, P = 0.03 and TG/HDL: -0.7 vs. 0.1, P = 0.003). Non-HDL-C, LDL and cholesterol decreased over 96 weeks in both groups, but there was no significant difference between groups. Treatment group did not impact lipids. NASH resolution is associated with improvements in TG and HDL but not in other cardiovascular disease risk factors including LDL and non-HDL-C levels. Individuals with resolution of NASH may still be at increased risk of cardiovascular disease. ClinicalTrials.gov identifier: NCT00063622. © 2014 John Wiley & Sons Ltd.

  12. Is High-Density Lipoprotein Cholesterol Causally Related to Kidney Function? Evidence From Genetic Epidemiological Studies.

    PubMed

    Coassin, Stefan; Friedel, Salome; Köttgen, Anna; Lamina, Claudia; Kronenberg, Florian

    2016-11-01

    A recent observational study with almost 2 million men reported an association between low high-density lipoprotein (HDL) cholesterol and worse kidney function. The causality of this association would be strongly supported if genetic variants associated with HDL cholesterol were also associated with kidney function. We used 68 genetic variants (single-nucleotide polymorphisms [SNPs]) associated with HDL cholesterol in genome-wide association studies including >188 000 subjects and tested their association with estimated glomerular filtration rate (eGFR) using summary statistics from another genome-wide association studies meta-analysis of kidney function including ≤133 413 subjects. Fourteen of the 68 SNPs (21%) had a P value <0.05 compared with the 5% expected by chance (Binomial test P=5.8×10 - 6 ). After Bonferroni correction, 6 SNPs were still significantly associated with eGFR. The genetic variants with the strongest associations with HDL cholesterol concentrations were not the same as those with the strongest association with kidney function and vice versa. An evaluation of pleiotropy indicated that the effects of the HDL-associated SNPs on eGFR were not mediated by HDL cholesterol. In addition, we performed a Mendelian randomization analysis. This analysis revealed a positive but nonsignificant causal effect of HDL cholesterol-increasing variants on eGFR. In summary, our findings indicate that HDL cholesterol does not causally influence eGFR and propose pleiotropic effects on eGFR for some HDL cholesterol-associated SNPs. This may cause the observed association by mechanisms other than the mere HDL cholesterol concentration. © 2016 The Authors.

  13. Linseed oil increases HDL3 cholesterol and decreases blood pressure in patients diagnosed with mild hypercholesterolemia.

    PubMed

    Skoczyńska, Anna H; Gluza, Ewa; Wojakowska, Anna; Turczyn, Barbara; Skoczyńska, Marta

    2018-04-24

    Linseed oil has cardio-protective effects. However, its antihypertensive action has not yet been well characterized. The primary purpose of the study was to evaluate the effect of short-term dietary supplementation with linseed oil on blood pressure (BP) and lipid metabolism in patients with mild hypercholesterolemia. The secondary aim was to evaluate the effect of linseed oil on nitric oxide pathway and selected serum trace metals. 150 volunteers: 43 men (49.9±11.5 years) and 107 women (53.2±10.3 years), diagnosed with mild hypercholesterolemia, were assessed prospectively for BP and lipids' levels, before and after lipid-lowering diet plus linseed oil supplementation at a dose of 15 ml daily for 4 weeks (study groups) or 4-weekly lipid-lowering diet (control group). The multivariate logistic regression analysis model was used to determine the effect of linseed oil on BP after adjustment for age, gender, height, body weight, BMI, smoking and alcohol consumption. The supplementation with linseed oil significantly decreased LDL- and non-HDL cholesterol, and increased HDL- and HDL₃- cholesterol levels. Additionally, linseed oil decreased diastolic BP in men (CI:-6.0;-1.1, p<0.006), whereas in women, linseed oil reduced (p<0.001) systolic (-3,6 mmHg; CI:-5.8;-1.5), as well as diastolic BP (-4 mmHg; CI:-5.8;-2.1). Women with higher blood pressure displayed an increase in serum L-arginine level (p<0.01). In the logistic regression model oil consumption was associated with a decrease in mean BP (aOR 3.85, 95%CI 1.32-11.33). Our findings confirm the benefit of short-term linseed oil use in mild hypercholesterolemia, in particular in patients with increased blood pressure.

  14. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events

    USDA-ARS?s Scientific Manuscript database

    A growing body of evidence from epidemiological data, animal studies, and clinical trials supports HDL as the next target to reduce residual cardiovascular risk in statin-treated, high-risk patients. For more than 3 decades, HDL cholesterol has been employed as the principal clinical measure of HDL ...

  15. Plasma cholesterol reduction by defatted soy ontjom (fermented with Neurospora intermedia) in rats fed a cholesterol-free diet.

    PubMed

    Matsuo, M

    2000-02-01

    To popularize defatted soy ontjom (DSB-ontjom, soy product fermented with Neurospora intermedia) as a new food, I examined the plasma cholesterol-reducing effects of DSB-ontjom and DSB in rats fed cholesterol-free diets and compared the efficiencies of these effects. DSB-ontjom greatly reduced the plasma cholesterol level and increased fecal steroid excretion as compared to DSB. DSB-ontjom was rich in pepsin-resistant protein having a high bile acid binding capacity and was abundant in isoflavone-aglycones, especially daizein. The dietary fiber (DF) of DSB-ontjom stimulated the production of short-chain fatty acids (SCFAs) by intestinal microflora. The effect of DSB-ontjom on plasma cholesterol reduction was attributed to the collaborative effects of pepsin-resistant-protein, isoflavone-aglycones and SCFA-producing DF in DSB-ontjom.

  16. Increased plasma membrane cholesterol in cystic fibrosis cells correlates with CFTR genotype and depends on de novo cholesterol synthesis

    PubMed Central

    2010-01-01

    Background Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis. Methods Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age. Results Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility. Conclusions The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content. PMID:20487541

  17. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    PubMed Central

    2011-01-01

    Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism. PMID:22018327

  18. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    PubMed

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  19. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    PubMed

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  20. Phytosterol plasma concentrations and coronary heart disease in the prospective Spanish EPIC cohort

    PubMed Central

    Escurriol, Verónica; Cofán, Montserrat; Moreno-Iribas, Concepción; Larrañaga, Nerea; Martínez, Carmen; Navarro, Carmen; Rodríguez, Laudina; González, Carlos A.; Corella, Dolores; Ros, Emilio

    2010-01-01

    Phytosterol intake with natural foods, a measure of healthy dietary choices, increases plasma levels, but increased plasma phytosterols are believed to be a coronary heart disease (CHD) risk factor. To address this paradox, we evaluated baseline risk factors, phytosterol intake, and plasma noncholesterol sterol levels in participants of a case control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) Spanish cohort who developed CHD (n = 299) and matched controls (n = 584) who remained free of CHD after a 10 year follow-up. Sitosterol-to-cholesterol ratios increased across tertiles of phytosterol intake (P = 0.026). HDL-cholesterol level increased, and adiposity measures, cholesterol/HDL ratios, and levels of glucose, triglycerides, and lathosterol, a cholesterol synthesis marker, decreased across plasma sitosterol tertiles (P < 0.02; all). Compared with controls, cases had nonsignificantly lower median levels of phytosterol intake and plasma sitosterol. The multivariable-adjusted odds ratio for CHD across the lowest to highest plasma sitosterol tertile was 0.59 (95% confidence interval, 0.36–0.97). Associations were weaker for plasma campesterol. The apolipoprotein E genotype was unrelated to CHD risk or plasma phytosterols. The data suggest that plasma sitosterol levels are associated with a lower CHD risk while being markers of a lower cardiometabolic risk in the EPIC-Spain cohort, a population with a high phytosterol intake. PMID:19786566

  1. The effect of exercise on plasma lipids and LDL subclass metabolism in miniature swine.

    PubMed

    Stucchi, A F; Terpstra, A H; Foxall, T L; Nicolosi, R J; Smith, S C

    1991-05-01

    The effects of exercise on plasma lipids and lipoproteins, high density lipoprotein (HDL) subclass cholesterol levels, and low density lipoprotein (LDL) subclass composition and metabolism were studied in Yucatan miniature swine following 2 yr of training. The exercise protocol produced significant training effects. Post-heparin lipolytic activity was also significantly increased. Although plasma cholesterol and triglycerides did not differ significantly (P = 0.08) between the exercised and control groups, multivariate analysis indicated a strong association between lipoprotein lipase (LPL) and HDL2-C (P less than 0.0001). Although HDL-C levels rose only slightly (P less than 0.09) with exercise, a significant shift was noted in the distribution of cholesterol from the HDL3 to the HDL2 fractions, perhaps mediated by the substantial increase in LPL activity. Exercise had little effect on the chemical composition of the major lipoprotein classes; however, the triglyceride content of the lighter LDL1 subclass was significantly reduced. In the more dense LDL2 subclass, exercise resulted in a significant decrease in triglycerides concomitant with a significant increase in free cholesterol levels. In contrast with the small reductions in fractional catabolic rates (FCR) in either subclass, production rates of the exercised group were reduced, which accounted for the reduction in LDL subclass pool size. These data indicate that exercise produces subtle but significant changes in lipoprotein metabolism that have been previously associated with reduced risk of atherosclerosis.

  2. Low serum levels of High-Density Lipoprotein cholesterol (HDL-c) as an indicator for the development of severe postpartum depressive symptoms

    PubMed Central

    Ramachandran Pillai, Raji; Wilson, Anand Babu; Premkumar, Nancy R.; Kattimani, Shivanand; Sagili, Haritha

    2018-01-01

    Postpartum depression (PPD) is a psychiatric complication of childbirth affecting 10–20% of new mothers and has negative impact on both mother and infant. Serum lipid levels have been related to depressive disorders, but very limited literatures are available regarding the lipid levels in women with postpartum depression. The present study is aimed to examine the association of serum lipids with the development of postpartum depressive symptoms. This is a cross sectional study conducted at a tertiary care hospital in South India. Women who came for postpartum check-up at 6th week post-delivery were screened for PPD (September 2014-October 2015). Women with depressive symptoms were assessed using EPDS (Edinburgh Postnatal Depression Scale). The study involved 186 cases and 250 controls matched for age and BMI. Serum levels of lipid parameters were estimated through spectrophotometry and the atherogenic indices were calculated in all the subjects. Low serum levels of Total Cholesterol (TC) and High Density Lipoprotein cholesterol (HDL-c) were significantly low in PPD women with severe depressive symptoms. The study recorded a significant negative correlation between HDL-c and the EPDS score in PPD women (r = -0.140, p = 0.05). Interestingly, the study also observed a significant negative correlation between Body Mass Index (BMI) and EPDS scores in case group (r = -0.146, p = 0.047), whereas a positive correlation between the same in controls (r = 0.187, p = 0.004). Our study demonstrated that low levels of serum HDL-c is correlated with the development of severe depressive symptoms in postpartum women. Study highlights the role of lipids in the development of postpartum depressive symptoms. PMID:29444162

  3. Plasma-Advanced Oxidation Protein Products Are Potent High-Density Lipoprotein Receptor Antagonists In Vivo

    PubMed Central

    Marsche, Gunther; Frank, Sasa; Hrzenjak, Andelko; Holzer, Michael; Dirnberger, Sabine; Wadsack, Christian; Scharnagl, Hubert; Stojakovic, Tatjana; Heinemann, Akos; Oettl, Karl

    2010-01-01

    Advanced oxidation protein products (AOPPs) are carried by oxidized plasma proteins, especially albumin and accumulate in subjects with renal disease and coronary artery disease. AOPPs represent an excellent novel marker of oxidative stress and their roles in the development of cardiovascular disease might be of great importance. Here, we show that in vitro–generated AOPP-albumin binds with high affinity to the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI). Already an equimolar concentration of AOPP-albumin to HDL blocked HDL association to SR-BI and effectively inhibited SR-BI–mediated cholesterol ester (CE) uptake. Interestingly, albumin extensively modified by advanced glycation end products (AGE-albumin), which is an established SR-BI ligand known to accumulate in renal disease, only weakly interfered with HDL binding to SR-BI. Furthermore, AOPP-albumin administration increased the plasma half-life of [3H]CE-HDL in control mice 1.6-fold (P=0.01) and 8-fold (P=0.0003) in mice infected with adenoviral vectors encoding human SR-BI. Moreover, albumin isolated from hemodialysis patients, but not albumin isolated from healthy controls, markedly inhibited SR-BI–mediated HDL-CE transfer in vitro dependent on the AOPP content of albumin. These results indicate that AOPP-albumin effectively blocks SR-BI in vitro and in vivo. Thus, depressed plasma clearance of HDL-cholesterol may contribute to the abnormal composition of HDL and the high cardiovascular risk observed in patients with chronic renal failure. PMID:19179658

  4. Resequencing of the CETP gene in American whites and African blacks: Association of rare and common variants with HDL-cholesterol levels

    PubMed Central

    Pirim, Dilek; Wang, Xingbin; Niemsiri, Vipavee; Radwan, Zaheda H.; Bunker, Clareann H.; Hokanson, John E.; Hamman, Richard F.; Barmada, M. Michael; Demirci, F. Yesim; Kamboh, M. Ilyas

    2015-01-01

    Background Cholesteryl ester transfer protein (CETP) plays a crucial role in lipid metabolism. Associations of common CETP variants with variation in plasma lipid levels, and/or CETP mass/activity have been extensively studied and well-documented; however, the effects of uncommon/rare CETP variants on plasma lipid profile remain undefined. Hence, resequencing of the gene in extreme phenotypes and follow-up rare-variant association analyses are essential to fill this gap. Objective To identify common and uncommon/rare variants in the CETP gene by resequencing the entire gene and test the effects of both common and uncommon/rare CETP variants on plasma lipid traits in two genetically distinct populations. Methods and Results The entire CETP gene plus flanking regions were resequenced in 190 individuals comprising 95 non-Hispanic Whites (NHWs) and 95 African blacks with extreme HDL-C levels. A total of 279 sequence variants were identified, of which 25 were novel. Selected variants were genotyped in the entire samples of 623 NHWs and 788 African blacks and 184 QC-passed variants were tested in relation to plasma lipid traits by using gene-based, single-site, haplotype and rare variant association analyses (SKAT-O). Two novel and independent associations of rs1968905 and rs289740 with HDL-C were identified in African blacks. Using SKAT-O analysis, we also identified rare variants with minor allele frequency <0.01 to be associated with HDL-C in both NHWs (P=0.024) and African blacks (P=0.009). Conclusions Our results point out that in addition to the common CETP variants, rare genetic variants in the CETP gene also contribute to the phenotypic variation of HDL-C in the general population. PMID:26683795

  5. Plasma lipid levels predict dysglycemia in a biracial cohort of nondiabetic subjects: Potential mechanisms

    PubMed Central

    Owei, Ibiye; Umekwe, Nkiru; Wan, Jim

    2016-01-01

    Dyslipidemia and dysglycemia are etiologically associated, but the direction, chronology, and mechanisms of the association are not fully understood. We, therefore, analyzed data from 335 healthy adults (184 black, 151 white) enrolled in the Pathobiology of Prediabetes in A Biracial Cohort study. Subjects underwent oral glucose tolerance test (OGTT) and were enrolled if they had normal fasting and 2-h plasma glucose levels. Assessments during year 1 included anthropometry, fasting lipid profile, insulin sensitivity, and insulin secretion. Thereafter, OGTT was assessed annually for 5.5 years. The primary outcome was occurrence of prediabetes (impaired fasting glucose or impaired glucose tolerance) or diabetes. During a mean follow-up of 2.62 years, 110 participants (32.8%) developed prediabetes (N = 100) or diabetes (N = 10). In multivariate logistic regression models, higher baseline low-density lipoprotein (LDL) cholesterol and triglyceride levels and lower HDL cholesterol levels significantly increased the risk of incident prediabetes. The combined relative risk (95% confidence interval [CI]) of prediabetes for participants with lower baseline HDL cholesterol (10th vs. 90th percentile), higher LDL cholesterol (90th vs. 10th percentile) and high triglycerides levels (90th vs. 10th percentile) was 4.12 (95% CI 1.61–10.56), P = 0.0032. At baseline, lipid values showed significant associations with measures of adiposity, glycemia, insulin sensitivity, and secretion. In both ethnic groups, waist circumference correlated positively with triglycerides and inversely with HDL cholesterol levels (P = 0.0004–<0.0001); fasting plasma glucose correlated positively with triglycerides and LDL cholesterol levels and inversely with HDL cholesterol levels (P = 0.006–<0.0001); insulin sensitivity correlated positively with HDL cholesterol and inversely with triglyceride levels (P < 0.0001), and insulin secretion correlated positively with triglycerides

  6. Influence of age and gender on triglycerides-to-HDL-cholesterol ratio (TG/HDL ratio) and its association with adiposity index.

    PubMed

    Wakabayashi, Ichiro

    2012-01-01

    TG/HDL ratio has been proposed to be a good predictor of cardiovascular disease. The aim of this study was to determine whether TG/HDL ratio and its association with adiposity index are modified by age and gender. Subjects were younger (35-40 years) and older (60-70 years) Japanese men and women (n=16,825) receiving health checkup examinations. TG/HDL ratio and its relationship with adiposity index such as waist-to-height ratio (WHtR) were compared between the age pair and between the gender pair. Log-transformed TG/HDL ratio was significantly higher in older women than in younger women, while log-transformed TG/HDL ratio was comparable in younger and older men. The odds ratio (OR) for high TG/HDL ratio in subjects with vs. subjects without high WHtR was significantly lower in older men and women than in younger men and women, respectively. The OR was significantly lower in younger men than in younger women [4.08 (3.63-4.58) (younger men) vs. 8.42 (5.55-12.78) (younger women), p<0.01], whereas the OR was significantly lower in older women than in older men [3.36 (2.87-3.93) (older men) vs. 1.93 (1.31-2.85) (older women), p<0.01]. The results suggest that TG/HDL ratio is comparable in younger and older men but that TG/HDL ratio is higher in older women than in younger women and that the association between obesity and high TG/HDL ratio declines with age and is stronger in younger women than in younger men, while the association is weaker in older women than in older men. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial.

    PubMed

    Lee, Chan Joo; Choi, Seungbum; Cheon, Dong Huey; Kim, Kyeong Yeon; Cheon, Eun Jeong; Ann, Soo-Jin; Noh, Hye-Min; Park, Sungha; Kang, Seok-Min; Choi, Donghoon; Lee, Ji Eun; Lee, Sang-Hak

    2017-02-28

    The influence of lipid-lowering therapy on high-density lipoprotein (HDL) is incompletely understood. We compared the effect of two lipid-lowering strategies on HDL functions and identified some HDL-related proteins. Thirty two patients were initially screened and HDLs of 21 patients were finally analyzed. Patients were randomized to receive atorvastatin 20 mg (n = 11) or atorvastatin 5 mg/ezetimibe 10 mg combination (n = 10) for 8 weeks. The cholesterol efflux capacity and other anti-inflammatory functions were assessed based on HDLs of the participants before and after treatment. Pre-specified HDL proteins of the same HDL samples were measured. The post-treatment increase in cholesterol efflux capacities was similar between the groups (35.6% and 34.6% for mono-therapy and combination, respectively, p = 0.60). Changes in nitric oxide (NO) production, vascular cell adhesion molecule-1 (VCAM-1) expression, and reactive oxygen species (ROS) production were similar between the groups. The baseline cholesterol efflux capacity correlated positively with apolipoprotein (apo)A1 and C3, whereas apoA1 and apoC1 showed inverse associations with VCAM-1 expression. The changes in the cholesterol efflux capacity were positively correlated with multiple HDL proteins, especially apoA2. Two regimens increased the cholesterol efflux capacity of HDL comparably. Multiple HDL proteins, not limited to apoA1, showed a correlation with HDL functions. These results indicate that conventional lipid therapy may have additional effects on HDL functions with changes in HDL proteins. ClinicalTrials.gov, number NCT02942602 .

  8. Do perfluoroalkyl substances affect metabolic function and plasma lipids?--Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1.

    PubMed

    Fisher, Mandy; Arbuckle, Tye E; Wade, Mike; Haines, Douglas A

    2013-02-01

    Perfluorinated compounds (PFCs) are man-made chemicals that are heat stable, non-flammable and able to repel both water and oils. Biomonitoring research shows global distribution in human, animal and aquatic environments of these chemicals. PFCs have been shown to activate the peroxisome proliferator-activated receptors which play a large role in metabolism and the regulation of energy homeostasis. Previous epidemiological research has also suggested a potential role of PFCs on lipid and glucose metabolism. The objectives of this study were to examine the association between the levels of perfluorinated compounds perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) in plasma and metabolic function and plasma lipid levels. Using cross-sectional data from the Canadian Health Measures Survey (Cycle 1 2007-2009) we examined the association in adults between plasma levels of PFOA, PFOS and PFHxS (n=2700) on cholesterol outcomes, metabolic syndrome and glucose homeostasis using multivariate linear and logistic regression models. We found some evidence of a significant association between perfluoroalkyl substances, notably PFHxS, with total cholesterol (TC), low-density lipoprotein cholesterol (LDL), total cholesterol/high density lipoprotein cholesterol ratio (TC/HDL) and non-HDL cholesterol as well as an elevated odds of high cholesterol. We found some associations with PFOA and PFOS in our unweighted models but these results did not remain significant after weighting for sampling strategy. We found no association with metabolic syndrome, or glucose homeostasis parameters. This study showed lower levels of PFOA and PFOS and slightly higher levels of PFHxS than other published population studies. Our results did not give significant evidence to support the association with cholesterol outcomes with PFOS and PFOA. However, we did observe several significant associations with the PFHxS and cholesterol outcomes (LDL, TC, NON-HDL

  9. Analysis of Multiple Association Studies Provides Evidence of an Expression QTL Hub in Gene-Gene Interaction Network Affecting HDL Cholesterol Levels

    PubMed Central

    Ma, Li; Ballantyne, Christie; Brautbar, Ariel; Keinan, Alon

    2014-01-01

    Epistasis has been suggested to underlie part of the missing heritability in genome-wide association studies. In this study, we first report an analysis of gene-gene interactions affecting HDL cholesterol (HDL-C) levels in a candidate gene study of 2,091 individuals with mixed dyslipidemia from a clinical trial. Two additional studies, the Atherosclerosis Risk in Communities study (ARIC; n = 9,713) and the Multi-Ethnic Study of Atherosclerosis (MESA; n = 2,685), were considered for replication. We identified a gene-gene interaction between rs1532085 and rs12980554 (P = 7.1×10−7) in their effect on HDL-C levels, which is significant after Bonferroni correction (P c = 0.017) for the number of SNP pairs tested. The interaction successfully replicated in the ARIC study (P = 7.0×10−4; P c = 0.02). Rs1532085, an expression QTL (eQTL) of LIPC, is one of the two SNPs involved in another, well-replicated gene-gene interaction underlying HDL-C levels. To further investigate the role of this eQTL SNP in gene-gene interactions affecting HDL-C, we tested in the ARIC study for interaction between this SNP and any other SNP genome-wide. We found the eQTL to be involved in a few suggestive interactions, one of which significantly replicated in MESA. Importantly, these gene-gene interactions, involving only rs1532085, explain an additional 1.4% variation of HDL-C, on top of the 0.65% explained by rs1532085 alone. LIPC plays a key role in the lipid metabolism pathway and it, and rs1532085 in particular, has been associated with HDL-C and other lipid levels. Collectively, we discovered several novel gene-gene interactions, all involving an eQTL of LIPC, thus suggesting a hub role of LIPC in the gene-gene interaction network that regulates HDL-C levels, which in turn raises the hypothesis that LIPC's contribution is largely via interactions with other lipid metabolism related genes. PMID:24651390

  10. Cholesterol lipoproteins and prevalence of dyslipidemias in urban Asian Indians: A cross sectional study

    PubMed Central

    Guptha, Soneil; Gupta, Rajeev; Deedwania, Prakash; Bhansali, Anil; Maheshwari, Anuj; Gupta, Arvind; Gupta, Balkishan; Saboo, Banshi; Singh, Jitendra; Achari, Vijay; Sharma, Krishna Kumar

    2014-01-01

    Objective To determine levels of cholesterol lipoproteins and prevalence of dyslipidemias in urban Asian Indians. Methods Population based 6123 subjects (men 3388) were evaluated. Mean±1SD of various cholesterol lipoproteins (total, HDL, LDL and non-HDL cholesterol) and triglycerides were reported. Subjects were classified according to US National Cholesterol Education Program. Results Age-adjusted levels in men and women were cholesterol total 178.4 ± 39 and 184.6 ± 39, HDL 44.9 ± 11 and 51.1 ± 11, LDL 102.5 ± 33 and 106.2 ± 33, total:HDL 4.15 ± 1.2 and 3.79 ± 1.0 and triglycerides 162.5 ± 83 and 143.7 ± 83 mg/dl. Age-adjusted prevalence (%) in men and women, respectively were, total cholesterol ≥200 mg/dl 25.1 and 24.9, LDL cholesterol ≥130 mg/dl 16.3 and 15.1 and ≥100 mg/dl 49.5 and 49.7, HDL cholesterol <40/<50 mg/dl 33.6 and 52.8, total:HDL cholesterol ≥4.5 29.4 and 16.8, and triglycerides ≥150 mg/dl 42.1 and 32.9%. Cholesterol level was significantly greater in subjects with better socioeconomic status, body mass index and waist circumference while triglycerides were more among those with high socioeconomic status, fat intake, body mass index and waist circumference (p < 0.05). Hypercholesterolemia awareness (15.6%), treatment (7.2%) and control (4.1%) were low. Conclusions Mean cholesterol and LDL cholesterol are low and triglycerides were high in urban Asian Indians. Most prevalent dyslipidemias are borderline high LDL, low HDL and high triglycerides. Subjects with high socioeconomic status, high fat intake and greater adiposity have higher total and LDL cholesterol and triglyceride and lower HDL cholesterol. PMID:24973832

  11. Influence of triglycerides on other plasma lipids in middle-aged men intended for hypolipidaemic treatment.

    PubMed

    Kolovou, Genovefa D; Anagnostopoulou, Katherine K; Salpea, Klelia D; Hoursalas, Ioannis S; Petropoulos, Ilias; Bilianou, Helen I; Damaskos, Dimitris S; Giannakopoulou, Vasiliki N; Cokkinos, Dennis V

    2006-01-01

    The present investigation aimed to evaluate the influence of serum triglycerides (TG) on other plasma lipids in male patients less than 65 years of age intended for hypolipidaemic treatment. Lipid profiles of a cohort of 412 dyslipidaemic male patients aged 53.4 +/- 7.7 years (mean +/- standard deviation) were evaluated. Patients were stratified in accordance with their fasting plasma lipid levels. They were divided into multiple groups on the basis of serum TG (> or = 150 or < 150 mg/dl) and high-density lipoprotein cholesterol (HDL-C > or = 40 or < 40 mg/dl). Patients with TG > or = 150 mg/dl had higher total cholesterol and lower HDL-C levels compared with those with TG < 150 mg/dl (p = 0.005 and p < 0.001, respectively). Patients with HDL-C < 40 mg/dl had similar total cholesterol levels and higher TG levels compared to those with HDL-C > or = 40 mg/dl (p < 0.001). In all patients, an inverse correlation between TG and HDL-C was found (r = -0.286, p < 0.001). Additionally, HDL-C levels were inversely correlated with the TG concentration in patients with TG < 150 mg/dl (r = -0.135, p = 0.042) and TG > or = 150 mg/dl (r = -0.188, p = 0.002). An inverse correlation between TG and HDL-C levels seems to exist in the sampled population, revealing a close link between the metabolic pathways for TG and HDL-C. This inverse correlation appears to persist even in patients with low fasting TG levels.

  12. Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids

    DOE PAGES

    Wilson, Robert L.; Frisz, Jessica F.; Klitzing, Haley A.; ...

