Science.gov

Sample records for plasma membrane prevents

  1. Plasma membrane disruption: repair, prevention, adaptation

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  2. FAM21 directs SNX27–retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus

    PubMed Central

    Lee, Seongju; Chang, Jaerak; Blackstone, Craig

    2016-01-01

    The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27–retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27–retromer–WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi. PMID:26956659

  3. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  4. Challenges in plasma membrane phosphoproteomics

    PubMed Central

    Orsburn, Benjamin C; Stockwin, Luke H; Newton, Dianne L

    2011-01-01

    The response to extracellular stimuli often alters the phosphorylation state of plasma membrane-associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics. PMID:21819303

  5. Lysosomes and the plasma membrane

    PubMed Central

    Andrews, Norma W.

    2002-01-01

    Studies of the cell invasion mechanism of the parasite Trypanosoma cruzi led to a series of novel findings, which revealed a previously unsuspected ability of conventional lysosomes to fuse with the plasma membrane. This regulated exocytic process, previously regarded mostly as a specialization of certain cell types, was recently shown to play an important role in the mechanism by which cells reseal their plasma membrane after injury. PMID:12147679

  6. Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy.

    PubMed

    Prasad, Vikram; Lorenz, John N; Lasko, Valerie M; Nieman, Michelle L; Jiang, Min; Gao, Xu; Rubinstein, Jack; Wieczorek, David F; Shull, Gary E

    2014-12-01

    The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy. PMID:25280781

  7. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  8. Severe Hemolysis in a Patient With Erythrocytosis During Coupled Plasma Filtration Adsorption Therapy Was Prevented by Changing From Membrane-Based Technique to a Centrifuge-Based One.

    PubMed

    Fan, Rong; Wu, Buyun; Kong, Ling; Gong, Dehua

    2016-01-01

    Coupled plasma filtration adsorption (CPFA) usually adopts membrane to separate plasma from blood. Here, we reported a case with erythrocytosis experienced severe hemolysis and membrane rupture during CPFA, which was avoided by changing from membrane-based technique to a centrifuge-based one. A 66-year-old man was to receive CPFA for severe hyperbilirubinemia (total bilirubin 922 μmol/L, direct bilirubin 638 μmol/L) caused by obstruction of biliary tract. He had erythrocytosis (hemoglobin 230 g/L, hematocrit 0.634) for years because of untreated tetralogy of Fallot. Severe hemolysis and membrane rupture occurred immediately after blood entering into the plasma separator even at a low flow rate (50 mL/min) and persisted after changing a new separator. Finally, centrifugal plasma separation technique was used for CPFA in this patient, and no hemolysis occurred. After 3 sessions of CPFA, total bilirubin level decreased to 199 μmol/L with an average decline by 35% per session. Thereafter, the patient received endoscopic biliary stent implantation, and total bilirubin level returned to nearly normal. Therefore, centrifugal-based plasma separation can also be used in CPFA and may be superior to a membrane-based one in patients with hyperviscosity. PMID:25909925

  9. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract.

    PubMed

    Fuentealba, Jorge; Dibarrart, Andrea; Saez-Orellana, Francisco; Fuentes-Fuentes, María Cecilia; Oyanedel, Carlos N; Guzmán, José; Perez, Claudia; Becerra, José; Aguayo, Luis G

    2012-01-01

    Alzheimer's disease (AD) is characterized by the presence of different types of extracellular and neurotoxic aggregates of amyloid-β (Aβ). Recently, bioactive compounds extracted from natural sources showing neuroprotective properties have become of interest in brain neurodegeneration. We have purified, characterized, and evaluated the protective potential of one extract enriched in polyphenols obtained from Aristotelia chilensis (MQ), a Chilean berry fruit, in neuronal models of AD induced by soluble oligomers of Aβ1-40. For example, using primary hippocampal cultures from rats (E18), we observed neuroprotection when the neurons were co-incubated with Aβ (0.5 μM) plus MQ for 24 h (Aβ = 23 ± 2%; Aβ + MQ = 3 ± 1%; n = 3). In parallel, co-incubation of Aβ with MQ recovered the frequency of Ca2+ transient oscillations when compared to neurons treated with Aβ alone (Aβ = 72 ± 3%; Aβ + MQ = 86 ± 2%; n = 5), correlating with the changes observed in spontaneous synaptic activity. Additionally, MAP-2 immunostaining showed a preservation of the dendritic tree, suggesting that the toxic effect of Aβ is prevented in the presence of MQ. A new complex mechanism is proposed by which MQ induces neuroprotective effects including antioxidant properties, modulation of cell survival pathways, and/or direct interaction with the Aβ aggregates. Our results suggest that MQ induces changes in the aggregation kinetics of Aβ producing variations in the nucleation phase (Aβ: k1 = 2.7 ± 0.4 × 10-3 s-1 MQ: k1 = 8.3 ± 0.6 × 10-3 s-1) and altering Thioflavin T insertion in β-sheets. In conclusion, MQ induces a potent neuroprotection by direct interaction with the Aβ aggregates, generating far less toxic species and in this way protecting the neuronal network. PMID:22728896

  10. Membrane raft association is a determinant of plasma membrane localization

    PubMed Central

    Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya

    2014-01-01

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166

  11. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  12. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  13. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  14. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    PubMed Central

    Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR) triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process. PMID:18509459

  15. Radiofrequency plasma polymerized perfluoroionomer membrane materials

    SciTech Connect

    Danilich, M.J.; Gervasio, D.F.; Marchant, R.E.

    1993-12-31

    Ion exchange membranes have received considerable attention in recent years. Applications of ion exchange membranes have included such electrochemical systems as water and organic electrolyzers, redox-flow batteries, and sensors. This work is a study of radiofrequency plasma polymerization of perfluorinated acid-containing monomers and a perfluorinated {open_quotes}backbone{close_quotes} comonomer as a method for synthesizing novel polyionomer film coatings for use as membranes on electrodes and biomedical sensors. The results indicate that, by altering the deposition conditions, some control can be exercised over the retention of acid functional groups by plasma polymers. Using AC impedance measurements, the ionic conductivity of these films was found to be two to four orders of magnitude higher than their aqueous environments. In addition, several of the acid-containing plasma polymerized films were hydrophilic, having an advancing water contact angle of less than fifteen degrees. The initial results of this study have demonstrated the feasibility of using acid-containing plasma polymers as crosslinked membrane materials suitable for use with electrochemical sensors and biosensors.

  16. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  17. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  18. Rupture of plasma membrane under tension.

    PubMed

    Tan, Samuel Chun Wei; Yang, Tianyi; Gong, Yingxue; Liao, Kin

    2011-04-29

    We present a study on the rupture behavior of single NIH 3T3 mouse fibroblasts under tension using micropipette aspiration. Membrane rupture was characterized by breaking and formation of an enclosed membrane linked to a tether at the cell apex. Three different rupture modes, namely: single break, initial multiple breaks, and continuous multiple breaks, were observed under similar loading condition. The measured mean tensile strengths of plasma membrane were 3.83 ± 1.94 and 3.98 ± 1.54mN/m for control cells and cells labeled with TubulinTracker, respectively. The tensile strength data was described by Weibull distribution. For the control cells, the Weibull modulus and characteristic strength were 1.86 and 4.40 mN/m, respectively; for cells labeled with TubulinTracker, the Weibull modulus and characteristic strength were 2.68 and 4.48 mN/m, respectively. Based on the experimental data, the estimated average transmembrane proteins-lipid cleavage strength was 2.64 ± 0.64 mN/m. From the random sampling of volume ratio of transmembrane proteins in cell membrane, we concluded that the Weibull characteristic of plasma membrane strength was likely to be originated from the variation in transmembrane proteins-lipid interactions. PMID:21288526

  19. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  20. Plasma Membrane Transporters in Modern Liver Pharmacology

    PubMed Central

    Marin, Jose J. G.

    2012-01-01

    The liver plays a crucial role in the detoxification of drugs used in the treatment of many diseases. The liver itself is the target for drugs aimed to modify its function or to treat infections and tumours affecting this organ. Both detoxification and pharmacological processes occurring in the liver require the uptake of the drug by hepatic cells and, in some cases, the elimination into bile. These steps have been classified as detoxification phase 0 and phase III, respectively. Since most drugs cannot cross the plasma membrane by simple diffusion, the involvement of transporters is mandatory. Several members of the superfamilies of solute carriers (SLC) and ATP-binding cassette (ABC) proteins, with a minor participation of other families of transporters, account for the uptake and efflux, respectively, of endobiotic and xenobiotic compounds across the basolateral and apical membranes of hepatocytes and cholangiocytes. These transporters are also involved in the sensitivity and refractoriness to the pharmacological treatment of liver tumours. An additional interesting aspect of the role of plasma membrane transporters in liver pharmacology regards the promiscuity of many of these carriers, which accounts for a variety of drug-drug, endogenous substances-drug and food components-drug interactions with clinical relevance. PMID:24278693

  1. Reversal of carbon tetrachloride induced changes in microviscosity and lipid composition of liver plasma membrane by colchicine in rats.

    PubMed Central

    Solis-Herruzo, J A; De Gando, M; Ferrer, M P; Hernandez Muñoz, I; Fernandez-Boya, B; De la Torre, M P; Muñoz-Yague, M T

    1993-01-01

    Colchicine is beneficial in the treatment of cirrhotic patients, it prevents changes in plasma membrane bound enzymes induced by CCl4 intoxication. In this study, lipid composition and microviscosity were measured in liver plasma membranes isolated from rats given CCl4. Microviscosity values increased in rats given CCl4 for six weeks but fell considerably in those given CCl4 for 10 weeks. Both these changes were absent when colchicine was given with CCl4. The cholesterol/phospholipid molar ratios and lipid peroxide values increased but plasma membrane phospholipids, the length of fatty acyl chains, and the unsaturation index fell significantly after CCl4 intoxication. Colchicine treatment also prevented these changes. Changes in the lipid composition of liver plasma membranes were significantly correlated with lipid peroxidation. Colchicine prevents changes in the physicochemical properties of liver plasma membranes induced by longterm CCl4 treatment, probably by blocking peroxidation of unsaturated fatty acids. PMID:8244117

  2. Regulation of Plasma Membrane Recycling by CFTR

    NASA Astrophysics Data System (ADS)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  3. Two ABCB4 point mutations of strategic NBD-motifs do not prevent protein targeting to the plasma membrane but promote MDR3 dysfunction.

    PubMed

    Degiorgio, Dario; Corsetto, Paola A; Rizzo, Angela M; Colombo, Carla; Seia, Manuela; Costantino, Lucy; Montorfano, Gigliola; Tomaiuolo, Rossella; Bordo, Domenico; Sansanelli, Serena; Li, Min; Tavian, Daniela; Rastaldi, Maria P; Coviello, Domenico A

    2014-05-01

    The ABCB4 gene encodes for MDR3, a protein that translocates phosphatidylcholine from the inner to the outer leaflet of the hepatocanalicular membrane; its deficiency favors the formation of 'toxic bile'. Several forms of hepatobiliary diseases have been associated with ABCB4 mutations, but the detrimental effects of most mutations on the encoded protein needs to be clarified. Among subjects with cholangiopathies who were screened for mutations in ABCB4 by direct sequencing, we identified the new mutation p.(L481R) in three brothers. According to our model of tertiary structure, this mutation affects the Q-loop, whereas the p.(Y403H) mutation, that we already described in two other families, involves the A-loop. This study was aimed at analyzing the functional relevance of these two ABCB4 mutations: MDR3 expression and lipid content in the culture supernatant were evaluated in cell lines stably transfected with the ABCB4 wild-type clone and corresponding mutants. No differences of expression were observed between wild-type and mutant gene products. Instead, both mutations caused a reduction of phosphatidylcholine secretion compared with the wild-type transfected cell lines. On the contrary, cholesterol (Chol) release, after 1 and 3 mM sodium taurocholate stimulation, was higher in the mutant-transfected cell lines than that in the wild-type and was particularly enhanced in cells transfected with the p.Y403H-construct.In summary, our data show that both mutations do not seem to affect protein expression, but are able to reduce the efflux of phosphatidylcholine associated with increase of Chol, thereby promoting the formation of toxic bile. PMID:24045840

  4. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  5. Electron microscopy methods for studying plasma membranes.

    PubMed

    Beckett, Alison J; Prior, Ian A

    2015-01-01

    Electron microscopy allows direct visualization of the underlying organization of cell surface components on a nano-scale. Immuno-gold labelling of isolated plasma membranes generates point patterns that enable mapping of protein and lipid distributions. 2D spatial statistics reveals the extent to which these distributions are clustered or dispersed and allows the extent of co-localization between different cell surface components to be precisely determined. This approach has been successfully applied to the study of signalling network organization and the consequences of physiological changes in modulating cell surface function. PMID:25331134

  6. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  7. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study.

    PubMed

    Sritharan, K C; Quinn, A S; Taatjes, D J; Jena, B P

    1998-01-01

    The final step in the exocytotic process is the docking and fusion of membrane-bound secretory vesicles at the cell plasma membrane. This docking and fusion is brought about by several participating vesicle membrane, plasma membrane and soluble cytosolic proteins. A clear understanding of the interactions between these participating proteins giving rise to vesicle docking and fusion is essential. In this study, the binding force profiles between synaptic vesicle membrane and plasma membrane proteins have been examined for the first time using the atomic force microscope. Binding force contributions of a synaptic vesicle membrane protein VAMP1, and the plasma membrane proteins SNAP-25 and syntaxin, are also implicated from these studies. Our study suggests that these three proteins are the major, if not the only contributors to the interactive binding force that exist between the two membranes. PMID:10452835

  8. The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane.

    PubMed Central

    Stewart, A R; Tollefson, A E; Krajcsi, P; Yei, S P; Wold, W S

    1995-01-01

    The adenovirus type 2 and 5 E3 10,400- and 14,500-molecular-weight (10.4K and 14.5K) proteins are both required to protect some cell lines from lysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. We have shown previously that both 10.4K and 14.5K are integral membrane proteins and that 14.5K is phosphorylated and O glycosylated. The 10.4K protein coimmunoprecipitates with 14.5K, indicating that the two proteins function as a complex. Here we show, using immunofluorescence and two different cell surface-labeling techniques, that both proteins are localized in the plasma membrane. In addition, we show that trafficking of each protein to the plasma membrane depends on concomitant expression of the other protein. Finally, neither protein could be immunoprecipitated from conditioned media, indicating that neither is secreted. Taken together, these results suggest that the plasma membrane is the site at which 10.4K and 14.5K function to inhibit cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. PMID:7983708

  9. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  10. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane

    PubMed Central

    Cho, Kwang-jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  11. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy.

    PubMed

    Kim, Jiyoung; Santos, Olavo Amorim; Park, Ji-Ho

    2014-10-10

    Subcellular localization of photosensitizers (PSs) determines the therapeutic efficacy in the photodynamic therapy. However, among the subcellular compartments, there has been little effort to deliver the PSs selectively into the plasma membrane and examine the phototherapeutic efficacy of membrane-localized PSs. Here, we developed a liposomal delivery system to localize the hydrophobic PSs selectively into the plasma membrane. The membrane fusogenic liposomes (MFLs), the membrane of which is engineered to fuse with the plasma membrane, was prepared for the membrane localization of PSs. The phototherapeutic efficacy of cells treated with ZnPc-loaded MFLs was superior over that of cells treated with ZnPc-loaded non-fusogenic liposomes, which is the conventional liposomal formulation that delivers the PSs into the intracellular compartments via endocytosis. The membrane localization of ZnPc molecules led to rapid membrane disruption upon irradiation and subsequent necrosis-like cell death. The membrane-localized generation of reactive oxygen species in the cells treated with ZnPc-loaded MFLs was likely to account for the effective disruption of plasma membrane. Thus, this work provides a novel delivery method to localize the PSs selectively into the plasma membrane with the enhanced phototherapeutic efficacy. PMID:24892975

  12. Order of lipid phases in model and plasma membranes

    PubMed Central

    Kaiser, Hermann-Josef; Lingwood, Daniel; Levental, Ilya; Sampaio, Julio L.; Kalvodova, Lucie; Rajendran, Lawrence; Simons, Kai

    2009-01-01

    Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165–3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective. PMID:19805351

  13. Dynamics of photoinduced cell plasma membrane injury.

    PubMed Central

    Thorpe, W P; Toner, M; Ezzell, R M; Tompkins, R G; Yarmush, M L

    1995-01-01

    We have developed a video microscopy system designed for real-time measurement of single cell damage during photolysis under well defined physicochemical and photophysical conditions. Melanoma cells cultured in vitro were treated with the photosensitizer (PS), tin chlorin e6 (SnCe6) or immunoconjugate (SnCe6 conjugated to a anti-ICAM monoclonal antibody), and illuminated with a 10 mW He/Ne laser at a 630 nm wavelength. Cell membrane integrity was assessed using the vital dye calcein-AM. In experiments in which the laser power density and PS concentration were varied, it was determined that the time lag before cell rupture was inversely proportional to the estimated singlet oxygen flux to the cell surface. Microscopic examination of the lytic event indicated that photo-induced lysis was caused by a point rupture of the plasma membrane. The on-line nature of this microscopy system offers an opportunity to monitor the dynamics of the cell damage process and to gain insights into the mechanism governing photolytic cell injury processes. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 7 PMID:7612864

  14. Channelopathies linked to plasma membrane phosphoinositides

    PubMed Central

    Logothetis, Diomedes E.; Petrou, Vasileios I.; Adney, Scott K.; Mahajan, Rahul

    2014-01-01

    The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease. PMID:20396900

  15. Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane

    PubMed Central

    Douglas, Lois M.; Wang, Hong X.; Li, Lifang; Konopka, James B.

    2011-01-01

    Studies on the budding yeast Saccharomyces cerevisiae have revealed that fungal plasma membranes are organized into different subdomains. One new domain termed MCC/eisosomes consists of stable punctate patches that are distinct from lipid rafts. The MCC/eisosome domains correspond to furrows in the plasma membrane that are about 300 nm long and 50 nm deep. The MCC portion includes integral membrane proteins, such as the tetraspanners Sur7 and Nce102. The adjacent eisosome includes proteins that are peripherally associated with the membrane, including the BAR domains proteins Pil1 and Lsp1 that are thought to promote membrane curvature. Genetic analysis of the MCC/eisosome components indicates these domains broadly affect overall plasma membrane organization. The mechanisms regulating the formation of MCC/eisosomes in model organisms will be reviewed as well as the role of these plasma membrane domains in fungal pathogenesis and response to antifungal drugs. PMID:22368779

  16. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    PubMed

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis. PMID:27337501

  17. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-06-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  18. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  19. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  20. No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis.

    PubMed

    Chang, Hai-Shuang; Zhang, Cheng; Chang, Yu-Hua; Zhu, Jun; Xu, Xiao-Feng; Shi, Zhi-Hao; Zhang, Xiao-Lei; Xu, Ling; Huang, Hai; Zhang, Sen; Yang, Zhong-Nan

    2012-01-01

    Primexine deposition and plasma membrane undulation are the initial steps of pollen wall formation. However, little is known about the genes involved in this important biological process. Here, we report a novel gene, NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU), which functions in the early stage of pollen wall development in Arabidopsis (Arabidopsis thaliana). Loss of NPU function causes male sterility due to a defect in callose synthesis and sporopollenin deposition, resulting in disrupted pollen in npu mutants. Transmission electronic microscopy observation demonstrated that primexine deposition and plasma membrane undulation are completely absent in the npu mutants. NPU encodes a membrane protein with two transmembrane domains and one intracellular domain. In situ hybridization analysis revealed that NPU is strongly expressed in microspores and the tapetum during the tetrad stage. All these results together indicate that NPU plays a vital role in primexine deposition and plasma membrane undulation during early pollen wall development. PMID:22100644

  1. Characterization of α-Crystallin-Plasma Membrane Binding*

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    α-Crystallin, a large lenticular protein complex made up of two related subunits (αA- and αB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human αA- and αB-crystallins conjugated to a small fluorescent tag (Alexa350®). Both αA and αB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of α-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that α-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3.45 ± 0.11 ng/μg of membrane and 4.57 ± 0.50 × 10−4 μg−1 of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed α-crystallin complex may hold particular relevance for the function of α-crystallin within the lens. PMID:10692476

  2. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    SciTech Connect

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  3. Gravity Responsive NADH Oxidase of the Plasma Membrane

    NASA Technical Reports Server (NTRS)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  4. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  5. Paracrine signaling through plasma membrane hemichannels☆

    PubMed Central

    Wang, Nan; De Bock, Marijke; Decrock, Elke; Bol, Mélissa; Gadicherla, Ashish; Vinken, Mathieu; Rogiers, Vera; Bukauskas, Feliksas F.; Bultynck, Geert; Leybaert, Luc

    2013-01-01

    Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cell’s interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1–2 kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD+ or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions. PMID:22796188

  6. Glycan Moieties as Bait to Fish Plasma Membrane Proteins.

    PubMed

    Fang, Fei; Zhao, Qun; Sui, Zhigang; Liang, Yu; Jiang, Hao; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-05-17

    Plasma membrane proteome analysis is of significance for screening candidate biomarkers and drug targets. However, due to their low abundance and lack of specific groups that can enable their capture, the plasma membrane proteins (PMPs) are under-represented. On the basis of the fact that PMPs are embedded in or anchored to the phospholipid bilayer of the plasma membrane and the glycan moieties of proteins and lipids located on the plasma membrane are exposed outside of the cell surface, we proposed a strategy to capture PMPs, termed as glycan moieties-directed PMPs enrichment (GMDPE). With the glycan moieties exposed outside of the cells as bait to ensure the selectivity and the phospholipid bilayer as raft to provide the sensitivity, we applied this strategy into the plasma membrane proteome analysis of HeLa cells, and in total, 772 PMPs were identified, increased by 4.5 times compared to those identified by the reported cell surface biotinylation method. Notably, among them, 86 CD antigens and 16 ion channel proteins were confidently identified. All these results demonstrated that our proposed approach has great potential in the large scale plasma membrane proteome profiling. PMID:27088673

  7. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  8. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  9. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    PubMed

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  10. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    NASA Astrophysics Data System (ADS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; da Silva Zambom, Luis; Mansano, Ronaldo Domingues

    2007-10-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells.

  11. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    SciTech Connect

    Haylett, T.; Thilo, L.

    1986-10-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D/sub 1/, was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from <0.1% to a steady-state level of approx.2.5% of the total label. As analyzed by NaDodSO/sub 4/ PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only approx.1% of internalized membrane is recycled via a membrane pool of secondary lysosomes.

  12. Vitamins C and E: missing links in preventing preterm premature rupture of membranes?

    PubMed

    Woods, J R; Plessinger, M A; Miller, R K

    2001-07-01

    We propose that generation of reactive oxygen species may be a potentially reversible pathophysiologic pathway leading to preterm premature rupture of the membranes. Reactive oxygen species generated by the body's response to diverse insults such as infection, cigarette smoking, bleeding, or cocaine use can activate collagenolytic enzymes and impair fetal membrane integrity. Vitamin E, a lipid-soluble antioxidant, inhibits membrane-damaging effects of reactive oxygen species-induced lipid peroxidation. Vitamin C, a water-soluble antioxidant in plasma, stimulates and protects collagen synthesis while recycling vitamin E. Prior evidence shows that (1) damage by reactive oxygen species can impair fetal membrane integrity, (2) reduced midgestation levels of vitamin C are associated with preterm premature rupture of membranes, and (3) these vitamins can be safely and effectively absorbed and delivered to gestational tissues. Current prenatal vitamin preparations contain vitamins C and E in concentrations that are less than 1/3 and 1/10, respectively; these levels have been suggested for effective antioxidant protection. We hypothesize that increased dietary consumption or supplementation of vitamins C and E during pregnancy may reduce physiologically the risks of that portion of preterm premature rupture of membranes that is mediated by excessive or undamped peroxidation of fetal membranes. This hypothesis, if confirmed, should stimulate initiation of therapeutic trials to test the efficacy of enhanced supplementation with vitamins C and E during pregnancy to prevent preterm premature rupture of membranes. PMID:11483896

  13. Plasma jet accelerator optimization with supple membrane model

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Bogatu, I. N.; Kim, J. S.

    2006-10-01

    High density (>=3x10^17cm-3) and high Mach number (M>10) plasma jets have important applications such as plasma rotation, refueling and disruption mitigation in tokamaks. The most deleterious blow-by instability occurs in coaxial plasma accelerators; hence electrode shape optimization is required to accelerate plasmas to ˜200 km/s [1]. A full 3D particle simulation takes a huge computational time. We have developed a membrane model to provide a good starting point and further physical insight for a full 3D optimization. Our model approximates the axisymmetrical plasma by a thin supple conducting membrane with a distributed mass, located between the electrodes, and connects them to model dynamics of the blow-by instability and to conduct the optimization. The supple membrane is allowed to slip along the conductors freely or with some friction as affected by Lorenz force, generated by magnetic field inside the chamber and current on membrane. The total mass and the density distribution represent the initial plasma. The density is redistributed adiabatically during the acceleration. An external electrical circuit with capacitance, inductance and resistivity is a part of the model. The membrane model simulation results will be compared to the 2D fluid MACH2 results and then will be used to guide a full 3D optimization by the LSP code. 1. http://hyperv.com/projects/pic/

  14. Fluidity of pea root plasma membranes under altered gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  15. Surface modification of nanoporous alumina membranes by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin A.; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J.

    2008-06-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  16. Adipocyte cell size enlargement involves plasma membrane area increase.

    PubMed

    Chowdhury, H H; Zorec, R

    2012-07-01

    The adipocyte enlargement is associated with an increase in the cytoplasmic lipid content, but how the plasma membrane area follows this increase is poorly understood. We monitored single-cell membrane surface area fluctuations, which mirror the dynamics of exocytosis and endocytosis. We employed the patch-clamp technique to measure membrane capacitance (C(m)), a parameter linearly related to the plasma membrane area. Specifically, we studied whether insulin affects membrane area dynamics in adipocytes. A five-minute cell exposure to insulin increased resting C(m) by 12 ± 4%; in controls the change in C(m) was not different from zero. We measured cell diameter of isolated rat adipocytes microscopically. Twenty-four hour exposure of cells to insulin resulted in a significant increase in cell diameter by 5.1 ± 0.6%. We conclude that insulin induces membrane area increase, which may in chronic hyperinsulinemia promote the enlargement of plasma membrane area, acting in concert with other insulin-mediated metabolic effects on adipocytes. PMID:22540353

  17. Modification of polyethylene terephthalate track membrane properties by ammonia plasma

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Dinescu, George; Lazea, Andrada; Raiciu, Eric

    2004-09-01

    The properties of polyethylene terephthalate track membranes (PET TM) exposed to ammonia are investigated. The influence of the conditions of plasma treatment on the basic characteristics of the membranes, namely pore size and shape, wettability, water permeability, is studied. PET TM of the thickness of 10 μ m with the effective pore diameter of 0.215 μ m (pore density 2\\cdot 10^8 cm-2) were under study. The plasma treatment was performed on a plasma-chemical installation realizing a RF-discharge on the frequency 13.56 MHz. The process was conducted in a dynamic mode. Before delivering vapours of the plasma forming gas, the chamber was beforehand vacuumed down to residual pressure of 10-2 Torr. One side of the membranes was subjected to plasma. The discharge parameters (gas pressure in the vacuum chamber, discharge power) and the duration of plasma action were varied. It has been figured out that when treating the membranes in plasma of the explored gas there are two competing processes: etching of a polymeric matrix and deposition of a polymeric layer on their surface. It has been shown that at a short time of plasma action and low values of the discharge parameters, an etching process is mainly observed. Decrease in the thickness of the membranes and increase in the effective pore diameter testifies it. A result of the gas-discharge etching is also a hydrophilization of the TM surface stipulated by formation of polar function groups in the points of breaking chemical bonds. Here the value of the water contact angle of surface decreases down to 45-50 degrees in some cases. It has been shown that at a longer action of the plasma and increase of the discharge parameters, as accumulation in the chamber of etch products takes place, a process of deposition of a polymeric film becomes dominating, and it is proved by increasing the width of the membranes and changing their color. The value of the water contact angle of surface in this case is grown and, depending

  18. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  19. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  20. Palmitoylation of POTE family proteins for plasma membrane targeting

    SciTech Connect

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-11-23

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane.

  1. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning.

    PubMed

    Kim, Lan Hee; Jung, Yongmoon; Kim, Sung-Jo; Kim, Chang-Min; Yu, Hye-Weon; Park, Hee-Deung; Kim, In S

    2015-01-01

    Rhamnolipids were evaluated as biofouling reducing agents in this study. The permeability of the bacterial outer membrane was increased by rhamnolipids while the growth rate of Pseudomonas aeruginosa was not affected. The surface hydrophobicity was increased through the release of lipopolysaccharides and extracellular polymeric substances from the outer cell membrane. Rhamnolipids were evaluated as agents for the prevention and cleaning of biofilms. A high degree of biofilm detachment was observed when the rhamnolipids were used as a cleaning agent. In addition, effective biofilm reduction occurred when rhamnolipids were applied to various species of Gram-negative bacteria isolated from seawater samples. Biofilm reduction using rhamnolipids was comparable to commercially available surfactants. In addition, 20% of the water flux was increased after rhamnolipid treatment (300 μg ml(-1), 6 h exposure time) in a dead-end filtration system. Rhamnolipids appear to have promise as biological agents for reducing membrane biofouling. PMID:25789851

  2. Crystal structure of the plasma membrane proton pump.

    PubMed

    Pedersen, Bjørn P; Buch-Pedersen, Morten J; Morth, J Preben; Palmgren, Michael G; Nissen, Poul

    2007-12-13

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement. PMID:18075595

  3. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  4. Mechanical properties of the plasma membrane of isolated plant protoplasts

    SciTech Connect

    Wolfe, J.; Steponkus, P.L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law--the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  5. Estradiol's interesting life at the cell's plasma membrane.

    PubMed

    Caldwell, J D; Gebhart, V M; Jirikowski, G F

    2016-07-01

    Clearly, we have presented here evidence of a very complex set of mechanisms and proteins involved with various and intricate actions of steroids at the plasma membrane. Steroids do MUCH more at the plasma membrane than simply passing passively through it. They may sit in the membrane; they are bound by numerous proteins in the membrane, including ERs, SHBG, steroid-binding globulin receptors, and perhaps elements of cellular architecture such as tubulin. It also seems likely that the membrane itself responds graphically to the presence of steroids by actually changing its shape as well, perhaps, as accumulating steroids. Clara Szego suggested in the 1980s that actions of E2 at one level would act synergistically with its actions at another level (e.g. membrane actions would complement nuclear actions). Given the sheer number of proteins involved in steroid actions, just at the membrane level, it seems unlikely that every action of a steroid on every potential protein effector will act to the same end. It seems more likely that these multiple effects and sites of effect of steroids contribute to the confusion that exists as to what actions steroids always have. For example, there is confusion with regard to synthetic agents (SERMs etc.) that have different and often opposite actions depending on which organ they act upon. A better understanding of the basic actions of steroids should aid in understanding the variability of their clinical effects. PMID:27018128

  6. An Endosome-to-Plasma Membrane Pathway Involved in Trafficking of a Mutant Plasma Membrane ATPase in Yeast

    PubMed Central

    Luo, Wen-jie; Chang, Amy

    2000-01-01

    The plasma membrane ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway. Previously, we characterized a temperature-sensitive pma1 mutant in which newly synthesized Pma1-7 is not delivered to the plasma membrane but is mislocalized instead to the vacuole at 37°C. Several vps mutants, which are defective in vacuolar protein sorting, suppress targeting-defective pma1 by allowing mutant Pma1 to move once again to the plasma membrane. In this study, we have analyzed trafficking in the endosomal system by monitoring the movement of Pma1-7 in vps36, vps1, and vps8 mutants. Upon induction of expression, mutant Pma1 accumulates in the prevacuolar compartment in vps36 cells. After chase, a fraction of newly synthesized Pma1-7 is delivered to the plasma membrane. In both vps1 and vps8 cells, newly synthesized mutant Pma1 appears in small punctate structures before arrival at the cell surface. Nevertheless, biosynthetic membrane traffic appears to follow different routes in vps8 and vps1: the vacuolar protein-sorting receptor Vps10p is stable in vps8 but not in vps1. Furthermore, a defect in endocytic delivery to the vacuole was revealed in vps8 (and vps36) but not vps1 by endocytosis of the bulk membrane marker FM 4-64. Moreover, in vps8 cells, there is defective down-regulation from the cell surface of the mating receptor Ste3, consistent with persistent receptor recycling from an endosomal compartment to the plasma membrane. These data support a model in which mutant Pma1 is diverted from the Golgi to the surface in vps1 cells. We hypothesize that in vps8 and vps36, in contrast to vps1, mutant Pma1 moves to the surface via endosomal intermediates, implicating an endosome-to-surface traffic pathway. PMID:10679016

  7. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-01

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification. PMID:24099566

  8. A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane.

    PubMed Central

    Buckley, K M; Schweitzer, E S; Miljanich, G P; Clift-O'Grady, L; Kushner, P D; Reichardt, L F; Kelly, R B

    1983-01-01

    The plasma membrane of electric organ nerve terminals has two domains that can be distinguished by monoclonal antibodies. A library of 111 mouse monoclonal antibodies raised to nerve terminals from Torpedo californica contains 4 antibodies that bind specifically to the outside of intact synaptosomes. The distribution of the binding sites of these monoclonal antibodies on the outside of intact nerve terminals was examined by immunofluorescence and immunoelectron microscopy. The binding sites of 3 (tor23, 25, and 132) are distributed uniformly over nerve trunks and fine terminal branches. The binding site of the fourth (tor70) is restricted to synaptic junctional regions. This antibody, but not the other 3, recognizes a major component of synaptic vesicles, a proteoglycan associated with the inner surface of the vesicle membrane. The difference in the pattern of binding of these monoclonal antibodies suggests that the region of the plasma membrane containing active zones is antigenically distinguishable from other nerve terminal plasma membrane. We suggest that the antigen recognized by tor70 is externalized by exocytosis of synaptic vesicles while other plasma antigens take a different route to the surface. The unexpected observation that the vesicle antigen remains on the surface after exocytosis and is prevented from diffusion from the synaptic junctional region would be consistent with an interaction between the vesicle proteoglycan and elements of the synaptic cleft. Images PMID:6359167

  9. Exclusive photorelease of signalling lipids at the plasma membrane

    PubMed Central

    Nadler, André; Yushchenko, Dmytro A.; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-01-01

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems. PMID:26686736

  10. Exclusive photorelease of signalling lipids at the plasma membrane.

    PubMed

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-01-01

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems. PMID:26686736

  11. On the puzzling distribution of cholesterol in the plasma membrane.

    PubMed

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  12. Granuphilin exclusively mediates functional granule docking to the plasma membrane

    PubMed Central

    Mizuno, Kouichi; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2016-01-01

    In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules. PMID:27032672

  13. Mammalian gamete plasma membranes re-assessments and reproductive implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...

