Science.gov

Sample records for plasma microinstabilities

  1. Kinetic studies of microinstabilities in toroidal plasmas: Simulation and theory

    SciTech Connect

    Lee, W.W.; Haham, T.S.; Parker, S.E.; Perkins, F.W.; Rath, S.; Rewoldt, G.; Reynders, J.V.W.; Santoro, R.A.; Tang, W.M.

    1992-12-01

    A comprehensive program for the development and use of particle simulation techniques for solving the gyrokinetic Vlasov-Maxwell equations on massively parallel computers has been carried out at Princeton Plasma Physics Laboratory. This is a key element of our ongoing theoretical efforts to systematically investigate physics issues vital to understanding tokamak plasmas. In this paper, our focus is on spatial-gradient-driven microinstabilities. Their importance is supported by the recent progress in achieving a physics-based understanding of anomalous transport in toroidal systems which has been based on the proposition that these drift-type electrostatic modes dependent on ion temperature gradient (ITG) and trapped particle effects are dominant in the bulk ( confinement'') region. Although their presence is consistent with a number of significant confinement trends, results from high temperature tokamaks such as TFTR have highlighted the need for better insight into the nonlinear properties of such instabilities in long-mean-free-path plasmas. In addressing this general issue, we report important new results including (i) the first fully toroidal 3D gyrokinetic simulation of ITG modes and (ii) realistic toroidal eigenmode calculations demonstrating the unique capability to deal with large scale kinetic behavior extending over many rational surfaces. The effects of ITG modes (iii) on the inward pinch of impurities in 3D slab geometry and (iv) on the existence of microtearing modes in 2D slab are also discussed. Finally, (v) sheared toroidal flow effects on trapped-particle modes are presented.

  2. Kinetic studies of microinstabilities in toroidal plasmas: Simulation and theory

    SciTech Connect

    Lee, W.W.; Haham, T.S.; Parker, S.E.; Perkins, F.W.; Rath, S.; Rewoldt, G.; Reynders, J.V.W.; Santoro, R.A.; Tang, W.M.

    1992-12-01

    A comprehensive program for the development and use of particle simulation techniques for solving the gyrokinetic Vlasov-Maxwell equations on massively parallel computers has been carried out at Princeton Plasma Physics Laboratory. This is a key element of our ongoing theoretical efforts to systematically investigate physics issues vital to understanding tokamak plasmas. In this paper, our focus is on spatial-gradient-driven microinstabilities. Their importance is supported by the recent progress in achieving a physics-based understanding of anomalous transport in toroidal systems which has been based on the proposition that these drift-type electrostatic modes dependent on ion temperature gradient (ITG) and trapped particle effects are dominant in the bulk (``confinement``) region. Although their presence is consistent with a number of significant confinement trends, results from high temperature tokamaks such as TFTR have highlighted the need for better insight into the nonlinear properties of such instabilities in long-mean-free-path plasmas. In addressing this general issue, we report important new results including (i) the first fully toroidal 3D gyrokinetic simulation of ITG modes and (ii) realistic toroidal eigenmode calculations demonstrating the unique capability to deal with large scale kinetic behavior extending over many rational surfaces. The effects of ITG modes (iii) on the inward pinch of impurities in 3D slab geometry and (iv) on the existence of microtearing modes in 2D slab are also discussed. Finally, (v) sheared toroidal flow effects on trapped-particle modes are presented.

  3. Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?

    SciTech Connect

    Dickinson, D.

    2014-01-15

    Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, provided the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.

  4. High-frequency microinstabilities in hot-electron plasmas

    SciTech Connect

    Chen, Y.J.; Nevins, W.M.; Smith, G.R.

    1981-11-24

    Instabilities with frequencies in the neighborhood of the electron cyclotron frequency are of interest in determining stable operating regimes of hot-electron plasmas in EBT devices and in tandem mirrors. Previous work used model distributions significantly different than those suggested by recent Fokker-Planck studies. We use much more realistic model distributions in a computer code that solves the full electromagnetic dispersion relation governing longitudinal and transverse waves in a uniform plasma. We allow for an arbitrary direction of wave propagation. Results for the whistler and upper-hybrid loss-cone instabilities are presented.

  5. Global approach to the spectral problem of microinstabilities in tokamak plasmas using a gyrokinetic model

    NASA Astrophysics Data System (ADS)

    Brunner, S.; Fivaz, M.; Tran, T. M.; Vaclavik, J.

    1998-11-01

    A solution to the full two-dimensional eigenvalue problem of electrostatic microinstabilities in a tokamak plasma is presented in the framework of gyrokinetic theory. The approach is the generalization of methods previously developed for a cylindrical system [S. Brunner and J. Vaclavik, Phys. Plasmas 5, 365 (1998)]. By solving the spectral problem in a special Fourier space adapted to the curved geometry, orbit width as well as Larmor radius can be kept to all orders. For a first numerical implementation, a large aspect ratio plasma with circular concentric magnetic surfaces is considered. A root finding algorithm for identifying the eigenfrequencies, based on a higher order Nyquist method, enables straightforward implementation on a parallel computer. Illustrative results for ion temperature gradient-related instabilities are presented. These include scaling studies of the radial width, and toroidicity and magnetic shear scans, as well as the effects of nonadiabatic trapped electron dynamics.

  6. The spectral problem of global microinstabilities in tokamak-like plasmas using a gyrokinetic model

    SciTech Connect

    Brunner, S.; Vaclavik, J.; Fivaz, M.; Appert, K.

    1996-12-31

    Tokamak-like plasmas are modeled by a periodic cylindrical system with magnetic shear and realistic density and temperature profiles. Linear electrostatic microinstabilities in such plasmas are studied by solving the eigenvalue problem starting from gyrokinetic theory. The actual eigenvalue equation is then of integral type. With this approach, finite Larmor radius (FLR) effects to all orders are taken into account. FLR effects provide for the only radial coupling in a cylinder and to lowest order correspond to polarization drift. This effectively one-dimensional problem helped us to gain useful knowledge for solving gyrokinetic equations in a curved system. When searching for the eigenfrequencies of the global modes, two different methods have been tested and compared. Either the true eigenvalue problem is solved by finding the zeros of the characteristic equation, or one considers a system driven by an antenna and looks for resonances in the power response of the plasma. In addition, mode structures were computed as well in direct as in Fourier space. The advantages and disadvantages of these various approaches are discussed. Ion temperature gradient (ITG) instabilities are studied over a wide range of parameters and for wavelengths perpendicular to the magnetic field down to the scale of ion Larmor radii. Flute instabilities driven by magnetic curvature drifts are also considered. Some of these results are compared with a time evolution PIC code. Such comparisons are valuable as the convergence of PIC results is often questioned. Work considering true toroidal geometry is in progress.

  7. Global, Gyrokinetic Eigenvalue Calculations of ITG-Related Microinstabilities in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Brunner, S.; Fivaz, M.; Tran, T. M.; Vaclavik, J.

    1998-11-01

    Methods previously developed for a cylindrical system(S.Brunner and J.Vaclavik, Phys.Plasmas 5), 365 (1998) have been generalized to a tokamak plasma for solving the full 2-dimensional eigenvalue problem of electrostatic microinstabilities using a gyrokinetik model(S.Brunner, Ph.D thesis, Ecole Polytechnique Fdrale de Lausanne, Switzerland, thesis 1701 (1978)). By solving the spectral problem in a special Fourier space adapted to the curved geometry, orbit width as well as Larmor radius can be kept to all orders. For a first numerical implementation, a large aspect ratio plasma with circular concentric magnetic surfaces has been considered. A higher order Nyquist method(B.Davies, Jour.Comp.Phys. 66), 36 (1986), applied for identifying the eigenfrequencies in the complex plane, has been improved and enables straightforward implementation on a parallel computer. Illustrative results of ITG (ion temperature gradient) -related instabilities are presented. These include scaling studies of the radial width, toroidicity and magnetic shear scans, as well as the effects of non-adiabatic trapped electron dynamics.

  8. Relationship between density peaking, particle thermodiffusion, Ohmic confinement, and microinstabilities in ASDEX Upgrade L-mode plasmas

    SciTech Connect

    Angioni, C.; Peeters, A.G.; Ryter, F.; Jenko, F.; Conway, G.D.; Dannert, T.; Fahrbach, H.U.; Reich, M.; Suttrop, W.; Fattorini, L.

    2005-04-15

    New experimental results obtained in ASDEX Upgrade [O. Gruber, H.-S. Bosch, S. Guenter et al., Nucl. Fusion 39, 1321 (1999)] plasmas in low confinement mode with central electron cyclotron heating are presented in which transitions in both the particle and electron heat transport properties have been observed. A comprehensive albeit qualitative explanation for both the transport channels is provided in the framework of the theory of ion temperature gradient and trapped electron mode microinstabilities. The different transport behaviors are related to the dominant instability at play and to the collisionality regime. In particular, central electron heating induces a flattening of the density profile when the dominant instability is a trapped electron mode, and density peaking is observed to increase with decreasing collisionality.

  9. Unified fluid/kinetic description of plasma microinstabilities. Part I: Basic equations in a sheared slab geometry

    SciTech Connect

    Chang, Z.; Callen, J.D. )

    1992-05-01

    Unified fluid/kinetic equations for the plasma perturbed density ({ital {tilde n}}), parallel flow velocity ({ital {tilde u}}{sub {parallel}}) and temperature ({ital {tilde T}}) are developed in a sheared slab geometry by calculating the fluid moment closure relations kinetically. At first, a set of (unclosed) nonlinear perturbed fluid equations for {ital {tilde n}}, {ital {tilde u}}{sub {parallel}} and {ital {tilde T}} is developed using a drift ordering analysis and a new gyroviscous force ((spec. char. missing){center dot}{Pi}{sub {ital g}}). Thereafter, to develop linear closure relations for {bold b}{center dot}{del}{center dot}{tilde {Pi}}{sub {parallel}} and {ital {tilde q}}{sub {parallel}}, a drift-kinetic version of a new Chapman--Enskog-like (CEL) equation is developed and solved by using a moment approach and a physically realistic collision operator (Lorentz scattering operator plus the momentum restoring terms). The resultant closure relations for {bold b}{center dot}(spec. char. missing){center dot}{tilde {Pi}}{sub {parallel}} and {ital {tilde q}}{sub {parallel}} unify the fluid and kinetic approaches. In the collisional fluid limit the equations reduce to the well-known Braginskii equations. In the adiabatic limit they reproduce the usual kinetic results, including Landau damping. It is shown that this new CEL approach is more compatible with a fluidlike description of plasmas than the usual drift/gyrokinetic approach. Remarkably simplified forms of the closure relations are presented. The results are compared with other Landau damping models and shown to be more accurate, complete, and physically realistic. Applications of this set of equations to various microinstabilities in tokamak plasmas are presented in a separate paper (Part II) (Phys. Fluids B {bold 4}, 1182 (1992)).

  10. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  11. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  12. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  13. Toroidal microinstability studies of high temperature tokamaks

    SciTech Connect

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  14. Microinstability Studies for the Large Helical Device

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.M. Tang; H. Sugama; N. Nakajima; K.Y. Watanabe; S. Murakami; H. Yamada; W.A. Cooper

    2002-01-28

    Fully kinetic assessments of the stability properties of toroidal drift modes have been obtained for cases for the Large Helical Device (LHD). This calculation employs the comprehensive linear microinstability code FULL, as recently extended for nonaxisymmetric systems. The code retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. These effects include trapped particles, FLR, transit and bounce and magnetic drift frequency resonances, etc., for any number of plasma species. Results for toroidal drift waves destabilized by trapped electrons and ion temperature gradients are presented, using numerically-calculated three-dimensional MHD equilibria. These are reconstructed from experimental measurements. Quasilinear fluxes of particles and energy for each species are also calculated. Pairs of LHD discharges with different magnetic axis positions and with and without pellet injection are compared.

  15. Finite-? simulation of microinstabilities

    SciTech Connect

    Startsev, Edward A.; Lee, W. W.

    2014-02-15

    A new split-weight perturbative particle simulation scheme for finite-? plasmas in the presence of background inhomogeneities is presented. The scheme is an improvement over the original split-weight scheme, which splits the perturbed particle response into adiabatic and non-adiabatic parts to improve numerical properties. In the new scheme, by further separating out the adiabatic response of the particles associated with the quasi-static bending of the magnetic field lines in the presence of background inhomogeneities of the plasma, we are able to demonstrate the finite-? stabilization of drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. However, for ?m{sub i}/m{sub e} ? 1, it becomes necessary to use the electron skin-depth as the grid size of the simulation to achieve accuracy in solving the resulting equations, unless special numerical arrangement is made for the cancelling of the two large terms on the either side of the governing equation. The proposed scheme is most suitable for studying shear-Alfvn physics in general geometry using straight field line coordinates for microturbulence and magnetic reconnection problems.

  16. Microinstability-based model for anomalous thermal confinement in tokamaks

    SciTech Connect

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed.

  17. Microinstability and internal impingement in overhead athletes.

    PubMed

    Chambers, Lauchlan; Altchek, David W

    2013-10-01

    A complex interplay exists between the static and dynamic stabilizers in the glenohumeral joint, especially in overheard athletes who need a shoulder hypermobile enough to perform overhead activity yet stable enough to prevent joint subluxation. Concomitant shoulder pathologies commonly occur in the setting of microinstability and internal impingement. Before any surgical intervention, a 3- to 6-month course of conservative measures should first be attempted, with exercises focused on rotator cuff and scapular stabilizer strengthening combined with posterior capsule stretching. If surgery is needed, arthroscopic suture plication with treatment of concomitant lesions has been shown to provide the best clinical outcomes. PMID:24079429

  18. Microinstabilities in the pedestal region

    NASA Astrophysics Data System (ADS)

    Dickinson, David; Dudson, Benjamin; Wilson, Howard; Roach, Colin

    2014-10-01

    The regulation of transport at the pedestal top is important for the inter-ELM pedestal dynamics. Linear gyrokinetic analysis of the pedestal region during an ELM cycle on MAST has shown kinetic ballooning modes to be unstable at the knee of the pressure profile and in the steep pedestal region whilst microtearing modes (MTMs) dominate in the shallow gradient region inboard of the pedestal top. The transition between these instabilities at the pedestal knee has been observed in low and high collisionality MAST pedestals, and is likely to play an important role in the broadening of the pedestal. Nonlinear simulations are needed in this region to understand the microturbulence, the corresponding transport fluxes, and to gain further insight into the processes underlying the pedestal evolution. Such gyrokinetic simulations are numerically challenging and recent upgrades to the GS2 gyrokinetic code help improve their feasibility. We are also exploring reduced models that capture the relevant physics using the plasma simulation framework BOUT + + . An electromagnetic gyrofluid model has recently been implemented with BOUT + + that has significantly reduced computational cost compared to the gyrokinetic simulations against which it will be benchmarked. This work was funded by the RCUK Energy programme, EURATOM and a EUROFusion fellowship WP14-FRF-CCFE/Dickinson and was carried out using: HELIOS at IFERC, Japan; ARCHER (EPSRC Grant No. EP/L000237/1); HECToR (EPSRC Grant No. EP/H002081/1).

  19. Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Voitsekhovitch, I.; Garzotti, L.; Bourdelle, C.; Pueschel, M. J.; Lupelli, I.; Romanelli, M.; JET-EFDA Contributors, the

    2014-12-01

    The core micro-instability characteristics of hybrid and baseline plasmas in a selected set of JET plasmas with carbon wall are investigated through local linear and non-linear and global linear gyro-kinetic simulations with the GYRO code (Candy and Belli 2011 General Atomics Report GA-A26818). In particular, we study the role of plasma pressure on the micro-instabilities, and scan the parameter space for the important plasma parameters responsible for the onset and stabilization of the modes under experimental conditions. We find that a good core confinement due to strong stabilization of the micro-turbulence driven transport can be expected in the hybrid plasmas due to the stabilizing effect of the fast ion pressure that is more effective at the low magnetic shear of the hybrid discharges. While parallel velocity gradient destabilization is important for the inner core, at outer radii the hybrid plasmas may benefit from a strong quench of the turbulence transport by E B rotation shear.

  20. Collisionless microinstabilities in stellarators. II. Numerical simulations

    SciTech Connect

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-12-15

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.

  1. Collisionless microinstabilities in stellarators. II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Xanthopoulos, P.; Helander, P.

    2013-12-01

    Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-J geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here, the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes, and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilizing in the energy budget. These results suggest that imperfectly optimized stellarators can retain most of the stabilizing properties predicted for perfect maximum-J configurations.

  2. Comparison of Linear Microinstability Calculations of Varying Input Realism

    SciTech Connect

    G. Rewoldt

    2003-09-08

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results.

  3. Microinstability of the Hip and the Splits Radiograph.

    PubMed

    Harris, Joshua D; Gerrie, Brayden J; Lintner, David M; Varner, Kevin E; McCulloch, Patrick C

    2016-01-01

    A normal hip has a natural tendency toward stability because of both osseous and soft tissue structures. Hip motion is primarily rotational around a center of rotation. When the femoral head and its center of rotation translate, with or without rotation, the inherent stability of the femoroacetabular articulation may be lost. The spectrum of hip instability ranges from subtle microinstability to traumatic dislocation. Microinstability may be the cause or the effect of several other hip pathologies. Soft tissue contributions to stability include the static capsule, dynamic musculotendinous units, and underlying generalized connective tissue (eg, Ehlers-Danlos). Osseous contributions include multiple femoral and acetabular radiographic coverage parameters. Iatrogenic contributions include an unrepaired capsulotomy, overresection of the acetabular rim (iatrogenic dysplasia), overresection of cam osteochondroplasty, iliopsoas tenotomy, labral debridement, and ligamentum teres debridement. Patients with hip microinstability often have deep groin pain, exhibited by a C sign. These patients frequently participate in flexibility sports and activities, such as ballet, gymnastics, figure skating, and martial arts. On physical examination, generalized hypermobility syndromes should be assessed, as should loss of log-roll external rotation recoil, excessive abduction, trochanteric-pelvic impingement, and abductor fatigue. Standard imaging, including plain radiographs, magnetic resonance imaging, and computed tomography, should be analyzed for all causes of hip pain. A new plain radiograph, the splits radiograph is introduced here, consistently showing lateral femoral head translation and creation of a vacuum sign, showing hip microinstability. The splits radiograph is illustrated in a 22-year-old female dancer who presented with bilateral deep anterolateral groin pain. [Orthopedics. 2016; 39(1):e169-e175.]. PMID:26730687

  4. Microinstabilities and turbulent transport in the reversed field pinch

    NASA Astrophysics Data System (ADS)

    Carmody, Daniel Richard

    The work presented in this thesis is concerned with addressing the nature of drift wave microturbulence in the reversed field pinch (RFP). Microturbulence is an important phenomenon and contributor to heat and particle transport in tokamaks, where it has been studied for several decades, but its role in the RFP is a rather new topic of study. As such, the nature of RFP drift waves and their relationship to their tokamak counterparts is still developing, and many of the results in this work are focused on addressing this challenge. Fundamental advances in microturbulence research have been made in recent decades through two parallel developments: the theoretical framework encompassed in the gyrokinetic model, and the computational power offered by massively-parallel, high-performance computing systems. Gyrokinetics is a formulation of kinetic theory in such a way that the fast timescale gyromotion of particles around magnetic field lines is averaged out. The implementation and use of RFP equilibrium models in gyrokinetic codes constitutes the bulk of this thesis. A simplified analytic equilibrium, the toroidal Bessel function model (TBFM), is used in the gyrokinetic code GYRO to explore the fundamental scaling properties of drift waves in the RFP geometry. Two drift wave instabilities, the ion temperature gradient (ITG) mode and the microtearing mode (MTM) are found to occur, and the relationship of their critical threshold in driving gradients and plasma beta is explored. The critical values in these parameters are found to be above those of similar tokamak cases by roughly a factor of the flux surface aspect ratio. The MTM is found to be stabilized by increasing the RFP pinch parameter theta, making it unlikely for it to unstable in the high-theta improved confinement pulsed poloidal current drive (PPCD) discharges. Efforts are also made to address microinstabilities in specific experimental discharges of the Madison Symmetric Torus (MST). A semi-analytic equilibrium, the adjusted circular model (ACM), is developed and implemented in the gyrokinetic code GENE to investigate representative PPCD discharges. The flexibility of the ACM enables it to be used for the high-theta PPCD discharges where the TBFM breaks down. The dominant linear instabilites for the discharges modeled here---ITG and the trapped electron mode (TEM)---are studied, as are their scaling properties in the PPCD regime. It is found that these instabilities are present outside of the reversal surface, where the driving gradients are strongest. Nonlinear simulations of the TEM turbulence are performed, the first such done for the RFP, and zonal flows are found to play an important role in the nonlinear saturation mechanism. These zonal flows lead to a large Dimits-like shift and suppressed transport. There is also evidence that residual global tearing mode fluctuations are a necessary part of modeling transport in the RFP, even in improved confinement PPCD discharges, and by modeling these residual fluctuations through the use of an externally imposed perpendicular magnetic field perturbation it is possible to bring simulated fluxes into agreement with experiment. Finally, the nature of the collisionless MTM, an instability seen to arise in some parameter regimes of the RFP, is investigated analytically using a fluid expansion in the drift-kinetic framework. Particular attention is paid to the role of magnetic drifts, and some evidence for their role in the collisionless instability is presented. Comparisons are made to gyrokinetic simulations and to earlier theory on the magnetic-curvature drift instability.

  5. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Moradi, S.; Flp, T.; Timchenko, N.

    2011-08-01

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  6. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    SciTech Connect

    Pusztai, I.; Moradi, S.; Fueloep, T.; Timchenko, N.

    2011-08-15

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  7. MICROINSTABILITY OF THE SHOULDER IN THE OVERHEAD ATHLETE

    PubMed Central

    Curtis, Alan S.

    2013-01-01

    The overhead throwing athlete is an extremely challenging patient in sports medicine. The repetitive microtraumatic stresses and extreme ranges of motion observed within the athletes shoulder joint complex during the throwing motion constantly place the athlete at risk for injury. While gross instability of the shoulder is possible, microinstability is seen far more frequently and is associated with a variety of different pathologies, including rotator cuff tendonitis, internal impingement, and labral lesions. Treatment of the overhead athlete requires the understanding of several principles based on the unique physical characteristics of this type of athlete and the demands placed upon the static stabilizing structures during the act of throwing. The purpose of this paper is to describe these principles and incorporate them into in a multi?phase progressive rehabilitation program designed to prevent injuries and rehabilitate the injured athlete, both non?operatively and postoperatively. PMID:24175140

  8. Transport simulations of ohmic TFTR experiments with profile-consistent microinstability-based models for chi/sub e/ and chi/sub i/. [BALDUR

    SciTech Connect

    Redi, M.H.; Tang, W.M.; Efthimion, P.C.; Mikkelsen, D.R.; Schmidt, G.L.

    1987-03-01

    Transport simulations of ohmically heated TFTR experiments with recently developed profile-consistent microinstability models for the anomalous thermal diffusivities, chi/sub e/ and chi/sub i/, give good agreement with experimental data. The steady-state temperature profiles and the total energy confinement times, tau/sub e/, were found to agree for each of the ohmic TFTR experiments simulated, including three high radiation cases and two plasmas fueled by pellet injection. Both collisional and collisionless models are tested. The trapped-electron drift wave microinstability model results are consistent with the thermal confinement of large plasma ohmic experiments on TFTR. We also find that transport due to the toroidal ion temperature gradient (eta/sub i/) modes can cause saturation in tau/sub E/ at the highest densities comparable to that observed on TFTR and equivalent to a neoclassical anomaly factor of 3. Predictions based on stabilized eta/sub i/-mode-driven ion transport are found to be in agreement with the enhanced global energy confinement times for pellet-fueled plasmas. 33 refs., 26 figs., 4 tabs.

  9. Dynamics and microinstabilities at perpendicular collisionless shock: A comparison of large-scale two-dimensional full particle simulations with different ion to electron mass ratio

    SciTech Connect

    Umeda, Takayuki Kidani, Yoshitaka; Matsukiyo, Shuichi; Yamazaki, Ryo

    2014-02-15

    Large-scale two-dimensional (2D) full particle-in-cell (PIC) simulations are carried out for studying the relationship between the dynamics of a perpendicular shock and microinstabilities generated at the shock foot. The structure and dynamics of collisionless shocks are generally determined by Alfven Mach number and plasma beta, while microinstabilities at the shock foot are controlled by the ratio of the upstream bulk velocity to the electron thermal velocity and the ratio of the plasma-to-cyclotron frequency. With a fixed Alfven Mach number and plasma beta, the ratio of the upstream bulk velocity to the electron thermal velocity is given as a function of the ion-to-electron mass ratio. The present 2D full PIC simulations with a relatively low Alfven Mach number (M{sub A} ∼ 6) show that the modified two-stream instability is dominant with higher ion-to-electron mass ratios. It is also confirmed that waves propagating downstream are more enhanced at the shock foot near the shock ramp as the mass ratio becomes higher. The result suggests that these waves play a role in the modification of the dynamics of collisionless shocks through the interaction with shock front ripples.

  10. Microinstability of the hip—it does exist: etiology, diagnosis and treatment

    PubMed Central

    Kalisvaart, Michael M.; Safran, Marc R.

    2015-01-01

    Symptomatic hip microinstability is now recognized as a potential cause of pain and disability in young patients. Causes of hip microinstability include underlying bony or soft tissue abnormalities and iatrogenic injuries of the hip capsule; however, many patients lack a clear underlying etiology. Treatment usually begins with an extensive course of non-operative management with an emphasis on activity modification and physical therapy. Surgical intervention should focus on treatment of the underlying cause as well as any associated intra-articular pathology. In many cases, arthroscopic suture plication can be considered when bony deficiency is not the cause. In this article, we will review the spectrum of symptomatic hip microinstability with a focus on the relevant anatomy, etiology, diagnosis and various treatment options. PMID:27011829

  11. Experimental investigation of collisionless electron-electron microinstabilities. Final technical report for the period August 1, 1997-October 31, 2000

    SciTech Connect

    Scime, Earl E.

    2000-12-11

    This is the final report for the Office of Fusion Energy sponsored project entitled, "Experimental Investigation of Collisionless Electron-Electron Microinstabilities." The report summarizes the scientific and human resource development accomplishments supported through this project.

  12. Microinstability-based models for confinement properties and ignition criteria in tokamaks

    SciTech Connect

    Tang, W.M.; Bishop, C.M.; Coppi, B.; Kaye, S.M.; Perkins, F.W.; Redi, M.H.; Rewoldt, G.

    1987-02-01

    This paper reports on results of theoretical studies dealing with: (1) the use of microinstability-based thermal transport models to interpret the anomalous confinement properties observed in key tokamak experiments such as TFTR and (2) the likely consequences of the presence of such instabilities for future ignition devices. Transport code simulations using profile-consistent forms of anomalous thermal diffusivities due to drift-type instabilities have yielded good agreement with the confinement times and temperatures observed in TFTR under a large variety of operating conditions including pellet-fuelling in both ohmic- and neutral-beam-heated discharges. With regard to achieving an optimal ignition margin, the adverse temperature scaling of anomalous losses caused by drift modes leads to the conclusion that it is best to operate at the maximum allowable density while holding the temperature close to the minimum value required for ignition.

  13. A comprehensive gyrokinetic description of global electrostatic microinstabilities in a tokamak

    SciTech Connect

    Chowdhury, J.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.; Angelino, P.

    2009-05-15

    It is believed that low frequency microinstabilities such as ion temperature gradient (ITG) driven modes and trapped electron modes (TEMs) are largely responsible for the experimentally observed anomalous transport via the ion and electron channels in a tokamak. In the present work, a comprehensive global linear gyrokinetic model incorporating fully kinetic (trapped and passing) electrons and ions, actual ion to electron mass ratio, radial coupling, and profile variation is used to investigate the ITG driven modes and pure TEMs. These modes are found to exhibit multiscale structures in the presence of nonadiabatic passing electrons. The multiscale structure is related to the large nonadiabaticity of electrons in the vicinity of mode rational magnetic surfaces and leads to reduced mixing length estimates of transport compared to those obtained from adiabatic electron models.

  14. Development of dike fragility curves for piping and micro-instability breach mechanisms

    NASA Astrophysics Data System (ADS)

    Vorogushyn, S.; Merz, B.; Apel, H.

    2009-08-01

    The paper analyses the prevailing breach mechanisms of fluvial dikes. Piping in the dike foundation and slope failure as a consequence of seepage flow through a dike core (micro-instability) were identified as two of the dominant breach mechanisms for historically-grown dikes along with overtopping and slope macro-instability. For the former two mechanisms the physically-based and empirical process descriptions were reviewed and led to the formulation of the reliability functions. Evaluation of these functions in the Monte Carlo framework for the time dependent load led to the development of fragility functions. These functions indicate the probability of failure of a dike section upon loading and can be computed for each spatially discretised dike section. The probability of breaching is conditioned by the uncertainty in geometrical and geotechnical dike parameters. This uncertainty is explicitly taken into account during computation of the fragility functions in a Monte Carlo simulation. Sensitivity analysis was carried out in order to identify the sensitive geotechnical parameters influencing the distribution of failure probability. The identification of sensitive parameters indicates the priorities in geotechnical measurement campaigns aimed at the assessment of dike stability. The newly developed fragility functions can be applied in flood hazard and risk assessment studies for modelling of dike failures in a probabilistic framework.

  15. Collisionless microinstabilities in stellarators. I. Analytical theory of trapped-particle modes

    SciTech Connect

    Helander, P.; Proll, J. H. E.; Plunk, G. G.; Max-Planck/Princeton Research Center for Plasma Physics, 17491 Greifswald

    2013-12-15

    This is the first in a series of papers about collisionless, electrostatic micro-instabilities in stellarators, with an emphasis on trapped-particle modes. It is found that, in so-called maximum-J configurations, trapped-particle instabilities are absent in large regions of parameter space. Quasi-isodynamic stellarators have this property (approximately), and the theory predicts that trapped electrons are stabilizing to all eigenmodes with frequencies below the electron bounce frequency. The physical reason is that the bounce-averaged curvature is favorable for all orbits, and that trapped electrons precess in the direction opposite to that in which drift waves propagate, thus precluding wave-particle resonance. These considerations only depend on the electrostatic energy balance and are independent of all geometric properties of the magnetic field other than the maximum-J condition. However, if the aspect ratio is large and the instability phase velocity differs greatly from the electron and ion thermal speeds, it is possible to derive a variational form for the frequency showing that stability prevails in a yet larger part of parameter space than what follows from the energy argument. Collisionless trapped-electron modes should therefore be more stable in quasi-isodynamic stellarators than in tokamaks.

  16. Towards optimal design of 2-D and 3-D shaping for linear microinstability

    NASA Astrophysics Data System (ADS)

    Rorvig, Mordechai; Hegna, Chris; Mynick, Harry; Xanthopoulos, Pavlos

    2013-10-01

    Optimal design for linear, toroidal microinstability relies on understanding metrics for how geometry affects instability, and how 2-D and 3-D shaping mechanisms can be targeted to improve those metrics. To elucidate these goals, we apply local 3-D equilibrium theory, analytic instability theory, and local, numerical gyrokinetics solution using GENE. Geometric analytic targets and cost function scalings are found for adiabatic linear ion temperature gradient (ITG) modes. Maximum linear growth rates from numerical ITG calculations show reasonable agreement with those from an analytic model that employs a Gaussian estimate for the mode structure. Shaping may be characterized by how it controls the distribution of curvature null lines on the surface, i.e., the lines where the curvatures are zero. Rotation of the cross section mostly only rotates the nulls, whereas cross sectional deformation shifts their relative positioning, providing a shaping mechanism unique to 3-D. More recent efforts at extending and generalizing the results to other important instability channels, such as linear trapped electron modes (TEM), are presented. Application of these results in numerical optimization schemes is discussed. Supported by U.S. DoE grant no. DE-FG02-99ER54546 and DE-SC0006103.

  17. Microinstabilities from the Ion Inertia Length to the Electron Gyroradius Due to Reflected Ions in the Front of Supercritical Perpendicular Shocks

    NASA Astrophysics Data System (ADS)

    Muschietti, L.; Lembege, B.

    2014-12-01

    We present a synthetic view of the plasma microinstabilities which can occur in the foot of supercritical perpendicular shocks. In these shocks a substantial fraction of ions is reflected at the steep shock ramp. Then, some streaming instabilities are excited by the relative drifts between populations of incoming ions, reflected ions, and electrons across the foot's magnetic field. The instabilities cover wavelengths from the ion inertia length to the electron gyroradius and frequencies from the lower-hybrid to the electron cyclotron, depending upon solar wind characteristics. The particle distributions are modelled as three components: a broad electron population and two ion populations, namely a core and a beam representing the reflected ions. The two ion populations drift in opposite direction with respect to the electron population so as to ensure the zero current condition along the shock normal direction. Assuming the ion beam is directed along the shock normal at 90 to B0, we investigate the possible instabilities under various wave propagation angles. The plasma considered is characterized by a double anisotropy: one defined by the direction of B0, the other by that of the reflected beam. Let ? be the magnetic coplanarity plane defined by these two directions. There are therefore two main angles playing a role for the instabilities: (a) the angle ?bk between the wave vector and B0, (b) the angle ?vk between the wave vector and the plane ? containing the beam. As a result the 3 3 dielectric tensor Q is full with terms that are distinct. We show three types of instability at various angles: 1) one about the electron gyroradius with frequencies at the electron cyclotron frequency ?e and harmonics; 2) one about the electron inertia length with frequencies less than ?e ; 3) one about the ion inertia length with frequencies of the order of the lower-hybrid. The dispersion relation is computed with the dielectric tensor Q for different parameter values. The instabilities are analyzed with full electromagnetic PIC simulations and are compared with the MTSI-1 and 2 of Matsukyio and Scholer [JGR 111, 2006] or the low-frequency whistlers of Hellinger and Mangeney [JGR 102, 1997] are discussed.