    2015-04-07

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here in this paper, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol andmore » sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane.« less

  13. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma.

    PubMed

    Swertfeger, Debi K; Li, Hailong; Rebholz, Sandra; Zhu, Xiaoting; Shah, Amy S; Davidson, W Sean; Lu, Long J

    2017-04-01

    HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux ( r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions ( r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux

  14. Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma *

    PubMed Central

    Swertfeger, Debi K.; Li, Hailong; Rebholz, Sandra; Zhu, Xiaoting; Shah, Amy S.; Davidson, W. Sean; Lu, Long J.

    2017-01-01

    HDL has been shown to possess a variety of cardio-protective functions, including removal of excess cholesterol from the periphery, and inhibition of lipoprotein oxidation. It has been proposed that various HDL subparticles exist, each with distinct protein and lipid compositions, which may be responsible for HDL's many functions. We hypothesized that HDL functions will co-migrate with the operational lipoprotein subspecies when separated by gel filtration chromatography. Plasma from 10 healthy male donors was fractionated and the protein composition of the phospholipid containing fractions was analyzed by mass spectrometry (MS). Each fraction was evaluated for its proteomic content as well as its ability to promote cholesterol efflux and protect low density lipoprotein (LDL) from free radical oxidation. For each function, several peaks of activity were identified across the plasma size gradient. Neither cholesterol efflux or LDL antioxidation activity correlated strongly with any single protein across the fractions. However, we identified multiple proteins that had strong correlations (r values >0.7, p < 0.01) with individual peaks of activity. These proteins fell into diverse functional categories, including those traditionally associated with lipid metabolism, as well as alternative complement cascade, innate immunity and clotting cascades and immunoglobulins. Additionally, the phospholipid and cholesterol concentration of the fractions correlated strongly with cholesterol efflux (r = 0.95 and 0.82 respectively), whereas the total protein content of the fractions correlated best with antioxidant activity across all fractions (r = 0.746). Furthermore, two previously postulated subspecies (apoA-I, apoA-II and apoC-1; as well as apoA-I, apoC-I and apoJ) were found to have strong correlations with both cholesterol efflux and antioxidation activity. Up till now, very little has been known about how lipoprotein composition mediates functions like cholesterol efflux

  15. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk

    PubMed Central

    Morton, Allyson M.; Koch, Manja; Mendivil, Carlos O.; Furtado, Jeremy D.; Tjønneland, Anne; Overvad, Kim; Wang, Liyun; Jensen, Majken K.; Sacks, Frank M.

    2018-01-01

    BACKGROUND. Subspecies of HDL contain apolipoprotein E (apoE) and/or apoCIII. Both proteins have properties that could affect HDL metabolism. The relation between HDL metabolism and risk of coronary heart disease (CHD) is not well understood. METHODS. Eighteen participants were given a bolus infusion of [D3]L-leucine to label endogenous proteins on HDL. HDL was separated into subspecies containing apoE and/or apoCIII and then into 4 sizes. Metabolic rates for apoA-I in HDL subspecies and sizes were determined by interactive modeling. The concentrations of apoE in HDL that contain or lack apoCIII were measured in a prospective study in Denmark including 1,949 incident CHD cases during 9 years. RESULTS. HDL containing apoE but not apoCIII is disproportionately secreted into the circulation, actively expands while circulating, and is quickly cleared. These are key metabolic steps in reverse cholesterol transport, which may protect against atherosclerosis. ApoCIII on HDL strongly attenuates these metabolic actions of HDL apoE. In the epidemiological study, the relation between HDL apoE concentration and CHD significantly differed depending on whether apoCIII was present. HDL apoE was associated significantly with lower risk of CHD only in the HDL subspecies lacking apoCIII. CONCLUSIONS. ApoE and apoCIII on HDL interact to affect metabolism and CHD. ApoE promotes metabolic steps in reverse cholesterol transport and is associated with lower risk of CHD. ApoCIII, when coexisting with apoE on HDL, abolishes these benefits. Therefore, differences in metabolism of HDL subspecies pertaining to reverse cholesterol transport are reflected in differences in association with CHD. TRIAL REGISTRATION. Clinicaltrials.gov NCT01399632. FUNDING. This work was supported by NIH grant R01HL095964 to FMS and by a grant to the Harvard Clinical and Translational Science Center (8UL1TR0001750) from the National Center for Advancing Translational Science. PMID:29467335

  16. Plasma levels of HDL subpopulations and remnant lipoproteins predict the extent of angiographically defined disease in post-menopausal women

    USDA-ARS?s Scientific Manuscript database

    The association of coronary heart disease (CHD) with subpopulations of triglyceride (TG)-rich lipoproteins and high-density lipoproteins (HDL) is established in men, but has not been well characterized in women. Plasma HDL subpopulation concentrations, quantified by 2-dimensional gel electrophoresis...

  17. Work, sleep, and cholesterol levels of U.S. long-haul truck drivers

    PubMed Central

    LEMKE, Michael K.; APOSTOLOPOULOS, Yorghos; HEGE, Adam; WIDEMAN, Laurie; SÖNMEZ, Sevil

    2016-01-01

    Long-haul truck drivers in the United States experience elevated cardiovascular health risks, possibly due to hypercholesterolemia. The current study has two objectives: 1) to generate a cholesterol profile for U.S. long-haul truck drivers; and 2) to determine the influence of work organization characteristics and sleep quality and duration on cholesterol levels of long-haul truck drivers. Survey and biometric data were collected from 262 long-haul truck drivers. Descriptive analyses were performed for demographic, work organization, sleep, and cholesterol measures. Linear regression and ordinal logistic regression analyses were conducted to examine for possible predictive relationships between demographic, work organization, and sleep variables, and cholesterol outcomes. The majority (66.4%) of drivers had a low HDL (<40 mg/dL), and nearly 42% of drivers had a high-risk total cholesterol to HDL cholesterol ratio. Sleep quality was associated with HDL, LDL, and total cholesterol, and daily work hours were associated with LDL cholesterol. Workday sleep duration was associated with non-HDL cholesterol, and driving experience and sleep quality were associated with cholesterol ratio. Long-haul truck drivers have a high risk cholesterol profile, and sleep quality and work organization factors may induce these cholesterol outcomes. Targeted worksite health promotion programs are needed to curb these atherosclerotic risks. PMID:28049935

  18. Cholesterol-lowering effects of modified animal fats in postmenopausal women.

    PubMed

    Labat, J B; Martini, M C; Carr, T P; Elhard, B M; Olson, B A; Bergmann, S D; Slavin, J L; Hayes, K C; Hassel, C A

    1997-12-01

    In an attempt to improve the nutritional value of animal fats (including milkfat and lard), two technological approaches (i.e., cholesterol removal by steam distillation and linoleic acid enrichment by addition of safflower oil) were tested for cholesterolemic effects in a cohort of 29 older women (age 68 +/- 7 years). Test fat sources were incorporated into crackers, cookies, cheese, ice cream, whipped topping, sour cream, baking shortening, and table spreads. Subjects were permanent residents of a convent where meals were prepared in a centralized kitchen, allowing test fats to be provided in daily food menu items. The foods containing test fats were introduced into three sequential dietary treatment periods, each lasting 4 weeks, in the following order: cholesterol-reduced animal fat (CRAF): fatty-acid modified, cholesterol-reduced animal fat (FAMCRAF); and-unaltered animal fat (AF). Subjects were offered menu items cafeteria style and encouraged to make food selections consistent with their habitual diets, which were recorded daily. Fasted blood lipid profiles determined at the end of each treatment period showed that FAMCRAF reduced mean plasma total cholesterol, LDL cholesterol, and apolipoprotein B concentrations relative to AF (p < 0.05). Mean HDL cholesterol concentrations were not influenced by diet. Relative to native products, animal fats modified by cholesterol removal and linoleic acid enrichment reduced plasma total and LDL cholesterol concentrations in a predictable manner similar to that based on studies of men.

  19. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia.

    PubMed

    Jenkins, David J A; Chiavaroli, Laura; Wong, Julia M W; Kendall, Cyril; Lewis, Gary F; Vidgen, Edward; Connelly, Philip W; Leiter, Lawrence A; Josse, Robert G; Lamarche, Benoît

    2010-12-14

    Higher intake of monounsaturated fat may raise high-density lipoprotein (HDL) cholesterol without raising low-density lipoprotein (LDL) cholesterol. We tested whether increasing the monounsaturated fat content of a diet proven effective for lowering LDL cholesterol (dietary portfolio) also modified other risk factors for cardiovascular disease, specifically by increasing HDL cholesterol, lowering serum triglyceride and further reducing the ratio of total to HDL cholesterol. Twenty-four patients with hyperlipidemia consumed a therapeutic diet very low in saturated fat for one month and were then randomly assigned to a dietary portfolio low or high in monounsaturated fatty acid for another month. We supplied participants' food for the two-month period. Calorie intake was based on Harris-Benedict estimates for energy requirements. For patients who consumed the dietary portfolio high in monounsaturated fat, HDL cholesterol rose, whereas for those consuming the dietary portfolio low in monounsaturated fat, HDL cholesterol did not change. The 12.5% treatment difference was significant (0.12 mmol/L, 95% confidence interval [CI] 0.05 to 0.21, p = 0.003). The ratio of total to HDL cholesterol was reduced by 6.5% with the diet high in monounsaturated fat relative to the diet low in monounsaturated fat (-0.28, 95% CI -0.59 to -0.04, p = 0.025). Patients consuming the diet high in monounsaturated fat also had significantly higher concentrations of apolipoprotein AI, and their C-reactive protein was significantly lower. No treatment differences were seen for triglycerides, other lipids or body weight, and mean weight loss was similar for the diets high in monounsaturated fat (-0.8 kg) and low in monounsaturated fat (-1.2 kg). Monounsaturated fat increased the effectiveness of a cholesterol-lowering dietary portfolio, despite statin-like reductions in LDL cholesterol. The potential benefits for cardiovascular risk were achieved through increases in HDL cholesterol, further

  20. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia

    PubMed Central

    Jenkins, David J.A.; Chiavaroli, Laura; Wong, Julia M.W.; Kendall, Cyril; Lewis, Gary F.; Vidgen, Edward; Connelly, Philip W.; Leiter, Lawrence A.; Josse, Robert G.; Lamarche, Benoît

    2010-01-01

    Background Higher intake of monounsaturated fat may raise high-density lipoprotein (HDL) cholesterol without raising low-density lipoprotein (LDL) cholesterol. We tested whether increasing the monounsaturated fat content of a diet proven effective for lowering LDL cholesterol (dietary portfolio) also modified other risk factors for cardiovascular disease, specifically by increasing HDL cholesterol, lowering serum triglyceride and further reducing the ratio of total to HDL cholesterol. Methods Twenty-four patients with hyperlipidemia consumed a therapeutic diet very low in saturated fat for one month and were then randomly assigned to a dietary portfolio low or high in monounsaturated fatty acid for another month. We supplied participants’ food for the two-month period. Calorie intake was based on Harris–Benedict estimates for energy requirements. Results For patients who consumed the dietary portfolio high in monounsaturated fat, HDL cholesterol rose, whereas for those consuming the dietary portfolio low in monounsaturated fat, HDL cholesterol did not change. The 12.5% treatment difference was significant (0.12 mmol/L, 95% confidence interval [CI] 0.05 to 0.21, p = 0.003). The ratio of total to HDL cholesterol was reduced by 6.5% with the diet high in monounsaturated fat relative to the diet low in monounsaturated fat (−0.28, 95% CI −0.59 to −0.04, p = 0.025). Patients consuming the diet high in monounsaturated fat also had significantly higher concentrations of apolipoprotein AI, and their C-reactive protein was significantly lower. No treatment differences were seen for triglycerides, other lipids or body weight, and mean weight loss was similar for the diets high in monounsaturated fat (−0.8 kg) and low in monounsaturated fat (−1.2 kg). Interpretation Monounsaturated fat increased the effectiveness of a cholesterol-lowering dietary portfolio, despite statin-like reductions in LDL cholesterol. The potential benefits for cardiovascular risk were

  1. BMI, body fat mass and plasma leptin level in relation to cardiovascular diseases risk factors among adolescents in Taitung.

    PubMed

    Wu, Ya-Ke; Chu, Nain-Feng; Huang, Ya-Hsien; Syu, Jhu-Ting; Chang, Jin-Biou

    2016-01-01

    To investigate the risk factors associated with cardiovascular diseases and its relation to BMI, body fat mass and plasma leptin level among adolescents in Taitung, Taiwan. A cross-sectional Taitung Children Heart Study for 500 young adolescents between ages 13 and 15 was conducted. Gender-specific regression models were used to determine the associations between BMI, percentage of body fat mass, plasma leptin level and seven CVDs risk factors (systolic and diastolic blood pressure, mean arterial pressure, triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol) before and after adjusting for weight status and age. After adjusting for weight status and age, BMI was positively associated with systolic BP, triglycerides, LDL-cholesterol levels but negatively associated with HDL-cholesterol level in boys while positively associated with systolic and diastolic BP, mean arterial pressure, and LDL-cholesterol level in girls. The percentage of body fat mass was positively associated with triglycerides, total cholesterol, and LDL-cholesterol in boys while positively associated with systolic BP, total cholesterol, and LDL-cholesterol in girls. Plasma leptin was positively associated with triglycerides, total cholesterol and LDL-cholesterol in boys but no statistically significant associations with CVDs risk factors in girls. A strong relationship between the percentage of body fat mass and plasma leptin appeared among all participants (r=0.59, p<0.01). BMI, body fat mass and plasma leptin level may be used to identify certain CVDs risk factors among Taitung adolescents. Future researches could consider measuring body fat mass in the relationship of CVDs risk factors instead of plasma leptin among young adolescents. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. Disparate effects of oxidation on plasma acyltransferase activities: inhibition of cholesterol esterification but stimulation of transesterification of oxidized phospholipids.

    PubMed

    Subbaiah, P V; Liu, M

    1996-05-31

    Oxidation of lipoproteins results in the formation of several polar phospholipids with pro-inflammatory and pro-atherogenic properties. To examine the possible role of lecithin/cholesterol acyltransferase (LCAT) in the metabolism of these oxidized phospholipids, we oxidized whole plasma with either Cu(2+) or a free-radical generator, and determined the various activities of LCAT. Oxidation caused a reduction in plasma phosphatidylcholine (PC), an increase in a short-chain polar PC (SCP-PC), and an inhibition of the transfer of long-chain acyl groups to cholesterol (LCAT activity) or to lyso PC (lysolecithin acyltransferase (LAT) I activity). However, the transfer of short-chain acyl groups from SCP-PC to lyso PCLAT II activity) was stimulated several fold, in direct correlation with the degree of oxidation. LAT II activity was not stimulated by oxidation in LCAT-deficient plasma, showing that it is carried out by LCAT. Oxidized normal plasma exhibited low LCAT activity even in the presence of exogenous proteoliposome substrate, indicating that the depletion of substrate PC was not responsible for the loss of activity. Oxidation of isolated LDL or HDL abolished their ability to support LCAT and LAT I activities of exogenous enzyme, but promoted the LAT II activity. Purified LCAT lost its LCAT and LAT I functions, but not its LAT II function, when oxidized in vitro. These results show that while oxidation of plasma causes a loss of LCAT's ability to transfer long-chain acyl groups, its ability to transfer short-chain acyl groups, from SCP-PC is retained, and even stimulated, suggesting that LCAT may have a physiological role in the metabolism of oxidized PC in plasma.

  3. Secular trends in cholesterol lipoproteins and triglycerides and prevalence of dyslipidemias in an urban Indian population

    PubMed Central

    Gupta, Rajeev; Guptha, Soneil; Agrawal, Aachu; Kaul, Vijay; Gaur, Kiran; Gupta, Vijay P

    2008-01-01

    Background Coronary heart disease is increasing in urban Indian subjects and lipid abnormalities are important risk factors. To determine secular trends in prevalence of various lipid abnormalities we performed studies in an urban Indian population. Methods Successive epidemiological Jaipur Heart Watch (JHW) studies were performed in Western India in urban locations. The studies evaluated adults ≥ 20 years for multiple coronary risk factors using standardized methodology (JHW-1, 1993–94, n = 2212; JHW-2, 1999–2001, n = 1123; JHW-3, 2002–03, n = 458, and JHW-4 2004–2005, n = 1127). For the present analyses data of subjects 20–59 years (n = 4136, men 2341, women 1795) have been included. In successive studies, fasting measurements for cholesterol lipoproteins (total cholesterol, LDL cholesterol, HDL cholesterol) and triglycerides were performed in 193, 454, 179 and 252 men (n = 1078) and 83, 472, 195, 248 women (n = 998) respectively (total 2076). Age-group specific levels of various cholesterol lipoproteins, triglycerides and their ratios were determined. Prevalence of various dyslipidemias (total cholesterol ≥ 200 mg/dl, LDL cholesterol ≥ 130 mg/dl, non-HDL cholesterol ≥ 160 mg/dl, triglycerides ≥ 150 mg/dl, low HDL cholesterol <40 mg/dl, high cholesterol remnants ≥ 25 mg/dl, and high total:HDL cholesterol ratio ≥ 5.0, and ≥ 4.0 were also determined. Significance of secular trends in prevalence of dyslipidemias was determined using linear-curve estimation regression. Association of changing trends in prevalence of dyslipidemias with trends in educational status, obesity and truncal obesity (high waist:hip ratio) were determined using two-line regression analysis. Results Mean levels of various lipoproteins increased sharply from JHW-1 to JHW-2 and then gradually in JHW-3 and JHW-4. Age-adjusted mean values (mg/dl) in JHW-1, JHW-2, JHW-3 and JHW-4 studies respectively showed a significant increase in total cholesterol (174.9 ± 45, 196.0

  4. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  5. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  6. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than tomore » intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.« less

  7. Cholesterol, Triglycerides, and the Five-Factor Model of Personality

    PubMed Central

    Sutin, Angelina R.; Terracciano, Antonio; Deiana, Barbara; Uda, Manuela; Schlessinger, David; Lakatta, Edward G.; Costa, Paul T.

    2010-01-01

    Unhealthy lipid levels are among the leading controllable risk factors for coronary heart disease. To identify the psychological factors associated with dyslipidemia, this study investigates the personality correlates of cholesterol (total, LDL, and HDL) and triglycerides. A community-based sample (N=5,532) from Sardinia, Italy, had their cholesterol and triglyceride levels assessed and completed a comprehensive personality questionnaire, the NEO-PI-R. All analyses controlled for age, sex, BMI, smoking, drinking, hypertension, and diabetes. Low Conscientiousness and traits related to impulsivity were associated with lower HDL cholesterol and higher triglycerides. Compared to the lowest 10%, those who scored in top 10% on Impulsivity had a 2.5 times greater risk of exceeding the clinical threshold for elevated triglycerides (OR=2.51, CI=1.56–4.07). In addition, sex moderated the association between trait depression (a component of Neuroticism) and HDL cholesterol, such that trait depression was associated with lower levels of HDL cholesterol in women but not men. When considering the connection between personality and health, unhealthy lipid profiles may be one intermediate biomarker between personality and morbidity and mortality. PMID:20109519

  8. Dietary Wheat Bran Oil Is Equally as Effective as Rice Bran Oil in Reducing Plasma Cholesterol.

    PubMed

    Lei, Lin; Chen, Jingnan; Liu, Yuwei; Wang, Lijun; Zhao, Guohua; Chen, Zhen-Yu

    2018-03-21

    Rice bran oil (RBO) possesses a plasma cholesterol-lowering activity, while effect of wheat bran oil (WBO) on plasma cholesterol remains unknown. The present study compared the cholesterol-lowering activity of WBO with that of RBO in hamsters. Fifty-four male hamsters were divided into seven groups fed either a noncholesterol diet (NCD) or one of six high-cholesterol diets, namely HCD diet (0.2% cholesterol +9.5% lard), HCD+C diet (0.2% cholesterol +9.5% lard +0.5% cholestyramine), WL diet (0.2% cholesterol +4.8% Lard +4.8% WBO), WH diet (0.2% cholesterol +9.5% WBO), RL diet (0.2% cholesterol +4.8% Lard +4.8% RBO), and RH diet (0.2% cholesterol +9.5% RBO). Plasma total cholesterol (TC) in HCD group was 327.4 ± 31.8 mg/dL, while plasma TC in two WBO and two RBO groups was 242.2 ± 20.8, 243.1 ± 31.7, 257.1 ± 16.3, and 243.4 ± 46.0 mg/dL, respectively, leading to a decrease in plasma TC by 22-26% ( P < 0.01). No significant difference in cholesterol-lowering potency was seen between WBO and RBO. Plasma cholesterol-lowering activity of WBO and RBO was accompanied by down-regulation of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase and fatty acid synthase, while up-regulation of cholesterol-7α-hydroxylase. WL, WH, RL, and RH diets increased the fecal excretion of total neutral sterols by 72.8%, 106.9%, 5.4%, and 36.8% ( P < 0.01) respectively. Results indicated WBO and RBO could inhibit cholesterol absorption via down-regulation of intestinal Niemann-Pick C1 like 1 protein, acyl CoA:cholesterol acyltransferase 2, and ATP binding cassette transporter 5. In summary, WBO was equally effective as RBO in decreasing plasma cholesterol in hypercholesterolemia hamsters.

  9. Prevalence of Low High-density Lipoprotein Cholesterol Among Adults, by Physical Activity: United States, 2011-2014.

    PubMed

    Zwald, Marissa L; Akinbami, Lara J; Fakhouri, Tala H I; Fryar, Chryl D

    2017-03-01

    Data from the National Health and Nutrition Examination Survey •The prevalence of low high-density lipoprotein (HDL) cholesterol was significantly higher among adults who did not meet recommended physical activity guidelines (21.0%) than adults who met the guidelines (17.7%). •Low HDL cholesterol prevalence differed significantly for both men and women by adherence to physical activity guidelines. •Prevalence of low HDL cholesterol declined as age increased for both those who did and did not meet the physical activity guidelines. •Non-Hispanic white and non-Hispanic black adults who did not meet the physical activity guidelines had a higher prevalence than those who met the guidelines. •Low HDL cholesterol prevalence declined with increasing education level regardless of adherence to physical activity guidelines. Regular physical activity can improve cholesterol levels among adults, including increasing high-density lipoprotein (HDL) cholesterol (1). HDL cholesterol is known as "good" cholesterol because high levels can reduce cardiovascular disease risk (2). The 2008 Physical Activity Guidelines for Americans recommend that adults engage in 150 minutes or more of moderate-intensity aerobic activity per week, 75 minutes of vigorous-intensity aerobic activity per week, or an equivalent combination (3). Adherence to these guidelines is expected to decrease the prevalence of low HDL cholesterol levels (4-8). This report presents national data for 2011-2014 on low HDL cholesterol prevalence among U.S. adults aged 20 and over, by whether they met these guidelines. All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.

  10. Triglyceride to high-density lipoprotein cholesterol ratio and carotid intima-medial thickness in Chinese adolescents with newly diagnosed type 2 diabetes mellitus.

    PubMed

    Li, Xin; Deng, You-Ping; Yang, Miao; Wu, Yu-Wen; Sun, Su-Xin; Sun, Jia-Zhong

    2016-03-01

    To investigate the relationship between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and carotid intima-medial thickness (CIMT) in Chinese youth and adolescents with newly diagnosed type 2 diabetes mellitus (T2DM). Ninety-eight subjects aged 10-24 yr with newly-diagnosed T2DM had general inflammation, anthropometric, laboratory and CIMT data collected, and were divided into three groups based on TG/HDL-C tertiles. There were no significant differences in gender, age, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), and carotid arterial diameter (CAD) among the groups based on TG/HDL-C tertiles. Across TG/HDL-C tertiles, there was a significant progressive increase in body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), TG, total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and CIMT (all P < 0.01 or P < 0.05), while HDL-C was decreased significantly across the groups (P < 0.01). In general linear regression model, TG/HDL-C was an independent determinant of CIMT even after adjusting for BMI, SBP, DBP, TG, TC, LDL-C, HDL-C, HbA1c and HOMA-IR. TG/HDL-C ratio, the marker of small dense LDL particles, is an independent determinant of CIMT in Chinese youth and adolescents with newly diagnosed T2DM, and may be a simple and helpful tool in predicting the increased CIMT in such patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Combined measurement of plasma cystatin C and low-density lipoprotein cholesterol: A valuable tool for evaluating progressive supranuclear palsy.

    PubMed

    Weng, Ruihui; Wei, Xiaobo; Yu, Bin; Zhu, Shuzhen; Yang, Xiaohua; Xie, Fen; Zhang, Mahui; Jiang, Ying; Feng, Zhong-Ping; Sun, Hong-Shuo; Xia, Ying; Jin, Kunlin; Chan, Piu; Wang, Qing; Gao, Xiaoya

    2018-07-01

    Progressive supranuclear palsy (PSP) was previously thought as a cause of atypical Parkinsonism. Although Cystatin C (Cys C) and low-density cholesterol lipoprotein-C (LDL-C) are known to play critical roles in Parkinsonism, it is unknown whether they can be used as markers to distinguish PSP patients from healthy subjects and to determine disease severity. We conducted a cross-sectional study to determine plasma Cys C/HDL/LDL-C levels of 40 patients with PSP and 40 healthy age-matched controls. An extended battery of motor and neuropsychological tests, including the PSP-Rating Scale (PSPRS), the Non-Motor Symptoms Scale (NMSS), Geriatric Depression Scale (GDS) and Mini-Mental State Examination (MMSE), was used to evaluate the disease severity. Receiver operating characteristic (ROC) curves were adopted to assess the prognostic accuracy of Cys C/LDL-C levels in distinguishing PSP from healthy subjects. Patients with PSP exhibited significantly higher plasma levels of Cys C and lower LDL-C. The levels of plasma Cys C were positively and inversely correlated with the PSPRS/NMSS and MMSE scores, respectively. The LDL-C/HDL-C ratio was positively associated with PSPRS/NMSS and GDS scores. The ROC curve for the combination of Cys C and LDL-C yielded a better accuracy for distinguishing PSP from healthy subjects than the separate curves for each parameter. Plasma Cys C and LDL-C may be valuable screening tools for differentiating PSP from healthy subjects; while they could be useful for the PSP intensifies and severity evaluation. A better understanding of Cys C and LDL-C may yield insights into the pathogenesis of PSP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    PubMed

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  13. Effect of apolipoprotein A-I deficiency on lecithin:cholesterol acyltransferase activation in mouse plasma.

    PubMed

    Parks, J S; Li, H; Gebre, A K; Smith, T L; Maeda, N

    1995-02-01

    Plasma cholesteryl ester (CE) synthesis by lecithin cholesterol acyltransferase (LCAT) is activated by apolipoprotein (apo)A-I. We studied the effect of plasma apoA-I concentration on LCAT activation, using normal, heterozygous or homozygous apoA-I-deficient mice made by gene targeting. Plasma esterified cholesterol concentrations of mice fed chow diets were ordered (mean +/- SEM): 105 +/- 7 (normal) > 70 +/- 5 (heterozygotes) > 26 +/- 2 (homozygotes) mg/dl. Plasma free cholesterol concentrations were similar among the three genotypes. Endogenous LCAT activity, measured as the decrease in plasma free cholesterol after a 1 h incubation at 37 degrees C, was ordered: 44 +/- 3 (normal) > 21 +/- 2 (heterozygotes) > 5 +/- 1 (homozygotes) nmol CE formed/h per ml plasma. Using a recombinant exogenous substrate consisting of egg yolk phospholipid, [14C]cholesterol, and apoA-I, CE formation of normals and heterozygotes was similar (27.4 +/- 0.6 and 28.8 +/- 1.3 nmol/h per ml plasma, respectively), but was significantly less for homozygotes (19.2 +/- 1.7 nmol/h per ml plasma). However, using a small unilamellar vesicle substrate particle containing phospholipid and [14C]cholesterol, CE formation was ordered: 1.6 +/- 0.1 (normal) = 1.6 +/- 0.1 (heterozygotes) > 0.6 +/- 0.1 (homozygotes) nmol/h per ml plasma; addition of apoA-I to the plasma of homozygous animals restored CE formation to normal levels (1.6 +/- 0.1). CE fatty acid analysis demonstrated that plasma from homozygous mice contained significantly more saturated and monounsaturated and fewer polyunsaturated fatty acids compared to normal and heterozygous mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. High-Density Lipoprotein-Targeted Therapy and Apolipoprotein A-I Mimetic Peptides.