  14. A TRiP to the plasma membrane

    PubMed Central

    Ghosh, Debapriya; Voets, Thomas

    2015-01-01

    TRP ion channels are ubiquitously present in the mammalian body and take part in numerous key physiological functions, including temperature sensing, taste perception, osmo-regulation, cardiac function, renal function, development, and glucose homeostasis. The mechanisms whereby TRP channels are transported to the plasma membrane, where most of them exert their physiological actions, remains a poorly understood aspect of TRP channel biology.

  15. Inhibition of microbial growth on chitosan membranes by plasma treatment.

    PubMed

    de Oliveira Cardoso Macêdo, Marina; de Macêdo, Haroldo Reis Alves; Gomes, Dayanne Lopes; de Freitas Daudt, Natália; Rocha, Hugo Alexandre Oliveira; Alves, Clodomiro

    2013-11-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site, and it also affects the bulk properties of the polymers. The use of gas plasma is an elegant alternative sterilization technique. The plasma promotes efficient inactivation of the microorganisms, minimizes damage to the materials, and presents very little danger for personnel and the environment. In this study we used plasma for microbial inhibition of chitosan membranes. The membranes were treated with oxygen, methane, or argon plasma for different time periods (15, 30, 45, or 60 min). For inhibition of microbial growth with oxygen plasma, the time needed was 60 min. For the methane plasma, samples were successfully treated after 30, 45, and 60 min. For argon plasma, all treatment periods were effective. PMID:24251774

  16. Yeast Ist2 Recruits the Endoplasmic Reticulum to the Plasma Membrane and Creates a Ribosome-Free Membrane Microcompartment

    PubMed Central

    Lorenz, Holger; Schwappach, Blanche; Seedorf, Matthias

    2012-01-01

    The endoplasmic reticulum (ER) forms contacts with the plasma membrane. These contacts are known to function in non-vesicular lipid transport and signaling. Ist2 resides in specific domains of the ER in Saccharomyces cerevisiae where it binds phosphoinositide lipids at the cytosolic face of the plasma membrane. Here, we report that Ist2 recruits domains of the yeast ER to the plasma membrane. Ist2 determines the amount of cortical ER present and the distance between the ER and the plasma membrane. Deletion of IST2 resulted in an increased distance between ER and plasma membrane and allowed access of ribosomes to the space between the two membranes. Cells that overexpress Ist2 showed an association of the nucleus with the plasma membrane. The morphology of the ER and yeast growth were sensitive to the abundance of Ist2. Moreover, Ist2-dependent effects on cytosolic pH and genetic interactions link Ist2 to the activity of the H+ pump Pma1 in the plasma membrane during cellular adaptation to the growth phase of the culture. Consistently we found a partial colocalization of Ist2-containing cortical ER and Pma1-containing domains of the plasma membrane. Hence Ist2 may be critically positioned in domains that couple functions of the ER and the plasma membrane. PMID:22808051

  17. Control of Plasma Membrane Permeability by ABC Transporters.

    PubMed

    Khakhina, Svetlana; Johnson, Soraya S; Manoharlal, Raman; Russo, Sarah B; Blugeon, Corinne; Lemoine, Sophie; Sunshine, Anna B; Dunham, Maitreya J; Cowart, L Ashley; Devaux, Frédéric; Moye-Rowley, W Scott

    2015-05-01

    ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. PMID:25724885

  18. Effect of clofibrate on the enzyme activity of rat liver plasma membranes.

    PubMed

    Renaud, G; Foliot, A; Marais, J; Infante, R

    1980-03-15

    The activity of 3 plasma membranes marker enzymes (5'-nucleotidase, Mg++-ATPase and alkaline phosphodiesterase-I) was determined in plasma membranes isolated from liver of control and of clofibrate-treated rats. A complete indentity of plasma membranes enzyme activity in the 2 groups of experimental animals was observed for the 3 enzymes studied. PMID:6102923

  19. Imaging plasma membrane deformations with pTIRFM.

    PubMed

    Passmore, Daniel R; Rao, Tejeshwar C; Peleman, Andrew R; Anantharam, Arun

    2014-01-01

    To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation. PMID:24747638

  20. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  1. Fractionation of liver plasma membranes prepared by zonal centrifugation

    PubMed Central

    Evans, W. H.

    1970-01-01

    1. Plasma membranes were isolated from crude nuclear sediments from mouse and rat liver by a rate-dependent centrifugation through a sucrose density gradient contained in the `A' type zonal rotor. 2. The membranes were further purified by isopycnic centrifugation, and characterized enzymically, chemically and morphologically. 3. When the plasma-membrane fraction of sucrose density 1.17g/cm3 was dispersed in a tight-fitting homogenizer, two subfractions of densities 1.12 and 1.18 were obtained by isopycnic centrifugation. 4. The light subfraction contained 5′-nucleotidase, nucleoside diphosphatase, leucine naphthylamidase and Mg2+-stimulated adenosine triphosphatase activities at higher specific activities than unfractionated membranes. The heavy subfraction was deficient in the above enzymes but contained higher Na++K+-stimulated adenosine triphosphatase activity. 5. The light subfraction contained twice as much phospholipid and cholesterol, and three times as much N-acetylneuraminic acid relative to unit protein weight as the heavy subfraction. Polyacrylamide-gel electrophoresis indicated differences in protein composition. 6. Electron microscopy showed the light subfraction to be vesicular. The heavy subfraction contained membrane strips with junctional complexes in addition to vesicles. ImagesPLATE 2PLATE 3PLATE 1 PMID:4315049

  2. Isolation of plasma membranes from cultured glioma cells and application to evaluation of membrane sphingomyelin turnover

    SciTech Connect

    Cook, H.W.; Palmer, F.B.; Byers, D.M.; Spence, M.W.

    1988-11-01

    A rapid and reliable method for the isolation of plasma membranes and microsomes of high purity and yield from cultured glioma cells is described. The procedure involves disruption by N2 cavitation, preliminary separation by centrifugation in Tricine buffer, and final separation on a gradient formed from 40% Percoll at pH 9.3. Enzyme and chemical markers indicated greater than 60% yield with six- to eightfold enrichment for plasma membranes and greater than 25% yield with three- to fourfold enrichment for a microsomal fraction consisting mainly of endoplasmic reticulum. The final fractions were obtained with high reproducibility in less than 1 h from the time of cell harvesting. Application of this procedure to human fibroblasts in culture is assessed. The isolation procedure was applied to investigations of synthesis and turnover of sphingomyelin and phosphatidylcholine in plasma membranes of glioma cells following incubation for 4-24 h with (methyl-/sup 3/H)choline. These studies indicated that radioactivity from phosphatidylcholine synthesized in microsomes from exogenous choline may serve as a precursor of the head-group of sphingomyelin accumulating in the plasma membrane.

  3. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  4. S-adenosyl-L-methionine prevents and reverses erythrocyte membrane alterations in cirrhosis.

    PubMed

    Muriel, P

    1993-01-01

    Transmethylation is an important means of altering the biological activity of a wide variety of compounds. In human and experimental CCl4-liver cirrhosis the intrahepatic content of S-adenosyl-L-methionine (SAM), an active methyl donor, and the SAM-transmethylase activity are markedly reduced. Previously, it has been reported that SAM administration preserves hepatocyte plasma membrane Na+/K(+)-ATPase and Ca(2+)-ATPase activities in cirrhotic rats. Therefore, the aim of this work was to study the effect of SAM administration on the membrane lipid composition and the ATPase activity on erythrocytes derived from CCl4-cirrhotic rats. Male Wistar rats were used in these experiments. In group 1, cirrhosis was induced by i.p. administration of CCl4. Animals of group 2 received, in addition to CCl4, three daily doses of SAM (20 mg kg-1, i.m.). Group 3 consisted of cirrhotic animals that, after 8 weeks of CCl4 treatment, received SAM (20 mg kg-1, i.m., three times daily) for 4 weeks without discontinuation of CCl4. Group 4 included animals treated with SAM alone. Seventy-two hours after the end of treatment the rats were anaesthetized, blood was collected by heart puncture and the erythrocyte plasma membranes were isolated. The Na+/K(+)- and (Ca2+ +Mg2+)-ATPase activities and the cholesterol (CH) and phospholipid (PL) contents were determined in the plasma membranes. The Na+/K(+)- and Ca(2+)-ATPase activities were both significantly decreased (twofold) in the CCl4-treated group as compared to controls. Administration of SAM completely prevented this fall in both ATPases. In group 4, the Na+/K(+)-ATPase activity was partially restored but the Ca(2+)-ATPase activity was completely restored.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8392094

  5. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. PMID:26248320

  6. In Situ Quantification of Protein Binding to the Plasma Membrane

    PubMed Central

    Smith, Elizabeth M.; Hennen, Jared; Chen, Yan; Mueller, Joachim D.

    2015-01-01

    This study presents a fluorescence-based assay that allows for direct measurement of protein binding to the plasma membrane inside living cells. An axial scan through the cell generates a fluorescence intensity profile that is analyzed to determine the membrane-bound and cytoplasmic concentrations of a peripheral membrane protein labeled by the enhanced green fluorescent protein (EGFP). The membrane binding curve is constructed by mapping those concentrations for a population of cells with a wide range of protein expression levels, and a fit of the binding curve determines the number of binding sites and the dissociation coefficient. We experimentally verified the technique, using myosin-1C-EGFP as a model system and fit its binding curve. Furthermore, we studied the protein-lipid interactions of the membrane binding domains from lactadherin and phospholipase C-δ1 to evaluate the feasibility of using competition binding experiments to identify specific lipid-protein interactions in living cells. Finally, we applied the technique to determine the lipid specificity, the number of binding sites, and the dissociation coefficient of membrane binding for the Gag matrix domain of human T-lymphotropic virus type 1, which provides insight into early assembly steps of the retrovirus. PMID:26039166

  7. Differences in Organizational Structure of Insulin Receptor on Rat Adipocyte and Liver Plasma Membranes: Role of Disulfide Bonds

    NASA Astrophysics Data System (ADS)

    Schweitzer, John B.; Smith, Robert M.; Jarett, Leonard

    1980-08-01

    Binding of 125I-labeled insulin to rat liver and adipocyte plasma membranes has been investigated after treatment of the membranes with agents that modify disulfide bonds or sulfhydryl groups. Dithiothreitol, a disulfide-reducing agent, produced a bimodal response in adipocyte plasma membranes with dose-dependent increases in binding occurring over the range of 0-1 mM dithiothreitol; 5 mM dithiothreitol produced decreased binding. Insulin binding reached its maximal increase at 1 mM and was 3 times control values. Scatchard analysis of the 1 mM dithiothreitol effect revealed a straight line plot indicative of one class of sites with a Ka of 1.0× 108 M-1 which is intermediate between the two Kas obtained from the curvilinear Scatchard plot of control membranes. There was a 20-fold increase in the number of intermediate-affinity receptors compared to high-affinity receptors. The increased 125I-labeled insulin binding after dithiothreitol treatment was reversed by oxidized glutathione in a dose-dependent manner. Interposition of treatment with N-ethylmaleimide, an alkylating agent, prevented oxidized glutathione from reversing the dithiothreitol effect. Reduced glutathione produced the same effect as dithiothreitol. Liver plasma membranes treated with up to 1 mM dithiothreitol exhibited a maximum increase in insulin binding of 20% compared to control. Dithiothreitol at 5 mM decreased insulin binding below that of control membranes. The results indicate that the dithiothreitol effect on insulin binding to adipocyte plasma membranes is due to disruption of disulfide bonds, and that the structural organization of the insulin receptor on the plasma membranes is different for liver and for adipose tissue. The data imply that the insulin receptors on the plasma membrane of adipocytes possess at least two functionally distinct subclasses of disulfide bond but liver insulin receptors do not.

  8. b-Type Cytochromes in Higher Plant Plasma Membranes 1

    PubMed Central

    Asard, Han; Venken, Mireille; Caubergs, Roland; Reijnders, Willem; Oltmann, Fred L.; De Greef, Jan A.

    1989-01-01

    The composition and characteristics of b-type cytochromes from higher plant plasma membranes, purified using aqueous two-phase partitioning, were investigated. At least three different cytochromes were identified by their wavelength maxima and redox midpoint potentials (E0′). Cytochrome b-560.7 (E0′ from + 110 to + 160 millivolts) was present in zucchini (Cucurbita pepo) hypocotyls and bean (Phaseolus vulgaris L.) hooks, although in different concentrations. The main component in cauliflower (Brassica oleracea L.) inflorescences (cytochrome b-558.8) is probably functionally similar to this cytochrome. The plasma membrane generally contains two to three cytochrome species. However, the occurrence and concentrations were species dependent. The high potential cytochrome can be reduced by ascorbate but not NADH, and may be involved in blue light perception. PMID:16666854

  9. Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases.

    PubMed

    Crespo, Pilar M; Demichelis, Vanina Torres; Daniotti, José L

    2010-09-17

    Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli. PMID:20639193

  10. Detecting protein association at the T cell plasma membrane.

    PubMed

    Baumgart, Florian; Schütz, Gerhard J

    2015-04-01

    At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. PMID:25300585

  11. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    PubMed Central

    Babcock, Joseph J; Li, Min

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon. PMID:23685953

  12. Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine.

    PubMed

    Sun, Wujin; Ji, Wenyan; Hu, Quanyin; Yu, Jicheng; Wang, Chao; Qian, Chenggen; Hochu, Gabrielle; Gu, Zhen

    2016-07-01

    Direct delivery of cytokines using nanocarriers holds great promise for cancer therapy. However, the nanometric scale of the vehicles made them susceptible to size-dependent endocytosis, reducing the plasma membrane-associated apoptosis signaling. Herein, we report a tumor microenvironment-responsive and transformable nanocarrier for cell membrane targeted delivery of cytokine. This formulation is comprised of a phospholipase A2 (PLA2) degradable liposome as a shell, and complementary DNA nanostructures (designated as nanoclews) decorated with cytokines as the cores. Utilizing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as a model cytokine, we demonstrate that the TRAIL loaded DNA nanoclews are capable of transforming into nanofibers after PLA2 activation. The nanofibers with micro-scaled lengths efficiently present the loaded TRAIL to death receptors on the cancer cell membrane and amplified the apoptotic signaling with reduced TRAIL internalization. PMID:27131597

  13. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  14. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  15. A STIM1-dependent 'trafficking trap' mechanism regulates Orai1 plasma membrane residence and Ca²⁺ influx levels.

    PubMed

    Hodeify, Rawad; Selvaraj, Senthil; Wen, Jennifer; Arredouani, Abdelilah; Hubrack, Satanay; Dib, Maya; Al-Thani, Sara N; McGraw, Timothy; Machaca, Khaled

    2015-08-15

    The key proteins mediating store-operated Ca(2+) entry (SOCE) are the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the plasma membrane Ca(2+)-selective channel Orai1. Here, we quantitatively dissect Orai1 trafficking dynamics and show that Orai1 recycles rapidly at the plasma membrane (Kex≃0.1 min(-1)), with ∼40% of the total Orai1 pool localizing to the plasma membrane at steady state. A subset of intracellular Orai1 localizes to a sub-plasmalemal compartment. Store depletion is coupled to Orai1 plasma membrane enrichment in a STIM1-dependent fashion. This is due to trapping of Orai1 into cortical ER STIM1 clusters, leading to its removal from the recycling pool and enrichment at the plasma membrane. Interestingly, upon high STIM1 expression, Orai1 is trapped into STIM1 clusters intracellularly, thus preventing its plasma membrane enrichment following store depletion. Consistent with this, STIM1 knockdown prevents trapping of excess Orai1 into limiting STIM1 clusters in the cortical ER. SOCE-dependent Ca(2+) influx shows a similar biphasic dependence on the Orai1:STIM1 ratio. Therefore, a STIM1-dependent Orai1 'trafficking trap' mechanism controls Orai1 plasma membrane enrichment and SOCE levels, thus modulating the SOCE 'bandwidth' for downstream signaling. PMID:26116575

  16. Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization

    PubMed Central

    Matsui, Kazuma; Yanagi, Itaru; Goto, Yusuke; Takeda, Ken-ichi

    2015-01-01

    To achieve DNA sequencing using a solid-state nanopore, it is necessary to reduce the electric noise current. The noise current can be decreased by reducing the capacitance (C) of the nanopore device. However, we found that an electric-charge difference (ΔQ) between the electrolyte in one chamber and the electrolyte in another chamber occurred. For low capacitance devices, this electric-charge imbalance can lead to unexpectedly high voltage (ΔV = ΔQ/C) which disrupted the membrane when the two electrolytes were independently poured into the chambers. We elucidated the mechanism for the generation of initial defects and established new procedures for preventing the generation of defects by connecting an electric bypass between the chambers. PMID:26634995

  17. Dysferlinopathy Fibroblasts Are Defective in Plasma Membrane Repair

    PubMed Central

    Matsuda, Chie; Kiyosue, Kazuyuki; Nishino, Ichizo; Goto, Yuichi; Hayashi, Yukiko K.

    2015-01-01

    Background: Dysferlin is a sarcolemmal protein that is defective in Miyoshi myopathy and limb-girdle muscular dystrophy type 2B, and is involved in sarcolemmal repair. Primary cultured myoblasts and myotubes established from patient muscle biopsies have been widely utilized to explore the molecular mechanism of dysferlinopathy. Objectives: The purpose of this study was to explore the possible utility of dermal fibroblasts from dysferlin-deficient patients and SJL mice as a tool for studying dysferlinopathy. Methods: Dysferlin protein expression in fibroblasts from dysferlin-deficient patients and SJL mice was analyzed by immunoblotting and immunocytochemistry. The membrane wound-repair assay was performed on the fibroblasts using a confocal microscope equipped with a UV-laser. The membrane blebbing assay using hypotonic shock, in which normal membrane blebbing is detected only in the presence of dysferlin, was also performed using human and mouse fibroblasts. Results: Mis-sense mutated dysferlin was expressed at a very low level in fibroblasts from a dysferlinopathy patient, and lower expression level of truncated dysferlin was observed in SJL mouse fibroblast. Fibroblasts from patients with dysferlinopathy and SJL mice showed attenuated membrane repair and did not form membrane blebs in response to hypoosmotic shock. Proteosomal inhibitior increased mis-sense mutated or truncated dysferlin levels, and restored membrane blebbing, however, proteosomal inhibition failed to improve levels of dysferlin with non-sense or frame-shift mutation. Conclusion: Fibroblasts from dysferlinopathy patients and SJL mice showed attenuated plasma membrane repair, and could be a tool for studying dysferlinopathy. PMID:26579332

  18. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  19. A Single Divergent Exon Inhibits Ankyrin-B Association with the Plasma Membrane

    PubMed Central

    He, Meng; Tseng, Wei-Chou; Bennett, Vann

    2013-01-01

    Vertebrate ankyrin-B and ankyrin-G exhibit divergent subcellular localization and function despite their high sequence and structural similarity and common origin from a single ancestral gene at the onset of chordate evolution. Previous studies of ankyrin family diversity have focused on the C-terminal regulatory domain. Here, we identify an ankyrin-B-specific linker peptide connecting the ankyrin repeat domain to the ZU52-UPA module that inhibits binding of ankyrin-B to membrane protein partners E-cadherin and neurofascin 186 and prevents association of ankyrin-B with epithelial lateral membranes as well as neuronal plasma membranes. The residues of the ankyrin-B linker required for autoinhibition are encoded by a small exon that is highly divergent between ankyrin family members but conserved in the ankyrin-B lineage. We show that the ankyrin-B linker suppresses activity of the ANK repeat domain through an intramolecular interaction, likely with a groove on the surface of the ANK repeat solenoid, thereby regulating the affinities between ankyrin-B and its binding partners. These results provide a simple evolutionary explanation for how ankyrin-B and ankyrin-G have acquired striking differences in their plasma membrane association while maintaining overall high levels of sequence similarity. PMID:23569209

  20. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast.

    PubMed Central

    Rayner, J C; Pelham, H R

    1997-01-01

    Sorting of membrane proteins between compartments of the secretory pathway is mediated in part by their transmembrane domains (TMDs). In animal cells, TMD length is a major factor in Golgi retention. In yeast, the role of TMD signals is less clear; it has been proposed that membrane proteins travel by default to the vacuole, and are prevented from doing so by cytoplasmic signals. We have investigated the targeting of the yeast endoplasmic reticulum (ER) t-SNARE Ufe1p. We show that the amino acid sequence of the Ufe1p TMD is important for both function and ER targeting, and that the requirements for each are distinct. Targeting is independent of Rer1p, the only candidate sorting receptor for TMD sequences currently known. Lengthening the Ufe1p TMD allows transport along the secretory pathway to the vacuole or plasma membrane. The choice between these destinations is determined by the length and composition of the TMD, but not by its precise sequence. A longer TMD is required to reach the plasma membrane in yeast than in animal cells, and shorter TMDs direct proteins to the vacuole. TMD-based sorting is therefore a general feature of the yeast secretory pathway, but occurs by different mechanisms at different points. PMID:9155009

  1. Lysosomal involvement in cellular turnover of plasma membrane sphingomyelin.

    PubMed

    Sutrina, S L; Chen, W W

    1984-04-18

    At least two isoenzymes of sphingomyelinase (sphingomyelin cholinephosphohydrolase, EC 3.1.4.12), including lysosomal acid sphingomyelinase and nonlysosomal magnesium-dependent neutral sphingomyelinase, catalyse the degradation of sphingomyelin in cultured human skin fibroblasts. A genetically determined disorder of sphingomyelin metabolism, type A Niemann-Pick disease, is characterized by a deficiency of lysosomal acid sphingomyelinase. To investigate the involvement of lysosomes in the degradation of cellular membrane sphingomyelin, we have undertaken studies to compare the turnover of plasma membrane sphingomyelin in fibroblasts from a patient with type A Niemann-Pick disease, which completely lack acid sphingomyelinase activity but retain nonlysosomal neutral sphingomyelinase activity, with turnover in fibroblasts from normal individuals. Plasma membrane sphingomyelin was labeled by incubating cells at low temperature with phosphatidylcholine vesicles containing radioactive sphingomyelin. A fluorescent analog of sphingomyelin, N-4-nitrobenzo-2-oxa-1,3-diazoleaminocaproyl sphingosylphosphorylcholine (NBD-sphingomyelin) is seen to be readily transferred at low temperature from phosphatidylcholine liposomes to the plasma membranes of cultured human fibroblasts. Moreover, when kinetic studies were done in parallel, a constant ratio of [14C]oleoylsphingosylphosphorylcholine ( [14C]sphingomyelin) to NBD-sphingomyelin was taken up at low temperature by the fibroblast cells, suggesting that [14C]sphingomyelin undergoes a similar transfer. The comparison of sphingomyelin turnover at 37 degrees C in normal fibroblasts compared to Niemann-Pick diseased fibroblasts shows that a rapid turnover of plasma membrane-associated sphingomyelin within the first 30 min appears to be similar in both normal and Niemann-Pick diseased cells. This rapid turnover appears to be primarily due to rapid removal of the [14C]sphingomyelin from the cell surface into the incubation medium. During

  2. Approaches for plasma membrane wounding and assessment of lysosome-mediated repair responses

    PubMed Central

    Corrotte, M.; Castro-Gomes, T.; Koushik, A.B.; Andrews, N.W.

    2016-01-01

    Rapid plasma membrane repair is essential to restore cellular homeostasis and improve cell survival after injury. Several mechanisms for plasma membrane repair have been proposed, including formation of an intracellular vesicle patch, reduction of plasma membrane tension, lesion removal by endocytosis, and/or shedding of the wounded membrane. Under all conditions studied to date, plasma membrane repair is strictly dependent on the entry of calcium into cells, from the extracellular medium. Calcium-dependent exocytosis of lysosomes is an important early step in the plasma membrane repair process, and defects in plasma membrane repair have been observed in cells carrying mutations responsible for serious lysosomal diseases, such as Chediak–Higashi (Huynh, Roth, Ward, Kaplan, & Andrews, 2004) and Niemann–Pick Disease type A (Tam et al., 2010). A functional role for release of the lysosomal enzyme acid sphingomyelinase, which generates ceramide on the cell surface and triggers endocytosis, has been described (Corrotte et al., 2013; Tam et al., 2010). Therefore, procedures for measuring the extent of lysosomal fusion with the plasma membrane of wounded cells are important indicators of the cellular repair response. The importance of carefully selecting the methodology for experimental plasma membrane injury, in order not to adversely impact the membrane repair machinery, is becoming increasingly apparent. Here, we describe physiologically relevant methods to induce different types of cellular wounds, and sensitive assays to measure the ability of cells to secrete lysosomes and reseal their plasma membrane. PMID:25665445

  3. A specific gastrin receptor on plasma membranes of antral smooth muscle.

    PubMed

    Baur, S; Bacon, V C

    1976-12-20

    Plasma membranes with a 17 fold enrichment in 5'-nucleotidase over homogenate were prepared from antral smooth muscle. A specific gastrin receptor on the plasma membranes has been demonstrated. By Scatchard analysis receptor has a Kaff of 2x10(9)M(-1) and a binding capacity of 5x10(-14) moles/mg of membrane protein. PMID:15625862

  4. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium

    PubMed Central

    Milenkovic, Ljiljana

    2009-01-01

    The function of primary cilia depends critically on the localization of specific proteins in the ciliary membrane. A major challenge in the field is to understand protein trafficking to cilia. The Hedgehog (Hh) pathway protein Smoothened (Smo), a 7-pass transmembrane protein, moves to cilia when a ligand is received. Using microscopy-based pulse-chase analysis, we find that Smo moves through a lateral transport pathway from the plasma membrane to the ciliary membrane. Lateral movement, either via diffusion or active transport, is quite distinct from currently studied pathways of ciliary protein transport in mammals, which emphasize directed trafficking of Golgi-derived vesicles to the base of the cilium. We anticipate that this alternative route will be used by other signaling proteins that function at cilia. The path taken by Smo may allow novel strategies for modulation of Hh signaling in cancer and regeneration. PMID:19948480

  5. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    SciTech Connect

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  6. Reducing Plasma Membrane Sphingomyelin Increases Insulin Sensitivity ▿

    PubMed Central

    Li, Zhiqiang; Zhang, Hongqi; Liu, Jing; Liang, Chien-Ping; Li, Yan; Li, Yue; Teitelman, Gladys; Beyer, Thomas; Bui, Hai H.; Peake, David A.; Zhang, Youyan; Sanders, Phillip E.; Kuo, Ming-Shang; Park, Tae-Sik; Cao, Guoqing; Jiang, Xian-Cheng

    2011-01-01

    It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity. PMID:21844222

  7. Plasma membrane domains participate in pH banding of Chara internodal cells.

    PubMed

    Schmölzer, Patric M; Höftberger, Margit; Foissner, Ilse

    2011-08-01

    We investigated the identity and distribution of cortical domains, stained by the endocytic marker FM 1-43, in branchlet internodal cells of the characean green algae Chara corallina and Chara braunii. Co-labeling with NBD C(6)-sphingomyelin, a plasma membrane dye, which is not internalized, confirmed their location in the plasma membrane, and co-labelling with the fluorescent pH indicator Lysotracker red indicated an acidic environment. The plasma membrane domains co-localized with the distribution of an antibody against a proton-translocating ATPase, and electron microscopic data confirmed their identity with elaborate plasma membrane invaginations known as charasomes. The average size and the distribution pattern of charasomes correlated with the pH banding pattern of the cell. Charasomes were larger and more frequent at the acidic regions than at the alkaline bands, indicating that they are involved in outward-directed proton transport. Inhibition of photosynthesis by DCMU prevented charasome formation, and incubation in pH buffers resulted in smaller, homogenously distributed charasomes irrespective of whether the pH was clamped at 5.5 or 8.5. These data indicate that the differential size and distribution of charasomes is not due to differences in external pH but reflects active, photosynthesis-dependent pH banding. The fact that pH banding recovered within several minutes in unbuffered medium, however, confirms that pH banding is also possible in cells with evenly distributed charasomes or without charasomes. Cortical mitochondria were also larger and more abundant at the acid bands, and their intimate association with charasomes and chloroplasts suggests an involvement in carbon uptake and photorespiration. PMID:21659328

  8. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity. PMID:27141548

  9. Reconstitution of a plasma-membrane H(+)-ATPase into bilayer lipid membrane.

    PubMed

    Ziegler, W; Slayman, C L; Cartwright, C P

    1993-10-01

    The plasma membrane H(+)-ATPase of Neurospora has been reconstituted into planar lipid bilayer membranes by means of the vesicle-fusion technique described by Finkelstein and his collaborators (Zimmerberg et al., 1980; Cohen et al., 1980, 1984; Akabas et al., 1984). Enzyme was first transferred from isolated plasma membrane fragments into asolectin vesicles by a detergent-dialysis procedure (Perlin et al., 1984). After H(+)-pumping activity had been checked by quenching of acridine orange fluorescence, the vesicles were fused into performed bilayers. Critical features of the fusion process include (i) attachment of the vesicles to the bilayer in the presence of divalent cations (Mg++), and (ii) rapid osmotic swelling, which was enhanced by prior sonication or freeze-thawing of the vesicles, and/or by inclusions of physiologic channels. Enough proton pumps could be thus incorporated into bilayers to achieve ATP-driven, vanadate-sensitive currents of 0.04-0.4 pA. Aqueous solutions of low ionic strength were used to suppress conductance fluctuations due to the channels, and when that precaution was taken, we could demonstrate the proton pump the work against membrane potentials of at least 50 mV. PMID:8181690

  10. Solute removal capacity of high cut-off membrane plasma separators.

    PubMed

    Ohkubo, Atsushi; Kurashima, Naoki; Nakamura, Ayako; Miyamoto, Satoko; Iimori, Soichiro; Rai, Tatemitsu

    2013-10-01

    In vitro blood filtration was performed by a closed circuit using high cut-off membrane plasma separators, EVACURE EC-2A10 (EC-2A) and EVACURE EC-4A10 (EC-4A). Samples were obtained from sampling sites before the plasma separator, after each plasma separator, and from the ultrafiltrate of each separator. The sieving coefficient (S.C.) of total protein (TP), albumin (Alb), IgG, interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), fibrinogen (Fib), antithrombin III (AT-III), and coagulation factor XIII (FXIII) were calculated. The S.C. of each solute using EC-2A and EC-A4 were as follows; TP: 0.25 and 0.56, Alb: 0.32 and 0.73, IgG: 0.16 and 0.50, IL-6:0.73 and 0.95, IL-8:0.85 and 0.82, TNF-α: 1.07 and 0.99, Fib: 0 and 0, FXIII: 0.07 and 0.17, respectively. When compared with the conventional type of membrane plasma separators, EVACURE could efficiently remove cytokines while retaining coagulation factors such as fibrinogen. Moreover, EC-2A prevented protein loss, whereas EC-4A could remove approximately 50% of IgG. PMID:24107276

  11. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  12. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  13. METHOD TO PREVENT SULFUR ACCUMULATION INSIDE MEMBRANE ELECTRODE ASSEMBLY

    SciTech Connect

    Steimke, J.; Steeper, T.; Herman, D.; Colon-Mercado, H.; Elvington, M.

    2009-06-22

    HyS is conceptually the simplest of the thermochemical cycles and involves only sulfur chemistry. In the HyS Cycle hydrogen gas (H{sub 2}) is produced at the cathode of the electrochemical cell (or electrolyzer). Sulfur dioxide (SO{sub 2}) is oxidized at the anode to form sulfuric acid (H{sub 2}SO{sub 4}) and protons (H{sup +}) as illustrated below. A separate high temperature reaction decomposes the sulfuric acid to water and sulfur dioxide which are recycled to the electrolyzers, and oxygen which is separated out as a secondary product. The electrolyzer includes a membrane that will allow hydrogen ions to pass through but block the flow of hydrogen gas. The membrane is also intended to prevent other chemical species from migrating between electrodes and undergoing undesired reactions that could poison the cathode or reduce overall process efficiency. In conventional water electrolysis, water is oxidized at the anode to produce protons and oxygen. The standard cell potential for conventional water electrolysis is 1.23 volts at 25 C. However, commercial electrolyzers typically require higher voltages ranging from 1.8 V to 2.6 V [Kirk-Othmer, 1991]. The oxidation of sulfur dioxide instead of water in the HyS electrolyzer occurs at a much lower potential. For example, the standard cell potential for sulfur dioxide oxidation at 25 C in 50 wt % sulfuric acid is 0.29 V [Westinghouse, 1980]. Since power consumption by the electrolyzers is equal to voltage times current, and current is proportional to hydrogen production, a large reduction in voltage results in a large reduction in electrical power cost per unit of hydrogen generated.

  14. Preventing Clogging In A Vacuum Plasma Spray Gun

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Daniel, Ronald L., Jr.; Davis, William M.

    1994-01-01

    Modification of powder-injection ports enables lengthy, high-temperature deposition operations. Graphite inserts prevent clogging of ports through which copper powder injected into vacuum plasma spray (VPS) gun. Graphite liners eliminate need to spend production time refurbishing VPS gun, reducing cost of production and increasing productivity. Concept also applied to other material systems used for net-shape fabrication via VPS.

  15. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  16. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat

    PubMed Central

    Danyluk, J; Perron, A; Houde, M; Limin, A; Fowler, B; Benhamou, N; Sarhan, F

    1998-01-01

    Expression of the acidic dehydrin gene wcor410 was found to be associated with the development of freezing tolerance in several Gramineae species. This gene is part of a family of three homologous members, wcor410, wcor410b, and wcor410c, that have been mapped to the long arms of the homologous group 6 chromosomes of hexaploid wheat. To gain insight into the function of this gene family, antibodies were raised against the WCOR410 protein and affinity purified to eliminate cross-reactivity with the WCS120 dehydrin-like protein of wheat. Protein gel blot analyses showed that the accumulation of WCOR410 proteins correlates well with the capacity of each cultivar to cold acclimate and develop freezing tolerance. Immunoelectron microscope analyses revealed that these proteins accumulate in the vicinity of the plasma membrane of cells in the sensitive vascular transition area where freeze-induced dehydration is likely to be more severe. Biochemical fractionation experiments indicated that WCOR410 is a peripheral protein and not an integral membrane protein. These results provide direct evidence that a subtype of the dehydrin family accumulates near the plasma membrane. The properties, abundance, and localization of these proteins suggest that they are involved in the cryoprotection of the plasma membrane against freezing or dehydration stress. We propose that WCOR410 plays a role in preventing the destabilization of the plasma membrane that occurs during dehydrative conditions. PMID:9548987

  17. Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae.