  18. Bump-on-tail instability in space plasmas

    NASA Astrophysics Data System (ADS)

    Sarkar, Susmita; Paul, Samit; Denra, Raicharan

    2015-10-01

    Bump-on-tail instability of Langmuir waves propagating in unmagnetized Lorentzian plasma modeled by a Kappa velocity distribution with spectral index ? has been investigated in this paper. Growth rate of this microinstability has been determined analytically from the Langmuir wave dispersion relation. Change in the maximum growth rate with increasing ? has been numerically estimated for different number density and temperature ratios using solar wind data.

  19. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    SciTech Connect

    Hnat, B.

    2011-09-22

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  20. Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities

    SciTech Connect

    Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.

    2015-06-15

    The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a???0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability.

  1. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    SciTech Connect

    M.H. Redi; C. Fiore; P. Bonoli; C. Bourdelle; R. Budny; W.D. Dorland; D. Ernst; G. Hammett; D. Mikkelsen; J. Rice; S. Wukitch

    2002-06-18

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic.

  2. Effect of alpha drift and instabilities on tokamak plasma edge conditions

    SciTech Connect

    Miley, G H; Choi, C K

    1983-01-01

    As suprathermal fusion products slow down in a Tokamak, their average drift is inward. The effect of this drift on the alpha heating and thermalization profiles is examined. In smaller TFTR-type devices, heating in the outer region can be cut in half. Also, the fusion-product energy-distribution near the plasma edge has a positive slope with increasing energy, representing a possible driving mechanism for micro-instabilities. Another instability that can seriously affect outer plasma conditions and shear Alfven transport of alphas is also considered.

  3. plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Jin, C. G.; Yang, Y.; Ye, C.; Zhuge, L. J.; Wu, X. M.

    2014-12-01

    As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.

  4. Nonlinear gyrokinetic theory for finite-BETA plasmas

    SciTech Connect

    Hahm, T.S.; Lee, W.W.; Brizard, A.

    1988-02-01

    A self-consistent and energy-conserving set of nonlinear gyrokinetic equations, consisting of the averaged Vlasov and Maxwell's equations for finite-..beta.. plasmas, is derived. The method utilized in the present investigation is based on the Hamiltonian formalism and Lie transformation. The resulting formation is valid for arbitrary values of k/perpendicular//rho//sub i/ and, therefore, is most suitable for studying linear and nonlinear evolution of microinstabilities in tokamak plasmas as well as other areas of plasma physics where the finite Larmor radius effects are important. Because the underlying Hamiltonian structure is preserved in the present formalism, these equations are directly applicable to numerical studies based on the existing gyrokinetic particle simulation techniques. 31 refs.

  5. Plasma confinement experiments in the TMX tandem mirror. Paper IAEA-CN-38/F-1

    SciTech Connect

    Simonen, T.C.; Anderson, C.A.; Casper, T.A.

    1980-05-22

    Results from the new Tandem Mirror Experiment (TMX) are described. Tandem-mirror density and potential profiles are produced using end-plug neutral-beam injection and central-cell gas-fueling. TMX parameters are near those predicted theoretically. The end-plug electron temperature is higher than in the comparably sized single-mirror 2XIIB. Axial confinement of the finite-beta central-cell plasma is improved by the end plugs by as much as a factor of 9. In TMX, end-plug microinstability limits central-cell confinement in agreement with theory.

  6. Interferometric investigation of the plasma in a three-electrode XeCl laser

    SciTech Connect

    Borovkov, V V; Andramanov, A V; Voronov, S L

    1999-01-31

    An experimental investigation was made of optical inhomogeneities in the active medium of a three-electrode XeCl laser with a double discharge. A current prepulse, which appeared during the discharge-formation stage, influenced the profile of the electron density distribution in the plasma. A study was made of the kinetics of changes in the electron density distribution during pumping. Small-scale optical inhomogeneities were detected and they appeared because of growth of discharge microinstabilities. The current density and the duration of the pump pulses needed to ensure a stable discharge were determined. (active media)

  7. Plasma stability studies of the gasdynamic mirror fusion propulsion experiment

    NASA Astrophysics Data System (ADS)

    Emrich, William Julius, Jr.

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. These differences are postulated to permit gasdynamic mirrors to confine plasmas in a stable manner without the additional complicated equipment required by low aspect ratio, low plasma density mirror machines. To verify that a gasdynamic mirror could indeed confine plasmas in a stable manner for long periods of time, a small scale experimental gasdynamic mirror was built and tested. The gasdynamic mirror which was constructed is 2.5 meters long and can accommodate plasmas up to 20 centimeters in diameter. The device is able to support mirror magnetic fields of up to two tesla and central cell magnetic fields of up to a third of a tesla. A reciprocating Langmuir probe was used to determine the radial plasma density and electron temperature profiles upon which the experimental results of this study are based. The objective of this experiment was to determine ranges of mirror ratios and plasma densities over which gasdynamic mirror could maintain stable plasmas. Theoretical analyses indicated that plasma magnetohydrodynamic instabilities were likely to occur during subsonic to supersonic flow transitions in the mirror throat region of the gasdynamic mirror. The experimental evidence based upon data derived from the Langmuir probe measurements seems to confirm this analysis. These instabilities result in a loss of plasma confinement and would almost certainly prevent the initiation of fusion reactions. The assumption that a gasdynamic mirror using a simple mirror geometry could be used as a propulsion system, therefore, appears questionable. Fairly simple modifications to the simple mirror concept are presented, however, which if incorporated into the simple mirror configuration could mitigate these MHD instabilities. Theoretical analyses of plasma "loss cone" microinstabilities were also performed and judged likely not to be a major problem under the expected operating conditions of a gasdynamic mirror propulsion system. No plasma microinstabilities were observed during the experimental investigations.

  8. Updating Plasma Scattering of Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    2010-05-01

    The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.

  9. Gyrokinetic characterization of PPCD plasmas

    NASA Astrophysics Data System (ADS)

    Carmody, D.; Pueschel, M. J.; Anderson, J. K.; Terry, P. W.

    2013-10-01

    A series of linear and nonlinear gyrokinetic simulations were performed with the GENE code to model experimental discharges in the MST reversed field pinch and identify the dominant instabilities. These studies focus on the characteristics of microinstabilities in pulsed poloidal current drive (PPCD), a current profile control technique that results in reduced large scale tearing activity and improved confinement. The equilibria are modeled using a modified version of GENE's circular equilibrium model and experimental measurements of density, temperature, and magnetic field. A variety of PPCD discharges are studied encompassing different plasma currents and relative strengths of density and temperature gradients, and the dominant linear instabilities are found to be ITG and TEM. The critical gradients for these modes are found at different radial locations and compared with the experimental gradients. The dependence of these instabilities on various parameters such as plasma ? and collisionality is also investigated. Nonlinearly, a strong upshift of the critical gradients is found and the nonlinear mechanisms responsible are discussed. Work supported by US DOE Grant No. DE-FG02-85ER53212.

  10. Plasma instabilities and transport in the MPD thruster

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Kelly, Arnold J.; Jahn, Robert G.

    1993-06-01

    This study deals with the development and testing of anomalous (turbulent) transport coefficient models that include the effects of plasma turbulence and that can be used in plasma fluid codes for more realistic numerical simulations. The anomalous transport models were derived using a kinetic description of microinstabilities in the MPD thruster plasma. Nonlinear plasma theory was used under the valid approximation of weak turbulence and the resulting transport models were studied in detail. A strong dependence of anomalous transport on the electron Hall parameter was found. The models were then reduced to a set of compact polynomials ideally suited for inclusion in fluid codes. The usefulness and importance of these models were demonstrated by including them in an advanced plasma fluid code and carrying numerical simulations of realistic MPD thruster flows. The results show the impact of turbulence on various aspects of dissipation in the thruster as well as on the overall propulsive efficiency. Fluid codes that include these models are more accurate engineering tools for the design and study of high efficiency plasma thrusters.

  11. Adiabatic electron response and solitary wave generation by trapped particle nonlinearity in a hydrogen plasma

    SciTech Connect

    Mandal, Debraj; Sharma, Devendra

    2014-10-15

    The finite amplitude ion acoustic waves that trap electrons modify the structure of the evolving nonlinear soliton solutions. In the numerical simulations, self-consistently generated solitary waves are studied that emerge as a result of a current driven microinstability growing the ion acoustic mode in a collisionless Vlasov plasma. The growth saturates as a result of nonlinear effects governed by a combination of nonlinearities originating from the hydrodynamic model and kinetic particle trapping effects. The resulting solitary waves also coexist with a finite current and an electron plasma wave capable of perturbing the trapping potential. The results of multiscale simulation are analyzed and characterized following the kinetic prescription of undamped trapped particle mode in the form of phase space vortex solutions that are generalized form of Sagdeev's solitons and obey the solutions of a modified Korteweg-de Vries equation, accounting for a stronger nonlinearity originating from the electron trapping.

  12. Contributions to the Theory of Plasma Turbulence by Marshall N. Rosenbluth

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.

    2004-11-01

    In this talk, I will review the many contributions of Marshall Rosenbluth to the theory of turbulence, fluctuations and anomalous transport in plasmas. This review will span Rosenbluth's career, starting from his early work on resistive instabilities and fluctuation theory, through his achievements in defining the theory of stochastic magnetic fields and tokamak microinstabilities, and conclude with a discussion of his final work which focused on zonal flow and L-H bifurcation physics. I shall attempt to integrate this story into a coherent whole which highlights Rosenbluth's seminal contributions to our understanding of anomalous transport, in fusion plasmas as it stands today. I shall also try to give some `flavor' of Rosenbluth's style and approach to these difficult problems.

  13. CONFERENCE DESCRIPTION Theory of Fusion Plasmas: Varenna-Lausanne International Workshop

    NASA Astrophysics Data System (ADS)

    Garbet, X.; Sauter, O.

    2010-12-01

    The Joint Varenna-Lausanne international workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favourable for informal and in-depth discussions. Invited and contributed papers present state-of-the-art research in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always welcomes a fruitful mix of experienced researchers and students, to allow a better understanding of the key theoretical physics models and applications. Theoretical issues related to burning plasmas Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive Macroinstabilities Plasma-Edge Physics and Divertors Fast particles instabilities Further details: http://Varenna-Lausanne.epfl.ch The conference is organized by: Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fdrale de Lausanne, Association EURATOM - Confdration Suisse 'Piero Caldirola' International Centre for the Promotion of Science and International School of Plasma Physics Istituto di Fisica del Plasma del CNR, Milano Editors: X Garbet (CEA, Cadarache, France) and O Sauter (CRPP-EPFL, Lausanne, Switzerland)

  14. Trapped ion mode in toroidally rotating plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented.

  15. Quasilinear Carbon Transport In An Impurity Hole Plasma In LHD

    SciTech Connect

    Mikkelsen, David R.; Tanaka, K.; Nunami, M.; Watanabe, T-H.; Sugama, H.; Yoshinuma, M.; Suzuki, Y.; Goto, M.; Morita, S.; Wieland, B.; Yamada, I.; Yashura, R.; Akiyama, T.; Pablant, Novimir A.

    2014-04-01

    Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-ITB and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient (ITG) modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

  16. Quasilinear carbon transport in an impurity hole plasma in LHD

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Tanaka, K.; Nunami, M.; Watanabe, T.-H.; Sugama, H.; Yoshinuma, M.; Ida, K.; Suzuki, Y.; Goto, M.; Morita, S.; Wieland, B.; Yamada, I.; Yasuhara, R.; Tokuzawa, T.; Akiyama, T.; Pablant, N. A.

    2014-08-01

    Comprehensive electrostatic gyrokinetic linear stability calculations for ion-scale microinstabilities in an LHD plasma with an ion-internal transport barrier (ITB) and carbon "impurity hole" are used to make quasilinear estimates of particle flux to explore whether microturbulence can explain the observed outward carbon fluxes that flow "up" the impurity density gradient. The ion temperature is not stationary in the ion-ITB phase of the simulated discharge, during which the core carbon density decreases continuously. To fully sample these varying conditions, the calculations are carried out at three radial locations and four times. The plasma parameter inputs are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The spectroscopic line-average ratio of hydrogen and helium densities is used to set the density of these species. Three ion species (H,He,C) and the electrons are treated kinetically, including collisions. Electron instability drive does enhance the growth rate significantly, but the most unstable modes have characteristics of ion temperature gradient modes in all cases. As the carbon density gradient is scanned between the measured value and zero, the quasilinear carbon flux is invariably inward when the carbon density profile is hollow, so turbulent transport due to the instabilities considered here does not explain the observed outward flux of impurities in impurity hole plasmas. The stiffness of the quasilinear ion heat flux is found to be 1.7-2.3, which is lower than several estimates in tokamaks.

  17. Runaway electrons and turbulence in a current-carrying stellarator plasma

    SciTech Connect

    Volkov, E.D.; Perepelkin, N.F.; Suprunenko, V.A.; Arsen'ev, A.V.; Burchenko, P.Y.; Vasil'ev, M.P.; Kotsubanov, V.D.; Kulaga, A.E.; Rubtsov, K.S.; Slavnyi, A.S.

    1984-07-01

    A disruption of the free acceleration of electrons in a magnetized, ohmically heated plasma in the Uragan-2 and Sirius stellarators has been observed and studied. Depending on the electric field and the ratio E/E/sub c//sub r/, the plasma heating in a stellarator may fall in one of three regimes associated with the appearance of a tail on the electron energy distribution: free acceleration (runaway) of electrons in a relatively cool plasma with a classical conductivity, at E<0.1E/sub c//sub r/; limited acceleration at Eapprox.(0.1--1.0)E/sub c//sub r/; and total disruption of the free acceleration in a hot plasma at E>E/sub c//sub r/. The behavior of the electron tail from one regime to another over the course of the discharge is related to the development of various stages of microinstabilities near the plasma frequency ..omega../sub pe/ and the ion plasma frequency ..omega../sub ..pi../. It appears that these instabilities stabilize the current drift velocity at various levels. The turbulent heating of electrons and ions at the anomalous resistance and the suppression of the free electron acceleration arise near a threshold Eapprox.E/sub c//sub r/. Results on the turbulent heating of ions carried out in various tokamaks and stellarators are compared.

  18. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  19. Electrostatic Microinstabilities within the Electron Diffusion Layer

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Daughton, W.; Ji, H.; Yamada, M.

    2013-10-01

    Both numerical simulations and laboratory experiments have extensively studied the electron skin-depth scale structure of the electron diffusion layer, but neither have fully resolved both the scale-seperation and physics on scales between the Debye length and the skin-depth. Here, the first fully kinetic 2D simulations of anti-parallel magnetic reconnection at realistic electron temperatures (c /vthe = 64 and ?pe /?e = 32) are presented. Macroscopic features such as the reconnection rate or layer width are found to be insensitive to the electron temperature. When the electron temperature becomes sufficiently low, the electron diffusion layer becomes unstable to electrostatic instabilities involving multiple streaming populations near the X-line. This leads to multiple electron holes within the electron diffusion layer which interact non-linearly to generate turbulence which may be important in understanding the electron heating within the diffusion layer observed in experiments. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO).

  20. Unified fluid/kinetic description of magnetized plasmas

    SciTech Connect

    Chang, Zuoyang; Callen, J.D.

    1991-06-01

    Unified fluid/kinetic equations for the plasma perturbed density ({tilde n}), parallel flow velocity ({tilde u}{sub {parallel}}) and temperature ({tilde T}) are developed in a sheared slab geometry by calculating the fluid moment closure relations kinetically. At first, a set of (unclosed) nonlinear perturbed fluid equations for {tilde n}, {tilde u}{sub {parallel}} and {tilde T} is developed using a drift ordering analysis and a new gyroviscous force ({del} {center dot} {product}{sub g}). Thereafter, to develop linear closure relations for b {center dot} {del} {center dot} {tilde product}{sub {parallel}} and {tilde q}{sub {parallel}}, a drift-kinetic version of a Chapman-Enskog-like (CEL) equation is developed and solved by using a moment approach and a physically realistic collision operator (Lorentz scattering operator plus the momentum restoring terms.) The resultant closure relations for b {center dot} {del} {center dot} {tilde product}{sub {parallel}} and {tilde q}{sub {parallel}} unify both the fluid and kinetic approaches. In the collisional fluid limit the equations reduce to the well-known Braginskii equations. In the adiabatic limit they reproduce the usual kinetic results, including Landau damping. It is shown that the CEL approach is more compatible with a fluid-like description of plasmas than the usual drift/gyro kinetic approach. A remarkable simplification of these complicated closure relations is achieved by using single power of plasma dispersion functions with modified arguments. The results are compared with other recently developed Landau damping models and shown to be more accurate, complete and physically meaningful. The resultant set of nonlinear fluid/kinetic equations (with linear closure relations) will be applied to various microinstabilities in tokamak plasmas and drift type microturbulence in a separate paper. 19 refs., 7 refs., 1 tab.

  1. SciDAC - Center for Plasma Edge Simulation - Project Summary

    SciTech Connect

    Parker, Scott

    2014-11-03

    Final Technical Report: Center for Plasma Edge Simulation (CPES) Principal Investigator: Scott Parker, University of Colorado, Boulder Description/Abstract First-principle simulations of edge pedestal micro-turbulence are performed with the global gyrokinetic turbulence code GEM for both low and high confinement tokamak plasmas. The high confinement plasmas show a larger growth rate, but nonlinearly a lower particle and heat flux. Numerical profiles are obtained from the XGC0 neoclassical code. XGC0/GEM code coupling is implemented under the EFFIS (“End-to-end Framework for Fusion Integrated Simulation”) framework. Investigations are underway to clearly identify the micro-instabilities in the edge pedestal using global and flux-tube gyrokinetic simulation with realistic experimental high confinement profiles. We use both experimental profiles and those obtained using the EFFIS XGC0/GEM coupled code framework. We find there are three types of instabilities at the edge: a low-n, high frequency electron mode, a high-n, low frequency ion mode, and possibly an ion mode like kinetic ballooning mode (KBM). Investigations are under way for the effects of the radial electric field. Finally, we have been investigating how plasmas dominated by ion-temperature gradient (ITG) driven turbulence, how cold Deuterium and Tritium ions near the edge will naturally pinch radially inward towards the core. We call this mechanism “natural fueling.” It is due to the quasi-neutral heat flux dominated nature of the turbulence and still applies when trapped and passing kinetic electron effects are included. To understand this mechanism, examine the situation where the electrons are adiabatic, and there is an ion heat flux. In such a case, lower energy particles move inward and higher energy particles move outward. If a trace amount of cold particles are added, they will move inward.

  2. Flute instability growth on a magnetized plasma column.

    SciTech Connect

    Genoni, Thomas C.; Welch, Dale Robert; Ditmire, T.; Rose, David Vincent; Mehlhorn, Thomas Alan; Porter, John Larry, Jr.

    2006-08-01

    The growth of the flute-type instability for a field-aligned plasma column immersed in a uniform magnetic field is studied. Particle-in-cell simulations are compared with a semi-analytic dispersion analysis of the drift cyclotron instability in cylindrical geometry with a Gaussian density profile in the radial direction. For the parameters considered here, the dispersion analysis gives a local maximum for the peak growth rates as a function of R/r{sub i}, where R is the Gaussian characteristic radius and r{sub i} is the ion gyroradius. The electrostatic and electromagnetic particle-in-cell simulation results give azimuthal and radial mode numbers that are in reasonable agreement with the dispersion analysis. The electrostatic simulations give linear growth rates that are in good agreement with the dispersion analysis results, while the electromagnetic simulations yield growth rate trends that are similar to the dispersion analysis but that are not in quantitative agreement. These differences are ascribed to higher initial field fluctuation levels in the electromagnetic field solver. Overall, the simulations allow the examination of both the linear and nonlinear evolution of the instability in this physical system up to and beyond the point of wave energy saturation. Keywords: Microinstabilities, Magnetic confinement and equilibrium, Particle-in-cell method.

  3. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

    SciTech Connect

    Rewoldt, G.; Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Tang, W.M.

    1997-12-01

    Sheared rotation dynamics are widely believed to have significant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry.

  4. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

    SciTech Connect

    Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.

    1997-11-01

    Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry.

  5. Self-Organization in Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.

    1997-11-01

    Self-Organization is a ubiquitous phenomenon in turbulent laboratory, space and astrophysical plasmas. In this review, we focus on the emergent behavior of large scale order in turbulent plasmas. Instances of such emergent behavior have the common elements of broken symmetry, criticality and auto-regulation, which collectively govern order parameter evolution. Here, we discuss three classic and illustrative paradigms of self-organization (s.-o.). Perhaps the simplest paradigm of s.-o. is that of criticality in one and two-dimensional cellular automata (CA). The goal is to understand the link between emergent macroscopic profile structure and microscopic automata rules, an end closely related to the calculation of tokamak confinement from gradient-driven micro-instabilities. Here, profile shape and stiffness may be calculated to good accuracy from Markov-chain algorithms, which agree well with direct implementation of the CA's with noise. For strongly-driven piles, hydrodynamic models reproduce ballistic propagation scaling and confirm the expectation that cross-gradient shear flows significantly alter avalanche statistics and scaling. A second paradigm of s.-o. is the magnetic dynamo, a classic realization of large scale s.-o. induced by small scale symmetry breaking. Here, it is the reflection symmetry of the small-scale turbulence which is broken, yielding a net helicity and alpha-effect. The structure of the self-organized state (i.e. scale of growth) is determined by alpha, which displays the footprint of small scale asymmetry. A novel element in the theory is the nonlinearity induced by rapid amplification of small scale magnetic fields. This, in turn, induces a nonlinear feedback which quenches the dynamo at finite amplitude. The quenching process is also manifested in passive scalar and magnetic flux transport. The third paradigm is the self-regulating shear flow. Here, small scale and large scale asymmetry are linked by a mechanism very similar to that operating in Langmuir turbulence. As a result, the asymmetry of the small scale drift or Rossby wave turbulence directly determines the spatial structure of the macroscopic sheared flow via Reynolds stress structure, which, in turn, re-enforces the initial turbulence asymmetry and changes its level. Limit-cycle states of bursting flow and fluctuations are predicted, and observed in simulations. Application of the self-regulating shear-flow paradigm to the dynamics of sheared flows in tokamak transport barriers and ionospheric plasmas will be discussed.

  6. Plasma Instability Growth Rates in the F-Region Cusp Ionosphere

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Daabakk, Y.; Oksavik, K.; Clausen, L.; Bekkeng, T. A.; Abe, T.; Saito, Y.; Baddeley, L. J.; Lorentzen, D. A.; Sigernes, F.; Yeoman, T. K.

    2014-12-01

    There are at least two different micro-instability processes that applies to the F-region cusp/polar cap ionosphere. These are the Gradient Drift Instability (GDI) and the Kelvin Helmholtz Instability (KHI). Due to space weather effects on radio communication and satellite signals it is of practical interest to assess the relative importance of these two instability modes and to quantify their growth rates. The Investigation of Cusp Irregularities (ICI) rocket program has been developed to investigate these plasma instabilities and formation scintillation irregularities. High resolution measurements are critical to get realistic quantities on the growth rates. The results achieved so far demonstrates that cusp ionosphere precipitation can give rise to km scale plasma structures on which grow rates are down to a few tens of seconds compared to earlier measures of ten minutes based on ground observations. This has to do with the spatial resolution required for these measurements. Growth rates for the KHI instability is found to be of the same order, which is consistent with growth rates calculated from the EISCAT Svalbard Radar. I.e. both instability modes can be highly efficient in the cusp ionosphere.

  7. Numerical simulations of anisotropic plasmas using a modified ZEUS-MP

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin; Tangri, Varun; Sarkar, Aveek; Perez, Jean; Sharma, Prateek

    2012-10-01

    Three dimensional linear and nonlinear simulations of collisionless one-fluid plasmas with pressure anisotropy are presented using the Chew- Goldberger-Low (CGL-MHD) and double-isothermal models. For this purpose, the code ZEUS-MP [J. C. Hayes et. al. The APJ Supplement Series 165 (2006) 188.] has been modified. Major modifications include a changed method of characteristics, new compressive and non-compressive forces, and a ``hard wall'' limit on pressure anisotropy that is intended to mimic the effects of plasma micro-instabilities that limit the temperature anisotropy. For purposes of validation, more than 100 test simulations of linear waves (Alfven, slow and fast), instabilities (firehose and mirror) and nonlinear vortices (Orszag-Tang) are presented for a number of initial conditions and parameters. Finally, this model is used to investigate the way that Alfven-wave turbulence leads to a spreading of the temperature-anisotropy probability distribution in the solar wind. Analysis is completed with a detailed analysis of the fluctuation data.

  8. Linear Stability and Quasilinear Particle and Heat Fluxes in Ion-ITB Plasmas in LHD

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Tanaka, K.; Nunami, M.; Watanabe, T.-H.; Sugama, H.; Yoshinuma, Y.; Ida, K.; Suzuki, Y.; Goto, M.; Bernd, W.; Yamada, I.; Yasuhara, R.; Tokuzawa, T.; Akiyama, T.

    2013-10-01

    The linear stability of ion-scale microinstabilities in an LHD ion-ITB plasma is studied using the GS2 gyrokinetic turbulence code. The ion-ITB phase is preceded by carbon pellet injection, so the carbon density varies considerably during this period. The carbon density develops an ``impurity hole'' that is typical of ion-ITB plasmas in LHD. Quasilinear carbon and helium particle fluxes as well as the influence of the carbon density and its gradient on the quasilinear heat fluxes are discussed. The calculations are based on experimentally measured profiles of electron and ion temperature, as well as electron and carbon density. The measured Zeff and the edge ratio of hydrogen and helium influxes are used to constrain the density profiles of these species. All three ions and the electrons are treated kinetically in the calculations, and the finite electron collision rate is included (the results are not significantly affected by ion collisions so they are usually not included). Supported, in part, by DOE Contract Numbers DE-AC02-09CH11466.

  9. Plasma turbulence

    SciTech Connect

    Horton, W.; Hu, G.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  10. Numerical simulation of non-equilibrium plasma flow in a cylindrical MPD thruster using a high-order flux-difference splitting method

    NASA Astrophysics Data System (ADS)

    Ahangar, Mahdy; Ebrahimi, Reza; Shams, Mehrzad

    2014-10-01

    A two-dimensional axisymmetric computational algorithm is developed to simulate the plasma flow field in a self-field MPD thruster, in order to determine the flow behavior and the electromagnetic characteristics distribution. The convective flux vector is computed by using Roe's scheme in combination with Powell's eigensystem technique, and a new modified MUSCL technique called OMUSCL2 is employed to obtain the stable high-accuracy solution. Madrane-Tadmor entropy correction is used to prevent unrealistic expansion shocks near the electrodes tips. To accurately capture the physics of plasma in the system, different physical-chemical sub-models including multi-level non-equilibrium ionization model, generalized Ohm's law for partially ionized plasma, micro-instabilities effects, two-temperature model, and a real equation of state are considered. Numerical results of plasma flow simulation in a cylindrical lab-scale thruster, with mass flow rate of 6 g/s and total discharge current of 8 kA, are presented and comparison with experimental data shows good agreement between the predicted and measured contours of enclosed current and electric potential. The estimated thrust is 16.34 N which exhibits less than 5% difference compared with measured value. Furthermore, this simulation properly predicts the experimentally observed argon jet structure.

  11. PLASMA GENERATOR

    DOEpatents

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  12. PIC Simulations of Hypersonic Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.

    2013-12-01

    The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration; however, modeling a plasma expanding radially in every direction is computationally expensive. In order to reduce the computational expense, we use a radial density profile from the hybrid simulation results to seed a self-consistent PIC simulation in one direction (x), while creating a current in the direction (y) transverse to both the drift velocity and the magnetic field (z) to create the magnetic bubble observed in experiment. The simulation will be run in two spatial dimensions but retain three velocity dimensions, and the results will be used to explore the growth of micro-instabilities present in hypersonic plasmas in the high-density region as it moves through the simulation box. This will still require a significantly large box in order to compare with experiment, as the experiments are being performed over distances of 104 ?De and durations of 105 ?pe-1.

  13. Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Maeyama, S.; Idomura, Y.; Watanabe, T.-H.; Nakata, M.; Yagi, M.; Miyato, N.; Ishizawa, A.; Nunami, M.

    2015-06-01

    Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and ? value are realized for the first time, where the ? value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-? effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport.

  14. Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma.

    PubMed

    Maeyama, S; Idomura, Y; Watanabe, T-H; Nakata, M; Yagi, M; Miyato, N; Ishizawa, A; Nunami, M

    2015-06-26

    Multiscale gyrokinetic turbulence simulations with the real ion-to-electron mass ratio and β value are realized for the first time, where the β value is given by the ratio of plasma pressure to magnetic pressure and characterizes electromagnetic effects on microinstabilities. Numerical analysis at both the electron scale and the ion scale is used to reveal the mechanism of their cross-scale interactions. Even with the real-mass scale separation, ion-scale turbulence eliminates electron-scale streamers and dominates heat transport, not only of ions but also of electrons. Suppression of electron-scale turbulence by ion-scale eddies, rather than by long-wavelength zonal flows, is also demonstrated by means of direct measurement of nonlinear mode-to-mode coupling. When the ion-scale modes are stabilized by finite-β effects, the contribution of the electron-scale dynamics to the turbulent transport becomes non-negligible and turns out to enhance ion-scale turbulent transport. Damping of the ion-scale zonal flows by electron-scale turbulence is responsible for the enhancement of ion-scale transport. PMID:26197130

  15. Investigation of density and potential fluctuations measured in the interior of improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Fimognari, P. J.; Demers, D. R.; Carmody, D.; Terry, P. W.

    2014-10-01

    The Heavy Ion Beam Probe (HIBP) is uniquely capable of simultaneously measuring density and potential fluctuations in the plasma core. Characterizing the amplitudes, wavelengths, and cross phases of these quantities is necessary for validation efforts. During improved confinement (IC) periods in the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP), HIBP measurements indicate density and potential fluctuations are broadband with most power below 100 kHz; the cross phase varies with radius and frequency. Gyrokinetic simulations of MST experimental discharges, focusing on microinstabilities during IC periods, suggest ITG and TEM are the predominant linear instabilities; profiles of various parameters are key to the growth or stability of these modes. Comparison of these simulations to interior fluctuation profiles is made possible by using the HIBP along with equilibrium temperature and density gradients. Measurements of fluctuations have been acquired with the HIBP at multiple radial locations inside the MST reversal surface; analysis of these and other relevant experimentally measured quantities will be presented. This work is supported by US DoE Award No. DE-SC0006077.

  16. Dusty plasmas

    SciTech Connect

    Jones, M.E.; Winske, D.; Keinigs, R.; Lemons, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project has been to develop a fundamental understanding of dusty plasmas at the Laboratory. While dusty plasmas are found in space in galactic clouds, planetary rings, and cometary tails, and as contaminants in plasma enhanced fabrication of microelectronics, many of their properties are only partially understood. Our work has involved both theoretical analysis and self-consistent plasma simulations to understand basic properties of dusty plasmas related to equilibrium, stability, and transport. Such an understanding can improve the control and elimination of plasma dust in industrial applications and may be important in the study of planetary rings and comet dust tails. We have applied our techniques to the study of charging, dynamics, and coagulation of contaminants in plasma processing reactors for industrial etching and deposition processes and to instabilities in planetary rings and other space plasma environments. The work performed in this project has application to plasma kinetics, transport, and other classical elementary processes in plasmas as well as to plasma waves, oscillations, and instabilities.

  17. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  18. Plasma waves

    SciTech Connect

    Vandenplas, P.E.

    1996-03-01

    This paper presents a summary of important parts of `Plasma waves` by J.F. Denisse and J.L.Delcroix, Interscience-Wiley, 1963, itself a translation of `Theorie des Ondes dans les Plasmas`, Dunod, 1959. We shall, however, use S.I. units instead of cgs ones and adopt where necessary more modern notations. A rather complete overview of the complexity of waves in a hot magnetized plasma is given. The effects of collisions have been mostly neglected. 1 fig.

  19. Reduced model prediction of electron temperature profiles in microtearing-dominated NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R.; Gerhardt, S.; Leblanc, B.; Maingi, R.

    2014-10-01

    A representative H-mode discharge from the National Spherical Torus Experiment (NSTX) is studied in detail as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, νe*, the MHD α parameter and the gradient scale lengths of Te, Ti and ne were examined prior to performing linear gyrokinetic calculations to determine the fastest growing microinstability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe* were relatively low, ballooning parity modes were dominant. As both βe and νe* increased with time, microtearing became the dominant low-kθmode, especially in the outer half of the plasma. There are instances in time and radius where other modes, at higher-kθ, may be important for driving electron transport. The Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. This work has been supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.

  20. Plasma valve

    DOEpatents

    Hershcovitch, Ady (Mount Sinai, NY); Sharma, Sushil (Hinsdale, IL); Noonan, John (Naperville, IL); Rotela, Elbio (Clarendon Hills, IL); Khounsary, Ali (Hinsdale, IL)

    2003-01-01

    A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.

  1. Plasma accelerator

    DOEpatents

    Wang, Zhehui (Los Alamos, NM); Barnes, Cris W. (Santa Fe, NM)

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  2. Plasma centrifuge

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Geva, M.; Hirshfield, J. L.