    PubMed

    Uehara, Yoshinari; Chiesa, Giulia; Saku, Keijiro

    2015-01-01

    Numerous randomized clinical trials have established statins as the major standard therapy for atherosclerotic diseases because these molecules decrease the plasma level of low-density lipoprotein (LDL) cholesterol and moderately increase that of plasma high-density lipoprotein (HDL) cholesterol. The reverse cholesterol transport pathway, mediated by HDL particles, has a relevant antiatherogenic potential. An important approach to HDL-targeted therapy is optimization of the HDL-cholesterol level and enhanced removal of plasma cholesterol, together with the prevention and mitigation of inflammation related to atherosclerosis. Small-molecule inhibitors of cholesteryl ester transfer protein (CETP) increase the HDL-cholesterol level in subjects with normal or low HDL-cholesterol. However, CETP inhibitors do not seem to reduce the risk of atherosclerotic diseases. HDL therapies using reconstituted HDL, including apolipoprotein (Apo) A-I Milano, ApoA-I mimetics, or full-length ApoA-I, are dramatically effective in animal models. Of those, the ApoA-I-mimetic peptide called FAMP effectively removes cholesterol via the ABCA1 transporter and acts as an antiatherosclerotic agent by enhancing the biological functions of HDL without elevating the HDL-cholesterol level. Our review of the literature leads us to conclude that HDL-targeted therapies have significant atheroprotective potential and thus may effectively treat patients with cardiovascular diseases.

  15. Relationship between Triglyceride and HDL-C ratio with Acute Coronary Syndrome.

    PubMed

    Islam, M Z; Islam, M N; Bhowmik, T K; Saha, B; Hossain, M S; Ahmed, H; Ali, M S; Shakil, S S; Paul, P K

    2018-04-01

    Cardiovascular diseases (CVD) is the leading cause of death worldwide, responsible for one third of death, coronary artery disease (CAD) is the most common cause. Dyslipidaemiais one of the major contributors increased of CAD risk. This study was aimed to find out the relationship between triglyceride and HDL cholesterol ratio with acute coronary syndrome. This cross sectional study was conducted in the department of Cardiology, Mymensingh Medical College Hospital from August 2009 to May 2010. Smoking, hypertension, serum total cholesterol level, serum HDL-C, LDL-C, triglyceride (TG) level were important variable considered. A total number of 100 respondents consisted of 50 cases (patient) and 50 healthy persons (control). Investigations included ECG, Troponin-I, FBS and lipid profile. The data was analyzed by computer with the help of SPSS; Chi-square test, 't' test, ANOVA test used as test of significance. The mean level in cases of TG 168.2±88.0 vs. HDL 41.3±5.1 in control level TG 141.2±45.3 and HDL 34.2±3.4. TG/HDL ratio cases 4.2±1.7 and control 4.1±1.3. This ratio >4 is atherogenic for CAD. Unadjusted odds ratio TG/HDL ratio level high (>1). In multivariable regression analysis, TG/HDL ratio was strong relation with ACS. The study reflected that high TG/HDL ratio is associated with ACS. Categorization of patient with ACS on the basis of high TG/HDL ratio will be helpful for risk stratification and management.

  16. Arylesterase activities in the plasma of rats, rabbits and humans on low- and high-cholesterol diets.

    PubMed

    Beynen, A C; Weinans, G J; Katan, M B

    1984-01-01

    Arylesterase activities were measured with beta-naphthylpropionate and/or alpha-naphthylacetate as substrate in the plasma of rats, rabbits and humans on low- and high-cholesterol diets. The plasma esterase activities measured with alpha-naphthylacetate were similar in rats, rabbits and humans. With beta-naphthylpropionate as a substrate, rabbits were found to have a markedly higher esterase activity than rats and humans. Basal plasma esterase activity was significantly higher in an inbred rat strain which is hyporesponsive to dietary cholesterol than in a hyperresponsive strain. In rats, but not in humans and rabbits, plasma esterase activity was significantly increased by a high-cholesterol diet. In individual humans and random-bred rabbits and rats there was no association between initial plasma total esterase activity and the subsequent plasma cholesterol response to cholesterol feeding. We suggest that arylesterases are associated with cholesterol metabolism and with the response to dietary cholesterol in rats; evidence for such a role in rabbits and humans is, however, inconclusive.

  17. Estimation and correlation of stress and cholesterol levels in college teachers and housewives of Hyderabad-Pakistan.

    PubMed

    Wattoo, Feroza Hamid; Memon, Muhammad Saleh; Memon, Allah Nawaz; Wattoo, Muhammad Hamid Sarwar; Tirmizi, Syed Ahmed; Iqbal, Javed

    2008-01-01

    To evaluate environmental, psychological and physiological stresses in college teachers and housewives, and to correlate with their serum total cholesterol, HDL cholesterol, and LDL cholesterol, and triglyceride levels. This cohort study was performed at the Institute of Biochemistry, University of Sindh, Jamshoro, Pakistan during 2003-2005. Eighty females from middle socioeconomic groups, college teachers (40) and housewives (40) aged between 25-45 years participated in this study and subjects were selected from Hyderabad and its adjoining areas. Environmental, psychological and physiological stress levels were measured with Likert scale. Total cholesterol, LDL cholesterol and HDL cholesterol were measured by CHOD-PAP method and triglyceride levels were measured by GPO method. Housewives had high levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in college teachers. Environmental, psychological and physiological stresses were significantly higher in housewives as compared to college teachers. Housewives were under more stress than college teachers. High levels of total cholesterol, LDL cholesterol and triglyceride but low levels of HDL cholesterol were found in housewives compared to college teachers.

  18. Essentially All Excess Fibroblast Cholesterol Moves from Plasma Membranes to Intracellular Compartments

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2014-01-01

    It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients. PMID:25014655

  19. Association between serum cholesterol and eating behaviours during early childhood: a cross-sectional study.

    PubMed

    Persaud, Navindra; Maguire, Jonathon L; Lebovic, Gerald; Carsley, Sarah; Khovratovich, Marina; Randall Simpson, Janis A; McCrindle, Brian W; Parkin, Patricia C; Birken, Catherine

    2013-08-06

    Modifiable behaviours during early childhood may provide opportunities to prevent disease processes before adverse outcomes occur. Our objective was to determine whether young children's eating behaviours were associated with increased risk of cardiovascular disease in later life. In this cross-sectional study involving children aged 3-5 years recruited from 7 primary care practices in Toronto, Ontario, we assessed the relation between eating behaviours as assessed by the NutriSTEP (Nutritional Screening Tool for Every Preschooler) questionnaire (completed by parents) and serum levels of non-high-density lipoprotein (HDL) cholesterol, a surrogate marker of cardiovascular risk. We also assessed the relation between dietary intake and serum non-HDL cholesterol, and between eating behaviours and other laboratory indices of cardiovascular risk (low-density lipoprotein [LDL] cholesterol, apolipoprotein B, HDL cholesterol and apoliprotein A1). A total of 1856 children were recruited from primary care practices in Toronto. Of these children, we included 1076 in our study for whom complete data and blood samples were available for analysis. The eating behaviours subscore of the NutriSTEP tool was significantly associated with serum non-HDL cholesterol (p = 0.03); for each unit increase in the eating behaviours subscore suggesting greater nutritional risk, we saw an increase of 0.02 mmol/L (95% confidence interval [CI] 0.002 to 0.05) in serum non-HDL cholesterol. The eating behaviours subscore was also associated with LDL cholesterol and apolipoprotein B, but not with HDL cholesterol or apolipoprotein A1. The dietary intake subscore was not associated with non-HDL cholesterol. Eating behaviours in preschool-aged children are important potentially modifiable determinants of cardiovascular risk and should be a focus for future studies of screening and behavioural interventions.

  20. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol

    PubMed Central

    Infante, Rodney Elwood; Radhakrishnan, Arun

    2017-01-01

    Cells employ regulated transport mechanisms to ensure that their plasma membranes (PMs) are optimally supplied with cholesterol derived from uptake of low-density lipoproteins (LDL) and synthesis. To date, all inhibitors of cholesterol transport block steps in lysosomes, limiting our understanding of post-lysosomal transport steps. Here, we establish the cholesterol-binding domain 4 of anthrolysin O (ALOD4) as a reversible inhibitor of cholesterol transport from PM to endoplasmic reticulum (ER). Using ALOD4, we: (1) deplete ER cholesterol without altering PM or overall cellular cholesterol levels; (2) demonstrate that LDL-derived cholesterol travels from lysosomes first to PM to meet cholesterol needs, and subsequently from PM to regulatory domains of ER to suppress activation of SREBPs, halting cholesterol uptake and synthesis; and (3) determine that continuous PM-to-ER cholesterol transport allows ER to constantly monitor PM cholesterol levels, and respond rapidly to small declines in cellular cholesterol by activating SREBPs, increasing cholesterol uptake and synthesis. DOI: http://dx.doi.org/10.7554/eLife.25466.001 PMID:28414269

  1. Oxidative stress, HDL functionality and effects of intravenous iron administration in women with iron deficiency anemia.

    PubMed

    Meroño, Tomás; Dauteuille, Carolane; Tetzlaff, Walter; Martín, Maximiliano; Botta, Eliana; Lhomme, Marie; Saez, María Soledad; Sorroche, Patricia; Boero, Laura; Arbelbide, Jorge; Chapman, M John; Kontush, Anatol; Brites, Fernando

    2017-04-01

    Iron deficiency anemia (IDA) affects around 20-30% of adults worldwide. An association between IDA and cardiovascular disease (CVD) has been reported. Oxidative stress, inflammation and low concentration of high-density lipoproteins (HDL) were implicated on endothelial dysfunction and CVD in IDA. We studied the effects of iron deficiency and of an intravenous iron administration on oxidative stress and HDL characteristics in IDA women. Two studies in IDA women are presented: a case-control study, including 18 patients and 18 age-matched healthy women, and a follow-up study 72hr after the administration of intravenous iron (n = 16). Lipids, malondialdehyde, cholesteryl ester transfer protein (CETP), paraoxonase-1 (PON-1) and HDL chemical composition and functionality (cholesterol efflux and antioxidative activity) were measured. Cell cholesterol efflux from iron-deficient macrophages to a reference HDL was also evaluated. IDA patients showed higher triglycerides and CETP activity and lower HDL-C than controls (all p < 0.001). HDL particles from IDA patients showed higher triglyceride content (+30%,p < 0.05) and lower antioxidative capacity (-23%,p < 0.05). Although HDL-mediated cholesterol efflux was similar between the patients and controls, iron deficiency provoked a significant reduction in macrophage cholesterol efflux (-25%,p < 0.05). Arylesterase activity of PON-1 was significantly lower in IDA patients than controls (-16%,p < 0.05). The intravenous administration of iron was associated with a decrease in malondialdehyde levels and an increase in arylesterase activity of PON-1 (-22% and +18%, respectively, p < 0.05). IDA is associated with oxidative stress and functionally deficient HDL particles. It remains to be determined if such alterations suffice to impair endothelial function in IDA. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Characteristics of human hypo- and hyperresponders to dietary cholesterol.

    PubMed

    Katan, M B; Beynen, A C

    1987-03-01

    The characteristics of people whose serum cholesterol level is unusually susceptible to consumption of cholesterol were investigated. Thirty-two volunteers from the general population of Wageningen, the Netherlands, each participated in three controlled dietary trials in 1982. A low-cholesterol diet was fed during the first half and a high-cholesterol diet during the second half of each trial, and the change (response) of serum cholesterol was measured. The responses in the three trials were averaged to give each subject's mean responsiveness. Fecal excretion of cholesterol and its metabolites were measured in the second trial, and body cholesterol synthesis was calculated. Responsiveness showed a positive correlation with serum high density lipoprotein2 (HDL2) cholesterol (r = 0.41, p less than 0.05) and with serum total cholesterol level on a high-cholesterol diet (r = 0.31, p = 0.09). A negative relation was found with habitual cholesterol consumption (r = -0.62, p less than 0.01), with body mass index (r = -0.50, p less than 0.01), and with the rate of endogenous cholesterol synthesis (r = -0.40, p less than 0.05), but not with the reaction of endogenous cholesterol synthesis rate to an increased intake of cholesterol. No relation was found with age, sex, total caloric needs, or the ratio of primary to secondary fecal steroids. Upon multiple regression analysis, only habitual cholesterol intake and serum total and HDL2 cholesterol levels contributed significantly to the explanation of variance in responsiveness. Thus, a low habitual cholesterol intake, a high serum HDL2 cholesterol level, or a low body weight do not make one less susceptible to dietary cholesterol-induced hypercholesterolemia.

  3. Effect of different fat-enriched meats on non-cholesterol sterols and oxysterols as markers of cholesterol metabolism: Results of a randomized and cross-over clinical trial.

    PubMed

    Baila-Rueda, L; Mateo-Gallego, R; Pérez-Calahorra, S; Lamiquiz-Moneo, I; de Castro-Orós, I; Cenarro, A; Civeira, F

    2015-09-01

    Different kinds of fatty acids can affect the synthesis, absorption, and elimination of cholesterol. This study was carried out to assess the associations of cholesterol metabolism with the intake of two meats with different fatty acid composition in healthy volunteers. The study group was composed of 20 subjects (12 males and eight females; age, 34.4 ± 11.6 years; body mass index (BMI), 23.5 ± 2.3 kg/m(2); low-density lipoprotein (LDL) cholesterol, 2.97 ± 0.55 mmol/l; high-density lipoprotein (HDL) cholesterol, 1.61 ± 0.31 mmol/l; triglycerides (TG), 1.06 ± 0.41 mmol/l) who completed a 30-day randomized and cross-over study to compare the cholesterol metabolism effect of 250 g of low-fat lamb versus 250 g of high-fat lamb per day in their usual diet. Cholesterol absorption, synthesis, and elimination were estimated from the serum non-cholesterol sterol and oxysterol concentrations analyzed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No changes in weight, plasma lipids, or physical activity were observed across the study. Cholesterol intestinal absorption was decreased with both diets. Cholesterol synthesis and elimination decreased during the low-fat lamb dietary intervention (ρ = 0.048 and ρ = 0.005, respectively). Acute changes in the diet fat content modify the synthesis, absorption, and biliary elimination of cholesterol. These changes were observed even in the absence of total and LDL cholesterol changes in plasma. ClinicalTrials.gov PRS, NCT02259153. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  5. The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer.

    PubMed

    Li, Xing; Tang, Hailin; Wang, Jin; Xie, Xinhua; Liu, Peng; Kong, Yanan; Ye, Feng; Shuang, Zeyu; Xie, Zeming; Xie, Xiaoming

    2017-04-01

    Although dyslipidemia has been documented to be associated with several types of cancer including breast cancer, it remains uncertainty the prognostic value of serum lipid in breast cancer. The purpose of this study is to evaluate the association between the preoperative plasma lipid profile and the prognostic of breast cancer patients. The levels of preoperative serum lipid profile (including cholesterol [CHO], Triglycerides [TG], high-density lipoprotein-cholesterol [HDL-C], low-density lipoprotein-cholesterol [LDL-C], apolipoprotein A-I [ApoAI], and apolipoprotein B [ApoB]) and the clinical data were retrospectively collected and reviewed in 1044 breast cancer patients undergoing operation. Kaplan-Meier method and the Cox proportional hazards regression model were used in analyzing the overall survival [OS] and disease-free survival [DFS]. Combining the receiver-operating characteristic and Kaplan-Meier analysis, we found that preoperative lower TG and HDL-C level were risk factors of breast cancer patients. In multivariate analyses, a decreased HDL-C level showed significant association with worse OS (HR: 0.528; 95% CI: 0.302-0.923; P = 0.025), whereas a decreased TG level showed significant association with worse DFS (HR: 0.569; 95% CI: 0.370-0.873; P = 0.010). Preoperative serum levels of TG and HDL-C may be independent factor to predict outcome in breast cancer patient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The TG/HDL-C Ratio Might Be a Surrogate for Insulin Resistance in Chinese Nonobese Women.

    PubMed

    He, Jiyun; He, Sen; Liu, Kai; Wang, Yong; Shi, Di; Chen, Xiaoping

    2014-01-01

    Obejective. To examine the discriminatory power of triglyceride (TG) and triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) for insulin resistance (IR) in a normoglycaemic Chinese population. Methods. The data were collected from 711 individuals. The normoglycaemic individuals were eventually included in the study (n = 533, age: 62.8 ± 6.6 years, male: 56.8%), who were with a fasting plasma glucose < 6.1 mmol/L and without a history of diabetes. IR was defined as the upper quintile (≥1.6) of homeostasis model assessment of IR. Area under the receiver operating characteristic curve (AROC) was used to examine the discriminatory power. Results. The discriminatory power of TG/HDL-C for IR was acceptable in women with a BMI < 24 kg/m(2) or waist circumference < 80 cm (AROCs: 0.718 and 0.713, resp.); however, the discriminatory power was not acceptable in the obese women. TG/HDL-C was not an acceptable marker of IR in men. The discriminatory power of TG for IR was not acceptable in both men and women. Conclusions. The discriminatory power of TG/HDL-C for IR differs by gender and obesity index in the normoglycaemic Chinese population, and TG/HDL-C could discriminate IR in the nonobese and normoglycaemic women.

  7. Separation of the principal HDL subclasses by iodixanol ultracentrifugation

    PubMed Central

    Harman, Nicola L.; Griffin, Bruce A.; Davies, Ian G.

    2013-01-01

    HDL subclasses detection, in cardiovascular risk, has been limited due to the time-consuming nature of current techniques. We have developed a time-saving and reliable separation of the principal HDL subclasses employing iodixanol density gradient ultracentrifugation (IxDGUC) combined with digital photography. HDL subclasses were separated in 2.5 h from prestained plasma on a three-step iodixanol gradient. HDL subclass profiles were generated by digital photography and gel scan software. Plasma samples (n = 46) were used to optimize the gradient for the resolution of HDL heterogeneity and to compare profiles generated by IxDGUC with gradient gel electrophoresis (GGE); further characterization from participants (n = 548) with a range of lipid profiles was also performed. HDL subclass profiles generated by IxDGUC were comparable to those separated by GGE as indicated by a significant association between areas under the curve for both HDL2 and HDL3 (HDL2, r = 0.896, P < 0.01; HDL3, r = 0.894, P < 0.01). The method was highly reproducible, with intra- and interassay coefficient of variation percentage < 5 for percentage area under the curve HDL2 and HDL3, and < 1% for peak Rf and peak density. The method provides time-saving and cost-effective detection and preparation of the principal HDL subclasses. PMID:23690506

  8. Cardiovascular risk determination: discrepancy between total cholesterol evaluation and two compound laboratory indices in Norway.

    PubMed Central

    Berg, J E; Høstmark, A T

    1994-01-01

    OBJECTIVE--To compare group classification of cardiovascular risk by two compound laboratory indices with classification according to the serum total cholesterol concentration alone. DESIGN--Healthy employees were defined as low and high cardiovascular risk subjects according to their total cholesterol concentration or two compound indices of blood lipid components-the total cholesterol: high density lipoprotein (HDL) cholesterol ratio and an atherogenic index defined as ([total cholesterol-HDL cholesterol]*[apolipoprotein B])/([HDL cholesterol]*[apolipoprotein A-I]). Cut off values to distinguish between low and high risk subjects were as follows: total cholesterol 6.5 mmol/l, HDL cholesterol 0.9 mmol/l, apolipoprotein A = 1.8 g/l, and apolipoprotein B = 1.3 g/l. These gave total: HDL cholesterol ratio and atherogenic index cut off values of 7.2 and 4.5 respectively. SETTING--An occupational health service in a non-manufacturing company in Norway. PARTICIPANTS--A total of 112 male and 117 female employees. The mean body mass index values were 25.6 and 23.6 kg/m2 and the mean ages 39.8 and 40.1 years in men and women respectively. Those with cardiovascular, diabetic, or renal diseases were excluded. MEAN OUTCOME MEASURES--Serum total cholesterol, HDL cholesterol, apolipoproteins A-I and B, lipid peroxidation, blood pressure, smoking, physical activity, and fruit, vegetables, and salt in the diet were determined. RESULTS--The cut off values allocated 19%, 7%, and 40% as high risk subjects according to total cholesterol, total: HDL cholesterol, and the atherogenic index respectively. The mean age was two to four years higher in the high risk groups. Cardiovascular risk in siblings and no reported physical activity were more prevalent in those high risk groups defined by the compound indices than by total cholesterol alone, as was a high body mass index and a measure of lipid peroxidation. Grouping according to total cholesterol failed to allocate heavy smokers mainly

  9. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index.

    PubMed

    Wang, Li; Chen, Wei-Zhong; Wu, Man-Ping

    2010-02-01

    The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Potential use of cholesterol lipoprotein profile to confirm obesity status in dogs.

    PubMed

    Mori, Nobuko; Lee, Peter; Kondo, Kazuo; Kido, Toshimi; Saito, Terumasa; Arai, Toshiro

    2011-04-01

    A common sign of obesity, in dogs, is hyperlipidemia, which is characterized by hypercholesterolemia and/or hypertriglycemia. Hyperlipidemia can be caused by a quantitative increase in circulating lipoproteins (LP) or by a higher lipid concentration in the various LP classes. In this study, we sought to determine whether aberrations occur with cholesterol lipoprotein profile, especially with sub HDL-cholesterol fraction % in obese dogs. Using clinically healthy and disease free (no overt signs) body condition score classified obese dogs, of all ages, we attempted to determine the influence of age, gender and obesity status on cholesterol lipoprotein profiling. Overall, no aberration in pattern was observed in obese dogs <8 years of age. However, in older obese animals (≥8 years of age), the general aberration pattern to cholesterol lipoprotein observed was that a significant decrease in HDL2 and 3 fraction % occurs with a concomitant increase in either HDL1-Cho or VLDL and LDL -Cho fraction % depending on gender. Linear regression analysis indicated that obesity status appears to significantly affect total cholesterol, HDL2 and 3-Cho, VLDL and LDL-Cho levels (P=0.02, 0.046, and 0.045, respectively), whereas it is borderline with HDL1-Cho (P=0.062). On the other hand, age significantly influenced TG, Total cholesterol, and HDL1-Cho levels (P=0.009, 0.006, and 0.002, respectively), while gender influenced VLDL and LDL-Cho (P=0.024) level. Therefore, aberrations in cholesterol lipoprotein profile pattern might be of potential use to assess and diagnose obesity status, in conjunction with BCS, especially of older overweight animals which might be considered borderline obese. © Springer Science+Business Media B.V. 2011

  11. Effect of honey on serum cholesterol and lipid values.

    PubMed

    Münstedt, Karsten; Hoffmann, Sven; Hauenschild, Annette; Bülte, Michael; von Georgi, Richard; Hackethal, Andreas

    2009-06-01

    Small studies have suggested that honey benefits patients with high cholesterol concentrations. The present study aimed to confirm this finding in a larger group of subjects. Sixty volunteers with high cholesterol, stratified according to gender and hydroxymethylglutaryl-coenzyme A reductase inhibitor (statin) treatment (yes/no), were randomized to receive 75 g of honey solution or a honey-comparable sugar solution once daily over a period of 14 days. Baseline measurements, including body mass index (BMI) and lipid profile, were obtained, and subjects also completed dietary questionnaires and the Inventory for the Assessment of Negative Bodily Affect-Trait form (INKA-h) questionnaire. Measurements were repeated 2 weeks later. BMI and high-density lipoprotein (HDL) cholesterol values were significantly correlated (r = -0.487; P < .001) as were BMI and a lower ratio of low-density lipoprotein (LDL) cholesterol to HDL cholesterol (r = 0.420; P < .001), meaning that subjects with a high BMI had a lower HDL cholesterol value. INKA-h scores and LDL cholesterol values were also significantly correlated (r = 0.273, P = .042). Neither solution influenced significantly cholesterol or triglyceride values in the total group; in women, however, the LDL cholesterol value increased in the sugar solution subgroup but not in the women taking honey. Although ingesting honey did not reduce LDL cholesterol values in general, women may benefit from substituting honey for sugar in their diet. Reducing the BMI lowers the LDL cholesterol value, and psychological interventions also seem important and merit further investigation.

  12. Cardiometabolic risk factors as apolipoprotein B, triglyceride/HDL-cholesterol ratio and C-reactive protein, in adolescents with and without obesity: cross-sectional study in middle class suburban children.

    PubMed

    Musso, Carla; Graffigna, Mabel; Soutelo, Jimena; Honfi, Margarita; Ledesma, Laura; Miksztowicz, Verónica; Pazos, Mónica; Migliano, Marta; Schreier, Laura Ester; Berg, Gabriela Alicia

    2011-05-01

    The prevalence of obesity (OB), overweight (OW), and metabolic syndrome (MS) has increased worldwide. That imposes a substantial risk for type 2 diabetes and premature cardiovascular disease. However, to date no unified criteria exist to asses risk or outcomes in children and adolescents. To establish the presence of OB/OW and MS and risk factors for cardiovascular disease in adolescents. Male (n = 514) and female (n = 429) adolescents from high school were studied (11-14 yr). Weight, height, body mass index (BMI), waist circumference (WC), and blood pressure were determined in all subjects. Glucose, lipoprotein profile, apolipoprotein B (apoB), and high-sensitivity C-reactive protein (hs-CRP) levels were measured. Triglyceride/high-density lipoprotein-cholesterol (TG/HDL-cholesterol) ratio was calculated. The frequency of OB/OW and MS were 22.2 and 3.7%, respectively. In comparison to healthy adolescents, TG/HDL-cholesterol ratio was increased in OB/OW (2.9 ± 2.5 vs. 1.6 ± 1.0) and MS groups (4.0 ± 2.5 vs. 1.6 ± 0.9), p < 0.001. OB/OW adolescents presented higher values of hs-CRP in comparison to non-obese, median (range): 1.9 (0.1-9.4) vs. 1.4 (0.1-9.9), mg/L, p < 0.001. ApoB (mean ± SD) was 71 ± 21 mg/dL in MS group and 59 ± 17 mg/dL in those without MS (p < 0.001). TG/HDL-cholesterol ratio positively correlated with BMI (r = 0.18, p < 0.001), WC (r = 0.24, p < 0.001), and apoB (r = 0.24, p < 0.001); hs-CRP correlated with WC (r = 0.14, p < 0.001) and BMI (r = 0.17, p < 0.001). Even when the frequency of OB, OW, and MS in adolescents was low, those subjects presented an atherogenic lipoprotein. These findings emphasize the importance to evaluate cardiovascular risk factors in adolescents to assess strategies to prevent future disease. © 2011 John Wiley & Sons A/S.

  13. A comparison of the impact of amaranth flour and squalene on plasma cholesterol in mice with diet-induced dyslipidemia.