    PubMed

    Navarre, Catherine; Degand, Hervé; Bennett, Keiryn L; Crawford, Janne S; Mørtz, Ejvind; Boutry, Marc

    2002-12-01

    As a consequence of their poor solubility during isoelectric focusing, integral membrane proteins are generally absent from two-dimensional gel proteome maps. In order to analyze the yeast plasma membrane proteome, a plasma membrane purification protocol was optimized in order to reduce contaminating membranes and cytosolic proteins. Specifically, the new fractionation scheme largely depleted the plasma membrane fraction of cytosolic proteins by deoxycholate stripping and ribosomal proteins by sucrose gradient flotation. The plasma membrane complement was resolved by two-dimensional electrophoresis using the cationic detergent cetyl trimethyl ammonium bromide in the first, and sodium dodecyl sulfate in the second dimension, and fifty spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectometry. In spite of the presence of still contaminating ribosomal proteins, major proteins corresponded to known plasma membrane residents, the ABC transporters Pdr5p and Snq2p, the P-type H(+)-ATPase Pma1p, the glucose transporter Hxt7p, the seven transmembrane-span Mrh1p, the low affinity Fe(++) transporter Fet4p, the twelve-span Ptr2p, and the plasma membrane anchored casein kinase Yck2p. The four transmembrane-span proteins Sur7p and Nce102p were also present in the isolated plasma membranes, as well as the unknown protein Ygr266wp that probably contains a single transmembrane span. Thus, combining subcellular fractionation with adapted two-dimensional electrophoresis resulted in the identification of intrinsic plasma membrane proteins. PMID:12469340

  18. Induction of stable ER–plasma-membrane junctions by Kv2.1 potassium channels

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Akin, Elizabeth J.; Seel, Peter J.; Krapf, Diego; Tamkun, Michael M.

    2015-01-01

    ABSTRACT Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER–plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K+ channel in the mammalian brain, induces the formation of ER–plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER–plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER–plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca2+ signaling. PMID:25908859

  19. Induction of stable ER-plasma-membrane junctions by Kv2.1 potassium channels.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Akin, Elizabeth J; Seel, Peter J; Krapf, Diego; Tamkun, Michael M

    2015-06-01

    Junctions between cortical endoplasmic reticulum (cER) and the plasma membrane are a subtle but ubiquitous feature in mammalian cells; however, very little is known about the functions and molecular interactions that are associated with neuronal ER-plasma-membrane junctions. Here, we report that Kv2.1 (also known as KCNB1), the primary delayed-rectifier K(+) channel in the mammalian brain, induces the formation of ER-plasma-membrane junctions. Kv2.1 localizes to dense, cell-surface clusters that contain non-conducting channels, indicating that they have a function that is unrelated to membrane-potential regulation. Accordingly, Kv2.1 clusters function as membrane-trafficking hubs, providing platforms for delivery and retrieval of multiple membrane proteins. Using both total internal reflection fluorescence and electron microscopy we demonstrate that the clustered Kv2.1 plays a direct structural role in the induction of stable ER-plasma-membrane junctions in both transfected HEK 293 cells and cultured hippocampal neurons. Glutamate exposure results in a loss of Kv2.1 clusters in neurons and subsequent retraction of the cER from the plasma membrane. We propose Kv2.1-induced ER-plasma-membrane junctions represent a new macromolecular plasma-membrane complex that is sensitive to excitotoxic insult and functions as a scaffolding site for both membrane trafficking and Ca(2+) signaling. PMID:25908859

  20. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    PubMed Central

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  1. A Plasma Membrane Association Module in Yeast Amino Acid Transporters.

    PubMed

    Popov-Čeleketić, Dušan; Bianchi, Frans; Ruiz, Stephanie J; Meutiawati, Febrina; Poolman, Bert

    2016-07-29

    Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM. PMID:27226538

  2. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  3. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases. PMID:20037196

  4. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions. PMID:26721276

  5. Polyamine Binding to Plasma Membrane Vesicles Isolated from Zucchini Hypocotyls.

    PubMed Central

    Tassoni, A.; Antognoni, F.; Bagni, N.

    1996-01-01

    The general features of [14C]spermidine binding to plasmalemma vesicles isolated from zucchini (Cucurbita pepo L.) etiolated hypocotyls are reported in the present paper. The specific interaction of the polyamine with the plasma membranes was reversible and thermolabile, since it decreased by about 50% in the assay performed at 40[deg]C compared to that carried out on ice. On the contrary, nonspecific binding was unaffected by temperature. Specific spermidine binding showed a pH dependence with a maximum at pH 8.0 and it reached saturation between 0.75 and 1 mM external spermidine concentration. The value of the dissociation constant calculated from Scatchard analysis was 4.4 x 10-5 M. Specific spermidine interaction appeared to be sensitive to detergents and was markedly reduced by the presence of divalent cations, such as Mg2+ and Ca2+, whereas it was stimulated by monovalent cations. Polyamine binding sites were highly sensitive to pronase treatment. Competition experiments, performed using a series of compounds structurally related to spermidine, may provide some indication of the characteristics of spermidine binding sites. The results presented here suggest that specific spermidine binding occurs mainly with the protein component of the plasma membrane. PMID:12226221

  6. Supramolecular architecture of endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén

    2016-04-15

    The endoplasmic reticulum (ER) forms membrane contact sites (MCS) with most other cellular organelles and the plasma membrane (PM). These ER-PM MCS, where the membranes of the ER and PM are closely apposed, were discovered in the early days of electron microscopy (EM), but only recently are we starting to understand their functional and structural diversity. ER-PM MCS are nowadays known to mediate excitation-contraction coupling (ECC) in striated muscle cells and to play crucial roles in Ca(2+)and lipid homoeostasis in all metazoan cells. A common feature across ER-PM MCS specialized in different functions is the preponderance of cooperative phenomena that result in the formation of large supramolecular assemblies. Therefore, characterizing the supramolecular architecture of ER-PM MCS is critical to understand their mechanisms of function. Cryo-electron tomography (cryo-ET) is a powerful EM technique uniquely positioned to address this issue, as it allows 3D imaging of fully hydrated, unstained cellular structures at molecular resolution. In this review I summarize our current structural knowledge on the molecular organization of ER-PM MCS and its functional implications, with special emphasis on the emerging contributions of cryo-ET. PMID:27068966

  7. Fluconazole treatment hyperpolarizes the plasma membrane of Candida cells.

    PubMed

    Elicharova, Hana; Sychrova, Hana

    2013-11-01

    Five pathogenic Candida species were compared in terms of their osmotolerance, tolerance to toxic sodium and lithium cations, and resistance to fluconazole. The species not only differed, in general, in their tolerance to high osmotic pressure (C. albicans and C. parapsilosis being the most osmotolerant) but exhibited distinct sensitivities to toxic sodium and lithium cations, with C. parapsilosis and C. tropicalis being very tolerant but C. krusei and C. dubliniensis sensitive to LiCl. The treatment of both fluconazole-susceptible (C. albicans and C. parapsilosis) and fluconazole-resistant (C. dubliniensis, C. krusei and C. tropicalis) growing cells with subinhibitory concentrations of fluconazole resulted in substantially elevated intracellular Na(+) levels. Using a diS-C3(3) assay, for the first time, to monitor the relative membrane potential (ΔΨ) of Candida cells, we show that the fluconazole treatment of growing cells of all five species results in a substantial hyperpolarization of their plasma membranes, which is responsible for an increased non-specific transport of toxic alkali metal cations and other cationic drugs (e.g., hygromycin B). Thus, the combination of relatively low doses of fluconazole and drugs, whose import into the tested Candida strains is driven by the cell membrane potential, might be especially potent in terms of its ability to inhibit the growth of or even kill various Candida species. PMID:23547882

  8. Protein diffusion in plant cell plasma membranes: the cell-wall corral

    PubMed Central

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment. PMID:24381579

  9. Assembly and Comparison of Plasma Membrane SNARE Acceptor Complexes.

    PubMed

    Kreutzberger, Alex J B; Liang, Binyong; Kiessling, Volker; Tamm, Lukas K

    2016-05-24

    Neuronal exocytotic membrane fusion occurs on a fast timescale and is dependent on interactions between the vesicle SNARE synaptobrevin-2 and the plasma membrane SNAREs syntaxin-1a and SNAP-25 with a 1:1:1 stoichiometry. Reproducing fast fusion rates as observed in cells by reconstitution in vitro has been hindered by the spontaneous assembly of a 2:1 syntaxin-1a:SNAP-25 complex on target membranes that kinetically alters the binding of synaptobrevin-2. Previously, an artificial SNARE acceptor complex consisting of 1:1:1 syntaxin-1a(residues 183-288):SNAP-25:syb(residues 49-96) was found to greatly accelerate the rates of lipid mixing of reconstituted target and vesicle SNARE proteoliposomes. Here we present two (to our knowledge) new procedures to assemble membrane-bound 1:1 SNARE acceptor complexes that produce fast and efficient fusion without the need of the syb(49-96) peptide. In the first procedure, syntaxin-1a is purified in a strictly monomeric form and subsequently assembled with SNAP-25 in detergent with the correct 1:1 stoichiometry. In the second procedure, monomeric syntaxin-1a and dodecylated (d-)SNAP-25 are separately reconstituted into proteoliposomes and subsequently assembled in the plane of merged target lipid bilayers. Examining single particle fusion between synaptobrevin-2 proteoliposomes and planar-supported bilayers containing the two different SNARE acceptor complexes revealed similar fast rates of fusion. Changing the stoichiometry of syntaxin-1a and d-SNAP-25 in the target bilayer had significant effects on docking, but little effect on the rates of synaptobrevin-2 proteoliposome fusion. PMID:27178662

  10. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes

    PubMed Central

    Zak, Elena; Norling, Birgitta; Maitra, Radhashree; Huang, Fang; Andersson, Bertil; Pakrasi, Himadri B.

    2001-01-01

    During oxygenic photosynthesis in cyanobacteria and chloroplasts of plants and eukaryotic algae, conversion of light energy to biologically useful chemical energy occurs in the specialized thylakoid membranes. Light-induced charge separation at the reaction centers of photosystems I and II, two multisubunit pigment-protein complexes in the thylakoid membranes, energetically drive sequential photosynthetic electron transfer reactions in this membrane system. In general, in the prokaryotic cyanobacterial cells, the thylakoid membrane is distinctly different from the plasma membrane. We have recently developed a two-dimensional separation procedure to purify thylakoid and plasma membranes from the genetically widely studied cyanobacterium Synechocystis sp. PCC 6803. Immunoblotting analysis demonstrated that the purified plasma membrane contained a number of protein components closely associated with the reaction centers of both photosystems. Moreover, these proteins were assembled in the plasma membrane as chlorophyll-containing multiprotein complexes, as evidenced from nondenaturing green gel and low-temperature fluorescence spectroscopy data. Furthermore, electron paramagnetic resonance spectroscopic analysis showed that in the partially assembled photosystem I core complex in the plasma membrane, the P700 reaction center was capable of undergoing light-induced charge separation. Based on these data, we propose that the plasma membrane, and not the thylakoid membrane, is the site for a number of the early steps of biogenesis of the photosynthetic reaction center complexes in these cyanobacterial cells. PMID:11687660

  11. The Plasma Membrane Ca2+ ATPase and the Plasma Membrane Sodium Calcium Exchanger Cooperate in the Regulation of Cell Calcium

    PubMed Central

    Brini, Marisa; Carafoli, Ernesto

    2011-01-01

    Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX) are the two mechanisms responsible for Ca2+ extrusion. The NCX has low Ca2+ affinity but high capacity for Ca2+ transport, whereas the PMCA has a high Ca2+ affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca2+, and the NCX the dynamic role of counteracting large cytosolic Ca2+ variations (especially in excitable cells). This view of the roles of the two Ca2+ extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca2+ regulation (in the 100 nM range) and the Ca2+ transients generated by cell stimulation (in the μM range). PMID:21421919

  12. Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts.

    PubMed

    Roche, Yann; Gerbeau-Pissot, Patricia; Buhot, Blandine; Thomas, Dominique; Bonneau, Laurent; Gresti, Joseph; Mongrand, Sébastien; Perrier-Cornet, Jean-Marie; Simon-Plas, Françoise

    2008-11-01

    Involvement of sterols in membrane structural properties has been extensively studied in model systems but rarely assessed in natural membranes and never investigated for the plant plasma membrane (PM). Here, we address the question of the role of phytosterols in the organization of the plant PM. The sterol composition of tobacco BY-2 cell PM was determined by gas chromatography. The cyclic oligosaccharide methyl-beta-cyclodextrin, commonly used in animal cells to decrease cholesterol levels, caused a drastic reduction (50%) in the PM total free sterol content of the plant material, without modification in amounts of steryl-conjugates. Fluorescence spectroscopy experiments using DPH, TMA-DPH, Laurdan, and di-4-ANEPPDHQ indicated that such a depletion in sterol content increased lipid acyl chain disorder and reduced the overall liquid-phase heterogeneity in correlation with the disruption of phytosterol-rich domains. Methyl-beta-cyclodextrin also prevented isolation of a PM fraction resistant to solubilization by nonionic detergents, previously characterized in tobacco, and induced redistribution of the proteic marker of this fraction, NtrbohD, within the membrane. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of higher plant cells and suggest that they are key compounds for the formation of plant PM microdomains. PMID:18676403

  13. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    PubMed

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously. PMID:26369275

  14. Gastric explosion induced by argon plasma coagulation and prevention strategies.

    PubMed

    Freiman, John Saul; Hampe, Toni

    2014-12-01

    We describe the occurrence of an iatrogenic explosion induced by argon plasma coagulation in a 70-year-old man undergoing gastroscopy. Combustible gases in the stomach may have been released by bacterial overgrowth as a result of partial gastric outlet obstruction (caused by a gastric tumor) and reduced acidity (from proton pump inhibitor therapy). We propose a stepwise process during upper endoscopy to prevent this devastating complication, comprising aspiration, preinsufflation with CO2, and then coagulation. PMID:25041867

  15. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane.

    PubMed

    Wen, Peter J; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N; Jin, Albert; Liu, Allen P; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  16. Complement-mediated production of plasma-membrane vesicles from rat fat-cells.

    PubMed

    Richardson, P J; Luzio, J P

    1980-03-15

    1. Rat isolated fat-cells were coated with rabbit anti-(rat erythrocyte) antibody and incubated with fresh guinea-pig serum for 25 min at 37 degrees C, which resulted in a more than 95% release of the cytosolic enzyme lactate dehydrogenase. 2. Under these conditions fragmentation of the plasma membrane was examined by following the plasma-membrane markers 5'-nucleotidase, adrenaline-sensitive adenylate cyclase and membrane-bound rabbit immunoglobulin G through a differential-centrifugation fractionation procedure. 3. Approx. 50% of the plasma-membrane markers remained associated with triacylglycerol. Of the remainder more than half was pelleted by centrifugation at 10 000 g for 30 min. 4. The 10 000 g supernatant was fractionated by centrifugation on a sucrose density gradient (15-50%, w/w). This procedure resulted in the production of two visible white bands on the density gradient. The bands consisted of vesicles derived from the plasma membrane, since they coincided with peaks of 5'-nucleotidase activity, contained membrane-bound immunoglobulin G and the denser one had adenylate cyclase activity. The phospholipid and protein contents of the vesicles were determined and compared with those in purified plasma membrane. 5. It is suggested that complement-mediated lysis of rat fat-cells caused the production of plasma-membrane vesicles that differ in composition from the whole plasma membrane. PMID:6249263

  17. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings. PMID:25087500

  18. The isolation and partial characterization of the plasma membrane from Trypanosoma brucei.

    PubMed

    Voorheis, H P; Gale, J S; Owen, M J; Edwards, W

    1979-04-15

    Whole sheets of plasma membrane, each with their attached flagellum, were purified from Trypanosoma brucei. The method devised for their isolation included a new technique of cell breakage that used a combination of osmotic stress followed by mechanical sheer and avoided the problem of extreme vesiculation as well as the trapping of organelles in cell 'ghosts'. The purified membranes all contained the pellicular microtubular array. The antigenic surface coat was completely released from the plasma membrane during the isolation procedure. The membranes had a very high cholesterol/phospholipid ratio (1.54). A large proportion (42%) of the cellular DNA was recovered in the plasma-membrane fraction unless a step involving deoxyribonuclease treatment, which decreased the DNA content to less than 13%, was included before secrose-density gradient centrifugation. This step also aided the separation of plasma membranes from other cellular components. The ouabain-sensitive Na+ + K+-stimulated adenosine triphosphatase and adenylate cyclase co-purified with the plasma membranes. Although 5'-nucleotidase was thought to be a plasma-membrane component, it was easily detached from the membrane. The purified membranes were essentially free of L-alanine-alpha-oxoglutarate aminotransferase, L-asparte-alpha-oxoglutarate aminotransferase, malate dehydrogenase, oligomycin-sensitive adenosine triphosphatase, glucose 6-phosphatase, Mg2+-stimulated p-nitrophenyl phosphatase and catalase. PMID:486094

  19. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  20. Thymocyte plasma membrane: the location of specific glucocorticoid binding sites

    SciTech Connect

    Sergeev, P.V.; Kalinin, G.V.; Dukhanin, A.S.

    1987-01-01

    In modern molecular endocrinology it is now possible to determine the localization of receptors for biologically active substances with the aid of ligands, with high affinity for the receptor, immobilized on polymers. The purpose of this paper is to study the ability of hydrocortisone (HC), immobilized on polyvinylpyrrolidone (PVP-HC), to reduce binding of tritium-HC by thymocytes of adrenalectomized rats. It is determined that specific binding sites for HC on rat thymocytes are also accessible for PVP-HC, which, due to the fact that this immobilized version of HC does not penetrate into the cell, leads to the conclusion that the binding sites for HC itself are located in the plasma membrane.

  1. Lipid diffusion in sperm plasma membranes exposed to peroxidative injury from oxygen free radicals.

    PubMed

    Christova, Yonka; James, Peter S; Jones, Roy

    2004-07-01

    Unsaturated lipids in sperm plasma membranes are very susceptible to peroxidation when exposed to reactive oxygen species (ROS). In this investigation we have incubated ram spermatozoa in the presence of two ROS generating systems, ascorbate/FeSO4 and potassium peroxychromate (K3CrO8), and examined their effects on membrane fluidity by measuring fluorescence recovery after photobleaching (FRAP) of a lipid reporter probe 5-(N-octadecanoyl)-aminofluorescein (ODAF). Peroxidation was monitored by malonaldehyde formation and changes in fluorescence emission of 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY(581/591)). Ascorbate/FeSO4-induced peroxidation was inhibited by Vitamin E, butylated hydroxyanisole (BHA), 1,4-diazobicyclo(2,2,2)octane (DABCO), and to a lesser extent by ethanol. Added superoxide dismutase (SOD), gluthathione peroxidase (GPX), and catalase were ineffective scavengers. K3CrO8 induced very rapid peroxidation that could be delayed, but not prevented, by Vitamin E, BHT, DABCO, ethanol, and mannitol; once again SOD, GPX, and catalase were ineffective scavengers. Neither peroxidation with ascorbate/FeSO4 nor K3CrO8, or added H2O2 or malonaldehyde perturbed ODAF diffusion in any region of the sperm plasma membrane. Vitamin E tended to enhance diffusion rates. Exogenous cumene hydroperoxide, however, reduced ODAF diffusion to low levels on the sperm head. These results suggest that the adverse effects of ROS on spermatozoa are more likely to be caused by direct oxidation of proteins and membrane permeabilisation than disturbance of lipid fluidity. PMID:15112331

  2. STIM Proteins and the Endoplasmic Reticulum-Plasma Membrane Junctions

    PubMed Central

    Carrasco, Silvia; Meyer, Tobias

    2013-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca2+ levels and directly activate Orai PM Ca2+ channels across the junction space. In an inverse process, a voltage-gated PM Ca2+ channel can directly open ER ryanodine-receptor Ca2+ channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca2+ signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes. PMID:21548779

  3. Comparative Analysis of Techniques to Purify Plasma Membrane Proteins

    PubMed Central

    Weekes, Michael P.; Antrobus, Robin; Lill, Jennie R.; Duncan, Lidia M.; Hör, Simon; Lehner, Paul J.

    2010-01-01

    The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins. PMID:20808639

  4. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  5. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  6. VAMP (synaptobrevin) is present in the plasma membrane of nerve terminals.

    PubMed

    Taubenblatt, P; Dedieu, J C; Gulik-Krzywicki, T; Morel, N

    1999-10-01

    Synaptic vesicle docking and exocytosis require the specific interaction of synaptic vesicle proteins (such as VAMP/synaptobrevin) with presynaptic plasma membrane proteins (such as syntaxin and SNAP 25). These proteins form a stable, SDS-resistant, multimolecular complex, the SNARE complex. The subcellular distribution of VAMP and syntaxin within Torpedo electric organ nerve endings was studied by immunogoldlabeling of SDS-digested freeze-fracture replicas (Fujimoto, 1995). This technique allowed us to visualize large surface areas of the presynaptic plasma membrane and numerous synaptic vesicles from rapidly frozen nerve endings and synaptosomes. VAMP was found associated with synaptic vesicles, as also shown by conventional electron microscopy immunolabeling, and to the presynaptic plasma membrane (P leaflet). Syntaxin was also detected in the nerve ending plasma membrane, without gold labeling of synaptic vesicles. Comparison of gold particle densities suggests that the presynaptic plasma membrane contains 3 VAMP molecules per molecule of syntaxin. After biotinylation of intact synaptosomes, the synaptosomal plasma membrane was isolated on Streptavidin coated magnetic beads. Its antigenic content was compared to that of purified synaptic vesicles. VAMP was present in both membranes whereas syntaxin and SNAP 25 were highly enriched in the synaptosomal plasma membrane. This membrane has a low content of classical synaptic vesicle proteins (synaptophysin, SV2 and the vesicular acetylcholine transporter). The VAMP to syntaxin stoichiometry in the isolated synaptosomal membrane was estimated by comparison with purified antigens and close to 2, in accordance with morphological data. SDS-resistant SNARE complexes were detected in the isolated presynaptic membrane but absent in purified synaptic vesicles. Taken together, these results show that the presence of VAMP in the plasma membrane of nerve endings cannot result from exocytosis of synaptic vesicles, a process

  7. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma.

    PubMed

    Kitson, Alex P; Marks, Kristin A; Aristizabal Henao, Juan J; Tupling, A Russell; Stark, Ken D

    2015-12-01

    Menopause is associated with higher plasma and liver triacylglycerol (TAG) and increased risk for cardiovascular disease. Lowering TAG in menopause may be beneficial; however, the mechanism underlying menopause-induced TAG accumulation is not clear. Ovariectomy is a model for menopause and is associated with metabolic alterations and hyperphagia. This study investigated the role of hyperphagia in ovariectomy-induced increases in blood and tissue TAG, as well as differences in lipid metabolism enzymes and resting metabolic measures. It was hypothesized that prevention of hyperphagia would restore blood and tissue TAG, enzyme expression, and metabolic measures to eugonadal levels. Ovariectomized rats were fed ad libitum (OVX + AL) or pair-fed (OVX + PF) relative to sham-operated rats (SHAM) to prevent hyperphagia. OVX + AL had higher TAG concentrations in liver and plasma than SHAM (60% and 50%, respectively), and prevention of hyperphagia in OVX + PF normalized TAG concentrations to SHAM levels in liver, but not plasma. OVX + AL also had 141% higher hepatic stearoyl-CoA desaturase 1 which was almost completely normalized to SHAM levels by pair-feeding, suggesting normalization of hepatic lipid storage. In contrast, skeletal muscle carnitine palmitoyl transferase 1 was 40% lower in OVX + AL than SHAM and was intermediate in OVX + PF, suggesting lower muscle fatty acid oxidation that may underlie the higher plasma TAG in OVX. No differences were seen in energy expenditure, VO2, or VCO2. Overall, this study indicates that prevention of hyperphagia resulting from ovarian hormone withdrawal normalizes hepatic TAG to eugonadal levels but has no effect on ovariectomy-induced increases in plasma TAG. PMID:26475180

  8. Removal of toxic substances by a selective membrane plasma separator.

    PubMed

    Nakae, Hajime; Hattori, Tomoko; Igarashi, Toshiko; Okuyama, Manabu; Tajimi, Kimitaka

    2014-06-01

    We devised a method of plasma exchange with dialysis (PED), in which selective plasma exchange (sPE) is performed using a selective membrane plasma separator (EC-2A) with an albumin-sieving coefficient of 0.3 while the dialysate flows outside the hollow fibers, and reported the usefulness of the system for treating acute liver failure. Thereafter, EC-4A with an albumin-sieving coefficient of 0.6 was developed, which was expected to be even more effective for removing protein-bound substances. In order to examine whether or not EC-4A might be applicable to blood purification therapy against drug poisoning, we compared the efficacies of sPE, PED, and direct hemoperfusion (DHP) using an activated carbon column for the removal of phenobarbital and lithium. Subjects undergoing the extracorporeal circulation study were assigned to the sPE group, PED group, or DHP group, and the changes in the blood concentrations of phenobarbital and lithium were measured over 180 min. A significant decrease of the phenobarbital concentration over time was seen in the PED group, as compared to that in the sPE group (P < 0.0001), while no significant difference in the concentration was observed between the PED and DHP groups. The PED group showed a significant decrease of the lithium concentration over time, as compared to the DHP group (P < 0.0001), while no significant difference in the concentration was observed between the PED and sPE groups. Thus, PED was as effective as DHP for removing phenobarbital and was as effective as sPE for removing lithium. These results suggest that PED therapy using EC-4A may be a feasible modality for the treatment of drug poisoning. PMID:24965293

  9. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-05-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity. PMID:26866566

  10. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    PubMed

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs. PMID:26884614

  11. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  12. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  13. The Liver Connexin32 Interactome Is a Novel Plasma Membrane-Mitochondrial Signaling Nexus

    PubMed Central

    2013-01-01

    Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome. PMID:23590695

  14. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability.

    PubMed

    Schapire, Arnaldo L; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A

    2008-12-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness. PMID:19088329

  15. Effects of Vanadate on the Plasma Membrane ATPase of Red Beet and Corn 1

    PubMed Central

    O'Neill, Sharman D.; Spanswick, Roger M.

    1984-01-01

    The effect of vanadate on the plant plasma membrane ATPase were investigated in plasma membrane fractions derived from corn roots (Zea mays L.) and red beets (Beta vulgaris L.). The Ki for vanadate inhibition of the plasma membrane ATPase from corn roots and red beets was between 6 and 15 micromolar vanadate. In both membrane fractions, 80% to 90% of the total ATPase was inhibited at vanadate concentrations below 100 micromolar. Vanadate inhibition was optimal at pH 6.5, enhanced by the presence of K+, and was partially reversed by 1 millimolar EDTA. The Mg:ATP kinetics for the plasma membrane ATPase were hyperbolic in both the absence and presence of vanadate. Vanadate decreased both the Km and Vmax of the red beet plasma membrane ATPase, indicating that vanadate inhibits the ATPase uncompetitively. These results indicate many similarities with respect to vanadate inhibition between the plant plasma membrane ATPase and other major iontranslocating ATPases from fungal and animal cells. The high sensitivity to vanadate reported here, however, differs from other reports of vanadate inhibition of the plant plasma membrane ATPase from corn, beets, and in some instances oats. PMID:16663670

  16. Surface Modification of Polypropylene Membrane by RF Methane/Oxygen Mixture Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-Yuan; Juang, Ruey-Shin; Huang, Chun

    2011-08-01

    The hydrophilic surface modification of micro-porous polypropylene (PP) membranes is achieved by low-pressure 13.56 MHz RF methane (CH4)/oxygen (O2) gas mixture plasma treatment. The changes in surface wettability and surface free energy were examined by static contact angle analysis. The static water contact angle of the plasma modified membrane notably decreased with increases in treatment time and plasma power. The obvious increase in the surface energy of polypropylene membranes due to CH4/O2 mixture gas plasma treatments was also observed. Optical emission spectroscopy (OES) was used to analyze the chemical species of CH4/O2 mixture gas plasma treatment. The variations in the surface morphology and chemical structure of the micro-porous PP membranes were confirmed by confocal laser scanning microscopy (CLSM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) measurements. XPS analysis showed significantly higher surface concentrations of oxygen functional groups for CH4/O2 mixture gas plasma-modified polypropylene membrane surfaces than for the originally unmodified polypropylene membrane surface. The experimental results show the important role of chemical species in the interaction between a CH4/O2 mixture gas plasma and a membrane surface, which can be controlled by surface modification to tailor the hydrophilicity of the membrane to the requirements of various applications.

  17. Prevention of peritendinous adhesions with electrospun chitosan-grafted polycaprolactone nanofibrous membranes.

    PubMed

    Chen, Shih-Hsien; Chen, Chih-Hao; Fong, Yi Teng; Chen, Jyh-Ping

    2014-12-01

    As one of the common complications after tendon injury and subsequent surgery, peritendinous adhesions could be minimized by directly placing a physical barrier between the injured site and the surrounding tissue. With the aim of solving the shortcomings of current biodegradable anti-adhesion barrier membranes, we propose the use of an electrospun chitosan-grafted polycaprolactone (PCL-g-CS) nanofibrous membrane (NFM) to prevent peritendinous adhesions. After introducing carboxyl groups on the surface by oxygen plasma treatment, the polycaprolactone (PCL) NFM was covalently grafted with chitosan (CS) molecules, with carbodiimide as the coupling agent. Compared with PCL NFM, PCL-g-CS NFM showed a similar fiber diameter, permeation coefficient for bovine serum albumin, ultimate tensile strain, reduced pore diameter, lower water contact angle, increased water sorption and tensile strength. With its submicrometer pore diameter (0.6-0.9μm), both NFMs could allow the diffusion of nutrients and waste while blocking fibroblast penetration to prevent adhesion formation after tendon surgery. Cell culture experiments verified that PCL-g-CS NFM can reduce fibroblast attachment while maintaining the biocompatibility of PCL NFM, implicating a synergistic anti-adhesion effect to raise the anti-adhesion efficacy. In vivo studies with a rabbit flexor digitorum profundus tendon surgery model confirmed that PCL-g-CS NFM effectively reduced peritendinous adhesion from gross observation, histology, joint flexion angle, gliding excursion and biomechanical evaluation. An injured tendon wrapped with PCL-g-CS NFM showed the same tensile strength as the naturally healed tendon, indicating that the anti-adhesion NFM will not compromise tendon healing. PMID:25192729

  18. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  19. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  20. KIF13B regulates angiogenesis through Golgi to plasma membrane trafficking of VEGFR2

    PubMed Central

    Yamada, Kaori H.; Nakajima, Yuki; Geyer, Melissa; Wary, Kishore K.; Ushio-Fukai, Masuko; Komarova, Yulia; Malik, Asrar B.

    2014-01-01

    ABSTRACT Although the trafficking of newly synthesized VEGFR2 to the plasma membrane is a key determinant of angiogenesis, the molecular mechanisms of Golgi to plasma membrane trafficking are unknown. Here, we have identified a key role of the kinesin family plus-end molecular motor KIF13B in delivering VEGFR2 cargo from the Golgi to the endothelial cell surface. KIF13B is shown to interact directly with VEGFR2 on microtubules. We also observed that overexpression of truncated versions of KIF13B containing the binding domains that interact with VEGFR2 inhibited VEGF-induced capillary tube formation. KIF13B depletion prevented VEGF-mediated endothelial migration, capillary tube formation and neo-vascularization in mice. Impairment in trafficking induced by knockdown of KIF13B shunted VEGFR2 towards the lysosomal degradation pathway. Thus, KIF13B is an essential molecular motor required for the trafficking of VEGFR2 from the Golgi, and its delivery to the endothelial cell surface mediates angiogenesis. PMID:25128562

  1. Iron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae1

    PubMed Central

    Lesuisse, Emmanuel; Labbe, Pierre

    1992-01-01

    The ferri-reductase activity of whole cells of Saccharomyces cerevisiae (washed free from the growth medium) was markedly increased 3 to 6 h after transferring the cells from a complete growth medium (preculture) to an iron-deficient growth medium (culture). This increase was prevented by the presence of iron, copper, excess oxygen, or other oxidative agents in the culture medium. The cells with increased ferri-reductase activity had a higher reduced glutathione content and a higher capacity to expose exofacial sulfhydryl groups. Plasma membranes purified from those cells exhibited a higher reduced nicotinamide adenine phosphate (NADPH)-dependent ferri-reductase specific activity. However, the intracellular levels of NADPH, NADH, and certain organic acids of the tricarboxylic acids cycle were unchanged, and the activity of NADPH-generating enzymes was not increased. Addition of Fe(III)-EDTA to iron-deprived and iron-rich cells in resting suspension resulted in a decrease in intracellular reduced glutathione in the case of iron-deprived cells and in an increase in organic acids and a sudden oxidation of NADH in both types of cells. The depolarizing effect of Fe3+ was more pronounced in iron-rich cells. The metabolic pathways that may be involved in regulating the trans-plasma membrane electron transfer in yeast are discussed. PMID:16653057

  2. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  3. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  4. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  5. Alterations in the activities of hepatic plasma-membrane and microsomal enzymes during liver regeneration.