    1981-01-01

    Mass separation in magnetized, highly ionized, rotating metal plasmas is described. Plasma rotation velocities up to 7.4 x 10 to the 3rd m/sec with centrifugal enrichment of up to a factor of 2 for Cu-65 were measured. Such enrichments are significantly in excess of values reported earlier.

  3. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  4. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  5. Insights on Physics of closed drift plasma thrusters by using externally driven and very fast current interruptions

    NASA Astrophysics Data System (ADS)

    Bouchoule, Andr

    2002-10-01

    Closed electron drift plasma thrusters, also known as Hall Thrusters or SPT (Stationary Plasma Thrusters) are magnetized discharges where the ion acceleration is provided in the plasma itself by the magnetic barrier restricting electron transport. After their developments and their demonstrations on satellites for orbit control these thrusters appear as very attractive ones in the space technology market. Simultaneously, significant research programs are developed in order to improve the knowledge on the complex physics involved in such devices and to improve simultaneously 2D or 3D simulation codes. Such a program involving academic research teams , agencies and industry is developed in France, in the frame of a coordinated program. GDR N . The experimental research was achieved on diagnostic equipped thrusters, similar to industrial ones. These thrusters are operated in the national research facility PIVOINE , installed in Orlans. The discharge of Hall thrusters is well known as sensitive to fluctuations or oscillations in the few tens kHz range and the physical phenomena connected to these regimes have been widely investigated. Externally driven current interruptions, with very fast ON-OFF transitions (0.15 s), have been shown as a convenient way for obtaining new data on thrusters physics, in connection with time resolved diagnostics like OES, LIF, electron Hall current probe and RFA. Experimental results evidence some details on excitation / ionization (single and multiply charged Xe ions) phenomena and lead to new inputs on electron transport phenomena in the magnetized discharge channel. New experimental insights on microinstabilities will be also be discussed in relation with simulations developed by using PIC codes.

  6. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  7. Intergalactic plasma

    NASA Astrophysics Data System (ADS)

    Reber, Grote

    1986-12-01

    Radio astronomy observations at 144-m wavelength suggest a plasma filling intergalactic space. This plasma may have one electron and proton pair per 100 cu cm. The plasma radiates hectometer waves by free-free transitions. The energy of electrons is replenished from visible light. It interacts with electrons by compton transitions. Accordingly, light tires as it travels through intergalactic space. Such is manifest by a shift in spectral lines toward the red proportional to distance. There is no need for an expanding universe.

  8. Plasma Effects

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1983-01-01

    Radio communication with space probes requires sending signals through the Earth's ionosphere and usually the solar wind. During planetary flybys, the signal may also pass through the ionosphere of another planet. These ionized media can perturb the radio signal in a variety of ways. Examples of these perturbations are variations in the electrical length between the spacecraft and the ground station, Faraday rotation of linearly polarized signals, amplitude and phase scintillations, and spectral and angular broadening. These plasma effects can have undesirable influences on telemetry performance and thus need to be understood from a communications engineering viewpoint. The plasma effects are, however, useful from a scientific viewpoint, since the effects on the communications link can often be inverted to estimate the physical conditions in the plasma.

  9. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  10. Burning plasmas

    SciTech Connect

    Furth, H.P.; Goldston, R.J.; Zweben, S.J. . Plasma Physics Lab.); Sigmar, D.J. )

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

  11. Plasma Shield

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2005-10-01

    The Plasma Shield is a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and generates an outward flow, thus, shielding it from any surrounding liquids (water) or atmospheric gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes that involve ion and electron beams like, dry etching, micro-fabrication, machining, welding and melting are performed exclusively in vacuum, since guns, and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect various processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment (under water). It should allow for in situ repair of ship and nuclear reactor components, as well as in-air ion implantation of semiconductors. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Experimental results will be presented. *Plasma Shield/Work supported by Acceleron, Inc., Connecticut Light & Power Co., US DOE funding under a NICE3 grant DE-FG41-01R110925, and Connecticut DEP.

  12. Plasma pharmacy - physical plasma in pharmaceutical applications.

    PubMed

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes. PMID:23923628

  13. Properties of large scale plasma flow during the early stage of the plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Craven, P.; Torr, D. G.; Richards, P. G.

    1990-01-01

    The objective is to better characterize the macroscopic properties of the interhemisphere plasma flow by solving a more complete set of hydrodynamic equations than that solved previously. Specifically, the ion continuity, momentum and energy equations were solved for the plasma flow along the closed magnetic field lines. During the initial stage of the supersonic outflow in the equatorial region, the ions cool substantially. Using the hydrodynamic model for the large-scale plasma flow, the dynamics of shocks was examined which form in the geomagnetic flux tubes during the early stages of refilling. These shocks are more like those forming in neutral gases than the electrostatic shocks driven by microinstabilities involving ion-ion interaction. Therefore, the shocks seen in the hydrodynamic model are termed as hydrodynamic shocks. Such shocks are generally unsteady and therefore the usual shock jump conditions given by Rankine-Hugoniot relations are not strictly applicable to them. The density, flow velocity and temperature structures associated with the shocks are examined for both asymmetrical and symmetrical flows. In the asymmetrical flow the outflow from one of two conjugate ionospheres is dominant. On the other hand, in the symmetrical case outflows from the two ionospheric sources are identical. Both cases are treated by a two-stream model. In the late type of flow, the early-time refilling shows a relaxation type of oscillation, which is driven by the large-scale interactions between the two identical streams. After this early stage, the resulting temperature structure shows some interesting features. In the equatorial region the streams are isothermal, but in the off-equatorial regions the streams have quite different temperatures, and also densities and flow velocities. The dense and slow stream is found to be warmer than the low-density fast stream. In the late stage of refilling, the temperature is found to steadily increase from the conjugate ionospheres towards the equator; the equatorial temperature is found to be as high as about 8000 K compared to the ionospheric temperature of 3600 K.

  14. Nonthermal Reactive Plasmas

    NASA Astrophysics Data System (ADS)

    Meichsner, Jrgen

    Reactive low-temperature plasmas have found broad field of applications in the last decades. Beside the thermal plasmas used for coating of material surfaces (e.g., plasma spraying), synthesis of nano/microparticles and plasma chemical conversion of waste, the focus in this chapter is directed on nonthermal reactive plasmas or cold plasmas which are characterized by strong nonequilibrium conditions. Such nonequilibrium plasmas are implemented in many innovative technologies for surface treatment and synthesis of novel materials. Prominent examples are the plasma etching and patterning in semiconductor processing, the surface modification of polymers due to the incorporation of new functional molecular groups which determine the interactions with surrounding media, and/or the deposition of thin films with novel physical and chemical properties. The nonthermal reactive plasma represents a multispecies system consisting of hot electrons and a mixture of several charged and neutral reactive atoms and molecules. The increasing interest in reactive plasmas containing hydrocarbons, fluorocarbons, and organosilicons needs more fundamental knowledge in both the plasma physics and plasma chemistry. Furthermore, the plasma-surface interaction has to be investigated including the plasma sheath in front of surfaces and the chemical reactions at the phase boundary in connection with the volume plasma chemistry. The aim of this chapter is (1) to give an introduction into nonthermal reactive plasmas and plasma-surface interaction, (2) to present useful diagnostics for characterization of the reactive plasmas and plasma-surface interaction, and (3) to show examples of reactive plasmas in contact with material surfaces.

  15. PLASMA SUBSTITUTES

    PubMed Central

    Robscheit-Robbins, F. S.; Miller, L. L.; Alling, E. L.; Whipple, G. H.

    1946-01-01

    Hemoglobin and globin alone, supplemented, or modified in various ways are seriously considered as plasma substitutes. Human globin given to doubly depleted (anemic and hypoproteinemic) dogs by vein contributes to the production of new hemoglobin and plasma protein, but there is some toxicity and weight loss. Dog hemoglobin given intraperitoneally is better tolerated and somewhat more completely utilized with more blood proteins formed and less weight loss. Dog globin (tryptic digest) given by vein in anemic dogs is associated with a moderate production of new hemoglobin. Horse globin by mouth contributes to the formation of new hemoglobin in the standard anemic dog. Dog hemoglobin given intraperitoneally in protein fasting, non-anemic dogs is well utilized to maintain nitrogen and weight balance. A dl-isoleucine supplement fails to improve this utilization of hemoglobin for maintenance in the dog. A small supplement of dl-methionine greatly improves the utilization of dog hemoglobin for maintenance in the dog and further addition of isoleucine is without effect. The intermediary metabolism of dog hemoglobin is not yet worked out. Electrophoretic analyses (Table 6) suggest that globin appears in the peripheral circulation after intraperitoneal injections of hemoglobin. PMID:19871535

  16. Magnetic Fields and Plasmas

    SciTech Connect

    Schep, T.J.

    2004-03-15

    Plasmas and magnetic fields are inseparably related in numerous physical circumstances. This is not only the case in natural occurring plasmas like the solar corona and the earth magnetic tail, but also in laboratory plasmas like tokamaks and stellarators.

  17. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  18. Plasma Free Metanephrines

    MedlinePLUS

    ... be limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? Also known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine ...

  19. Plasma Dictionary Website

    NASA Astrophysics Data System (ADS)

    Correll, Don; Heeter, Robert; Alvarez, Mitch

    2000-10-01

    In response to many inquiries for a list of plasma terms, a database driven Plasma Dictionary website (plasmadictionary.llnl.gov) was created that allows users to submit new terms, search for specific terms or browse alphabetic listings. The Plasma Dictionary website contents began with the Fusion & Plasma Glossary terms available at the Fusion Energy Educational website (fusedweb.llnl.gov). Plasma researchers are encouraged to add terms and definitions. By clarifying the meanings of specific plasma terms, it is envisioned that the primary use of the Plasma Dictionary website will be by students, teachers, researchers, and writers for (1) Enhancing literacy in plasma science, (2) Serving as an educational aid, (3) Providing practical information, and (4) Helping clarify plasma writings. The Plasma Dictionary website has already proved useful in responding to a request from the CRC Press (www.crcpress.com) to add plasma terms to its CRC physics dictionary project (members.aol.com/physdict/).

  20. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  1. Plasma sweeper. [Patents

    DOEpatents

    Motley, R.W.; Glanz, J.

    1982-10-25

    A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  2. Industrial plasmas in academia

    NASA Astrophysics Data System (ADS)

    Hollenstein, Ch; Howling, AA; Guittienne, Ph; Furno, I.

    2015-01-01

    The present review, written at the occasion of the 2014 EPS Innovation award, will give a short overview of the research and development of industrial plasmas within the last 30 years and will also provide a first glimpse into future developments of this important topic of plasma physics and plasma chemistry. In the present contribution, some of the industrial plasmas studied at the CRPP/EPFL at Lausanne are highlighted and their influence on modern plasma physics and also discharge physics is discussed. One of the most important problems is the treatment of large surfaces, such as that used in solar cells, but also in more daily applications, such as the packaging industry. In this contribution, the advantages and disadvantages of some of the most prominent plasmas such as capacitively- and inductively-coupled plasmas are discussed. Electromagnetic problems due to the related radio frequency and its consequences on the plasma reactor performance, and also dust formation due to chemical reactions in plasma, are highlighted. Arcing and parasitic discharges occurring in plasma reactors can lead to plasma reactor damages. Some specific problems, such as the gas supply of a large area reactor, are discussed in more detail. Other topics of interest have been dc discharges such as those used in plasma spraying where thermal plasmas are applied for advanced material processing. Modern plasma diagnostics make it possible to investigate sparks in electrical discharge machining, which surprisingly show properties of weakly-coupled plasmas. Nanosecond dielectric barrier discharge plasmas have been applied to more speculative topics such as applications in aerodynamics and will surely be important in the future for ignition and combustion. Most of the commonly-used plasma sources have been shown to be limited in their performance. Therefore new, more effective plasma sources are urgently required. With the recent development of novel resonant network antennas for new advanced large area or large volume plasma sources, an important step towards high performance plasmas and new fast processes is made.

  3. International movement of plasma and plasma contracting.

    PubMed

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined. PMID:16050160

  4. Basics of Dusty Plasma

    SciTech Connect

    Ignatov, A.M.

    2005-01-15

    The paper presents an introductory review of the basic physical processes in dusty plasmas. The topics to be addressed are dust charging, forces acting on dust grains, interaction between dust grains, and dust-plasma structures.

  5. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Research and development in plasmas and magnetospheric environments is reported. Topics discussed include: analysis and techniques of software development; data analysis and modeling; spacecraft sheath effects; laboratory plasma flow studies; instrument development.

  6. Plasma amino acids

    MedlinePLUS

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  7. Plasma kinetics in molecular plasmas and modeling of reentry plasmas

    NASA Astrophysics Data System (ADS)

    Capitelli, M.; Celiberto, R.; Colonna, G.; D'Ammando, G.; De Pascale, O.; Diomede, P.; Esposito, F.; Gorse, C.; Laricchiuta, A.; Longo, S.; Pietanza, L. D.; Taccogna, F.

    2011-12-01

    State-to-state non-equilibrium plasma kinetics is widely used to characterize cold molecular and reentry plasmas. The approach requires a high level of dynamical information, and demands a large effort in the creation of complete databases of state-resolved cross sections and rate coefficients. Recent results, emphasizing the dependence of elementary process probability on both the vibrational and rotational energy content of the H2 molecule, are presented for those channels governing the microscopic collisional dynamics in non-equilibrium plasmas, i.e. electron-impact induced resonant processes, vibrational deactivation and dissociation in atom-diatom collisions and atomic recombination at the surface. Results for H2 plasmas, i.e. negative ion sources for neutral beam injection in fusion reactors, RF parallel-plate reactors for microelectronics, atmospheric discharges and the shock wave formed in the hypersonic entry of vehicles in planetary atmosphere for aerothermodynamics, are discussed.

  8. Plasma oxidation of polymers

    SciTech Connect

    Moss, S.J.; Jolly, A.M.; Tighe, B.J.

    1986-12-01

    The rates of plasma oxidation have been measured for homopolymers of several monomers and for copolymers of methyl methacrylate with styrene and vinyl naphthalene. Their results show that relatively small amounts of the aromatic component in the copolymer convey substantially increased resistance to plasma oxidation. Current knowledge of the mechanisms of plasma oxidation is reviewed and new mechanistic explanations are suggested. The implications for improved design of plasma-developable resists systems are considered.

  9. Plasma in astrophysics

    SciTech Connect

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium.

  10. The Plasma Universe

    NASA Astrophysics Data System (ADS)

    Suplee, Curt

    2009-09-01

    Preface; 1. The fourth state of matter; 2. The music and dance of plasmas; 3. The Sun-Earth connection; 4. Bringing the Sun to Earth: the story of controlled thermonuclear fusion; 5. The cosmic plasma theater: galaxies, stars, and accretion disks; 6. Putting plasmas to work; Index.

  11. A reconfigurable plasma antenna

    SciTech Connect

    Kumar, Rajneesh; Bora, Dhiraj

    2010-03-15

    An experiment aimed at investigating the antenna properties of different plasma structures of a plasma column as a reconfigurable plasma antenna, is reported. A 30 cm long plasma column is excited by surface wave, which acts as a plasma antenna. By changing the operating parameters, e.g., working pressure, drive frequency, input power, radius of glass tube, length of plasma column, and argon gas, single plasma antenna (plasma column) can be transformed to multiple small antenna elements (plasma blobs). It is also reported that number, length, and separation between two antenna elements can be controlled by operating parameters. Moreover, experiments are also carried out to study current profile, potential profile, conductivity profile, phase relations, radiation power patterns, etc. of the antenna elements. The effect on directivity with the number of antenna elements is also studied. Findings of the study indicate that entire structure of antenna elements can be treated as a phased array broadside vertical plasma antenna, which produces more directive radiation pattern than the single plasma antenna as well as physical properties and directivity of such antenna can be controlled by operating parameters. The study reveals the advantages of a plasma antenna over the conventional antenna in the sense that different antennas can be formed by tuning the operating parameters.

  12. Report from space plasma science

    NASA Technical Reports Server (NTRS)

    Hastings, D. E.; Drobot, A.; Banks, Peter M.; Taylor, W. W. L.; Anderson, H. R.

    1989-01-01

    Space plasma science, especially plasma experiments in space, is discussed. Computational simulations, wave generation and propagation, wave-particle interactions, charged particle acceleration, particle-particle interactions, radiation transport in dense plasmas, macroscopic plasma flow, plasma-magnetic field interactions, plasma-surface interactions, prospects for near-term plasma science experiments in space and three-dimensional plasma experiments are among the topics discussed.

  13. Plasma Behavior in a Plasma Gun Jet

    NASA Astrophysics Data System (ADS)

    Pulliam, Daniel; Intrator, Thomas; Adams, Colin; Sears, Jason; Weber, Thomas; Los Alamos National Laboratory Team

    2011-10-01

    Plasma guns will provide initial pre-ionized plasma for a field reversed configuration experiment (FRX-L). The development and testing of these guns is being carried out on the Reconnection Scaling experiment (RSX). Successful gun operation requires the ionized plasma leaving the guns to be maximized and the neutral gas particles surrounding each gun jet to be minimized. A fast ionization gauge (FIG) produced by Applied Pulsed Power, Inc. with a response time of >20 mTorr/ ?s will be used to measure the density of hydrogen plasma in the RSX in order to determine the shape of the plasma pulse and the speed of the particles. Additionally, the FIG will provide data to calculate the quantity of gas particles preceding the plasma jet and a Mach number of the plasma leaving the gun. An equation of state fluid model will be used for the system and to compare calculations with experimental data. Supported by the U.S. D.O.E. under a N.U.F. Program and DE-AC52-06NA25396, NASA grant NNH10A0441 and Center for Magnetic Self Organization NSF-OFES.

  14. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  15. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  16. Plasma -Sheath Interface Problem

    NASA Astrophysics Data System (ADS)

    Sternberg, Natalia; Slemrod, Marshall

    1999-10-01

    For a collisional bounded plasma problem, it is necessary to model the plasma and sheath separately because of the different scales in each region. We specify the plasma boundary by Godyak's criterion and sheath boundary by Bohm's criterion. We connect the plasma and sheath by a viscous interfacial region where the electric field is approximately constant. The approach enables us to develop and solve universal models for each of the three regions, and combine the solutions continously to approximate the solution to the bounded plasma problem. Comparison of combined solutions with corresponding solution to the bounded plasma problem yields relative error at wall for ion density of 9velocity 10within experimental range. When the interface is neglected and the plasma and sheath are combined, the relative errors are ion density 40Although the interface region is very small it greatly improves the result.

  17. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  18. Ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    Rolston, Steven L.

    2008-07-01

    Plasmas are normally thought of as high temperature ionized gases or fluids, such as those in the sun's corona or those found in controlled nuclear fusion experiments. Many interesting plasma phenomena can occur, however, in plasmas at low temperature. With the help of laser trapping and cooling, atoms can be photoionized to form neutral plasmas at extremely low temperatures. These plasmas may exist in the so-called strong coupling regime, where the energy of the Coulomb interactions between particles is larger than their thermal energy. In addition to providing a test bed for studying the strongly coupled plasmas such as those found in Jovian planets and white dwarfs, ultracold plasmas play a critical role in understanding the formation of antihydrogen.

  19. Plasmas for medicine

    NASA Astrophysics Data System (ADS)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous economic potential. This ambivalent situation fundamentally requires a responsible use of plasma sources, which are specifically designated for biomedical applications. To enable physicians as well as life scientists to decide whether a given plasma source is really suitable for medical applications or biological experiments, a meaningful and mandatory spectrum of indicators has to be compiled to allow for a basic estimation of the potential of this plasma source.

  20. Flowing Magnetized Plasma experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Si, Jiahe

    2006-10-01

    Results from the Flowing Magnetized Plasma experiment at Los Alamos are summarized. Plasmas are produced using a modified coaxial plasma gun with a center electrode extending into a cylindrical vacuum tank with 0.75 m in radius and 4.5 m long. The basic diagnostics are Bdot probes for edge and internal magnetic field, Mach probes and Doppler spectroscopy for plasma flow in the axial and azimuthal directions, and Langmuir probes for plasma floating potential, electron density and temperature. We have found two different plasma flow patterns associated with distinct IV characteristics of the coaxial plasma gun, indicating axial flow is strongly correlated with the plasma ejection from the plasma gun. Global electromagnetic oscillations at frequencies below ion cyclotron frequency are observed, indicating that familiar waves at these frequencies, e.g. Alfven wave or drift wave, are strongly modified by the finite plasma beta. We eliminate the possibility of ion sound waves since the ion and electron temperatures are comparable, and therefore, ion sound waves are strongly Landau damped.

  1. Plasma Biomedicine in Orthopedics

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satsohi

    2012-10-01

    Various effects of plasmas irradiation on cells, tissues, and biomaterials relevant for orthopedic applications have been examined. For direct application of plasmas to living cells or tissues, dielectric barrier discharges (DBDs) with helium flows into ambient air were used. For biomaterial processing, on the other hand, either helium DBDs mentioned above or low-pressure discharges generated in a chamber were used. In this presentation, plasma effects on cell proliferation and plasma treatment for artificial bones will be discussed. First, the conditions for enhanced cell proliferation in vitro by plasma applications have been examined. The discharge conditions for cell proliferation depend sensitively on cell types. Since cell proliferation can be enhanced even when the cells are cultured in a plasma pre-treated medium, long-life reactive species generated in the medium by plasma application or large molecules (such as proteins) in the medium modified by the plasma are likely to be the cause of cell proliferation. It has been found that there is strong correlation between (organic) hydroperoxide generation and cell proliferation. Second, effects of plasma-treated artificial bones made of porous hydroxyapatite (HA) have been examined in vitro and vivo. It has been found that plasma treatment increases hydrophilicity of the surfaces of microscopic inner pores, which directly or indirectly promotes differentiation of mesenchymal stem cells introduced into the pores and therefore causes faster bone growth. The work has been performed in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  2. What is a plasma?

    SciTech Connect

    Intrator, Thomas P.

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  3. Plasma in dentistry

    PubMed Central

    Cha, Seunghee; Park, Young-Seok

    2016-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, decontamination, root canal disinfection and tooth bleaching were reviewed as direct applications with other miscellaneous ones. Non-thermal atmospheric pressure plasma was of particular focus since it is gaining considerable attention due to the possibility for its use in living tissues. Future perspectives have also been discussed briefly. Although it is still not popular among dentists, plasma has shown promises in several areas of dentistry and is now opening a new era of plasma dentistry.

  4. Plasmas with Fine Particles

    NASA Astrophysics Data System (ADS)

    Sato, Noriyoshi

    1999-10-01

    Plasmas with fine particles are of current interest in plasma physics and engineering. Here are presented our experiments done on fine-particle plasmas at Tohoku University, which are concerned with negative-ion plasmas, fullerene plasmas, and dusty plasmas. In these experiments, fine particles are negatively charged in plasmas. There are many common properties among these plasmas with fine particles, although the particle sizes and weights are quite different. Negative-ion plasmas are produced by feeding a SF6 gas into a Q-machine plasma consisting of electrons and potassium (or sodium) ions. A fraction of the electron to ion density is controlled by changing the SF6 gas pressure. For such a low electron fraction as 10-3 ~ 10-4,( N. Sato, A Variety of Plasmas) (edited by A. Sen and P. K. Kaw, Indian Academy of Sciences, Bangalore, 1989), p.79.^,( N.Sato, Plasma Sources Sci. Technol. 3), 395 (1994). there appear drastic changes of plasma phenomena. Negative-ion plasmas are useful for basic investigations of general properties of fine-particle plasmas, although there is no effect of gravity on fine particles. Fullerene plasmas are produced by injecting fullerenes (C_60) also into a Q-machine. Mass number (~=720) of fullerene ions (negative) is much larger than that (~=146) of SF6 ions. Fullerene plasmas are used for producing new materials consisting of potassium (or sodium) and fullerene atoms. We are interested in producing endohedral fullerenes K-C_60 (or Na-C_60) on the endplate (substrate).( N. Sato, T. Mieno, T. Hirata, Y. Yagi, R. Hatakeyama, and S. Iizuka, Phys. of Plasmas 1), 3480 (1994).^,(T. Hirata, R. Hatakeyama, T. Mieno, and N. Sato, J. of Vacuum Sci. Technol. 14), 615 (1996). In case of dusty plasmas, fine particles are huge and have many electrons on the surfaces, depending on the particle size. With an increase in the fine-particle density, there appears a strong coupling among the particles, yielding fluid and solid (Coulomb lattice) behaviors in the presence of gravity. In our work on dusty plasmas, non-dispersive particles of 10 ?m in diameter are injected into dc discharge plasmas. Our emphasis has been on active controls of structures and dynamics of fine-particle clouds levitating in weakly-ionized plasmas.(N. Sato, G. Uchida, R. Ozaki, and S. Iizuka, Physics of Dusty Plasmas) (edited by M. Horanyi, S. Robertson, and B. Walch, American Institute of Physics, New York, 1998), p.239. Essential points of our measurements are presented of vertical and radial profiles, phase transition, vortices driven electrostatically and azimuthal rotation in a weak vertical magnetic field, vertical spread of particle clouds, and vertical strings formed by periodic alignments of particles. Now we can establish a simple method of dust removal from dusty plasmas.

  5. Principles of plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian H.

    The physical principles, techniques, and instrumentation of plasma diagnostics are examined in an introduction and reference work for students and practicing scientists. Topics addressed include basic plasma properties, magnetic diagnostics, plasma particle flux, and refractive-index measurements. Consideration is given to EM emission by free and bound electrons, the scattering of EM radiation, and ion processes. Diagrams, drawings, graphs, sample problems, and a glossary of symbols are provided.

  6. Space plasma physics research

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  7. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Progress is reported in the development of programs for statistical analysis of boundary and structure type files based on surveys of Dynamics Explorere data. Programs being used for handling data on plasma boundaries in the inner magnetosphere, the structure of the plasmasphere, and the heavy ion torus may be useful for determining statistics on the warm plasma cloak and the auroral ion fountain. Data analysis and modeling; spacecraft sheath effects; and laboratory plasma flow studies are discussed.

  8. [Therapeutic plasmas available worldwide].

    PubMed

    Martinaud, C; Cauet, A; Sailliol, A

    2013-05-01

    Therapeutic plasma is a current product; French guidelines were reviewed in 2012. Connections between more or less closed countries are frequent, during relief disasters as well as in war settings. This is associated with the increasing use of plasma in the management of casualties. Additionally, The real possibility of lack of plasma supply in some countries provides a fundamental interest of the knowledge of foreign blood supply organizations. We present here the main divergences and mutual point between plasmas available worldwide. We present the main characteristics of each product. PMID:23522688

  9. Plasma waves at Venus

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.

    1991-01-01

    Many significant wave phenomena have been discovered at Venus with the plasma wave instrument on the Pioneer Venus Orbiter. It has been shown that whistler-mode waves in the magnetosheath of the planet may be an important source of energy for the topside ionosphere. Plasma waves are also associated with thickening of the ionopause current layer. Current-generated waves in plasma clouds may also provide anomalous resistance resulting in electron acceleration, possibly producing aurora. Ion-acoustic waves are observed in the bow shock, and appear to be a feature of the magnetotail boundary. Lastly, plasma waves have been cited as evidence for lightning on Venus.

  10. Plasma Processing Of Hydrocarbon

    SciTech Connect

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  11. Solid expellant plasma generator

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  12. Princeton Plasma Physics Laboratory

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  13. Ferroelectric Plasma Cathodes for Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Dunaevsky, Alexander; Raitses, Yevgeny; Fisch, Nathaniel

    2002-11-01

    During last decade the phenomenon of strong ferroelectric emission was studied widely in many laboratories all around the world. It was shown that the application of a kilovolt-range driving pulse between solid rear and patterned front electrodes which cover a sample of a ferroelectric ceramics results in electron emission from the side of the front electrode. The current density of this electron emission varies from hundreds of mA to hundreds of A per cm^2. The duration of the current pulse is several hundreds of nanoseconds with the repetition rate up to several MHz. Recent investigations showed that the strong electron emission occurs from surface discharge plasma formed on the ceramic surface near the edges of the front electrode pattern. The surface plasma has a density of 10^11 - 10^13 cm-3, an electron temperature of 2-3 eV, and consists mostly from ions of ferroelectric ceramic material and the front electrode. Ferroelectric Plasma Cathodes (FPC) are used widely in electron guns, microwave sources, and high current switches. It was recently showed that a strong ferroelectric-gas discharge occurs at a background pressure about of 1 Torr. Dense plasma formed in the ferroelectric-gas discharge can be used either as a powerful cathodes-neutralizer or as a plasma source for an ion thruster. Ferroelectric segmented electrodes are also very promising for Hall thrusters in both emissive and nonemissive modes.

  14. Laser plasma diagnostics of dense plasmas

    SciTech Connect

    Glendinning, S.G.; Amendt, P.; Budil, K.S.; Hammel, B.A.; Kalantar, D.H.; Key, M.H.; Landen, O.L.; Remington, B.A.; Desenne, D.E.

    1995-07-12

    The authors describe several experiments on Nova that use laser-produced plasmas to generate x-rays capable of backlighting dense, cold plasmas (p {approximately} 1--3 gm/cm{sup 3}, kT {approximately} 5--10 eV, and areal density {rho}{ell}{approximately} 0.01--0.05 g/cm{sup 2}). The x-rays used vary over a wide range of h{nu}, from 80 eV (X-ray laser) to 9 keV. This allows probing of plasmas relevant to many hydrodynamic experiments. Typical diagnostics are 100 ps pinhole framing cameras for a long pulse backlighter and a time-integrated CCD camera for a short pulse backlighter.

  15. Laboratory Dipole Plasma Physics

    NASA Astrophysics Data System (ADS)

    Kesner, Jay

    2011-10-01

    Modern laboratory studies of plasma confined by a strong dipole magnet originated twenty years ago when it was learned that planetary magnetospheres have centrally-peaked plasma pressure profiles that form naturally when solar wind drives plasma circulation and heating. Unlike other internal rings devices, like spherators and octupoles, the magnetic flux tubes of the dipole field expand rapidly with radius. Unlike plasma confinement devices that obtain stability from magnetic shear and average good curvature, like tokamaks and levitrons, the dipole-confined plasma obtains stability from plasma compressibility. These two geometric characteristics of the dipole field have profound consequences: (i) plasma can be stable with local beta exceeding unity, (ii) fluctuations can drive either heat or particles inward to create stationary profiles that are strongly peaked, and (iii) the confinement of particles and energy can decouple. During the past decade, several laboratory dipole experiments and modeling efforts have lead to new understanding of interchange, centrifugal and entropy modes, nonlinear gyrokinetics, and plasma transport. Two devices, the LDX experiment at MIT and RT-1 at the University of Tokyo, operate with levitated superconducting dipole magnets. With a levitated dipole, not only is very high-beta plasma confined in steady state but, also, levitation produces high-temperature at low input power and demonstrates that toroidal magnetic confinement of plasma does not require a toroidal field. Modeling has explained many of the processes operative in these experiments, including the observation of a strong inward particle pinch. Turbulent low-frequency fluctuations in dipole confined plasma cause adiabatic transport and form a fundamental linkage between the radial variation of flux-tube volume and the centrally peaked density and pressure profiles. In collaboration with M.E. Mauel and D.T. Garnier; supported by DoE FG02-98ER54458.

  16. Self-energized plasma compressor. [for compressing plasma discharged from coaxial plasma generator

    NASA Technical Reports Server (NTRS)

    Shriver, E. L.; Igenbergs, E. B. (Inventor)

    1974-01-01

    The self-energized plasma compressor is described which compresses plasma discharged from a coaxial plasma generator. The device includes a helically shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that creates a force which acts radially upon the plasma. The coaxial plasma generator and helical coil move the plasma under high pressure and temperature to the narrow end of the coil. Positioned adjacent to the narrow end of the coil are beads which are engaged by the plasma to be accelerated to hypervelocities for simulating meteoroids.