    PubMed

    Chmelík, Zdenek; Kotolová, Hana; Piekutowská, Zuzana; Horská, Katerina; Bartosová, Ladislava; Suchý, Pavel; Kollár, Peter

    2013-01-01

    Amaranth was identified as a possible component of an anti-sclerotic diet. To date, particular substances responsible for this effect have not been exactly specified. Squalene, which is contained in amaranth, could be responsible for this effect. However, there are also other potential substances and the hypolipidemic effect of amaranth can be caused by a synergistic effect of several components. This study investigated and compared the impact of amaranth flour and squalene on the total cholesterol (CHOL(TOT)) and LDL cholesterol (CHOL(LDL)) levels in mice with dyslipidemia induced by a cholesterol- and sugar-rich diet. The experiment included 40 inbred mice (C57Bl/6J SPF). After a 7-days acclimatization period, animals were divided into four groups by random. Individual groups were fed different diets for 49 days: control (group C), high energy diet (group HED), high energy diet with amaranth flour (group HED+A) and high energy diet with squalene (group HED+S). The sugar- and cholesterol-rich diet in HED resulted in the significant increase in the levels of CHOL(TOT) by 125% (P < 0.05) and CHOL(LDL) by 304% (P < 0.05), and at the same time in a decrease of HDL cholesterol (CHOL(HDL)) levels by 58% (P < 0.05) compared to group C. To the contrary, amaranth flour enriched diet in group HED+A led to a decrease of CHOL(TOT) levels by 33% (P < 0.05) and CHOL(LDL) by 37% (P < 0.05), compared to HED. Both, amaranth flour and squalene, had a positive impact on CHOL(HDL) levels. Compared to group HED, there was a 47% increase in HED+A and a 60% increase in HED+S. Results proved the favorable impact of amaranth flour on the levels of total cholesterol CHOL(TOT) and also on CHOL(LDL). Furthermore, the results imply that amaranth flour contains besides squalene other substances, which can actively participate in its hypolipidemic effect.

  14. Vegetarian diet and cholesterol and TAG levels by gender.

    PubMed

    Jian, Zhi-Hong; Chiang, Yi-Chen; Lung, Chia-Chi; Ho, Chien-Chang; Ko, Pei-Chieh; Ndi Nfor, Oswald; Chang, Hui-Chin; Liaw, Yi-Ching; Liang, Yu-Chiu; Liaw, Yung-Po

    2015-03-01

    The present study assessed the effects of vegetarian and omnivorous diets on HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), TAG and the ratio of HDL-C to total cholesterol (TC) by gender. HDL-C, LDL-C, TAG and HDL-C:TC were compared among three diet groups (vegan, ovo-lacto vegetarian and omnivorous). Multivariate linear regression analysis was performed to examine factors significantly and independently associated with vegetarian status and to estimate the β value of lipid profiles for the diet groups. Settings A cross-sectional study. Data were obtained from the Taiwanese Survey on the Prevalence of Hyperglycemia, Hyperlipidemia and Hypertension (TwSHHH). The study comprised included 3257 men and 3551 women. After adjusting for confounders, vegan and ovo-lacto vegetarian diets lowered LDL-C levels (β=-10.98, P=0.005 and β=-7.12, P=0.025, respectively) in men compared with omnivorous diet. There was a significant association between HDL-C and vegan diet (β=-6.53, P=0.004). In females, the β values of HDL-C, TAG and HDL-C:TC were -5.72 (P<0.0001), 16.51 (P=0.011) and -0.02 (P=0.012) for vegan diet, and -4.86 (P=0.002), 15.09 (P=0.008) and -0.01 (P=0.026) for ovo-lacto vegetarian diet, when compared with omnivorous diet. Vegan diet was associated with lower HDL-C concentrations in both males and females. Because the ovo-lacto vegetarian diet was effective in lowering LDL-C, it may be more appropriate for males.

  15. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Chen, S.M.; Ogle, C.W.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less

  16. Can change in high-density lipoprotein cholesterol levels reduce cardiovascular risk?

    PubMed

    Dean, Bonnie B; Borenstein, Jeff E; Henning, James M; Knight, Kevin; Merz, C Noel Bairey

    2004-06-01

    The cardiovascular risk reduction observed in many trials of lipid-lowering agents is greater than expected on the basis of observed low-density lipoprotein cholesterol (LDL-C) level reductions. Our objective was to explore the degree to which high-density lipoprotein cholesterol (HDL-C) level changes explain cardiovascular risk reduction. A systematic review identified trials of lipid-lowering agents reporting changes in HDL-C and LDL-C levels and the incidence of coronary heart disease (CHD). The observed relative risk reduction (RRR) in CHD morbidity and mortality rates was calculated. The expected RRR, given the treatment effect on total cholesterol level, was calculated for each trial with logistic regression coefficients from observational studies. The difference between observed and expected RRR was plotted against the change in HDL-C level, and a least-squares regression line was calculated. Fifty-one trials were identified. Nineteen statin trials addressed the association of HDL-C with CHD. Limited numbers of trials of other therapies precluded additional analyses. Among statin trials, therapy reduced total cholesterol levels as much as 32% and LDL-C levels as much as 45%. HDL-C level increases were <10%. Treatment effect on HDL-C levels was not a significant linear predictor of the difference in observed and expected CHD mortality rates, although we observed a trend in this direction (P =.08). Similarly, HDL-C effect was not a significant linear predictor of the difference between observed and expected RRRs for CHD morbidity (P =.20). Although a linear trend toward greater risk reduction was observed with greater effects on HDL-C, differences were not statistically significant. The narrow range of HDL-C level increases in the statin trials likely reduced our ability to detect a beneficial HDL-C effect, if present.

  17. Association between high-density lipoprotein cholesterol level and pulmonary function in healthy Korean adolescents: the JS high school study.

    PubMed

    Park, Ji Hye; Mun, Seyeon; Choi, Dong Phil; Lee, Joo Young; Kim, Hyeon Chang

    2017-12-11

    Accumulating evidence suggests that high-density lipoprotein (HDL) cholesterol is associated with pulmonary function and pulmonary disorders. The aim of this study was to evaluate the association between HDL cholesterol and pulmonary function in healthy adolescents. This cross-sectional study was based on data collected for the JS High School study. The analysis included 644 adolescents (318 male and 326 female) aged 15-16 years old and free from asthma or chronic obstructive pulmonary disease. Fasting blood samples were collected for hematologic and biochemical assessment. Forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured using dry-rolling-seal spirometry. The associations between HDL cholesterol and pulmonary function were analyzed using multiple linear regression models. Among male adolescents, an increase of 1.0 mg/dL in HDL cholesterol was associated with 10 mL decrease in FVC (p = 0.013) and FEV1 (p = 0.013) after adjusting for age, height, weight, alcohol drinking, smoking, physical activity, systolic blood pressure, total cholesterol, triglyceride, and monthly household income. Percent predicted values of FVC (p = 0.036) and FEV1 (p = 0.017) were also inversely associated with HDL cholesterol. However, among female adolescents, HDL cholesterol level was not significantly associated with absolute or percent predictive value of FVC and FEV1. Higher HDL cholesterol level may be associated with decreased pulmonary function among healthy male adolescents. The sex differences observed in the association between HDL cholesterol and pulmonary function need further investigation.

  18. Nonalcoholic fatty liver disease severity is associated with the ratios of total cholesterol and triglycerides to high-density lipoprotein cholesterol.

    PubMed

    Wu, Kuan-Ta; Kuo, Po-Lin; Su, Shih-Bin; Chen, Yi-Yu; Yeh, Ming-Lum; Huang, Ching-I; Yang, Jeng-Fu; Lin, Chia-I; Hsieh, Meng-Hsuan; Hsieh, Ming-Yen; Huang, Chung-Feng; Lin, Wen-Yi; Yu, Ming-Lung; Dai, Chia-Yen; Wang, Hsien-Yi

    2016-01-01

    Limited data support the notion that lipid ratios are risk factors for nonalcoholic fatty liver disease (NAFLD). We evaluated the association between lipid ratios and NAFLD. This was a large population, cross-sectional, retrospective study. Data on NAFLD severity, blood pressure, fasting glucose, total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) levels were obtained from 44,767 examinees at single health checkup center. The enrollees were stratified into four subgroups based on their TC/HDL-C and TG/HDL-C ratios. We used multivariate analyses to evaluate the odds between lipid ratios and NAFLD. The prevalence rate of fatty liver in this study was 53.76%. In the baseline subgroup with the lowest TC/HDL-C and TG/HDL-C ratios, the prevalence of NAFLD, hypertension, and diabetes was lower than that of the other three subgroups. Patients with higher lipid ratios had a significantly greater risk for advanced NAFLD. Adults with high TC/HDL-C or TG/HDL-C ratios, or both, have a greater risk for NAFLD, especially advanced NAFLD. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  19. The Type of Fat Ingested at Breakfast Influences the Plasma Lipid Profile of Postmenopausal Women

    PubMed Central

    Morillas-Ruiz, J. M.; Delgado-Alarcon, J. M.; Rubio-Perez, J. M.; Albaladejo Oton, M. D.

    2014-01-01

    To assess whether the type of fat ingested at breakfast can modify the plasma lipid profile and other cardiovascular risk variables in postmenopausal women at risk of cardiovascular disease, a longitudinal, randomized, and crossover study was carried out with postmenopausal women at risk of CVD. They were randomly assigned to eat each type of breakfast during one month: 6 study periods (breakfast with the same composition plus butter/margarine/virgin olive oil) separated by two washout periods. On the first and last days of each study period, weight, arterial blood pressure, heart rate, and body mass index were recorded in fasting conditions and a blood sample was collected to measure plasma lipid profile. When comparing final values to baseline values, we only found out statistically significant differences on plasma lipid profiles. Butter-based breakfast increased total cholesterol and HDL, while margarine-based breakfast decreased total cholesterol and LDL and increased HDL. After the olive oil-based breakfast intake, a tendency towards a decrease of total cholesterol and LDL levels and an increase of HDL levels was observed. No statistically significant differences were observed in triglycerides levels, BMI, and arterial pressure in any breakfast type. The margarine-based breakfast was the only one which significantly increased the percentage of volunteers with optimal lipid profiles. The polyunsaturated fat at breakfast has improved the plasma lipid profile in the analyzed sample population, suggesting that PUFA-based breakfast can be advisable in women at risk of CVD. PMID:25136625

  20. Modification and Validation of the Triglyceride-to-HDL Cholesterol Ratio as a Surrogate of Insulin Sensitivity in White Juveniles and Adults without Diabetes Mellitus: The Single Point Insulin Sensitivity Estimator (SPISE).

    PubMed

    Paulmichl, Katharina; Hatunic, Mensud; Højlund, Kurt; Jotic, Aleksandra; Krebs, Michael; Mitrakou, Asimina; Porcellati, Francesca; Tura, Andrea; Bergsten, Peter; Forslund, Anders; Manell, Hannes; Widhalm, Kurt; Weghuber, Daniel; Anderwald, Christian-Heinz

    2016-09-01

    The triglyceride-to-HDL cholesterol (TG/HDL-C) ratio was introduced as a tool to estimate insulin resistance, because circulating lipid measurements are available in routine settings. Insulin, C-peptide, and free fatty acids are components of other insulin-sensitivity indices but their measurement is expensive. Easier and more affordable tools are of interest for both pediatric and adult patients. Study participants from the Relationship Between Insulin Sensitivity and Cardiovascular Disease [43.9 (8.3) years, n = 1260] as well as the Beta-Cell Function in Juvenile Diabetes and Obesity study cohorts [15 (1.9) years, n = 29] underwent oral-glucose-tolerance tests and euglycemic clamp tests for estimation of whole-body insulin sensitivity and calculation of insulin sensitivity indices. To refine the TG/HDL ratio, mathematical modeling was applied including body mass index (BMI), fasting TG, and HDL cholesterol and compared to the clamp-derived M-value as an estimate of insulin sensitivity. Each modeling result was scored by identifying insulin resistance and correlation coefficient. The Single Point Insulin Sensitivity Estimator (SPISE) was compared to traditional insulin sensitivity indices using area under the ROC curve (aROC) analysis and χ(2) test. The novel formula for SPISE was computed as follows: SPISE = 600 × HDL-C(0.185)/(TG(0.2) × BMI(1.338)), with fasting HDL-C (mg/dL), fasting TG concentrations (mg/dL), and BMI (kg/m(2)). A cutoff value of 6.61 corresponds to an M-value smaller than 4.7 mg · kg(-1) · min(-1) (aROC, M:0.797). SPISE showed a significantly better aROC than the TG/HDL-C ratio. SPISE aROC was comparable to the Matsuda ISI (insulin sensitivity index) and equal to the QUICKI (quantitative insulin sensitivity check index) and HOMA-IR (homeostasis model assessment-insulin resistance) when calculated with M-values. The SPISE seems well suited to surrogate whole-body insulin sensitivity from inexpensive fasting single-point blood draw and BMI

  1. Progression of Chronic Kidney Disease Affects HDL Impact on Lipoprotein Lipase (LPL)-Mediated VLDL Lipolysis Efficiency.

    PubMed

    Ćwiklińska, Agnieska; Cackowska, Monika; Wieczorek, Ewa; Król, Ewa; Kowalski, Robert; Kuchta, Agnieszka; Kortas-Stempak, Barbara; Gliwińska, Anna; Dąbkowski, Kamil; Zielińska, Justyna; Dębska-Ślizień, Alicja; Jankowski, Maciej

    2018-06-15

    Hypertriglyceridaemia (HTG) and reduction and dysfunction of high density lipoprotein (HDL) are common lipid disturbances in chronic kidney disease (CKD). HTG in CKD is caused mainly by the decreased efficiency of lipoprotein lipase (LPL)-mediated very low density lipoprotein triglyceride (VLDL-TG) lipolysis. It has not been clarified whether HDL dysfunction in CKD contributes directly to HTG development; thus, the aim of this study was to assess the impact of CKD progression on the ability of HDL to enhance LPL-mediated VLDL-TG lipolysis efficiency. VLDL was isolated from non-dialysis patients in CKD stages 3 and 4 and from non-CKD patients. The VLDL was incubated with LPL at the constant LPL:VLDL-TG ratio, in the absence or presence of HDL. After incubation, the VLDL was separated and the percentage (%) of hydrolyzed TG was calculated. HDL presence increased the lipolysis efficiency of VLDL isolated from CKD and non-CKD patients, for the VLDL-TG> 50 mg/dl. Its effect was dependent on the VLDL-TG and HDL-cholesterol concentrations in the reaction mixtures: the higher the concentrations of VLDL-TG and HDL-cholesterol, the greater the effect. The positive impact of HDL on VLDL lipolysis was modified by CKD progression: the percentage of lipolyzed VLDL-TG in the presence of HDL decreased with a reduction in eGFR (r=0.43, p=0.009), and for patients with stage 4 CKD, no positive impact of HDL on lipolysis was observed. The percentage of lipolyzed TG correlated negatively with apoE and apoCs content in VLDL, and positively with HDL-apoCII, as well as with VLDL and HDL apoCII/ apoCIII ratios. The progression of CKD was associated with unfavourable changes in VLDL and HDL composition; apoE and apoCs levels increased in VLDL with a decrease in eGFR whereas the HDL-cholesterol level decreased. The progression of CKD affects lipoprotein composition and properties, and modulates the positive impact of HDL on VLDL lipolysis efficiency. In CKD patients, HDL deficiency and

  2. Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease.

    PubMed Central

    Rader, D J; Ikewaki, K; Duverger, N; Schmidt, H; Pritchard, H; Frohlich, J; Clerc, M; Dumon, M F; Fairwell, T; Zech, L

    1994-01-01

    Classic (complete) lecithin:cholesterol acyltransferase (LCAT) deficiency and Fish-eye disease (partial LCAT deficiency) are genetic syndromes associated with markedly decreased plasma levels of high density lipoprotein (HDL) cholesterol but not with an increased risk of atherosclerotic cardiovascular disease. We investigated the metabolism of the HDL apolipoproteins (apo) apoA-I and apoA-II in a total of five patients with LCAT deficiency, one with classic LCAT deficiency and four with Fish-eye disease. Plasma levels of apoA-II were decreased to a proportionately greater extent (23% of normal) than apoA-I (30% of normal). In addition, plasma concentrations of HDL particles containing both apoA-I and apoA-II (LpA-I:A-II) were much lower (18% of normal) than those of particles containing only apoA-I (LpA-I) (51% of normal). The metabolic basis for the low levels of apoA-II and LpA-I:A-II was investigated in all five patients using both exogenous radiotracer and endogenous stable isotope labeling techniques. The mean plasma residence time of apoA-I was decreased at 2.08 +/- 0.27 d (controls 4.74 +/- 0.65 days); however, the residence time of apoA-II was even shorter at 1.66 +/- 0.24 d (controls 5.25 +/- 0.61 d). In addition, the catabolism of apoA-I in LpA-I:A-II was substantially faster than that of apoA-I in LpA-I. In summary, genetic syndromes of either complete or partial LCAT deficiency result in low levels of HDL through preferential hypercatabolism of apoA-II and HDL particles containing apoA-II. Because LpA-I has been proposed to be more protective than LpA-I:A-II against atherosclerosis, this selective effect on the metabolism of LpA-I:A-II may provide a potential explanation why patients with classic LCAT deficiency and Fish-eye disease are not at increased risk for premature atherosclerosis despite markedly decreased levels of HDL cholesterol and apoA-I. PMID:8282802

  3. Relation of Cholesterol and Lipoprotein Parameters with Carotid Artery Plaque Characteristics: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study

    PubMed Central

    Virani, Salim S.; Catellier, Diane J.; Pompeii, Lisa A.; Nambi, Vijay; Hoogeveen, Ron C.; Wasserman, Bruce A.; Coresh, Josef; Mosley, Thomas H.; Otvos, James D.; Sharrett, A. Richey; Boerwinkle, Eric; Ballantyne, Christie M.

    2011-01-01

    Objective There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non–high-density lipoprotein cholesterol [non– HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Methods Carotid artery magnetic resonance imaging was performed in 1,670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥1.5 mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Results Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p<0.05 for total cholesterol, LDL-C, non–HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non–HDL-C/ HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p≤0.05). Conclusion Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. PMID:21868017

  4. Relation of cholesterol and lipoprotein parameters with carotid artery plaque characteristics: the Atherosclerosis Risk in Communities (ARIC) carotid MRI study.

    PubMed

    Virani, Salim S; Catellier, Diane J; Pompeii, Lisa A; Nambi, Vijay; Hoogeveen, Ron C; Wasserman, Bruce A; Coresh, Josef; Mosley, Thomas H; Otvos, James D; Sharrett, A Richey; Boerwinkle, Eric; Ballantyne, Christie M

    2011-12-01

    There is a paucity of data regarding relations of apolipoproteins (apolipoprotein B [ApoB] and apolipoprotein A-1 [Apo A-1]), lipoprotein particle measures (low-density lipoprotein particle concentration [LDLp] and high-density lipoprotein particle concentration [HDLp]), and lipoprotein cholesterol measures (low-density lipoprotein cholesterol [LDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and high-density lipoprotein cholesterol [HDL-C]) with atherosclerotic plaque burden, plaque eccentricity, and lipid-rich core presence as a marker of high-risk plaques. Carotid artery magnetic resonance imaging was performed in 1670 Atherosclerosis Risk in Communities study participants. Vessel wall and lipid cores were measured; normalized wall index (NWI), standard deviation (SD) of wall thickness (measure of plaque eccentricity) were calculated; and lipid cores were detected in vessels with ≥ 1.5mm thickness. Fasting concentrations of cholesterol, ApoB and Apo A-1, and LDLp and HDLp were measured. Measures of plaque burden (carotid wall volume, wall thickness, and NWI) were positively associated with atherogenic cholesterol and lipoproteins (p < 0.05 for total cholesterol, LDL-C, non-HDL-C, ApoB, and LDLp), but not with HDL-C, Apo A-1, or HDLp. SD of wall thickness was associated with total cholesterol (p 0.01) and non-HDL-C (p 0.02). Although measures of atherogenic or anti-atherogenic cholesterol or lipoprotein were not individually associated with detection of a lipid-rich core, their ratios (total cholesterol/HDL-C, non-HDL-C/HDL-C, and LDLp/HDLp) were associated with lipid-rich core presence (p ≤ 0.05). Extent of carotid atherosclerosis is associated with atherogenic cholesterol and lipoproteins. Atherogenic/anti-atherogenic cholesterol or particle ratios were associated with presence of a detectable lipid-rich core. Published by Elsevier Ireland Ltd.

  5. A genetic variant of the CAPN10 gene in Mexican subjects with dyslipidemia is associated with increased HDL-cholesterol concentrations after the consumption of a soy protein and soluble fiber dietary portfolio.

    PubMed

    Guevara-Cruz, Martha; Torres, Nimbe; Tovar, Armando R; Tejero, M Elizabeth; Castellanos-Jankiewicz, Ashley; del Bosque-Plata, Laura

    2014-09-01

    Dyslipidemia is a major public health problem, and therefore, it is important to develop dietary strategies to diminish the prevalence of this disorder. It was recently reported that diet may play an important role in triggering insulin resistance by interacting with genetic variants at the CAPN10 gene locus in patients with metabolic syndrome. Nonetheless, it remains unknown whether genetic variants of genes involved in the development of type 2 diabetes are associated with variations in high-density lipoprotein cholesterol (HDL-C). The study used a single-center, prospective, cohort design. Here, we assessed the effect of four variants of the CAPN10 gene on HDL-C levels in response to a soy protein and soluble fiber dietary portfolio in subjects with dyslipidemia. In 31 Mexican dyslipidemic individuals, we analyzed four CAPN10 gene variants (rs5030952, rs2975762, rs3792267, and rs2975760) associated with type 2 diabetes. Subjects with the GG genotype of the rs2975762 variant of the CAPN10 gene were better responders to dietary intervention, showing increased HDL-C concentrations from the first month of treatment. HDL-C concentrations in participants with the wild type genotype increased by 17.0%, whereas the HDL-C concentration in subjects with the variant genotypes increased by only 3.22% (p = 0.03); the low-density lipoprotein cholesterol levels of GG carriers tended to decrease (-12.6%). These results indicate that Mexican dyslipidemic carriers of the rs2975762-GG genotype are better responders to this dietary intervention. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. [Characteristics of fatty acid composition of phosphatidyl cholines and sphingomyelins of low-density lipoproteins in the plasma of native inhabitants of Chukotka].

    PubMed

    Gerasimova, E N; Levachev, M M; Perova, N V; Nikitin, Iu P; Ozerova, I N

    1986-01-01

    Contents of cholesterol, triglycerides, high density lipoproteins (HDL) cholesterol as well as phospholipid and fatty acid compositions of phosphatidyl cholines and sphingomyelins in low density lipoproteins (LDL) were studied in blood plasma of Chukot aborigenes--Eskimos as compared with Moscow inhabitants. In Eskimos content of HDL cholesterol was higher but concentration of cholesterol and triglycerides was lower in blood plasma. In LDL concentration of sphingomyelins was increased and fatty acid composition of phosphatidyl cholines and sphingomyelins was altered where amount of polyunsaturated fatty acids was elevated (20:5 + 22:5 + 22:6). The specific characteristics of the LDL phospholipids observed in Eskimos might be responsible for the higher liquid properties of the surface monolayer in the lipoproteins; this alteration might be important for the lipoprotein properties and transformation as well as for the properties of membrane-bound enzymes, for synthesis of thromboxane and prostacyclins.

  7. Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells.

    PubMed Central

    Francis, G A; Mendez, A J; Bierman, E L; Heinecke, J W

    1993-01-01

    Lipoprotein oxidation is thought to play a pivotal role in atherogenesis, yet the underlying reaction mechanisms remain poorly understood. We have explored the possibility that high density lipoprotein (HDL) might be oxidized by peroxidase-generated tyrosyl radical. Exposure of HDL to L-tyrosine, H2O2, and horseradish peroxidase crosslinked its apolipoproteins and strikingly increased protein-associated fluorescence. The reaction required L-tyrosine but was independent of free metal ions; it was blocked by either catalase or the heme poison aminotriazole. Dityrosine and other tyrosine oxidation products were detected in the apolipoproteins of HDL modified by the peroxidase/L-tyrosine/H2O2 system, implicating tyrosyl radical in the reaction pathway. Further evidence suggests that tyrosylated HDL removes cholesterol from cultured cells more effectively than does HDL. Tyrosylated HDL was more potent than HDL at inhibiting cholesterol esterification by the acyl-CoA:cholesterol acyltransferase reaction, stimulating the incorporation of [14C]acetate into [14C]cholesterol, and depleting cholesteryl ester stores in human skin fibroblasts. Moreover, exposure of mouse macrophage foam cells to tyrosylated HDL markedly diminished cholesteryl ester and free cholesterol mass. We have recently found that myeloperoxidase, a heme protein secreted by activated phagocytes, can also convert L-tyrosine to o,o'-dityrosine. This raises the possibility that myeloperoxidase-generated tyrosyl radical may modify HDL, enabling the lipoprotein to protect the artery wall against pathological cholesterol accumulation. Images Fig. 1 PMID:8341680

  8. Dietary Japanese millet protein ameliorates plasma levels of adiponectin, glucose, and lipids in type 2 diabetic mice.

    PubMed

    Nishizawa, Naoyuki; Togawa, Tubasa; Park, Kyung-Ok; Sato, Daiki; Miyakoshi, Yo; Inagaki, Kazuya; Ohmori, Norimasa; Ito, Yoshiaki; Nagasawa, Takashi

    2009-02-01

    Millet is an important food crop in Asia and Africa, but the health benefits of dietary millet are little known. This study defined the effects of dietary Japanese millet on diabetic mice. Feeding of a high-fat diet containing Japanese millet protein concentrate (JMP, 20% protein) to type 2 diabetic mice for 3 weeks significantly increased plasma levels of adiponectin and high-density lipoprotein cholesterol (HDL cholesterol) and decreased the levels of glucose and triglyceride as compared to control. The starch fraction of Japanese millet had no effect on glucose or adiponectin levels, but the prolamin fraction beneficially modulated plasma glucose and insulin concentrations as well as adiponectin and tumor necrosis factor-alpha gene expression. Considering the physiological significance of adiponectin and HDL cholesterol levels in type 2 diabetes, insulin resistance, and cardiovascular disease, our findings imply that dietary JMP has the potential to ameliorate these diseases.

  9. The TG/HDL Cholesterol Ratio Predicts All Cause Mortality in Women With Suspected Myocardial Ischemia A Report from the Women’s Ischemia Syndrome Evaluation (WISE)

    PubMed Central

    Bittner, Vera; Johnson, B. Delia; Zineh, Issam; Rogers, William J.; Vido, Diane; Marroquin, Oscar C.; Bairey-Merz, C. Noel; Sopko, George

    2009-01-01

    High triglycerides (TG) and low high density lipoprotein cholesterol (HDL-C) are important cardiovascular risk factors in women. The prognostic utility of the TG/HDL-C ratio, a marker for insulin resistance and small dense low density lipoprotein particles, is unknown among high risk women. Methods We studied 544 women without prior myocardial infarction or coronary revascularization, referred for clinically indicated coronary angiography and enrolled in the Women’s Ischemia Syndrome Evaluation (WISE). Fasting lipid profiles and detailed demographic and clinical data were obtained at baseline. Multi-variate Cox-proportional hazards models for all cause mortality and cardiovascular events (death, myocardial infarction, heart failure, stroke) over a median follow-up of 6 years were constructed using log TG/HDL-C ratio as a predictor variable and accounting for traditional cardiovascular risk factors. Results Mean age was 57±11 years, 84% were white, 55% hypertensive, 20% diabetic, 50% current or prior smokers. TG/HDL-C ranged from 0.3 to 18.4 (median 2.2, first quartile 0.35 to <1.4, fourth quartile 3.66–18.4). Deaths (n=33) and CV events (n=83) increased across TG/HDL-C quartiles (both p<0.05 for trend). TG/HDL-C was a strong independent predictor of mortality in models adjusted for age, race, smoking, hypertension, diabetes, and angiographic coronary disease severity (HR 1.95, 95% CI 1.05, 3.64, p=0.04). For cardiovascular events, the multivariate HR was 1.54 (95% CI 1.05, 2.22, p=0.03) when adjusted for demographic and clinical variables, but became non-significant when angiographic results were included. Conclusion Among women with suspected ischemia, the TG/HDL-C ratio is a powerful independent predictor of all cause mortality and cardiovascular events. PMID:19249427

  10. Lipoprotein Agarose Gel Electrophoresis. Application in HDL-Cholesterol Methodology.

    DTIC Science & Technology

    1985-06-01

    on determination of high-density lipo- protein cholesterol by precipitation with sodium phosphotungstate- magnesium. Clin Chem 25(4):560 (1979). 6...determinations of cholesterol levels in supernates obtained after addition of various amounts of precipitants , lipo- protein electrophoresis can help to...plotted against the corresponding volumes of sodium phosphotungstate-MgCl2 (NAPT) precipitant added. 10 ’ ’’ ’i - n

  11. Polygenic determinants in extremes of high-density lipoprotein cholesterol[S

    PubMed Central

    Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude

    2017-01-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971

  12. Apolipoprotein B-associated cholesterol is a determinant of treatment outcome in patients with chronic hepatitis C virus infection receiving anti-viral agents interferon-alpha and ribavirin.