    PubMed Central

    Deliconstantinos, G; Ramantanis, G

    1983-01-01

    A marked increase in the activities of rat liver plasma-membrane (Na+ + K+)-stimulated ATPase and microsomal Ca2+-stimulated ATPase was observed 18h after partial hepatectomy. Lipid analyses for both membrane preparations reveal that in partially hepatectomized rats the cholesterol and sphingomyelin content are decreased with a subsequent decrease in the cholesterol/phospholipid molar ratio compared with those of sham-operated animals. Changes in the allosteric properties of plasma-membrane (Na+ + K+)-stimulated ATPase by F- (as reflected by changes in the Hill coefficient) indicated a fluidization of the lipid bilayer of both membrane preparations in 18 h-regenerating liver. The amphipathic dodecyl glucoside incorporated into the hepatic plasma membranes evoked a marked increase in the (Na+ + K+)-stimulated ATPase and 5'-nucleotidase activities. The lack of effect of the glucoside on the Lubrol-PX-solubilized 5'-nucleotidase indicates that changes in the activities of the membrane-bound enzymes caused by the glucoside are due to modulation of the membrane fluidity. Dodecyl glucoside appears to increase the membrane fluidity, evaluated through changes in the Hill coefficient for plasma-membrane (Na+ + K+)-stimulated ATPase. The biological significance of these data is discussed in terms of the differences and changes in the interaction of membrane-bound enzymes with membrane lipids during liver regeneration. PMID:6309144

  6. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Dmitriev, S. N.; Drachev, A. I.; Gilman, A. B.; Lazea, A.; Dinescu, G.

    2007-04-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control.

  7. Perspective on plasma membrane cholesterol efflux and spermatozoal function.

    PubMed

    Sheriff, Dhastagir Sultan; Ali, Elshaari Farag

    2010-05-01

    enhancing fertility, identifying and treating certain forms of male infertility, and preventing conception. One remarkable insight is the importance of membrane cholesterol efflux in initiating transmembrane signaling events that confer fertilization competence. The identity of the physiologically relevant cholesterol acceptors and modulators of cholesterol efflux is therefore of great interest. Still, it is clear that cholesterol efflux represents only a part of this story. The involvement of phospholipid translocation in mediating dynamic changes in the membrane, rendering it conducive to transmembrane signaling, and the modulation of membrane components of signal transduction cascades by cholesterol or phospholipids will yield important insights into the links between environmental sensing and transmembrane signaling in the sperm. Understanding the membrane molecular events will ultimately provide new and exciting areas of investigation for the future. PMID:21209749

  8. Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes.

    PubMed

    Luria, Ayala; Vegelyte-Avery, Vaida; Stith, Brad; Tsvetkova, Nelly M; Wolkers, Willem F; Crowe, John H; Tablin, Fern; Nuccitelli, Richard

    2002-11-01

    Microdomains known as "rafts" have been isolated from many cell types as detergent-resistant membranes (DRMs) and are enriched in sphingolipids and cholesterol. However, there has been considerable controversy over whether such domains are found in native membranes or are artificially generated by the purification procedure. This controversy is based at least in part on the fact that raft membranes were first detected following detergent extraction in the cold. We isolated two plasma membrane fractions, without detergent treatment, using a discontinuous sucrose density gradient. One fraction was designated "light" and the other "heavy." These fractions were compared with DRMs, which were isolated in the presence of 1% Triton X-100. We found that Xenopus DRMs are enriched with sphingomyelin and cholesterol and exhibit a phase state similar to the liquid-ordered phase. Comparison of DRM complexes with the light and heavy plasma membrane fractions revealed some physical and biochemical similarities between the light fraction of the plasma membrane and the DRM complexes, based on (1) the phosphatidylcholine/sphingomyelin ratio and (2) the protein composition visualized on a two-dimensional gel. These two fractions are also quite similar in their thermotropic phase behavior, and their high levels of ganglioside GM1. We conclude that the light membrane fraction isolated in a detergent-free environment has many of the characteristics normally associated with DRMs. PMID:12403620

  9. Plasma membrane growth during the cell cycle: unsolved mysteries and recent progress

    PubMed Central

    McCusker, Derek; Kellogg, Douglas R.

    2012-01-01

    Growth of the plasma membrane is as fundamental to cell reproduction as DNA replication, chromosome segregation and ribosome biogenesis, yet little is known about the underlying mechanisms. Membrane growth during the cell cycle requires mechanisms that control the initiation, location, and extent of membrane growth, as well as mechanisms that coordinate membrane growth with cell cycle progression. Recent experiments have established links between membrane growth and core cell cycle regulators. Further analysis of these links will yield insights into conserved and fundamental mechanisms of cell growth. A better understanding of the post-Golgi pathways by which membrane growth occurs will be essential for future progress. PMID:23141634

  10. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    PubMed Central

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-disordered phases in plasma membrane vesicles demonstrate this capacity within the complex milieu of plasma membrane proteins and lipids. Roles for membrane heterogeneity and reorganization in immune cell activation are discussed in light of this new information. PMID:17764993

  11. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  12. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    SciTech Connect

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi; Ohno-Iwashita, Yoshiko . E-mail: iwashita@tmig.or.jp

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.

  13. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  14. Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane

    PubMed Central

    Nemet, Ina; Tian, Guilian; Imanishi, Yoshikazu

    2014-01-01

    A diffusion barrier segregates the plasma membrane of the rod photoreceptor outer segment into 2 domains; one which is optimized for the conductance of ions in the phototransduction cascade and another for disk membrane synthesis. We propose the former to be named “phototransductive plasma membrane domain," and the latter to be named “disk morphogenic plasma membrane domain." Within the phototransductive plasma membrane, cGMP-gated channels are concentrated in striated membrane features, which are proximally located to the sites of active cGMP production within the disk membranes. For proper localization of cGMP-gated channel to the phototransductive plasma membrane, the glutamic acid-rich protein domain encoded in the β subunit plays a critical role. Quantitative study suggests that the disk morphogenic domain likely plays an important role in enriching rhodopsin prior to its sequestration into closed disk membranes. Thus, this and our previous studies provide new insight into the mechanism that spatially organizes the vertebrate phototransduction cascade. PMID:25616687

  15. Plasma membrane overgrowth causes fibrotic collagen accumulation and immune activation in Drosophila adipocytes.

    PubMed

    Zang, Yiran; Wan, Ming; Liu, Min; Ke, Hongmei; Ma, Shuangchun; Liu, Lu-Ping; Ni, Jian-Quan; Pastor-Pareja, José Carlos

    2015-01-01

    Many chronic diseases are associated with fibrotic deposition of Collagen and other matrix proteins. Little is known about the factors that determine preferential onset of fibrosis in particular tissues. Here we show that plasma membrane (PM) overgrowth causes pericellular Collagen accumulation in Drosophila adipocytes. We found that loss of Dynamin and other endocytic components causes pericellular trapping of outgoing Collagen IV due to dramatic cortex expansion when endocytic removal of PM is prevented. Deposits also form in the absence of negative Toll immune regulator Cactus, excess PM being caused in this case by increased secretion. Finally, we show that trimeric Collagen accumulation, downstream of Toll or endocytic defects, activates a tissue damage response. Our work indicates that traffic imbalances and PM topology may contribute to fibrosis. It also places fibrotic deposits both downstream and upstream of immune signaling, consistent with the chronic character of fibrotic diseases. PMID:26090908

  16. Role of Phosphatidylinositol 4,5-Bisphosphate in Regulating EHD2 Plasma Membrane Localization

    PubMed Central

    Simone, Laura C.; Caplan, Steve; Naslavsky, Naava

    2013-01-01

    The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4) play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2’s association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy), and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein. PMID:24040268

  17. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells.

    PubMed

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-07-15

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca(2+)- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations ("spiking") at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K(+) depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca(2+) concentration ([Ca(2+)]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca(2+)]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca(2+)]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  18. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells*

    PubMed Central

    Wuttke, Anne; Yu, Qian; Tengholm, Anders

    2016-01-01

    PKC signaling has been implicated in the regulation of many cell functions, including metabolism, cell death, proliferation, and secretion. Activation of conventional and novel PKC isoforms is associated with their Ca2+- and/or diacylglycerol (DAG)-dependent translocation to the plasma membrane. In β cells, exocytosis of insulin granules evokes brief (<10 s) local DAG elevations (“spiking”) at the plasma membrane because of autocrine activation of P2Y1 purinoceptors by ATP co-released with insulin. Using total internal reflection microscopy, fluorescent protein-tagged PKCs, and signaling biosensors, we investigated whether DAG spiking causes membrane recruitment of PKCs and whether different classes of PKCs show characteristic responses. Glucose stimulation of MIN6 cells triggered DAG spiking with concomitant repetitive translocation of the novel isoforms PKCδ, PKCϵ, and PKCη. The conventional PKCα, PKCβI, and PKCβII isoforms showed a more complex pattern with both rapid and slow translocation. K+ depolarization-induced PKCϵ translocation entirely mirrored DAG spiking, whereas PKCβI translocation showed a sustained component, reflecting the subplasma membrane Ca2+ concentration ([Ca2+]pm), with additional effect during DAG spikes. Interference with DAG spiking by purinoceptor inhibition prevented intermittent translocation of PKCs and reduced insulin secretion but did not affect [Ca2+]pm elevation or sustained PKCβI translocation. The muscarinic agonist carbachol induced pronounced transient PKCβI translocation and sustained recruitment of PKCϵ. When rise of [Ca2+]pm was prevented, the carbachol-induced DAG and PKCϵ responses were somewhat reduced, but PKCβI translocation was completely abolished. We conclude that exocytosis-induced DAG spikes efficiently recruit both conventional and novel PKCs to the β cell plasma membrane. PKC signaling is thus implicated in autocrine regulation of β cell function. PMID:27226533

  19. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  20. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane

    PubMed Central

    Saka, Sinem K.; Honigmann, Alf; Eggeling, Christian; Hell, Stefan W.; Lang, Thorsten; Rizzoli, Silvio O.

    2014-01-01

    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity. PMID:25060237

  1. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane

    NASA Astrophysics Data System (ADS)

    Saka, Sinem K.; Honigmann, Alf; Eggeling, Christian; Hell, Stefan W.; Lang, Thorsten; Rizzoli, Silvio O.

    2014-07-01

    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity.

  2. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    SciTech Connect

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  3. Using plasma membrane nanoclusters to build better signaling circuits.

    PubMed

    Harding, Angus S; Hancock, John F

    2008-08-01

    Cellular signaling pathways do not simply transmit data; they integrate and process signals to operate as switches, oscillators, logic gates, memory modules and many other types of control system. These complex processing capabilities enable cells to respond appropriately to the myriad of external cues that direct growth and development. The idea that crosstalk and feedback loops are used as control systems in biological signaling networks is well established. Signaling networks are also subject to exquisite spatial regulation, yet how spatial control modulates signal outputs is less well understood. Here, we explore the spatial organization of two different signal transduction circuits: receptor tyrosine kinase activation of the mitogen-activated protein kinase module; and glycosylphosphatidylinositol-anchored receptor activation of phospholipase C. With regards to these pathways, recent results have refocused attention on the crucial role of lipid rafts and plasma membrane nanodomains in signal transmission. We identify common design principals that highlight how the spatial organization of signal transduction circuits can be used as a fundamental control mechanism to modulate system outputs in vivo. PMID:18620858

  4. Cocaine induction of dopamine transporter trafficking to the plasma membrane.

    PubMed

    Little, Karley Y; Elmer, Lawrence W; Zhong, Huailing; Scheys, Joshua O; Zhang, Lian

    2002-02-01

    Several previous human postmortem experiments have detected an increase in striatal [(3)H]WIN 35428 binding to the dopamine transporter (DAT) in chronic cocaine users. However, animal experiments have found considerable variability in DAT radioligand binding levels in brain after cocaine administration, perhaps caused by length and dose of treatment and type of radioligand used. The present experiments tested the hypothesis that [(3)H]WIN 35428 binding and [(3)H]dopamine uptake would be increased by exposure to cocaine through alterations in DAT cellular trafficking, rather than increased protein synthesis. Experiments were conducted in stably hDAT-transfected N2A cells and assessed the dose response and time course of cocaine effects on [(3)H]WIN 35428 binding to the DAT, [(3)H]dopamine uptake, measures of DAT protein and mRNA, as well as DAT subcellular location. Cocaine doses of 10(-6) M caused statistically significant increases in [(3)H]WIN 35428 binding and [(3)H]dopamine uptake after 12 and 3 h, respectively. Despite these increases in DAT function, there was no change in DAT total protein or mRNA. Immunofluorescence and biotinylation experiments indicated that cocaine treatment induced increases in plasma membrane DAT immunoreactivity and intracellular decreases. The present model system may further our understanding of regulatory alterations in DAT radioligand binding and function caused by cocaine exposure. PMID:11809869

  5. Plant cell plasma membrane structure and properties under clinostatting

    NASA Astrophysics Data System (ADS)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  6. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Wakefield, Devin L; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-09-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  7. Molecular characterisation of plasma membrane-derived vesicles.

    PubMed

    Antwi-Baffour, Samuel S

    2015-01-01

    Plasma membrane-derived vesicles (PMVs) are released into circulation in response to normal and stress/pathogenic conditions. They are of tremendous significance for the prediction, diagnosis, and observation of the therapeutic success of many diseases. Knowledge of their molecular characteristics and therefore functional properties would contribute to a better understanding of the pathological mechanisms leading to various diseases in which their levels are raised. The review aims at outlining and discussing the molecular characteristics of PMVs in order to bring to the fore some aspects/characteristics of PMVs that will assist the scientific community to properly understand the role of PMVs in various physiological and pathological processes. The review covers PMVs characterisation and discusses how distinct they are from exosomes and endosomes. Also, methods of PMVs analysis, importance of proper PMV level estimation/characterisation, PMVs and their constituents as well as their therapeutic significance are discussed. The review concludes by drawing attention to the importance of further study into the functions of the characteristics discussed which will lead to understanding the general role of PMVs both in health and in disease states. PMID:26259622

  8. Plasma membrane coenzyme Q: evidence for a role in autism

    PubMed Central

    Crane, Frederick L; Löw, Hans; Sun, Iris; Navas, Placido; Gvozdjáková, Anna

    2014-01-01

    Background The Voltage Dependent Anion Channel (VDAC) is involved in control of autism. Treatments, including coenzyme Q, have had some success on autism control. Data sources Correlation of porin redox activity and expression of autism is based on extensive literature, especially studies of antibodies, identification of cytosolic nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase activity in the VDAC, and evidence for extreme sensitivity of the dehydrogenase to a mercurial. Evidence for a coenzyme Q requirement came from extraction and analog inhibition of NADH ferricyanide reductase in the erythrocyte plasma membrane, done in 1994, and reinterpreted when it was identified in VDAC in 2004. The effects of ubiquinol (the QH2 – reduced form of coenzyme Q) in children with autism were studied. Results A new role for coenzyme Q in the porin channels has implications on autism. Ubiquinol, the more active form of coenzyme Q, produces favorable response in children with autism. Agents which affected electron transport in porin show parallel effects in autism. Conclusion We propose a hypothesis that autism is controlled by a coenzyme Q-dependent redox system in the porin channels; this conclusion is based on the effects of agents that positively or negatively affect electron transport and the symptoms of autism. The full understanding of the mechanism of their control needs to be established. PMID:24920882

  9. Atomic force microscopy on plasma membranes from Xenopus laevis oocytes containing human aquaporin 4.

    PubMed

    Orsini, Francesco; Santacroce, Massimo; Cremona, Andrea; Gosvami, Nitya N; Lascialfari, Alessandro; Hoogenboom, Bart W

    2014-11-01

    Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near-native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4-M23) was expressed in the X. laevis oocytes following their injection with AQP4-M23 cRNA. AQP4-M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4-M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over-expressed AQP4-M23, the membranes from AQP4-M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher-order arrays of AQP4-M23. In addition, but only infrequently, AQP4-M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. PMID:25277091

  10. Atmospheric pressure nonthermal plasmas for bacterial biofilm prevention and eradication.

    PubMed

    Ermolaeva, Svetlana A; Sysolyatina, Elena V; Gintsburg, Alexander L

    2015-01-01

    Biofilms are three-dimensional structures formed by surface-attached microorganisms and their extracellular products. Biofilms formed by pathogenic microorganisms play an important role in human diseases. Higher resistance to antimicrobial agents and changes in microbial physiology make treating biofilm infections very complex. Atmospheric pressure nonthermal plasmas (NTPs) are a novel and powerful tool for antimicrobial treatment. The microbicidal activity of NTPs has an unspecific character due to the synergetic actions of bioactive components of the plasma torch, including charged particles, reactive species, and UV radiation. This review focuses on specific traits of biofilms, their role in human diseases, and those effects of NTP that are helpful for treating biofilm infections. The authors discuss NTP-based strategies for biofilm control, such as surface modifications to prevent bacterial adhesion, killing bacteria in biofilms, and biofilm destruction with NTPs. The unspecific character of microbicidal activity, proven polymer modification and destruction abilities, low toxicity for human tissues and absence of long-living toxic compounds make NTPs a very promising tool for biofilm prevention and control. PMID:25869456

  11. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane.

    PubMed

    Jokhadar, Špela Zemljič; Derganc, Jure

    2015-04-01

    Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure. PMID:25395197

  12. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    PubMed Central

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  13. Plasma Membrane Lesions In Anthracycline-Resistant Tumor Cells Probed Using A Fluorescent Dye

    NASA Astrophysics Data System (ADS)

    Burke, Thomas G.; Doroshow, James H.

    1989-06-01

    Human cancer cells selected for resistance to several structurally unrelated cytotoxic drugs are known to display plasma membrane alterations such as amplified levels of a variety of glycoproteins, modifications in lipid composition, alterations in membrane fluidity and increased cellular fragility to osmotic shock. We have studied the plasma membrane fluidity of HL60 human leukemia cells and MCF-7 human breast cancer cells that have been selected for acquired resistance against the cytocidal effects of the anthracycline anticancer drug Adriamycin. Fluidity measurements were accomplished by evaluating the fluorescence anisotropy of the plasma membrane specific probe trimethylamino-1,6-dipihenylhexatriene (TMA.DPH) bound to whole, living cells. TMA.DPH anisotropy values for MCF-7 sensitive and 12-fold resistant cells were 0.306 and 0.285, respectively, while anisotropy values for HL-60 sensitive and 80-fold resistant cells lines were 0.310 and 0.295, respectively. In all cases, cell viability exceeded 97% and anisotropy values were subject to a day-to-day uncertainty of +/-2%. Our results demonstrate that increased plasma membrane fluidity apparently accompanies the development of resistance in both cell lines. Because it is known that increased membrane fluidity results in significantly decreased Adriamycin binding in artificial membrane systems, we propose here that decreased drug associations with fluidized, plasma membrane lipid bilayer regions may be a mechanism which contributes, in part, to the reduced rates of drug accumulation observed in HL60 and MCF-7 cells resistant to Adriamycin.

  14. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  15. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  16. Purification of rat liver plasma membranes by wheat-germ-agglutinin affinity partitioning.

    PubMed Central

    Persson, A; Johansson, B; Olsson, H; Jergil, B

    1991-01-01

    Rat liver plasma membranes were separated from other cellular membranes by affinity partitioning in an aqueous polymer two-phase system by using the lectin wheat-germ agglutinin covalently bound to dextran as the affinity ligand. In borate buffer the bulk of membranes partitioned in the poly(ethylene glycol)-rich top phase, whereas plasma membranes were pulled selectively into the dextran-rich bottom phase in the presence of ligand. The purity and yield of plasma membranes prepared by lectin affinity partitioning and by conventional sucrose-density-gradient centrifugation was similar, as judged from marker-enzyme activities. The affinity procedure, not dependent on lengthy centrifugations, is fast and gentle and will be advantageous when studying labile components. PMID:1703408

  17. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton.

    PubMed Central

    Cox, D N; Muday, G K

    1994-01-01

    N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro. PMID:11536654

  18. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber. PMID:26351149

  19. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    PubMed

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  20. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    DOE PAGESBeta

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize themore » cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.« less

  1. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    SciTech Connect

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.

  2. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target.

    PubMed

    Ciesielska, Anna; Kwiatkowska, Katarzyna

    2015-07-01

    You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract. PMID:25966354

  3. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans.

    PubMed

    Douglas, Lois M; Konopka, James B

    2016-03-01

    Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans. PMID:26920878

  4. Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids.

    PubMed

    Wilson, Robert L; Frisz, Jessica F; Klitzing, Haley A; Zimmerberg, Joshua; Weber, Peter K; Kraft, Mary L

    2015-04-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  5. Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol*

    PubMed Central

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-01-01

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton. PMID:23609440

  6. Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Klitzing, Haley A.; Zimmerberg, Joshua; Weber, Peter K.; Kraft, Mary L.

    2015-01-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  7. Membrane-based Therapeutic Plasma Exchange: A New Frontier for Nephrologists.

    PubMed

    Gashti, Casey N

    2016-09-01

    Therapeutic plasma exchange has long been utilized to manage a variety of immune-mediated diseases. The underlying principle is the removal of a circulating pathogenic substance from the plasma and substitution with a replacement fluid. Different methodologies of plasma separation include the use of centrifuge, which relies on the variation in the specific gravity of blood components, and membrane-based separation, which relies on particle size. With advancements in technology and clinical insight into disease pathophysiology, membrane technology has become more biocompatible, safer, and more adaptable to conventional hemodialysis and hemofiltration machines. As such, nephrologists, who are familiar with management of extracorporeal blood purification systems, are increasingly involved with membrane-based plasma separation. This review aims to highlight the technical aspects of membrane-based separation, review the prescription for therapy, and draw comparisons with the centrifuge-based technique when applicable. PMID:27062015

  8. Elevated cAMP increases aquaporin-3 plasma membrane diffusion.

    PubMed

    Marlar, Saw; Arnspang, Eva C; Koffman, Jennifer S; Løcke, Else-Merete; Christensen, Birgitte M; Nejsum, Lene N

    2014-03-15

    Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water exits via basolateral AQP3 and AQP4. Upon long-term stimulation with AVP or during thirst, expression levels of both AQP2 and AQP3 are increased; however, there is so far no evidence for short-term AVP regulation of AQP3 or AQP4. To facilitate the increase in transepithelial water transport, AQP3 may be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58% from 0.0147 ± 0.0082 μm(2)/s (control) to 0.0232 ± 0.0085 μm(2)/s (forskolin, P < 0.05). Quantum dot-conjugated antibody labeling also revealed a significant increase in AQP3 diffusion upon forskolin treatment by 44% [0.0104 ± 0.0040 μm(2)/s (control) vs. 0.0150 ± 0.0016 μm(2)/s (forskolin, P < 0.05)]. Immunoelectron microscopy showed no obvious difference in AQP3-EGFP expression levels or localization in the plasma membrane upon forskolin stimulation. Thus AQP3-EGFP diffusion is altered upon increased cAMP, which may correspond to basolateral adaptations in response to the increased apical water readsorption. PMID:24452376

  9. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  10. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  11. Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell 1

    PubMed Central

    Taylor, Alison R.; Brownlee, Colin

    1992-01-01

    We used an ultraviolet laser to rupture a small region of cell wall of a polarized Fucus spiralis rhizoid cell and gained localized access to the plasma membrane at the growing apex. Careful control of cell turgor enabled a small portion of plasma membrane-bound cytoplasm to be exposed. Gigaohm seals allowing single-channel recordings were obtained with a high success rate using this method with conventional patch clamp techniques. ImagesFigure 1 PMID:16669092

  12. Laser Microsurgery Permits Fungal Plasma Membrane Single-Ion-Channel Resolution at the Hyphal Tip

    PubMed Central

    Véry, Anne-Aliénor; Davies, Julia M.

    1998-01-01

    A method for formation of high-electrical-resistance seals on the Neurospora crassa plasma membrane, allowing resolution of single-ion-channel activity by patch clamp electrophysiology, is reported. Laser microsurgery permits access to the hyphal apex without enzymatic cell wall digestion and loss of morphological polarity. Cell wall reformation is delayed by brefeldin. This method can allow full characterization of apical plasma membrane channels, which are implicated in tip growth. PMID:16349556

  13. Barriers to diffusion of plasma membrane proteins form early during guinea pig spermiogenesis.

    PubMed Central

    Cowan, A E; Nakhimovsky, L; Myles, D G; Koppel, D E

    1997-01-01

    The plasma membrane of the mature guinea pig sperm is segregated into at least four domains of different composition. Previous studies have shown that some proteins localized within these domains are free to diffuse laterally, suggesting that barriers to protein diffusion are responsible for maintaining the nonuniform distribution of at least some surface proteins in mature sperm. The different membrane domains appear sequentially during sperm morphogenesis in the testis and during later passage through the epididymis. To determine when diffusion barriers become functional during sperm development, we examined the diffusion of two proteins that are expressed on the cell surface of developing spermatids and become segregated to different plasma membrane domains during the course of spermiogenesis. Both proteins exhibited rapid lateral diffusion throughout spermiogenesis, even after they become localized to specific regions of the surface membrane. These results suggest that barriers to membrane diffusion form concomitantly with membrane domains during spermiogenesis. Images FIGURE 1 FIGURE 2 PMID:9199813

  14. Chronic and acute ethanol treatment modifies fluidity and composition in plasma membranes of a human hepatic cell line (WRL-68).

    PubMed

    Gutiérrez-Ruiz, M C; Gómez, J L; Souza, V; Bucio, L

    1995-04-01

    The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanol in vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to the in vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to the in vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments. PMID:7583873

  15. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV.

    PubMed

    Fan, Jinxin; Luo, Jianquan; Song, Weijie; Chen, Xiangrong; Wan, Yinhua

    2015-12-01

    The surging demand for plasma proteins, mainly driven by the growing market and the development of new therapeutic indications, is promoting manufacturers to improve the throughput of plasma proteins. Due to the inherent convective mass transfer, membrane chromatography has been proved to be an efficient approach for extracting a small amount of target proteins from large-volume feed. In this study, α1-antitrypsin (AAT) was extracted from human plasma fraction IV by a two-step membrane chromatography. An anion-exchange membrane chromatography (AEMC) was used to capture the plasma proteins in bind/elute mode, and the obtained effluent was further polished by a hydrophobic interaction membrane chromatography (HIMC) in flow-through mode. Under optimal conditions, the recovery and purity of AAT achieved 87.0% and 0.58 AAT/protein (g/g) by AEMC, respectively. After the precise polishing by HIMC, the purity of AAT was 1.22 AAT/protein (g/g). The comparison results showed that membrane chromatography outperformed column chromatography in both steps because of its high throughput. This two-step membrane chromatography could obtain an AAT recovery of 83.3% and an activity recovery of 91.4%. The outcome of this work not only offers an alternative process for protein purification from plasma, but also provides guidelines for manufacturing product from a large-volume feed with multi-components by membrane chromatography. PMID:26518493

  16. Oxytocin regulates the plasma membrane Ca2+ transport in rat myometrium.

    PubMed Central

    Enyedi, A; Brandt, J; Minami, J; Penniston, J T

    1989-01-01

    Development of myometrium in young female rats was stimulated by administration of diethylstilboestrol. Plasma membrane and sarcoplasmic reticulum from rat myometrium were separated by a new and rapid method using a Percoll gradient. Calcium uptake was inhibited in plasma membrane vesicles isolated from oxytocin-treated myometrium, while no consistent effect of oxytocin was found on the Ca2+ uptake in the sarcoplasmic reticulum. Oxytocin regulated the plasma membrane Ca2+ pump by decreasing its apparent affinity for Ca2+ without affecting its maximal velocity. The K1/2 for Ca2+ in the absence of calmodulin was 0.41 +/- 0.04 microM in normal membranes; this was increased to 0.93 +/- 0.12 microM in oxytocin-treated membranes. Calmodulin decreased the K1/2 for Ca2+ to 0.27 +/- 0.027 microM and oxytocin also increased this, to 0.46 +/- 0.061 microM. The effect of oxytocin on the plasma membrane Ca2+ pump was highly dependent on the hormonal status of the animals. When the diethylstilboestrol was administered together with progesterone, the inhibitory action of oxytocin was totally suppressed, consistent with the expected action of this agent. The results suggest that regulation of the plasma membrane Ca2+ pump may be important in the prolonged elevation of intracellular Ca2+ caused by oxytocin. PMID:2775210

  17. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3.

    PubMed

    Li, Caiyue; Ma, Wenbo; Yin, Shikui; Liang, Xin; Shu, Xiaodong; Pei, Duanqing; Egan, Terrance M; Huang, Jufang; Pan, Aihua; Li, Zhiyuan

    2016-05-01

    The trafficking of ion channels to/from the plasma membrane is considered an important mechanism for cellular activity and an interesting approach for disease therapies. The transient receptor potential vanilloid 3 (TRPV3) ion channel is widely expressed in skin keratinocytes, and its trafficking mechanism to/from the plasma membrane is unknown. Here, we report that the vesicular trafficking protein sorting nexin 11 (SNX11) downregulates the level of the TRPV3 plasma membrane protein. Overexpression of SNX11 causes a decrease in the level of TRPV3 current and TRPV3 plasma membrane protein in TRPV3-transfected HEK293T cells. Subcellular localizations and western blots indicate that SNX11 interacts with TRPV3 and targets it to lysosomes for degradation, which is blocked by the lysosomal inhibitors chloroquine and leupeptin. Both TRPV3 and SNX11 are highly expressed in HaCaT cells. We show that TRPV3 agonists-activated Ca(2+) influxes and the level of native TRPV3 total protein in HaCaT cells are decreased by overexpression of SNX11 and increased by knockdown of SNX11. Our findings reveal that SNX11 promotes the trafficking of TRPV3 from the plasma membrane to lysosomes for degradation via protein-protein interactions, which demonstrates a previously unknown function of SNX11 as a regulator of TRPV3 trafficking from the plasma membrane to lysosomes. PMID:26818531

  18. Plasma membrane phosphoinositide balance regulates cell shape during Drosophila embryo morphogenesis

    PubMed Central

    Reversi, Alessandra; Loeser, Eva; Subramanian, Devaraj; Schultz, Carsten

    2014-01-01

    Remodeling of cell shape during morphogenesis is driven by the coordinated expansion and contraction of specific plasma membrane domains. Loss of this coordination results in abnormal cell shape and embryonic lethality. Here, we show that plasma membrane lipid composition plays a key role in coordinating plasma membrane contraction during expansion. We found that an increase in PI(4,5)P2 levels caused premature actomyosin contraction, resulting in the formation of shortened cells. Conversely, acute depletion of PI(4,5)P2 blocked plasma membrane expansion and led to premature actomyosin disassembly. PI(4,5)P2-mediated contractility is counteracted by PI(3,4,5)P3 and the zygotic gene bottleneck, which acts by limiting myosin recruitment during plasma membrane expansion. Collectively, these data support a model in which the ratio of PI(4,5)P2/PI(3,4,5)P3 coordinates actomyosin contractility and plasma membrane expansion during tissue morphogenesis, thus ensuring proper cell shape. PMID:24798734

  19. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  20. Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging.

    PubMed

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T

    2014-05-20

    The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. PMID:24853757

  1. Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum.

    PubMed

    Collot, Mayeul; Kreder, Rémy; Tatarets, Anatoliy L; Patsenker, Leonid D; Mely, Yves; Klymchenko, Andrey S

    2015-12-14

    A rational design of squaraine dyes with lipophilic and zwitterionic groups tunes cell entry, allowing for selective far-red/near-infrared imaging of plasma membrane vs. endoplasmic reticulum. They exhibit up to 110-fold fluorescence enhancement in biomembranes and enable cellular imaging at 1 nM concentration, which make them the brightest membrane probes to date. PMID:26455447

  2. [Isolation and characteristics of the plasma membrane fraction from the swine myometrium].

    PubMed

    Kondratiuk, T P; Bychenok, S F; Prishchepa, L A; Babich, L G; Kurskiĭ, M D

    1986-01-01

    An accelerated method is developed for isolating a fraction of plasma membranes of pig myometrium using ultracentrifugation within the sucrose density gradient (15% and 30%). The membranes possessed the high activity of 5'-nucleotidase and Na+, K+-ATPase and the low activity of rhotenon-insensitive NADH-cytochrome c reductase. The vesicularized preparations of plasma membranes are able of ATP-dependent accumulation of Ca2+ (7.5 +/- 0.3 nmol. 45Ca2+ per 1 mg of protein for 15 min). Phosphate increases the calcium accumulation in the presence of ATP and Mg2+. Ionophore A 23187 promotes a complete and rapid release of the previously active-accumulated calcium. The release of 45Ca2+ accumulated by the membrane fraction may be reached by introduction of 1 mM EGTA or DS-Na into the incubation medium, that evidences for the cation accumulation inside closed structures. Using concanavalin-A-sepharose 4B it is shown that 60% of membrane vesicles are turned inside out. The low saponine concentrations (0.0005%) which inhibit Ca2+-accumulation by plasma membranes but not by the endoplasmic reticulum inhibit this process by 60-70% in preparations of the isolated membrane fraction. The method has certain advantages over the previously applied methods used for isolating of plasma membrane fragments from smooth muscles. PMID:3016962

  3. Effect of ion bombardment on plasma-driven superpermeation of hydrogen isotopes through a niobium membrane

    NASA Astrophysics Data System (ADS)

    Notkin, M. E.; Livshits, A. I.; Bruneteau, A. M.; Bacal, M.

    2001-08-01

    Hydrogen plasma-driven permeation through the superpermeable niobium membrane was investigated under bombardment of the input membrane surface with hydrogen, deuterium and helium ions with energy 0-250 eV over the range of membrane temperature 910-1420 K. The membrane surface was covered with a nonmetal monolayer generating a potential barrier responsible for the superpermeability to suprathermal hydrogen particles. Both an increase of ion energy and an increase of mass of sputtering ions result in a significant decrease of permeability due to destruction of the nonmetal monolayer, when the ion energy is higher than the threshold energy of surface film sputtering. On the contrary, the increase of the membrane temperature results in the decrease of the ion bombardment effect and in the increase of the membrane permeability due to recovery of the surface barrier through segregation of impurities dissolved in the membrane bulk onto the membrane surface. To increase the membrane ability to recover the potential barrier, oxygen was dissolved in the membrane bulk up to a concentration of 2.5 at.%. This resulted in a significant decrease of the damaging effect of ion bombardment and in the extension of the range of the membrane temperature and ion energy over which plasma-driven superpermeability was observed.

  4. Computational analysis of the tether pulling experiment to probe plasma membrane - cytoskeleton interaction in cells

    PubMed Central

    Schumacher, Kristopher R.; Popel, Aleksander S.; Anvari, Bahman; Brownell, William E.; Spector, Alexander A.