  17. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up to 1990 with only 31 papers per year on average, and a total of some 1300 papers, precedes a considerable growth of some 35-50% in research activity every five years, over the last 20 years or so. As shown in the table, the annual dissemination of the field is more than 1600 papers and the total number of papers is in excess of 20000. This upwards trajectory is typical of a strong and growing subject area in physical science, with considerable capacity in both fundamental science and applications. PeriodNumber of papersPapers per annum 1948-1990130031 1991-19952279456 1996-20003447689 2001-20054571914 2006-201066401328 2011 1658 In many of the dense plasma jets discussed above, strong physical forces generated by the plasma are often desired and this favours plasma generation at elevated gas pressure, including atmospheric pressure, which favours a high level of gas ionization. Historically it has been challenging to reduce and control the strong physical forces in high-pressure plasmas for applications where these are unwanted, for example, surface modification of polymeric sheets [5]. Indeed, there is a real need for a vast range of material processing applications at temperatures below 100oC (or below 400 K) and this favours atmospheric-pressure plasma jets sustained far from thermal equilibrium with the dissipated electrical energy largely used not in heat generation but in unleashing non-equilibrium chemical reactions. The long-standing difficulty of effectively controlling the level of gas ionization at atmospheric pressure was overcome by the technological breakthrough of achieving atmospheric-pressure glow discharges in the late 1980s [6]. A related challenge stemming from high collisionality of atmospheric-pressure plasmas (v >> ω0) means that large-area plasmas sustained between parallel-plate electrodes are very susceptible to strong plasma instabilities when molecular gases are introduced for processing applications. This led to an effective technological solution in the early to late 1990s of confining atmospheric plasmas in a small volume of plasma generation (i.e. with a small volume-to-surface ratio) and then extending it towards a downstream sample [7]-[9]. These are among the first low-temperature atmospheric plasmas aimed particularly at the exploitation of their ability to invoke the active and rich reactive chemistry close to ambient temperature. The main applications of these early devices are precision surface modification of low-temperature dielectric materials, for example thin film deposition and etching [7]-[9]. Variations of the early plasma jets include atmospheric plasma sheet jets [10] for the treatment of largely planar objects (e.g. polymeric sheets) as well as large arrays of many plasma jets for the treatment of complex-structured objects (e.g. surgical tools and open human wounds) [11]. As a material processing technology, the sub-100oC atmospheric-pressure plasma jet has benefited over the years from many innovations. Whilst a detailed account and analysis of these is clearly outside the scope of this Editorial, it is worth stating that there are different avenues with which to maintain a moderate electron density at the plasma core so as to keep the gas temperature at the sample point below a ceiling level. Most of the early studies employed excitation at radio frequencies above 10 MHz, at which electrons are largely confined in the plasma generation region, and this limits the current flow to and gas heating in the plume region of the plasma jet. Other techniques of current limitation have since been shown to be effective, including the use of dielectric barriers across a very large frequency range of 1 kHz--50 MHz, sub-microsecond pulses sustained at kHz frequencies, pulse-modulated radio frequencies and dual-frequency excitation [12]-[15]. These and other techniques have considerably advanced the atmospheric-pressure plasma jet technology. The period of some 15 years since the above-mentioned early studies has witnessed a considerable and exciting growth in terms of new phenomena observed, new physics and chemistry uncovered, new plasma jet sources conceived, and new applications developed. Examples include the observations of plasma bullets on a nanosecond scale [16], the similarity of plasma bullets to streamers [17], arrays of plasma jets as metamaterials [18], and a rapid increase of applications in biomedicine [19]. However the considerable growth in the research of plasma jets has not been adequately supported, so far, by a sound fundamental underpinning, partly resulting from a somewhat underdevelopment of effective diagnostics and modelling tools. Recognizing the critical importance of basic science for future growth of low-temperature plasma jet technology, this special issue on plasma jets and bullets aims to address some of the most important fundamental questions. Many of the special issue papers continue the established line of investigation to characterize the formation of plasma bullets, using typically ultrafast imaging, electrical detection including electric field and plasma conductivity measurement, and optical emission spectrometry [20]-[26]. These offer strong experimental evidence for the well-known hypothesis that a plasma jet is a form of streamer, and that the ionization wave plays a critical role in their formation. The interaction of two parallel plasma jets [27] and manipulation of plasma jet characteristics [28, 29] are also reported using a similar combination of experimental techniques. Some of the common characteristics of plasma jets are summarized in a review paper in this special issue [30]. A somewhat different line of investigation is employed in a detailed experimental characterization of deterministic chaos in atmospheric plasma jets [31], one of the few non-bullet modes of plasma jets. Although chaos in ionized gases have been observed in other types of discharge plasmas, their applications have not so far been linked to material processing applications, possibly because chaotic patterns of reaction chemistry could be undesirable for sample-sample reproducibility of application efficacy. Nevertheless, the lack of reproducibility in the presence of chaos may actually offer an advantage in tackling drug resistance in the new field of plasma medicine. As a material processing tool, it is important to characterize the reaction chemistry of plasma jets at a downstream point. Four special issue papers report measurement of argon and helium metastable atoms, ozone, oxygen atoms and UV irradiation using a variety of diagnostic tools including laser absorption spectroscopy, molecular beam mass spectrometry, optical emission and UV absorption spectrometry [32]-[35]. There is, however, a gap in these measurements of key reactive plasma species and characterization of plasma bullet formation [20]-[26], both in this special issue and elsewhere in the literature. Whilst atmospheric plasma modes are known to operate in bullet and non-bullet modes, it is unclear whether electron excitation of helium and/or argon metastables is different in the bullet mode from the non-bullet mode. Similarly, it remains little known whether the bullet mode facilitates a particularly efficient production of reactive plasma species [36]. An encouraging sign of our ability to address this and other knowledge gaps is evident from three excellent modelling investigations, looking into the behaviours of ionization waves [37], interaction of two counter-propagating streamers [38], and the two-dimensional structure of streamers [39]. Considerable detail unravelled from these and similar simulation studies is likely to not only uncover the physics of plasma bullet formation, but also link it to the design and manipulation of downstream reaction chemistry. In fact, very recent studies have combined experimental characterization of plasma jets with their numerical modelling [40].

  18. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W. (Albuquerque, NM)

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  19. Atoms in dense plasmas

    SciTech Connect

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  20. Hybrid plume plasma rocket

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R. (inventor)

    1989-01-01

    A technique for producing thrust by generating a hybrid plume plasma exhaust is disclosed. A plasma flow is generated and introduced into a nozzle which features one or more inlets positioned to direct a flow of neutral gas about the interior of the nozzle. When such a neutral gas flow is combined with the plasma flow within the nozzle, a hybrid plume is constructed including a flow of hot plasma along the center of the nozzle surrounded by a generally annular flow of neutral gas, with an annular transition region between the pure plasma and the neutral gas. The temperature of the outer gas layer is below that of the pure plasma and generally separates the pure plasma from the interior surfaces of the nozzle. The neutral gas flow both insulates the nozzle wall from the high temperatures of the plasma flow and adds to the mass flow rate of the hybrid exhaust. The rate of flow of neutral gas into the interior of the nozzle may be selectively adjusted to control the thrust and specific impulse of the device.

  1. Plasma thrusters from Russia

    SciTech Connect

    Lerner, E.J.

    1992-09-01

    A report on the Russian stationary plasma thrusters having plasma accelerated to high velocities by electrical and magnetic forces is described. For specific impulses of 15-20 km/sec, optimal for such applications as satellite station keeping and orbital transfer, a unit supplying 0.05 N from a 2-kW input has a 30-cm-diameter nozzle.

  2. Plasma technology directory

    SciTech Connect

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  3. Diamagnetism of rotating plasma

    SciTech Connect

    Young, W. C.; Hassam, A. B.; Romero-Talamas, C. A.; Ellis, R. F.; Teodorescu, C.

    2011-11-15

    Diamagnetism and magnetic measurements of a supersonically rotating plasma in a shaped magnetic field demonstrate confinement of plasma pressure along the magnetic field resulting from centrifugal force. The Grad-Shafranov equation of ideal magnetohydrodynamic force balance, including supersonic rotation, is solved to confirm that the predicted angular velocity is in agreement with spectroscopic measurements of the Doppler shifts.

  4. Microwave interactions with plasmas

    NASA Astrophysics Data System (ADS)

    Eckstrom, D. J.; Vidmar, R. J.; Stalder, K. R.

    1992-04-01

    Microwave interactions with a cold, collisional plasma having gradual density gradients were studied. The plasma was created by the photoionization of tetrakisdimethylaminoethylene (TMAE) vapor seeded into atmospheric pressure helium. Photoionization was provided primarily by sparkboard Spatial scans of the absorption of a microwave probe beam along chords across the plasma, with subsequent Abel inversion. Three-dimensional plasma density profiles were obtained that showed a gradual decrease in the peak plasma density versus distance away from the sparkboard. When a 58cm-diameter reflector was illuminated with 10-GHz microwaves in an anechoic chamber, the plasma sorbed as much as 28 dB in direct reflection, with similar attenuation of the normally weak side-scattered and cross-polarized radiation. The attenuation was compared with model predictions. Detailed analysis of the temporal and spatial dependence of the electron density following ionization indicated that both recombination and attachment processes influenced the plasma decay. The recombination rate of TMAE was found to be (9.0 +/- 1.1) x 10(exp -6) cm3 s(exp -1) for 300 K electrons. This work confirms the effectiveness of a cold, collisional plasma as a broadband, switchable wave absorber.

  5. Partially ionized plasmas, including the Third Symposium on Uranium Plasmas

    NASA Technical Reports Server (NTRS)

    Krishnan, M.

    1976-01-01

    Fundamentals of both electrically and fission generated plasmas are discussed. Research in gaseous fuel reactors using uranium hexafluoride is described and other partially ionized plasma applications are discussed.

  6. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  7. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  8. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  9. SUPERFAST THERMALIZATION OF PLASMA

    DOEpatents

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  10. Weakly relativistic plasma expansion

    NASA Astrophysics Data System (ADS)

    Fermous, Rachid; Djebli, Mourad

    2015-04-01

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  11. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR rocket engine.

  12. Effective plasma inductance computation

    SciTech Connect

    Maslovsky, Dmitry A.; Boozer, Allen H.

    2005-04-15

    The calculation of the resistive wall modes and their feedback stabilization is greatly simplified by splitting the plasma response from that of the external conductors. Existing calculations either consider highly simplified models of the external conductors or assume the plasma response can be approximated by a single rigid mode. The full response of an ideal, nonrotating plasma to perturbations that evolve slowly compared to the Alfven time is contained in the matrix for the effective plasma inductance {lambda}<=>. This matrix can be used in a code that accurately calculates the effects of the external conductors to obtain an essentially complete description of both plasma and the conducting structures. Calculations of {lambda}<=> for a number of tokamak equilibria are given together with an explanation of how the calculations are made and why they are important.

  13. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  14. Plasma sheath criterion in thermal electronegative plasmas

    SciTech Connect

    Ghomi, Hamid; Khoramabadi, Mansour; Ghorannevis, Mahmod; Shukla, Padma Kant

    2010-09-15

    The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

  15. Plasma Science Committee (PLSC)

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  16. Origins of magnetospheric plasma

    SciTech Connect

    Moore, T.E. )

    1991-01-01

    A review is given of recent (1987-1990) progress in understanding of the origins of plasmas in the earth's magnetosphere. In counterpoint to the early supposition that geomagnetic phenomena are produced by energetic plasmas of solar origin, 1987 saw the publication of a provocative argument that accelerated ionospheric plasma could supply all magnetospheric auroral and ring current particles. Significant new developments of existing data sets, as well as the establishment of entirely new data sets, have improved the ability to identify plasma source regions and to track plasma through the magnetospheric system of boundary layers and reservoirs. These developments suggest that the boundary between ionospheric and solar plasmas, once taken to lie at the plasmapause, actually lies much nearer to the magnetopause. Defining this boundary as the surface where solar wind and ionosphere contribute equally to the plasma, it is referred to herein as the 'geopause'. It is now well established that the infusion of ionospheric O(+) plays a major role in the storm-time distention of the magnetotail and inflation of the inner magnetosphere. After more than two decades of observation and debate, the question remains whether magnetosheric are protons of solar or terrestrial origin. 161 refs.

  17. Plasmas in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.

    1980-01-01

    Passage of Pioneer 11 through Saturn's magnetosphere revealed a third magnetosphere with a high plasma abundance. The dominant ion species appears to be oxygen. The plasma is located in a large torus about Saturn, including the orbits of Dione and Tethys. The plasma are rigidly corotating with the planet to distances of at least 10 Saturn radii. Bulk flows appear to move in the corotation direction, but at speeds lower than those expected from rigid corotation. The ions appear to be the ionization products of water frost on the surface of the ring material.

  18. Plasma for cancer treatment

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2015-06-01

    Plasma medicine is a relatively new field that grew from research in application of low-temperature (or cold) atmospheric plasmas in bioengineering. One of the most promising applications of cold atmospheric plasma (CAP) is cancer therapy. Convincing evidence of CAP selectivity towards the cancer cells has been accumulated. This review summarizes the state of the art of this emerging field, presenting various aspects of CAP application in cancer such as the role of reactive species (reactive oxygen and nitrogen), cell cycle modification, in vivo application, CAP interaction with cancer cells in conjunction with nanoparticles, and computational oncology applied to CAP.

  19. Stirring unmagnetized plasma.

    PubMed

    Collins, C; Katz, N; Wallace, J; Jara-Almonte, J; Reese, I; Zweibel, E; Forest, C B

    2012-03-16

    A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multicusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge-exchange collisions. PMID:22540478

  20. Plasma Chemical Aspects Of Dust Formation In Hydrocarbon Plasmas

    SciTech Connect

    Berndt, J.; Kovacevic, E.; Stepanovic, O.; Stefanovic, I.; Winter, J.

    2008-09-07

    This contribution deals with some plasma chemical aspects of dust formation in hydrocarbon plasmas. The interplay between dust formation and plasma chemistry will be discussed by means of different experimental results. One specific example concerns the formation of benzene and the role of atomic hydrogen for plasma chemical processes and dust formation in hydrocarbon discharges.

  1. Arc plasma jets of a nontransferred plasma torch

    SciTech Connect

    Kang, K.D.; Hong, S.H.

    1996-02-01

    The dc plasma torches have been widely used as clean plasma sources for plasma processings such as plasma spraying and synthesis. The plasma flow of a nontransferred plasma torch used for thermal plasma processings is produced by the arc-gas interactions between a cathode tip and an anode nozzle and expands as a jet through the nozzle. In this work, numerically calculated images of the arc plasma characteristics are found over the entire plasma region, including both an arc-gas interacting region inside the torch and a jet expanding region outside the torch. A numerical model used assumes a local thermodynamic equilibrium (LTE) with near-electrode phenomena and compressible flow effects. The computational system is described by a two-dimensional (2-D) axisymmetric model which is solved for plasma temperature and velocity by a control volume approach with the modified SIMPLER algorithm in a real torch geometry.

  2. Plasma jet effects on the ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Arnoldy, R. L.; Cahill, L. J.; Kintner, P. M.

    1983-01-01

    Heavy ion beams were injected into the ionospheric plasma (experiments ARCS 1 and ARCS 2). In ARCS 1, operation of a 25eV argon ion source, mounted on a plasma diagnostic payload, produced an accelerated electron population; broadband electric field turbulence; large, spin synchronized electric field perturbations; and depletions of thermal ions. In ARCS 2, the ion source was deployed upward along the local magnetic field direction away from the diagnostic payload, and observed effects are contained within several meters of the ion source. However, enhanced wave levels near the LHR frequency are observed at distances up to 1 km, as are the injected ions themselves. A measurement of the dominant wavelength of the enhanced waves is consistent with an inference based upon the accelerated electron population seen in ARCS 1. This electron population is not evident during ARCS 2.

  3. Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2003-10-02

    The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

  4. Magnetospheric Plasma Physics

    NASA Astrophysics Data System (ADS)

    Mauk, Barry H.

    Magnetospheric Plasma Physics is volume 4 of an ongoing series of review books entitled Developments in Earth and Planetary Sciences organized by the Center for Academic Publications Japan. The series is intended to stress Japanese work; however, the present volume was written by seven internationally selected authors who have reviewed works from a broad range of sources. This volume is composed of articles drawn from five lecture series presented at the Autumn College o f Plasma Physics, International Center for Theoretical Physics, Trieste, Italy, October-November 1979. The audiences for these lecture series were plasma and/or space plasma physicists, or students of the same, and the level and tone of this volume clearly reflect that condition.

  5. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  6. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  7. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  8. Induction plasma tube

    DOEpatents

    Hull, Donald E. (Los Alamos, NM)

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  9. Plasma Cell Disorders

    MedlinePLUS

    ... of Undetermined Significance (MGUS) Multiple Myeloma Macroglobulinemia Heavy Chain Diseases Plasma cell disorders are uncommon. They begin ... antibody produced is incomplete, consisting of only light chains or heavy chains (functional antibodies normally consist of ...

  10. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  11. Gingival plasma cell granuloma.

    PubMed

    Pandav, Amitkumar B; Gosavi, Alka V; Lanjewar, Dhaneshwar N; Jagadale, Rakhi V

    2012-11-01

    Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. PMID:23559965

  12. Gingival plasma cell granuloma

    PubMed Central

    Pandav, Amitkumar B; Gosavi, Alka V; Lanjewar, Dhaneshwar N; Jagadale, Rakhi V

    2012-01-01

    Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. PMID:23559965

  13. [Plasma hypertonicity in children].

    PubMed

    Teixeira, Ana; Ribeiro, Augusto

    2010-01-01

    The plasma hypertonicity is a severe and quite frequent disorder in children. The most frequent causes are hypernatremia related conditions, even though other causes of hyperosmolarity, such as hyperglycaemia and exogenous solutes accumulation also occur. The management and treatment of this condition is delicate and requires a thorough understanding of the underlying hydro electrolytic disorder. The authors perform a theoretical review of plasma hypertonicity in children, focusing on the three most frequent associated conditions: hypernatremic dehydration, salt poisoning and hyperosmolar coma. PMID:20654264

  14. Plasmas in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.

    1980-01-01

    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings.

  15. Plasma Screen Floating Mount

    DOEpatents

    Eakle, Robert F.; Pak, Donald J.

    2004-10-26

    A mounting system for a flat display screen, particularly a plasma display screen, suspends the screen separately in each of the x-, y- and z-directions. A series of frames located by linear bearings and isolated by springs and dampers allows separate controlled movement in each axis. The system enables the use of relatively larger display screens in vehicles in which plasma screen are subject to damage from vibration.

  16. Plasma surface interactions in impurity seeded plasmas

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team; DIII-D Team; Alcator Team; JET-Efda Contributors; Kallenbach, A.; Balden, M.; Dux, R.; Eich, T.; Giroud, C.; Huber, A.; Maddison, G. P.; Mayer, M.; McCormick, K.; Neu, R.; Petrie, T. W.; Ptterich, T.; Rapp, J.; Reinke, M. L.; Schmid, K.; Schweinzer, J.; Wolfe, S.

    2011-08-01

    With tokamak devices developing towards higher heating powers, and carbon plasma facing components being increasingly replaced by high-Z materials like tungsten, impurity seeding for radiative power dissipation gains more importance. This review summarizes the core and divertor radiative characteristics of potential seeding species, namely noble gases and nitrogen. Due to its radiative capability below 10 eV, nitrogen turns out to be a suitable replacement for carbon as a divertor radiator. For typical plasma parameters and high radiation levels, it becomes the most important eroding species for high-Z plasma facing components. Nitrogen exhibits pronounced storage in near-surface tungsten layers in an about 1:1 W/N atomic ratio, which may effect W sputtering. While the inter-ELM erosion of tungsten can be almost completely eliminated by electron temperature reduction, type-I ELMs remain an effective sputtering source. Since a large ELM cannot be significantly ameliorated by radiation, impurity seeding has to be integrated with a benign ELM scenario, like the type-III ELMy H-mode or active ELM control by pellets or resonant magnetic perturbations.

  17. Plasma electron analysis: Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    1983-01-01

    The Plasma Science Experiment (PLS) on the Voyager spacecraft provide data on the plasma ions and electrons in the interplanetary medium and the magnetospheres of the giant planets Jupiter and Saturn. A description of the analysis used to obtain electron parameters (density, temperature, etc.) from the plasma science experiment PLS electron measurements which cover the energy range from 10 eV to 5950 eV is presented. The electron sensor (D cup) and its transmission characteristics are described. A derivation of the fundamental analytical expression of the reduced distribution function F(e) is given. The electron distribution function F(e), used in the moment integrations, can be derived from F(e). Positive ions produce a correction current (ion feedthrough) to the measured electron current, which can be important to the measurements of the suprathermal electron component. In the case of Saturn, this correction current, which can either add to or subtract from the measured electron current, is less than 20% of the measured signal at all times. Comments about the corrections introduced by spacecraft charging to the Saturn encounter data, which can be important in regions of high density and shadow when the spacecraft can become negatively charged are introduced.

  18. Inductively coupled helium plasma torch

    DOEpatents

    Montaser, Akbar (Potomac, MD); Chan, Shi-Kit (Washington, DC); Van Hoven, Raymond L. (Alexandria, VA)

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  19. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  20. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  1. Plasma contactor research - 1991

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett; Williams, John D.; Wilbur, Paul J.

    1992-01-01

    A report describing the operating principles of hollow-cathode-based plasma contactors emitting or collecting electrons from an ambient plasma is summarized. Preliminary experiments conducted to determine the noise generated by these plasma contactors in the emission-current return line and in the plasma near it are described. These noise data are measured as current fluctuations in the return line and to the Langmuir probe and then analyzed using a fast Fourier transform technique. The spectral compositions of the data are characterized using power spectral density plots which are examined to identify possible noise source(s) and production mechanism(s). The precautions taken in the construction and calibration of the instrumentation to assure adequate frequency response are described. Experimental results show that line-current noise levels are typically 2 percent of the electron current being emitted or collected. However, noise levels increase to as much as 20 percent of the electron current at a few electron-collection operating conditions. The frequencies associated with most of the noise were harmonics of the 60 Hz input to system power supplies. Plasma noise had characteristics similar in magnitude and frequency to those for the return-line noise, but they contained additional features at frequencies considered to be related to ion-acoustic instabilities. Also discussed is a new probe positioning system built to facilitate future plasma-contractor research.

  2. From particles to plasmas

    SciTech Connect

    Van Dam, J.W. )

    1989-01-01

    The title of this book, From Particles to Plasmas, has more than one meaning. First, it reflects how the scientific career of Marshall Rosenbluth has evolved, beginning in the field of elementary particle physics and extending into his major area of plasma physics. Secondly, it is meant to suggest the wide spectrum of subject matters addressed in the individual lectures, ranging from numerical simulation and space physics and accelerators to various subfields in the physics of plasmas. In the third place, the title is a reference to the way in which the theoretical description of plasmas is often constructed, namely starting from the motion of single particles and then incorporating collective effects. Most of the contributions in this book do concern various aspects of fusion plasma physics, which is the field in which most of Marshall Rosenbluth's scientific contributions have been and are being made. In this field his eminence and authority are indicated by the sobriquet pope of plasma physics that is often applied to him.

  3. Understanding helicon plasmas

    SciTech Connect

    Tarey, R. D.; Sahu, B. B.; Ganguli, A.

    2012-07-15

    This paper presents a comprehensive overview of work on the helicon plasmas and also discusses various aspects of RF power deposition in such plasmas. Some of the work presented here is a review of earlier work on theoretical [A. Ganguli et al., Phys. Plasmas 14, 113503 (2007)] and experimental [A. Ganguli et al., Plasma Sources Sci. Technol. 20(1), 015021 (2011)] investigations on helicon plasmas in a conducting cylindrical waveguide for m = -1 mode. This work also presents an approach to investigate the mechanisms by which the helicon and associated Trivelpiece-Gould (TG) waves are responsible for RF power deposition in Helicon discharges. Experiment design adopts the recent theory of damping and absorption of Helicon modes in conducting waveguides [A. Ganguli et al., Phys. Plasmas 14, 113503 (2007)]. The effort has also been made to detect the warm electrons, which are necessary for ionization, because Helicon discharges are of high density, low T{sub e} discharges and the tail of the bulk electron population may not have sufficient high-energy electrons. Experimental set up also comprises of the mirror magnetic field. Measurements using RF compensated Langmuir probes [A. Ganguli et al., Plasma Sources Sci. Technol. 17, 015003 (2008)], B-dot probe and computations based on the theory shows that the warm electrons at low pressure (0.2-0.3 mTorr) Helicon discharges, are because of the Landau damping of TG waves. In collisional environment, at a pressure Almost-Equal-To 10 mTorr, these high-energy electrons are due to the acceleration of bulk electrons from the neighboring regions across steep potential gradients possibly by the formation of double layers.

  4. Understanding helicon plasmas

    NASA Astrophysics Data System (ADS)

    Tarey, R. D.; Sahu, B. B.; Ganguli, A.

    2012-07-01

    This paper presents a comprehensive overview of work on the helicon plasmas and also discusses various aspects of RF power deposition in such plasmas. Some of the work presented here is a review of earlier work on theoretical [A. Ganguli et al., Phys. Plasmas 14, 113503 (2007)] and experimental [A. Ganguli et al., Plasma Sources Sci. Technol. 20(1), 015021 (2011)] investigations on helicon plasmas in a conducting cylindrical waveguide for m = -1 mode. This work also presents an approach to investigate the mechanisms by which the helicon and associated Trivelpiece-Gould (TG) waves are responsible for RF power deposition in Helicon discharges. Experiment design adopts the recent theory of damping and absorption of Helicon modes in conducting waveguides [A. Ganguli et al., Phys. Plasmas 14, 113503 (2007)]. The effort has also been made to detect the warm electrons, which are necessary for ionization, because Helicon discharges are of high density, low Te discharges and the tail of the bulk electron population may not have sufficient high-energy electrons. Experimental set up also comprises of the mirror magnetic field. Measurements using RF compensated Langmuir probes [A. Ganguli et al., Plasma Sources Sci. Technol. 17, 015003 (2008)], B-dot probe and computations based on the theory shows that the warm electrons at low pressure (0.2-0.3 mTorr) Helicon discharges, are because of the Landau damping of TG waves. In collisional environment, at a pressure ?10 mTorr, these high-energy electrons are due to the acceleration of bulk electrons from the neighboring regions across steep potential gradients possibly by the formation of double layers.

  5. Plasma plume propagation characteristics of pulsed radio frequency plasma jet

    SciTech Connect

    Liu, J. H.; Liu, X. Y.; Hu, K.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2011-04-11

    A 4 cm long helium cold atmospheric pressure plasma jet with pulsed radio frequency (rf) excitation was obtained by a copper electrode inside a quartz tube. The plasma bullet propagation characteristics common to the microseconds direct current pulse and kilohertz plasma jet is not observed in this case. The space-, time-, and wavelength-resolved optical emission profiles suggest the pulsed rf plasma channel out of the tube was strengthened by ions and metastables with longer life time than the rf period, and the plasma propagation was actually an illumination of the plasma channel caused by energetic electrons accelerated along the channel.

  6. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  7. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; ">the JET Contributors, plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10‑5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is underway and JET has successfully achieved H 98(y,2)  =  1 for plasma currents up to 2.5 MA at moderate β N.

  8. Modeling Plasma Afterburners

    NASA Astrophysics Data System (ADS)

    Huang, C.; Lu, W.; Zhou, M.; Clayton, C. E.; Johnson, D. K.; Joshi, C.; Marsh, K.; Mori, W. B.; Barnes, C. E.; O'Connell, C.; Decker, F. J.; Emma, P.; Walz, D.; Iverson, R.; Krejcik, P.; Hogan, M. J.; Deng, S.; Oz, E.; Muggli, P.; Katsouleas, T.

    2004-11-01

    Plasma wakefield acceleration can provide large acceleration gradients compared with conventional RF accelerator. In the recent E164X experiment, substantial energy gain of about 3Gev has been observed. Thus, a plasma afterburner, which has been proposed to double the incoming beam energy for a future linear collider, is now of great interest. In an afterburner, a particle beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the beam. This wakefield can then be used to accelerate part of the drive beam or a trailing beam. Several issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are critical to the afterburner concept. We investigate the nonlinear beam-plasma interaction in such scenario using 3D computer modeling code QuickPIC. Simulation results and some analytical analysis for electron acceleration, beam-loading and hosing instability will be presented. Work supported by DOE and NSF.

  9. Plasma jet ignition device

    DOEpatents

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  10. The Wonders of Plasma

    NASA Astrophysics Data System (ADS)

    Reardon, Jim; Sprott, Clint

    2004-11-01

    The ongoing Wonders of Physics outreach program at the University of Wisconsin has teamed up with the new Center for Magnetic Self-Organization of Laboratory and Astrophysical Plasmas (CMSO), an NSF Physics Frontier Center, in a variety of outreach efforts intended to attract students to plasma physics. Chief among these efforts are a live-action calculus competition--the ``Integration Bee''--in which students compete for prizes by doing integrals at the blackboard, and a video, tentatively entitled the ``Wonders of Plasma,'' which introduces CMSO-related plasma physics to a high-school level audience. Meanwhile, the Wonders of Physics continues to ``win fans for physics'' by putting on entertaining and informative shows before live audiences at the University of Wisconsin and elsewhere. Approximately 10,000 people have seen a Wonders of Physics show since the last APS DPP conference. Several new fusion-related demonstrations have been added to the Wonders of Physics Traveling Show in the past year. Some of them can be seen at the conference at the Plasma Expo on Thursday and Friday. This work supported by US DOE and NSF.

  11. Plasma coal reprocessing

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  12. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  13. Instabilities in counterstreaming plasmas

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook

    2013-10-01

    We are performing high power laser experiments showing large, stable, reproducible electromagnetic field structures that arise in counter-streaming interpenetrating supersonic plasma flows in the laboratory. Self organization, whereby energy progressively transfers from smaller to larger scales in an inverse cascade, is widely observed in fluid flows, such as in the nonlinear evolution of multimode Rayleigh-Taylor and Kelvin-Helmholtz instabilities. There are many scenarios in astrophysics where self organization involving magnetic or electric fields in collisionless settings is observed. These surprising structures, predominantly oriented transverse to the primary flow direction, extend for much larger distances than the intrinsic plasma spatial scales, and persist for much longer than the plasma kinetic timescales. Their origin may be magnetic field advection from the recompression of the Biermann battery fields in the midplane. Understanding interactions of high velocity plasma flows is interests to the ICF and astrophysics. This paper will present experimental results and interpretation of these counterstreaming plasma experiments. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  14. Plasma Colloquium Travel Grant Program

    SciTech Connect

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  15. Plasma cleaning for waste minimization

    SciTech Connect

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  16. Large area plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  17. Deflagration plasma thruster

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Chang, C. N.

    1984-01-01

    This paper introduces the application of the magnetized plasma deflagration process to space propulsion. The deflagration process has the unique capability of efficiently converting input energy into kinetic energy in the accelerating direction. To illustrate the totally divergent characters of 'snowplow' detonation and deflagration discharges, examples of the differences between deflagration and detonation 'snowplow' discharges are expressed in terms of current densities, temperature, and particle velocities. Magnetic field profiles of the deflagration mode of discharges are measured. Typical attainable plasma characteristics are described in terms of velocity, electron temperature, and density, as well as measurement techniques. Specific impulses measured by piezo-electric probe and pendulum methods are presented. The influence of the transmission line in the discharge circuits on plasma velocity is measured by means of a microwave time-of-flight method. The results for the deflagration thruster are compared with other space thrusters. Further research areas are identified.

  18. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  19. Partial pressure analysis of plasmas

    SciTech Connect

    Dylla, H.F.

    1984-11-01

    The application of partial pressure analysis for plasma diagnostic measurements is reviewed. A comparison is made between the techniques of plasma flux analysis and partial pressure analysis for mass spectrometry of plasmas. Emphasis is given to the application of quadrupole mass spectrometers (QMS). The interface problems associated with the coupling of a QMS to a plasma device are discussed including: differential-pumping requirements, electromagnetic interferences from the plasma environment, the detection of surface-active species, ion source interactions, and calibration procedures. Example measurements are presented from process monitoring of glow discharge plasmas which are useful for cleaning and conditioning vacuum vessels.

  20. The 2012 Plasma Roadmap

    NASA Astrophysics Data System (ADS)

    Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel

    2012-06-01

    Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.

  1. Plasma contactor research, 1990

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1991-01-01

    Emissive and Langmuir probes were used to measure plasma potential profiles, plasma densities, electron energy distributions, and plasma noise levels near a hollow cathode-based plasma contactor emitting electrons. The effects of electron emission current (100 to 1500 mA) and contactor flowrate (2 to 10 sccm (Xenon)) on these data are examined. Retarding potential analyzer (RPA) measurements showing that high energy ions generally stream from a contactor along with the electrons being emitted are also presented, and a mechanism by which this occurs is postulated. This mechanism, which involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice, results in a region of high positive space charge and high positive potential. Langmuir and RPA probe data suggests that both electrons and ions expand spherically from this potential hill region. In addition to experimental observations, a simple one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and is shown to agree qualitatively with these observations. Experimental results of the first stage of bilateral cooperation with the Italian Institute of Interplanetary Space Physics (IFSI CNR) are presented. Sharp, well-defined double layers were observed downstream of a contactor collecting electrons from an ambient plasma created in the IFSI Facility. The voltage drop across these double layers was observed to increase with the current drawn from the ambient plasma. This observation, which was not as clear in previous IFSI tests conducted at higher neutral pressures, is in agreement with previous experimental observations made at both Colorado State University and NASA Lewis Research Center. Greater double layer voltage drops, multiple double layers, and higher noise levels in the region near the double layers were also observed when a magnetic field was imposed and oriented perpendicular to the line joining the contactor and simulator.

  2. Plasma Simulation Program

    SciTech Connect

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

  3. Solar flares. [plasma physics

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  4. Plasma diagnostic reflectometry

    SciTech Connect

    Cohen, B.I.; Afeyan, B.B.; Garrison, J.C.; Kaiser, T.B.; Luhmann, N.C. Jr.; Domier, C.W.; Chou, A.E.; Baang, S.

    1996-02-26

    Theoretical and experimental studies of plasma diagnostic reflectometry have been undertaken as a collaborative research project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Plasma Diagnostics Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. Theoretical analyses have explored the basic principles of reflectometry to understand its limitations, to address specific gaps in the understanding of reflectometry measurements in laboratory experiments, and to explore extensions of reflectometry such as ultra-short-pulse reflectometry. The theory has supported basic laboratory reflectometry experiments where reflectometry measurements can be corroborated by independent diagnostic measurements.

  5. Why plasma harmonics?

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2015-09-01

    We discuss the emergence of interest in the high-order harmonic generation (HHG) of ultrashort pulses propagated through laser-produced plasmas. It is shown that, during the last few years, substantial amendments of plasma HHG allowed in some cases the characteristics of gas HHG to be surpassed. The attractiveness of a new approach in coherent extreme ultraviolet radiation generation is demonstrated, which can also be used as a tool for laser-ablation-induced HHG spectroscopy of a giant class of solids. We present general ideas and prospects for this relatively new field of nonlinear optics.