    PubMed

    Sheridan, D A; Price, D A; Schmid, M L; Toms, G L; Donaldson, P; Neely, D; Bassendine, M F

    2009-06-15

    Hepatitis C virus (HCV) co-opts very-low-density lipoprotein (VLDL) pathways for replication, secretion and entry into hepatocytes and associates with apolipoprotein B (apoB) in plasma. Each VLDL contains apoB-100 and variable amounts of apolipoproteins E and C, cholesterol and triglycerides. To determine whether baseline lipid levels predicted treatment outcome. Retrospective analysis was performed of 250 chronic hepatitis C (CHC) patients who had received anti-viral agents interferon-alpha and ribavirin; 165 had a sustained virological response (SVR). Pre- and post-treatment nonfasting lipid profiles were measured and non-high-density lipoprotein (non-HDL) cholesterol (i.e. apoB-associated) was calculated. Binary logistic regression analysis assessed factors independently associated with treatment outcome. There was an independent association between higher apoB-associated cholesterol (non-HDL-C) and increased odds of SVR (odds ratio 2.09, P = 0.042). In multivariate analysis, non-HDL-C was significantly lower in HCV genotype 3 (g3) than genotype 1 (P = 0.007); this was reversible upon eradication of HCVg3 (pre-treatment non-HDL-C = 2.8 mmol/L, SVR = 3.6 mmol/L, P < 0.001). Higher apoB-associated cholesterol is positively associated with treatment outcome in CHC patients receiving anti-viral therapy, possibly due to competition between apoB-containing lipoproteins and infectious low-density HCV lipo-viral particles for hepatocyte entry via shared lipoprotein receptors.

  13. Reduced absorption and enhanced synthesis of cholesterol in patients with cystic fibrosis: a preliminary study of plasma sterols.

    PubMed

    Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe

    2016-09-01

    Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.

  14. Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) index as a reference criterion of risk for metabolic syndrome (MetS) and low insulin sensitivity in apparently healthy subjects.

    PubMed

    Baez-Duarte, Blanca Guadalupe; Zamora-Gínez, Irma; González-Duarte, Ramiro; Torres-Rasgado, Enrique; Ruiz-Vivanco, Guadalupe; Pérez-Fuentes, Ricardo; Celis, The Multidisciplinary Research Group Of Diabetes

    To evaluate if the TG/HDL-C index can be considered as a reference criterion of MetS and low insulin sensitivity in apparently healthy subjects. The subjects were Mexican mestizos who resided in Puebla City, Mexico, who were anthropometrically, biochemically, and clinically characterized. The TG/HDL-C index was calculated by dividing triglyceride (TG) levels by HDL-C levels. MetS was diagnosed by the Third Report from the Adult Treatment Panel-National Cholesterol Education Program (ATP-III NCEP) criteria, while insulin sensitivity was evaluated by the Quantitative Insulin sensitivity Check Index (QUICKI). The study included 813 subjects, with an average age of 38.6 ± 12.1 years, of which 564 were women and 249 men. An association was found between high TG/HDL-C index and low insulin sensitivity (Odds ratio [OR]: 4.09; p < 0.01) and with MetS (OR: 15.29; p < 0.01). A correlation was found between the TG/HDL-C index and QUICKI (rho: -0.4989; p < 0.01) and with MetS (rho: 0.6581; p < 0.01). The results indicate that the TG/HDL-C index is associated with low insulin sensitivity and MetS in apparently healthy subjects, suggesting this index as a reference criterion of risk for low insulin sensitivity and MetS.

  15. Outdoor temperature is associated with serum HDL and LDL.

    PubMed

    Halonen, Jaana I; Zanobetti, Antonella; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel

    2011-02-01

    While exposures to high and low air temperatures are associated with cardiovascular mortality, the underlying mechanisms are poorly understood. The risk factors for cardiovascular disease include high levels of total cholesterol and low-density lipoprotein (LDL), and low levels of high-density lipoprotein (HDL). We investigated whether temperature was associated with changes in circulating lipid levels, and whether this might explain part of the association with increased cardiovascular events. The study cohort consisted of 478 men in the greater Boston area with a mean age of 74.2 years. They visited the clinic every 3-5 years between 1995 and 2008 for physical examination and to complete questionnaires. We excluded from analyses all men taking statin medication and all days with missing data, resulting in a total of 862 visits. Associations between three temperature variables (ambient, apparent, and dew point temperature) and serum lipid levels (total cholesterol, HDL, LDL, and triglycerides) were studied with linear mixed models that included possible confounders such as air pollution and a random intercept for each subject. We found that HDL decreased -1.76% (95% CI: from -3.17 to -0.32, lag 2 days), and -5.58% (95% CI: from -8.87 to -2.16, moving average of 4 weeks) for each 5°C increase in mean ambient temperature. For the same increase in mean ambient temperature, LDL increased by 1.74% (95% CI: 0.07-3.44, lag 1 day) and 1.87% (95% CI: 0.14-3.63, lag 2 days). These results were also similar for apparent and dew point temperatures. No changes were found in total cholesterol or triglycerides in relation to temperature increase. Changes in HDL and LDL levels associated with an increase in ambient temperature may be among the underlying mechanisms of temperature-related cardiovascular mortality. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Isoflavone-free soy protein prepared by column chromatography reduces plasma cholesterol in rats.

    PubMed

    Fukui, Kensuke; Tachibana, Nobuhiko; Wanezaki, Satoshi; Tsuzaki, Shinichi; Takamatsu, Kiyoharu; Yamamoto, Takashi; Hashimoto, Yukio; Shimoda, Tadahisa

    2002-09-25

    To know whether isoflavones are responsible for the hypocholesterolemic effect of soy protein, the effect on plasma cholesterol of isoflavone-free soy protein prepared by column chromatography was examined in rats. Five-week-old male Sprague-Dawley rats were fed cholesterol-enriched AIN-93G diets containing either 20% casein (CAS), 20% soy protein isolate (SPI), 20% isoflavone-free SPI (IF-SPI), 19.7% IF-SPI + 0.3% isoflavone-rich fraction (isoflavone concentrate, IC), or 20% CAS + 0.3% IC for 2 weeks. Plasma total cholesterol concentrations of rats fed SPI and IF-SPI were comparable and were significantly lower than that of rats fed CAS. The addition of IC to the CAS and IF-SPI did not influence plasma cholesterol level. Fecal steroid excretion of the three SPI groups was higher than that of the two CAS groups, whereas the addition of IC showed no effect. Thus, a significant fraction of the cholesterol-lowering effect of SPI in rats can be attributed to the protein content, but the isoflavones and other minor constituents may also play a role.

  17. The TG/HDL-C Ratio Might Be a Surrogate for Insulin Resistance in Chinese Nonobese Women

    PubMed Central

    He, Jiyun; He, Sen; Liu, Kai; Wang, Yong; Shi, Di

    2014-01-01

    Obejective. To examine the discriminatory power of triglyceride (TG) and triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C) for insulin resistance (IR) in a normoglycaemic Chinese population. Methods. The data were collected from 711 individuals. The normoglycaemic individuals were eventually included in the study (n = 533, age: 62.8 ± 6.6 years, male: 56.8%), who were with a fasting plasma glucose < 6.1 mmol/L and without a history of diabetes. IR was defined as the upper quintile (≥1.6) of homeostasis model assessment of IR. Area under the receiver operating characteristic curve (AROC) was used to examine the discriminatory power. Results. The discriminatory power of TG/HDL-C for IR was acceptable in women with a BMI < 24 kg/m2 or waist circumference < 80 cm (AROCs: 0.718 and 0.713, resp.); however, the discriminatory power was not acceptable in the obese women. TG/HDL-C was not an acceptable marker of IR in men. The discriminatory power of TG for IR was not acceptable in both men and women. Conclusions. The discriminatory power of TG/HDL-C for IR differs by gender and obesity index in the normoglycaemic Chinese population, and TG/HDL-C could discriminate IR in the nonobese and normoglycaemic women. PMID:25136362

  18. Addition of Garlic Extract in Ration to Reduce Cholesterol Level of Broiler

    NASA Astrophysics Data System (ADS)

    Utami, M. M. D.; Pantaya, D.; Agus, A.

    2018-01-01

    The purpose of this research is to know the effect of garlic extract (GE) in reducing cholesterol level of broiler chicken by analyzing cholesterol level of broiler chicken blood. Two hundred one day broiler age were used in this study for 35 days. The chickens were randomly divided into four treatments, each treatment consist of five replications and each repetition consist of ten chickens. This research is used completely randomized design, such as: T0: 0% EBP, T1: 2%, T2: 4% and T3: 6%. Furthermore, at age 35 days each chicken was taken blood to be analyzed cholesterol levels, low density lipoprotein (LDL), high density lipoprotein (HDL) and calculated the ratio of LDL and HDL levels. The data obtained were analyzed using software from Statistical Product and Service Solution (SPSS 16.0). The results of significant analysis continued by Duncan’s New Multiple Range Test. Addition of GE from the 2% level decreases (P <0.05) of LDL and total cholesterol, and increases HDL and HDL-LDL ratio. The conclusions is obtained garlic extract plays an important role in lowering cholesterol levels of broiler meat.

  19. [HDL-C/apoA-I]: A multivessel cardiometabolic risk marker in women with T2DM.

    PubMed

    Hermans, Michel P; Valensi, Paul; Ahn, Sylvie A; Rousseau, Michel F

    2018-01-01

    Although women have higher high-density lipoprotein cholesterol (HDL-C) than have men, their HDL particles are also prone to become small, dense, and dysfunctional in case of type 2 diabetes mellitus (T2DM). To assess the vascular risk related to HDLs of different sizes/densities without direct measurement, we adjusted HDL-C to its main apolipoprotein (apoA-I) as [HDL-C/apoA-I]. This ratio estimates HDL sizes and provides indices as to their number, cholesterol load, and density. We stratified 280 Caucasian T2DM women according to [HDL-C/apoA-I] quartiles (Q) to determine how they are segregated according to cardiometabolic risk, β-cell function, glycaemic control, and vascular complications. Five parameters were derived from combined determination of HDL-C and apoA-I: HDL size, HDL number, cholesterol load per particle (pP), apoA-I pP, and HDL density. An adverse cardiometabolic profile characterized QI and QII patients whose HDLs were denser and depleted in apoA-I, whereas QIII patients had HDLs with characteristics closer to those of controls. QIV patients had HDLs of supernormal size/composition and a more favourable phenotype in terms of fat distribution; insulin sensitivity (64% vs 41%), metabolic syndrome, and β-cell function (32% vs 23%); exogenous insulin (44 vs 89 U·d -1 ); and glycaemic control (glycated haemoglobin, 56 vs 61 mmol·mol -1 ), associated with lower prevalence of microvascular/macrovascular complications: all-cause microangiopathy 47% vs 61%; retinopathy 22% vs 34%; all-cause macroangiopathy 19% vs 31%; and coronary artery disease 6% vs 24% (P < .05). [HDL-C/apoA-I] can stratify T2DM women according to metabolic phenotype, macrovascular and coronary damage, β-cell function, microangiopathic risk, and retinopathy. This ratio is a versatile and readily available marker of cardiometabolic status and vascular complications in T2DM women. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Waist-to-height ratio (WHtR) and triglyceride to HDL-C ratio (TG/HDL-c) as predictors of cardiometabolic risk.

    PubMed

    Weiler Miralles, Clara Silvana; Wollinger, Luana Maria; Marin, Débora; Genro, Julia Pasqualini; Contini, Veronica; Morelo Dal Bosco, Simone

    2015-05-01

    The excessive concentration of fat in the abdominal region is related to a higher risk of developing cardiovascular disease (CVD). Studies have been performed to identify simple and effective indicators of abdominal obesity and associated cardiometabolic risk through the use of simple parameters such as anthropometric and biochemical measures. The Triglyceride / High-density Lipoprotein Cholesterol (TG/HDL-c) has been proposed as a more practical and easy to use atherogenic marker, along with the Waist-to-Height Ratio (WHtR), which makes a superior tool for separating cardiometabolic risk related to overweight/obesity when comparing to Body Mass Index (BMI). To verify the applicability of the WHtR and the TG/HDL-c ratio as predictors of cardiometabolic risk. This cross-sectional study was performed at the Department of Nutrition of the UNIVATES University Center, where the participant's anthropometric and biochemical data were collected. Statistical analysis was performed by the Statistical Package for the Social Sciences software (SPSS) 20.0, with a significance level of 5% (p < 0.05). A total of 498 individuals took part on this research, 77.5% female and with a mean age of 25.5 ± 6.5. A high percentage of fat was found in both men and women (19.9 ± 5.80% and 29.24 ± 5.43%, respectively). The prevalence of overweight/obesity (BMI ≥ 25Kg/m(2)) was 35.05%. The WHtR marker was significantly correlated to Low-density Lipoprotein Cholesterol (LDL-c), Triglyceride (TG) and Anthropometric BMI values, waist circumference (WC) and body fat percentage (BF%). For the TG/HDL-c ratio, there was a positive and significant correlation to the same markers, beyond TC. There was also a correlation between WHtR and TG/HDL-c, and both presented a negative and significant correlation with HDL-c. WHtR and TG/HDL-c values were found to be good markers for the cardiometabolic risk ratio in the studied sample. Several studies, original articles and academic reviews confirm the use

  1. Interaction of high density lipoprotein particles with membranes containing cholesterol.

    PubMed

    Sanchez, Susana A; Tricerri, Maria A; Gratton, Enrico

    2007-08-01

    In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.

  2. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  3. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet.

    PubMed

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-07-28

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  4. Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency[S

    PubMed Central

    Gomaraschi, Monica; Ossoli, Alice; Castelnuovo, Samuela; Simonelli, Sara; Pavanello, Chiara; Balzarotti, Gloria; Arca, Marcello; Di Costanzo, Alessia; Sampietro, Tiziana; Vaudo, Gaetano; Baldassarre, Damiano; Veglia, Fabrizio; Franceschini, Guido; Calabresi, Laura

    2017-01-01

    The aim of this study was to evaluate the vasoprotective effects of HDL isolated from carriers of LCAT deficiency, which are characterized by a selective depletion of LpA-I:A-II particles and predominance of preβ migrating HDL. HDLs were isolated from LCAT-deficient carriers and tested in vitro for their capacity to promote NO production and to inhibit vascular cell adhesion molecule-1 (VCAM-1) expression in cultured endothelial cells. HDLs from carriers were more effective than control HDLs in promoting eNOS activation with a gene-dose-dependent effect (PTrend = 0.048). As a consequence, NO production induced by HDL from carriers was significantly higher than that promoted by control HDL (1.63 ± 0.24-fold vs. 1.34 ± 0.07-fold, P = 0.031). HDLs from carriers were also more effective than control HDLs in inhibiting the expression of VCAM-1 (homozygotes, 65.0 ± 8.6%; heterozygotes, 53.1 ± 7.2%; controls, 44.4 ± 4.1%; PTrend = 0.0003). The increased efficiency of carrier HDL was likely due to the depletion in LpA-I:A-II particles. The in vitro findings might explain why carriers of LCAT deficiency showed flow-mediated vasodilation and plasma-soluble cell adhesion molecule concentrations comparable to controls, despite low HDL-cholesterol levels. These results indicate that selective depletion of apoA-II-containing HDL, as observed in carriers of LCAT deficiency, leads to an increased capacity of HDL to stimulate endothelial NO production, suggesting that changes in HDL apolipoprotein composition may be the target of therapeutic interventions designed to improve HDL functionality. PMID:28351888

  5. A new rapid method to measure human platelet cholesterol: a pilot study.

    PubMed

    Jagroop, I Anita; Persaud, Jahm Want; Mikhailidis, Dimitri P

    2011-01-01

    Platelet cholesterol (PC) could be used to assess "tissue" cholesterol of patients with vascular disease. However, the methods available so far to measure PC involve a complex extraction process. We developed a rapid method to measure PC and assessed its correlation with serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C ratio, triglycerides (TG), and non-HDL-C. We assessed repeatability (20 times, 3 participants) and reproducibility (8 times, 2 participants). A group of 47 healthy participants was studied. Blood was collected to analyze serum TC, LDL-C, HDL-C, and TG. Citrated blood was used to prepare a platelet pellet. A "clear soup" was produced (by disrupting this pellet using freeze-thaw and sonication cycles) and used to measure PC. Repeatability of PC showed a coefficient of variation (CV) of 4.8%. The reproducibility of PC over a period of 2 months was CV 7.5% and 8.1% (8 measurements for 2 participants). The PC of participants with serum LDL-C >2.6 mmol/L (treatment goal recommended by the National Cholesterol Education Program Adult Treatment Panel III) was 377 ± 120 μmol/10(12) platelets (n = 25). There was a significant correlation (Spearman, correlation coefficient) of PC (n = 25) with serum LDL-C (r(s) = 0.45, P = .02), LDL-C/HDL-C (r(s) = 0.45, P = .02), TG (r(s) = 0.43, P = .03), and non-HDL-C (r(s) = 0.53, P = .007). This technique of measuring PC has the advantage of being reproducible, fast, and simpler than previous methods. Thus, it may be useful for multiple sampling when investigating changes in PC in hypercholesterolemic patients. More extensive evaluation is necessary.

  6. Cholesterol biosynthesis in normocholesterolemic patients after cholesterol removal by plasmapheresis.

    PubMed

    Feillet, C; Cristol, J P; Michel, F; Kanouni, T; Navarro, R; Navarro, M; Monnier, L; Descomps, B

    1997-01-01

    Plasmapheresis and low-density lipoprotein (LDL)-apheresis are recognized procedures for the treatment of hyperlipidemia resistant to diet and lipid-lowering drugs and provide information on cholesterol synthesis in hypercholesterolemic patients. However, cholesterol synthesis after acute cholesterol removal from plasma has never been investigated in normocholesterolemic patients. In this study, cholesterol synthesis was evaluated in three normocholesterolemic patients by determination of plasma lathosterol, lathosterol-to-cholesterol ratio, and plasma mevalonic acid. In a short-term kinetic study, samples were collected before and after plasmapheresis and every 6 hours during 24 hours. In the second part of the study, cholesterol synthesis was evaluated daily for 3 days. In normocholesterolemic patients, cholesterol returns to basal levels in 3 days. However, cholesterol removal did not result in a significant increase in lathosterol-to-cholesterol ratio or in plasma mevalonic acid, despite a slight increase in lathosterol. In contrast, when repeated plasma exchanges induced a dramatic hypocholesterolemia (< 1 mmol/liter), an acute but transient stimulation of cholesterol synthesis was observed (lathosterol/cholesterol ratio and MVA, respectively, increase from 8.2 to 22.3 and from 28 nmol/liter to 98 nmol/liter). This study shows that cholesterol synthesis is not stimulated by plasmapheresis in normocholesterolemic patients but is enhanced in dramatic hypocholesterolemic patients (< 1 mmol/liter).

  7. Relation of Plasma Lipids to Alzheimer Disease and Vascular Dementia

    PubMed Central

    Reitz, Christiane; Tang, Ming-Xin; Luchsinger, Jose; Mayeux, Richard

    2009-01-01

    Background The relation between plasma lipid levels and Alzheimer disease (AD) and vascular dementia (VaD), and the impact of drugs to lower lipid levels remains unclear. Objective To investigate the relation between plasma lipid levels and the risk of AD and VaD and the impact of drugs to lower lipid levels on this relationship. Design and Setting Cross-sectional and prospective community-based cohort studies. Participants Random sample of 4316 Medicare recipients, 65 years and older, residing in northern Manhattan, NY. Main Outcome Measures Vascular dementia and AD according to standard criteria. Results Elevated levels of non–high-density lipoprotein (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and decreased levels of HDL-C were weak risk factors for VaD in either cross-sectional or prospective analyses. Higher levels of total cholesterol were associated with a decreased risk of incident AD after adjustment for demographics, apolipoprotein E genotype, and cardiovascular risk factors. Treatment with drugs to lower lipid levels did not change the disease risk of either disorder. Conclusions We found a weak relation between non–HDL-C, LDL-C, and HDL-C levels and the risk of VaD. Lipid levels and the use of agents to lower them do not seem to be associated with the risk of AD. PMID:15148148

  8. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    PubMed

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Creosote Bush (Larrea tridentata) Improves Insulin Sensitivity and Reduces Plasma and Hepatic Lipids in Hamsters Fed a High Fat and Cholesterol Diet

    PubMed Central

    Del Vecchyo-Tenorio, Georgina; Rodríguez-Cruz, Maricela; Andrade-Cetto, Adolfo; Cárdenas-Vázquez, René

    2016-01-01

    Creosote bush, Larrea tridentata (Sesse y Moc. Ex DC, Zygophyllaceae) is a shrub found in the deserts of Northern Mexico and Southwestern United States. In traditional medicine, it is used to treat a variety of illnesses including type 2 diabetes. The present study aims to investigate the effects of creosote bush ethanolic extract on plasma and liver parameters associated with the metabolic syndrome in hamsters fed a high fat and cholesterol diet (HFD), comparing them with those induced by ezetimibe (EZ). Seven groups of six hamsters each were formed. Six groups were fed HFD for 2 weeks. The following 2 weeks, the HFD groups received: (1) only HFD, (2) HFD + 3 mg% EZ, (3) HFD + 0.2% creosote bush ethanolic extract, (4) only standard diet (Std Diet), (5) Std Diet + 3 mg% EZ, (6) Std Diet + 0.2% creosote bush ethanolic extract. The beneficial effects of creosote bush ethanolic extract in the HFD hamster model were a reduction of insulin resistance, associated with lower serum insulin and leptin, lower hepatic lipid peroxidation and higher liver antioxidant capacity. Plasma and liver lipids tended or were reduced to values closer to those of animals fed standard diet. A similar effect on lipids was induced by EZ, although with even lower hepatic cholesterol and total lipids concentrations. In general, the change from HFD to standard diet plus ethanolic extract induced the same but deeper changes, including a reduction in plasma glucose and an increase in the percentage of HDL cholesterol. Unlike creosote bush extract, EZ increased food consumption and neutral fecal steroids, with no significant effect on body weight, epididymal fat pads, liver peroxidation or antioxidant capacity. Also EZ did not modify serum insulin and leptin. However, insulin sensitivity improved to values similar to those induced by the extract. This suggests that the mechanism of action of creosote bush ethanolic extract is different to inhibition of cholesterol absorption or increase excretion

  10. Small dense low density lipoprotein-cholesterol and cholesterol ratios to predict arterial stiffness progression in normotensive subjects over a 5-year period.

    PubMed

    Li, Gang; Wu, Hui-Kun; Wu, Xiao-Wei; Cao, Zhe; Tu, Yuan-Chao; Ma, Yi; Wang, Wei-Qing; Cheng, Jian; Zhou, Zi-Hua

    2018-02-12

    Small dense low density lipoprotein-cholesterol (sdLDL-C), cholesterol ratios and carotid-femoral pulse wave velocity (cf-PWV) impart risk for all-cause morbidity and mortality independently of conventional cardiovascular disease (CVD) risk factors. This study was designed to identify feasible indicators for predicting arterial stiffness progression. We followed up 816 normotensive participants without diabetes or CVD for nearly 5.0 years. Cholesterol parameters, ratios and other clinical and laboratory data were collected at baseline. cf-PWV were measured at baseline and the end of follow-up. PWV progression subjects had higher levels of PWV parameters, sdLDL-C and TG/HDL-C ratio. sdLDL-C and TG/HDL-C were significantly correlated with all PWV parameters. Multiple regression models showed that sdLDL-C was closely associated with follow-up PWV (β = 0.222, p < 0.001) and △PWV (β = 0.275, p < 0.001). TG/HDL-C was only one cholesterol ratios that associated with all PWV parameters. sdLDL-C (OR = 2.070, 95%CI: 1.162 to 3.688, p = 0.014) and TG/HDL-C (OR = 1.355, 95%CI: 1.136 to 1.617, p = 0.001) could significantly determine the progression of PWV after correction for covariates. High sd-LDL-C quantiles subjects were more likely to develop arterial stiffness progression than low quantiles (Tertiles 3 vs Tertiles1, RR = 2.867, 95%CI: 1.106 to 7.434, p = 0.03). We founded that sdLDL-C and TG/HDL-C ratio can independently predict arterial stiffness progression in normotensive subjects, and high level sdLDL-C and TG/HDL-C ratio were associated with a higher risk of arterial stiffness.

  11. Triglyceride to HDL-C ratio and increased arterial stiffness in children, adolescents, and young adults.

    PubMed

    Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R

    2013-04-01

    Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.

  12. Pleiotropy and genotype by diet interaction: A multivariate genetic analysis of HDL-C subfractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahaney, M.C.; Blangero, J.; Comuzzie, A.G.

    1994-09-01

    Reduced high density lipoprotein cholesterol (HDL-C) is a risk factor for cardiovascular disease in humans. Both major genes and major genotype by diet interaction have been reported for HDL-C, but the genetics of the HDL-C subfractions are less well known. In a baboon model for human atherosclerosis, we investigated the pleiotropic effects of genes on normal quantitative variation in three HDL-C subfractions (HDL{sub 1}-C, HDL{sub 2}-C, and HDL{sub 3}-C) in two dietary environments -- a basal diet and a 7 week high cholesterol, saturated fat (HCSF) diet. We analyzed data on serum HDL-C subfraction levels, quantified by gradient gel eletrophoresis,more » for 942 baboons (Papo hamadryas, sensu lato) from 17 pedigrees. We used multivariate maximum likelihood methods to simultaneously estimate phenotypic means, standard deviations, and heritabilities (h{sup 2}); effects of sex, age-by-sex, age{sup 2}-by-sex, percent subspecies admixture, and infant feeding modality; plus estimated significant h{sup 2} values for all three subfractions on both diets. When tested within dietary environments, we obtained significant genetic correlations between all three subfractions [i.e., P({rho}{sub G} = 0) < 0.001] and evidence of complete pleiotropy [i.e., P({vert_bar}{rho}{sub G}{vert_bar} = 1.0) > 0.1] between HDL{sub 1}-C and HDL{sub 3}-C ({rho}{sub G} = 0.81) on the basal diet. On the HCSF diet, only the genetic correlation between HDL{sub 1}-C and HDL{sub 3}-C ({rho}{sub g} = 0.61) was significant (p > 0.1). Complete pleiotropy was observed for each of the three subfractions between both diets. Given these results, we reject genotype by diet interaction for HDL{sub 1}-C, HDL{sub 2}-C or HDL{sub 3}-C; i.e., the same genes influence variation in each subfraction to the same degree on either diet. However, the apparent disruption of pleiotropy between HDL{sub 2}-C and the other two subfractions needs to be investigated further.« less

  13. Association between non-high-density lipoprotein cholesterol concentrations and mortality from coronary heart disease among Japanese men and women: the Ibaraki Prefectural Health Study.