    2016-01-01

    Tethers are thin membrane tubes that can be formed when relatively small and localized forces are applied to cellular membranes and lipid bilayers. Tether pulling experiments have been used to better understand the fine membrane properties. These include the interaction between the plasma membrane and the underlying cytoskeleton, which is an important factor affecting membrane mechanics. We use a computational method aimed at the interpretation and design of tether pulling experiments in cells with a strong membrane-cytoskeleton attachment. In our model, we take into account the detailed information on the topology of bonds connecting the plasma membrane and the cytoskeleton. We compute the force-dependent piecewise membrane deflection and bending as well as modes of stored energy in three major regions of the system: body of the tether, membrane-cytoskeleton attachment zone, and the transition zone between the two. We apply our method to three cells: cochlear outer hair cells (OHCs), human embryonic kidney (HEK) cells, and Chinese hamster ovary (CHO) cells. OHCs have a special system of pillars connecting the membrane and the cytoskeleton, and HEK and CHO cells have a bond arrangement via bonds (e.g., PIP2) which is common to many other cells. We also present a validation of our model by using experimental data on CHO and HEK cells. The proposed method can be an effective tool in the analyses of experiments to probe the properties of cellular membranes. PMID:19905340

  5. Multi-layer electrospun membrane mimicking tendon sheath for prevention of tendon adhesions.

    PubMed

    Jiang, Shichao; Yan, Hede; Fan, Dapeng; Song, Jialin; Fan, Cunyi

    2015-01-01

    Defect of the tendon sheath after tendon injury is a main reason for tendon adhesions, but it is a daunting challenge for the biomimetic substitute of the tendon sheath after injury due to its multi-layer membrane-like structure and complex biologic functions. In this study, a multi-layer membrane with celecoxib-loaded poly(l-lactic acid)-polyethylene glycol (PELA) electrospun fibrous membrane as the outer layer, hyaluronic acid (HA) gel as middle layer, and PELA electrospun fibrous membrane as the inner layer was designed. The anti-adhesion efficacy of this multi-layer membrane was compared with a single-layer use in rabbit flexor digitorum profundus tendon model. The surface morphology showed that both PELA fibers and celecoxib-loaded PELA fibers in multi-layer membrane were uniform in size, randomly arrayed, very porous, and smooth without beads. Multi-layer membrane group had fewer peritendinous adhesions and better gliding than the PELA membrane group and control group in gross and histological observation. The similar mechanical characteristic and collagen expression of tendon repair site in the three groups indicated that the multi-layer membrane did not impair tendon healing. Taken together, our results demonstrated that such a biomimetic multi-layer sheath could be used as a potential strategy in clinics for promoting tendon gliding and preventing adhesion without poor tendon healing. PMID:25822877

  6. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis

    SciTech Connect

    Rosiere, T.K.; Marrs, J.A.; Bouck, G.B. )

    1990-04-01

    The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39.

  7. Mechanism and structure of the plant plasma membrane Ca{sup 2+}-ATPase

    SciTech Connect

    Briskin, D.P.

    1993-12-31

    Objectives of this project were the following: development of an enriched preparation of the red beet plasma membrane Ca{sup 2+} ATPase in order to develop a procedure for detergent solubilization of the enzyme from the membrane using detergents, resolution by a method which could be upscaled for batch isolation, and then reconstitution into liposomes to allow characterization of Ca{sup 2+} transport by the purified enzyme and; characterization of the reaction mechanism for the coupling of nucleoside triphosphate hydrolysis to Ca{sup 2+} transport as mediated by the plasma membrane Ca{sup 2+} ATPase.

  8. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  9. Uptake of (/sup 3/H)serotonin into plasma membrane vesicles from mouse cerebral cortex

    SciTech Connect

    O'Reilly, C.A.; Reith, M.E.A.

    1988-05-05

    Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of (/sup 3/H)serotonin had a Na/sup +/-dependent and Na/sup +/-independent component. The Na/sup +/-dependent uptake was inhibited by classical blockers of serotonin uptake and had a K/sub m/ of 63-180 nM, and a V/sub max/ of 0.1-0.3 pmol mg/sup -1/ s/sup -1/ at 77 mM Na/sup +/. The uptake required the presence of external Na/sup +/ and internal K/sup +/. Replacement of Cl/sup -/ by other anions (NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN/sup -/ ion in the absence of internal K/sup +/ and with equal (Na/sup +/) inside and outside. The increase of uptake as a function of (Na/sup +/) indicated a K/sub m/ for Na/sup +/ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport except for the number of sodium ions that are required for transport.

  10. Interplay between phosphorylation and palmitoylation mediates plasma membrane targeting and sorting of GAP43

    PubMed Central

    Gauthier-Kemper, Anne; Igaev, Maxim; Sündermann, Frederik; Janning, Dennis; Brühmann, Jörg; Moschner, Katharina; Reyher, Hans-Jürgen; Junge, Wolfgang; Glebov, Konstantin; Walter, Jochen; Bakota, Lidia; Brandt, Roland

    2014-01-01

    Phosphorylation and lipidation provide posttranslational mechanisms that contribute to the distribution of cytosolic proteins in growing nerve cells. The growth-associated protein GAP43 is susceptible to both phosphorylation and S-palmitoylation and is enriched in the tips of extending neurites. However, how phosphorylation and lipidation interplay to mediate sorting of GAP43 is unclear. Using a combination of biochemical, genetic, and imaging approaches, we show that palmitoylation is required for membrane association and that phosphorylation at Ser-41 directs palmitoylated GAP43 to the plasma membrane. Plasma membrane association decreased the diffusion constant fourfold in neuritic shafts. Sorting to the neuritic tip required palmitoylation and active transport and was increased by phosphorylation-mediated plasma membrane interaction. Vesicle tracking revealed transient association of a fraction of GAP43 with exocytic vesicles and motion at a fast axonal transport rate. Simulations confirmed that a combination of diffusion, dynamic plasma membrane interaction and active transport of a small fraction of GAP43 suffices for efficient sorting to growth cones. Our data demonstrate a complex interplay between phosphorylation and lipidation in mediating the localization of GAP43 in neuronal cells. Palmitoylation tags GAP43 for global sorting by piggybacking on exocytic vesicles, whereas phosphorylation locally regulates protein mobility and plasma membrane targeting of palmitoylated GAP43. PMID:25165142

  11. Tuning the resistance of polycarbonate membranes by plasma-induced graft surface modification

    NASA Astrophysics Data System (ADS)

    Baumann, Lukas; Hegemann, Dirk; de Courten, Damien; Wolf, Martin; Rossi, René M.; Meier, Wolfgang P.; Scherer, Lukas J.

    2013-03-01

    To tune the permeability resistance of porous polycarbonate (PC) membranes for caffeine, their surfaces were plasma modified with different monomers in a grafting from process. These coatings provided characteristic surface hydrophilicities. It was found that membranes with more hydrophilic surfaces have lower resistances to let caffeine pass through than membranes with hydrophobic surfaces. Additionally, it was possible to post-modify a poly(2-aminoethyl methacrylate) (AEMA) coated PC membrane with octanoic acid (Oct) under mild conditions. This post modification allowed transforming a slightly hydrophilic PC-AEMA membrane with a moderate permeability resistance into a hydrophobic PC-AEMA-Oct membrane with a high permeability resistance. Overall, it was possible to tune the PC membrane resistance for caffeine in a range from 5100 up to 15,100 s/cm.

  12. Neomycin inhibits the phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate stimulation of plasma membrane ATPase activity

    SciTech Connect

    Chen, Qiuyun; Boss, W.F. )

    1991-05-01

    The inositol phospholipids, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP{sub 2}), have been shown to increase the vanadate-sensitive ATPase activity of plant plasma membranes. In this paper, the authors show the effect of various concentrations of phosphatidyinositol, PIP, and PIP{sub 2} on the plasma membrane vanadate-sensitive ATPase activity. PIP and PIP{sub 2} at concentrations at 10 nanomoles per 30 microgram membrane protein per milliliter of reaction mixture caused a twofold and 1.8-fold increase in the ATPase activity, respectively. The effect of these negatively charged phospholipids on the ATPase activity was inhibited by adding the positively charged aminoglycoside, neomycin. Neomycin did not affect the endogenous plasma membrane ATPase activity in the absence of exogenous lipids.

  13. Plasma Membrane Repair in Health and Disease.

    PubMed

    Demonbreun, Alexis R; McNally, Elizabeth M

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury. PMID:26781830

  14. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    PubMed Central

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-01-01

    The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase, nor result in any enrichment of nanoscopic ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane. PMID:25897971

  15. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane.

    PubMed

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J

    2015-01-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane. PMID:25897971

  16. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles

    SciTech Connect

    Rengasamy, A.; Feinberg, H.

    1988-02-15

    A platelet membrane preparation, enriched in plasma membrane markers, took up /sup 45/Ca/sup 2 +/ in exchange for intravesicular Na+ and released it after the addition of inositol 1,4,5-trisphosphate (IP3). The possibility that contaminating dense tubular membrane (DTS) vesicles contributed the Ca/sup 2 +/ released by IP3 was eliminated by the addition of vanadate to inhibit Ca/sup +/-ATPase-mediated DTS Ca/sup 2 +/ sequestration and by the finding that only plasma membrane vesicles exhibit Na/sup +/-dependent Ca/sup 2 +/ uptake. Ca/sup 2 +/ released by IP3 was dependent on low extravesicular Ca/sup 2 +/ concentrations. IP3-induced Ca/sup 2 +/ release was additive to that released by Na/sup +/ addition while GTP or polyethylene glycol (PEG) had no effect. These results strongly suggest that IP3 facilitates extracellular Ca/sup 2 +/ influx in addition to release from DTS membranes.

  17. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  18. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  19. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    PubMed Central

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  20. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation.

    PubMed

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel J D

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  1. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-07-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  2. Hypoxia increases transepithelial electrical conductance and reduces occludin at the plasma membrane in alveolar epithelial cells via PKC-ζ and PP2A pathway.

    PubMed

    Caraballo, Juan Carlos; Yshii, Cecilia; Butti, Maria L; Westphal, Whitney; Borcherding, Jennifer A; Allamargot, Chantal; Comellas, Alejandro P

    2011-04-01

    During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC. PMID:21257729

  3. The anti-inflammatory drug indomethacin alters nanoclustering in synthetic and cell plasma membranes.

    PubMed

    Zhou, Yong; Plowman, Sarah J; Lichtenberger, Lenard M; Hancock, John F

    2010-11-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase separation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  4. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  5. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies

    PubMed Central

    Zidovetzki, Raphael

    2007-01-01

    The physiological importance of cholesterol in the cell plasma membrane has attracted increased attention in recent years. Consequently, the use of methods of controlled manipulation of membrane cholesterol content has also increased sharply, especially as a method of studying putative cholesterol-enriched cell membrane domains (rafts). The most common means of modifying the cholesterol content of cell membranes is the incubation of cells or model membranes with cyclodextrins, a family of compounds, which, due to the presence of relatively hydrophobic cavity, can be used to extract cholesterol from cell membranes. However, the mechanism of this activity of cyclodextrins is not completely established. Moreover, under conditions commonly used for cholesterol extraction, cyclodextrins may remove cholesterol from both raft and non-raft domains of the membrane as well as alter the distribution of cholesterol between plasma and intracellular membranes. In addition, other hydrophobic molecules such as phospholipids may also be extracted from the membranes by cyclodextrins. We review the evidence for the specific and non-specific effects of cyclodextrins and what is known about the mechanisms for cyclodextrin-induced cholesterol and phospholipid extraction. Finally, we discuss useful control strategies that may help to verify that the observed effects are due specifically to cyclodextrin-induced changes in cellular cholesterol. PMID:17493580

  6. Characterization of the Red Beet Plasma Membrane H+-ATPase Reconstituted in a Planar Bilayer System.

    PubMed Central

    Briskin, D. P.; Basu, S.; Assmann, S. M.

    1995-01-01

    The transport activity of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase was examined following reconstitution into a planar bilayer membrane. Fusion of partially purified plasma membrane H+-ATPase with the bilayer membrane was accomplished by perfusion of proteoliposomes against the bilayer under hypoosmotic conditions. Following incorporation into the bilayer, an ATP-dependent current was measured that demonstrated properties consistent with those of the plasma membrane H+-ATPase. Current production was substrate specific for ATP, inhibited by orthovanadate, and insensitive to 200 nM erythrosin B but inhibited by 100 [mu]M erythrosin B. When current production was measured as a function of Mg:ATP concentration, a simple Michaelis-Menten relationship was observed and a Km of 0.62 mM was estimated. Current-voltage analysis of ATP-dependent current in the presence of 0.5 mM ATP, 20 mM ADP, 40 mM orthophosphate, and an opposing 2.5-unit [delta]pH revealed a reversal potential of about -149 mV. Based on the free energy available from ATP hydrolysis, this reversal potential is consistent with an H+/ATP stoichiometry of 1. This study demonstrates the usefulness of a planar bilayer system for investigation of energy coupling to H+ transport by the plasma membrane H+-ATPase. PMID:12228483

  7. Oligomerization and Pore Formation by Equinatoxin II Inhibit Endocytosis and Lead to Plasma Membrane Reorganization*

    PubMed Central

    García-Sáez, Ana J.; Buschhorn, Sabine B.; Keller, Heiko; Anderluh, Gregor; Simons, Kai; Schwille, Petra

    2011-01-01

    Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics during the attack of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina, by combining time lapse three-dimensional live cell imaging, fluorescence recovery after photobleaching, FRET, and fluorescence cross-correlation spectroscopy. Our results show that membrane binding by equinatoxin II is accompanied by extensive plasma membrane reorganization into microscopic domains that resemble coalesced lipid rafts. Pore formation by the toxin induces Ca2+ entry into the cytosol, which is accompanied by hydrolysis of phosphatidylinositol 4,5-bisphosphate, plasma membrane blebbing, actin cytoskeleton reorganization, and inhibition of endocytosis. We propose that plasma membrane reorganization into stabilized raft domains is part of the killing strategy of equinatoxin II. PMID:21885440

  8. The relationship between cAMP, Ca(2)+, and transport of CFTR to the plasma membrane.

    PubMed

    Chen, P; Hwang, T C; Gillis, K D

    2001-08-01

    The mechanism whereby cAMP stimulates Cl(-) flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1-43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl(-) current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1-43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca(2)+ in Calu-3 cells. However, no increase in Cl(-) current accompanies Ca(2)+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca(2)+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur. PMID:11479341

  9. The Relationship between Camp, Ca2+, and Transport of Cftr to the Plasma Membrane

    PubMed Central

    Chen, Peng; Hwang, Tzyh-Chang; Gillis, Kevin D.

    2001-01-01

    The mechanism whereby cAMP stimulates Cl− flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1–43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl− current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1–43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca2+ in Calu-3 cells. However, no increase in Cl− current accompanies Ca2+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca2+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur. PMID:11479341

  10. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  11. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin.

    PubMed

    Inoue, Mayumi; Chang, Louise; Hwang, Joseph; Chiang, Shian-Huey; Saltiel, Alan R

    2003-04-10

    Insulin stimulates glucose transport by promoting exocytosis of the glucose transporter Glut4 (refs 1, 2). The dynamic processes involved in the trafficking of Glut4-containing vesicles, and in their targeting, docking and fusion at the plasma membrane, as well as the signalling processes that govern these events, are not well understood. We recently described tyrosine-phosphorylation events restricted to subdomains of the plasma membrane that result in activation of the G protein TC10 (refs 3, 4). Here we show that TC10 interacts with one of the components of the exocyst complex, Exo70. Exo70 translocates to the plasma membrane in response to insulin through the activation of TC10, where it assembles a multiprotein complex that includes Sec6 and Sec8. Overexpression of an Exo70 mutant blocked insulin-stimulated glucose uptake, but not the trafficking of Glut4 to the plasma membrane. However, this mutant did block the extracellular exposure of the Glut4 protein. So, the exocyst might have a crucial role in the targeting of the Glut4 vesicle to the plasma membrane, perhaps directing the vesicle to the precise site of fusion. PMID:12687004

  12. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana.

    PubMed

    Fendrych, Matyás; Synek, Lukás; Pecenková, Tamara; Drdová, Edita Janková; Sekeres, Juraj; de Rycke, Riet; Nowack, Moritz K; Zársky, Viktor

    2013-02-01

    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering. PMID:23283982

  13. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  14. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana

    PubMed Central

    Fendrych, Matyáš; Synek, Lukáš; Pečenková, Tamara; Drdová, Edita Janková; Sekereš, Juraj; de Rycke, Riet; Nowack, Moritz K.; Žárský, Viktor

    2013-01-01

    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6–green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering. PMID:23283982

  15. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    NASA Astrophysics Data System (ADS)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  16. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans

    PubMed Central

    Wang, Hong X.; Douglas, Lois M.; Veselá, Petra; Rachel, Reinhard; Malinsky, Jan; Konopka, James B.

    2016-01-01

    The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization. PMID:27009204

  17. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  18. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  19. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  20. Modification of plasma membrane organization in tobacco cells elicited by cryptogein.

    PubMed

    Gerbeau-Pissot, Patricia; Der, Christophe; Thomas, Dominique; Anca, Iulia-Andra; Grosjean, Kevin; Roche, Yann; Perrier-Cornet, Jean-Marie; Mongrand, Sébastien; Simon-Plas, Françoise

    2014-01-01

    Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment. PMID:24235133

  1. Modification of Plasma Membrane Organization in Tobacco Cells Elicited by Cryptogein1[W

    PubMed Central

    Gerbeau-Pissot, Patricia; Der, Christophe; Thomas, Dominique; Anca, Iulia-Andra; Grosjean, Kevin; Roche, Yann; Perrier-Cornet, Jean-Marie; Mongrand, Sébastien; Simon-Plas, Françoise

    2014-01-01

    Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the “membrane raft” hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment. PMID:24235133

  2. Rab11 regulates trafficking of trans-sialidase to the plasma membrane through the contractile vacuole complex of Trypanosoma cruzi.

    PubMed

    Niyogi, Sayantanee; Mucci, Juan; Campetella, Oscar; Docampo, Roberto

    2014-06-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease. Although this is not a free-living organism it has conserved a contractile vacuole complex (CVC) to regulate its osmolarity. This obligate intracellular pathogen is, in addition, dependent on surface proteins to invade its hosts. Here we used a combination of genetic and biochemical approaches to delineate the contribution of the CVC to the traffic of glycosylphosphatidylinositol (GPI)-anchored proteins to the plasma membrane of the parasite and promote host invasion. While T. cruzi Rab11 (GFP-TcRab11) localized to the CVC, a dominant negative (DN) mutant tagged with GFP (GFP-TcRab11DN) localized to the cytosol, and epimastigotes expressing this mutant were less responsive to hyposmotic and hyperosmotic stress. Mutant parasites were still able to differentiate into metacyclic forms and infect host cells. GPI-anchored trans-sialidase (TcTS), mucins of the 60-200 KDa family, and trypomastigote small surface antigen (TcTSSA II) co-localized with GFP-TcRab11 to the CVC during transformation of intracellular amastigotes into trypomastigotes. Mucins of the gp35/50 family also co-localized with the CVC during metacyclogenesis. Parasites expressing GFP-TcRab11DN prevented TcTS, but not other membrane proteins, from reaching the plasma membrane, and were less infective as compared to wild type cells. Incubation of these mutants in the presence of exogenous recombinant active, but not inactive, TcTS, and a sialic acid donor, before infecting host cells, partially rescued infectivity of trypomastigotes. Taking together these results reveal roles of TcRab11 in osmoregulation and trafficking of trans-sialidase to the plasma membrane, the role of trans-sialidase in promoting infection, and a novel unconventional mechanism of GPI-anchored protein secretion. PMID:24968013

  3. Rab11 Regulates Trafficking of Trans-sialidase to the Plasma Membrane through the Contractile Vacuole Complex of Trypanosoma cruzi

    PubMed Central

    Niyogi, Sayantanee; Mucci, Juan; Campetella, Oscar; Docampo, Roberto

    2014-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease. Although this is not a free-living organism it has conserved a contractile vacuole complex (CVC) to regulate its osmolarity. This obligate intracellular pathogen is, in addition, dependent on surface proteins to invade its hosts. Here we used a combination of genetic and biochemical approaches to delineate the contribution of the CVC to the traffic of glycosylphosphatidylinositol (GPI)-anchored proteins to the plasma membrane of the parasite and promote host invasion. While T. cruzi Rab11 (GFP-TcRab11) localized to the CVC, a dominant negative (DN) mutant tagged with GFP (GFP-TcRab11DN) localized to the cytosol, and epimastigotes expressing this mutant were less responsive to hyposmotic and hyperosmotic stress. Mutant parasites were still able to differentiate into metacyclic forms and infect host cells. GPI-anchored trans-sialidase (TcTS), mucins of the 60–200 KDa family, and trypomastigote small surface antigen (TcTSSA II) co-localized with GFP-TcRab11 to the CVC during transformation of intracellular amastigotes into trypomastigotes. Mucins of the gp35/50 family also co-localized with the CVC during metacyclogenesis. Parasites expressing GFP-TcRab11DN prevented TcTS, but not other membrane proteins, from reaching the plasma membrane, and were less infective as compared to wild type cells. Incubation of these mutants in the presence of exogenous recombinant active, but not inactive, TcTS, and a sialic acid donor, before infecting host cells, partially rescued infectivity of trypomastigotes. Taking together these results reveal roles of TcRab11 in osmoregulation and trafficking of trans-sialidase to the plasma membrane, the role of trans-sialidase in promoting infection, and a novel unconventional mechanism of GPI-anchored protein secretion. PMID:24968013

  4. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    PubMed

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-01

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  5. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. PMID:25482845

  6. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes. PMID:19606833

  7. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  8. Extraction of tumor-specific antigen from cells and plasma membranes of line-10 hepatoma.

    PubMed

    Leonard, E J; Richardson, A K; Hardy, A S; Rapp, H J

    1975-07-01

    Tumor-specific antigen was extracted with 3 M KCl from line-10 guinea pig hepatoma cells. The yield of antigenic activity, estimated by production of delayed cutaneous hypersensitivity reactions in line-10 immune guinea pigs, was 10-30% of the antigen present in intact cells. By ultracentrifugation criteria, the extracted antigen was soluble. Gel filtration, ion exchange chromatography, and salting-out studies showed that the antigen was heterogeneous in size and net charge. The possibility that 3 M KCl extracted a homogeneous population of molecules associating into polymers of various sizes at low ionic strength was ruled out by heterogeneity on Sephadex G-200 chromatography at high ionic strength. After osmotic lysis of sucrose-loaded line-10 cells, whole plasma membranes or large membrane fragments were obtained in a yield of about 20%. The isolation procedure did not cause detectable loss of membrane antigenic activity. The membranes had 33 skin test U/mg membrane protein, compared to the intact cell value of 1.7 skin test U/mg cell protein. Extracts of plasma membranes had 10-20% of the antigenic activity of the starting membrane material. In contrast to the wide variety of proteins liberated from intact cells, much of the protein extracted from the membranes was in the molecular weight range above 250,000. PMID:169367

  9. Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-10-01

    Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily in the lower phase, microsomal/mitchrondrial-rich fraction.

  10. Transport of endocannabinoids across the plasma membrane and within the cell.

    PubMed

    Fowler, Christopher J

    2013-05-01

    Endocannabinoids are readily accumulated from the extracellular space by cells. Although their uptake properties have the appearance of a process of facilitated diffusion, it is by no means clear as to whether there is a plasma membrane transporter dedicated to this task. Intracellular carrier proteins that shuttle the endocannabinoid anandamide from the plasma membrane to its intracellular targets such as the metabolic enzyme, fatty acid amide hydrolase, have been identified. These include proteins with other primary functions, such as fatty-acid-binding proteins and heat shock protein 70, and possibly a fatty acid amide hydrolase-like anandamide transporter protein. Thus, anandamide uptake can be adequately described as a diffusion process across the plasma membrane followed by intracellular carrier-mediated transport to effector molecules, catabolic enzymes and sequestration sites, although it is recognized that different cells are likely to utilize different mechanisms of endocannabinoid transport depending upon the utility of the endocannabinoid for the cell in question. PMID:23441874

  11. Factors regulating the abundance and localization of synaptobrevin in the plasma membrane

    PubMed Central

    Dittman, Jeremy S.; Kaplan, Joshua M.

    2006-01-01

    After synaptic vesicle fusion, vesicle proteins must be segregated from plasma membrane proteins and recycled to maintain a functional vesicle pool. We monitored the distribution of synaptobrevin, a vesicle protein required for exocytosis, in Caenorhabditis elegans motor neurons by using a pH-sensitive synaptobrevin GFP fusion protein, synaptopHluorin. We estimated that 30% of synaptobrevin was present in the plasma membrane. By using a panel of endocytosis and exocytosis mutants, we found that the majority of surface synaptobrevin derives from fusion of synaptic vesicles and that, in steady state, synaptobrevin equilibrates throughout the axon. The surface synaptobrevin was enriched near active zones, and its spatial extent was regulated by the clathrin adaptin AP180. These results suggest that there is a plasma membrane reservoir of synaptobrevin that is supplied by the synaptic vesicle cycle and available for retrieval throughout the axon. The size of the reservoir is set by the relative rates of exo- and endocytosis. PMID:16844789

  12. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  13. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  14. Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation.

    PubMed

    Sarabipour, Sarvenaz; Chan, Robin B; Zhou, Bowen; Di Paolo, Gilbert; Hristova, Kalina

    2015-07-01

    Plasma membrane-derived vesicles are being used in biophysical and biochemical research as a simple, yet native-like model of the cellular membrane. Here we report on the characterization of vesicles produced via two different vesiculation methods from CHO and A431 cell lines. The first method is a recently developed method which utilizes chloride salts to induce osmotic vesiculation. The second is a well established chemical vesiculation method which uses DTT and formaldehyde. We show that both vesiculation methods produce vesicles which contain the lipid species previously reported in the plasma membrane of these cell lines. The two methods lead to small but statistically significant differences in two lipid species only; phosphatidylcholine (PC) and plasmalogen phosphatidylethanolamine (PEp). However, highly significant differences were observed in the degree of incorporation of a membrane receptor and in the degree of retention of soluble cytosolic proteins within the vesicles. PMID:25896659

  15. Plasma-induced Styrene Grafting onto the Surface of Polytetrafluoroethylene Powder for Proton Exchange Membrane Application

    NASA Astrophysics Data System (ADS)

    Lan, Yan; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Chen, Longwei; Yang, Guangjie; Nagatsu, M.; Meng, Yuedong

    2011-10-01

    Low-temperature plasma treatment was adopted to graft styrene onto polytetrafluoroethylene (PTFE) powder, which is widely used in the fabrication of proton exchange membrane (PEM). The grafted PTFE powder was sulfonated in chlorosulfonic acid and fabricated into a membrane, which was used as inexpensive PEM material for a proton exchange membrane fuel cell (PEMFC). Fourier transform infrared spectroscopy attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analysis were used to characterize the structure of the sulfonated PTFE powder. The results showed that all the PTFE powders were successfully grafted by nitrogen plasma and then sulfonated under such experimental conditions. A scanning electron microscopy (SEM) image indicated that the fabricated membrane exhibits flat morphology and homogenous structure. The ion exchange capacity (IEC) of this kind of PEM was also investigated.

  16. Essentially All Excess Fibroblast Cholesterol Moves from Plasma Membranes to Intracellular Compartments

    PubMed Central

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2014-01-01

    It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients. PMID:25014655

  17. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  18. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids.

    PubMed Central

    Chong, L D; Rose, J K

    1994-01-01

    We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions. Images PMID:8254754

  19. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  20. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    The principal goal of our program is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. Our immediate goals are (1) to provide an understanding of the mechanism by which freeze-induced dehydration affects the formation of aparticulate domains and lamellar-to-hexagonal{sub {parallel}} phase transitions in the plasma membrane of NA protoplasts, (2) to characterize the cellular and molecular mechanisms by which cold acclimation and cryoprotectants preclude or diminish these alterations in the plasma membrane of ACC protoplasts and (3) to elucidate the molecular basis for the lesion that limits the maximum freezing tolerance of cold-acclimated winter rye and which is believed to be the formation of domains of interdigitated lipids in the L{sub {beta}} phase. This past year our efforts have included (a) characterization of the ultrastructural changes in the plasma membrane that are associated with freezing injury of protoplasts isolated from cold-acclimated rye leaves; (b) determinations of the hydration characteristics of plasma membrane lipids and model lipid mixtures, including the thermal dependence of the hydration characteristics; (c) studies of dehydration-induced phase transitions and demixing in model systems of plasma membrane lipids; (d) differential scanning calorimetry studies to determine the amount of freezable/unfreezable water that is associated with lipids; and (e) preliminary cryo-SEM observations of in situ ice formation in rye leaves. 11 refs.

  1. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  2. Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure

    PubMed Central

    2011-01-01

    Background Activation by extracellular ligands of G protein-coupled (GPCRs) and tyrosine kinase receptors (RTKs), results in the generation of second messengers that in turn control specific cell functions. Further, modulation/amplification or inhibition of the initial signalling events, depend on the recruitment onto the plasma membrane of soluble protein effectors. High throughput methodologies to monitor quantitatively second messenger production, have been developed over the last years and are largely used to screen chemical libraries for drug development. On the contrary, no such high throughput methods are yet available for the other aspect of GPCRs regulation, i.e. protein translocation to the plasma membrane, despite the enormous interest of this phenomenon for the modulation of receptor downstream functions. Indeed, to date, the experimental procedures available are either inadequate or complex and expensive. Results Here we describe the development of a novel conceptual approach to the study of cytosolic proteins translocation to the inner surface of the plasma membrane. The basis of the technique consists in: i) generating chimeras between the protein of interests and the calcium (Ca2+)-sensitive, luminescent photo-protein, aequorin and ii) taking advantage of the large Ca2+ concentration [Ca2+] difference between bulk cytosolic and the sub-plasma membrane rim. Conclusion This approach, that keeps unaffected the translocation properties of the signalling protein, can in principle be applied to any protein that, upon activation, moves from the cytosol to the plasma membrane. Thus, not only the modulation of GPCRs and RTKs can be investigated in this way, but that of all other proteins that can be recruited to the plasma membrane also independently of receptor activation. Moreover, its automated version, which can provide information about the kinetics and concentration-dependence of the process, is also applicable to high throughput screening of drugs

  3. Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L. ) storage tissue

    SciTech Connect

    Giannini, J.L.; Gildensoph, L.H.; Briskin, D.P.

    1987-05-01

    Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.

  4. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  5. Regulation of Piezo2 Mechanotransduction by Static Plasma Membrane Tension in Primary Afferent Neurons.

    PubMed

    Jia, Zhanfeng; Ikeda, Ryo; Ling, Jennifer; Viatchenko-Karpinski, Viacheslav; Gu, Jianguo G

    2016-04-22

    The Piezo2 channel is a newly identified mammalian mechanical transducer that confers rapidly adapting mechanically activated (RA-MA) currents in primary afferent neurons. The Piezo2 channels sense rapid membrane displacement, but it is not clear whether they are sensitive to osmotic swelling, which slowly increases static plasma membrane tension (SPMT). Here, we show that SPMT exerts a profound impact on the mechanical sensitivity of RA-MA channels in primary afferent neurons. RA-MA currents are greatly enhanced, and the mechanical threshold was reduced in both primary afferent neurons of rat dorsal root ganglia (DRG) and HEK293 cells heterologously expressing Piezo2 when these cells undergo osmotic swelling to increase SPMT. Osmotic swelling switches the kinetics of RA-MA currents to the slowly adapting type in both cultured DRG neurons and HEK293 cells heterologously expressing Piezo2. The potentiation of RA-MA currents is abolished when cultured DRG neurons are treated with cytochalasin D, an actin filament disruptor that prevents SPMT of cultured DRG neurons from an increase by osmotic swelling. Osmotic swelling significantly increases DRG neuron mechano-excitability such that a subthreshold mechanical stimulus can result in action potential firing. Behaviorally, the mechanical hind paw withdrawal threshold in rats is reduced following the injection of a hypotonic solution, but this osmotic effect is abolished when cytochalasin D or Gd(3+) is co-administered with the hypo-osmotic solution. Taken together, our findings suggest that Piezo2-mediated mechanotransduction is regulated by SPMT in primary afferent neurons. Because SPMT can be changed by multiple biological factors, our findings may have broad implications in mechanical sensitivity under physiological and pathological conditions. PMID:26929410

  6. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 ‑•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 ‑• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  7. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    PubMed

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  8. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces. PMID:26083007

  9. Deletion of the PDR16 gene influences the plasma membrane properties of the yeast Kluyveromyces lactis.

    PubMed

    Toth Hervay, Nora; Goffa, Eduard; Svrbicka, Alexandra; Simova, Zuzana; Griac, Peter; Jancikova, Iva; Gaskova, Dana; Morvova, Marcela; Sikurova, Libusa; Gbelska, Yvetta

    2015-04-01

    The plasma membrane is the first line of cell defense against changes in external environment, thus its integrity and functionality are of utmost importance. The plasma membrane properties depend on both its protein and lipid composition. The PDR16 gene is involved in the control of Kluyveromyces lactis susceptibility to drugs and alkali metal cations. It encodes the homologue of the major K. lactis phosphatidylinositol transfer protein Sec14p. Sec14p participates in protein secretion, regulation of lipid synthesis, and turnover in vivo. We report here that the plasma membrane of the Klpdr16Δ mutant is hyperpolarized and its fluidity is lower than that of the parental strain. In addition, protoplasts prepared from the Klpdr16Δ cells display decreased stability when subjected to hypo-osmotic conditions. These changes in membrane properties lead to an accumulation of radiolabeled fluconazole and lithium cations inside mutant cells. Our results point to the fact that the PDR16 gene of K. lactis (KlPDR16) influences the plasma membrane properties in K. lactis that lead to subsequent changes in susceptibility to a broad range of xenobiotics. PMID:25742422

  10. Disrupting Microtubules Network Immobilizes Amoeboid Chemotactic Receptor in the Plasma Membrane

    PubMed Central

    de Keijzer, S.; Galloway, J.; Harms, G.S.; Devreotes, P.N.; Iglesias, P.A.