  6. Plasma Spray System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Computer aided, fully-automatic TRW system sprays very hot plasma onto a turbine blade. Composed of gas into which metallic and ceramic powders have been injected, the plasma forms a two-layer coating which insulates the blade. Critical part of operation is controlling the thickness of the deposit which is measured in thousandths of an inch. This is accomplished by an optical detector which illuminates spots at various locations on the blade and determines thickness by measuring the light reflections. Optical sensor monitors spraying process until precise thickness is attained, then computer halts the spraying.

  7. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  8. Fission induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The possibility of creating a plasma from fission fragments was investigated, as well as the probability of utilizing the energy of these particles to create population inversion leading to laser action. Eventually, it is hoped that the same medium could be used for both fissioning and lasing, thus avoiding inefficiences in converting one form of energy to the other. A central problem in understanding a fission induced plasma is to obtain an accurate model of the electron behavior; some calculations are presented to this end. The calculations are simple, providing a compendium of processes for reference.

  9. DUST-PLASMA INTERACTIONS

    SciTech Connect

    Dr. M. Rosenberg

    2010-01-05

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  10. Compression of spinning plasma

    NASA Astrophysics Data System (ADS)

    Geyko, Vasily; Fisch, Nathaniel

    2014-10-01

    Adiabatic compression of a spinning plasma in cylindrical geometry is studied in thermodynamical limit. Compared to spinning neutral gas, additional electrostatic energy of charge separation yields to increased heat capacity for both axial and longitudinal compressions. Radial compression of plasma with external axial magnetic field is also considered. The obtained results can be used as thermodynamical estimations for z-pinch compression. This work was supported by DOE Contract No. DE-AC02-09CH11466, and by NNSA SSAA Grant No. DE-FG52-08NA28553.

  11. Plasma diagnostics for complex plasmas under microgravity and on ground

    NASA Astrophysics Data System (ADS)

    Pustylnik, Mikhail Y.; Thoma, Markus H.; Morfi?l, Gregor E.; Grimm, Rainer; Hock, Christian

    2012-06-01

    Complex plasmas are low-temperature plasmas containing micron-sized particles (microparticles) such as dust grains. These are present in astrophysical systems (comets, molecular clouds, et al.) and in technological applications (microchip production by plasma etching, deposition of solar cells, et al.). Complex plasmas are also of interest in basic science because these are often used as models for many other strongly coupled many-body systems in solid state, fluid, or plasma physics. Since gravity has a strong influence on the microparticle component, experiments under microgravity (parabolic flights, sounding rockets, International Space Station (ISS)) are performed. Interaction between microparticles depends on plasma parameters such as ion density or ion temperature. Also, the presence of microparticles may change the properties of background plasma. Therefore, the background plasma needs to be characterized to provide adequate interpretation of the microgravity experiments. For this purpose a dedicated high-speed diagnostic system has been set up.

  12. Plasma heating power dissipation in low temperature hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Komppula, J.; Tarvainen, O.

    2015-10-01

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  13. Thermal plasma processing of materials

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1992-02-01

    Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

  14. A plasma receiving dipole antenna

    SciTech Connect

    Minaev, I. M.; Gusein-zade, N. G.; Rukhadze, K. Z.

    2010-10-15

    Results from experimental studies of a short-wave plasma dipole transceiver antenna are presented. The efficiency of the plasma receiving antenna is estimated, and the optimal frequency range for excitation and reception under the given experimental conditions is determined.

  15. A microwave plasma cleaning apparatus

    NASA Technical Reports Server (NTRS)

    Tsai, C. C.; Nelson, W. D.; Schechter, D. E.; Thompson, L. M.; Glover, A. L.

    1995-01-01

    In a microwave electron cyclotron resonance plasma source, reactive plasmas of oxygen and its mixtures of argon have been used for evaluating plasma cleaning technologies. Small aluminum samples (0.95 x 1.9 cm) were coated with thin films (less than or equal to 20 micrometers in thickness) of Shell Vitrea oil and cleaned with reactive plasmas. The discharge parameters, such as gas pressure, magnetic field, substrate biasing, and microwave power, were varied to change cleaning conditions. A mass spectroscopy (or residual gas analyzer) was used to monitor the status of plasma cleaning. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured cleaning rates of low-pressure (0.5-m torr) argon/oxygen plasmas were as high as 2.7 micrometers/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces. In this paper, significant results of the plasma cleaning are reported and discussed.

  16. Recent results for plasma antennas

    SciTech Connect

    Alexeff, Igor; Anderson, Ted; Farshi, Esmaeil; Karnam, Naresh; Pulasani, Nanditha Reddy

    2008-05-15

    Plasma antennas are just as effective as metal antennas. They can transmit, receive, and reflect radio waves just as well as metal antennas. In addition, plasma generated noise does not appear to be a problem.

  17. Theory of the unmagnetized plasma.

    NASA Technical Reports Server (NTRS)

    Montgomery, D. C.

    1971-01-01

    The Vlasov mathematical model of a plasma, which has come to be thought more useful than any other in describing the dynamical behavior of the majority of plasmas of interest, is first examined. Macroscopic variables and moment equations; linear electrostatics solutions; plasma oscillations, ion acoustic waves, and linear instabilities are treated, as well as external fields, 'test' charges, and nonlinear Vlasov phenomena. Plasmas are statistically described, and attention is given to the kinetic theory of the stable, uniform plasma and the Balescu-Lenard equation; two-time ensemble averages and fluctuation spectra in stable plasmas; the kinetic theory of the unstable plasma; and ensembles of Vlasov plasmas. Some illustrative experiments are described. Four appendixes deal with the electrostatic approximation and transverse waves; solution of the linearized Vlasov equation in a magnetic field; estimates of correlation functions from thermal equilibrium; and equivalence of spatially uniform BBGKY and Klimontovich correlations.

  18. Plasma contactors for electrodynamic tether

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Wilbur, Paul J.

    1986-01-01

    The role plasma contactors play in effective electrodynamic tether operation is discussed. Hollow cathodes and hollow cathode-based plasma sources have been identified as leading candidates for the electrodynamic tether plasma contactor. Present experimental efforts to evaluate the suitability of these devices as plasma contactors, conducted concurrently at NASA Lewis Research Center and Colorado State University, are reviewed. These research programs include the definition of preliminary plasma contactor designs, and the characterization of their operation both as electron emitters and electron collectors to and from a simulated space plasma. Results indicate that ampere-level electron currents, sufficient for electrodynamic tether operation, can be exchanged between hollow cathode-based plasma contactors and a dilute plasma.

  19. Computations in Plasma Physics.

    ERIC Educational Resources Information Center

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they

  20. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information

  1. Plasma cell gingivitis

    PubMed Central

    Joshi, Chandershekhar; Shukla, Pradeep

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, often flavouring agents or spices found in chewing gums, toothpastes and lorenzes. A 27-yr old male with a chief complaint of painful, bleeding swollen mass in his lower front teeth region with prolong use of herbal toothpowder. The gingiva bled readily on probing. Patient was advised to refrain from the use of herbal toothpowder and along with periodontal treatment, no further reoccurrence was found. as more and more herbal products are gaining popularity, clinicians should be aware of effects of these products. Early diagnosis is essential as plasma cell gingivitis has similar pathologic changes seen clinically as in leukemia, HIV infection, discoid lupus erythematosis, atrophic lichen planus, desquamative gingivitis, or cicatrical pemphigoid which must be differentiated through hematologic and serologic testing. PMID:26015677

  2. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  3. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  4. Filamentary magnetohydrodynamic plasmas

    NASA Astrophysics Data System (ADS)

    Kinney, R.; Tajima, T.; McWilliams, J. C.; Petviashvili, N.

    1994-02-01

    A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elssser variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested.

  5. Implicit plasma simulation

    SciTech Connect

    Langdon, A.B.

    1985-03-03

    Implicit time integration methods have been used extensively in numerical modelling of slowly varying phenomena in systems that also support rapid variation. Examples include diffusion, hydrodynamics and reaction kinetics. This article discussed implementation of implicit time integration in plasma codes of the ''particle-in-cell'' family, and the benefits to be gained.

  6. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  7. Microscopic plasma Hamiltonian

    NASA Technical Reports Server (NTRS)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  8. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  9. Filamentary magnetohydrodynamic plasmas

    SciTech Connect

    Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.

    1993-05-01

    A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.

  10. Magnetoacoustic solitons in quantum plasma

    SciTech Connect

    Hussain, S.; Mahmood, S.

    2011-08-15

    Nonlinear magnetoacoustic waves in collisionless homogenous, magnetized quantum plasma is studied. Two fluid quantum magneto-hydrodynamic model (QMHD) is employed and reductive perturbation method is used to derive Korteweg de Vries (KdV) equation for magnetoacoustic waves. The effects of plasma density and magnetic field intensity are investigated on magnetoacoustic solitary structures in quantum plasma. The numerical results are also presented, which are applicable to explain some aspects of the propagation of nonlinear magnetoacosutic wave in dense astrophysical plasma situations.

  11. Millimeter Wave Communication through Plasma

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2008-01-01

    Millimeter wave communication through plasma at frequencies of 35 GHz or higher shows promise in maintaining communications connectivity during rocket launch and re-entry, critical events which are typically plagued with communication dropouts. Extensive prior research into plasmas has characterized the plasma frequency at these events, and research at the Kennedy Space Center is investigating the feasibility of millimeter communication through these plasma frequencies.

  12. Experiments on Cryogenic Complex Plasma

    SciTech Connect

    Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M.

    2009-11-10

    Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

  13. Information Theory and Plasma Turbulence

    SciTech Connect

    Dendy, R. O.

    2009-11-10

    Information theory, applied directly to measured signals, yields new perspectives on, and quantitative knowledge of, the physics of strongly nonlinear and turbulent phenomena in plasmas. It represents a new and productive element of the topical research programmes that use modern techniques to characterise strongly nonlinear signals from plasmas, and that address global plasma behaviour from a complex systems perspective. We here review some pioneering studies of mutual information in solar wind and magnetospheric plasmas, using techniques tested on standard complex systems.

  14. Plasma sources for spacecraft neutralization

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.

    1990-01-01

    The principles of the operation of plasma sources for the neutralization of the surface of a spacecraft traveling in the presence of hot plasma are discussed with special attention given to the hollow-cathode-based plasma contactors. Techiques are developed that allow the calculation of the potentials and particle densities in the near environment of a hollow cathode plasma contactor in both the test tank and the LEO environment. The techniques and codes were validated by comparison of calculated and measured results.

  15. Controlled zone microwave plasma system

    DOEpatents

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-10-20

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  16. Tomographic diagnostics of nonthermal plasmas

    NASA Astrophysics Data System (ADS)

    Denisova, Natalia

    2009-10-01

    In the previous work [1], we discussed a ``technology'' of tomographic method and relations between the tomographic diagnostics in thermal (equilibrium) and nonthermal (nonequilibrium) plasma sources. The conclusion has been made that tomographic reconstruction in thermal plasma sources is the standard procedure at present, which can provide much useful information on the plasma structure and its evolution in time, while the tomographic reconstruction of nonthermal plasma has a great potential at making a contribution to understanding the fundamental problem of substance behavior in strongly nonequilibrium conditions. Using medical terminology, one could say, that tomographic diagnostics of the equilibrium plasma sources studies their ``anatomic'' structure, while reconstruction of the nonequilibrium plasma is similar to the ``physiological'' examination: it is directed to study the physical mechanisms and processes. The present work is focused on nonthermal plasma research. The tomographic diagnostics is directed to study spatial structures formed in the gas discharge plasmas under the influence of electrical and gravitational fields. The ways of plasma ``self-organization'' in changing and extreme conditions are analyzed. The analysis has been made using some examples from our practical tomographic diagnostics of nonthermal plasma sources, such as low-pressure capacitive and inductive discharges. [0pt] [1] Denisova N. Plasma diagnostics using computed tomography method // IEEE Trans. Plasma Sci. 2009 37 4 502.

  17. High-power radiating plasma

    NASA Technical Reports Server (NTRS)

    Rozanov, V. B.; Rukhadze, A. A.

    1984-01-01

    The physical principles underlying the use of radiating plasmas for the optical pumping of lasers are described. Particular consideration is given to the properties of radiating plasmas; radiation selectivity; the dynamics, equilibrium, and stability of radiating plasmas; the radiative Reynolds number; and experimental results on radiating discharges.

  18. Magnetic Lens For Plasma Engine

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1992-01-01

    Low-field electromagnet coils placed downstream of plasma engine, polarized oppositely to higher-field but smaller radius coil in nozzle of engine, reduces divergence of plasma jet, thereby increasing efficiency of engine. Concept tested by computer simulation based on simplified mathematical model of plasma, engine, and coils.

  19. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  20. Plasma Physics Applied (New Book)

    NASA Astrophysics Data System (ADS)

    Grabbe, Crockett

    2007-03-01

    0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.

  1. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  2. Plasma pyrolysis of toxic waste

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.

    2003-06-01

    The comparison of technical economic indexes of different waste treatment methods and plasma pyrolysis is presented in the paper. It testifies that plasma technologies are economically expedient for these purposes. Physical prerequisites allowing realizing plasma technologies are presented. Reliable and economical (70-120 Euro per ton of treated product) plasma generation is the basic condition of the technology realization. In this connection, various types of powerful generators of dense plasma (plasmatrons) in the range from 100 kW to 3 MW and temperature of plasma jets from 2000 to 10 000 K, and also physical processes taking place in electric-discharge chambers are examined. Differences between AC and DC electric arc plasma generators are analysed. Temperature in arcs of plasma generators varies from 6000 to 20 000 K, electron concentration is ne~(1014-1019 cm-3). Specific ware of electrodes in various types of plasma generators intended for long-time operation modes is (10-7-10-4) g C-1. Physicochemical processes in plasma reactors intended for waste treatment and pyrolysis are described. Different types of technological processes on plasma treatment and pyrolysis of waste are analysed. Estimation of present situation of physical investigations and technological developments in this area and predictions for nearest future are included. This article was scheduled to appear in issue 5 of Plasma Phys. Control. Fusion. To access this Special issue please follow this link: http://www.iop.org/EJ/toc/0741-3335/45/5

  3. Plasma Source for Charge Control

    NASA Technical Reports Server (NTRS)

    Aston, G.; Pless, L. C.; Deininger, W. D.

    1986-01-01

    Plasma source neutralizes electrical charge on spacecraft. When triggered by command from spacecraft potential monitor or from control system, plasma apparatus responds within about 1 s, generating charged plasma of required polarity. Discharging system to be tested on Air Force Geophysics Laboratory BERT-1 (Beam Emission Rocket Test) sounding rocket.

  4. Numerical simulation of dusty plasmas

    SciTech Connect

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  5. Modelling of Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is not included. Results are presented for situations in which the dust signi_cantly changes the discharge characteristics, both by a strong reduction of the electron density and by altering the electric field by its charge. Simulations for dust with a radius of 2 mu-m show that the stationary solution of the dust density and the average electric field depend on the total amount of the dust. The presence of dust enhances the deposition rate of amorphous silicon 2 at the electrodes because of the rise in the average electron energy associated with the decrease of the electron density and the constraint of a constant power input. This increase of deposition rate has also been observed in experiments by others. To study the behavior of dust in a less complicated environment, experiments in non-reactive plasmas have been carried out by a number of research groups. In these experiments the dust particles are injected through the electrodes in an argon discharge. These experiments have shown very interesting phenomena. Dust particles start to interact with each other in the discharge and form two-dimensional Coulomb clusters. These experiments often show an appearance of a void, a dustfree region in the discharge. Similar experiments have also been carried out under microgravity. These experiments have shown three-dimensional Coulomb clusters of dust particles also with the appearance of a void. Also rotating dust clouds (vortices) near the edges of the electrodes have been observed, that tend to rotate as long as the plasmas is on. To understand the behavior of the particles, we have developed a two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently to study the behavior of dust particles. Simulations for dust with a radius of 7.5 mu-m show that a double space charge layer is created around the sharp boundary of the dust crystal. The inter-particle interaction is taken into account by means of an equation of state for the dust. A central dust-free region (void) is created by the ion drag force. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions and heating of the dust particle material by the recombining ions and electrons, can be neglected in the quasi-neutral center of the plasma. Inside this void a strong increase of the production of argon meta-stables is found. This phenomenon is in agreement with experimental observations, where an enhanced light emission is seen inside the void.

  6. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  7. Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics

    PubMed Central

    Tu, Chengjian; Rudnick, Paul A.; Martinez, Misti Y.; Cheek, Kristin L.; Stein, Stephen E.; Slebos, Robbert J. C.; Liebler, Daniel C.

    2010-01-01

    Immunoaffinity depletion with antibodies to the top 7 or top 14 high abundance plasma proteins is used to enhance detection of lower abundance proteins in both shotgun and targeted proteomic analyses. We evaluated the effects of top 7/top 14 immunodepletion on the shotgun proteomic analysis of human plasma. Our goal was to evaluate the impact of immunodepletion on detection of proteins across detectable ranges of abundance. The depletion columns afforded highly repeatable and efficient plasma protein fractionation. Relatively few nontargeted proteins were captured by the depletion columns. Analyses of unfractionated and immunodepleted plasma by peptide isoelectric focusing (IEF), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) demonstrated enrichment of nontargeted plasma proteins by an average of 4-fold, as assessed by MS/MS spectral counting. Either top 7 or top 14 immunodepletion resulted in a 25% increase in identified proteins compared to unfractionated plasma. Although 23 low abundance (<10 ng mL−1) plasma proteins were detected, they accounted for only 5–6% of total protein identifications in immunodepleted plasma. In both unfractionated and immunodepleted plasma, the 50 most abundant plasma proteins accounted for 90% of cumulative spectral counts and precursor ion intensities, leaving little capacity to sample lower abundance proteins. Untargeted proteomic analyses using current LC-MS/MS platforms—even with immunodepletion—cannot be expected to efficiently discover low abundance, disease-specific biomarkers in plasma. PMID:20677825

  8. High beta plasma operation in a toroidal plasma producing device

    DOEpatents

    Clarke, John F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

  9. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  10. Plasmas in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.

    1985-01-01

    An overview of the general charcteristics of plasmas within the earth's magnetotail and its environs is presented. Present knowledge of the plasma within these regions as gained via in situ measurements provides the general theme, although observations of magnetic fields, energetic particles and plasma waves are included in the discussion. Primary plasma regimes in the magnetotail are the plasma sheet, its boundary layer, the magnetotail lobes, the boundary layer at the magnetopause and the distant magnetotail. Although great progress in the understanding of these regions is evident in the literature of the past several years, many of their features remain as exciting enigmas to be resolved by future observational and theoretical investigation.

  11. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  12. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  13. Plasma chemistry for inorganic materials

    NASA Technical Reports Server (NTRS)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  14. Modulational interactions in quantum plasmas

    SciTech Connect

    Sayed, F.; Tyshetskiy, Yu.; Vladimirov, S. V.; Faculty of Engineering, Yokohama National University, Yokohama 240-8501; Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 ; Ishihara, O.

    2013-07-15

    A formalism for treating modulational interactions of electrostatic fields in collisionless quantum plasmas is developed, based on the kinetic Wigner-Poisson model of quantum plasma. This formalism can be used in a range of problems of nonlinear interaction between electrostatic fields in a quantum plasma, such as development of turbulence, self-organization, as well as transition from the weak turbulent state to strong turbulence. In particular, using this formalism, we obtain the kinetic quantum Zakharov equations that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.

  15. Experimental Plasma Research project summaries

    SciTech Connect

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  16. Plasma afterburners and related issues

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun

    2006-10-01

    In plasma wakefield acceleration experiments, the drive beam moves at the speed of light in the plasma and excites an accelerating plasma wakefield behind the driver. Therefore it is possible to use a trailing electron beam to extract energy from the plasma wave wake. Such a design, called the plasma afterburner, has been proposed to double the energy of the incoming beam train for a future linear collider. We investigate the nonlinear beam-plasma interaction in such scenario using a 3D computer modeling code, QuickPIC. We will report on the simulation results of a 1 TeV plasma afterburner design. Several issues such as efficient beam-loading and the stability of the beam in the plasma are also analyzed. The electron hosing instability in the blow-out regime of plasma wakefield acceleration is also investigated using linear perturbation theory upon the electron blow-out trajectory. The growth of the hosing instability is found to be affected by the plasma self-fields, the relativistic mass, the axial motion of plasma electrons and the position-dependent ion channel radius respectively. Therefore the hosing growth has dependence on the beam current, which is not found in the fluid theory. PIC simulations agree very well with this new theory.

  17. Transport processes in space plasmas

    SciTech Connect

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  18. Main Features of Plasma Control

    NASA Astrophysics Data System (ADS)

    Crisanti, F.; Albanese, R.; Ambrosino, G.

    2008-03-01

    In the recent years Plasma Control has always increased his importance in any advanced experiment. It is now clear that ITER will not be able to operate without a quite advanced and sophisticated control apparatus. Necessarily this system will have to integrate several different aspects of the Plasma behavior. One of the most important parts of a closed loop control system is the quality of the measurement of the plasma parameters that should be controlled. Eventually, this aspect involves sophisticated and complex diagnostic apparatus. This paper presents an overview of the present status, and further studies and developments needed, in the next future, for the design and realization of an integrated plasma control system aimed at both stabilizing the plasma non-axisymmetric instabilities and controlling the most important internal plasma parameters. In particular the Edge Localized Modes (ELMs), the Neo-Classical Tearing Modes (NTM), the Resistive Wall Mode (RWM) and the Plasma Profiles control system necessities will be shortly illustrated.

  19. Space plasma contractor research, 1988

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Wilbur, Paul J.

    1989-01-01

    Results of experiments conducted on hollow cathode-based plasma contractors are reported. Specific tests in which attempts were made to vary plasma conditions in the simulated ionospheric plasma are described. Experimental results showing the effects of contractor flowrate and ion collecting surface size on contactor performance and contactor plasma plume geometry are presented. In addition to this work, one-dimensional solutions to spherical and cylindircal space-charge limited double-sheath problems are developed. A technique is proposed that can be used to apply these solutions to the problem of current flow through elongated double-sheaths that separate two cold plasmas. Two conference papers which describe the essential features of the plasma contacting process and present data that should facilitate calibration of comprehensive numerical models of the plasma contacting process are also included.

  20. Main Features of Plasma Control

    SciTech Connect

    Crisanti, F.; Albanese, R.; Ambrosino, G.

    2008-03-12

    In the recent years Plasma Control has always increased his importance in any advanced experiment. It is now clear that ITER will not be able to operate without a quite advanced and sophisticated control apparatus. Necessarily this system will have to integrate several different aspects of the Plasma behavior. One of the most important parts of a closed loop control system is the quality of the measurement of the plasma parameters that should be controlled. Eventually, this aspect involves sophisticated and complex diagnostic apparatus. This paper presents an overview of the present status, and further studies and developments needed, in the next future, for the design and realization of an integrated plasma control system aimed at both stabilizing the plasma non-axisymmetric instabilities and controlling the most important internal plasma parameters. In particular the Edge Localized Modes (ELMs), the Neo-Classical Tearing Modes (NTM), the Resistive Wall Mode (RWM) and the Plasma Profiles control system necessities will be shortly illustrated.

  1. Plasma contactors for electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Patterson, Michael J.; Wilbur, Paul J.

    1987-02-01

    Plasma contactors could be used to ground satellites to space plasma to acquire a flow of electrons to propel or power the satellites. A tether would cut across geomagnetic field lines, producing a potential difference between the ends of the tether. Closing the connection between the ends would form a circuit in which an electrical load could be inserted. Design constraints of the circuit are low impedance and a fully reversible high current. The contactor would generate a neutral plasma to connect to the ionospheric plasma. The surface area of the connection would have to be kept large enough for the current density to be equal to the random electron current density in the unperturbed space plasmas. The other contactor would feed electrons and draw ions from the space plasma. Experimental results from spaceborne and ground-based space plasma simulator tests of hollow cathodes that have shown that multiampere currents can be collected are described.

  2. Plasma and magnetospheric research

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.; Horwitz, J. L.

    1985-01-01

    Several programs and variations have been developed to determine statistical means of different plasma parameters when binned in different variables. These parameters include temperature, densities and spacecraft potentials for any of the ion species, as well as ratios of these variables for any other ion species to the corresponding variable for H(+). The variables for binning include L, radial distance, and geomagnetic latitude; and separate statistics are automatically run for local morning and local evening data. These programs all run from output files from the plasma parameter thin sheath analysis program. A variant program also bins for magnetic activity, using either Kp or Dst, which requires an additional magnetic activity input file. These programs can be run either interactively or in batch mode, using file listings generated by a DIRECTORY command. In addition to printed output, these programs generate output files which can be used to plot the results. Programs to plot these averaged data are under development.

  3. Axially Modulated Plasma Waveguides

    SciTech Connect

    Layer, B. D.; York, A. G.; Varma, S.; Chen, Y.-H.; Milchberg, H. M.

    2009-01-22

    We demonstrate two techniques for making periodically modulated plasma waveguides-one with sharp, stable voids as short as 50 {mu}m with a period as small as 200 {mu}m, and another which modulates the waveguide diameter with a corrugation period as short as 35 {mu}m[1]. These features persist as the plasma expands for the full lifetime of the waveguide (>6 ns). The waveguides were made using the hydrodynamic shock method in a cluster jet using hydrogen, nitrogen, and argon. We demonstrate guided propagation at intensities up to 2x10{sup 17} W/cm{sup 2}, limited by our laser energy currently available. This technique is useful for quasi-phase matching to allow efficient coupling of laser energy to acceleration of relativistic electrons or generation of coherent electromagnetic radiation at selected frequencies.

  4. The cathode plasma simulation

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the interface between the plasma and the cathode regions. This sheath model [3] has been fully combined in the 1D simulation. That is, the sheath model calculates the heat flux and the sheath voltage by giving the temperature and the current density. This sheath model must be included in the simulation, as the sheath region is treated differently from the main plasma region. For our 2D cylindrical symmetry simulation, the dimensions of the cathode, the anode, the total current, the pressure, the type of gases, the work function can be changed in the input process as needed for particular interested. Also, the sheath model is still included and fully integrated in this 2D cylindrical symmetry simulation at the cathode surface grids. In addition, the focus of the 2D cylindrical symmetry simulation is to connect the properties on the plasma and the cathode regions on the cathode surface until the MPD thruster reach steady state and estimate the plasma arc attachement edge, electroarc edge, on the cathode surface. Finally, we can understand more about the behavior of an MPD thruster under many different conditions of 2D cylindrical symmetry MPD thruster simulations.

  5. Plasma jet takes off.

    PubMed

    Frazer, L

    1999-08-01

    Thanks to a series of joint research projects by Los Alamos National Laboratory, Beta Squared of Allen, Texas, and the University of California at Los Angeles, there is now a more environmentally sound method for cleaning semiconductor chips that may also be effective in cleaning up chemical, bacterial, and nuclear contaminants. The Atmospheric Pressure Plasma Jet uses a type of ionized gas called plasma to clean up contaminants by binding to them and lifting them away. In contrast to the corrosive acids and chemical solvents traditionally used to clean semiconductor chips, the jet oxidizes contaminants, producing only benign gaseous by-products such as oxygen and carbon dioxide. The new technology is also easy to transport, cleans thoroughly and quickly, and presents no hazards to its operators. PMID:10417375

  6. Hybrid plasma modeling.

    SciTech Connect

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley; Pointon, Timothy David

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficient resources to complete the project and it was terminated mid-year.

  7. Plasma Generated Spherules

    NASA Astrophysics Data System (ADS)

    Ransom, C. J.

    2005-04-01

    Z-pinch plasma simulations have been performed that indicate the production of spherules under certain experimental parameters. (A. L. Peratt, private communication) While performing experiments dealing with the impact of plasma discharges on various materials, we observed that spherules were created at the surface of some of the materials. For specific materials and conditions, spherules were always produced. Both individual spherules and joined spherules were created. The size and shapes were nearly identical to items found by the Mars rover, Opportunity, and called ``blueberries.'' Sky & Telescope, June 2004, p. 20, among other sources indicated the blueberries were gray spherules composed of hematite. The experiments produced hematite spherules identical in appearance to those found on Mars. These experiments suggest how the newly discovered blueberries were formed on Mars while providing an explanation that does not depend on the presence of water.

  8. Plasma wave accelerator. II

    SciTech Connect

    Mori, W.; Joshi, C.; Dawson, J.M.

    1982-01-01

    It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO/sub 2/ laser, n/sub c//n/sub e/ = (..omega../sub 0//..omega../sub p/)/sup 2/ approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10/sup 5/ plasma over a distance of 100 meters.

  9. Plasma dust crystallization

    NASA Technical Reports Server (NTRS)

    Goree, John; Thomas, H.; Morfill, G.

    1994-01-01

    In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure.

  10. [Plasma cell leukemia].

    PubMed

    Ravinet, Aurlie; Bay, Jacques Olivier; Tournilhac, Olivier

    2014-11-01

    Plasma cell leukemia (PCL) is a rare disorder which develops spontaneously (primary PCL) or evolves in patients with multiple myeloma (secondary PCL). It is defined by the presence of 2 10(9)/L peripheral blood plasma cells or plasmacytosis accounting for more than 20 % of the differential white cell count. PCL presents more often extramedullary involvement, anemia, thrombocytopenia, hypercalcemia, as well as impaired renal function. Cytogenetic abnormalities and mutations observed in PCL lead to escape from immune surveillance and independence from the bone marrow microenvironment with changes in expression of adhesion molecules or chemokines receptors. The outcome of PCL has improved with combination approaches with novel agents (including bortezomib and immunomodulatory drugs, such as lenalidomide) and with autologous stem cell transplantation. Allogeneic hematopoietic stem cell transplantation is currently available for young patients. This article is an overview of this rare and severe disease and the different therapeutics options that are recommended. PMID:25418598

  11. Princeton Plasma Physics Laboratory:

    SciTech Connect

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  12. Future of plasma simulation

    SciTech Connect

    Forslund, D.W.

    1986-01-01

    The author briefly comments on factors essential to improving the capabilities of plasma modeling. These factors include high input/output performance, large solid state disk capacity, symbolic debugging tools, high speed graphics, high speed image generation and workstations for pre- and post-processing. Also important is the development of additional software to provide an enhanced interface between the work-stations and supercomputers. (DWL)

  13. Dusty spin plasmas

    SciTech Connect

    Brodin, G.; Marklund, M.; Zamanian, J.

    2008-09-07

    A fluid model is derived, taking into account the effect of spin magnetization of electrons as well as of magnetized dust grains. The model is analyzed, and it is found that both the acoustic velocity and the Alfven velocity is decreased due to the magnetization effects. Furthermore, for low-temperature high density plasmas, it is found that the linear wave modes can be unstable, due to the magnetic attraction of individual fluid elements. The significance of our results are discussed.

  14. Plasma cell vulvitis

    PubMed Central

    Bharatia, Pravin R.; Pradhan, Avinash M.; Zawar, Vijay P.

    2015-01-01

    Plasma cell vulvitis is a very rare inflammatory disorder of vulva, characterized by a bright-red mucosal lesion of significant chronicity, which may be symptomatic. Very few case studies of this condition are reported in literature. We describe one such classical patient, who presented with slight dyspareunia. The diagnosis was confirmed on histopathological examination. It is important for clinicians to accurately diagnose this alarming condition in time. PMID:26692614

  15. The Coalition for Plasma Science: Bringing Plasmas to the Public

    NASA Astrophysics Data System (ADS)

    Berry, Lee

    2003-10-01

    The Coalition for Plasma Science is a group of institutions, organizations, and companies that have joined forces to increase awareness and understanding of plasma science and its many applications and benefits for society. The CPS undertakes a range of activities to support this goal. Members include national laboratories, universities, industries, and individuals. The CPS maintains a web page (http://www.plasmacoalition.org), and has developed several types of plasma-related publications. The web page includes a compilation of evaluated plasma web sites. The evaluations were conducted by teachers and based on national teaching standards. The web site also contains copies of CPS publications including the brochure ''Plasmas are Everywhere.'' Thousands of these brochures are distributed each year, and a poster version is now available. Another publication is the ''About Plasmas'' series. Each of these two-page papers (which is written for a general audience) is about a specific plasma-related topic, such as lighting, fusion, space plasmas and plasma decontamination of biological hazards. Papers on other topics are under development. The CPS also organizes educational luncheon/seminars for Members of Congress and their staff. The most recent seminar was given by David Newman on January 28th of this year and was his ''state of the universe'' address. A second seminar is planned this year on the topic of semiconductor manufacturing. Activities under discussion include a topical science fair award for a project on plasmas and the development of a broad, history-based educational web site.

  16. Plasma probe characteristics in low density hydrogen pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Zotovich, A. I.; Zyryanov, S. M.; Lopaev, D. V.; Bijkerk, F.

    2015-10-01

    Probe theories are only applicable in the regime where the probes perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates.

  17. Linking plasma kinetics to plasma-bio interactions

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-05-01

    Cold non-equilibrium atmospheric pressure plasmas have received a lot of attention in the last decade due to their huge potential for biomedical applications. In my group, we have characterized an RF driven APPJ in great detail. The characterization includes electrical measurements, imaging, optical emission spectroscopy, (two photon enhanced) laser induced fluorescence, Thomson scattering, Rayleigh scattering, Raman scattering and mass spectrometry. This led to a detailed knowledge of the electron density, electron temperature, gas temperature, NO, O, OH, O3 densities, ionic species and air concentrations in the plasma effluent. Living organisms for in vitro studies are typically kept in complex solutions or culture media. Plasma-bio interactions involves not only the production of reactive species in the plasma gas phase but also transport to the liquid phase and plasma induced liquid phase chemistry and its impact on the living organisms. Reactive nitrogen and oxygen species have been identified as the key reactive species. Recent results of my group show that controlling the gas phase plasma chemistry can lead to significant different biological responses of the living organisms corresponding to different chemical pathways. The effect of plasma jet interaction with liquids containing mammalian cells, bacteria and virus will be discussed. The outcomes of these studies allow unraveling chemical pathways responsible for plasma-bio interactions and linking plasma kinetics to plasma-bio interactions.