    PubMed

    Noda, Hiroyuki; Iso, Hiroyasu; Irie, Fujiko; Sairenchi, Toshimi; Ohtaka, Emiko; Ohta, Hitoshi

    2010-02-01

    The aim of this study was to examine whether non-high-density lipoprotein cholesterol (non-HDL-cholesterol) raises the risk of coronary heart disease in a dose-response fashion in a non-obese population with low total cholesterol levels and high HDL-cholesterol levels, such as Japanese. A total of 30,802 men and 60,417 women, aged 40 to 79 years with no history of stroke or coronary heart disease, completed a baseline risk factor survey in 1993 under the auspices of the Ibaraki Prefectural Health Study. Systematic mortality surveillance through 2003 identified 539 coronary heart disease deaths. The mean values for non-HDL-cholesterol were 140 mg/dL for men and 151 mg/dL for women. The corresponding mean values were 193 mg/dL and 208 mg/dL total cholesterol and 52 mg/dL and 57 mg/dL HDL-cholesterol, respectively. Men with non-HDL-cholesterol > or = 180 mg/dL had a two-fold higher age-adjusted risk of mortality from coronary heart disease than did those with non-HDL-cholesterol <100 mg/dL, whereas no such association was found for women. The multivariable hazard ratio for > or = 180 mg/dL versus <100 mg/dL of non-HDL-cholesterol was 2.22 (95% confidence interval: 1.37 to 3.62) for men and 0.71 (0.37 to 1.34) for women. Higher concentrations of non-HDL-cholesterol were associated with an increased risk of mortality from coronary heart disease for men, but not for women.

  14. A candidate gene study in low HDL-cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster.

    PubMed

    Lilja, Heidi E; Soro, Aino; Ylitalo, Kati; Nuotio, Ilpo; Viikari, Jorma S A; Salomaa, Veikko; Vartiainen, Erkki; Taskinen, Marja-Riitta; Peltonen, Leena; Pajukanta, Päivi

    2002-09-01

    In patients with premature coronary heart disease, the most common lipoprotein abnormality is high-density lipoprotein (HDL) deficiency. To assess the genetic background of the low HDL-cholesterol trait, we performed a candidate gene study in 25 families with low HDL, collected from the genetically isolated population of Finland. We studied 21 genes encoding essential proteins involved in the HDL metabolism by genotyping intragenic and flanking markers for these genes. We found suggestive evidence for linkage in two candidate regions: Marker D1S2844, in the apolipoprotein A-II (APOA2) region, yielded a LOD score of 2.14 and marker D11S939 flanking the apolipoprotein A-I/C-III/A-IV gene cluster (APOA1C3A4) produced a LOD score of 1.69. Interestingly, we identified potential shared haplotypes in these two regions in a subset of low HDL families. These families also contributed to the obtained positive LOD scores, whereas the rest of the families produced negative LOD scores. None of the remaining candidate regions provided any evidence for linkage. Since only a limited number of loci were tested in this candidate gene study, these LOD scores suggest significant involvement of the APOA2 gene and the APOA1C3A4 gene cluster, or loci in their immediate vicinity, in the pathogenesis of low HDL.

  15. Psychological well-being and restorative biological processes: HDL-C in older English adults.

    PubMed

    Soo, Jackie; Kubzansky, Laura D; Chen, Ying; Zevon, Emily S; Boehm, Julia K

    2018-05-14

    Psychological well-being is associated with better cardiovascular health, but the underlying mechanisms are unclear. This study investigates one possible mechanism by examining psychological well-being's prospective association with lipid levels, focusing on high-density lipoprotein cholesterol (HDL-C). Participants were 4757 healthy men and women ages ≥50 from the English Longitudinal Study of Ageing with clinical data from three times, three to five years apart. Psychological well-being was assessed at baseline using the Control, Autonomy, Satisfaction, and Pleasure scale; HDL-C, triglycerides, and total cholesterol were assayed from blood samples. Descriptive statistics and linear mixed models were used to examine associations between psychological well-being and lipid levels over time; the latter controlled for confounders and health behaviours. In descriptive analyses, HDL-C levels were initially higher in people with greater psychological well-being. Among those who met recommended levels of HDL-C at baseline, fewer individuals with higher versus lower psychological well-being dropped below HDL-C recommendations over time. Mixed models indicated that HDL-C increased over time (β = 0.64; 95% CI = 0.58 to 0.69) and higher baseline psychological well-being was associated with higher baseline HDL-C (β = 0.51; 95% CI = 0.03 to 0.99). A significant well-being by time interaction indicated individuals with higher versus lower well-being exhibited a more rapid rate of increase in HDL-C over follow-up. Higher psychological well-being was also significantly associated with lower triglycerides, but main effects for both HDL-C and triglycerides were attenuated after accounting for health behaviours. Higher psychological well-being is associated with healthier HDL-C levels; these effects may compound over time. This protective effect may be partly explained by health behaviours. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Xanthohumol, a hop-derived prenylated flavonoid, promotes macrophage reverse cholesterol transport.

    PubMed

    Hirata, Hiroshi; Uto-Kondo, Harumi; Ogura, Masatsune; Ayaori, Makoto; Shiotani, Kazusa; Ota, Ami; Tsuchiya, Youichi; Ikewaki, Katsunori

    2017-09-01

    Xanthohumol, a prominent prenyl flavonoid from the hop plant (Humulus lupulus L.), is suggested to be antiatherogenic since it reportedly increases high-density lipoprotein (HDL) cholesterol levels. It is not clear whether xanthohumol promotes reverse cholesterol transport (RCT), the most important antiatherogenic property of HDL; therefore, we investigated the effects of xanthohumol on macrophage-to-feces RCT using a hamster model as a CETP-expressing species. In vivo RCT experiments showed that xanthohumol significantly increased fecal appearance of the tracer derived from intraperitoneally injected [ 3 H]-cholesterol-labeled macrophages. Ex vivo experiments were then employed to investigate the detailed mechanism by which xanthohumol enhanced RCT. Cholesterol efflux capacity from macrophages was 1.5-fold higher in xanthohumol-fed hamsters compared with the control group. In addition, protein expression and lecithin-cholesterol acyltransferase activity in the HDL fraction were significantly higher in xanthohumol-fed hamsters compared with the control, suggesting that xanthohumol promoted HDL maturation. Hepatic transcript analysis revealed that xanthohumol increased mRNA expression of abcg8 and cyp7a1. In addition, protein expressions of liver X receptor α and bile pump export protein were increased in the liver by xanthohumol administration when compared with the control, implying that it stimulated bile acid synthesis and cholesterol excretion to feces. In conclusion, our data demonstrate that xanthohumol improves RCT in vivo through cholesterol efflux from macrophages and excretion to feces, leading to antiatherosclerosis effects. It remains to be elucidated whether enhancement of RCT by xanthohumol could prove valuable in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Relationship of drinking water disinfectants to plasma cholesterol and thyroid hormone levels in experimental studies.

    PubMed Central

    Revis, N W; McCauley, P; Bull, R; Holdsworth, G

    1986-01-01

    The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597

  18. Quantification of HDL Proteins, Cardiac Events, and Mortality in Patients with Type 2 Diabetes on Hemodialysis

    PubMed Central

    Kopecky, Chantal; Genser, Bernd; Drechsler, Christiane; Krane, Vera; Kaltenecker, Christopher C.; Hengstschläger, Markus; März, Winfried; Wanner, Christoph; Säemann, Marcus D.

    2015-01-01

    Background and objectives Impairment of HDL function has been associated with cardiovascular events in patients with kidney failure. The protein composition of HDLs is altered in these patients, presumably compromising the cardioprotective effects of HDLs. This post hoc study assessed the relation of distinct HDL-bound proteins with cardiovascular outcomes in a dialysis population. Design, setting, participants, & measurements The concentrations of HDL-associated serum amyloid A (SAA) and surfactant protein B (SP-B) were measured in 1152 patients with type 2 diabetes mellitus on hemodialysis participating in The German Diabetes Dialysis Study who were randomly assigned to double-blind treatment of 20 mg atorvastatin daily or matching placebo. The association of SAA(HDL) and SP-B(HDL) with cardiovascular outcomes was assessed in multivariate regression models adjusted for known clinical risk factors. Results High concentrations of SAA(HDL) were significantly and positively associated with the risk of cardiac events (hazard ratio per 1 SD higher, 1.09; 95% confidence interval, 1.01 to 1.19). High concentrations of SP-B(HDL) were significantly associated with all-cause mortality (hazard ratio per 1 SD higher, 1.10; 95% confidence interval, 1.02 to 1.19). Adjustment for HDL cholesterol did not affect these associations. Conclusions In patients with diabetes on hemodialysis, SAA(HDL) and SP-B(HDL) were related to cardiac events and all-cause mortality, respectively, and they were independent of HDL cholesterol. These findings indicate that a remodeling of the HDL proteome was associated with a higher risk for cardiovascular events and mortality in patients with ESRD. PMID:25424990

  19. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters[S

    PubMed Central

    Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen

    2017-01-01

    The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI. PMID:27940481

  20. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters.

    PubMed

    Dong, Bin; Young, Mark; Liu, Xueqing; Singh, Amar Bahadur; Liu, Jingwen

    2017-02-01

    The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI.

  1. The total cholesterol to high-density lipoprotein cholesterol as a predictor of poor outcomes in a Chinese population with acute ischaemic stroke.

    PubMed

    Chen, Lifang; Xu, Jianing; Sun, Hao; Wu, Hao; Zhang, Jinsong

    2017-11-01

    High admission cholesterol has been associated with better outcome after acute ischaemic stroke (AIS), but a paradox not completely illustrated. The purpose of this study was to investigate the effect of the total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C) on short-term survival after AIS. Consecutive patients admitted in 2013 and 2015 were enrolled in the present study. The logistic regression analysis was conducted to evaluate predictors of 3-month outcomes. The primary endpoint was death. Secondary endpoint was good (modified Rankin Scale score 0-2 or equal to prestrike modified Rankin Scale score) at 3 months. Of 871 patients enrolled in the final analysis, 94 (10.8%) individuals died during 3 months of observation. The serum TC and TC/HDL-C levels at admission were significantly associated with stroke outcomes at 3 months, and the HDL-C level was only correlated with the good outcomes at 3 months. Mortality risk was markedly decreased for patients with high TC/HDL-C ratio (odds ratio: 0.23, 95% confidence interval [CI]: 0.10-0.50 for Q4:Q1; P-trend <.001) after adjustment. The effect of TC/HDL-C ratio on the probability of good outcomes was still obvious (odds ratio: 2.18, 95% CI: 1.40-3.39 for Q4:Q1; P-trend=.029). According to the receiver operating characteristic analyses, the best discriminating factor was a TG/HDL-C ≥3.37 (area under the ROC curve [AUC]=0.643, sensitivity 61.3%, specificity 61.7%) as well as the TC/HDL-C ≥4.09 for good outcomes (AUC: 0.587, sensitivity 63.9%, specificity 79.7%). High TC/HDL-C ratio may be associated with increased short-term survival and better outcomes after AIS. © 2017 Wiley Periodicals, Inc.

  2. Ruminant-produced trans-fatty acids raise plasma HDL particle concentrations in intact and ovariectomized female Hartley guinea pigs.

    PubMed

    Rice, Beth H; Kraft, Jana; Destaillats, Frédéric; Bauman, Dale E; Lock, Adam L

    2012-09-01

    Cardiovascular disease (CVD) is the leading cause of death among women worldwide, and risk for developing CVD increases postmenopause. Consumption of trans-fatty acids (tFA) has been positively associated with CVD incidence and mortality. The current study was designed to assess the effects of diets high in industrially produced (IP)-tFA, from partially hydrogenated vegetable oils (PHVO), and ruminant-produced (RP)-tFA, from butter oil (BO), on risk factors for CVD. Thirty-two female Hartley guinea pigs, one-half of which were ovariectomized (OVX) to mimic the postmenopausal condition, were fed hypercholesterolemic diets containing 9% by weight PHVO or BO (n = 8/diet and ovariectomy) for 8 wk. The plasma and hepatic lipids did not differ between IP- and RP-tFA groups or between intact and OVX guinea pigs. The BO diet resulted in higher concentrations of plasma total and small HDL particle subclass concentrations than the PHVO diet regardless of ovariectomy status. The intact BO group had higher concentrations of large HDL particles than the intact PHVO group. HDL mean particle size tended to be larger (P = 0.07) in the PHVO groups compared with the BO groups regardless of ovariectomy status. There was a trend toward an interaction between diet and ovariectomy status for LDL mean particle size, which tended to be larger in OVX guinea pigs fed PHVO (P = 0.07). In summary, consumption of IP- and RP-tFA resulted in differential effects on HDL particle subclass profiles in female guinea pigs. The effect of tFA consumption and hormonal status on HDL particle subclass metabolism and the subsequent impact on CVD in females warrants further investigation.

  3. Operation Everest II. Plasma Lipid and Hormonal Responses

    DTIC Science & Technology

    1988-01-01

    cholesterol [TC] and high density lipoprotein cholesterol [ HDL -C] concentrations are shown in Fig 2. Pre-ascent...of altitude on fasting total cholesterol and high density lipoprotein ( HDL ) cholesterol concentrations. ** = p<O.Ol from 760 Torr Figure 3: The effect...157.7*9.7 mg/dl, decreased by 25% to .6 118.3*13.5 mg/dl following the 40-day exposure (p<O.Ol). High density lipoprotein [ HDL -C] levels

  4. Novel QTLs for HDL levels identified in mice by controlling for Apoa2 allelic effects: confirmation of a chromosome 6 locus in a congenic strain.

    PubMed

    Welch, Carrie L; Bretschger, Sara; Wen, Ping-Zi; Mehrabian, Margarete; Latib, Nashat; Fruchart-Najib, Jamila; Fruchart, Jean Charles; Myrick, Christy; Lusis, Aldons J

    2004-03-12

    Atherosclerosis is a complex disease resulting from the interaction of multiple genes, including those causing dyslipidemia. Relatively few of the causative genes have been identified. Previously, we identified Apoa2 as a major determinant of high-density lipoprotein cholesterol (HDL-C) levels in the mouse model. To identify additional HDL-C level quantitative trait loci (QTLs), while controlling for the effect of the Apoa2 locus, we performed linkage analysis in 179 standard diet-fed F(2) mice derived from strains BALB/cJ and B6.C-H25(c) (a congenic strain carrying the BALB/c Apoa2 allele). Three significant QTLs and one suggestive locus were identified. A female-specific locus mapping to chromosome 6 (Chr 6) also exhibited effects on plasma non-HDL-C, apolipoprotein AII (apoAII), apoB, and apoE levels. A Chr 6 QTL was independently isolated in a related congenic strain (C57BL/6J vs. B6.NODc6: P = 0.003 and P = 0.0001 for HDL-C and non-HDL-C levels, respectively). These data are consistent with polygenic inheritance of HDL-C levels in the mouse model and provide candidate loci for HDL-C and non-HDL-C level determination in humans.

  5. Effect of alcohol on hepatic receptor of high density lipoproteins (HDL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, R.C.; Miller, B.M.

    1991-03-11

    Moderate alcohol intake has been shown to increase HDL cholesterol and proteins. The seemingly protective effect' of moderate alcohol drinking against cardiovascular diseases has been attributed to an increase in serum HDL. In this study, the authors show that a receptor for HDL is present in rat liver. Rat liver membrane was prepared by stepwise ultracentrifugation. Apo Al was iodinated using {sup 125}I-NaI and IODO-beads. HDL was labeled by incubating with {sup 125}I-apo Al then refloated be centrifugation. Binding of {sup 125}I-HDL to rat liver membrane reached equilibrium by 2-3 h and was saturable at 37C. The binding was inhibitedmore » 80% by excess unlabeled HDL, but was inhibited only 25% by excess LDL. It could also be inhibited by preincubating HDL with anti-apo Al or anti-apo E antisera but not with anti-apo AIV or control sera. The binding affinity of HDL to the liver membrane of rats fed alcohol for 5 wk was 50% that of their pair-fed controls. Thus a decrease in the binding of HDL to liver membrane due to alcohol-drinking may result in a slower clearance of HDL by the liver and consequently a higher HDL concentration in the serum.« less

  6. Relationship Between Changes in Serum Thyrotropin and Total and Lipoprotein Cholesterol with Prolonged Antarctic Residence

    DTIC Science & Technology

    1993-09-01

    density lipoprotein ( HDL -C) cholesterol and triglyceride changes in TSH (P < .05)1 TBG (P < .01), TT3 (P < .05), ( TG ), on the other hand, were analyzed from...total thyroxine (TT4), free T4 (FT4), total T3 (TT3), free T3 (FT3), thyroid-binding globulin (TBG), total cholesterol (T-CHOL), high - density lipoprotein ... cholesterol ( HDL -C), triglyceride ( TG ), dietary cholesterol (D-CHOL), dietary fat (D-FAT), and dietary

  7. The Ratio of Unesterified/esterified Cholesterol is the Major Determinant of Atherogenicity of Lipoprotein Fractions.

    PubMed

    Bagheri, Babak; Alikhani, Asal; Mokhtari, Hossein; Rasouli, Mehdi

    2018-04-01

    The hypothesis is proposed that the atherogenicity of lipoporotein fractions is correlated with the content of unesterified cholesterol. To evaluate the role and prognostic values of unesterified and esterified cholesterol in lipoprotein fractions for coronary artery disease (CAD). The study population consisted of 400 patients who were divided to CAD controls and cases according to the data of coronary angiography. Fractional cholesterol esterification (FCE) as well as the complete profile of lipids and (apo)lipoproteins were determined. Total cholesterol was increased significantly in CAD patients (196.3 ± 52.3 mg/dL vs. 185.7 ± 48.0, p≤ 0.049) and the increment occurred totally in unesterified portion (77.2 ± 28.4 mg/dL vs. 71.1 ± 24.4, p≤ 0.031). HDL cholesterol showed a significant decrease in CAD group (39.9 ± 9.5 mg/dL vs. 44.6 ± 10.5, p≤ 0.001), but the decrement occurred wholly in the esterified portion (26.2 ± 9.2 mg/dL vs. 31.1 ± 8.1, p≤ 0.001). NonHDL cholesterol was increased significantly in CAD group (156.8 ± 48.3 mg/dL vs. 140.3 ± 43.6, p≤ 0.001), and the changes occurred in both un- and esterified portions. FCE in HDL was diminished significantly in CAD patients (64.8 ± 13.9% vs. 69.3 ± 7.9, p≤ 0.01). In multivariate logistic regression analysis, unesterified cholesterol in NonHDL (UeNonHDLc) and esterified cholesterol in HDL (EsHDLc) excluded total cholesterol and HDLc respectively from the regression equation. In ROC analysis, the ratio of UeNonHDLc/EsHDLc was the strongest predictor for CAD among cholesterol subfractions. The results confirm that UeNonHDLc is atherogenic and EsHDLc is antiatherogenic and are independent risk factors for CAD.

  8. Small and medium sized HDL particles are protectively associated with coronary calcification in a cross-sectional population-based sample.

    PubMed

    Ditah, Chobufo; Otvos, James; Nassar, Hisham; Shaham, Dorith; Sinnreich, Ronit; Kark, Jeremy D

    2016-08-01

    Failure of trials to observe benefits by elevating plasma high-density lipoprotein cholesterol (HDL-C) has raised serious doubts about HDL-C's atheroprotective properties. We aimed to identify protective HDL biomarkers by examining the association of nuclear magnetic resonance (NMR) measures of total HDL-particle (HDL-P), large HDL-particle, and small and medium-sized HDL-particle (MS-HDL-P) concentrations and average HDL-particle size with coronary artery calcification (CAC), which reflects the burden of coronary atherosclerosis, and compare with that of HDL-C. Using a cross-sectional design, 504 Jerusalem residents (274 Arabs and 230 Jews), recruited by population-based probability sampling, had HDL measured by NMR spectroscopy. CAC was determined by multidetector helical CT-scanning using Agatston scoring. Independent associations between the NMR measures and CAC (comparing scores ≥100 vs. <100) were assessed with multivariable binary logistic models. Comparing tertile 3 vs. tertile 1, we observed protective associations of HDL-P (multivariable-adjusted OR 0.42, 95% CI 0.22-0.79, plinear trend = 0.002) and MS-HDL-P (OR 0.36, 95% CI 0.19-0.69), plinear trend = 0.006 with CAC, which persisted after further adjustment for HDL-C. HDL-C was not significantly associated with CAC (multivariable-adjusted OR 0.59, 95% CI 0.27-1.29 for tertiles 3 vs. 1, plinear trend = 0.49). Large HDL-P and average particle size (which are highly correlated; r = 0.83) were not associated with CAC: large HDL-P (OR 0.77, 95% CI 0.33-1.83, plinear trend = 0.29) and average HDL-P size (OR 0.72, 95% CI 0.35-1.48, plinear trend = 0.58). MS-HDL-P represents a protective subpopulation of HDL particles. HDL-P and MS-HDL-P were more strongly associated with CAC than HDL-C. Based on the accumulating evidence, incorporation of MS-HDL-P or HDL-P into the routine prediction of CHD risk should be evaluated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Kidneys: Key Modulators of HDL Levels and Function

    PubMed Central

    Yang, Haichun; Fogo, Agnes B.; Kon, Valentina

    2016-01-01

    Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596

  10. Triglyceride to HDL-C Ratio and Increased Arterial Stiffness in Children, Adolescents, and Young Adults

    PubMed Central

    Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684

  11. Review of 5 years of a combined dietary and physical fitness intervention for control of serum cholesterol

    NASA Technical Reports Server (NTRS)

    Angotti, C. M.; Levine, M. S.

    1994-01-01

    A chart review covering the first 5 years of clinical experience with a combined dietary and exercise intervention program for the reduction of hypercholesterolemia at the National Aeronautics and Space Administration headquarters demonstrated the program's success in maintaining high-density lipoprotein cholesterol (HDL-C) levels while significantly lowering total serum cholesterol levels. This combined program also resulted in improved ratios of total serum cholesterol to HDL-C and lowered levels of low-density lipoprotein cholesterol, thus further reducing the risk for cardiovascular disease. The National Aeronautics and Space Administration Cardiovascular Risk Reduction Program was developed after it was determined that although dietary intervention alone improved total cholesterol levels, it often resulted in a more than proportionate decrease in HDL-C and a worsening of the ratio of cholesterol to HDL-C. An approach was needed that would positively affect all factors of the lipid profile. The findings from the program indicate that reduction of cardiovascular risk can be accomplished easily and effectively at the worksite through dietary intervention, personal monitoring, and a reasonable exercise program.

  12. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    PubMed Central

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  13. HDL subclasses are heterogeneous in their associations with body fat, as measured by dual-energy X-ray absorptiometry: the Kitakata Kids Health Study.

    PubMed

    Kouda, Katsuyasu; Nakamura, Harunobu; Fujita, Yuki; Hamada, Masami; Kajita, Etsuko; Nakatani, Yoshimi; Sato, Yuho; Uenishi, Kazuhiro; Iki, Masayuki

    2015-04-15

    Obesity, defined as the excessive accumulation of body fat, is frequently associated with low concentrations of high-density lipoprotein (HDL) cholesterol. However, HDL particles are heterogeneous in size and composition. HDL subclasses may be differentially associated with body fat. This study investigated associations between the cholesterol concentrations of HDL subclasses, as determined by high-performance liquid chromatography, and body fat variables, as measured by dual-energy X-ray absorptiometry. The source population was all ninth grade students who attended Shiokawa Junior High School in Japan. Cross-sectional data on body fat and serum HDL subclasses were obtained for 87 students (72.5% of the source population). The cholesterol concentration of the large HDL subclass showed a significant (P<0.05) inverse relationship with whole body fat and trunk fat (r=-0.24 and -0.30), whereas the concentration of the small HDL subclass showed a significant positive relationship with these body fat variables (r=0.25 and 0.31). After adjusting for potential confounding factors, the mean concentration of small HDL significantly increased from the lowest to highest tertiles of trunk fat mass index. These results indicate that HDL subclasses are heterogeneous in their associations with body fat variables that were accurately measured by dual-energy X-ray absorptiometry among Japanese students. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. High-density lipoprotein-cholesterol, its subfractions, and responses to exercise training are dependent on endothelial lipase genotype.

    PubMed

    Halverstadt, Amy; Phares, Dana A; Ferrell, Robert E; Wilund, Kenneth R; Goldberg, Andrew P; Hagberg, James M

    2003-11-01

    Plasma high-density lipoprotein cholesterol (HDL-C) levels are an important independent risk factor for cardiovascular disease (CVD) that can be modified through exercise training. However, levels of HDL-C and its subfractions and their response to standardized exercise training are highly variable among individuals. Such variability suggests that levels of HDL-C, its subfractions, and their response to exercise training may be influenced by genetic variation and the interaction of that genetic variation with physical activity. The endothelial lipase gene (LIPG) may influence HDL-C metabolism and has several recently identified genetic variants. We hypothesized that the LIPG Thr111Ile polymorphism would be associated with variation in HDL-C levels and its subfractions and their response to exercise training. Eighty-three sedentary, healthy 50- to 75-year-old subjects were weight-maintained on an American Heart Association Step 1 Diet and then studied before and after aerobic exercise training. Sample size varied according to outcome measure as complete data was not available for all subjects. Initial age, body composition, and maximum oxygen consumption (V02max) did not differ between LIPG genotype groups (CC, n=41 to 44; CT/TT, n=37 to 39). Initial total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels were not significantly different between groups. The CT/TT group had lower initial HDL(2NMR)-C (12 +/- 1.0 v 17 +/- 1.1 mg/dL; P =.002) and integrated HDL(1,2NMR)-C (13 +/- 1.0 v 18 +/- 1.1 mg/dL; P=.002) levels and somewhat higher initial levels of integrated HDL(3,4,5)-C (31 +/- 2.2 v 25 +/- 2.3 mg/dL; P=.06). With exercise training, Vo2max increased, and body weight, total body fat, and visceral adipose tissue decreased similarly in both groups. With training, HDL-C levels increased twice as much (4.4 +/- 0.8 v 1.9 +/- 0.9 mg/dL; P=.04), HDL3-C levels increased almost 2-fold greater (3.8 +/- 0.7 v 2.2 +/- 0.6 mg/dL; P=.07

  15. Circulating plasma cholesteryl ester transfer protein activity and blood pressure tracking in the community

    USDA-ARS?s Scientific Manuscript database

    Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol (HDL-C) concentrations reported an 'off-target' blood pressure (BP) raising effect. We evaluated the relations of baseline plasma CETP activity and longitudinal BP change. One tho...