    2011-01-01

    Signaling cascades are initiated in the plasma membrane via activation of one molecule by another. The interaction depends on the mutual availability of the molecules to each other and this is determined by their localization and lateral diffusion in the cell membrane. The cytoskeleton plays a very important role in this process by enhancing or restricting the possibility of the signaling partners to meet in the plasma membrane. In this study we explored the mode of diffusion of the cAMP receptor, cAR1, in the plasma membrane of Dictyostelium discoideum cells and how this is regulated by the cytoskeleton. Single-particle tracking of fluorescently labeled cAR1 using total internal reflection microscopy showed that 70% of the cAR1 molecules were mobile. These receptors showed directed motion and we demonstrate that this is not because of tracking along the actin cytoskeleton. Instead, destabilization of the microtubules abolished cAR1 mobility in the plasma membrane and this was confirmed by fluorescence recovery after photobleaching. As a result of microtubule stabilization, one of the first downstream signaling events, the jump of the PH domain of CRAC, was decreased. These results suggest a role for microtubules in cAR1 dynamics and in the ability of cAR1 molecules to interact with their signaling partners. PMID:21334306

  11. Identification of DNA-binding proteins on human umbilical vein endothelial cell plasma membrane.

    PubMed Central

    Chan, T M; Frampton, G; Cameron, J S

    1993-01-01

    The binding of anti-DNA antibodies to the endothelial cell is mediated through DNA, which forms a bridge between the immunoglobulin and the plasma membrane. We have shown that 32P-labelled DNA bound to the plasma membrane of human umbilical vein endothelial cells (HUVEC) by a saturable process, which could be competitively inhibited by non-radiolabelled DNA. In addition, DNA-binding was enhanced in HUVEC that had been treated with IL-1 alpha or tumour necrosis factor-alpha (TNF-alpha). DNA-binding proteins of mol. wt 46,000, 92,000, and 84,000 were identified by the binding of 32P-labelled DNA to plasma membrane proteins separated on SDS-PAGE. DNA-binding proteins of mol. wt 46,000 and 84,000 were also present in the cytosol and nucleus. Murine anti-DNA MoAb410 bound to a single band, at mol. wt 46,000, of plasma membrane protein, in the presence of DNA. Our results showed that DNA-binding proteins are present in different cellular fractions of endothelial cells. DNA-binding proteins on the cell membrane could participate in the in situ formation of immune deposits; and their presence in the cell nucleus suggests a potential role in the modulation of cell function. Images Fig. 3 Fig. 4 PMID:8419070

  12. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    PubMed Central

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  13. The Plasma Membrane Proteins Prm1 and Fig1 Ascertain Fidelity of Membrane Fusion during Yeast Mating

    PubMed Central

    Engel, Alex; Walter, Peter

    2007-01-01

    As for most cell–cell fusion events, the molecular details of membrane fusion during yeast mating are poorly understood. The multipass membrane protein Prm1 is the only known component that acts at the step of bilayer fusion. In its absence, mutant mating pairs lyse or arrest in the mating reaction with tightly apposed plasma membranes. We show that deletion of FIG 1, which controls pheromone-induced Ca2+ influx, yields similar cell fusion defects. Although extracellular Ca2+ is not required for efficient cell fusion of wild-type cells, cell fusion in prm1 mutant mating pairs is dramatically reduced when Ca2+ is removed. This enhanced fusion defect is due to lysis. Time-lapse microscopy reveals that fusion and lysis events initiate with identical kinetics, suggesting that both outcomes result from engagement of the fusion machinery. The yeast synaptotagmin orthologue and Ca2+ binding protein Tcb3 has a role in reducing lysis of prm1 mutants, which opens the possibility that the observed role of Ca2+ is to engage a wound repair mechanism. Thus, our results suggest that Prm1 and Fig1 have a role in enhancing membrane fusion and maintaining its fidelity. Their absence results in frequent mating pair lysis, which is counteracted by Ca2+-dependent membrane repair. PMID:17151357

  14. Isolation and Characterization of Concanavalin A-labeled Plasma Membranes of Carrot Protoplasts 1

    PubMed Central

    Boss, Wendy F.; Ruesink, Albert W.

    1979-01-01

    The plasma membranes of protoplasts released from carrot suspension culture cells were labeled with [14C]acetyl-concanavalin A. After homogenization a single labeled membrane fraction was isolated in a continuous isopycnic Renografin gradient. The labeled membranes peaked at an apparent density of 1.14 grams per cubic centimeter between the Golgi fraction at a density of 1.11 grams per cubic centimeter as determined by latent IDPase activity and the mitochondria at a density of 1.16 grams per cubic centimeter as determined by the cytochrome c oxidase activity. This method provided a very discrete peak of putative plasma membrane. On discontinuous Renografin gradients a relatively pure fraction of labeled plasma membranes could be readily isolated at the 1.122 to 1.146 grams per cubic centimeter interface. The labeled fraction was enriched in both an ATPase (pH 6.5) and a glucan synthetase with a pH optimum of 6.5 whose activity was promoted by magnesium and cellobiose. Enzyme activities were not altered by the membrane label. PMID:16661082

  15. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    SciTech Connect

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-06-15

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.

  16. Homeostasis of the apical plasma membrane during regulated exocytosis in the salivary glands of live rodents

    PubMed Central

    Masedunskas, Andrius; Sramkova, Monika; Weigert, Roberto

    2011-01-01

    In exocrine organs such as the salivary glands, fluids and proteins are secreted into ductal structures by distinct mechanisms that are tightly coupled. In the acinar cells, the major secretory units of the salivary glands, fluids are secreted into the acinar canaliculi through paracellular and intracellular transport, whereas proteins are stored in large granules that undergo exocytosis and fuse with the apical plasma membranes releasing their content into the canaliculi. Both secretory processes elicit a remodeling of the apical plasma membrane that has not been fully addressed in in vitro or ex vivo models. Recently, we have studied regulated exocytosis in the salivary glands of live rodents, focusing on the role that actin and myosin plays in this process. We observed that during exocytosis both secretory granules and canaliculi are subjected to the hydrostatic pressure generated by fluid secretion. Furthermore, the absorption of the membranes of the secretory granules contributes to the expansion and deformation of the canaliculi. Here we suggest that the homeostasis of the apical plasma membranes during exocytosis is maintained by various strategies that include: (1) membrane retrieval via compensatory endocytosis, (2) increase of the surface area via membrane folds and (3) recruitment of a functional actomyosin complex. Our observations underscore the important relationship between tissue architecture and cellular response, and highlight the potential of investigating biological processes in vivo by using intravital microscopy. PMID:22754613

  17. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    SciTech Connect

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L. )

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-(7-{sup 3}H)IAA(({sup 3}H)N{sub 3}IAA), in a manner similar to the accumulation of ({sup 3}H)IAA. The association of the ({sup 3}H)N{sub 3}IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of ({sup 3}H)N{sub 3}IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO{sub 4}/PAGE and fluorography. When the reaction temperature was lowered to {minus}196{degree}C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  18. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  19. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  20. The microviscosity of liver plasma membranes of rats fed with oleoylanilide.

    PubMed Central

    Pagani, R; Portoles, M T; Gavilanes, F G; Garcia-Barreno, P; Municio, A M

    1984-01-01

    Oleoylanilide was administered orally to groups of rats according to different patterns. Oleoylanilide was perfused at different concentrations through rat liver. Oleoylanilide was added to isolated hepatocytes. Oleoylanilide was added to plasma-membrane preparations. Membrane preparations were obtained after experiments performed in vivo and perfusion experiments and, by using 1,6-diphenylhexa-1,3,5-triene as fluorescence probe, the fluorescence polarization parameter was measured, from which the microviscosity (eta) was calculated. In all cases the microviscosity decreased markedly. Addition of oleoylanilide to hepatocyte preparations and to isolated membranes produced the same effect, increasing the fluidity of the membranes. These data suggest that oleoylanilide partitions into the membrane, disordering some lipid interactions. PMID:6712608

  1. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  2. Mechanical Properties of the Plasma Membrane of Isolated Plant Protoplasts 1

    PubMed Central

    Wolfe, Joe; Steponkus, Peter L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law—the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation. Images Fig. 2 PMID:16662817

  3. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane

    PubMed Central

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-01

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers. DOI: http://dx.doi.org/10.7554/eLife.12125.001 PMID:26824389

  4. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition.

    PubMed Central

    Avery, S V; Howlett, N G; Radice, S

    1996-01-01

    One major mechanism of copper toxicity towards microorganisms is disruption of plasma membrane integrity. In this study, the influence of plasma membrane fatty acid composition on the susceptibility of Saccharomyces cerevisiae to Cu2+ toxicity was investigated. Microbial fatty acid composition is highly variable, depending on both intrinsic and environmental factors. Manipulation was achieved in this study by growth in fatty acid-supplemented medium. Whereas cells grown under standard conditions contained only saturated and monounsaturated fatty acids, considerable incorporation of the diunsaturated fatty acid linoleate (18:2) (to more than 65% of the total fatty acids) was observed in both whole-cell homogenates and plasma membrane-enriched fractions from cells grown in linoleate-supplemented medium. Linoleate enrichment had no discernible effect on the growth of S. cerevisiae. However, linoleate-enriched cells were markedly more susceptible to copper-induced plasma membrane permeabilization. Thus, after addition of Cu(NO3)2, rates of cellular K+ release (loss of membrane integrity) were at least twofold higher from linoleate-supplemented cells than from unsupplemented cells; this difference increased with reductions in the Cu2+ concentration supplied. Levels of cellular Cu accumulation were also higher in linoleate-supplemented cells. These results were correlated with a very marked dependence of whole-cell Cu2+ toxicity on cellular fatty acid unsaturation. For example, within 10 min of exposure to 5 microM Cu2+, only 3% of linoleate-enriched cells remained viable (capable of colony formation). In contrast, 100% viability was maintained in cells previously grown in the absence of a fatty acid supplement. Cells displaying intermediate levels of linoleate incorporation showed intermediate Cu2+ sensitivity, while cells enriched with the triunsaturated fatty acid linolenate (18:3) were most sensitive to Cu2+. These results demonstrate for the first time that changes

  5. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells.

    PubMed

    Vilcaes, Aldo A; Demichelis, Vanina Torres; Daniotti, Jose L

    2011-09-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  6. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  7. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  8. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  9. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    SciTech Connect

    Li, Xiaojie; Zhang, Ling; Shao, Yueting; Liang, Zuowen; Shao, Chen; Wang, Bo; Guo, Baofeng; Li, Na; Zhao, Xuejian; Li, Yang; Xu, Deqi

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  10. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane.

    PubMed

    Kappachery, Sajeesh; Paul, Diby; Yoon, Jeyong; Kweon, Ji Hyang

    2010-08-01

    Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm. PMID:20661790

  11. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  12. Regulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase.

    PubMed Central

    Xing, T; Higgins, VJ; Blumwald, E

    1996-01-01

    The role of reversible phosphorylation of the host plasma membrane H+-ATPase in signal transduction during the incompatible interaction between tomato cells and the fungal pathogen Cladosporium fulvum was investigated. Tomato cells (with the Cf-5 resistance gene) or isolated plasma membranes from Cf-5 cells treated with elicitor preparations from race 2.3 or 4 of C. fulvum (containing the avr5 gene product) showed a marked dephosphorylation of plasma membrane H+-ATPase. Similar treatment with elicitor preparations from races 5 and 2.4.5.9.11 (lacking the avr5 gene product) showed no change in dephosphorylation. Elicitor (race 4) treatment of cells, but not of isolated plasma membranes, for 2 hr resulted in rephosphorylation of the ATPase via Ca2+-dependent protein kinases. The initial (first hour) rephosphorylation was enhanced by protein kinase C (PKC) activators and was prevented by PKC inhibitors. Activity of a second kinase appeared after 1 hr and was responsible for the continuing phosphorylation of the H+-ATPase. This latter Ca2+-dependent kinase was inhibited by a calmodulin (CaM) antagonist and by an inhibitor of Ca2+/CaM-dependent protein kinase II. The activation of the Ca2+/CaM-dependent protein kinase depended on the prior activation of the PKC-like kinase. PMID:12239392

  13. A novel role of Rab11 in trafficking GPI-anchored trans-sialidase to the plasma membrane of Trypanosoma cruzi

    PubMed Central

    Niyogi, Sayantanee; Docampo, Roberto

    2015-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is a unicellular parasite that possesses a contractile vacuole complex (CVC). This organelle is usually present in free-living protists and is mainly involved in osmoregulation. However, in some organisms, like for example Dictyostelium discoideum, other roles include calcium homeostasis and transference of proteins to the plasma membrane. T. cruzi plasma membrane is very rich in glycosylphosphatidylinositol anchored proteins (GPI-AP) and a very important group of GPI-AP is that of the trans-sialidases. These enzymes catalyze the transfer of sialic acid from host glycoconjugates to mucins present in the surface of the parasite and are important for host cell invasion among other functions. We recently reported that a pathway dependent on the Rab GTPase Rab11 is involved in the traffic of trans-sialidases to the plasma membrane through the CVC of the infective stages of the parasite and that preventing this traffic results in considerable reduction in the ability of T. cruzi to infect host cells. We also found that traffic of other GPI-anchored proteins is also through the CVC but uses a Rab11-independent pathway. These represent unconventional pathways of GPI-anchored protein traffic to the plasma membrane. PMID:25862161

  14. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  15. Simultaneous Measurements of Cytoplasmic K+ Concentration and the Plasma Membrane Electrical Parameters in Single Membrane Samples of Chara corallina

    PubMed Central

    Beilby, Mary J.; Blatt, Michael R.

    1986-01-01

    The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells. PMID:16665044

  16. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  17. A fluorogenic probe for SNAP-tagged plasma membrane proteins based on the solvatochromic molecule Nile Red.

    PubMed

    Prifti, Efthymia; Reymond, Luc; Umebayashi, Miwa; Hovius, Ruud; Riezman, Howard; Johnsson, Kai

    2014-03-21

    A fluorogenic probe for plasma membrane proteins based on the dye Nile Red and SNAP-tag is introduced. It takes advantage of Nile Red, a solvatochromic molecule highly fluorescent in an apolar environment, such as cellular membranes, but almost dark in a polar aqueous environment. The probe possesses a tuned affinity for membranes allowing its Nile Red moiety to insert into the lipid bilayer of the plasma membrane, becoming fluorescent, only after its conjugation to a SNAP-tagged plasma membrane protein. The fluorogenic character of the probe was demonstrated for different SNAP-tag fusion proteins, including the human insulin receptor. This work introduces a new approach for generating a powerful turn-on probe for "no-wash" labeling of plasma membrane proteins with numerous applications in bioimaging. PMID:24471525

  18. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes.

    PubMed

    Chen, Chih-Hao; Chen, Shih-Hsien; Shalumon, K T; Chen, Jyh-Ping

    2015-09-01

    Postoperative adhesion formation is the major complication that could occur after acute tendon surgery. The application of an anti-adhesive membrane at the post-surgical site is deemed as a potential way to solve this problem by preventing adhesive fibrotic tissue development. In this study, we fabricated electrospun composite poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) nanofibrous membrane (NFM) to prevent peritendinous adhesions, which could act as a barrier between the tendon and surrounding tissues, without interrupting mass transfer and normal tendon gliding. PCL/PEG NFMs of 0% PEG (PCL), 25% PEG (25PECL), 50% PEG (50PECL) and 75% PEG (75PECL) were prepared and characterized for physico-chemical properties. The PCL NFM shows the lowest protein permeability while 25PECL NFM exhibited the largest fiber diameter, smallest pore size and the largest ultimate stress and strain. The 75PECL NFM had the lowest water contact angle and the highest Young's modulus. In vitro cell adhesion and migration experiments with fibroblasts indicate that all NFMs could prevent cell penetration, with 75PECL NFM having the least cell attachment. In vivo application of 75PECL NFM on the repaired site of rabbit flexor tendon rupture model demonstrated improved efficacy compared with the PCL NFM and a commercial anti-adhesion barrier (Seprafilm™), from gross observation, histological analysis and functional assays. We concluded that 75PECL NFM could function as an effective anti-adhesion membrane after tendon surgery in a clinical setting. PMID:26115533

  19. Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions

    PubMed Central

    Treves, Susan; Vukcevic, Mirko; Griesser, Johanna; Armstrong, Clara-Franzini; Zhu, Michael X.; Zorzato, Fancesco

    2010-01-01

    Junctate is a 33 kDa integral protein of sarco(endo)plasmic reticulum membranes that forms a macromolecular complex with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and TRPC3 channels. TIRF microscopy shows that junctate enhances the number of fluorescent puncta on the plasma membrane. The size and distribution of these puncta are not affected by the addition of agonists that mobilize Ca2+ from Ins(1,4,5)P3-sensitive stores. Puncta are associated with a significantly larger number of peripheral junctions between endoplasmic reticulum and plasma membrane, which are further enhanced upon stable co-expression of junctate and TRPC3. The gap between the membranes of peripheral junctions is bridged by regularly spaced electron-dense structures of 10 nm. Ins(1,4,5)P3 inhibits the interaction of the cytoplasmic N-terminus of junctate with the ligand-binding domain of the Ins(1,4,5)P3 receptor. Furthermore, Ca2+ influx evoked by activation of Ins(1,4,5)P3 receptors is increased where puncta are located. We conclude that stable peripheral junctions between the plasma membrane and endoplasmic reticulum are the anatomical sites of agonist-activated Ca2+ entry. PMID:21062895

  20. The formin FMNL3 assembles plasma membrane protrusions that participate in cell–cell adhesion

    PubMed Central

    Gauvin, Timothy J.; Young, Lorna E.; Higgs, Henry N.

    2015-01-01

    FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion. PMID:25428984

  1. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Borchard, F; Kochwa, S; Berk, P D

    1985-01-01

    When [14C]oleate-bovine serum albumin complexes were incubated in vitro with rat liver plasma membranes (LPM), specific, saturable binding of oleate to the membranes was observed. Maximal heat-sensitive (i.e., specific) binding was 3.2 nmol/mg of membrane protein. Oleate-agarose affinity chromatography of Triton X-100-solubilized LPM was used to isolate a single 40-kDa protein with high affinity for oleate. On gel filtration, the protein comigrated with various fatty acids but not with [14C]bilirubin, [35S]sulfobromophthalein, [14C]taurocholate, [14C]phosphatidylcholine, or [14C]cholesteryloleate. A rabbit antibody to this membrane fatty acid-binding protein gave a single precipitin line with the antigen but no reactivity with concentrated cytosolic proteins, LPM bilirubin/sulfobromophthalein-binding protein, or rat albumin or other rat plasma proteins. The antibody selectively inhibited heat-sensitive binding of [14C]oleate to LPM. Immunofluorescence studies localized the antigen in liver-cell plasma membranes as well as in other major sites of fatty acid transport. These data are compatible with the hypothesis that this protein may act as a receptor in a hepatocellular uptake mechanism for fatty acids. Images PMID:3881757

  2. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  3. Labeling of the Plasma Membrane of Pea Cells by a Surface-localized Glucan Synthetase 1

    PubMed Central

    Anderson, Robin L.; Ray, Peter M.

    1978-01-01

    When radioactive UDP-glucose is supplied to 1-millimeter-thick slices of pea (Pisum sativum) stem tissue, radioactive glucose becomes incorporated into membrane-bound polysaccharides. Evidence is given that this incorporation does not result from breakdown of UDP-glucose and utilization of the resultant free glucose, and that the incorporation most likely takes place at the cell surface, leading to a specific labeling of the plasma membrane. The properties of the plasma membrane that are indicated by this method of recognition, including the association of K+-stimulated ATPase activity with the plasma membrane, resemble properties inferred using other approaches. The membrane-associated polysaccharide product formed from UDP-glucose is largely 1,3-linked glucan, presumably callose, and does not behave as a precursor of cell wall polymers. No substantial amount of cellulose is formed from UDP-glucose in this procedure, even though these cells incorporate free glucose rapidly into cellulose. This synthetase system that uses external UDP-glucose may serve for formation of wound callose. PMID:16660373

  4. Plasma chemical modification of track-etched membrane surface layer for improvement of their biomedical properties

    NASA Astrophysics Data System (ADS)

    Kravets, Liubov I.; Ryazantseva, Tatyana V.

    2013-12-01

    The morphological and clinical studies of poly(ethylene terephthalate) track-etched membrane modified by plasma of non-polymerizing gases as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  5. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  6. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  7. ALUMINUM ALTERS CALCIUM TRANSPORT IN PLASMA MEMBRANE AND ENDOPLASMIC RETICULUM FROM RAT BRAIN

    EPA Science Inventory

    Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. he effects of aluminum on calcium transport were examined in the adult rat brain. 5Ca-uptake was examined in micr...

  8. Video Views and Reviews: Golgi Export, Targeting, and Plasma Membrane Caveolae

    ERIC Educational Resources Information Center

    Watters, Christopher

    2004-01-01

    In this article, the author reviews videos from "Molecular Biology of the Cell (MBC)" depicting various aspects of plasma membrane (PM) dynamics, including the targeting of newly synthesized components and the organization of those PM invaginations called caveolae. The papers accompanying these videos describe, respectively, the constitutive…

  9. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    PubMed Central

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  10. Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane.

    PubMed

    Wang, Bangjun; Bailly, Aurélien; Zwiewka, Marta; Henrichs, Sina; Azzarello, Elisa; Mancuso, Stefano; Maeshima, Masayoshi; Friml, Jirí; Schulz, Alexander; Geisler, Markus

    2013-01-01

    Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding protein42 TWISTED DWARF1 (TWD1), although underlying mechanisms are unclear. By genetic manipulation of TWD1 expression, we show here that TWD1 affects shootward root auxin reflux and, thus, downstream developmental traits, such as epidermal twisting and gravitropism of the root. Using immunological assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1. In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root apoplast into the cytoplasm. PMID:23321285

  11. INTEGRATION OF FILTRATION AND ADVANCED OXIDATION: DEVELOPMENT OF A MEMBRANE LIQUID-PHASE PLASMA REACTOR

    EPA Science Inventory

    A tiered approach will be undertaken to achieve the overall project goal of demonstrating the integrated membrane/plasma process as an innovative, affordable, sustainable and effective treatment technology for small treatment systems. The team will first use a regimented ap...

  12. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  13. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  14. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  15. The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water Filled Cavities

    SciTech Connect

    Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T.

    2009-05-26

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7{angstrom} resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.

  16. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  17. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane

    PubMed Central

    Bel, Alain; Ricci, Massimo; Piquet, Julie; Bruneval, Patrick; Perier, Marie-Cécile; Gagnieu, Christian; Fabiani, Jean-Noël; Menasché, Philippe

    2012-01-01

    Reduction in mediastinal adhesions is an issue in cardiac surgery. To evaluate a porcine-bioengineered collagen membrane (Cova™ CARD) intended to promote tissue regeneration, 18 sheep underwent a sternotomy and a 30 min period of cardiopulmonary bypass. They were divided into three equal groups: pericardium left open, placement of an e-polytetrafluoroethylene membrane (Preclude®) taken as a non-absorbable substitute comparator and placement of the absorbable Cova™ CARD membrane. Four months thereafter, the study animals underwent repeat sternotomy and were macroscopically assessed for the degree of material resorption and the intensity of adhesions. Explanted hearts were evaluated blindly for the magnitude of the inflammatory response, fibrosis and epicardial re-mesothelialization. The bioengineered membrane was absorbed by 4 months and replaced by a loosely adherent tissue leading to the best adhesion score. There was no inflammatory reaction (except for a minimal one in an animal). Fibrosis was minimal (P = 0.041 vs Preclude®). The highest degree of epicardial re-mesothelialization, albeit limited, was achieved by the bioengineered group in which five of six sheep demonstrated a new lining of mesothelial cells in contrast to two animals in each of the other groups. This collagen membrane might thus represent an attractive pericardial substitute for preventing post-operative adhesions. PMID:22268067

  18. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli.

    PubMed

    Nenninger, Anja; Mastroianni, Giulia; Robson, Alexander; Lenn, Tchern; Xue, Quan; Leake, Mark C; Mullineaux, Conrad W

    2014-06-01

    Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology. PMID:24735432

  19. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  20. Characterization of Differential Protein Tethering at the Plasma Membrane in Response to Epidermal Growth Factor Signaling

    PubMed Central

    Looyenga, Brendan D.; MacKeigan, Jeffrey P.

    2013-01-01

    Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC–MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation. PMID:22559174

  1. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-01

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices. PMID:26658212

  2. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes.

    PubMed Central

    Aloia, R C; Tian, H; Jensen, F C

    1993-01-01

    Previous studies have indicated that human immunodeficiency virus (HIV) is enclosed with a lipid envelope similar in composition to cell plasma membranes and to other viruses. Further, the fluidity, as measured by spin resonance spectroscopy, is low and the viral envelope is among the most highly ordered membranes analyzed. However, the relationship between viral envelope lipids and those of the host cell is not known. Here we demonstrate that the phospholipids within the envelopes of HIV-1RF and HIV-2-L are similar to each other but significantly different from their respective host cell surface membranes. Further, we demonstrate that the cholesterol-to-phospholipid molar ratio of the viral envelope is approximately 2.5 times that of the host cell surface membranes. Consistent with the elevated cholesterol-to-phospholipid molar ratio, the viral envelopes of HIV-1RF and HIV-2-L were shown to be 7.5% and 10.5% more ordered than the plasma membranes of their respective host cells. These data demonstrate that HIV-1 and HIV-2-L select specific lipid domains within the surface membrane of their host cells through which to emerge during viral maturation. Images Fig. 1 PMID:8389472

  3. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    PubMed

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma. PMID:23213239

  4. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    NASA Astrophysics Data System (ADS)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  5. Water permeability of polyethylene terephthalate track membranes modified in plasma of dimethylaniline

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Gilman, Alla; Drachev, Alexander

    2004-09-01

    The surface properties and hydrodynamic characteristics of composite membranes consisting of a porous substrate, on which a polymer layer from a direct current discharge in a mixture of air and vapours of dimethylaniline was deposited, have been investigated. As a substrate, we used poly(ethylene) terephthalate track membrane (PET TM) of the thickness of 10 μ m and the effective pore diameter of 0.215 μ m (pore density is 2\\cdot 10^8 cm-2). The performed researches show that when treating the membranes in plasma, two competing processes are observed: deposition of the polymer layer on a membrane surface, that testifies increase of the mass of sample, and etching of a polymeric matrix which causes growth of effective pore diameter. The last process is stipulated by presence of oxygen in the gas mixture. Decreasing the degree of overweight of the sample at increasing the treatment time leads us to a supposition that a dominating process in this case becomes the process of gas-discharge etching. In all cases, if treating PET TM, a drop of the water contact angle occurs, i.e. hydrophilization of the membrane surface takes place that is connected first of all with a grafting of polymer layer containing polar functional groups. The research in the hydrodynamic characteristics of the initial PET TM and the membranes modified in plasma at neutral and subacid pH value of filtrate leads to a linear dependence of their permeability upon the quantity of applied pressure. It is connected with a viscous character of the flow, that is, when the diameter of the pores of the membrane is much more than the size of the water molecules. This fact shows that the macromolecules of the deposited polymer layer in this case have a compact conformation, which does not hinder the water molecules infiltration. At a lower pH value of the filtrate, the picture cardinally changes. For modified in plasma membranes a diversion from the linear relation is observed. This means that in this case

  6. Growth and metabolism of fucosylated plasma-membrane glycoproteins in mouse neuroblastoma N2a cells

    PubMed Central

    Milenkovic, Ada G.; Rachmeler, Martin; Johnson, Terry C.

    1978-01-01

    The presence of 1.0mm-dibutyryl cyclic AMP (N6,O2′-dibutyryladenosine 3′:5′-cyclic monophosphate) and 1.5mm-theophylline completely inhibits the growth of mouse neuroblastoma N2a cells by 24–36h. When compared with N2a cultures without inhibitors (controls), the proportion of cells in S phase, measured by radioautography with [3H]-thymidine, was decreased from 55 to 12%. In addition, the presence of the inhibitors decreased apparent [3H]fucose incorporation into glycoproteins by 50%, and removing the inhibitors resulted in a rapid recovery of both DNA synthesis and glycoprotein metabolism. Measurement of intracellular acid-soluble radioactive fucose revealed that decreased fucose uptake could account for the apparent change in incorporation. Removing dibutyryl cyclic AMP and theophylline from the medium resulted in a rapid uptake of radioactive fucose to within control values, which illustrated that the inhibitors decreased transport of the carbohydrate, although the cells remained viable. Treatment with dibutyryl cyclic AMP and theophylline also reversibly inhibited glycoprotein degradation. Plasma membranes isolated from growing cells and from growth-inhibited cells labelled with [14C]fucose and [3H]fucose respectively were co-electrophoresed on sodium dodecyl sulphate/polyacrylamide gels. These displayed no apparent differences in synthesis of specific membrane glycoproteins. Electrophoresis of plasma membranes isolated from cultures pulse–chased with [14C]fucose and [3H]fucose was used to discern turnover patterns of specific plasma-membrane glycoproteins. High-molecular-weight glycoproteins exhibited rapid rates of turnover in membranes from growing cells, but moderate turnover rates in growth-inhibited cells and cells reversed from growth inhibition. These data indicate that growth arrest of N2a cells results in alterations in the metabolic turnover of plasma-membrane glycoproteins. PMID:218551

  7. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  8. Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability[W

    PubMed Central

    Schapire, Arnaldo L.; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A.

    2008-01-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca2+-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca2+-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness. PMID:19088329

  9. Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae.

    PubMed

    Kono, Keiko; Al-Zain, Amr; Schroeder, Lea; Nakanishi, Makoto; Ikui, Amy E

    2016-06-21

    Cellular wound healing or the repair of plasma membrane/cell wall damage (plasma membrane damage) occurs frequently in nature. Although various cellular perturbations, such as DNA damage, spindle misalignment, and impaired daughter cell formation, are monitored by cell cycle checkpoint mechanisms in budding yeast, whether plasma membrane damage is monitored by any of these checkpoints remains to be addressed. Here, we define the mechanism by which cells sense membrane damage and inhibit DNA replication. We found that the inhibition of DNA replication upon plasma membrane damage requires GSK3/Mck1-dependent degradation of Cdc6, a component of the prereplicative complex. Furthermore, the CDK inhibitor Sic1 is stabilized in response to plasma membrane damage, leading to cell integrity maintenance in parallel with the Mck1-Cdc6 pathway. Cells defective in both Cdc6 degradation and Sic1 stabilization failed to grow in the presence of plasma membrane damage. Taking these data together, we propose that plasma membrane damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization to promote the cellular wound healing process. PMID:27274080

  10. Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

    PubMed

    Flores-Méndez, Marco; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated. PMID:27083407

  11. Whey Protein Hydrolysate Increases Translocation of GLUT-4 to the Plasma Membrane Independent of Insulin in Wistar Rats

    PubMed Central

    Morato, Priscila Neder; Lollo, Pablo Christiano Barboza; Moura, Carolina Soares; Batista, Thiago Martins; Camargo, Rafael Ludemann; Carneiro, Everardo Magalhães; Amaya-Farfan, Jaime

    2013-01-01

    Whey protein (WP) and whey protein hydrolysate (WPH) have the recognized capacity to increase glycogen stores. The objective of this study was to verify if consuming WP and WPH could also increase the concentration of the glucose transporters GLUT-1 and GLUT-4 in the plasma membrane (PM) of the muscle cells of sedentary and exercised animals. Forty-eight Wistar rats were divided into 6 groups (n = 8 per group), were treated and fed with experimental diets for 9 days as follows: a) control casein (CAS); b) WP; c) WPH; d) CAS exercised; e) WP exercised; and f) WPH exercised. After the experimental period, the animals were sacrificed, muscle GLUT-1 and GLUT-4, p85, Akt and phosphorylated Akt were analyzed by western blotting, and the glycogen, blood amino acids, insulin levels and biochemical health indicators were analyzed using standard methods. Consumption of WPH significantly increased the concentrations of GLUT-4 in the PM and glycogen, whereas the GLUT-1 and insulin levels and the health indicators showed no alterations. The physical exercise associated with consumption of WPH had favorable effects on glucose transport into muscle. These results should encourage new studies dealing with the potential of both WP and WPH for the treatment or prevention of type II diabetes, a disease in which there is reduced translocation of GLUT-4 to the plasma membrane. PMID:24023607

  12. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  13. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    PubMed

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  14. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    PubMed

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases. PMID:27030010

  15. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  16. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  17. IRE1 prevents endoplasmic reticulum membrane permeabilization and cell death under pathological conditions

    PubMed Central

    Kanekura, Kohsuke; Ma, Xiucui; Murphy, John T.; Zhu, Lihua J.; Diwan, Abhinav; Urano, Fumihiko

    2015-01-01

    The endoplasmic reticulum (ER) has emerged as a critical regulator of cell fate. IRE1 is a transmembrane protein with kinase and RNase activities that is localized to the ER and that promotes resistance to ER stress. Here we showed a mechanism by which IRE1 conferred protection against ER stress-mediated cell death. IRE1 signaling prevented ER membrane permeabilization mediated by Bax and Bak and cell death under ER stress conditions. Suppression of IRE1 signaling led to the accumulation of the BH3 domain-containing protein Bnip3, which in turn triggered the oligomerization of Bax and Bak in the ER membrane and ER membrane permeabilization. As a result, cells deficient in IRE1 were susceptible to leakage of ER contents in response to ER stress, which was associated with the accumulation of calcium in mitochondria, oxidative stress in the cytosol, and cell death. Our results reveal a role for IRE1 in preventing an initial step of cell death emanating from the ER and provide a potential target for treating diseases characterized by ER stress, including diabetes and Wolfram syndrome. PMID:26106220

  18. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes

    PubMed Central

    Yabas, Mehmet; Jing, Weidong; Shafik, Sarah

    2016-01-01

    Organization of the plasma membrane into specialized substructures in different blood lineages facilitates important biological functions including proper localization of receptors at the plasma membrane as well as the initiation of crucial intracellular signaling cascades. The eukaryotic plasma membrane is a lipid bilayer that consists of asymmetrically distributed phospholipids. This asymmetry is actively maintained by membrane-embedded lipid transporters, but there is only limited data available about the molecular identity of the predominantly active transporters and their substrate specificity in different leukocyte subsets. We demonstrate here that the P4-type ATPase ATP11C mediates significant flippase activity in all murine leukocyte subsets. Loss of ATP11C resulted in a defective internalization of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in comparison to control cells. The diminished flippase activity caused increased PS exposure on 7-aminoactinomycin D− (7-AAD−) viable pro-B cells freshly isolated from the bone marrow of ATP11C-deficient mice, which was corrected upon a 2-hour resting period in vitro. Despite the impaired flippase activity in all immune cell subsets, the only other blood cell type with an accumulation of PS on the surface were viable 7-AAD− developing T cells but this did not result in any discernable effect on their development in the thymus. These findings show that all leukocyte lineages exhibit flippase activity, and identify ATP11C as an aminophospholipid translocase in immune cells. PMID:26799398

  19. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump.