  18. Momentum transfer to rotating magnetized plasma from gun plasma injection

    SciTech Connect

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-11-15

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  19. Precise plasma process control based on combinatorial plasma etching

    NASA Astrophysics Data System (ADS)

    Sekine, Makoto; Suzuki, Toshiya; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Setsuhara, Yuichi; Shiratani, Masaharu; Hori, Masaru

    2012-10-01

    For the realization of super-fine plasma etching process, fluctuations of plasma parameters such as densities of radicals, ions and electrons is required to be minimized. In particular, conditions of inner surface of reactor wall can significantly influence on the radical density in subsequent plasma process owing to outgas consisting of deposited reaction products and adsorbed species from the previous process on the wall. To investigate variety of gaseous radical densities for H2/N2 plasma when inner wall condition was changed by the previous process, we analyzed the radical densities using vacuum ultraviolet absorption spectroscopy (VUVAS). It was clearly confirmed that the radical densities in 100-MHz capacitively coupled plasma (CCP) of H2/N2 were temporally changed subsequently after different kind of conditions for H2/N2 plasma, O2 plasma, and air exposure. We clarified how and what kind of etched products or process gases adsorbed on inner wall surface during the previous process and what species desorbed from the wall into bulk plasmas. Then we are trying to establish a precise process control systematically based on the plasma nano-science database that is constructing using the combinatorial plasma etching approach [1]. [4pt] [1] C. Moon, et al., Applied Physics Express 2 (2009) 096001.

  20. PLASMA CELL LEUKEMIA

    PubMed Central

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  1. Auroral Plasma Physics

    NASA Astrophysics Data System (ADS)

    Paschmann, G.; Haaland, S.; Treumann, R.

    2003-03-01

    This volume gives a broad synthesis of the current knowledge and understanding of the plasma physics behind the aurora. The aurora is not only one of the most spectacular natural phenomena on Earth, but the underlying physical processes are expected to be ubiquitous in the plasma universe. Recognizing the enormous progress made over the last decade, through in situ and groundbased measurements as well as theoretical modelling, it seemed timely to write the first comprehensive and integrated book on the subject. Recent advances concern the clarification of the nature of the acceleration process of the electrons that are responsible for the visible aurora, the recognition of the fundamental role of the large-scale current systems in organizing the auroral morphology, and of the interplay between particles and electromagnetic fields. Although written by a team of 32 leading scientists from 9 different countries, the book is characterized by consistency in style, nomenclature, notations and format. Extensive cross-referencing helps to integrate the various chapters. The book is intended to be used both as a learning tool for graduate students, and as a reference for space plasma physicists and auroral researchers. Link: http://www.wkap.nl/prod/b/1-4020-0963-1

  2. Sterilization by oxygen plasma

    NASA Astrophysics Data System (ADS)

    Moreira, Adir Jos; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Zambon, Luis da Silva; da Silva, Mnica Valero; Verdonck, Patrick Bernard

    2004-07-01

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  3. Screening Resonances In Plasmas

    SciTech Connect

    Winkler, P.

    1998-12-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion.

  4. Nanomaterials induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    El Sherbini, A. M.; Abdel Galil, A.; Allam, S. H.; El Sherbini, Th M.

    2014-11-01

    LIBS of nanosecond pulsed Nd: YAG laser (1064 nm) produced plasma from a set of nanomaterial and bulk targets (ZnO, Fe3O4, Ag2O, TiO2, SiO2 and Al2O3) is investigated at laser fluencies in the range 86 J/cm2 to 2.5 J/cm2. The optical emission spectra is recorded at the gate and time delay of 1 ps after the onset of the plasma in air having a constant spot size of 0.9 mm. Nanoparticle targets revealed salient enhanced spectral emission compared to their bulky counterparts. Atomic spectral lines average and integral radiance tend to decrease exponentially with laser fluence. Yet, plasma parameters measurements indicated unnoticeable variation of relative electron density and temperature. Therefore, self-absorption corrected enhanced spectral emission was plausibly attributed solely to variation in the inherent nanoparticle relative concentrations. Viable explanations were elaborated based on changes in the intrinsic physical properties of the nanomaterial under high power laser irradiation.

  5. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.

    1999-01-01

    Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.

  6. Electrosurgical Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  7. Collisionless microinstabilities in stellarators. III. The ion-temperature-gradient mode

    SciTech Connect

    Plunk, G. G. Helander, P.; Xanthopoulos, P.; Max-Planck Connor, J. W.

    2014-03-15

    We investigate the linear theory of the ion-temperature-gradient (ITG) mode, with the goal of developing a general understanding that may be applied to stellarators. We highlight the Wendelstein 7X (W7-X) device. Simple fluid and kinetic models that follow closely from existing literature are reviewed and two new first-principle models are presented and compared with results from direct numerical simulation. One model investigates the effect of regions of strong localized shear, which are generic to stellarator equilibria. These shear spikes are found to have a potentially significant stabilizing affect on the mode; however, the effect is strongest at short wavelengths perpendicular to the magnetic field, and it is found to be significant only for the fastest growing modes in W7-X. A second model investigates the long-wavelength limit for the case of negligible global magnetic shear. The analytic calculation reveals that the effect of the curvature drive enters at second order in the drift frequency, confirming conventional wisdom that the ITG mode is slab-like at long wavelengths. Using flux tube simulations of a zero-shear W7-X configuration, we observe a close relationship to an axisymmetric configuration at a similar parameter point. It is concluded that scale lengths of the equilibrium gradients constitute a good parameter space to characterize the ITG mode. Thus, to optimize the magnetic geometry for ITG mode stability, it may be fruitful to focus on local parameters, such as the magnitude of bad curvature, connection length, and local shear at locations of bad curvature (where the ITG mode amplitude peaks)

  8. How non-adiabatic passing electron layers of linear microinstabilities affect turbulent transport

    NASA Astrophysics Data System (ADS)

    Dominski, J.; Brunner, S.; Grler, T.; Jenko, F.; Told, D.; Villard, L.

    2015-06-01

    The response of passing electrons in ion temperature gradient and trapped electron mode microturbulence regimes is investigated in tokamak geometry making use of the flux-tube version of the gyrokinetic code GENE. Results are obtained using two different electron models, fully kinetic and hybrid in which passing particles are forced to respond adiabatically, while trapped are handled kinetically. Comparing linear eigenmodes obtained with these two models enables to systematically isolate fine radial structures located at corresponding mode rational surfaces, clearly resulting from the non-adiabatic passing-electron response. Non-linear simulations show that these fine structures on the non-axisymmetric modes survive in the turbulent phase. Furthermore, through non-linear coupling to axisymmetric modes, they induce radial modulations in the effective profiles of density, ion/electron temperature, and E B shearing rate. Finally, the passing-electron channel is shown to significantly contribute to the transport levels, at least in our ion temperature gradient case. Also shown is that the passing electrons significantly influence the E B saturation mechanism of turbulence fluxes.

  9. Lithium plasma emitter for collisionless magnetized plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Huang, Yi-Jue; Song, Sung-Xuang; Hsieh, Tung-Yuan; Lee, Jyun-Yi; Syugu, Wun-Jheng; Cheng, C. Z.

    2011-09-15

    This paper presents a newly developed lithium plasma emitter, which can provide quiescent and low-temperature collisionless conditions for magnetized plasma experiments. This plasma emitter generates thermal emissions of lithium ions and electrons to produce a lithium plasma. Lithium type beta-eucryptite and lanthanum-hexaboride (LaB{sub 6}) powders were mixed and directly heated with a tungsten heater to synthesize ion and electron emissions. As a result, a plasma with a diameter of {approx}15 cm was obtained in a magnetic mirror configuration. The typical range of electron density was 10{sup 12}-10{sup 13} m{sup -3} and that of electron temperature was 0.1-0.8 eV with the emitter operation temperature of about 1500 K. The amplitude fluctuations for the plasma density were lower than 1%.

  10. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  11. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  12. Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Etchart-Salas, R.; Rat, V.; Coudert, J. F.; Fauchais, P.; Caron, N.; Wittman, K.; Alexandre, S.

    2007-12-01

    Direct current Suspension Plasma Spraying (SPS) allows depositing finely structured coatings. This article presents an analysis of the influence of plasma instabilities on the yttria-stabilized suspension drops fragmentation. A particular attention is paid to the treatment of suspension jet or drops according to the importance of voltage fluctuations (linked to those of the arc root) and depending on the different spray parameters such as the plasma forming gas mixture composition and mass flow rate and the suspension momentum. By observing the suspension drops injection with a fast shutter camera and a laser flash sheet triggered by a defined transient voltage level of the plasma torch, the influence of plasma fluctuations on jet or drops fragmentation is studied through the deviation and dispersion trajectories of droplets within the plasma jet.

  13. Complex plasma--the plasma state of soft matter

    SciTech Connect

    Chaudhuri, Manis; Khrapak, Sergei A.; Morfill, Gregor E.

    2010-11-23

    Complex plasma is the plasma state of soft matter which consists of weakly ionized gas (plasma) and highly charged microparticles. The microparticles are large enough to be visualized individually and their dynamics can be observed with great accuracy using simple video microscopic technique. These features allow to perform experiments with high temporal and spatial resolutions (in terms of the appropriate plasma frequency and particle separation). Furthermore, since the background gas is dilute, the particle dynamics in strongly coupled complex plasmas is virtually undamped, which provides a direct analogy to regular liquids and solids in terms of the atomistic dynamics. All these unique features allow complex plasma to be used as an ideal model system (complementary to other model systems in soft matter physics such as colloids, granular medium, etc.) to investigate various phenomena (e.g, phase transitions, phase separation, self-organizations, linear and nonlinear waves, transport, etc.) at the most fundamental kinetic level.

  14. The diverse applications of plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  15. Rydberg atoms in ultracold plasmas

    NASA Astrophysics Data System (ADS)

    Rolston, Steven

    2009-05-01

    Ultracold plasmas are formed through the photoionization of laser-cooled atoms, or spontaneous ionization of a dense cloud of Rydberg atoms or now molecules[1]. Ultracold plasmas are inherently metastable, as the ions and electrons would be in a lower energy state bound together as atoms. The dominant process of atom formation in these plasmas is three-body recombination, a collision between two electrons and an ion that leads to the formation of a Rydberg atom. This collisional process is not only important in determining the lifetime and density of the plasma, but is also critical in determining the time evolution of the temperature. The formation of the Rydberg atoms is accompanied by an increase in electron energy for the extra electron in the collision, and is a source of heating in these plasmas. Classical three-body recombination theory scales as T-9/2, and thus as a plasma cools due to a process such as adiabatic expansion, recombination-induced heating turns on, limiting the temperature [2]. The Rydberg atoms formed live in the plasma and contribute to the temperature dynamics, as collisions with plasma electrons can change the principal quantum number of the Rydberg atom, driving it to more tightly bound states (a source of plasma heating) or to higher states (a source of plasma cooling). If the plasma is cold and dense enough to be strongly coupled, classical three-body recombination theory breaks down. Recent theoretical work [3] suggests that the rate limits as the plasma gets strongly coupled. I will review the role of Rydberg atoms in ultracold plasmas and prospects for probing Rydberg collisions in the strongly coupled environment. [4pt] [1] J. P. Morrison, et al., Phys. Rev. Lett. 101, 205005 (2008 [0pt] [2] R. S. Fletcher, X. Zhang, and S. L. Rolston, Phys. Rev. Lett. 99, 145001 (2007 [0pt] [3] T. Pohl, private communication.

  16. Plasma dragged microparticles as a method to measure plasma flows

    SciTech Connect

    Ticos, Catalin M.; Wang Zhehui; Delzanno, Gian Luca; Lapenta, Giovanni

    2006-10-15

    The physics of microparticle motion in flowing plasmas is studied in detail for plasmas with electron and ion densities n{sub e,i}{approx}10{sup 19} m{sup -3}, electron and ion temperatures of no more than 15 eV, and plasma flows on the order of the ion thermal speed, v{sub f}{approx}v{sub ti}. The equations of motion due to Coulomb interactions and direct impact with ions and electrons, of charge variation, as well as of heat exchange with the plasma, are solved numerically for isolated particles (or dust grains) of micron sizes. It is predicted that microparticles can survive in plasma long enough, and can be dragged in the direction of the local ion flow. Based on the theoretical analysis, we describe a new plasma flow measurement technique called microparticle tracer velocimetry (mPTV), which tracks microparticle motion in a plasma with a high-speed camera. The mPTV can reveal the directions of the plasma flow vectors at multiple locations simultaneously and at submillimeter scales, which is hard to achieve by most other techniques. Thus, mPTV can be used to study plasma flows produced in the laboratory.

  17. A contoured gap coaxial plasma gun with injected plasma armature

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-15

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 {mu}g of plasma with density above 10{sup 17} cm{sup -3} to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 {mu}g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  18. A contoured gap coaxial plasma gun with injected plasma armature.

    PubMed

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments. PMID:19725654

  19. Plasma surface cleaning in a microwave plasma source

    SciTech Connect

    Tsai, C.C.; Nelson, W.D.; Haselton, H.H.; Schechter, D.E.; Thompson, L.M.; Campbell, V.B.; Glover, A.L.; Googin, J.M.

    1994-03-01

    A microwave electron cyclotron resonance (ECR) plasma source has been operated to produce reactive plasmas of oxygen and its mixture with argon. Aluminum samples (0.95 cm by 1.9 cm) were coated with thin films (<20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in discharge conditions of microwave power up to 1300 W, radio frequency power up to 200 W, biased potential up to 400 V, gas pressures up to 5 mtorr, and operating time up to 35 min. The surface texture of the postcleaned samples has been examined visually. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured clean rates of low-pressure (0.5-mtorr) argon/oxygen plasmas were as high as 2.7 {mu}m/min. X-ray photoelectron spectroscopy (XPS) was used to determine cleanliness of the sample surfaces after plasma cleaning. The XPS study on polished samples confirmed the effectiveness of plasma cleaning in achieving atomic level of surface cleanliness. In this technical memorandum plasma properties, cleaning phenomena, and significant results are reported and discussed.

  20. Supplying the Io plasma torus: Local versus extended plasma sources

    NASA Astrophysics Data System (ADS)

    Winglee, R.; Harnett, E. M.; Kidder, A.; Snowden, D. S.

    2009-12-01

    The Io plasma torus is the dominant source of plasma to the Jovian magnetosphere. Sources for this plasma include (1) ionization of plasma within a few Io radii of the satellite driven by the interaction of Io with the Jovian magnetic field and (2) material that is ionized remotely from Io through the interaction of energetic electrons from the plasma torus interacting with an extended neutral cloud. The characteristics of the torus and the mass flow into the Jovian magnetosphere as the torus is supplied by plasma from these two sources are examined using multi-scale/multi-fluid simulations. The multi-fluid aspects enable the dynamics of the difference ions species relevant to Io/torus interaction to be examined, while the multi-scale aspects allows the investigation of small scale processes at Io to be resolved, along with large scale processes involved with the coupling of Ios plasma to the Jovian magnetosphere and ionosphere. The fluid aspect of the code allows the interaction to be studied for tens of hours as opposed a few minutes typical of local simulations. We demonstrate that the injection of plasma at 1000 kg/s from an extended source is able to sustain a plasma torus with overall densities comparable to inferred density profiles out to several Jovian radii. To produce the very high densities observed close to Io, a local source is shown to be an important factor. Efforts continue to increase the length of the simulations much longer time scales.

  1. A contoured gap coaxial plasma gun with injected plasma armature

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 ?g of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 ?g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  2. Plasma Sterilization Technology for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Fraser, S. J.; Olson, R. L.; Leavens, W. M.

    1975-01-01

    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials.

  3. Adverse Effects of Plasma Transfusion

    PubMed Central

    Pandey, Suchitra; Vyas, Girish N.

    2012-01-01

    Plasma utilization has increased over the last two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions following infusion of fresh frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: (1) transfusion related acute lung injury; (2) transfusion associated circulatory overload, and (3) allergic/anaphylactic reactions. Other less common risks include (1) transmission of infections, (2) febrile non-hemolytic transfusion reactions, (3) RBC allo-immunization, and (4) hemolytic transfusion reactions. The affect of pathogen inactivation/reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice. PMID:22578374

  4. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  5. MPD thruster plasma instability studies

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1987-01-01

    Results of an ongoing experimental/theoretical effort to understand the influence of plasma waves and instabilities upon coaxial plasma thruster performance and longevity are discussed. An experiment which permits measurement of the plasma dispersion relation plus a suite of plasma parameters for each one millisecond quasi-steady discharge is described. This investigation is guided by a linearized Boltzmann-Poisson kinetic numerical model which can accommodate the effects of collisions, inhomogeneities and the magnetic field. Preliminary tests reveal the presence of the low-frequency branch of an ion cyclotron wave. Although the stability of these waves still has to be established through spatial growth rate measurements, it is well known that they are prone to 'current-driven' instabilities. 'Current-driven' instabilities in the collisional tensor conducting plasma of the MPD thruster are analytically discussed and their relevance to the MPD plasma is illustrated by estimating a critical total current at which their onset occurs.

  6. MPD thruster plasma instability studies

    SciTech Connect

    Kelly, A.J.; Jahn, R.G.; Choueiri, E.Y.

    1987-05-01

    Results of an ongoing experimental/theoretical effort to understand the influence of plasma waves and instabilities upon coaxial plasma thruster performance and longevity are discussed. An experiment which permits measurement of the plasma dispersion relation plus a suite of plasma parameters for each one millisecond quasi-steady discharge is described. This investigation is guided by a linearized Boltzmann-Poisson kinetic numerical model which can accommodate the effects of collisions, inhomogeneities and the magnetic field. Preliminary tests reveal the presence of the low-frequency branch of an ion cyclotron wave. Although the stability of these waves still has to be established through spatial growth rate measurements, it is well known that they are prone to current-driven instabilities. Current-driven instabilities in the collisional tensor conducting plasma of the MPD thruster are analytically discussed and their relevance to the MPD plasma is illustrated by estimating a critical total current at which their onset occurs. 5 references.

  7. Plasma flows in MPD thrusters

    NASA Astrophysics Data System (ADS)

    Giannelli, Sebastiano; Andreussi, Tommaso; Pegoraro, Francesco; Andrenucci, Mariano

    2011-10-01

    A fundamental description of the plasma acceleration process in magnetoplasmadynamic (MPD) thrusters is presented. The properties of plasma flows in self-field MPD thrusters are investigated by adopting a stationary, axisymmetric, resistive magnetohydrodynamic plasma model. First, the acceleration process in a cylindrical MPD channel is analyzed by neglecting the gasdynamic pressure term. A class of solutions is presented, which allows for a simple analytical treatment of the flow. The physical and mathematical nature of the flow is thus described in terms of two characteristic parameters: a dimensionless channel length, scaled with the plasma resistive length, and a dimensionless parameter which depends on the applied voltage. Then, the effect of gasdynamic pressure is investigated. The presented approach gives an effective description of the plasma acceleration process and defines a framework for the parametric analysis of plasma flows in MPD thrusters. Alta SpA: www.alta-space.com.

  8. SSX MHD plasma wind tunnel

    NASA Astrophysics Data System (ADS)

    Brown, Michael R.; Schaffner, David A.

    2015-06-01

    A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies.

  9. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  10. Plasma Detachment Study in VASIMR

    NASA Astrophysics Data System (ADS)

    Ilin, A. V.; Daz, F. R. Chang; Squire, J. P.; Breizman, B. N.; Novakovski, S. V.; Sagdeev, R. Z.

    2000-10-01

    We present kinetic and MHD simulations of plasma detachment in the exhaust of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR). The detachment is associated with a transition from subalfvenic to superalfvenic plasma flow in the magnetic nozzle. As a result, the kinetic energy of the outgoing plasma flow is greater than the magnetic field energy in the exhaust area, so that the plasma is no longer confined by the magnetic field. We model the outgoing plasma flow under the assumptions that the plasma is collisionless and has a constant electron temperature. Particle simulations show that the ion motion may become nonadiabatic in the exhaust area as the magnetic field decreases downstream. This effect should facilitate the detachment.

  11. Slotted antenna waveguide plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor)

    2007-01-01

    A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.

  12. Plasma Sail Concept Fundamentals

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Delamere, P.; Kabin, K.; Linde, T. J.

    2004-01-01

    The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50 C80 km/s after an acceleration period of 3 mo. Such velocities will enable travel out of the solar system in period of 7 yr almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably ( 10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

  13. Progress on laser plasma accelerators

    SciTech Connect

    Chen, P.

    1986-04-01

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  14. PHOTOIONIZATIONAL PLASMAS. II. COMPUTATIONAL RESULTS

    SciTech Connect

    Wang Feilu; Salzmann, David; Zha, Gang; Takabe, Hideaki

    2011-11-20

    A new computer code, PhiCRE, has been developed to calculate the ionization and population distributions in a photoionizational-collisional-radiative plasma. Comparisons with experiments show that the present code provides rather accurate ionization distributions in photoionized plasmas and show reasonable agreement with other codes. Using this code, we have carried out a systematic study of the behavior of the charge state distributions and the average charge as a function of several parameters of the incident radiation and the plasma parameters.

  15. Strongly magnetized classical plasma models

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Peyraud, J.; Dewitt, C.

    1974-01-01

    Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model).

  16. The plasma environment of comets

    SciTech Connect

    Gombosi, T.I. )

    1991-01-01

    U.S. research activities in the area of cometary plasma physics during 1987-1990 are reviewed. Consideration is given to mass loading and its consequences in the upstream region, the cometary shock, the cometosheath, the diamagnetic cavity boundary and the inner shock, and the plasma tail. Special attention is given to models and observations that have modified the pre-encounter understanding of cometary plasma environments. 211 refs.

  17. Quark Gluon Plasma

    SciTech Connect

    Lincoln, Don

    2015-05-07

    Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.

  18. Modeling of Photoionized Plasmas

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy R.

    2010-01-01

    In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.

  19. Auroral plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1989-01-01

    A review is given of auroral plasma wave phenomena, starting with the earliest ground-based observations and ending with the most recent satellite observations. Two types of waves are considered, electromagnetic and electrostatic. Electromagnetic waves include auroral kilometric radiation, auroral hiss, ELF noise bands, and low-frequency electric and magnetic noise. Electrostatic waves include upper hybrid resonance emissions, electron cyclotron waves, lower hybrid waves, ion cyclotron waves and broadband electrostatic noise. In each case, a brief overview is given describing the observations, the origin of the instability, and the role of the waves in the physics of the auroral acceleration region.

  20. Laser plasma acceleratorsa)

    NASA Astrophysics Data System (ADS)

    Malka, V.

    2012-05-01

    This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

  1. Plasma Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.

    Despite over a century of observations, the physical processes by which prominence plasma forms and evolves remain controversial. In this chapter we review the observational constraints on all mass formation models, review the four leading models—injection, levitation, evaporation-condensation, and magneto-thermal convection, describe the strengths and weaknesses of each model, and point out opportunities for future work. As needed, short tutorials are provided on fundamental physical mechanisms and concepts not covered in other chapters, including magnetic reconnection and energy balance in coronal loops.

  2. Renormalization and plasma physics

    SciTech Connect

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  3. Pulsed Plasma Thruster Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The continuing emphasis on reducing costs and downsizing spacecraft is forcing increased emphasis on reducing the subsystem mass and integration costs. For many commercial, scientific, and Department of Defense space missions, onboard propulsion is either the predominant spacecraft mass or it limits the spacecraft lifetime. Electromagnetic-pulsed-plasma thrusters (PPT's) offer the combined benefits of extremely low average electric power requirements (1 to 150 W), high specific impulse (approx. 1000 sec), and system simplicity derived from the use of an inert solid propellant. Potential applications range from orbit insertion and maintenance of small satellites to attitude control for large geostationary communications satellites.

  4. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  5. Cassini Plasma Spectrometer Investigation

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Berthelier, J. J.; Blanc, M.; Burch, J. L.; Coates, A. J.; Goldstein, R.; Grande, M.; Hill, T. W.; Johnson, R. E.; Kelha, V.; McComas, D. J.; Sittler, E. C.; Svenes, K. R.; Szeg, K.; Tanskanen, P.; Ahola, K.; Anderson, D.; Bakshi, S.; Baragiola, R. A.; Barraclough, B. L.; Black, R. K.; Bolton, S.; Booker, T.; Bowman, R.; Casey, P.; Crary, F. J.; Delapp, D.; Dirks, G.; Eaker, N.; Funsten, H.; Furman, J. D.; Gosling, J. T.; Hannula, H.; Holmlund, C.; Huomo, H.; Illiano, J. M.; Jensen, P.; Johnson, M. A.; Linder, D. R.; Luntama, T.; Maurice, S.; McCabe, K. P.; Mursula, K.; Narheim, B. T.; Nordholt, J. E.; Preece, A.; Rudzki, J.; Ruitberg, A.; Smith, K.; Szalai, S.; Thomsen, M. F.; Viherkanto, K.; Vilppola, J.; Vollmer, T.; Wahl, T. E.; West, M.; Ylikorpi, T.; Zinsmeyer, C.

    2004-09-01

    The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturns magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturns magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturns ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titans ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/?M 70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as 2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

  6. Plasma technology: Preliminary studies 2

    NASA Astrophysics Data System (ADS)

    Bergring, C.; Sivusaari, T.; Jeskanen, R.; Halonen, A.; Saikkonen, J.

    The report includes four preliminary studies based on literature and one preliminary study based on tests: (1) raising and maintaining the temperature of the ladle and the melt using plasma; (2) the use of plasma technology in cupolas; (3) raising the temperature of the blast furnace blast using plasma; (4) the use of plasma technology in drying; and (5) cleaning up hazardous waste using plasma technology. Study 1, deals with the applicability of plasma technology to raising and maintaining the temperature of the ladle. This technique improves the earlier methods but the equipment is still expensive. Study 2, deals with the ways of cutting production costs in cupolas using plasma technology. The process is best suited for the smelting of fine raw material and for increasing the smelting capacity. Study 3, deals with the effects of raising the blast furnace blast temperature on the properties and economy of the process. The use of electricity to only replace energy received from coke is uneconomical but it also has other advantages. Study 4, considers the applicability of air and steam plasma to the drying of pulp, and its economy. At the present price of electricity the process is uneconomical. Study 5, describes tests on decomposing liquid organic substances using plasma. The process is still being developed, and seems promising.

  7. First Observation of Electrorheological Plasmas

    SciTech Connect

    Ivlev, A. V.; Morfill, G. E.; Thomas, H. M.; Raeth, C.; Huber, P.; Kompaneets, R.; Joyce, G.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Reiter, T.; Turin, M.; Vinogradov, P.

    2008-03-07

    We report the experimental discovery of ''electrorheological (ER) complex plasmas,'' where the control of the interparticle interaction by an externally applied electric field is due to distortion of the Debye spheres that surround microparticles (dust) in a plasma. We show that interactions in ER plasmas under weak ac fields are mathematically equivalent to those in conventional ER fluids. Microgravity experiments, as well as molecular dynamics simulations, show a phase transition from an isotropic to an anisotropic (string) plasma state as the electric field is increased.

  8. Important plasma problems in astrophysics

    SciTech Connect

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example there are ultra strong magnetic fields in neutron stars) relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynold`s numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. I will describe one of the more exciting examples. I will attempt to convey the excitement I felt when I was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics, which have not been so easily resolved. In fact a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. I will attempt to describe one of the more important of these plasma-astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynold`s-number MHD dynamos.

  9. Microwave Resonant Transfer Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Marchese, Anthony J.; Jansson, Peter M.; Schmalzel, John L.

    2004-02-01

    During the past decade, several research groups have begun to report unique spectroscopic results for mixed gas plasma systems in which one of the species present is hydrogen gas. In these experiments, researchers have reported excessive line broadening of H emission lines and peculiar non-Boltzmann population of excited hydrogen states. The hydrogen line broadening in these studies has been attributed to Doppler broadening associated with anomalously high random translational velocity of H atoms (i.e. fast hydrogen). The spectroscopic data suggest the presence of a newly identified regime of energetic mixed gas hydrogen plasma systems, called resonant transfer (RT) plasmas. The data also suggest that these RT plasma systems have unique characteristics that warrant further exploration for propulsion applications. Preliminary calculations suggest that a microwave RT plasma thruster could achieve performance several orders of magnitude greater than chemical rocket propulsion. Accordingly, the NASA Institute for Advanced Concepts (NIAC) has funded a study aimed at assessing the potential of RT plasmas for propulsion applications. This paper will discuss the results of the NIAC Phase I study including spectroscopic characterization of the RT plasma, development of RT plasma thruster hardware and preliminary test firing of two separate RT plasma thrusters.

  10. Analysis of nuclear induced plasmas

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1976-01-01

    A kinetic model is developed for a plasma generated by fission fragments, and the results are employed to study He plasma generated in a tube coated with fissionable material. Because both the heavy particles and electrons play important roles in creating the plasma, their effects are considered simultaneously. The calculations are carried out for a range of neutron fluxes and pressures. In general, the predictions of the theory are in good agreement with available intensity measurements. Moreover, the theory predicts the experimentally measured inversions. However, the calculated gain coefficients are such that lasing is not expected to take place in a helium plasma generated by fission fragments.

  11. Ternary gas plasma welding torch

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)

    1995-01-01

    A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.

  12. Particle simulations in magnetospheric plasmas

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    1990-01-01

    In view of the recent remarkable advancement of computer technology and simulation software, simulation studies are one of the most powerful academic tools for establishment of quantitative space physics and modelling of our space environment. The complex nature encountered in space plasma physics has motivated considerable development in computer simulations, which have played an essential role in the development of space plasma theory. This report describes research undertaken to understand physical processes involved in plasma waves observed in the magnetospheric plasmas, and associated nonlinear phenomena such as heating, diffusion, and acceleration of particles due to excited waves. The research explains and clarifies the observational data both qualitatively and quantitatively.

  13. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  14. Electrical characterization of rf plasmas

    SciTech Connect

    Miller, P.A.

    1991-08-01

    Radio-frequency (rf) electrical sources are commonly used to generate plasmas for processing of industrial materials and for related experimental work. Published descriptions of such plasmas usually include generator-power measurements, and occasionally include plasma dc-bias measurements. One or both of these quantitites are also used in industrial feedback ccontrol systems for setpoint regulation. Recent work at Sandia an elsewhere with an experimental rf discharge device (the GEC RF Reference Cell'') has shown that power and dc-bias levels are often insufficient information for specifying the state of the plasma. The plasma can have nonlinear electrical characteristics that cause harmonic generation, and the harmonic levels can depend sensitively on the impedance of the external circuitry at harmonic frequencies. Even though the harmonics may be low in amplitude, they can be directly related to large changes in plasma power and to changes in optical emission from the plasma. Consequently, in order for a worker to truly master the plasma-generation process, it is necessary to understand, measure, and control electrical characteristics of the plamsa. In this paper we describe technique that have been developed from work with the Reference Cell for making electrical measurements on rf plasmas, and we describe surprising observations of harmonic behavior. 10 refs., 4 figs.

  15. Method for generating surface plasma

    DOEpatents

    Miller, Paul A.; Aragon, Ben P.

    2003-05-27

    A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

  16. On the excess energy of nonequilibrium plasma

    SciTech Connect

    Timofeev, A. V.

    2012-01-15

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  17. Plasma networking in magnetically confined plasmas and diagnostics of nonlocal heat transport in tokamak filamentary plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    1999-02-01

    The method of multilevel dynamical contrasting is applied to analyzing available data from tokamak plasmas. The results illustrate a possibility of extending the concept of the plasma percolating networks in dense Z pinches (and other inertially confined plasmas) to the case of magnetically confined plasmas. This extension suggests a necessity to append the conventional picture of the nonfilamentary plasma (which is nearly a fluid described by conventional magnetohydrodynamics) with a "network" component which is formed by the strongest long-living filaments of electric current and penetrate the "fluid" component. Signs of networking are found in visible light and soft x-ray images, and magnetic probing data. A diagnostic algorithm is formulated for identifying the role of plasma networking in observed phenomena of nonlocal (non-diffusive) heat transport in a tokamak.

  18. Purification of tantalum by plasma arc melting

    SciTech Connect

    Dunn, P.S.; Korzekwa, D.R.

    1999-10-26

    Purification of tantalum by plasma arc melting is disclosed. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  19. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  20. Plasma, The Fourth State of Matter

    ERIC Educational Resources Information Center

    Zandy, Hassan F.

    1970-01-01

    Discusses plasma as a source of energy through nuclear fission processes, as well as the difficulties encountered in such a process. States that 99 percent of the matter in the universe is plasma, and only 1 percent is the common three states of matter. Describes the fundamental properties of plasma, plasma "pinch, and plasma oscillations. (RR)

  1. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  2. Experimental results from detached plasmas in TFTR

    SciTech Connect

    Strachan, J.D.; Boody, F.P.; Bush, C.E.; Cohen, S.A.; Grek, B.; Grisham, L.; Jobes, F.C.; Johnson, D.W.; Mansfield, D.K.; Medley, S.S.