  16. Risk of type 2 diabetes mellitus associated with plasma lipid levels: The rural Chinese cohort study.

    PubMed

    Zhang, Ming; Zhou, Junmei; Liu, Yu; Sun, Xizhuo; Luo, Xinping; Han, Chengyi; Zhang, Lu; Wang, Bingyuan; Ren, Yongcheng; Zhao, Yang; Zhang, Dongdong; Liu, Xuejiao; Hu, Dongsheng

    2018-01-01

    To investigate the association of type 2 diabetes mellitus (T2DM) risk and plasma lipid levels in rural Chinese. Each lipid variable was divided into quartiles and dichotomized by clinical cutoff points. Cox proportional-hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of T2DM risk and plasma lipid levels and explore the interaction between plasma lipid levels and other risk factors. 11,929 participants were included in the analysis. We documented 720 incident cases of T2DM over 70,720.84 person-years of follow-up, for an incidence of 10.18/1,000 person-years. In the multivariable-adjusted model, risk of T2DM was increased with the highest versus lowest quartiles of total cholesterol (TC) and triglycerides (TG) levels and TC/high-density lipoprotein-cholesterol (HDL-C) and TG/HDL-C ratios. The HRs (95% CIs) for the fourth quartiles, for example, were 1.34 (1.03-1.74), 2.32 (1.73-3.13), 1.66 (1.23-2.25), and 1.84 (1.38-2.45), respectively. In addition, risk of T2DM was increased with high TG level and TC/HDL-C and TG/HDL-C ratios by clinical cutoffs. The HRs (95% CIs) were 1.50 (1.25-1.80), 1.24 (1.03-1.48), and 1.44 (1.18-1.75), respectively. Risk of T2DM was associated with interactions between all lipid variables and age and BMI. TG level and TG/HDL-C ratio additionally interacted with gender (all P interaction  < 0.0001). Risk of T2DM was increased with elevated serum levels of TC and TG and TC/HDL-C and TG/HDL-C ratios and also with interactions between high TC and TG levels and TC/HDL-C and TG/HDL-C ratios and age and BMI in a rural Chinese population. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Omega 3 Fatty Acids Promote Macrophage Reverse Cholesterol Transport in Hamster Fed High Fat Diet

    PubMed Central

    Kasbi Chadli, Fatima; Nazih, Hassane; Krempf, Michel; Nguyen, Patrick; Ouguerram, Khadija

    2013-01-01

    The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages. Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001). Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using 3H- cholesterol labeled Fu5AH cells. In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT. PMID:23613796

  18. Simvastatin but not bezafibrate decreases plasma lipoprotein-associated phospholipase A₂ mass in type 2 diabetes mellitus: relevance of high sensitive C-reactive protein, lipoprotein profile and low-density lipoprotein (LDL) electronegativity.

    PubMed

    Constantinides, Alexander; de Vries, Rindert; van Leeuwen, Jeroen J J; Gautier, Thomas; van Pelt, L Joost; Tselepis, Alexandros D; Lagrost, Laurent; Dullaart, Robin P F

    2012-10-01

    Plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) levels predict incident cardiovascular disease, impacting Lp-PLA(2) as an emerging therapeutic target. We determined Lp-PLA(2) responses to statin and fibrate administration in type 2 diabetes mellitus, and assessed relationships of changes in Lp-PLA(2) with subclinical inflammation and lipoprotein characteristics. A placebo-controlled cross-over study (three 8-week treatment periods with simvastatin (40 mg daily), bezafibrate (400mg daily) and their combination) was carried out in 14 male type 2 diabetic patients. Plasma Lp-PLA(2) mass was measured by turbidimetric immunoassay. Plasma Lp-PLA(2) decreased (-21 ± 4%) in response to simvastatin (p<0.05 from baseline and placebo), but was unaffected by bezafibrate (1 ± 5%). The drop in Lp-PLA(2) during combined treatment (-17 ± 3%, p<0.05) was similar compared to that during simvastatin alone. The Lp-PLA(2) changes during the 3 active lipid lowering treatment periods were related positively to baseline levels of high sensitive C-reactive protein, non-HDL cholesterol, triglycerides, the total cholesterol/HDL cholesterol ratio and less LDL electronegativity (p<0.02 to p<0.01), and inversely to baseline Lp-PLA(2) (p<0.01). LpPLA(2) responses correlated inversely with changes in non-HDL cholesterol, triglycerides and the total cholesterol/HDL cholesterol ratio during treatment (p<0.05 to p<0.02). In type 2 diabetes mellitus, plasma Lp-PLA(2) is likely to be lowered by statin treatment only. Enhanced subclinical inflammation and more severe dyslipidemia may predict diminished LpPLA(2) responses during lipid lowering treatment, which in turn appear to be quantitatively dissociated from decreases in apolipoprotein B lipoproteins. Conventional lipid lowering treatment may be insufficient for optimal LpPLA(2) lowering in diabetes mellitus. Copyright © 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  19. The Effect of Residing Altitude on Levels of High-Density Lipoprotein Cholesterol: A Pilot Study From the Omani Arab Population.

    PubMed

    Al Riyami, Nafila B; Banerjee, Yajnavalka; Al-Waili, Khalid; Rizvi, Syed G; Al-Yahyaee, Said; Hassan, Mohammed O; Albarwani, Sulayma; Al-Rasadi, Khalid; Bayoumi, Riad A

    2015-07-01

    Lower mortality rates from coronary heart disease and higher levels of serum high-density lipoprotein cholesterol (HDL-C) have been observed in populations residing at high altitude. However, this effect has not been investigated in Arab populations, which exhibit considerable genetic homogeneity. We assessed the relationship between residing altitude and HDL-C in 2 genetically similar Omani Arab populations residing at different altitudes. The association between the levels of HDL-C and other metabolic parameters was also investigated. The levels of HDL-C were significantly higher in the high-altitude group compared with the low-altitude group. Stepwise regression analysis showed that altitude was the most significant factor affecting HDL-C, followed by gender, serum triglycerides, and finally the 2-hour postprandial plasma glucose. This finding is consistent with previously published studies from other populations and should be taken into consideration when comparing cardiovascular risk factors in populations residing at different altitudes. © The Author(s) 2014.

  20. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    PubMed

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  1. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat.

    PubMed

    Nicolle, Catherine; Cardinault, Nicolas; Gueux, Elyett; Jaffrelo, Lydia; Rock, Edmond; Mazur, Andrzej; Amouroux, Pierre; Rémésy, Christian

    2004-08-01

    It is often assumed that fruits and vegetables contribute to protect against degenerative pathologies such as cardiovascular diseases. Besides epidemiological observations, scientific evidences for their mechanism of action are scarce. In the present study, we investigated the mean term and post-prandial effects of lettuce ingestion on lipid metabolism and antioxidant protection in the rat. Feeding rats a 20% lettuce diet for 3 weeks resulted in a decrease cholesterol LDL/HDL ratio and a marked decrease of liver cholesterol levels (-41%). Concurrently, fecal total steroid excretion increased (+44%) and apparent absorption of dietary cholesterol was significantly depressed (-37%) by the lettuce diet. Lettuce diet also displayed an improvement of vitamin E/TG ratio in plasma and limited lipid peroxidation in heart as evidenced by TBARS. In post-prandial experiment, lettuce intake significantly increased both ascorbic acid and alpha-tocopherol plasma levels which contribute to improve plasma antioxidant capacity within 2 h of consumption. Other lipid-soluble antioxidants (lutein and vitamin E) may also improve the plasma antioxidant capacity. Lettuce consumption increases the total cholesterol end-products excretion and improves antioxidant status due to the richness in antioxidants (vitamins C, E and carotenoids). In our model, lettuce clearly shows a beneficial effect on lipid metabolism and on tissue oxidation. Therefore regular consumption of lettuce should contribute to improve protection against cardiovascular diseases. Copyright 2003 Elsevier Ltd.

  3. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  4. Higher high-density lipoprotein cholesterol in African-American women with polycystic ovary syndrome compared with Caucasian counterparts.

    PubMed

    Koval, Kathryn W; Setji, Tracy L; Reyes, Eric; Brown, Ann J

    2010-09-01

    Studies have demonstrated lipid differences among African-Americans and Caucasians and between women with polycystic ovary syndrome (PCOS) and normally ovulating women. However, few studies have examined racial differences in lipoprotein levels in women with PCOS. This study compared lipoprotein levels in African-American and Caucasian women with PCOS. We performed a retrospective chart review of 398 subjects seen as new patients for PCOS at the Duke University Medical Center Endocrinology Clinic in Durham, NC. We identified 126 charts appropriate for review, based on a diagnosis of PCOS (using the 1990 National Institutes of Health criteria), a self-reported race of either Caucasian or African-American, and a body mass index (BMI) higher than 25. We excluded patients taking glucophage, oral contraceptives, or lipid-lowering medications. Age, BMI, total cholesterol, high-density lipoprotein (HDL) cholesterol, non-HDL cholesterol, random triglycerides (TG), and oral glucose tolerance test measurements were collected and included in the analysis. African-American women with PCOS had higher HDL cholesterol levels (52.6 vs. 47.5 mg/dl, P = 0.019), lower non-HDL cholesterol (134.1 vs. 154.6 mg/dl, P = 0.046), and lower TG levels (97.5 vs. 168.2 mg/dl, P < 0.001) than Caucasian women. These differences could not be attributed to age, BMI, or differences in insulin resistance as determined by homeostasis model assessment of insulin resistance. African-American women with PCOS appear to have a more favorable lipid profile than Caucasian women with PCOS having higher HDL cholesterol, lower non-HDL cholesterol, and lower TG when BMI and insulin resistance are equal.

  5. High-density lipoprotein cholesterol subfractions HDL2 and HDL3 are reduced in women with rheumatoid arthritis and may augment the cardiovascular risk of women with RA: a cross-sectional study.

    PubMed

    Arts, Elke; Fransen, Jaap; Lemmers, Heidi; Stalenhoef, Anton; Joosten, Leo; van Riel, Piet; Popa, Calin D

    2012-05-14

    Higher levels of high density lipoprotein (HDL) subfractions HDL3-chol and particularly HDL2-chol protect against cardiovascular disease (CVD), but inflammation reduces the HDL level and may impair its anti-atherogenic effect. Changed HDL composition through the impact of inflammation on HDL subfractions may contribute to the excess risk of CVD in rheumatoid arthritis (RA). In this study, we investigated whether HDL2-chol and HDL3-chol concentrations differ between RA patients and healthy controls, and whether these levels are related to the level of RA disease activity. Non-fasting blood samples were collected from 45 RA patients and 45 healthy controls. None of the participants had a history of CVD, diabetes, or used lipid-lowering drugs. HDL2-chol and HDL3-chol concentrations were obtained by ultracentrifugation. Regression modeling was used to compare HDL subfraction levels between RA patients and healthy controls, and to analyze the effect of disease activity on HDL2-chol and HDL3-chol. HDL2-chol and HDL3-chol were significantly lower in RA patients compared to healthy controls (P = 0.01, P = 0.005, respectively). The HDL2:HDL3 ratio was significantly lower in patients compared to controls (P = 0.04). Reduced HDL2-chol and HDL3-chol levels were primarily present in female RA patients and not in male RA patients. A modest effect of the disease activity score in 28 joins ( DAS28) on HDL2-chol concentrations was found, after correction for disease duration, glucocorticosteroid use and body mass index (BMI), with a 0.06 mmol/L decrease with every point increase in DAS28 (P = 0.05). DAS28 did not significantly affect HDL3-chol concentrations (P = 0.186). Both HDL subfractions but particularly HDL2-chol concentrations were decreased in RA, primarily in women. This seems to be associated with disease activity and is of clinical relevance. The reduction of the HDL subfraction concentrations, particularly the supposedly beneficial HDL2-chol, may negatively impact the

  6. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Interleukin-6 genotype is associated with high-density lipoprotein cholesterol responses to exercise training.

    PubMed

    Halverstadt, Amy; Phares, Dana A; Roth, Stephen; Ferrell, Robert E; Goldberg, Andrew P; Hagberg, James M

    2005-05-15

    High-density lipoprotein cholesterol (HDL-C) and its subfractions are modifiable with exercise training and these responses are heritable. The interleukin-6 (IL6)-174G/C polymorphism may be associated with HDL-C levels. We hypothesized that the IL6-174G/C polymorphism would be associated with plasma HDL-C response to exercise training. Sixty-five 50- to 75-year-olds on a standardized diet were studied before and after 24 weeks of aerobic exercise training. Significant differences existed among genotype groups for change with exercise training in HDL-C, HDL3-C, integrated HDL4,5NMR-C, and HDLsize. The CC genotype group increased HDL-C more than the GG (7.0 +/- 1.3 v. 1.0 +/- 1.1 mg/dL, p = 0.001) and GC groups (3.3 +/- 0.9 mg/dL, p = 0.02); for HDL3-C, the CC group increased more than the GG (6.1 +/- 1.0 v. 0.9 +/- 0.9, mg/dL p < 0.001) and GC groups (2.5 +/- 0.7 mg/dL, p = 0.006). Integrated HDL4,5NMR-C increased more in the CC than GG group (6.5 +/- 1.6 mg/dL v. 1.0 +/- 1.3 mg/dL, p = 0.01), as did HDLsize compared to the GG (CC: 0.3 +/- 0.1 v. GG: 0.1 +/- 0.1 nm, p = 0.02) and GC (0.0 +/- 0.0 nm, p = 0.007) groups. IL6 genotype is associated with HDL-C response to exercise training.

  8. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations.

    PubMed

    Pastore, Robert L; Brooks, Judith T; Carbone, John W

    2015-06-01

    Recent research suggests that traditional grain-based heart-healthy diet recommendations, which replace dietary saturated fat with carbohydrate and reduce total fat intake, may result in unfavorable plasma lipid ratios, with reduced high-density lipoprotein (HDL) and an elevation of low-density lipoprotein (LDL) and triacylglycerols (TG). The current study tested the hypothesis that a grain-free Paleolithic diet would induce weight loss and improve plasma total cholesterol, HDL, LDL, and TG concentrations in nondiabetic adults with hyperlipidemia to a greater extent than a grain-based heart-healthy diet, based on the recommendations of the American Heart Association. Twenty volunteers (10 male and 10 female) aged 40 to 62 years were selected based on diagnosis of hypercholesterolemia. Volunteers were not taking any cholesterol-lowering medications and adhered to a traditional heart-healthy diet for 4 months, followed by a Paleolithic diet for 4 months. Regression analysis was used to determine whether change in body weight contributed to observed changes in plasma lipid concentrations. Differences in dietary intakes and plasma lipid measures were assessed using repeated-measures analysis of variance. Four months of Paleolithic nutrition significantly lowered (P < .001) mean total cholesterol, LDL, and TG and increased (P < .001) HDL, independent of changes in body weight, relative to both baseline and the traditional heart-healthy diet. Paleolithic nutrition offers promising potential for nutritional management of hyperlipidemia in adults whose lipid profiles have not improved after following more traditional heart-healthy dietary recommendations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    PubMed

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  10. Pharmacogenomics of high-density lipoprotein-cholesterol-raising therapies

    PubMed Central

    Aslibekyan, Stella; Straka, Robert J.; Irvin, Marguerite R.; Claas, Steven A.; Arnett, Donna K.

    2017-01-01

    High levels of HDL cholesterol (HDL-C) have traditionally been linked to lower incidence of cardiovascular disease, prompting the search for effective and safe HDL-C raising pharmaceutical agents. Although drugs such as niacin and fibrates represent established therapeutic approaches, HDL-C response to such therapies is variable and heritable, suggesting a role for pharmacogenomic determinants. Multiple genetic polymorphisms, located primarily in genes encoding lipoproteins, cholesteryl ester transfer protein, transporters and CYP450 genes have been shown to associate with HDL-C drug response in vitro and in epidemiologic studies. However, few of the pharmacogenomic findings have been independently validated, precluding the development of clinical tools that can be used to predict HDL-C response and leaving the goal of personalized medicine to future efforts. PMID:23469915

  11. Seasonal variation in plasma lipids and lipases in young healthy humans.

    PubMed

    Cambras, Trinitat; Baena-Fustegueras, Juan A; Pardina, Eva; Ricart-Jané, David; Rossell, Joana; Díez-Noguera, Antoni; Peinado-Onsurbe, Julia

    2017-01-01

    Although intermediate metabolism is known to follow circadian rhythms, little information is available on the variation in lipase activities (lipoprotein and hepatic lipase, LPL and HL, respectively) and lipids throughout the year. In a cross-sectional study, we collected and analysed blood from 245 healthy students (110 men and 135 women) between 18 and 25 years old from the University of Barcelona throughout the annual campaign (March, May, October and December) of the blood bank. All subjects gave their written informed consent to participate. All blood samples were taken after breakfast at 8:00 and 11:00 am. Plasma glucose, total plasma protein, triacylglycerides (TAG), free fatty acids (FFA), free cholesterol and esterified cholesterol (FC and TC, respectively), cholesterol in low-density lipoproteins (cLDL), cholesterol in high-density lipoproteins (cHDL), phospholipids (PL) and lipase activities (LPL and HL) were determined. Cosinor analysis was used to evaluate the presence (significance of fit cosine curve to data and variance explained by rhythm) and characteristics of possible 12-month rhythms (acrophase, MESOR and amplitude). Statistically significant seasonal rhythms were detected for all the variables studied except proteins, with most of them peaking in the winter season. The lowest value for cLDL and the HL occurs in summer, while for cHDL and the LPL it is in winter. These findings demonstrate for the first time that in physiological conditions, plasma LPL and HL activities and lipids follow seasonal rhythms. The metabolic significance of this pattern is discussed.

  12. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats.

    PubMed

    Matanjun, Patricia; Mohamed, Suhaila; Muhammad, Kharidah; Mustapha, Noordin Mohamed

    2010-08-01

    This study was designed to investigate the comparative in vivo cardiovascular protective effects of red, green, and brown tropical seaweeds, namely, Kappaphycus alvarezii (or Eucheuma cottonii), Caulerpa lentillifera, and Sargassum polycystum, in rats fed on high-cholesterol/high-fat (HCF) diets. Male Sprague-Dawley rats (weighing 260-300 g) on the HCF diet had significantly increased body weight, plasma total cholesterol (TC), plasma low-density lipoprotein cholesterol (LDL-C), plasma triglycerides (TG), lipid peroxidation, and erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase levels after 16 weeks. Supplementing 5% seaweeds to HCF diet significantly reduced plasma TC (-11.4% to -18.5%), LDL-C (-22% to -49.3%), and TG (-33.7% to -36.1%) levels and significantly increased HDL-C levels (16.3-55%). Among the seaweeds, S. polycystum showed the best anti-obesity and blood GSH-Px properties, K. alvarezii showed the best antihyperlipemic and in vivo antioxidation effects, and C. lentillifera was most effective at reducing plasma TC. All seaweeds significantly reduced body weight gain, erythrocyte GSH-Px, and plasma lipid peroxidation of HCF diet rats towards the values of normal rats.

  13. Low childhood high density lipoprotein cholesterol levels and subsequent risk for chronic inflammatory bowel disease.

    PubMed

    Voutilainen, Markku; Hutri-Kähönen, Nina; Tossavainen, Päivi; Sipponen, Taina; Pitkänen, Niina; Laitinen, Tomi; Jokinen, Eero; Rönnemaa, Tapani; Viikari, Jorma S A; Raitakari, Olli T; Juonala, Markus

    2018-04-01

    Several genetic and environmental risk factors have been linked to chronic inflammatory bowel disease (IBD). The incidence of IBD has significantly increased in developed countries during last decades. The aim of the present study was to examine childhood risk factors for subsequent IBD diagnosis in a longitudinal cohort study of children and adolescents. A Finnish study population consisting of 3551 children and adolescents originally evaluated as part of the Cardiovascular Risk in Young Finns study in 1980. At baseline, participant BMI, insulin, lipid, C-reactive protein and blood pressure levels, socioeconomic position, dietary habits, and physical activity, were evaluated. In addition, information was gathered on rural residency, severe infections, breast feeding, parental smoking and birth weight. Subsequent IBD diagnosis status was evaluated based on nationwide registries on hospitalisations and drug imbursement decisions. Altogether, 49 participants (1.4%) had IBD diagnosed during the 34 years of register follow-up, of which 31 had ulcerative colitis, 12 Crohn's disease and 6 undetermined colitis. In univariate analyses, significant correlations were observed between childhood HDL-cholesterol (risk ratio (95% CI) for 1-SD change (0.58 (0.42-0.79)) and CRP concentrations (1.20 (1.01-1.43)) with IBD. The inverse association between HDL-cholesterol and IBD remained significant (0.57 (0.39-0.82)) in a multivariable model including data on age, sex and CRP. In addition, a weighted genetic z-score of 71 single nucleotide polymorphisms associated with elevated HDL-cholesterol levels was significantly lower in IBD patients, P=0.01). Low childhood HDL-cholesterol levels are associated with subsequent IBD diagnosis. In addition, a genetic risk score associated with low HDL-cholesterol levels predict later IBD suggesting that HDL-cholesterol metabolism might have a role in the pathogenesis of IBD. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published

  14. Effect of a high carbohydrate diet on the content of apolipoproteins C-II, C-III and E in human plasma high density lipoprotein subfractions.

    PubMed

    Sasaki, N; Holdsworth, G; Barnhart, R L; Srivastava, L S; Glueck, C J; Kashyap, M L; Jackson, R L

    1983-03-01

    The effect of isocaloric high and low carbohydrate (Carb) diets on the structure and apoprotein composition of plasma high density lipoproteins (HDL) was assessed in four healthy men. The high Carb diet contained 65% calories as Carb and 15% as fat; the low Carb was 15% and 65%, respectively, with protein fixed at 20% of calories in each case. Cholesterol was 400 mg/day and the P/S ratio of the fat was 0.4. Each diet was sequentially consumed for periods of 3 weeks. At the end of each 3-week study period, plasma HDL2 and HDL3 were isolated by zonal ultracentrifugation and their apoprotein and lipid compositions were determined. Compared to the low Carb diet, the high Carb diet was associated with an increase in the size of HDL2 (116.0 +/- 1.8 vs. 109.1 +/- 1.8 A) and in the content (mean weight % +/- SEM) of apoE (2.81 +/- 0.71 vs. 1.79 +/- 0.49, P less than 0.01) and of apoC-II (1.73 +/- 0.09 vs. 1.11 +/- 0.12, P less than 0.01). HDL2 apoC-III content was not significantly different on the two diets (6.49 +/- 0.50 vs. 7.42 +/- 1.21). On the two diets, HDL3 size and HDL3 apoE content were not significantly changed. HDL3 apoC-II and apoC-III, however, were higher on the high Carb diet, P less than 0.05. The ratio (by weight) of HDL2 apoE/HDL2 apoC-II + C-III increased on the high Carb diet compared to the low Carb diet (0.344 +/- 0.058 vs. 0.228 +/- 0.053, P less than 0.01). We suggest that the increased amount of apolipoprotein E in HDL2 may influence its rate of catabolic clearance and may account for the well-known decrease in plasma HDL-cholesterol in subjects on high Carb diets.

  15. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    PubMed Central

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-01-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL. PMID:25737239

  16. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGES

    Zhang, Meng; Charles, River; Tong, Huimin; ...

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  17. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  18. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    PubMed

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P<0.05), while those of EEG (diabetic mice treated with VBTL ethanolic extract) were reduced slightly (P>0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Lipid-Lowering Agents and High HDL (High-Density Lipoprotein) Are Inversely Associated With Intracranial Aneurysm Rupture.

    PubMed

    Can, Anil; Castro, Victor M; Dligach, Dmitriy; Finan, Sean; Yu, Sheng; Gainer, Vivian; Shadick, Nancy A; Savova, Guergana; Murphy, Shawn; Cai, Tianxi; Weiss, Scott T; Du, Rose

    2018-05-01

    Growing evidence from experimental animal models and clinical studies suggests the protective effect of statin use against rupture of intracranial aneurysms; however, results from large studies detailing the relationship between intracranial aneurysm rupture and total cholesterol, HDL (high-density lipoprotein), LDL (low-density lipoprotein), and lipid-lowering agent use are lacking. The medical records of 4701 patients with 6411 intracranial aneurysms diagnosed at the Massachusetts General Hospital and the Brigham and Women's Hospital between 1990 and 2016 were reviewed and analyzed. Patients were separated into ruptured and nonruptured groups. Univariable and multivariable logistic regression analyses were performed to determine the effects of lipids (total cholesterol, LDL, and HDL) and lipid-lowering medications on intracranial aneurysm rupture risk. Propensity score weighting was used to account for differences in baseline characteristics of the cohorts. Lipid-lowering agent use was significantly inversely associated with rupture status (odds ratio, 0.58; 95% confidence interval, 0.47-0.71). In a subgroup analysis of complete cases that includes both lipid-lowering agent use and lipid values, higher HDL levels (odds ratio, 0.95; 95% confidence interval, 0.93-0.98) and lipid-lowering agent use (odds ratio, 0.41; 95% confidence interval, 0.23-0.73) were both significantly and inversely associated with rupture status, whereas total cholesterol and LDL levels were not significant. A monotonic exposure-response curve between HDL levels and risk of aneurysmal rupture was obtained. Higher HDL values and the use of lipid-lowering agents are significantly inversely associated with ruptured intracranial aneurysms. © 2018 American Heart Association, Inc.

  20. Remnant cholesterol predicts periprocedural myocardial injury following percutaneous coronary intervention in poorly-controlled type 2 diabetes.

    PubMed

    Zeng, Rui-Xiang; Li, Sha; Zhang, Min-Zhou; Li, Xiao-Lin; Zhu, Cheng-Gang; Guo, Yuan-Lin; Zhang, Yan; Li, Jian-Jun

    2017-08-01

    Remnant cholesterol (RC) is receiving increasing attention regarding its relation to cardiovascular risk. Whether RC is associated with periprocedural myocardial injury (PMI) following percutaneous coronary intervention (PCI) in type 2 diabetes (T2D) is currently unknown. We prospectively enrolled 1182 consecutive T2D patients who were scheduled for PCI but with baseline normal preprocedural cardiac troponin I (cTnI). Patients were divided according to their glycemic control status: group A [glycated hemoglobin (HbA1c)<7%, n=563] and group B (HbA1c≥7%, n=619). PMI was evaluated by cTnI analysis within 24h. The associations of preprocedural RC and the RC to high-density lipoprotein cholesterol ratio (RC/HDL-C) with PMI were investigated. The associations of RC and RC/HDL-C with PMI were observed in group B (both p<0.05) but not in group A (both p>0.05). Patients in group B, a 1-SD increase of RC produced 30% and 32% increased risk for postprocedural cTnI>3× upper limit of normal (ULN) and >5×ULN, respectively. The odds ratios for RC/HDL-C were the highest compared with any cholesterol fractions including total cholesterol (TC)/HDL-C, low density lipoprotein cholesterol (LDL-C)/HDL-C, nonHDL-C/HDL-C, and triglyceride/HDL-C with 1.43 [95% confidence interval (CI): 1.10-1.88] for >3× ULN and 1.49 (95% CI: 1.13-1.97) for >5× ULN. However, no such associations were found in group A. Furthermore, patients with RC >27.46mg/dL (third tertile) [RC≤14.15mg/dL (first tertile) as reference] were associated with a 1.57-fold and 2-fold increased risk for >3× ULN and >5× ULN in group B, respectively. RC and RC/HDL-C might be valuable, independent predictors for PMI in poorly-controlled diabetic patients undergoing PCI. Copyright © 2017. Published by Elsevier Ltd.

  1. Relationship of adiposity to the population distribution of plasma triglyceride concentrations in vigorously active men and women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T.