    PubMed Central

    Zaman, G J; Flens, M J; van Leusden, M R; de Haas, M; Mülder, H S; Lankelma, J; Pinedo, H M; Scheper, R J; Baas, F; Broxterman, H J

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an expression vector containing MRP cDNA. MRP-overexpressing SW-1573 cells are resistant to doxorubicin, daunorubicin, vincristine, VP-16, colchicine, and rhodamine 123, but not to 4'-(9-acridinylamino)methanesulfon-m-anisidide or taxol. The intracellular accumulation of drug (daunorubicin, vincristine, and VP-16) is decreased and the efflux of drug (daunorubicin) is increased in the transfectant. The decreased accumulation of daunorubicin is abolished by permeabilization of the plasma membrane with digitonin, showing that MRP can lower the intracellular daunorubicin level against a concentration gradient. Anti-MRP antisera predominantly stain the plasma membrane of MRP-overexpressing cells. We conclude that MRP is a plasma membrane drug-efflux pump. Images PMID:7916458

  20. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity. PMID:23851147

  1. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology. PMID:25544590

  2. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons.

    PubMed

    Nicholls, David G

    2006-05-26

    Although natural and synthetic ionophores are widely exploited in cell studies, for example, to influence cytoplasmic free calcium concentrations and to depolarize in situ mitochondria, their inherent lack of membrane selectivity means that they affect the ion permeability of both plasma and mitochondrial membranes. A similar ambiguity affects the interpretation of signals from fluorescent membrane-permeant cations (usually termed "mitochondrial membrane potential indicators"), because the accumulation of these probes is influenced by both plasma and mitochondrial membrane potentials. To resolve some of these problems a technique is developed to allow simultaneous monitoring of plasma and mitochondrial membrane potentials at single-cell resolution using a cationic and anionic fluorescent probe. A computer program is described that transforms the fluorescence changes into dynamic estimates of changes in plasma and mitochondrial potentials. Exploiting this technique, primary cultures of rat cerebellar granule neurons display a concentration-dependent response to ionomycin: low concentrations mimic nigericin by hyperpolarizing the mitochondria while slowly depolarizing the plasma membrane and maintaining a stable elevated cytoplasmic calcium. Higher ionomycin concentrations induce a stochastic failure of calcium homeostasis that precedes both mitochondrial depolarization and an enhanced rate of plasma membrane depolarization. In addition, the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone only selectively depolarizes mitochondria at submicromolar concentrations. ATP synthase reversal following respiratory chain inhibition depolarizes the mitochondria by 26 mV. PMID:16551630

  3. Interaction of the antibiotic adriamycin with the plasma membrane.

    PubMed

    Hickman, J A; Chahwala, S B; Thompson, M G

    1985-01-01

    The antitumor antibiotic adriamycin was found to be a potent modulator of the human erythrocyte discocyte echinocyte transition. Incubation of discocytes for 10 min with 10 microM adriamycin inhibited calcium-induced echinocytosis by 90 per cent. Adriamycin itself had no effect on erythrocyte morphology, a feature which distinguished it from other amphipaths which bring about the formation of a cupped cell morphology. Additionally, adriamycin differed from amphipaths such as the phenothiazines in that concentrations which prevented echinocytosis had no effects on calmodulin, as measured by effects on calmodulin-stimulated 45Ca2+ uptake into inside-out red cell vesicles. Adriamycin, paradoxically, appeared to cause a fall in the levels of erythrocyte polyphosphoinositides, but prevented further breakdown induced by calcium loading. This fall in inositides may be apparent rather than real, as the drug did not cause breakdown of the inositides to either inositol di- or triphosphates in red cell vesicles. Instead, it inhibited breakdown. It is possible that adriamycin may complex out the inositides and thus maintain levels of the inositide polyphosphates, congruent with the maintenance of the discocyte morphology. Interference with inositol lipid metabolism may be an important aspect of the pharmacology of adriamycin. PMID:3012970

  4. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    PubMed Central

    2011-01-01

    Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments. PMID:22145853

  5. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  6. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  7. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGESBeta

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunschel, David S.; Rodland, Karin D.

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  8. Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madin-Darby canine kidney cells.

    PubMed

    Ueda, Yoshibumi; Makino, Asami; Murase-Tamada, Kotono; Sakai, Shota; Inaba, Takehiko; Hullin-Matsuda, Françoise; Kobayashi, Toshihide

    2013-08-01

    Diacylglycerol (DAG) is a key component in lipid metabolism and signaling. Previous model membrane studies using DAG analogs suggest their rapid membrane transbilayer movement. However, little is known about the DAG distribution and dynamics in cell membranes. Using live-cell fluorescence microscopy, we monitored the transbilayer movement of DAG with the yellow fluorescent protein-tagged C1AB domain from protein kinase C-γ (EYFP-C1AB), which selectively binds DAG. When HeLa cells were treated with Bacillus cereus phospholipase C (Bc-PLC) to produce DAG on the outer leaflet of the plasma membrane, intracellularly expressed EYFP-C1AB probe accumulated at the plasma membrane, indicating the transbilayer movement of the outer leaflet DAG to the inner leaflet. This Bc-PLC-induced translocation of EYFP-C1AB probe to the plasma membrane was not observed in the sphingolipid-enriched plasma membrane of Madin-Darby canine kidney cells, but was recovered after cell treatment with sphingomyelinase or preincubation with an inhibitor of sphingolipid biosynthesis. The inhibitory effect of sphingomyelin (SM) on the transbilayer movement of DAG was reproduced in model membranes using a fluorescent short-chain DAG analog. These results demonstrate that the SM content on the outer leaflet regulates the transbilayer movement of DAG in the plasma membrane, thus providing new insights into the dynamics of DAG in cell pathophysiology. PMID:23682124

  9. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum plasma membranes. Salt concentrations and temperature affect partitioning behavior and must be precisely standardized. In some cases, it is more fortuitous to combine aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  10. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane

    NASA Astrophysics Data System (ADS)

    Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong

    2014-02-01

    A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.

  11. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy.

    PubMed

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-09-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle's hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  12. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid.

    PubMed Central

    Saltiel, A R; Cuatrecasas, P

    1986-01-01

    Insulin binding to plasma membrane receptors results in the generation of substances that acutely mimic the actions of the hormone on certain target enzymes. Two such substances, which modulate the activity of the high-affinity cAMP phosphodiesterase (EC 3.1.4.17), have been purified from hepatic plasma membranes. The two have similar properties and activities but can be resolved by ion-exchange chromatography and high-voltage electrophoresis. They exhibit a net negative charge, even at pH 1.9, and an apparent molecular weight of approximately 1400. The generation of these substances from membranes by insulin can be reproduced by addition of a phosphatidylinositol-specific phospholipase C purified from Staphylococcus aureus. This enzyme is known to selectively hydrolyze phosphatidylinositol and release from membranes several proteins that are covalently linked to phosphatidylinositol by a glycan anchor. Both enzyme-modulating substances appear to be generated by the phosphodiesterase cleavage of a phosphatidylinositol-containing glycolipid precursor that has been characterized by thin-layer chromatography. Some of the chemical properties of these substances have been examined. They appear to be related complex carbohydrate-phosphate substances containing glucosamine and inositol. These findings suggest that insulin may activate a selective phospholipase activity that hydrolyzes a membrane phospholipid, releasing a carbohydrate-containing molecule that regulates cAMP phosphodiesterase and perhaps other insulin-sensitive enzymes. PMID:3016721

  13. Plasma membrane microdomains regulate TACE-dependent TNFR1 shedding in human endothelial cells

    PubMed Central

    D’Alessio, Alessio; Esposito, Bianca; Giampietri, Claudia; Ziparo, Elio; Pober, Jordan S; Filippini, Antonio

    2012-01-01

    Abstract Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine. PMID:21645239

  14. Analysis of lipid-composition changes in plasma membrane microdomains[S

    PubMed Central

    Ogiso, Hideo; Taniguchi, Makoto; Okazaki, Toshiro

    2015-01-01

    Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses. PMID:26116739

  15. Quantitative Analysis of Self-Association and Mobility of Annexin A4 at the Plasma Membrane

    PubMed Central

    Crosby, Kevin C.; Postma, Marten; Hink, Mark A.; Zeelenberg, Christiaan H.C.; Adjobo-Hermans, Merel J.W.; Gadella, Theodorus W.J.

    2013-01-01

    Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca2+ binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca2+ influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. PMID:23663830

  16. Fast serial analysis of active cholesterol at the plasma membrane in single cells.

    PubMed

    Tian, Chunxiu; Zhou, Junyu; Wu, Zeng-Qiang; Fang, Danjun; Jiang, Dechen

    2014-01-01

    Previously, our group has utilized the luminol electrochemiluminescence to analyze the active cholesterol at the plasma membrane in single cells by the exposure of one cell to a photomultiplier tube (PMT) through a pinhole. In this paper, fast analysis of active cholesterol at the plasma membrane in single cells was achieved by a multimicroelectrode array without the pinhole. Single cells were directly located on the microelectrodes using cell-sized microwell traps. A cycle of voltage was applied on the microelectrodes sequentially to induce a peak of luminescence from each microelectrode for the serial measurement of active membrane cholesterol. A minimal time of 1.60 s was determined for the analysis of one cell. The simulation and the experimental data exhibited a semisteady-state distribution of hydrogen peroxide on the microelectrode after the reaction of cholesterol oxidase with the membrane cholesterol, which supported the relative accuracy of the serial analysis. An eight-microelectrode array was demonstrated to analyze eight single cells in 22 s serially, including the channel switching time. The results from 64 single cells either activated by low ion strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT) revealed that most of the cells analyzed had the similar active membrane cholesterol, while few cells had more active cholesterol resulting in the cellular heterogeneity. The fast single-cell analysis platform developed will be potentially useful for the analysis of more molecules in single cells using proper oxidases. PMID:24328095

  17. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy

    PubMed Central

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-01-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  18. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage.

    PubMed

    Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R

    2016-06-01

    Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. PMID:26891206

  19. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering

    PubMed Central

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-01-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+. PMID:26202220

  20. Regulation of the transbilayer movement of diacylglycerol in the plasma membrane.

    PubMed

    Ueda, Yoshibumi; Ishitsuka, Reiko; Hullin-Matsuda, Françoise; Kobayashi, Toshihide

    2014-12-01

    This mini-review presents recent advances in the regulation of the membrane transbilayer movement (or flip-flop) of diacylglycerol (DAG), a key intermediate in lipid metabolism and a second messenger in lipid-mediated signaling. Despite progresses in lipid biophysics and imaging, little is known about the DAG dynamics across the two leaflets of the plasma membrane in living cells. Previous model membrane studies with DAG analogs demonstrated their fast flip-flop suggesting that DAG is evenly distributed between the two leaflets of the plasma membrane. However, recent molecular dynamics simulations indicate that DAG transbilayer movement depends on the lipid environment surrounding the lipid, i.e. DAG flips more slowly across a more ordered "lipid raft-like" bilayer (enriched in sphingomyelin/cholesterol) than across a more fluid bilayer (composed of unsaturated glycerophospholipids). Furthermore using the yellow fluorescent protein-tagged C1AB domain from protein kinase C-γ (EYFP-C1AB) that selectively binds DAG, we recently proved that the sphingomyelin (SM) content in the plasma membrane outer leaflet regulates DAG transbilayer movement in Madin-Darby canine kidney cells treated with bacterial phosphatidylcholine-specific phospholipase C. The dose-dependent inhibition of DAG flip-flop by SM could be reproduced in model membranes using fluorescent short chain DAG analog. Regulation of DAG transbilayer movement by the outer leaflet SM content is expected to modify the downstream recruitment of C1-domain containing effectors, thus bringing new insights on the role of DAG dynamics in cell pathophysiology. PMID:25241257

  1. A plasma-membrane linker for the phosphoinositide-specific phospholipase C in tobacco plants.

    PubMed

    Nakamura, Kimiyo; Sano, Hiroshi

    2009-01-01

    We previously screened genes that were transcriptionally activated during the early stage of wound response in tobacco plants (Nicotiana tabacum), and isolated a particular clone, which encoded a membrane-located protein, designated as NtC7. Upon overexpression in tobacco plants, NtC7 conferred a marked tolerance to osmotic stress, suggesting it to be involved in maintenance of osmotic adjustments. In this study, we searched for proteins which interact with NtC7 by the yeast two-hybrid screening, and isolated a clone encoding phosphoinositide-specific phospholipase C, designated as NtPI-PLC. Physical interaction between NtC7 and C2 domain of NtPI-PLC was confirmed by the pull-down assay. Expression of fused protein to green-fluorescence protein in onion epidermal cell layers indicated both proteins to predominantly localize to the plasma membrane. Their interaction in planta was shown by the bimolecular fluorescence complementation, which exhibited a clear fluorescence of reconstituted yellow fluorescence protein. Transcripts of NtC7 and NtPI-PLC were markedly increased 30 to 60 min after wounding. PI-PLC is one of key enzymes in metabolism of inositol phospholipids, which function in signal transduction and also in response to stresses including osmotic changes. It was shown to localize to plasma-membrane and, to a lesser extent, to cytosol. However, molecular mechanism of membrane localization has remained to be determined, because of the apparent lack of domains for membrane association. The present results suggest that one of such mechanisms is tethering NtPI-PLC to the plasma membrane through interaction with NtC7, which possesses a transmembrane domain at the C-terminus. PMID:19704699

  2. Granulocyte plasma membrane damage by leukotoxic supernatant from Pasteurella haemolytica A1 and protection by immune serum.

    PubMed

    Styrt, B; Walker, R D; White, J C; Dahl, L D; Baker, J C

    1990-01-01

    Bovine respiratory disease caused by Pasteurella haemolytica may be partially mediated by a leukotoxin secreted by the microorganism. We examined the effect of leukotoxic Pasteurella supernatants on leakage of the cytosol enzyme lactate dehydrogenase and the lysosomal enzyme arylsulfatase from bovine granulocytes. Lactate dehydrogenase release (94%) was much higher than arylsulfatase release (38%) over 30 minutes of incubation. The Pasteurella supernatants inhibited superoxide production by stimulated granulocytes at concentrations which also caused substantial cell death as measured by failure to exclude trypan blue. Both toxic effects were prevented by serum from aerosol-immunized calves, and protection appeared to be antibody-specific by comparison with fetal bovine serum or with serum absorbed against intact P. haemolytica. These findings suggest that the leukotoxin may selectively disrupt the granulocyte plasma membrane, and that antibody directed against a surface component of the microorganism is also capable of protecting against the leukotoxin effect. PMID:2306664

  3. Parallel artificial liquid membrane extraction of acidic drugs from human plasma.

    PubMed

    Roldán-Pijuán, Mercedes; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2015-04-01

    The new sample preparation concept "Parallel artificial liquid membrane extraction (PALME)" was evaluated for extraction of the acidic drugs ketoprofen, fenoprofen, diclofenac, flurbiprofen, ibuprofen, and gemfibrozil from human plasma samples. Plasma samples (250 μL) were loaded into individual wells in a 96-well donor plate and diluted with HCl to protonate the acidic drugs. The acidic drugs were extracted as protonated species from the individual plasma samples, through corresponding artificial liquid membranes each comprising 2 μL of dihexyl ether, and into corresponding acceptor solutions each comprising 50 μL of 25 mM ammonia solution (pH 10). The liquid membranes and the acceptor solutions were located in a 96-well filter plate, which was sandwiched with the 96-well donor plate during extraction. Parallel extraction of several samples was performed for 15 to 60 min, followed by high-performance liquid chromatography-ultraviolet detection of the individual acceptor solutions. Important PALME parameters including the chemical composition of the liquid membrane, extraction time, and sample pH were optimized, and the extraction performance was evaluated. Except for flurbiprofen, exhaustive extraction was accomplished from plasma. Linearity was obtained for all six drugs in the range 0.025-10 μg/mL, with r (2) values ranging between 0.998 and 1.000. Precision data were in the range 3-22% RSD, and accuracy data were within 72-130% with spiked plasma samples. Based on the current experiences, PALME showed substantial potential for future high-throughput bioanalysis of non-polar acidic drugs. PMID:25682297

  4. Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

    PubMed Central

    Sweet, W D; Schroeder, F

    1986-01-01

    The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369

  5. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability.

    PubMed

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R; Russinova, Eugenia; Chaumont, François

    2014-07-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. PMID:25082856

  6. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  7. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    PubMed

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water. PMID:25212700

  8. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    SciTech Connect

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh; Modine, Thomas; Preau, Sebastien; Zannis, Konstantinos; Marchetti, Philippe; Lancel, Steve; Neviere, Remi

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  9. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-02-01

    The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  10. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation

    SciTech Connect

    Steponkus, P.L.; Dowgert, M.F.; Gordon-Kamm, W.J.

    1983-01-01

    The functional characteristics of the plasma membrane in response to a free-thaw cycle are studied in isolated protoplasts with the plasma membrane still intact. Three different forms of injury have been characterized: intracellular ice formation, hypertonic-induced loss of osmotic responsiveness, and expansion-induced lysis. In this report, the influence of cold acclimation on the incidence of these forms of injury is emphasized. Isolated protoplasts are an excellent arena in which destabilization of the plasma membrane can be directly observed during a freeze-thaw cycle by cryomicroscopy. 65 references, 8 figures.

  11. Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors

    NASA Astrophysics Data System (ADS)

    Kravets, L.; Dmitriev, S.; Lizunov, N.; Satulu, V.; Mitu, B.; Dinescu, G.

    2010-03-01

    The structure and the charge transport properties of poly(ethylene terephthalate) track membrane modified by pyrrole plasma were studied. It was found that polymer deposition on the surface of a track membrane via plasma polymerization of pyrrole results in the creation of composite nanomembranes that, in the case of the formation of a semipermeable layer, possess asymmetric conductivity in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membranes of two layers with different functional groups and also by the pore geometry. Such membranes can be used to create chemical and biochemical sensors.

  12. A study of the Interaction Between Cetirizine and Plasma Membrane of Eosinophils, Neutrophils, Platelets and Lymphocytes using A fluorescence Technique

    PubMed Central

    Oggiano, N.; Giorgi, P. L.; Rihoux, J-P.

    1994-01-01

    The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 μg/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities. PMID:18472948

  13. Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane

    PubMed Central

    Senning, Eric N.; Aman, Teresa K.

    2016-01-01

    Biological membranes are complex assemblies of lipids and proteins that serve as platforms for cell signaling. We have developed a novel method for measuring the structure and dynamics of the membrane based on fluorescence resonance energy transfer (FRET). The method marries four technologies: (1) unroofing cells to isolate and access the cytoplasmic leaflet of the plasma membrane; (2) patch-clamp fluorometry (PCF) to measure currents and fluorescence simultaneously from a membrane patch; (3) a synthetic lipid with a metal-chelating head group to decorate the membrane with metal-binding sites; and (4) transition metal ion FRET (tmFRET) to measure short distances between a fluorescent probe and a transition metal ion on the membrane. We applied this method to measure the density and affinity of native and introduced metal-binding sites in the membrane. These experiments pave the way for measuring structural rearrangements of membrane proteins relative to the membrane. PMID:26755772

  14. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  15. New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L.

    PubMed

    Zhang, Bao; Dong, Chunjuan; Shang, Qingmao; Han, Yuzhu; Li, Pinglan

    2013-09-01

    Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R. solani hyphae by bacillomycin L was investigated and compared with that by amphotericin B, a polyene antibiotic which is thought to act primarily through membrane disruption. Our results derived from electron microscopy, various fluorescent techniques and gel retardation experiments revealed that the antifungal activity of bacillomycin L may be not solely a consequence of fungal membrane permeabilization, but related to the interaction of it with intracellular targets. Our findings provide more insights into the mode of action of bacillomycin L and other iturins, which could in turn help to develop new or improved antifungal formulations or result in novel strategies to prevent fungal spoilage. PMID:23756779

  16. Myelin Basic Protein Induces Neuron-Specific Toxicity by Directly Damaging the Neuronal Plasma Membrane

    PubMed Central

    Zheng, Sixin; Liu, Xiao; Jin, Jinghua; Ren, Yi; Luo, Jianhong

    2014-01-01

    The central nervous system (CNS) insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP). MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage. PMID:25255088

  17. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption.

    PubMed

    Wood, W G; Schroeder, F; Hogy, L; Rao, A M; Nemecz, G

    1990-06-27

    Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids. PMID:2364080

  18. A Plasma Membrane-Anchored Fluorescent Protein Fusion Illuminates Sieve Element Plasma Membranes in Arabidopsis and Tobacco1[W][OA

    PubMed Central

    Thompson, Matthew V.; Wolniak, Stephen M.

    2008-01-01

    Rapid acquisition of quantitative anatomical data from the sieve tubes of angiosperm phloem has been confounded by their small size, their distance from organ surfaces, and the time-consuming nature of traditional methods, such as transmission electron microscopy. To improve access to these cells, for which good anatomical data are critical, a monomeric yellow fluorescent protein (mCitrine) was N-terminally fused to a small (approximately 6 kD) membrane protein (AtRCI2A) and stably expressed in Arabidopsis thaliana (Columbia-0 ecotype) and Nicotiana tabacum (‘Samsun’) under the control of a companion cell-specific promoter (AtSUC2p). The construct, called by its abbreviation SUmCR, yielded stable sieve element (SE) plasma membrane fluorescence labeling, even after plastic (methacrylate) embedding. In conjunction with wide-field fluorescence measurements of sieve pore number and position using aniline blue-stained callose, mCitrine-labeled material was used to calculate rough estimates of sieve tube-specific conductivity for both species. The SUmCR construct also revealed a hitherto unknown expression domain of the AtSUC2 Suc-H+ symporter in the epidermis of the cell division zone of developing root tips. The success of this construct in targeting plasma membrane-anchored fluorescent proteins to SEs could be attributable to the small size of AtRCI2A or to the presence of other signals innate to AtRCI2A that permit the protein to be trafficked to SEs. The construct provides a hitherto unique entrée into companion cell-to-SE protein targeting, as well as a new tool for studying whole-plant phloem anatomy and architecture. PMID:18223149

  19. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  20. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  1. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  2. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  3. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  4. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  5. Plasma membrane electron transport in pancreatic β-cells is mediated in part by NQO1.

    PubMed

    Gray, Joshua P; Eisen, Timothy; Cline, Gary W; Smith, Peter J S; Heart, Emma

    2011-07-01

    Plasma membrane electron transport (PMET), a cytosolic/plasma membrane analog of mitochondrial electron transport, is a ubiquitous system of cytosolic and plasma membrane oxidoreductases that oxidizes cytosolic NADH and NADPH and passes electrons to extracellular targets. While PMET has been shown to play an important role in a variety of cell types, no studies exist to evaluate its function in insulin-secreting cells. Here we demonstrate the presence of robust PMET activity in primary islets and clonal β-cells, as assessed by the reduction of the plasma membrane-impermeable dyes WST-1 and ferricyanide. Because the degree of metabolic function of β-cells (reflected by the level of insulin output) increases in a glucose-dependent manner between 4 and 10 mM glucose, PMET was evaluated under these conditions. PMET activity was present at 4 mM glucose and was further stimulated at 10 mM glucose. PMET activity at 10 mM glucose was inhibited by the application of the flavoprotein inhibitor diphenylene iodonium and various antioxidants. Overexpression of cytosolic NAD(P)H-quinone oxidoreductase (NQO1) increased PMET activity in the presence of 10 mM glucose while inhibition of NQO1 by its inhibitor dicoumarol abolished this activity. Mitochondrial inhibitors rotenone, antimycin A, and potassium cyanide elevated PMET activity. Regardless of glucose levels, PMET activity was greatly enhanced by the application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle. We propose a model for the role of PMET as a regulator of glycolytic flux and an important component of the metabolic machinery in β-cells. PMID:21505151

  6. Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species

    PubMed Central

    Krauke, Yannick; Sychrova, Hana

    2008-01-01

    Background The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. Results The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. Conclusion We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations. PMID:18492255

  7. SLC41A2 encodes a plasma-membrane Mg2+ transporter

    PubMed Central

    Sahni, Jaya; Nelson, Bruce; Scharenberg, Andrew M.

    2006-01-01

    The TRPM7 (transient receptor potential melastatin 7) ion channel has been implicated in the uptake of Mg2+ into vertebrate cells, as elimination of TRPM7 expression through gene targeting in DT40 B-lymphocytes renders them unable to grow in the absence of supplemental Mg2+. However, a residual capacity of TRPM7-deficient cells to accumulate Mg2+ and proliferate when provided with supplemental Mg2+ suggests the existence of Mg2+ uptake mechanism(s) other than TRPM7. Evaluation of the expression of several members of the SLC41 (solute carrier family 41) family, which exhibit homology with the MgtE class of prokaryotic putative bivalent-cation transporters, demonstrated that one, SLC41A2 (solute carrier family 41 member 2), is expressed in both wild-type and TRPM7-deficient DT40 cells. Characterization of heterologously expressed SLC41A2 protein indicated that it is a plasma-membrane protein with an N-terminus-outside/C-terminus-inside 11-TM (transmembrane)-span topology, consistent with its functioning as a trans-plasma-membrane transporter. In contrast with a previous report of ion-channel activity associated with SLC41A2 expression in oocytes, investigation of whole cell currents in SLC41A2-expressing DT40 cells revealed no novel currents of any type associated with SLC41A2 expression. However, expression of SLC41A2 in TRPM7-deficient cells under the control of a doxycycline-inducible promoter was able to conditionally enhance their net uptake of 26Mg2+ and conditionally and dose-dependently provide them with the capacity to grow in the absence of supplemental Mg2+, observations strongly supporting a model whereby SLC41A2 directly mediates trans-plasma-membrane Mg2+ transport. Overall, our results suggest that SLC41A2 functions as a plasma-membrane Mg2+ transporter in vertebrate cells. PMID:16984228

  8. Origin and development of plasma membrane derived invaginations in Vinca rosea l.

    NASA Technical Reports Server (NTRS)

    Mahlberg, P.; Walkinshaw, C.; Olson, K.

    1971-01-01

    The occurrence, morphology, and possible ontogeny of plasma-membrane-related structures are described which can develop into invaginations or intravacuolar formations. An underlying study of meristematic tissues from the shoot of Vinca rosea supports the interpretation that endocytosis does occur in plant cells and that it is appropriate to refer to these structures as endocytoses. The function of these invaginations or their content remains to be elucidated.

  9. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    PubMed Central

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  10. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology.

    PubMed

    Falhof, Janus; Pedersen, Jesper Torbøl; Fuglsang, Anja Thoe; Palmgren, Michael

    2016-03-01

    The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase. PMID:26584714

  11. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    SciTech Connect

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  12. The exocyst is required for trypanosome invasion and the repair of mechanical plasma membrane wounds

    PubMed Central

    Fernandes, Maria Cecilia; Corrotte, Matthias; Miguel, Danilo C.; Tam, Christina; Andrews, Norma W.

    2015-01-01

    ABSTRACT The process of host cell invasion by Trypanosoma cruzi shares mechanistic elements with plasma membrane injury and repair. Both processes require Ca2+-triggered exocytosis of lysosomes, exocytosis of acid sphingomyelinase and formation of ceramide-enriched endocytic compartments. T. cruzi invades at peripheral sites, suggesting a need for spatial regulation of membrane traffic. Here, we show that Exo70 and Sec8 (also known as EXOC7 and EXOC4, respectively), components of the exocyst complex, accumulate in nascent T. cruzi vacuoles and at sites of mechanical wounding. Exo70 or Sec8 depletion inhibits T. cruzi invasion and Ca2+-dependent resealing of mechanical wounds, but does not affect the repair of smaller lesions caused by pore-forming toxins. Thus, T. cruzi invasion and mechanical lesion repair share a unique requirement for the exocyst, consistent with a dependence on targeted membrane delivery. PMID:25380822

  13. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase.

    PubMed

    Kühlbrandt, Werner; Zeelen, Johan; Dietrich, Jens

    2002-09-01

    Proton pumps in the plasma membrane of plants and yeasts maintain the intracellular pH and membrane potential. To gain insight into the molecular mechanisms of proton pumping, we built an atomic homology model of the proton pump based on the 2.6 angstrom x-ray structure of the related Ca2+ pump from rabbit sarcoplasmic reticulum. The model, when fitted to an 8 angstrom map of the Neurospora proton pump determined by electron microscopy, reveals the likely path of the proton through the membrane and shows that the nucleotide-binding domain rotates by approximately 70 degrees to deliver adenosine triphosphate (ATP) to the phosphorylation site. A synthetic peptide corresponding to the carboxyl-terminal regulatory domain stimulates ATPase activity, suggesting a mechanism for proton transport regulation. PMID:12169656

  14. Mixed enzyme-linked immunosorbent assay (MELISA) for HLA class I antigen: a plasma membrane marker.

    PubMed

    Bjerrum, O W; Borregaard, N

    1990-03-01

    This study introduces a simple, reproducible assay for HLA class I antigen using antibodies against beta 2-microglobulin and the heavy chain on HLA. The sandwich technique was named mixed enzyme-linked immunosorbent assay (MELISA), and was designed for identification of plasma membranes in neutrophil subcellular fractions. The subcellular localization of HLA was identical to that of other plasma membrane markers, [3H]concanavalin A and detergent-independent alkaline phosphatase, and was unchanged by stimulation of cells by weak and strong secretagogues. In addition to the presence as part of the HLA complex in the plasma membrane uncomplexed beta 2-microglobulin is present in the specific granules of neutrophils. However, the release of beta 2-microglobulin from intact neutrophils stimulated with formyl-methionylleucylphenylalanine was much higher than could be explained by exocytosis of specific granules. Subcellular fractionation studies demonstrated that beta 2-microglobulin is localized in fractions characterized by latent alkaline phosphatase and released from this novel secretory compartment in response to stimulation with formyl-methionylleucylphenylalanine. PMID:2181625

  15. The plasma membrane shuttling of CAPRI is related to regulation of mast cell activation

    SciTech Connect

    Nakamura, Rika; Furuno, Tadahide; Nakanishi, Mamoru . E-mail: mamoru@dpc.agu.ac.jp

    2006-08-18

    The Ca{sup 2+}-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, is involved in the inactivation of mitogen-activated protein kinase pathway. However, a precise role of CAPRI in immune responses is still unknown. Here we showed that overexpression of CAPRI suppresses antigen-induced degranulation and cytokine production in mast cells (RBL cells). Antigen elicited the translocation of CAPRI to the plasma membrane from the cytoplasm, which was concomitant with the increase in the intracellular Ca{sup 2+} concentration. The nuclear import of extracellular signal-regulated kinase 2 (ERK2) occurred after the re-localization of CAPRI to the cytoplasm in the mast cells, suggesting that the early phase of ERK2 activation is eliminated. A mutant of GAP-related domain, CAPRI(R472S), showed a feeble translocation to the plasma membrane but did not affect the degranulation, ERK2 activation, and cytokine production. The results suggested that the translocation of CAPRI to the plasma membranes regulates crucially cellular responses in mast cells.

  16. Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization

    PubMed Central

    van Unen, Jakobus; Reinhard, Nathalie R.; Yin, Taofei; Wu, Yi I.; Postma, Marten; Gadella, Theodorus W.J.; Goedhart, Joachim

    2015-01-01

    The small GTPase RhoA is involved in cell morphology and migration. RhoA activity is tightly regulated in time and space and depends on guanine exchange factors (GEFs). However, the kinetics and subcellular localization of GEF activity towards RhoA are poorly defined. To study the mechanism underlying the spatiotemporal control of RhoA activity by GEFs, we performed single cell imaging with an improved FRET sensor reporting on the nucleotide loading state of RhoA. By employing the FRET sensor we show that a plasma membrane located RhoGEF, p63RhoGEF, can rapidly activate RhoA through endogenous GPCRs and that localized RhoA activity at the cell periphery correlates with actin polymerization. Moreover, synthetic recruitment of the catalytic domain derived from p63RhoGEF to the plasma membrane, but not to the Golgi apparatus, is sufficient to activate RhoA. The synthetic system enables local activation of endogenous RhoA and effectively induces actin polymerization and changes in cellular morphology. Together, our data demonstrate that GEF activity at the plasma membrane is sufficient for actin polymerization via local RhoA signaling. PMID:26435194

  17. Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake

    PubMed Central

    Rodríguez-Vázquez, Míriam; Mejía-Morales, John E.; Culi, Joaquim

    2015-01-01

    Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them. PMID:26121667

  18. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes.

    PubMed

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-05-13

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  19. G-protein-coupled receptor participates in 20-hydroxyecdysone signaling on the plasma membrane

    PubMed Central

    2014-01-01

    Background Animal steroid hormones are conventionally known to initiate signaling via a genomic pathway by binding to the nuclear receptors. The mechanism by which 20E initiates signaling via a nongenomic pathway is unclear. Results We illustrate that 20E triggered the nongenomic pathway through a plasma membrane G-protein-coupled receptor (named ErGPCR) in the lepidopteran insect Helicoverpa armigera. The transcript of ErGPCR was increased at the larval molting stage and metamorphic molting stage by 20E regulation. Knockdown of ErGPCR via RNA interference in vivo blocked larval–pupal transition and suppressed 20E-induced gene expression. ErGPCR overexpression in the H. armigera epidermal cell line increased the 20E-induced gene expression. Through ErGPCR, 20E modulated Calponin nuclear translocation and phosphorylation, and induced a rapid increase in cytosolic Ca2+ levels. The inhibitors of T-type voltage-gated calcium channels and canonical transient receptor potential calcium channels repressed the 20E-induced Ca2+ increase. Truncation of the N-terminal extracellular region of ErGPCR inhibited its localization on the plasma membrane and 20E-induced gene expression. ErGPCR was not detected to bind with the steroid hormone analog [3H]Pon A. Conclusion These results suggest that ErGPCR participates in 20E signaling on the plasma membrane. PMID:24507557

  20. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. PMID:23933253

  1. Ethylene activates a plasma membrane Ca(2+)-permeable channel in tobacco suspension cells.

    PubMed

    Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2007-01-01

    Here, the effects of the ethylene-releasing compound, ethephon, and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), on ionic currents across plasma membranes and on the cytosolic Ca(2+) activity ([Ca(2+)](c)) of tobacco (Nicotiana tabacum) suspension cells were characterized using a patch-clamp technique and confocal laser scanning microscopy. Exposure of tobacco protoplasts to ethephon and ACC led to activation of a plasma membrane cation channel that was permeable to Ba(2+), Mg(2+) and Ca(2+), and inhibited by La(3+), Gd(3+) and Al(3+). The ethephon- and ACC-induced Ca(2+)-permeable channel was abolished by the antagonist of ethylene perception (1-metycyclopropene) and by the inhibitor of ACC synthase (aminovinylglycin), indicating that activation of the Ca(2+)-permeable channels results from ethylene. Ethephon elicited an increase in the [Ca(2+)](c) of tobacco suspension cells, as visualized by the Ca(2+)-sensitive probe Fluo-3 and confocal microscopy. The ethephon-induced elevation of [Ca(2+)](c) was markedly inhibited by Gd(3+) and BAPTA, suggesting that an influx of Ca(2+) underlies the elevation of [Ca(2+)](c). These results indicate that an elevation of [Ca(2+)](c), resulting from activation of the plasma membrane Ca(2+)-permeable channels by ethylene, is an essential component in ethylene signaling in plants. PMID:17447907

  2. Toxin Pores Endocytosed During Plasma Membrane Repair Traffic into the Lumen of MVBs for Degradation

    PubMed Central

    Corrotte, Matthias; Fernandes, Maria Cecilia; Tam, Christina; Andrews, Norma W.