    1986-10-01

    Detached plasmas are formed in TFTR which have the principal property of the boundary to the high temperature plasma core being defined by a radiating layer. This paper documents the properties of TFTR ohmic-detached plasmas with a range of plasma densities at two different plasma currents.

  3. L2 Plasma Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Blackwell, William C., Jr.

    2003-01-01

    The second LaGrange point, 1.5 million miles from the Earth in the anti-solar direction, is becoming an important destination for scientific spacecraft. The quasi-stable gravity field requires little energy resources for station keeping and astronomical missions-infrared and microwave in particular-find the minimal impact from Earth albedo radiation and limited restrictions on viewing directions a tremendous advantage in their mission design. Spacecraft design for L2 missions will have to consider the plasma environments of the ambient solar wind, magnetosheath, and magnetotail from energies of a few 10s of an eV through 10 s of keV in addition to enhanced energetic particle populations from 10s to l000 keV during solar energetic particle events. This presentation will provide a background on the appropriate L2 charged particle environments at L2 and describe modeling efforts at MSFC to develop environment specification tools for the L2 plasma environment.

  4. L2 Plasma Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Blackwell, William C., Jr.

    2003-01-01

    The second LaGrange point, 1.5 million miles from the Earth in the anti-solar direction, is becoming an important destination for scientific spacecraft. The quasi-stable gravity field requires little energy resources for station keeping and astronomical missions-infrared and microwave in particular-find the minimal impact from Earth albedo radiation and limited restrictions on viewing directions a tremendous advantage in their mission design. Spacecraft design for L2 missions will have to consider the plasma environments of the ambient solar wind, magnetosheath, and magnetotail from energies of a few 10s of an eV through 10s of keV in addition to enhanced energetic particle populations from 10s to 1000 keV during solar energetic particle events. This presentation will provide a background on the appropriate L2 charged particle environments at L2 and describe modeling efforts at MSFC to develop environment specification tools for the L2 plasma environment.

  5. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  6. Undamped electrostatic plasma waves

    SciTech Connect

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  7. Plasma in sonoluminescing bubble.

    PubMed

    An, Yu

    2006-12-22

    With the new accommodation coefficient of water vapor evaluated by molecular dynamics model, the maximum temperature of a sonoluminescing bubble calculated with the full partial differential equations easily reaches few tens of thousands degrees. Though at this temperature the gas is weakly ionized (10% or less), the gas density inside a sonoluminescing bubble at the moment of the bubble's flashing is so high that there still forms a dense plasma. The light emission of the bubble is calculated by the plasma model which is compared with that by the bremsstrahlung (electron-ion, electron-neutral atom) and recombination model. The calculation by the two models shows that for the relatively low maximum temperature (< 30,000 K) of the bubble, the pulse width is independent of the wavelength and the spectrum deviates the black body radiation type; while for the relatively high maximum temperature (approximately 60,000 K), the pulse width is dependent of the wavelength and the spectrum is an almost perfect black body radiation spectrum. The maximum temperature calculated by the gas dynamics equations is much higher than the temperature fitted by the black body radiation formula. PMID:16797657

  8. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  9. Plasma motor generator system

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1987-01-01

    The significant potential advantages of a plasma motor generator system over conventional systems for the generation of electrical power and propulsion for spacecraft in low Earth orbits warrants its further investigation. The two main components of such a system are a long insulated wire and the plasma generating hollow cathodes needed to maintain electrical contact with the ionosphere. Results of preliminary theoretical and experimental investigations of this system are presented. The theoretical work involved the equilibrium configurations of the wire and the nature of small oscillation about these equilibrium positions. A particularly interesting result was that two different configurations are allowed when the current is above a critical value. Experimental investigations were made of the optimal starting and running conditions for the proposed, low current hollow cathodes. Although optimal ranges of temperature, argon pressure and discharge voltage were identified, start up became progressively more difficult. This supposed depletion or contamination of the emissive surface could be countered by the addition of new emissive material.

  10. Modeling plasma loudspeakers.

    PubMed

    Béquin, Ph; Castor, K; Herzog, Ph; Montembault, V

    2007-04-01

    This paper deals with the acoustic modeling and measurement of a needle-to-grid plasma loudspeaker using a negative Corona discharge. In the first part, we summarize the model described in previous papers, where the electrode gap is divided into a charged particle production region near the needle and a drift region which occupies most of the inter-electrode gap. In each region, interactions between charged and neutral particles in the ionized gas lead to a perturbation of the surrounding air, and thus generate an acoustic field. In each region, viewed as a separate acoustic source, an acoustical model requiring only a few parameters is proposed. In the second part of the paper, an experimental setup is presented for measuring acoustic pressures and directivities. This setup was developed and used to study the evolution of the parameters with physical properties, such as the geometrical and electrical configuration and the needle material. In the last part of this paper, a study on the electroacoustic efficiency of the plasma loudspeaker is described, and differences with respect to the design parameters are analyzed. Although this work is mainly aimed at understanding transduction phenomena, it may be found useful for the development of an audio loudspeaker. PMID:17471712

  11. Effect of plasma motion on tearing modes in cylindrical plasmas

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Peng, X. D.

    2015-10-01

    The effect of equilibrium plasma motion on the resistive m/n = 2/1 tearing mode (TM) in low β plasmas is investigated in cylindrical geometry (with m and n being poloidal and toroidal mode numbers). Without equilibrium plasma motion but with viscosity, the TM stability is mainly determined by the Reynolds number S and reaches maximum near S = 104, which is consistent with previous findings. The poloidal plasma rotation has stabilizing effect on TM; however, the rotation shear has destabilization effect in the low viscosity regime. The axial plasma motion has strong stabilizing effect on TM in the low viscosity regime for Prandtl number Pr < 1, while its shear has slight stabilizing effect with the decrease of growth rate less than 15%. When the axial velocity becomes large enough, the mode frequency tends to be independent of the Prandtl number. In the presence of parallel plasma motion, the growth rate is determined by the axial component at low parallel velocity, while determined by poloidal component at large parallel velocity. The parallel plasma motion drives the TM rotating in the opposite direction. It is shown that the equilibrium motion reduces the growth rate of TM by changing the phase difference and coupling coefficient between potential perturbation and magnetic flux perturbation (deviating from π/2 ), which results in a lower mode frequency. Compared to the role of velocity shear, the magnitude of plasma velocity itself at the m/n = 2/1 rational surface is dominant in determining the TM characteristics.

  12. Cold plasma: overview of plasma technologies and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel nonthermal food processing technology. It is based on energetic, reactive gases which inactivate contaminating microbes on meats, poultry and fruits and vegetables. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization pro...

  13. Plasma formation and expansion in an electrothermal plasma injector

    SciTech Connect

    Hurley, J.D.; Bourham, M.A.; Gilligan, J.G.

    1994-12-31

    The experimental device SIRENS has been used to conduct studies on plasma formation and expansion in electrothermal launchers. The 1-D, time-dependent fluid dynamics code, ODIN, models the energy transport, particle transport, plasma resistivity, plasma viscosity, and the equation-of-state of the source and barrel of the SIRENS experiment. Because electrothermal plasmas are highly collisional (high-density, low-temperature), the plasma is modeled as a viscous fluid, assuming local thermodynamic equilibrium for each cell. The viscous drag forces were varied according to the Reynolds number of each cell. As the Reynolds number increases the modeled drag forces change accordingly, going from laminar to smooth turbulent to rough turbulent. The measured mass loss of the ablating liner (Lexan) in the source section is in good agreement with that predicted by the code. Comparisons between the measured and predicted pressures inside the barrel are in good agreement. The pressure reaches its maximum inside the source at approximately 45 {mu}s, then decreases steadily due to the drop in temperature and density. The plasma flows into the barrel and the pressure profile begins to flatten out and drop as the plasma exits the barrel. The variation of the plasma parameters as a function of the energy input to the source have also been calculated and will be discussed.

  14. Plasma-wall transition in weakly collisional plasmas

    SciTech Connect

    Manfredi, G.; Devaux, S.

    2008-10-15

    This paper reviews some theoretical and computational aspects of plasma-wall interactions, in particular the formation of sheaths. Some fundamental results are derived analytically using a simple fluid model, and are subsequently tested with kinetic simulations. The various regions composing the plasma-wall transition (Debye sheath, collisional and magnetic presheaths) are discussed in details.

  15. Ion plasma wave and its instability in interpenetrating plasmas

    SciTech Connect

    Vranjes, J.; Kono, M.

    2014-04-15

    Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

  16. Plasma wave propagation with a plasma density gradient

    SciTech Connect

    Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup

    2011-03-15

    Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

  17. Nonlinear plasma and beam physics in plasma wake-fields

    SciTech Connect

    Rosenzweig, J.B.

    1990-02-12

    In experimental studies of the Plasma Wake-field Accelerator performed to date at the Argonne Advanced Accelerator Test Facility, significant nonlinearities in both plasma and beam behavior have been observed. The plasma waves driven in the wake of the intense driving beam in these experiments exhibit three-dimensional nonlinear behavior which has as yet no quantitative theoretical explanation. This nonlinearity is due in part to the self-pinching of the driving beam in the plasma, as the denser self-focused beam can excite larger amplitude plasma waves. The self-pinching is a process with interesting nonlinear aspects: the initial evolution of the beam envelope and the subsequent approach to Bennett equilibrium through phase mixing. 35 refs., 10 figs.

  18. Real-Time Plasma Control During KSTAR First Plasma

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.; Hahn, S. H.; Oh, Y. K.; Humphreys, D. A.; Hyatt, A. W.; Leuer, J. A.; Walker, M. L.

    2008-11-01

    Real-time control of Korea Superconducting Tokamak Advanced Research (KSTAR) discharges was successfully demonstrated during the KSTAR coil commissioning and first plasma period of May-June 2008. KSTAR, located at the National Fusion Research Institute (NFRI) in Daejeon, South Korea, is designed to explore steady-state, high-performance tokamak plasmas. The KSTAR plasma control system (PCS) was developed in a collaboration between General Atomics and NFRI, and derives from the PCS originally developed for DIII-D and currently in use at NSTX, MAST, EAST, Pegasus, and MST. A suite of electromagnetic analysis and plasma control design tools, closely integrated with the KSTAR PCS, were used extensively to support the startup campaign. Initial coil commissioning was completed successfully, utilizing the power supply voltage and current feedback algorithms. Plasma current, density, and rudimentary control of major radius was demonstrated during startup discharges.

  19. Experimental work in plasmas developed at INPE. 1: Double plasma machine for the study of longitudinal waves. 2: Plasma centrifuge

    NASA Astrophysics Data System (ADS)

    Ferreira, J. L.; Delbosco, E.; Ludwig, G. O.

    1982-02-01

    A double plasma machine used to study ion acoustic wave propagation is described. A plasma centrifuge project is also described. Some basic parameters of the apparatus used for isotope separation through electromagnetic rotation of the plasma are included.

  20. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  1. Solar array arcing in plasmas

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1990-01-01

    Solar cells in space plasma conditions are known to arc into the plasma when the interconnects are at a negative potential of a few hundred volts, relative to plasma potential. For cells with silver-coated interconnects, a threshold voltage for arcing exists at about -230 V, as found in both ground and LEO experiments. The arc rate beyond the threshold voltage depends nearly linearly on plasma density, but has a strong power-law dependence on voltage, such that for small increments in operating voltage there is a large increment in arc rate. The arcs generate broadband radio interference and visible light. In ground tests, interconnects have been damaged by arcs in cells having insufficient isolation from a source of high current. Models for the arcs are highly dependent on the choice of interconnect conductor material exposed to the plasma and possibly on the geometry and choice of adjacent insulator material. Finally, new technology solar cells use copper for the cell interconnects, a material which may have a lower arcing threshold voltage than silver. It is expected, from ground tests of simulated solar cells, that any junction of conductor and insulator exposed to space plasma conditions will arc into the plasma at a few hundred volts negative potential, relative to the local plasma.

  2. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  3. Plasma-heating by induction

    NASA Technical Reports Server (NTRS)

    Harrington, K.; Thorpe, M. L.

    1969-01-01

    Induction-heated plasma torch operates with an input of 1 Mw of direct current of which 71 percent is transferred to the plasma and the remainder is consumed by electrical losses in the system. Continuous operation of the torch should be possible for as long as 5,000 hours.

  4. Plasma theory and simulation research

    SciTech Connect

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  5. Biocompatibility of plasma nanostructured biopolymers

    NASA Astrophysics Data System (ADS)

    Slepi?kov Kaslkov, N.; Slepi?ka, P.; Ba?kov, L.; Sajdl, P.; vor?k, V.

    2013-07-01

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell's adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  6. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  7. Polarization spectroscopy of tokamak plasmas

    SciTech Connect

    Wroblewski, D.

    1991-09-01

    Measurements of polarization of spectral lines emitted by tokamak plasmas provide information about the plasma internal magnetic field and the current density profile. The methods of polarization spectroscopy, as applied to the tokamak diagnostic, are reviewed with emphasis on the polarimetry of motional Stark effect in hydrogenic neutral beam emissions. 25 refs., 7 figs.

  8. Plasma technology for waste treatment

    SciTech Connect

    Cohn, D.R.

    1995-04-01

    Improved environmental cleanup technology is needed to meet demanding goals for remediation and treatment of future waste streams. Plasma technology has unique features which could provide advantages of reduced secondary waste, lower cost, and onsite treatment for a wide variety of applications. Plasma technology can provide highly controllable processing without the need for combustion heating. It can be used to provide high temperature processing ({approximately}10,000{degrees}C). Plasma technology can also be employed for low temperature processing (down to room temperature range) through selective plasma chemistry. A graphite electrode arc plasma furnace at MIT has been used to investigate high temperature processing of simulated solid waste for Department of Energy environmental cleanup applications. Stable, non-leachable glass has been produced. To ensure reliable operation and to meet environmental objectives, new process diagnostics have been developed to measure furnace temperature and to determine metals emissions in the gaseous effluent. Selective plasma destruction of dilute concentrations of hazardous compounds in gaseous waste streams has been investigated using electron beam generated plasmas. Selective destruction makes it possible to treat the gas steam at relatively low temperatures in the 30-300{degrees}C range. On-line infrared measurements have been used in feedback operation to maximize efficiency and ensure desired performance. Plasma technology and associated process diagnostics will be used in future studies of a wide range of waste streams.

  9. Plasma chemistry and organic synthesis

    NASA Technical Reports Server (NTRS)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  10. Hollow Plasma in a Solenoid

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-11-30

    A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

  11. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  12. Plasma diagnostics and plasma-surface interactions in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Titus, Monica Joy

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactions are characterized as a function of plasma species and processing parameters. Complementary simulations accompany each focus study to supplement experimental findings. Wafer heating mechanisms in inductively coupled molecular gas plasmas are explored with PlasmaTemp(TM), a novel "on-wafer" diagnostic tool. Experimental wafer measurements are obtained with the PlasmaTemp(TM) wafer processed in argon (Ar) and argon-oxygen (Ar/O2) mixed plasmas. Wafer heating mechanisms were determined by combining the experimental measurements with a 3-dimensional heat transfer model of the wafer. Comparisons between pure Ar and Ar/O2 plasmas demonstrate that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. Thermal heat conduction from the neutral gas and O-atom recombination on wafer surface can contribute as much as 60% to wafer heating under conditions of low-energy ion bombardment in molecular plasmas. Measurements of a second novel "on-wafer" diagnostic sensor, the PlasmaVolt(TM), were tested and validated in the ICP system for Ar plasmas varying in power and pressure. Sensor measurements were interpreted with a numerical sheath simulation and comparison to scaling laws derived from the inhomogeneous sheath model. The study demonstrates sensor measurements are proportional to the RF-current through the sheath and the scaling is a function of sheath impedance. PlasmaVolt(TM) sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, one-fourth root of the electron temperature, and one-fourth root of the RF bias voltage under conditions where the sheath is predominantly capacitive. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. Vacuum ultraviolet (VUV) emissions in Ar ICPs are characterized and the chemical and physical modifications to 193 nm photoresist (PR) polymer materials processed in Ar ICPs are investigated. Fourier transform infrared (FTIR) transmission measurements as a function of VUV photon fluence demonstrate that VUV-induced bond breaking occurs over a period of time. A numerical model demonstrates that VUV photons deplete near-surface O-containing bonds, leading to deeper, subsequent penetration and more bond losses, while the remaining near-surface C--C bonds absorb the incident radiation and slow VUV photon penetration. The roughening mechanism of blanket and patterned 193 nm PR samples are explored in a well characterized Ar ICP. FTIR and atomic force microscopy (AFM) analysis of plasma processed 193 nm PR suggests that ion-induced generation of a graphitized layer at high energies, combined with VUV bulk modification of 193 nm PR may initiate PR roughening. The roughness of blanket samples increases as a function of VUV fluence, ion energy, and substrate temperature. Line width roughness (LWR) measurements of patterned samples demonstrate a similar trend suggesting that LWR may correlate with surface roughness of patterns. The results are compared to PR studies previously conducted in an ultra-high vacuum beam system demonstrating that the vacuum beam system is a useful tool that can deconvolute and simplify complex plasma systems.

  13. Arc Plasma Gun With Coaxial Powder Feed

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    Redesigned plasma gun provides improved metallic and ceramic coatings. Particles injected directly through coaxial bore in cathode into central region of plasma jet. Introduced into hotter and faster region of plasma jet.

  14. Physical domains in plasma physics

    SciTech Connect

    Liboff, R.L.

    1987-01-01

    Do the plasma in the sun's core and the electron-conduction plasma in a semiconductor behave in the same way. This question is both fundamental and practical, for plasma physics plays a role in a vast area of natural phenomena and in many engineering devices. Understanding the cosmos, or designing a computer chip or a thermonuclear fusion reactor, requires first of all a realization of equations of motion that are appropriate to the particular problem. Similar physical differences occur in engineered structures. The plasmas in most thermonuclear fusion devices are basically like the plasma in the core of the sun: weakly coupled and classical - that is, obeying Newton's laws and Maxwell's equations. The conduction electrons in a semiconductor, on the other hand, obey the laws of quantum mechanics.

  15. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  16. Helicon plasma thruster discharge model

    SciTech Connect

    Lafleur, T.

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  17. Advances in plasma melting technology

    NASA Astrophysics Data System (ADS)

    Eschenbach, R.; Hoffelner, W.

    The quest for 'defect-free' high performance metals has benefited from the expansion of plasma hearth melting capacity. 'Skull' melting in water-cooled copper containers under an inert gas atmosphere allows elimination of ceramic and refractory metal inclusions when melting reactive metals and superalloys, while retaining the input alloy content. The interactions of operating variables such as furnace pressure, nature of gas, arc current and heat input pattern with product properties such as homogeneity, grain size, and inclusions are described. By proper process control, plasma hearth melting has been qualified as one of only two processes suitable for particularly demanding rotating grade engine parts made of titanium alloy. Costs of plasma hearth melting are less than with electron beam. Extension of plasma processing to other alloys is being actively pursued. Powder production is currently practical with plasma melting and bottom pouring to make powder. Some speculations on future trends in materials and operating temperatures are offered.

  18. Photovoltaic Plasma Interaction Test 2

    NASA Technical Reports Server (NTRS)

    Kaufman, Bradford A.; Chrulski, Daniel; Myers, Roger M.

    1996-01-01

    The International Space Station (ISS) program is developing a plasma contactor to mitigate the harmful effects of charge collection on the station's large photovoltaic arrays. The purpose of the present test was to examine the effects of charge collection on the solar array electrical circuit and to verify the effectiveness of the plasma contactor. The results showed that the plasma contactor was able to eliminate structure arcing for any array output voltage. However, the current requirements of the plasma contactor were higher than those for prior testing and predicted by analysis. Three possible causes for this excess current demand are discussed. The most likely appeared to be a high local pressure on or very near the surface of the array as a result of vacuum tank conditions. Therefore, in actual space conditions, the plasma contactor should work as predicted.

  19. Pair plasma relaxation time scales.

    PubMed

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role. PMID:20481841

  20. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  1. Waves in Space Plasmas

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.; Lee, Dong-Hun

    2009-11-26

    Applications of linear mode conversion at Alfven/ion-ion hybrid resonances and at electron plasma frequency have been discussed. Alfven resonances play an important role on energy transport the outer to inner regions of magnetospheres. At Earth's magnetopause, the mode-converted kinetic Alfven waves also lead to solar wind particle entry and transverse ion heating. IIH resonant waves can explain of the generation of linearly polarized EMIC waves at Earth. Compressional waves can also interact with Mercury's magnetosphere exciting IIH resonances as global eigenmodes. Linear mode conversion (LMC) from Langmuir to electromagnetic waves is relevant to explain type II and III radio bursts. Through the LMC, both right- and left-hand polarized wave modes are produced and it provides the solutions for linear/partial polarized type II and III problems.

  2. Magnetospheric space plasma investigations

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1994-01-01

    A time dependent semi-kinetic model that includes self collisions and ion-neutral collisions and chemistry was developed. Light ion outflow in the polar cap transition region was modeled and compared with data results. A model study of wave heating of O+ ions in the topside transition region was carried out using a code which does local calculations that include ion-neutral and Coulomb self collisions as well as production and loss of O+. Another project is a statistical study of hydrogen spin curve characteristics in the polar cap. A statistical study of the latitudinal distribution of core plasmas along the L=4.6 field line using DE-1/RIMS data was completed. A short paper on dual spacecraft estimates of ion temperature profiles and heat flows in the plasmasphere ionosphere system was prepared. An automated processing code was used to process RIMS data from 1981 to 1984.

  3. Research in plasma physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Three aspects of barium ion cloud dynamics are discussed. First, the effect of the ratio of ion cloud conductivity to background ionospheric conductivity on the motion of barium ion clouds is investigated and compared with observations of barium ion clouds. This study led to the suggestion that the conjugate ionosphere participates in the dynamics of barium ion clouds. Second, analytic work on the deformation of ion clouds is presented. Third, a linearized stability theory was extended to include the effect of the finite extent of an ion cloud, as well as the effect of the ratio of ion cloud to ionospheric conductivities. The stability properties of a plasma with contra-streaming ion beams parallel to a magnetic field are investigated. The results are interpreted in terms of parameters appropriate for collisionless shock waves. It is found that this particular instability can be operative only if the up-stream Alfven Mach number exceeds 5.5.

  4. [Plasma exchange therapy].

    PubMed

    Mori, Masaaki

    2014-09-01

    By the Kawasaki disease, it is important that treatment is effective before the tenth day of illness when a coronary lesion can occur, and it is a well-known fact that early disappearance of inflammation leads directly to the onset restraint of the coronary lesions. Plasma exchange (PE) removes inflammatory cytokine and chemokines in the blood for Kawasaki disease directly and suppresses the inflammation early. The treatment result of the PE for the IVIG-resistant Kawasaki disease is so good, and if it could be started before particularly coronary lesion develops, we will expect an extremely big effect. In addition, when immunoglobulin therapy, steroid pulse therapy or neutrophilic elastase inhibitor therapy is invalid, we can perform PE therapy with the insurance applica- tion in Japan. PMID:25518418

  5. Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.; Lee, Dong-Hun

    2009-11-01

    Applications of linear mode conversion at Alfven/ion-ion hybrid resonances and at electron plasma frequency have been discussed. Alfven resonances play an important role on energy transport the outer to inner regions of magnetospheres. At Earth's magnetopause, the mode-converted kinetic Alfven waves also lead to solar wind particle entry and transverse ion heating. IIH resonant waves can explain of the generation of linearly polarized EMIC waves at Earth. Compressional waves can also interact with Mercury's magnetosphere exciting IIH resonances as global eigenmodes. Linear mode conversion (LMC) from Langmuir to electromagnetic waves is relevant to explain type II and III radio bursts. Through the LMC, both right- and left-hand polarized wave modes are produced and it provides the solutions for linear/partial polarized type II and III problems.

  6. Plasma vertical stabilisation in ITER

    NASA Astrophysics Data System (ADS)

    Gribov, Y.; Kavin, A.; Lukash, V.; Khayrutdinov, R.; Huijsmans, G. T. A.; Loarte, A.; Snipes, J. A.; Zabeo, L.

    2015-07-01

    This paper describes the progress in analysis of the ITER plasma vertical stabilisation (VS) system since its design review in 2007-2008. Two indices characterising plasma VS were studied. These are (1) the maximum value of plasma vertical displacement due to free drift that can be stopped by the VS system and (2) the maximum root mean square value of low frequency noise in the dZ/dt measurement signal used in the VS feedback loop. The first VS index was calculated using the PET code for 15 MA plasmas with the nominal position and shape. The second VS index was studied with the DINA code in the most demanding simulations for plasma magnetic control of 15 MA scenarios with the fastest plasma current ramp-up and early X-point formation, the fastest plasma current ramp-down in a divertor configuration, and an H to L mode transition at the current flattop. The studies performed demonstrate that the VS in-vessel coils, adopted recently in the baseline design, significantly increase the range of plasma controllability in comparison with the stabilising systems VS1 and VS2, providing operating margins sufficient to achieve ITER's goals specified in the project requirements. Additionally two sets of the DINA code simulations were performed with the goal of assessment of the capability of the PF system with the VS in-vessel coils: (i) to control the position of runaway electrons generated during disruptions in 15 MA scenarios and (ii) to trigger ELMs in H-mode plasmas of 7.5 MA/2.65 T scenarios planned for the early phase of ITER operation. It was also shown that ferromagnetic structures of the vacuum vessel (ferromagnetic inserts) and test blanket modules insignificantly affect the plasma VS.

  7. Ultracold Neutral Plasma Density Waves

    NASA Astrophysics Data System (ADS)

    Killian, Thomas

    2012-06-01

    Ultracold neutral plasmas, which are created by photoionizing laser cooled atoms near the ionization threshold, have been extensively studied in order to probe strong Coulomb coupling effects, low-energy atomic processes, equilibration, and collective phenomena [1]. The experimental study of collective modes, however, has previously been limited to phenomena involving electrons. By spatially modulating the intensity pattern of the photoionizing laser, we are now able to create controlled density perturbations on the plasma, which enables study of ion collective behavior. Periodic modulation excites ion acoustic waves [2]. We have also created two distinct plasmas that stream into each other. In the hydrodynamic regime, the central gap between the two plasmas splits into two density ``holes'' that propagate away from the plasma center at the ion acoustic velocity. At lower densities and higher particle velocities, plasmas are less collisional, and we observe kinetic effects such as plasma streams penetrating each other, with a penetration depth that reflects the ion stopping power. This general technique for sculpting the density opens many new possibilities, such as investigation of non-linear phenomena, instabilities, and shock waves in the ultracold regime, and determination of the effects of strong coupling on dispersion relations. The low temperature, small size, plasma expansion, and strongly coupled nature of ultracold plasmas make these studies fundamentally interesting. They may also shed light on similar phenomena in high energy density, laser-produced plasmas that can be near the strongly coupled regime. [4pt] [1] T. C. Killian, T. Pattard, Thomas Pohl, and J. M. Rost, Phys. Rep., 449, 77 (2007).[0pt] [2] J. Castro, P. McQuillen, and T. C. Killian, Phys. Rev. Lett. 105, 065004 (2010).

  8. NCSX Plasma Heating Methods

    SciTech Connect

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  9. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  10. Resonant-cavity antenna for plasma heating

    DOEpatents

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  11. Coupling between electron plasma waves in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Everett, M. J.; Lal, A.; Clayton, C. E.; Mori, W. B.; Joshi, C.; Johnston, T. W.

    1996-05-01

    A Lagrangian fluid model (cold plasma, fixed ions) is developed for analyzing the coupling between electron plasma waves. This model shows that a small wave number electron plasma wave (?2,k2) will strongly affect a large wave number electron plasma wave (?1,k1), transferring its energy into daughter waves or sidebands at (?1+n?2,k1+nk2) in the lab frame. The accuracy of the model is checked via particle-in-cell simulations, which confirm that the energy in the mode at (?1,k1) can be completely transferred to the sidebands at (?1+n?2,k1+nk2) by the presence of the electron plasma mode at (?2,k2). Conclusive experimental evidence for the generation of daughter waves via this coupling is then presented using time- and wave number-resolved spectra of the light from a probe laser coherently Thomson scattered by the electron plasma waves generated by the interaction of a two-frequency CO2 laser with a plasma.

  12. Surface plasma source with anode layer plasma acceleratora)

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim

    2012-02-01

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  13. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  14. Meter scale plasma source for plasma wakefield experiments

    SciTech Connect

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  15. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  16. Method & apparatus for monitoring plasma processing operations

    DOEpatents

    Smith, Jr., Michael Lane; Ward, Pamela Denise; Stevenson, Joel O'Don

    2004-10-19

    The invention generally relates to various aspects of a plasma process and, more specifically, to the monitoring of such plasma processes. One aspect relates to a plasma monitoring module that may be adjusted in at least some manner so as to re-evaluate a previously monitored plasma process. For instance, optical emissions data on a plasma process that was previously monitored by the plasma monitoring module may be replayed through the plasma monitoring module after making at least one adjustment in relation to the plasma monitoring module.

  17. Negative Plasma Densities Raise Questions

    SciTech Connect

    Hazi, A

    2006-01-26

    Nearly all the matter encountered on Earth is either a solid, liquid, or gas. Yet plasma-the fourth state of matter-comprises more than 99 percent of the visible universe. Understanding the physical characteristics of plasmas is important to many areas of scientific research, such as the development of fusion as a clean, renewable energy source. Lawrence Livermore scientists study the physics of plasmas in their pursuit to create fusion energy, because plasmas are an integral part of that process. When deuterium and tritium are heated to the extreme temperatures needed to achieve and sustain a fusion reaction (about 100 million degrees), the electrons in these light atoms become separated from the nuclei. This process of separation is called ionization, and the resulting collection of negatively charged free electrons and positively charged nuclei is known as a plasma. Although plasmas and gases have many similar properties, plasmas differ from gases in that they are good conductors of electricity and can generate magnetic fields. For the past decade, x-ray laser interferometry has been used in the laboratory for measuring a plasma's index of refraction to determine plasma density. (The index of refraction for a given material is defined as the wavelength of light in a vacuum divided by the wavelength of light traveling through the material.) Until now, plasma physicists expected to find an index of refraction less than one. Researchers from Livermore and Colorado State University recently conducted experiments on aluminum plasmas at the Laboratory's COMET laser facility and observed results in which the index of refraction was greater than one. This surprising result implied a negative electron density. Livermore physicist Joseph Nilsen and his colleagues from Livermore and the University of Notre Dame have performed sophisticated calculations to explain this phenomenon. Previously, researchers believed that only free electrons contributed to the index of refraction. Nilsen and his colleagues posit that bound electrons attached to the ions in plasmas can greatly affect the index of refraction and make it greater than one. Furthermore, if the effect of bound electrons is ignored when analyzing experimental results from x-ray interferometry, the electron density of plasmas may be indeterminate or significantly under- or overestimated.