    2002-12-21

    Context and Objective: Vigorous exercise, alcohol and weight loss are all known to increase HDL-cholesterol, however, it is not known whether these interventions raise low HDL as effectively as has been demonstrated for normal HDL. Design: Physician-supplied medical data from 7,288 male and 2,359 female runners were divided into five strata according to their self-reported usual running distance, reported alcohol intake, body mass index (BMI) or waist circumference. Within each stratum, the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles for HDL-cholesterol were then determined. Bootstrap resampling of least-squares regression was applied to determine the cross-sectional relationships between thesemore » factors and each percentile of the HDL-cholesterol distribution. Results: In both sexes, the rise in HDL-cholesterol per unit of vigorous exercise or alcohol intake was at least twice as great at the 95th percentile as at the 5th percentile of the HDL-distribution. There was also a significant graded increase in the slopes relating exercise (km run) and alcohol intake to HDL between the 5th and the 95th percentile. Men's HDL-cholesterol decreased in association with fatness (BMI and waist circumference) more sharply at the 95th than at the 5th percentile of the HDL-distribution. Conclusions: Although exercise, alcohol and adiposity were all related to HDL-cholesterol, the elevation in HDL per km run or ounce of alcohol consumed, and reduction in HDL per kg of body weight (men only), was least when HDL was low and greatest when HDL was high. These cross-sectional relationships support the hypothesis that men and women who have low HDL-cholesterol will be less responsive to exercise and alcohol (and weight loss in men) as compared to those who have high HDL-cholesterol.« less

  2. In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models.

    PubMed

    Pérez-Medina, Carlos; Binderup, Tina; Lobatto, Mark E; Tang, Jun; Calcagno, Claudia; Giesen, Luuk; Wessel, Chang Ho; Witjes, Julia; Ishino, Seigo; Baxter, Samantha; Zhao, Yiming; Ramachandran, Sarayu; Eldib, Mootaz; Sánchez-Gaytán, Brenda L; Robson, Philip M; Bini, Jason; Granada, Juan F; Fish, Kenneth M; Stroes, Erik S G; Duivenvoorden, Raphaël; Tsimikas, Sotirios; Lewis, Jason S; Reiner, Thomas; Fuster, Valentín; Kjær, Andreas; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2016-08-01

    The goal of this study was to develop and validate a noninvasive imaging tool to visualize the in vivo behavior of high-density lipoprotein (HDL) by using positron emission tomography (PET), with an emphasis on its plaque-targeting abilities. HDL is a natural nanoparticle that interacts with atherosclerotic plaque macrophages to facilitate reverse cholesterol transport. HDL-cholesterol concentration in blood is inversely associated with risk of coronary heart disease and remains one of the strongest independent predictors of incident cardiovascular events. Discoidal HDL nanoparticles were prepared by reconstitution of its components apolipoprotein A-I (apo A-I) and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. For radiolabeling with zirconium-89 ((89)Zr), the chelator deferoxamine B was introduced by conjugation to apo A-I or as a phospholipid-chelator (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-deferoxamine B). Biodistribution and plaque targeting of radiolabeled HDL were studied in established murine, rabbit, and porcine atherosclerosis models by using PET combined with computed tomography (PET/CT) imaging or PET combined with magnetic resonance imaging. Ex vivo validation was conducted by radioactivity counting, autoradiography, and near-infrared fluorescence imaging. Flow cytometric assessment of cellular specificity in different tissues was performed in the murine model. We observed distinct pharmacokinetic profiles for the two (89)Zr-HDL nanoparticles. Both apo A-I- and phospholipid-labeled HDL mainly accumulated in the kidneys, liver, and spleen, with some marked quantitative differences in radioactivity uptake values. Radioactivity concentrations in rabbit atherosclerotic aortas were 3- to 4-fold higher than in control animals at 5 days' post-injection for both (89)Zr-HDL nanoparticles. In the porcine model, increased accumulation of radioactivity was observed in lesions by using in vivo PET imaging. Irrespective of the

  3. Assessment of the correlation between the atherogenic index of plasma and cardiometabolic risk factors in children and adolescents: might it be superior to the TG/HDL-C ratio?

    PubMed

    Nogay, Nalan Hakime

    2017-08-28

    Most of the studies investigating the correlation between the atherogenic index of plasma (AIP) and cardiometabolic risk factors have been conducted with adults, while only a limited number of related studies that involved children and adolescents has been conducted. The purpose of this study is to assess the correlation between the AIP and other cardiometabolic risk factors in adolescents. This study was conducted with 310 girls and 90 boys who were between the ages of 6 and 18 years. After a 10-h fasting period, the biochemical values of the participants were measured in the morning. The anthropometric measurements of the participants were also taken. The AIP was calculated as Log10 (triglycerides/high density lipoprotein-cholesterol; TG/HDL-C). In adolescents between the ages of 12 and 18, the mean AIP of the group with TG ≥130 mg/dL was significantly higher than that of the groups with TG of 90-129 mg/dL and <90 mg/dL. There was a strong correlation between TG and AIP for both boys and girls among the children and adolescents, while there was a strong correlation between the TG/HDL-C ratio and TG only in the boys who were within the 6-11-year-old age group. An increase in AIP is associated with cardiovascular risk factors in children and adolescents other than those seen in adults. Based on the TG/HDL-C ratio, the AIP may be superior as a complementary index in the assessment of cardiometabolic risks in children and adolescents.

  4. Relationship between Icodextrin use and decreased level of small low-density lipoprotein cholesterol fractioned by high-performance gel permeation chromatography

    PubMed Central

    2013-01-01

    Background Because of the absorption of glucose in peritoneal dialysis (PD) solution, PD patients show an atherogenic lipid profile, which is predictive of poor survival in PD patients. Lipoprotein subclasses consist of a continuous spectrum of particles of different sizes and densities (fraction). In this study, we investigated the lipoprotein fractions in PD patients with controlled serum low-density lipoprotein (LDL) cholesterol level, and evaluated the effects of icodextrin on lipid metabolism. Methods Forty-nine PD patients were enrolled in this cross-sectional study in Japan. The proportions of cholesterol levels to total cholesterol level (cholesterol proportion) in 20 lipoprotein fractions were measured using an improved method of high-performance gel permeation chromatography (HPGPC). Results Twenty-six patients used icodextrin. Although no significant differences in cholesterol levels in LDL and high-density lipoprotein (HDL) were observed between the patients using icodextrin (icodextrin group) and control groups, HPGPC showed that the icodextrin group had significantly lower cholesterol proportions in the small LDL (t-test, p=0.053) and very small LDL (p=0.019), and significantly higher cholesterol proportions in the very large HDL and large HDL than the control group (p=0.037; p=0.066, respectively). Multivariate analysis adjusted for patient characteristics and statin use showed that icodextrin use was negatively associated with the cholesterol proportions in the small LDL (p=0.037) and very small LDL (p=0.026), and positively with those in the very large HDL (p=0.040), large HDL (p=0.047), and medium HDL (p=0.009). Conclusions HPGPC showed the relationship between icodextrin use and the cholesterol proportions in lipoprotein fractions in PD patients. These results suggest that icodextrin may improve atherogenic lipid profiles in a manner different from statin. PMID:24161017

  5. Cholesterol Efflux Capacity, High-Density Lipoprotein Particle Number, and Incident Cardiovascular Events: An Analysis From the JUPITER Trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin).

    PubMed

    Khera, Amit V; Demler, Olga V; Adelman, Steven J; Collins, Heidi L; Glynn, Robert J; Ridker, Paul M; Rader, Daniel J; Mora, Samia

    2017-06-20

    Recent failures of drugs that raised high-density lipoprotein (HDL) cholesterol levels to reduce cardiovascular events in clinical trials have led to increased interest in alternative indices of HDL quality, such as cholesterol efflux capacity, and HDL quantity, such as HDL particle number. However, no studies have directly compared these metrics in a contemporary population that includes potent statin therapy and low low-density lipoprotein cholesterol. HDL cholesterol levels, apolipoprotein A-I, cholesterol efflux capacity, and HDL particle number were assessed at baseline and 12 months in a nested case-control study of the JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin), a randomized primary prevention trial that compared rosuvastatin treatment to placebo in individuals with normal low-density lipoprotein cholesterol but increased C-reactive protein levels. In total, 314 cases of incident cardiovascular disease (CVD) (myocardial infarction, unstable angina, arterial revascularization, stroke, or cardiovascular death) were compared to age- and gender-matched controls. Conditional logistic regression models adjusting for risk factors evaluated associations between HDL-related biomarkers and incident CVD. Cholesterol efflux capacity was moderately correlated with HDL cholesterol, apolipoprotein A-I, and HDL particle number (Spearman r = 0.39, 0.48, and 0.39 respectively; P <0.001). Baseline HDL particle number was inversely associated with incident CVD (adjusted odds ratio per SD increment [OR/SD], 0.69; 95% confidence interval [CI], 0.56-0.86; P <0.001), whereas no significant association was found for baseline cholesterol efflux capacity (OR/SD, 0.89; 95% CI, 0.72-1.10; P =0.28), HDL cholesterol (OR/SD, 0.82; 95% CI, 0.66-1.02; P =0.08), or apolipoprotein A-I (OR/SD, 0.83; 95% CI, 0.67-1.03; P =0.08). Twelve months of rosuvastatin (20 mg/day) did not change cholesterol efflux capacity (average

  6. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers.

    PubMed

    Tabara, Yasuharu; Ueshima, Hirotsugu; Takashima, Naoyuki; Hisamatsu, Takashi; Fujiyoshi, Akira; Zaid, Maryam; Sumi, Masaki; Kohara, Katsuhiko; Miki, Tetsuro; Miura, Katsuyuki

    2016-11-01

    While alcohol consumption is known to increase plasma high-density lipoprotein (HDL) cholesterol levels, its relationship with low-density lipoprotein (LDL) cholesterol levels is unclear. Aldehyde dehydrogenase 2 (ALDH2) is a rate-controlling enzyme in alcohol metabolism, but a large number of Japanese people have the inactive allele. Here, we conducted a Mendelian randomization analysis using the ALDH2 genotype to clarify a causal role of alcohol on circulating cholesterol levels and lipoprotein particle numbers. This study was conducted in three independent general Japanese populations (men, n = 2289; women, n = 1940; mean age 63.3 ± 11.2 years). Alcohol consumption was assessed using a questionnaire. Lipoprotein particle numbers were determined by nuclear magnetic resonance spectroscopy. Alcohol consumption increased linearly in proportion to the number of subjects carrying the enzymatically active *1 allele in men (p < 0.001). The *1 allele was also positively associated with HDL cholesterol level (adjusted mean ± standard error, *1*1: 60 ± 0.5, *1*2: 56 ± 0.6, *2*2: 55 ± 1.3 mg/dl, p < 0.001) and inversely associated with LDL cholesterol level (116 ± 0.9, 124 ± 1.1, 130 ± 2.6 mg/dl, p < 0.001). The *1 allele was also positively associated with HDL particle numbers (per-allele: 2.60 ± 0.32 μmol/l, p < 0.001) and inversely associated with LDL particle numbers (-67.8 ± 19.6 nmol/l, p = 0.001). Additional Mendelian randomization analysis failed to clarify the involvement of cholesteryl ester transfer protein in alcohol-related changes in lipoprotein cholesterol levels. No significant association was observed in women, presumably due to their small amount of alcohol intake. Alcohol consumption has a causal role in not only increasing HDL cholesterol levels but also decreasing LDL cholesterol levels and particle numbers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Cholesterol:phospholipid ratio is elevated in platelet plasma membrane in patients with hypertension.

    PubMed

    Benjamin, N; Robinson, B F; Graham, J G; Wilson, R B

    1990-06-01

    The cholesterol:phospholipid ratio was measured in platelet plasma membrane, red blood cell (RBC) membranes, low density lipoprotein (LDL) and whole plasma in patients with primary hypertension and in matched normal controls. The cholesterol:phospholipid ratio was raised in the platelet membrane from hypertensive patients compared with that from normal controls (0.65 +/- 0.03 vs 0.53 +/- 0.02: mean +/- SEM; P less than 0.01). The ratio observed in RBC membranes, LDL and whole blood was similar in the two groups. If this abnormality in the lipid composition of platelet plasma membrane is present in other cells it could account for some of the changes in cell membrane function that have been described in hypertension.

  8. Acute decrease in HDL cholesterol associated with exposure to welding fumes.

    PubMed

    Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David

    2011-01-01

    To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.

  9. Acute Decrease in HDL Cholesterol Associated With Exposure to Welding Fumes

    PubMed Central

    Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David

    2011-01-01

    Objective To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Methods Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. Results There was a trend toward decrease in HDL (−2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (−2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (−4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Conclusion Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure. PMID:21187793

  10. Preparation of a Homologous (Human) Intravenous Botulinal Immune Globulin.

    DTIC Science & Technology

    1983-05-01

    lipoprotein ( HDL ) per ml of plasma to ŗ.06 mg/ml for beta- lipoprotein (LDL). Triglyceride and cholesterol levels were intermediate within this...OF LIPOPROTEIN DURING FRACTIONATION "( HDL ) (LDL) Triglyceride Cholesterol cxLipoprotein 8 LipoproteinSample mg/ml mg/ml mg/mi m/ml IVBG-l.A:"Plasma...plasminogen, prekallikrein, triglycerides , cholesterol , alpha- lipoprotein , beta- lipoprotein , clotting factors, fibrinogen and complement

  11. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV.

    PubMed Central

    Cohen, R D; Castellani, L W; Qiao, J H; Van Lenten, B J; Lusis, A J; Reue, K

    1997-01-01

    Transgenic mouse lines carrying several copies of the mouse apo A-IV gene were produced. Lipoprotein composition and function, and aortic lesion development were examined. Apo A-IV levels in the plasma of transgenic mice were elevated threefold compared with nontransgenic littermates on a chow diet, and sixfold in mice fed an atherogenic diet. Plasma concentrations of total cholesterol, HDL cholesterol, triglycerides, and free fatty acids were similar in transgenic and control mice fed a chow diet. However, with the atherogenic diet, male transgenic mice exhibited significantly higher levels of plasma triglycerides (P < 0.05), total cholesterol (P < 0.01), HDL cholesterol (P < 0.0001), and free fatty acids (P < 0.05), and lower levels of unesterified cholesterol (P < 0.05), than nontransgenic littermates. Expression of the apo A-IV transgene had a protective effect against the formation of diet-induced aortic lesions, with transgenics exhibiting lesion scores of approximately 30% those seen in control mice. HDL-sized lipoproteins isolated from transgenic mice fed the atherogenic diet promoted cholesterol efflux from cholesterol-loaded human monocytes more efficiently than comparable lipoproteins from nontransgenic counterparts. Plasma from transgenics also exhibited higher endogenous cholesterol esterification rates. Taken together, these results suggest that apo A-IV levels influence the metabolism and antiatherogenic properties of HDL. PMID:9109435

  12. Trans unsaturated fatty acids inhibit lecithin: cholesterol acyltransferase and alter its positional specificity.

    PubMed

    Subbaiah, P V; Subramanian, V S; Liu, M

    1998-07-01

    Although dietary trans unsaturated fatty acids (TUFA) are known to decrease plasma HDL, the underlying mechanisms for this effect are unclear. We tested the hypothesis that the decreased HDL is due to an inhibition of lecithin:cholesterol acyltransferase (LCAT), the enzyme essential for the formation of HDL, by determining the activity of purified LCAT in the presence of synthetic phosphatidylcholine (PC) substrates containing TUFA. Both human and rat LCATs exhibited significantly lower activity (-37% to -50%) with PCs containing 18:1t or 18:2t, when compared with the PCs containing corresponding cis isomers. TUFA-containing PCs also inhibited the enzyme activity competitively, when added to egg PC substrate. The inhibition of LCAT activity was not due to changes in the fluidity of the substrate particle. However, the inhibition depended on the position occupied by TUFA in the PC, as well as on the paired fatty acid. Thus, for human LCAT, 18:1t was more inhibitory when present at sn-2 position of PC, than at sn-1, when paired with 16:0. In contrast, when paired with 20:4, 18:1t was more inhibitory at sn-1 position of PC. Both human and rat LCATs, which are normally specific for the sn-2 acyl group of PC, exhibited an alteration in their positional specificity when 16:0-18:1t PC or 16:1t-20:4 PC was used as substrate, deriving 26-86% of the total acyl groups for cholesterol esterification from the sn-1 position. These results show that the trans fatty acids decrease high density lipoprotein through their inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, and also alter LCAT's positional specificity, inducing the formation of more saturated cholesteryl esters, which are more atherogenic.

  13. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis

    PubMed Central

    Murphy, Andrew J.; Bijl, Nora; Yvan-Charvet, Laurent; Welch, Carrie B.; Bhagwat, Neha; Reheman, Adili; Wang, Yiming; Shaw, James A.; Levine, Ross L.; Ni, Heyu; Tall, Alan R.; Wang, Nan

    2013-01-01

    Platelets play a key role in atherogenesis and its complications. Both hypercholesterolemia and increased platelet production promote athero-thrombosis; however, a potential link between altered cholesterol homeostasis and platelet production has not been explored. Transplantation of bone marrow (BM) deficient in ABCG4, a transporter of unknown function, into Ldlr−/− mice resulted in thrombocytosis, accelerated thrombosis and atherosclerosis. While not detected in lesions, Abcg4 was highly expressed in BM megakaryocyte progenitors (MkP). Abcg4−/− MkPs displayed defective cholesterol efflux to HDL, increased cell surface levels of thrombopoietin (TPO) receptor (c-MPL) and enhanced proliferation. This appeared to reflect disruption of the negative feedback regulation of c-MPL levels and signaling by E3 ligase c-CBL and cholesterol-sensing LYN kinase. HDL infusions reduced platelet counts in Ldlr−/− mice and in a mouse model of myeloproliferative neoplasm, in a completely ABCG4-dependent fashion. HDL infusions may offer a novel approach to reducing athero-thrombotic events associated with increased platelet production. PMID:23584088

  14. Simultaneous Determination of Oxysterols, Cholesterol and 25-Hydroxy-Vitamin D3 in Human Plasma by LC-UV-MS

    PubMed Central

    Narayanaswamy, Rohini; Iyer, Vignesh; Khare, Prachi; Bodziak, Mary Lou; Badgett, Darlene; Zivadinov, Robert; Weinstock-Guttman, Bianca; Rideout, Todd C.; Ramanathan, Murali; Browne, Richard W.

    2015-01-01

    Background Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers. Methods A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated. Results Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis. Conclusion The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and

  15. Plasma visfatin level in lean women with PCOS: relation to proinflammatory markers and insulin resistance.

    PubMed

    Gen, Ramazan; Akbay, Esen; Muslu, Necati; Sezer, Kerem; Cayan, Filiz

    2009-04-01

    The present study was undertaken to investigate the association between plasma visfatin concentrations and inflammatory markers such as interleukin-6 (IL-6) and high-sensitive C-reactive protein (hsCRP) in company with several metabolic parameters in lean women with polycystic ovary syndrome (PCOS). The study group consisted of 21 lean women with PCOS (BMI 20.74 +/- 1.74 kg/m(2)) and 15 healthy, normally menstruating women (BMI 20.85 +/- 2.08 kg/m(2) control group). PCOS was defined according to the Rotterdam criteria. Visfatin, IL-6, hsCRP, hyperandrogenism markers and metabolic markers were examined in all PCOS and control women. Plasma visfatin level in the PCOS group was higher than that in the control group. Plasma hsCRP and IL-6 levels in PCOS group were similar with the control group. Plasma visfatin levels were positively associated with total cholesterol, high density lipoprotein, hirsutism score, total testosterone and FAI. Plasma visfatin level was negatively associated with SHBG. However, there were no correlation between plasma visfatin level and IL-6 and hsCRP. In multivariate regression analyses, only FAI and high density lipoprotein-cholesterol (HDL-C) showed a significant association with serum visfatin. Our data indicates that plasma visfatin levels are associated with HDL-C and markers of hyperandrogenism, but it is not associated with proinflammatory markers and insulin resistance in lean women with PCOS.

  16. Anti-Brownian ELectrokinetic (ABEL) Trapping of Single High Density Lipoprotein (HDL) Particles

    NASA Astrophysics Data System (ADS)

    Bockenhauer, Samuel; Furstenberg, Alexandre; Wang, Quan; Devree, Brian; Jie Yao, Xiao; Bokoch, Michael; Kobilka, Brian; Sunahara, Roger; Moerner, W. E.

    2010-03-01

    The ABEL trap is a novel device for trapping single biomolecules in solution for extended observation. The trap estimates the position of a fluorescently-labeled object as small as ˜10 nm in solution and then applies a feedback electrokinetic drift every 20 us to trap the object by canceling its Brownian motion. We use the ABEL trap to study HDL particles at the single-copy level. HDL particles, essential in regulation of ``good'' cholesterol in humans, comprise a small (˜10 nm) lipid bilayer disc bounded by a belt of apolipoproteins. By engineering HDL particles with single fluorescent donor/acceptor probes and varying lipid compositions, we are working to study lipid diffusion on small length scales. We also use HDL particles as hosts for single transmembrane receptors, which should enable study of receptor conformational dynamics on long timescales.

  17. The Contrasting Relationships between Betaine and Homocysteine in Two Clinical Cohorts are Associated with Plasma Lipids and Drug Treatments

    PubMed Central

    Lever, Michael; George, Peter M.; Atkinson, Wendy; Elmslie, Jane L.; Slow, Sandy; Molyneux, Sarah L.; Troughton, Richard W.; Richards, A. Mark; Frampton, Christopher M.; Chambers, Stephen T.

    2012-01-01

    Background Urinary betaine excretion positively correlated with plasma homocysteine in outpatients attending a lipid disorders clinic (lipid clinic study). We aimed to confirm this in subjects with established vascular disease. Methods The correlation between betaine excretion and homocysteine was compared in samples collected from subjects 4 months after hospitalization for an acute coronary episode (ACS study, 415 urine samples) and from 158 sequential patients visiting a lipid disorders clinic. Principal findings In contrast to the lipid clinic study, betaine excretion and plasma homocysteine did not correlate in the total ACS cohort. Differences between the patient groups included age, non-HDL cholesterol and medication. In ACS subjects with below median betaine excretion, excretion correlated (using log transformed data) negatively with plasma homocysteine (r = −0.17, p = 0.019, n = 199), with no correlation in the corresponding subset of the lipid clinic subjects. In ACS subjects with above median betaine excretion a positive trend (r = +0.10) between betaine excretion and homocysteine was not significant; the corresponding correlation in lipid clinic subjects was r = +0.42 (p = 0.0001). In ACS subjects, correlations were stronger when plasma non-HDL cholesterol and betaine excretion were above the median, r = +0.20 (p = 0.045); in subjects above median non-HDL cholesterol and below median betaine excretion, r = −0.26 (p = 0.012). ACS subjects taking diuretics or proton pump inhibitors had stronger correlations, negative with lower betaine excretion and positive with higher betaine excretion. Conclusions Betaine excretion correlates with homocysteine in subjects with elevated blood lipids. PMID:22396767

  18. Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women.

    PubMed

    Pala, Daniela; Barbosa, Priscila Oliveira; Silva, Carla Teixeira; de Souza, Melina Oliveira; Freitas, Fatima Rodrigues; Volp, Ana Carolina Pinheiro; Maranhão, Raul Cavalcante; Freitas, Renata Nascimento de

    2018-04-01

    The açai fruit (Euterpe oleracea Martius), which is native to the Brazilian Amazon region, was shown to have high polyphenols and MUFA contents. In this study, we aimed to assess the effects of açai consumption on plasma lipids, apolipoproteins, the transfer of lipids to HDL (which is a relevant HDL function), and some biomarkers of redox metabolism. Forty healthy volunteer women aged 24 ± 3 years consumed 200 g of açai pulp/day for 4 weeks; their clinical variables and blood sample were obtained before and after this period. Açai pulp consumption did not alter anthropometric parameters, systemic arterial pressure, glucose, insulin and total, LDL and HDL cholesterol, triglycerides and apolipoprotein (apo) B, but it did increase the concentration of apo A-I. Açai consumption decreased the ROS, ox-LDL and malondialdehyde while increasing the activity of antioxidative paraoxonase 1. Overall, the total antioxidant capacity (TAC) was increased. Regarding the transfer of plasma lipids to HDL, açai consumption increased the transfer of cholesteryl esters (p = 0.0043) to HDL. Unesterified cholesterol, phospholipids and triglyceride transfers were unaffected. The increase in apo A-I and the cholesteryl ester transfer to HDL after the açai intake period suggests that an improvement in the metabolism of this lipoprotein occurred, and it is well known that HDL is protective against atherosclerosis. Another important finding was the general improvement of the anti-oxidant defences elicited by açai consumption. Our data indicate that açai has favourable actions on plasma HDL metabolism and anti-oxidant defence; therefore açai could have a beneficial overall role against atherosclerosis, and it is a consistently good candidate to consider as a functional food. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Total physical activity might not be a good measure in the relationship with HDL cholesterol and triglycerides in a multi-ethnic population: a cross-sectional study

    PubMed Central

    2011-01-01

    Background Evidence suggests that physical activity (PA) has a beneficial effect on high-density lipoprotein cholesterol (HDL) and triglycerides. However, observational studies show contrasting results for this association between different ethnic groups. It is unclear whether this is due to differences in the PA composition. The aim of this study was to assess the relationship of the total PA, along with its intensity and duration, with HDL and triglycerides in a multi-ethnic population. Methods The study population was sampled from the SUNSET study and included: 502 European- Dutch, 338 Hindustani-Surinamese, and 596 African-Surinamese participants living in Amsterdam, the Netherlands. We assessed PA with the SQUASH questionnaire. We calculated age-sex-adjusted betas, geometric mean ratios (GMRs), and prevalence ratios (PRs) to assess the relationship of PA with HDL and triglycerides. Results In the adjusted models, the highest total PA tertile compared to the lowest tertile was beneficially associated with HDL (beta: 0.08, 95% CI: 0.00, 0.16 and PR low HDL 0.59, 95% CI: 0.39, 0.88) and triglycerides (GMR: 0.93, 95% CI: 0.83, 1.03 and PR: 0.56, 95% CI: 0.29, 1.08) for the African-Surinamese. No statistically significant associations appeared for total PA among the European-Dutch and Hindustani-Surinamese. The adjusted models with the intensity score and HDL showed beneficial associations for the European-Dutch (beta: 0.06, 95% CI: 0.03, 0.10) and African-Surinamese (beta: 0.06, 0.02, 0.10), for log triglycerides for the European-Dutch (beta: -0.08, 95% CI: -0.12, 0.03), Hindustani-Surinamese (beta: -0.06, 95% CI: -0.16, 0.03), and African-Surinamese (beta: -0.04, 95% CI: -0.10, 0.01). Excepting HDL in African-Surinamese, the duration score was unrelated to HDL and triglycerides in any group. Conclusions Activity intensity related beneficially to blood lipids in almost every ethnic group. The activity duration was unrelated to blood lipids, while the total PA

  20. Evaluation of the relationship between plasma lipids and abdominal aortic aneurysm: A Mendelian randomization study.

    PubMed

    Weng, Lu-Chen; Roetker, Nicholas S; Lutsey, Pamela L; Alonso, Alvaro; Guan, Weihua; Pankow, James S; Folsom, Aaron R; Steffen, Lyn M; Pankratz, Nathan; Tang, Weihong

    2018-01-01

    Studies have reported that higher circulating levels of total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and lower of high-density lipoprotein (HDL) cholesterol may be associated with increased risk of abdominal aortic aneurysm (AAA). Whether dyslipidemia causes AAA is still unclear and is potentially testable using a Mendelian randomization (MR) approach. We investigated the associations between blood lipids and AAA using two-sample MR analysis with SNP-lipids association estimates from a published genome-wide association study of blood lipids (n = 188,577) and SNP-AAA association estimates from European Americans (EAs) of the Atherosclerosis Risk in Communities (ARIC) study (n = 8,793). We used inverse variance weighted (IVW) MR as the primary method and MR-Egger regression and weighted median MR estimation as sensitivity analyses. Over a median of 22.7 years of follow-up, 338 of 8,793 ARIC participants experienced incident clinical AAA. Using the IVW method, we observed positive associations of plasma LDL cholesterol and TC with the risk of AAA (odds ratio (OR) = 1.55, P = 0.02 for LDL cholesterol and OR = 1.61, P = 0.01 for TC per 1 standard deviation of lipid increment). Using the MR-Egger regression and weighted median methods, we were able to validate the association of AAA risk with TC, although the associations were less consistent for LDL cholesterol due to wider confidence intervals. Triglycerides and HDL cholesterol were not associated with AAA in any of the MR methods. Assuming instrumental variable assumptions are satisfied, our finding suggests that higher plasma TC and LDL cholesterol are causally associated with the increased risk of AAA in EAs.