    2012-01-01

    Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca2+-dependent manner. Resealing involves Ca2+-dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes. PMID:22212686

  3. HIV-1 RNA genome dimerizes on the plasma membrane in the presence of Gag protein.

    PubMed

    Chen, Jianbo; Rahman, Sheikh Abdul; Nikolaitchik, Olga A; Grunwald, David; Sardo, Luca; Burdick, Ryan C; Plisov, Sergey; Liang, Edward; Tai, Sheldon; Pathak, Vinay K; Hu, Wei-Shau

    2016-01-12

    Retroviruses package a dimeric genome comprising two copies of the viral RNA. Each RNA contains all of the genetic information for viral replication. Packaging a dimeric genome allows the recovery of genetic information from damaged RNA genomes during DNA synthesis and promotes frequent recombination to increase diversity in the viral population. Therefore, the strategy of packaging dimeric RNA affects viral replication and viral evolution. Although its biological importance is appreciated, very little is known about the genome dimerization process. HIV-1 RNA genomes dimerize before packaging into virions, and RNA interacts with the viral structural protein Gag in the cytoplasm. Thus, it is often hypothesized that RNAs dimerize in the cytoplasm and the RNA-Gag complex is transported to the plasma membrane for virus assembly. In this report, we tagged HIV-1 RNAs with fluorescent proteins, via interactions of RNA-binding proteins and motifs in the RNA genomes, and studied their behavior at the plasma membrane by using total internal reflection fluorescence microscopy. We showed that HIV-1 RNAs dimerize not in the cytoplasm but on the plasma membrane. Dynamic interactions occur among HIV-1 RNAs, and stabilization of the RNA dimer requires Gag protein. Dimerization often occurs at an early stage of the virus assembly process. Furthermore, the dimerization process is probably mediated by the interactions of two RNA-Gag complexes, rather than two RNAs. These findings advance the current understanding of HIV-1 assembly and reveal important insights into viral replication mechanisms. PMID:26712001

  4. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  5. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  6. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  7. Plasma membrane nanoporation as a possible mechanism behind infrared excitation of cells

    NASA Astrophysics Data System (ADS)

    Beier, Hope T.; Tolstykh, Gleb P.; Musick, Joshua D.; Thomas, Robert J.; Ibey, Bennett L.

    2014-12-01

    Objective. Short infrared (IR) laser pulses have been used to stimulate action potentials in neurons both in vivo and in vitro. However, the mechanism(s) underlying this phenomenon has remained elusive. In vitro studies have found that pulsed IR exposure generates a nearly instant change in capacitance in the plasma membrane, characterized by inward rectification, a common feature in pore-forming exposures, such as electrical pulses and acoustic shock waves. Based on this similarity, we hypothesize that the mechanism of IR stimulation is the formation of short-lived nanopores in the plasma membrane. These transient, small-diameter pores allow the influx of extracellular ions that lead to action potential generation, possibly through activation of secondary messenger pathways or depolarization of the cell membrane resulting in activation of voltage-gated ion channels. Approach. A variety of fluorescent markers are used to observe the cell response to IR stimulation to monitor for effects indicative of nanoporation in other modalities. Main results. We observe rapid, transient rises in intracellular Ca2+, influx of YO-PRO-1 and propidium iodide into the cell signifying membrane permeabilization, cellular blebbing and swelling, and activation of the intracellular phosphoinositides lipid signaling pathway. Significance. This conclusion better explains the experimental observations and limitations of IR-induced neurological stimulation and represents a distinct theoretical shift in the understanding of the mechanism of IR-induced stimulation.

  8. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  9. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes.

    PubMed

    Mitra, Srijeet K; Walters, Benjamin T; Clouse, Steven D; Goshe, Michael B

    2009-06-01

    Membrane proteins are involved in diverse cellular processes and are an integral component of many signaling cascades, but due to their highly hydrophobic nature and the complexities associated with studying these proteins in planta, alternative methods are being developed to better characterize these proteins on a proteome-wide scale. In our previous work ( Mitra , S. K. et al. J. Proteome Res. 2007 , 6 , ( 5 ), 1933 - 50 ), methanol-assisted solubilization was determined to facilitate the identification of both hydrophobic and hydrophilic membrane proteins compared to Brij-58 solubilization and was particularly effective for leucine-rich repeat receptor-like kinases (LRR RLKs). To improve peptide identification and to overcome sample losses after tryptic digestion, we have developed an effective chloroform extraction method to promote plasma membrane protein identification. The use of chloroform extraction over traditional solid-phase extraction (SPE) prior to off-line strong cation exchange liquid chromatography (SCXC) and reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis facilitated the removal of chlorophylls, major contaminants of plant tissue preparations that can affect downstream analysis, in addition to the effective removal of trypsin used in the digestion. On the basis of a statistically derived 5% false discovery rate, the chloroform extraction procedure increased the identification of unique peptides for plasma membrane proteins over SPE by 70% which produced nearly a 2-fold increase in detection of membrane transporters and LRR RLKs without increased identification of contaminating Rubisco and ribosomal peptides. Overall, the combined use of methanol and chloroform provides an effective method to study membrane proteins and can be readily applied to other tissues and cells types for proteomic analysis. PMID:19334764

  10. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking

    PubMed Central

    Aguilar, Pablo S; Fröhlich, Florian; Rehman, Michael; Shales, Mike; Ulitsky, Igor; Olivera-Couto, Agustina; Braberg, Hannes; Shamir, Ron; Walter, Peter; Mann, Matthias; Ejsing, Christer S; Krogan, Nevan J; Walther, Tobias C

    2011-01-01

    The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and proteins is homeostatically maintained are not yet understood. Here, we used a quantitative genetic interaction map, or E-MAP, to functionally interrogate a set of ~400 genes involved in various aspects of plasma-membrane biology, including endocytosis, signaling, lipid metabolism and eisosome function. From this E-MAP, we derived a set of 57,799 individual interactions between genes functioning in these various processes. Using triplet genetic motif analysis, we identified a new component of the eisosome, Eis1, and linked the poorly characterized gene EMP70 to endocytic and eisosome function. Finally, we implicated Rom2, a GDP/GTP exchange factor for Rho1 and Rho2, in the regulation of sphingolipid metabolism. PMID:20526336

  11. Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica.

    PubMed

    Horstman, N Kaye; Darwin, Andrew J

    2012-08-01

    The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent. PMID:22646656

  12. Further characterization of the red beet plasma membrane Ca sup 2+ -ATPase using GTP as an alternative substrate

    SciTech Connect

    Williams, L.E.; Schueler, S.B.; Briskin, D.P. )

    1990-03-01

    The GTP-driven component of Ca{sup 2+} uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca{sup 2+}-translocating ATPase and assess its utility as a probe for this transport system. Uptake of {sup 45}Ca{sup 2+} in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca{sup 2+} concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca{sup 2+}-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of {sup 45}Ca{sup 2+}-uptake by exogeneous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven {sup 45}Ca{sup 2+} uptake represents the capacity of the plasma membrane Ca{sup 2+}-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with ({gamma}-{sup 32}P)GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca{sup 2+}-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca{sup 2+}-ATPases present in animal cells.

  13. Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36.

    PubMed Central

    Dorahy, D J; Lincz, L F; Meldrum, C J; Burns, G F

    1996-01-01

    Here we describe the isolation and characterization of a Triton X-100-insoluble fraction isolated from lysates of platelets by flotation in sucrose gradients. Transmission electron microscopy of the insoluble material revealed a heterogeneous population of vesicles ranging in size from 20 to 1000 nm, and Western blot analyses of platelet lysates for the caveolae structural coat protein, caveolin/VIP21, were negative. Biochemical characterization of the Triton X-100-insoluble fraction showed it to be cholesterol-rich, greatly and specifically enriched in the plasma membrane glycoprotein CD36, and also to contain Src and the Src-related kinase, Lyn. CD36 within this fraction is shown to be palmitoylated, but the fraction itself is not generally enriched in palmitoylated platelet proteins. These results suggest that this fraction represents caveolin-negative, CD36-rich microdomains in the resting platelet membrane. CD36 can form associations with certain Src-related kinases and can signal to activate platelets. These results suggest the possibility that such microdomains are implicated in platelet activation. PMID:8870650

  14. Reduction in lateral lipid mobility of lipid bilayer membrane by atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Tero, Ryugo; Yamashita, Ryuma; Yusa, Kota; Takikawa, Hirofumi

    2016-03-01

    Plasma medicine is an emerging research field in which various applications of electrical discharge, especially in the form of nonequilibrium plasma at atmospheric pressure, are examined, for example, the application of plasma to biological targets for various purposes such as selective killing of tumor cells and blood stanching. We have focused on the behavior of an artificial cell membrane system at the solid-liquid interface. To evaluate the lateral lipid mobility, we measured the diffusion coefficient of the supported lipid bilayer (SLB) composed of dioleoylphosphatidylcholine with fluorescence recovery after photobleaching by confocal laser scanning microscopy. It was found that the diffusion coefficient was decreased by plasma irradiation and that the diffusion coefficient decreasing rate proceeded with increasing plasma power. We investigated the effects of stimulation with an equilibrium chemical, H2O2, on the SLB and confirmed that the diffusion coefficient did not change at least up to a H2O2 concentration of 5 mM. These results indicate that transient active species generated by plasma play critical roles in the reduction in SLB fluidity. The effects of the two generated major oxidized lipid species, hydroxyl- or hydroperoxy-phosphatidylcholine (PC) and acyl-chain-truncated PCs terminated with aldehyde or carboxyl group, on lateral lipid mobility are discussed.

  15. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings.

    PubMed

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet T; Meents, Miranda J; Lao, Jeemeng; González Fernández-Niño, Susana M; Petzold, Christopher J; Frommer, Wolf B; Samuels, A Lacey; Heazlewood, Joshua L

    2016-03-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795. PMID:26781341

  16. Niemann-Pick C1 protein regulates cholesterol transport to the trans-Golgi network and plasma membrane caveolae.

    PubMed

    Garver, William S; Krishnan, Kumar; Gallagos, Jayme R; Michikawa, Makoto; Francis, Gordon A; Heidenreich, Randall A

    2002-04-01

    The Niemann-Pick C1 (NPC1) protein regulates cholesterol transport from late endosomes-lysosomes to other intracellular compartments. In this article, cholesterol transport to caveolin-1 and caveolin-2 containing compartments, such as the trans-Golgi network (TGN) and plasma membrane caveolae, was examined in normal (NPC+/+), NPC heterozygous (NPC+/-), and NPC homozygous (NPC-/-) human fibroblasts. The expression and distribution of NPC1 in each cell type were similar, and characterized by a finely dispersed, granular staining pattern. The expression of caveolin-1 and caveolin-2 was increased in NPC+/- and NPC-/- fibroblasts, although the distribution in each cell type was similar and characterized by predominant staining of the TGN and plasma membrane. The TGN in NPC+/+ fibroblasts was relatively cholesterol-enriched, whereas the TGN in NPC+/- and NPC-/- fibroblasts was partially or completely cholesterol-deficient, respectively. Consistent with studies demonstrating the transport of cholesterol from the TGN to plasma membrane caveolae, the concentration of cholesterol in plasma membrane caveolae isolated from NPC+/- and NPC-/- fibroblasts was significantly decreased, even though the total concentration of plasma membrane cholesterol in each cell type was similar. These studies demonstrate that NPC1 regulates cholesterol transport to caveolin-1 and caveolin-2 containing compartments such as the TGN and plasma membrane caveolae. PMID:11907140

  17. Lipid Composition of Plasma Membranes and Endomembranes Prepared from Roots of Barley (Hordeum vulgare L.) 1

    PubMed Central

    Brown, Dennis J.; DuPont, Frances M.

    1989-01-01

    Membrane fractions enriched in endoplasmic reticulum (ER), tonoplast and Golgi membranes (TG) and plasma membranes (PM) were prepared from barley (Hordeum vulgare L. cv CM 72) roots and the lipid compositions of the three fractions were analyzed and compared. Plants were grown in an aerated nutrient solution with or without 100 millimolar NaCl. Each membrane fraction had a characteristic lipid composition. The mole per cent of the individual phospholipids, glycolipids, and sterols in each fraction was not altered when roots were grown in 100 millimolar NaCl. The ER had the highest percentages of phosphatidylinositol and phosphatidylcholine of the three fractions (7 and 45 mole per cent, respectively, of the total lipid). The TG contained the highest percentage of glycosylceramide (13 mole per cent). The PM had the highest percentage of phosphatidylserine (3 mole per cent) and nearly equal percentages of phosphatidylethanolamine (15 mole per cent and phosphatidylcholine (18 mole per cent). The most abundant sterols in membranes prepared from barley roots were stigmasterol (10 mole per cent), sitosterol (50 mole per cent), and 24ζ-methylcholesterol (40 mole per cent of the total sterol). Salt-treated plants contained a slightly higher percentage of stigmasterol than controls. The percentage of stigmasterol increased with age and a simple cause and effect relationship between salt treatment and sterol composition was not observed. PMID:16666904

  18. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells.

    PubMed

    Ma, Guangzhong; Zhou, Junyu; Tian, Chunxiu; Jiang, Dechen; Fang, Danjun; Chen, Hongyuan

    2013-04-16

    A luminol electrochemiluminescence assay was reported to analyze active cholesterol at the plasma membrane in single mammalian cells. The cellular membrane cholesterol was activated by the exposure of the cells to low ionic strength buffer or the inhibition of intracellular acyl-coA/cholesterol acyltransferase (ACAT). The active membrane cholesterol was reacted with cholesterol oxidase in the solution to generate a peak concentration of hydrogen peroxide on the electrode surface, which induced a measurable luminol electrochemiluminescence. Further treatment of the active cells with mevastatin decreased the active membrane cholesterol resulting in a drop in luminance. No change in the intracellular calcium was observed in the presence of luminol and voltage, which indicated that our analysis process might not interrupt the intracellular cholesterol trafficking. Single cell analysis was performed by placing a pinhole below the electrode so that only one cell was exposed to the photomultiplier tube (PMT). Twelve single cells were analyzed individually, and a large deviation on luminance ratio observed exhibited the cell heterogeneity on the active membrane cholesterol. The smaller deviation on ACAT/HMGCoA inhibited cells than ACAT inhibited cells suggested different inhibition efficiency for sandoz 58035 and mevastatin. The new information obtained from single cell analysis might provide a new insight on the study of intracellular cholesterol trafficking. PMID:23527944

  19. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus.

    PubMed

    Ortega, P; Custódio, M R; Zanotto, F P

    2014-12-01

    Membrane pathway for intracellular cadmium (Cd(2+)) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd(2+) transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd(2+) concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd(2+) transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl2 and different inhibitors. Addition of extracellular calcium (Ca(2+)) to the cells affected little the fluorescence of FluoZin, confirming that Cd(2+) was the main ion increasing intracellular fluorescence. Ca(2+) channels blockers (nimodipine and verapamil) decreased Cd(2+) influx as well as vanadate, a Ca(2+)-ATPase blocker. Chelating intracellular Ca(2+) (BAPTA) decreased Cd(2+) influx in gill cells, while increasing intracellular Ca(2+) (caffeine) augmented Cd influx. Cd(2+) and ATP added at different temporal conditions were not effective at increasing intracellular Cd(2+) accumulation. Ouabain (Na(+)/K(+)-ATPase inhibitor) increased Cd(2+) influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd(2+) influx, a non-essential metal, through the gill cell plasma membrane of crabs are suggested. PMID:25456216

  20. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics.

    PubMed

    Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel

    2011-05-01

    Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters. PMID:21413151

  1. The C-terminal hypervariable domain targets Aradopsis ROP9 to the invaginated pollen tube plasma membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rop9 is a small GTPase of the Type II class, whereas the often studied type I Rops play roles during pollen tube growth. In pollen, Rop9 is located at the invaginated plasma membrane that surrounds the sperm cells, whereas type I Rops are located at the apical membrane of the pollen tube. The C-ter...

  2. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  3. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation1[OPEN

    PubMed Central

    Okumura, Masaki; Inoue, Shin-ichiro; Kuwata, Keiko

    2016-01-01

    Plant plasma membrane H+-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H+-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha. However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H+-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H+-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H+-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H+-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H+-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H+-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H+-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  4. Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists.

    PubMed Central

    Romero, I; Maldonado, A M; Eraso, P

    1997-01-01

    Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitro effect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of approximately 1 microM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein. PMID:9148755

  5. Multi-walled carbon nanotubes injure the plasma membrane of macrophages

    SciTech Connect

    Hirano, Seishiro Kanno, Sanae; Furuyama, Akiko

    2008-10-15

    Carbon nanotubes (CNTs) are emerging nanotechnology materials which are likely to be mass-produced in the near future. However, prior to mass-production, certain health-related concerns should first be addressed. For example, when inhaled, the thin-fibrous shape and the biopersistent characteristics of CNTs may cause pulmonary diseases, in a manner similar to asbestos. In the present study, mouse macrophages (J774.1) were exposed to highly-purified multi-walled CNTs (MWCNTs, 67 nm) or to UICC crocidolite in order to evaluate the toxicity of these nano-size fibers. The cytotoxicity of MWCNTs was found to be higher than that of crocidolite. The toxic effect of MWCNTs was not affected by N-acetylcysteine, an antioxidant, or buthionine sulfoximine, a glutathione synthesis inhibitor. cDNA microarray analyses suggested that the cytotoxicity of MWCNTs could not be explained satisfactorily by either an increase or decrease of gene expression, although mRNA levels of some cytokines were slightly increased by MWCNTs. Moreover, MWCNTs did not significantly activate either MAP kinases such as ERK, JNK and p38, nor common apoptosis pathways such as caspase 3 and PARP. Electron microscopic studies indicated that MWCNTs associate with the plasma membrane of macrophages and disrupt the integrity of the membrane. Several proteins were found to adsorb onto MWCNTs when MWCNT-exposed macrophages were gently lysed. One of these proteins was macrophage receptor with collagenous structure (MARCO). MARCO-transfected CHO-K1 cells associated with MWCNTs more rapidly than mock-transfected cells. These results indicate that MWCNTs probably trigger cytotoxic effects in phagocytotic cells by reacting with MARCO on the plasma membrane and rupturing the plasma membrane.

  6. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    SciTech Connect

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  7. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    DOE PAGESBeta

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  8. High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes.

    PubMed

    Malaguti, Marco; Baldini, Marta; Angeloni, Cristina; Biagi, Pierluigi; Hrelia, Silvana

    2008-06-01

    The authors evaluated the role of a high-protein, low-calorie, polyunsaturated fatty-acid (PUFA) -supplemented diet on anthropometric parameters, erythrocyte-membrane fatty-acid composition, and plasma antioxidant defenses of nonprofessional volleyball athletes. The athletes were divided in two groups: One (n = 5) followed the Mediterranean diet, and the other (n = 6) followed a high-protein, low-calorie diet with a 3-g/day fish-oil supplementation. All the athletes had anthropometric measurements taken, both at the beginning and at the end of the study, which lasted for 2 months. Body-mass index and total body fat were significantly diminished in the second group, while they remained unchanged in the first. Plasma total antioxidant activity (TAA) was significantly increased in the plasma of both groups, with no differences between the groups, suggesting that physical activity, not the different diets, is the main contributor to the increase of plasma TAA. The second group showed a significant increase in erythrocyte-membrane PUFA content and in the unsaturation index value (UI) because of the fish-oil supplementation.A high-protein, low-carbohydrate, fish-oil-supplemented diet seems to be useful only when the aim of the diet is to obtain weight loss in a short-term period. The significant increase in the UI of erythrocyte membranes indicates the potential for harm, because a high intake of PUFA might increase susceptibility to lipid peroxidation not counterbalanced by a higher increase in TAA. Adherence to the Mediterranean diet seems to be the better choice. PMID:18562771

  9. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  10. Characteristics and specificity of the glucocorticoid "carrier" of rat liver plasma membrane.

    PubMed

    Allera, A; Rao, G S

    1986-01-01

    The uptake of corticosterone by highly purified plasma membrane vesicles of rat liver was studied by a rapid-centrifugation technique which allows uptake measurements within 5 s. The vesicles are free of soluble cytoplasmic constituents. Therefore, association of hormone with the vesicle is attributed entirely to components of the vesicle-membrane. Half maximal uptake is reached at 8 s at 21 degrees C. At 15 degrees C transition of the lipid state in the membrane leads to a decrease of uptake, a characteristic property common to membrane mediated processes. The uptake of corticosterone is saturable and reversible but does not follow normal saturation kinetics. The apparent dissociation constants of three uptake systems bear direct relation to the concentration of free corticosterone in rat plasma (4-16 nM) supporting a physiological role for the system. Uptake of corticosterone decreases with decreases in vesicular volume; about 50% of the hormone is bound specifically and 50% is transported to the lumen of the vesicle. Since outflow of intravesicular hormone also occurs readily, the uptake and transport is proposed to be mediated by putative "carriers". The "carrier" preferentially transports glucocorticoids; dexamethasone is not taken up by this putative molecule. Steroids with 5 alpha conformation are more potent inhibitors of the "carrier" for corticosterone than 5 beta-steroids. Androgens and estrogens are weak competitors of corticosterone. The affinity of the "carrier" for several hormones differs considerably from that of the cytoplasmic receptor. Morris hepatoma cells (MH 3924) do not take up corticosterone. Our results prompt us to propose the hypothesis that the transport function of the "carrier" and the binding of the hormone by the cytoplasmic receptor are two different entities; perturbation of the "carrier" may lead to steroid unresponsiveness. Normal expression of steroid hormone activity is manifested in the concerted action of the functionally

  11. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    PubMed

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters. PMID:25302608

  12. (Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts): Progress report, May 16, 1987-January 4, 1988

    SciTech Connect

    Steponkus, P.L.

    1988-01-01

    The goals of this project are to provide a mechanistic understanding of freezedehydration-induced mesonmorphic phase transitions in the plasma membrane of winter cereals that are manifested as alterations in the ultrastructure (lateral phase separations, aparticulate lamellae and hexagonal/sub II/ configurations) and which result in the loss of osmotic responsiveness of protoplasts isolated from non-acclimated rye leaves and to determine the cellular and molecular mechanims by which cold acclimation and cryoprotectants preclude or diminish these alternations in the plasma membrane. This past year, our efforts have focused on dehydration-induced lamellar-to-hexagonal/sub II/ phase transitions in the plasma membrane of isolated protoplasts and liposomes of plasma membrane lipids, characterization of the phase behavior plasma membrane lipids, development of a theory for membrane destabilization at low water contents and effects of freezingosmotic dehydration on ATPase activity and protein composition of the plasma membrane.

  13. Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm.

    PubMed

    Waterhouse, K E; Hofmo, P O; Tverdal, A; Miller, R R

    2006-05-01

    The response of sperm to cryopreservation and the fertility of frozen-thawed semen varies between species. Besides species differences in sperm physiology, structure and biochemistry, factors such as sperm transport and female reproductive tract anatomy will affect fertility of frozen-thawed semen. Therefore, studying differences in sperm cryotolerance between breeds and individuals instead of between species may reveal sources of variability in sperm cryotolerance. In the present study, the effect of cooling, re-warming and freezing and thawing on plasma membrane and acrosome integrity of sperm within and between Norwegian Landrace and Duroc breeds was studied. Furthermore, the relation between post-thaw survival rate and fatty acid composition of the sperm plasma membranes was investigated. Flow cytometry assessments of plasma membrane and acrosome integrity revealed no significant differences between breeds; however there were significant male-to-male variations within breeds in post-thaw percentages of live sperm (plasma membrane intact). The most abundant fatty acids in the plasma membranes from both breeds were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1, n-9), docosapentaenoic acid (22:5, n-6) and docosahexaenoic acid (22:6, n-3). The ratio of sigma operator 22:5, n-6 and 22:6, n-3/ sigma operator all other membrane fatty acids was significantly related to survival rate (plasma membrane integrity) of sperm for both Norwegian Landrace (correlation coefficient (r(s)) = 0.64, P < 0.05) and Duroc (r(s) = 0.67, P < 0.05) boars. In conclusion, male-to-male differences in sperm survival rate after freezing and thawing may be partly related to the amount of long-chain polyunsaturated fatty acids in the sperm plasma membranes. PMID:16672353

  14. Bioconjugated Gold Nanoparticles Penetrate Into Spermatozoa Depending on Plasma Membrane Status.

    PubMed

    Barchanski, Annette; Taylor, Ulrike; Sajti, Csaba L; Gamrad, Lisa; Kues, Wilfried A; Rath, Detlef; Barcikowski, Stephan

    2015-09-01

    Spermatozoa are not only essential for animal reproduction they also represent important tools for the manipulation of animal genetics. For instance, the genetic labeling and analysis of spermatozoa could provide a prospective complementation of pre-fertilization diagnosis and could help to prevent the inheritance of defective alleles during artificial insemination or to select beneficial traits in livestock. Spermatozoa feature extremely specialized membrane organization and restricted transport mechanisms making the labeling of genetically interesting DNA-sequences, e.g., with gold nanoparticles, a particular challenge. Here, we present a systematic study on the size-related internalization of ligand-free, monovalent and bivalent polydisperse gold nanoparticles, depending on spermatozoa membrane status. While monovalent conjugates were coupled solely to either negatively-charged oligonucleotides or positively-charged cell-penetrating peptides, bivalent conjugates were functionalized with both molecules simultaneously. The results clearly indicate that the cell membrane of acrosome-intact, bovine spermatozoa was neither permeable to ligand-free or oligonucleotide-conjugated nanoparticles, nor responsive to the mechanisms of cell-penetrating peptides. Interestingly, after acrosome reaction, which comprises major changes in sperm membrane composition, fluidity and charge, high numbers of monovalent and bivalent nanoparticles were found in the postequatorial segment, depicting a close and complex correlation between particle internalization and membrane organization. Additionally, depending on the applied peptide and for nanoparticle sizes < 10 nm even a successive nuclear penetration was observed, making the bivalent conjugates promising for future genetic delivery and sorting issues. PMID:26485929

  15. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts. Progress report, May 16, 1992--January 9, 1993

    SciTech Connect

    Steponkus, P.L.

    1993-05-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the ``fracture-jump lesion,`` which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane ``jumps`` from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  16. New protein kinase from plasma membrane of Ehrlich ascites tumor cells activated by natural polypeptides.

    PubMed Central

    Racker, E; Abdel-Ghany, M; Sherrill, K; Riegler, C; Blair, E A

    1984-01-01

    A polypeptide-dependent protein kinase was purified about 80-fold from an extract of plasma membranes of Ehrlich ascites tumor cells. The membranes were extracted with Nonidet P-40, and the extract was purified by ammonium sulfate fractionation and hydroxylapatite and affinity chromatography. The activity was stimulated 10-fold or more by polypeptide preparations from a variety of tissues, including placenta and hypothalamus. Polypeptide-dependent protein kinase had a pH optimum of about 7.5 and required Mg2+ for activity. Mn2+ at low concentrations (200 microM) stimulated enzyme activity somewhat but inhibited activity strongly at higher concentrations. The best available substrate for polypeptide-dependent protein kinase was beta-casein, and little or no phosphorylation was observed with alpha-casein, kappa-casein, phosvitin, alpha-lactalbumin, alpha-lactoglobulin, and histone. However, several endogenous substrates from plasma membranes of Ehrlich ascites tumor cells were phosphorylated. Polypeptide-dependent protein kinase activity was not inhibited by 10 mM N-ethylmaleimide, and this resistance was useful in differentiating this protein kinase from other protein kinases that were present in crude fractions and sensitive to the inhibitor. Images PMID:6589591

  17. The interaction of the carbon nanoparticles with human cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Overchuk, M.; Prylutska, S.; Bilyy, Rostyslav; Prylutsky, Yu.; Ritter, U.

    2013-09-01

    The study of carbon nanostructures is a highly topical branch of bionanotechnology because of their potential application in biomedicine. Carbon nanotubes (CNTs) are known for their ability to kill tumor cells causing hyperthermia shock and can be used in photothermal therapy respectively. Also chemically modified CNTs can be used for drug delivery. The needle-like shape of CNTs allows them to penetrate into the cell plasma membrane without killing the cell. C60 fullerenes are regarded as valuable nanocarriers for different hydrophobic molecules as well as potential antiviral agents or photosensitizers. In our previous studies we have demonstrated that all types of carbon nanoparticles cause externalization of phosphatidylserine (PS) from the inner to the outer layer of the cell membrane in the small local patches (points of contact), leaving the other parts of plasma membrane PS-negative. In the current work there were studied the interactions of pristine C60 fullerenes and different types of CNTs with human blood cells (erythrocytes and Jurkat T-cells). We have shown, that carbon nanoparticles do not have any hemolytic effects, if judged by the dynamics of acidic hemolysis, although they are capable of permeabilizating the cells and facilitating the internalization of propidium iodide into the nuclei.

  18. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Nikova, Dessy; Lange, Tobias; Häberle, Johannes; Falk, Sabine; Dübbers, Angelika; Bruns, Reimer; Hinterdorfer, Peter; Oberleithner, Hans; Schillers, Hermann

    2008-09-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  19. VAMP8-dependent fusion of recycling endosomes with the plasma membrane facilitates T lymphocyte cytotoxicity

    PubMed Central

    Marshall, Misty R.; Pattu, Varsha; Halimani, Mahantappa; Maier-Peuschel, Monika; Müller, Martha-Lena; Becherer, Ute; Hong, Wanjin; Hoth, Markus; Tschernig, Thomas

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) eliminate infected and neoplastic cells through directed release of cytotoxic granule contents. Although multiple SNARE proteins have been implicated in cytotoxic granule exocytosis, the role of vesicular SNARE proteins, i.e., vesicle-associated membrane proteins (VAMPs), remains enigmatic. VAMP8 was posited to represent the cytotoxic granule vesicular SNARE protein mediating exocytosis in mice. In primary human CTLs, however, VAMP8 colocalized with Rab11a-positive recycling endosomes. Upon stimulation, these endosomes rapidly trafficked to and fused with the plasma membrane, preceding fusion of cytotoxic granules. Knockdown of VAMP8 blocked both recycling endosome and cytotoxic granule fusion at immune synapses, without affecting activating signaling. Mechanistically, VAMP8-dependent recycling endosomes deposited syntaxin-11 at immune synapses, facilitating assembly of plasma membrane SNARE complexes for cytotoxic granule fusion. Hence, cytotoxic granule exocytosis is a sequential, multivesicle fusion process requiring VAMP8-mediated recycling endosome fusion before cytotoxic granule fusion. Our findings imply that secretory granule exocytosis pathways in other cell types may also be more complex than previously appreciated. PMID:26124288

  20. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis

    PubMed Central

    Rønning, Sissel B.; Carlson, Cathrine R.; Stang, Espen; Kolset, Svein O.; Hollung, Kristin; Pedersen, Mona E.

    2015-01-01

    The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies. PMID:26068620

  1. Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs.

    PubMed

    Doerr, Clinton H; Gajic, Ognjen; Berrios, Jorge C; Caples, Sean; Abdel, Matthew; Lymp, James F; Hubmayr, Rolf D

    2005-06-15

    The objective of this study was to assess the effects of hypercapnic acidosis on lung cell injury and repair by confocal microscopy in a model of ventilator-induced lung injury. Three groups of normocapnic, hypocapnic, and hypercapnic rat lungs were perfused ex vivo, either during or after injurious ventilation, with a solution containing the membrane-impermeant label propidium iodide. In lungs labeled during injurious ventilation, propidium iodide fluorescence identifies all cells with plasma membrane wounds, both permanent and transient, whereas in lungs labeled after injurious ventilation propidium iodide fluorescence identifies only cells with permanent plasma membrane wounds. Hypercapnia minimized the adverse effects of high-volume ventilation on vascular barrier function, whereas hypocapnia had the opposite effect. Despite CO2-dependent differences in lung mechanics and edema the number of injured subpleural cells per alveolus was similar in the three groups (0.48 +/- 0.34 versus 0.51 +/- 0.19 versus 0.43 +/- 0.20 for hypocapnia, normocapnia, and hypercapnia, respectively). However, compared with normocapnia the probability of wound repair was significantly reduced in hypercapnic lungs (63 versus 38%; p < 0.02). This finding was subsequently confirmed in alveolar epithelial cell scratch models. The potential relevance of these observations for lung inflammation and remodeling after mechanical injury is discussed. PMID:15695495

  2. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  3. Detection of apoptosis through the lipid order of the outer plasma membrane leaflet.

    PubMed

    Darwich, Zeinab; Klymchenko, Andrey S; Kucherak, Oleksandr A; Richert, Ludovic; Mély, Yves

    2012-12-01

    Cell plasma membranes of living cells maintain their asymmetry, so that the outer leaflet presents a large quantity of sphingomyelin, which is critical for formation of ordered lipid domains. Here, a recently developed probe based on Nile Red (NR12S) was applied to monitor changes in the lipid order specifically at the outer leaflet of cell membranes. Important key features of NR12S are its ratiometric response exclusively to lipid order (liquid ordered vs. liquid disordered phase) and not to surface charge, the possibility of using it at very low concentrations (10-20nM) and the very simple staining protocol. Cholesterol extraction, oxidation and sphingomyelin hydrolysis were found to red shift the emission spectrum of NR12S, indicating a decrease in the lipid order at the outer plasma membrane leaflet. Remarkably, apoptosis induced by three different agents (actinomycin D, camptothecin, staurosporine) produced very similar spectroscopic effects, suggesting that apoptosis also significantly decreases the lipid order at this le