  18. BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas

    NASA Astrophysics Data System (ADS)

    Porkolab, Miklos

    1998-11-01

    The linear theory of plasma waves in homogeneous plasma is arguably the most mature and best understood branch of plasma physics. Given the recently revised version of Stix's excellent Waves in Plasmas (1992), one might ask whether another book on this subject is necessary only a few years later. The answer lies in the scope of this volume; it is somewhat more detailed in certain topics than, and complementary in many fusion research relevant areas to, Stix's book. (I am restricting these comments to the homogeneous plasma theory only, since the author promises a second volume on wave propagation in inhomogeneous plasmas.) This book is also much more of a theorist's approach to waves in plasmas, with the aim of developing the subject within the logical framework of kinetic theory. This may indeed be pleasing to the expert and to the specialist, but may be too difficult to the graduate student as an `introduction' to the subject (which the author explicitly states in the Preface). On the other hand, it may be entirely appropriate for a second course on plasma waves, after the student has mastered fluid theory and an introductory kinetic treatment of waves in a hot magnetized `Vlasov' plasma. For teaching purposes, my personal preference is to review the cold plasma wave treatment using the unified Stix formalism and notation (which the author wisely adopts in the present book, but only in Chapter 5). Such an approach allows one to deal with CMA diagrams early on, as well as to provide a framework to discuss electromagnetic wave propagation and accessibility in inhomogeneous plasmas (for which the cold plasma wave treatment is perfectly adequate). Such an approach does lack some of the rigour, however, that the author achieves with the present approach. As the author correctly shows, the fluid theory treatment of waves follows logically from kinetic theory in the cold plasma limit. I only question the pedagogical value of this approach. Otherwise, I welcome this addition to the literature, for it gives the teacher of the subject a valuable reference where the inquisitive student will be able to read up on and satisfy himself about the practicality and reliability of the Vlasov theory in a hot magnetized and collisionless plasma. The book has excellent treatments of several new topics not included in previous textbooks, for example, the relativistic theory of plasma wave propagation, so important in electron cyclotron heating of magnetically confined fusion plasmas, a discussion of current drive theory and there is a welcome introduction to parametric instabilities in the final chapter. There are some things that make the readability of the book somewhat difficult. In the early parts, certain advanced concepts are introduced without much motivation or explanation, although the author is trying to be helpful by providing a list of relevant references at the end of each chapter. Here the teacher's role will be critical. Again, a certain amount of previous knowledge of the subject would prove to be invaluable to the student. The main content of the book is included in 11 chapters. Use is made of CGS Gaussian units, a favourite of plasma theorists. As the author states, these are still widely used in advanced plasma theory, and the student is well advised to become familiar with this system of units (as well as the SI system for applications). To help the reader in the Introduction, the author defines various expressions often used in plasma physics in practical units (frequencies in hertz, lengths in centimetres, temperatures in kiloelectronvolts and magnetic fields in teslas). Chapter 2 is entitled `Plasma Electrodynamics' and it introduces the Maxwell-Vlasov set of equations, as well as the important fundamentals of wave propagation, such as polarization, dispersion and the dielectric tensor, and energy relations. In Chapter 3, `Elementary Plasma Kinetic Theory', the author derives the Vlasov equation and the Fokker-Planck equation from the BBGKY hierarchy. This is a somewhat unusual chapter in a book on plasma waves, but I welcome it since it demonstrates the author's desire to be complete and rigorous in justifying the use of the collisionless Vlasov equation for `high frequency' wave propagation phenomena. Incidentally, it is interesting that while the author derives the Fokker-Planck equation at great length, it is used only to derive the fluid and MHD equations, but not for estimating Coulomb collisional damping of specific waves in later chapters. Chapter 4 gives the derivation of the hot plasma dielectric tensor. There is an extensive and excellent discussion of the relativistic formulation of the dielectric tensor, which is of fundamental importance to practising fusion physicists (for example) involved in ECR heating of high temperature plasmas. Various temperature limits are taken in Chapters 5, 6 and 7, and the author discusses the infinite number of waves in the cold plasma limit (Chapter 5), in the hot plasma limit (Chapter 6) and in the electrostatic limit (Chapter 7). In my opinion, these chapters represent the `meat' of the book. Chapter 7 includes a detailed treatment of electrostatic waves in a hot plasma, including Bernstein waves and their damping at high harmonics. This is a difficult topic, and the extensive treatment presented here is hard to find in other texts. The author also includes a discussion of two stream instabilities here, together with the Nyquist-Penrose criterion for instability. Chapter 8 discusses linear wave-particle interactions, including damping of electromagnetic waves, RF current drive and RF heating. Chapter 9 is called `Collisionless Stochasticity' and institutes an introduction to the subject as well as applications to the heating of ions by high harmonic, lower hybrid waves. Chapter 10 is another key part of the book, on the quasilinear theory of heating and current drive. It deals with the practical aspects of RF heating and current drive in magnetically confined fusion plasmas, and is a `must read' for researchers dealing with RF heating and related transport. Chapter 11 attempts to deal with non-linear effects in the presence of high power RF waves in plasmas. First, the author deals with the difficult subject of mode coupling theory, but, owing to its complexity, the formulation is never reduced to practical applications. Only the `dipole approximation' section can be used to make practical estimates of non-linear effects during RF heating. There are some shortcomings of this book that need to be mentioned here. There are some typographical errors, including spelling errors. The labelling on the figures is often hard to read due to their poor quality and small size. The figures themselves are often too small and are overloaded with curves (e.g., Figs 18.1, 18.2, 21.3, 28.13). The author must have spent a significant effort in producing these curves, and they deserve a better presentation, especially if they are to be used by students. Ease of readability is important for a textbook intended for students and researchers alike. It is hoped that such shortcomings will be improved in future editions, as well as in Volume II, which is to follow. To summarize, this book presents an up to date major contribution to the field of plasma waves and is a `must' on the shelves of active researchers as well as advanced graduate students. Under the guidance of a knowledgeable teacher, the book may be used as a text, with appropriate omissions of certain sections for a one semester course in plasma waves. Alternatively for those who have mastered the fundamentals of wave propagation in plasmas, the book could be used as a basis for an advanced seminar course. I am looking forward with anticipation to Volume II, Waves in Inhomogeneous Plasmas, by Marco Brambilla, one of the eminent plasma wave theorists of our generation.

  19. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  20. Atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  1. Logistics of automated plasma collection.

    PubMed

    McCombie, N; Rock, G

    1988-01-01

    Plasmapheresis is widely carried out to produce plasma for fractionation. Production of Factor VIII and albumin, two proteins in plasma, drives the plasma industry. The Canadian Red Cross would like to achieve national self-sufficiency in plasma production to meet the rising demands for these proteins in the next 4 years. In order to achieve this goal we must make efficient use of our automated plasmapheresis machines and available human resources to produce a cost-effective plasma product. An assessment was undertaken at the Ottawa Centre to evaluate the number of procedures which could be performed on each machine per day and the staff required to operate these machines safely and efficiently. Donor availability, reliability and reasons for donating plasma were recorded to determine if our population could support such an escalated programme. Donor/staff interest and acceptance of automated equipment was determined. The results showed that four automated plasmapheresis devices could be operated by one nurse and one clinic assistant processing 32 donors a day with an average time of 27 min required for a 500-ml donation of plasma. The donor population was available and extremely interested; however, the logistics of scheduling proved to be an area for concern requiring special attention. PMID:3397371

  2. Plasma medicine: an introductory review

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  3. Special issue on transient plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki

    2015-11-01

    This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is dedicated to the "spectroscopy of transient plasmas" covering plasma conditions produced by a range of pulsed laboratory sources including short and long pulse lasers, pulsed power devices, and free electron lasers (FELs). The full range of plasma spectroscopy up to high energy bremsstrahlung radiation, including line broadening analysis for application to data recorded with the ChemCam instrument on the Mars Science Laboratory rover Curiosity, is covered. This issue is timely as advances in optical lasers and x-ray FELs (XFEL) are enabling transient plasma to be probed at higher energies and shorter durations than ever before. New XFEL facilities being commissioned in Europe and Asia are adding to those operating in the US and Japan and the ELI high power laser project in Europe, due to open this year, will provide short pulse lasers of unprecedented power. This special issue represents a snapshot of the theoretical and experimental research in dense plasmas, electron kinetics, laser-induced breakdown spectroscopy of low temperature plasmas, inertial confinement fusion and non-equilibrium atomic physics using spectroscopy to diagnose plasmas produced by optical lasers, XFELs and pulsed-power machines.

  4. Propagation of an atmospheric pressure plasma plume

    SciTech Connect

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-15

    The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  5. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  6. Liquid injection plasma deposition method and apparatus

    DOEpatents

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  7. Interactions of plastic plasma with different atomic number plasmas

    NASA Astrophysics Data System (ADS)

    Kasperczuk, Andrzej; Pisarczyk, Tadeusz; Chodukowski, Tomasz; Kalinowska, Zofia; Gus'kov, Sergiey Yu; Demchenko, Nikolay N.; Ullschmied, Jiri; Krousky, Eduard; Pfeifer, Miroslav; Skala, Jiri; Pisarczyk, Piotr

    2014-05-01

    This paper is devoted to determination of the plasma ablative pressures for ablators with different atomic numbers. For this reason several target materials with a wide range of atomic numbers (Z = 3.5-73), i.e. plastic (CH), Al, Cu, Ag and Ta, were used. To compare pressures of plasmas produced from various materials, the targets consisted of two components. One of them, in the form of a cylindrical insert 200 ?m in diameter, was fixed to the second one. The targets were irradiated by the third harmonic of the Prague Asterix Laser System (PALS) laser radiation with the energy of 130 J and focal beam diameter of 600 ?m on the target surface. The results presented show that the plasma pressure decreases with increasing atomic number, but in a limited range of Z only. For higher Z, starting approximately from Z = 47 (Ag), the plasma pressure becomes constant, as confirmed by interferometric measurements.

  8. Plasma acceleration processes in an ablative pulsed plasma thruster

    SciTech Connect

    Koizumi, Hiroyuki; Noji, Ryosuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2007-03-15

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind.

  9. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  10. Surface plasma source with saddle antenna radio frequency plasma generatora)

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-01

    A prototype RF H- surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H- beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  11. Surface plasma source with saddle antenna radio frequency plasma generator.

    PubMed

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing. PMID:22380221

  12. Surface plasma source with saddle antenna radio frequency plasma generator

    SciTech Connect

    Dudnikov, V.; Johnson, R. P.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.

    2012-02-15

    A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  13. The Absence of Plasma in"Spark Plasma Sintering"

    SciTech Connect

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  14. Laser plasma interactions in hohlraums

    SciTech Connect

    Kruer, W.L.

    1994-10-05

    Lasers plasma instabilities are an important constraint in x-ray driven inertial confinement fusion. In hohlraums irradiated with 1.06 {mu}m light on the Shiva laser, plasma instabilities were extremely deleterious, driving the program to the use of shorter wavelength light. Excellent coupling has been achieved in hohlraums driven with 0.35 {mu}m light on the Nova laser. Considerable attention is being given to the scaling of this excellent coupling to the larger hohlraums for an ignition target. Various instability control mechanisms such as large plasma wave damping and laser beam incoherence are discussed, as well as scaling experiments to check the instability levels.

  15. Laboratory experiments on plasma contactors

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Williams, John D.

    1990-01-01

    Experimental results describing the operation of hollow cathode plasma contactors collecting and emitting electrons from and to an ambient plasma at current levels of the order of one ampere are presented. The voltage drops induced between a contactor and an ambient plasma are shown to be a few tens of volts at such current levels. The development of a double sheath and the production of substantial numbers of ions by electrons streaming across it are associated with the electron collection process. The development of a complex potential structure including a high potential hill just downstream of the cathode orifice is shown to characterize typical contactor emitting electrons.

  16. Plasma motions in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Hill, T. W.; Dessler, A. J.

    1991-01-01

    Interplanetary space is pervaded by a supersonic 'solar wind' plasma; five planets, in addition to the earth, have magnetic fields of sufficient strength to form the cometlike cavities called 'magnetospheres'. Comparative studies of these structures have indicated the specific environmental factor that can result in dramatic differences in the behavior of any pair of magnetospheres. Although planetary magnetospheres are large enough to serve as laboratories for in situ study of cosmic plasma and magnetic field behavior effects on particle acceleration and EM emission, much work remains to be done toward relating magnetospheric physics results to the study of remote astrophysical plasmas.

  17. Plasma Deposition of Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  18. Fast pulse nonthermal plasma reactor

    DOEpatents

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  19. Radioimmunoassay of ACTH in plasma

    PubMed Central

    Berson, Solomon A.; Yalow, Rosalyn S.

    1968-01-01

    Techniques are described in detail for a radioimmunoassay of plasma adrenocorticotropin (ACTH) that is capable of detecting hormone in unextracted normal human plasma at 1:5 dilution under the conditions described. The sensitivity of the assay is at the level of 1 ??g/ml (equivalent to 0.014 mU/100 ml). In normal subjects ACTH concentrations averaged 22 ??g/ml (equivalent to 0.308 mU/100 ml) plasma at 8-10 a.m. In a smaller group the concentrations averaged 9.6 ??g/ml (equivalent to 0.134 mU/100 ml) at 10-11 p.m. Although a circadian rhythm in normal subjects was not always well marked throughout the daytime hours, plasma ACTH usually fell to its lowest value in the late evening. In hospital patients who were not acutely ill, concentrations were infrequently above 100 ??g/ml in the morning and usually fell to significantly lower levels in the late evening. Severely ill hospital patients occasionally exhibited a.m. concentrations above 200 ??g/ml. In a group of subjects showing frequent spiking of plasma 17-OHCS concentrations throughout the day parallel spiking of plasma ACTH as well was generally observed. Metyrapone produced marked increases in plasma ACTH within 24 hr in all cases and generally within 3-6 hr except when started late in the day. Dexamethasone brought about a persistent reduction in plasma ACTH in a patient under continued treatment with metyrapone. Hypoglycemia, electroshock, surgery under general anesthesia, histalog and vasopressin administration were usually followed by significant increases in plasma ACTH concentration. Prior administration of dexamethasone blocked the response to hypoglycemia. Marked elevations in plasma ACTH were observed in patients with adrenal insufficiency off steroid therapy, in Cushing's disease after adrenalectomy even in the presence of persistent hypercortisolemia, and in some untreated patients with Cushing's disease. Umbilical cord blood contained higher plasma ACTH concentrations than maternal blood at delivery in seven of eight cases. After suppression of ACTH secretion by dexamethasone or cortisol. ACTH disappeared from plasma with half-times ranging from 22 min to 30 min in three cases studied. Images PMID:4302180

  20. Cleaning nanoelectrodes with air plasma.

    PubMed

    Sun, Tong; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-04-21

    Unlike macroscopic and micrometer-sized solid electrodes whose surface can be reproducibly cleaned by mechanical polishing, cleaning the nanoelectrode surface is challenging because of its small size and extreme fragility. Even very gentle polishing typically changes the nanoelectrode size and geometry, thus, complicating the replication of nanoelectrochemical experiments. In this letter, we show the possibility of cleaning nanoelectrode surfaces nondestructively by using an air plasma cleaner. The effects of plasma cleaning have been investigated by atomic force microscopy (AFM) imaging, voltammetry, and scanning electrochemical microscopy (SECM). A related issue, the removal of an insoluble organic film from the nanoelectrode by plasma cleaning, is also discussed. PMID:25839963

  1. Interactions between satellites and plasma

    NASA Technical Reports Server (NTRS)

    Isensee, U.; Lehr, W.; Maassberg, H.

    1984-01-01

    The interactions of a spacecraft with the surrounding, streaming plasma were determined by the following effects: the fade out of the plasma in the wake of the probe, the emission of photoelectrons and secondary electrons, the differential charging of the surface of the probe, and a spatial potential distribution in the vicinity of the space probe. These effects and their importance are discussed and following plasma conditions are considered: (1) geostationary satellite orbits; (2) in the solar wind (HELIOS mission); and (3) in the ionosphere at an altitude of 250 km (the projected OSV on Spacelab). The fundamental models are reviewed.

  2. Special topics in plasma confinement

    NASA Astrophysics Data System (ADS)

    Taylor, J. B.; Newton, S. L.

    2015-10-01

    > These notes are based on lectures given by one of us (J.B.T.) at the University of Texas in Austin in 1991. Part I concerns some basic features of plasma confinement by magnetic fields as an introduction to an account of plasma relaxation in Part II. Part III discusses confinement by magnetic mirrors, especially minimum- systems. It also includes a general discussion of adiabatic invariants and of the principle of maximal ordering in perturbation theory. Part IV is devoted to the analysis of perturbations in toroidal plasmas and the stability of ballooning modes.

  3. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.

  4. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space. an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device to 1 x 10(exp 4) - 1.16 x 10(exp 6)K(p= 10(exp 10) - 10(exp 14)/cu cm ). The magnetic field used to contain the plasma has a magnitude of 2 - 10k Gauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. A RPA is being developed in a process which involves the investigation of several prototypes. The first prototype has been tested on a thermal plasma. The knowledge gained from its development and testing were applied to the development of a RPA for collimated plasma. The prototypes consist of four equally spaced grids and an ion collector. The outermost grid is a ground. The second grid acts as a bias to repel electrons. The third is a variable v voltage ion suppressor. Grid four (inner grid) acts to repel secondary electrons, being biased equal to the first. Knowledge gained during these two stages are being applied to the development of a high temperature RPA Testing of this device involves the determination of its output parameters. sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output. it is compared to the output from a Langmuir or Faraday probe.

  5. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  6. Diagnostics of plasma-surface interactions in plasma processes

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji

    2014-10-01

    Low temperature plasma including electrons, ions, radicals and photons can be applied because only high temperature of electron but for background gases. Recently plasma applications in biology and medicine have grown significantly. For complexity of mechanisms, it is needed to understand comprehensively the plasma-surface interactions. To diagnose the interactions comprises of three areas; (1) incident species generated in plasmas toward the surface, (2) surface reactions such as scission and bond of chemical bonds, and (3) products after the reactions. Considered with non-linearity of the chemical reactions as changed by an initial state, we have focused and developed to observe dangling bonds in situ at real time by electron spin resonance (ESR). Moreover, individual contribution and simultaneous irradiation of each species such as radicals and photons have been studied in utilization of light shades and windows in similar manner of the pellets for plasma process evaluation (PAPE). As exampled, the interaction of polymeric materials, fungal spores and edible meats with plasmas were studied on the basis of the real time in situ observations of dangling bonds or surface radicals formation.

  7. Plasma Sheath Modeling Using The Three Fluid Plasma Model

    NASA Astrophysics Data System (ADS)

    Lilly, Robert; Shumlak, Uri

    2010-11-01

    There has been renewed interest in the use of plasma actuators for high speed flow control applications. In the plasma actuator, current is driven through the surrounding weakly ionized plasma to impart control moments on the hypersonic vehicle. Accurate modeling of plasma sheath physics is of particular importance for the plasmas found in high speed flight applications. This study employs the three-fluid (electrons, ions, neutrals) plasma model as it allows the capture of electron inertial effects without the unbounded whistler wave that accompanies Hall MHD, as well as energy and momentum transfer between the charged and neutral species. Previous investigations have typically assumed an electrostatic electric field. This work includes the full electrodynamics. Floating potential sheath formation is investigated initially. We then present a method of voltage control that allows for control of the sheath. The resulting boundary scheme, in conjunction with the use of the purely hyperbolic Maxwells equation set, will be reviewed and the results in 1D and 2D discussed. Finally the outlook for incorporating transport will be presented.

  8. Dielectric and permeability effects in collisionless plasmas. [in collisionless plasmas

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1984-01-01

    Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular + B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in geophysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j-asterisk), which includes the well-known polarization current, given by J-asterisk = d/dt (E x M) + (P x B) x B B(-2) where M and P are the magnetization and polarization vectors respectively.

  9. Plasma physical and plasma chemical aspects of nanoparticle formation in hydrocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Berndt, Johannes; Kovacevic, Eva; Stefanovic, Ilija

    2013-09-01

    Low temperature plasmas are a breeding place for a great variety of different species, that can be used for different applications as the deposition of thin films or the the synthesis of nanoparticles and nanocomposites. However the distinctive nonequilibrium character of theses plasmas makes their understanding and their control a rather challenging task. The solution of this task is in addition hampered by the fact that decisive factors like cross sections for electron impact processes or rate coefficients for molecule-molecule reactions are very often completely unknown. In particular reactions including the walls of the plasma reactor are difficult to account for since they depend on the nature of the involved molecules and on the nature of the wall itself. This contribution deals with two simple approaches to control plasma chemical processes in a reactive low temperature plama: the variation of the diffusion length and the pulsing of the discharge. The contribution will focus on experiments performed in rf low pressure hydrocarbon plasmas with special emphasis on the influence of plasma physical and plasma chemical processes on the formation and properties of nanoparticles.

  10. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  11. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  12. RF laser plasma measurements

    NASA Astrophysics Data System (ADS)

    Bollen, W. M.

    1984-08-01

    One of the major difficulties with excimer lasers has been the presence of impurities, introduced, for example, by the electrodes present in the D.C. discharge approach. Use of microwave excitation makes possible an electrodeless discharge, thereby reducing the risk of introducing impurities into the laser mix. In this approach a tube containing the laser mix is inserted in a waveguide or microwave cavity; the microwaves then break down the laser mix to form a discharge and further interact to heat that discharge. In such microwave discharges, strong fluorescence seems limited to approximately 100 ns. In the same time frame, the fluorescence has also been observed to collapse to the wall. The wall collapse may be related to the reduced fluorescence (reduced radiation area), although burn-up of the lasing components seems more likely. The collapse to the wall reduces the ability to lase by decreasing the active volume. A better understanding of this effect needs to be obtained before a microwave-driven laser can be further developed. This research effort was directed towards obtaining a fundamental understanding of the collapse of the fluorescence to the tube walls. The ultimate goal is to understand the collapse sufficiently to prevent or reduce its effects; to this end, a number of basic plasma physics experiments have been carried out. A complete understanding has not yet been reached.

  13. Coupled plasma filtration adsorption.

    PubMed

    Formica, Marco; Inguaggiato, Paola; Bainotti, Serena; Wratten, Mary Lou

    2007-01-01

    Sepsis is one of the main causes of death in critically ill patients worldwide, and in many cases it is associated with renal and/or other organ failure. However, we do not have a unique efficient therapy to reduce this extremely high mortality rate. In the last years interest around the use of extracorporeal blood purification techniques has increased. One of the emerging treatments in patients with severe sepsis and septic shock is coupled plasma filtration adsorption (CPFA), a novel extracorporeal blood purification therapy aimed at a nonselective reduction of the circulating levels and activities of both pro- and anti-inflammatory mediators. Early experimental studies and the following clinical trials have demonstrated impressive results regarding hemodynamics and respiratory parameters, even in patients without concomitant acute renal injury, paralleled by a quick tapering of vasoactive drugs. Considering the still high morbidity and mortality rates in septic shock patients, this new blood purification technique seems to have benefits when applied early in the course of sepsis, also without renal indications, suggesting that it might be performed to prevent rather than to treat acute kidney injury. PMID:17464151

  14. Space Plasma Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. James L. Horwitz and R. Hugh Comfort's studies with the high altitude TIDE data have been progressing well. We concluded a study on the relationship of polar cap ion properties observed by TIDE near apogee with solar wind and IMF conditions. We found that in general H+ did not correlate as well as O+ with solar wind and IMF parameters. O+ density correlated(sub IMF), and Kp. At lower solar wind speeds, O+ density decreased with increasing latitude, but this trend was not observed at higher solar wind speeds. By comparing these results with results from other studies of O+ in different parts of the magnetosphere, we concluded that O+ ions often leave the ionosphere near the foot point of the cusp/cleft region, pass through the high-altitude polar cap lobes, and eventually arrive in the plasma sheet. We found that H+ outflows are a persistent feature of the polar cap and are not as dependent on the geophysical conditions; even classical polar wind models show H+ ions readily escaping owing to their low mass. Minor correlations with solar wind drivers were found; specifically, H+ density correlated best with IMF By, V(sub sw)B(sub IMF), and ESW(sub sw).

  15. Plasma pinchlamp surface preparation

    NASA Astrophysics Data System (ADS)

    Asmus, John F.

    1997-09-01

    A high-pressure laser-guided gas-embedded plasma pinchlamp is described for the generation of intense UV radiation. It has been configured to optimize energy transfer from the storage PFN. The output energy peaks within the spectral range 150 - 250 nm with a pulsed power of 20 MW at 10 Hz. The device employs a working gas of argon at 3 AMAGAT and has a pulsewidth of 20 microseconds. The results of exploratory surface modification experiments with the pinchlamp are reported. These include the destruction of chemical warfare agent simulants, asbestos, petroleum, and insecticides on surfaces as well as semiconductor annealing. In addition it was determined that various aircraft coatings are able to be removed from aluminum and composite substrates. These coatings included primers, top coats, and anti-erosion materials. This pinchlamp technology potentially fills a performance gap in the hard ultraviolet between flashlamps and lasers. On the one hand it offers a peak power and brightness comparable to parameters customarily associated with laser technology. On the other hand it possesses the efficiency, simplicity, and scalability often encountered with conventional flashlamp systems.

  16. The beam driven plasma neutralizer

    NASA Astrophysics Data System (ADS)

    Surrey, E.; Holmes, A.

    2013-02-01

    The improvement of the efficiency of neutral beam systems to be compatible with the economic requirements of fusion power plants is a key theme in the European research programme. A novel plasma neutralizer, in which the negative ion beam itself is the source of the plasma, is described. Its success depends on the confinement of the free electrons generated by stripping from the beam and their generation of additional plasma. The device requires no additional power in contrast to the photoneutralizer, presently the main device of research interest. Although the efficiency of the plasma device is not as high as the photoneutralizer it is essentially of a low technological risk, inherently reliable and will not require a significant R&D programme to demonstrate.

  17. Hall Effect in a Plasma.

    ERIC Educational Resources Information Center

    Kunkel, W. B.

    1981-01-01

    Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)

  18. Plasma transport near material boundaries

    SciTech Connect

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix.

  19. MHD stability of tokamak plasmas

    SciTech Connect

    Chance, M.S. Sun, Y.C.; Jardin, S.C.; Kessel, C.E.; Okabayashi, M.

    1992-08-01

    This paper will give an overview of the some of the methods which are used to simulate the ideal MHD properties of tokamak plasmas. A great deal of the research in this field is necessarily numerical and the substantial progress made during the past several years has roughly paralleled the continuing availability of more advanced supercomputers. These have become essential to accurately model the complex configurations necessary for achieving MHD stable reactor grade conditions. Appropriate tokamak MHD equilibria will be described. Then the stability properties is discussed in some detail, emphasizing the difficulties of obtaining stable high {beta} discharges in plasmas in which the current is mainly ohmically driven and thus demonstrating the need for tailoring the current and pressure profiles of the plasma away from the ohmic state. The outline of this paper will roughly follow the physics development to attain the second region of stability in the PBX-M device at The Princeton Plasmas Physics Laboratory.

  20. Vircator Operation at Plasma Assistance

    NASA Astrophysics Data System (ADS)

    Balakirev, V. A.; Magda, I. I.; Onishchenko, I. N.; Pushkarev, S. S.

    2002-12-01

    The influence of plasma on the processes of virtual cathode (VC) formation, high frequency (HF) generation, and plasma ions acceleration were studied. The theoretical consideration of the problem was analytically undertaken in one-dimensional approximation, that has shown the principal ability of low frequency (LF) oscillations of VC potential well and ion flow due to the periodic space charge neutralization by plasma ions. The experiments were carried out at the pulsed electron accelerator "AGAT", which is a microsecond diode with a magnetic insulation. The accelerator produced an annular relativistic electron beam (REB). Plasma was produced by the beam electrons. It was observed that relaxing VC with low frequency modulation of 20 MHz was formed. The current of REB was temporary modulated at this frequency. The temporal modulation of intense REB is now proposed for excitation of slow space charge wave when further REB is being spatially modulated by periodic magnetic field. It constructs the scheme of the collective ion accelerator.

  1. Heater enhanced topside plasma line

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Gordon, W. E.

    1983-10-01

    In a recent experiment at Arecibo, the ionospheric topside plasma line was enhanced by the high power, high frequency, radiowave, HF heater. The enhancement was a few orders of magnitude over the normal daytime photoelectron-enhanced plasma lines. This is the first observation of an order of magnitude enhancement of the plasma line in the topside ionosphere induced by the heater. The critical frequency of the F-region (f sub zero-F sub two) was reasonably close to the HF heater frequency of 5.1 MHz. Possible explanations include propagation via the magneto-ionic Z-mode with some unkonwn excitation mechanism, some severe inhomogeneities in the ionosphere, or heater-excited electrons streaming upward along the magnetic field lines to excite the plasma.

  2. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  3. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  4. Mobile inductively coupled plasma system

    DOEpatents

    D'Silva, Arthur P. (Ames, IA); Jaselskis, Edward J. (Ames, IA)

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  5. Plasma fluoride and enamel fluorosis.

    PubMed

    Angmar-Mnsson, B; Ericsson, Y; Ekberg, O

    1976-11-24

    It is postulated that tissue fluid F concentrations are the primary determinants of flouride effects on bones and developing teeth and that these concentrations are dependent on, or mirrored by, blood plasma F. It has earlier been shown that the plasma F levels are dependent on the dietary F supply as well as on skeletal F concentration. Fasting and post-ingestion or postinjection plasma F levels have been determined in rats on F doses that cause different degrees of enamel fluorosis. The results indicate that temporary peak values rather than elevated fasting values are responsible for the occurrence of enamel fluorosis and that the peak values must approach about 10 muM in order to block enamel formation by the ameloblasts. The diagnostic and prognostic importance of plasma F determinations is discussed. PMID:1000344

  6. Outreach Activities for Plasma Science

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Bannan, K.; Delooper, J.; Eastman, T.; Sweet, P.; Smith, T.

    1997-11-01

    The need for communication beyond experts from subfields of scientific inquiry has been long identified. In response to this need, new outreach activities for plasma science have begun to take shape and grow. One example of this increase in activity is the formation of the Coalition for Plasma Science. The focus of the Coalition's efforts is to enhance the understanding and support for plasma science in the scientific community, the education community, business and the general public. One of the Coalition's first activities was to coordinate the assembly of an eight panel exhibit entitled "Plasmas: Science and Technology for the 21st Century". The formation of the Coalition and the display will be described and some possible future activities will be outlined.

  7. Atomic phenomena in dense plasmas

    SciTech Connect

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  8. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, Walter C. (Bend, OR)

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  9. Collisional recombination in nonideal plasmas

    SciTech Connect

    Lankin, A. V.

    2008-11-15

    We suggest a model that allows one to consider the kinetics of collisional recombination in a nonideal plasma and to calculate its rate by the molecular dynamics method. We have found that the dependence of the collisional recombination rate on the plasma coupling parameter differs significantly from the extrapolation of the three-body recombination rate to the nonideal region. The recombination rate in a strongly coupled plasma has been found to decrease with increasing coupling parameter. We have established that the effect of plasma nonideality increases with ion charge. The recombination kinetics is shown to depend significantly on how the ions are arranged in the medium. Collisional recombination transforms into three-body one as the coupling parameter of the medium decreases.

  10. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  11. Plasma Rain - Duration: 33 seconds.

    NASA Video Gallery

    On April 19, 2010 AIA observed one of the largest prominence eruptions in years. The huge structure erupts, but a great deal of the plasma (hundreds of millions of tons) is unable to escape the gra...

  12. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  13. Coherent control of plasma dynamics.

    PubMed

    He, Z-H; Hou, B; Lebailly, V; Nees, J A; Krushelnick, K; Thomas, A G R

    2015-01-01

    Coherent control of a system involves steering an interaction to a final coherent state by controlling the phase of an applied field. Plasmas support coherent wave structures that can be generated by intense laser fields. Here, we demonstrate the coherent control of plasma dynamics in a laser wakefield electron acceleration experiment. A genetic algorithm is implemented using a deformable mirror with the electron beam signal as feedback, which allows a heuristic search for the optimal wavefront under laser-plasma conditions that is not known a priori. We are able to improve both the electron beam charge and angular distribution by an order of magnitude. These improvements do not simply correlate with having the 'best' focal spot, as the highest quality vacuum focal spot produces a greatly inferior electron beam, but instead correspond to the particular laser phase front that steers the plasma wave to a final state with optimal accelerating fields. PMID:25975737

  14. Plasma centrifuge development at INPE

    NASA Astrophysics Data System (ADS)

    Bittencourt, J. A.; Delbosco, E.; Dallaqua, R. S.; Ludwig, G. O.

    1987-07-01

    The plasma centrifuge is a device in which a fully ionized plasma column rotates at high angular velocities by means of crossed electric and magnetic fields. Ion angular rotation frequencies of 6.9 x 10,000 to 1.2 x 100,000 rad/s were measured for a carbon plasma, with an externally applied magnetic field of 0.09T. Isotopic enrichments of up to 390 percent for C-13 were measured at 6 cm radius. The steady state behavior of the fully ionized magnetized plasma in the vacuum arc centrifuge was theoretically investigated using a multiple species fluid model, which includes electromagnetic, pressure gradient, centrifugal and collisional forces in cylindrical geometry.

  15. Space Flight Plasma Data Analysis

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Minow, Joseph I.

    2009-01-01

    This slide presentation reviews a method to analyze the plasma data that is reported on board the International Space station (ISS). The Floating Potential Measurement Unit (FPMU), the role of which is to obtain floating potential and ionosphere plasma measurements for validation of the ISS charging model, assess photo voltaic array variability and interpreting IRI predictions, is composed of four probes: Floating Potential Probe (FPP), Wide-sweep Langmuir Probe (WLP), Narrow-sweep Langmuir Probe (NLP) and the Plasma Impedance Probe (PIP). This gives redundant measurements of each parameter. There are also many 'boxes' that the data must pass through before being captured by the ground station, which leads to telemetry noise. Methods of analysis for the various signals from the different sets are reviewed. There is also a brief discussion of LP analysis of Low Earth Orbit plasma simulation source.

  16. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  17. Plasma Heating: An Advanced Technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.

  18. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.

  19. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  20. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  1. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  2. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  3. Spacelab 2 Plasma Diagnostics Package

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.

    1990-01-01

    The Plasma Diagnostics Package is a small, deployable satellite designed to study the interaction of the Space Shuttle Orbiter with the ionospheric environment as well as to be used in joint experiments with the plasma depletion and the vehicle charging and potential investigations during the Spacelab 2 mission. This paper provides a brief description of the small spacecraft, its instrumentation and operation, and the scientific objectives of the investigations. A brief summary of the scientific results obtained thus far is also presented.

  4. Plastic Deformations in Complex Plasmas

    SciTech Connect

    Durniak, C.; Samsonov, D.

    2011-04-29

    Complex plasmas are macroscopic model systems of real solids and liquids, used to study underdamped dynamics and wave phenomena. Plastic deformations of complex plasma crystals under slow uniaxial compression have been studied experimentally and numerically. It is shown that the lattice becomes locally sheared and that this strain is relaxed by shear slips resulting in global uniform compression and heat generation. Shear slips generate pairs of dislocations which move in opposite directions at subsonic speeds.

  5. ATON-thruster plasma accelerator

    NASA Astrophysics Data System (ADS)

    Morozov, A. I.; Balebanov, V. M.; Bugrova, A. I.; Lipatov, A. S.; Khartchevnikov, V. K.

    2000-08-01

    The concept of a second generation Hall-current plasma accelerator (ATON-thruster), which has record performance characteristics is described. A method is proposed for analyzing the operation parameters of the accelerator on the basis of its performance characteristics. The results of measurements of plasma parameters in the accelerator channel and outflowing jet are presented. Influence of backmoving of particles from vacuum chamber to thruster one has been discussed.

  6. Theory for Plasma Rocket Propulsion

    NASA Astrophysics Data System (ADS)

    Grabbe, Crockett

    2009-11-01

    Electrical propulsion of rockets is developing potentially into the use of 3 different thrusters for future long-distance space missions that primarily involve plasma dynamics. These are the Magnetoplasmadynamic (MPD) Thruster, the Plasma Induction Thruster (PID), and the VASIMIR Thruster. The history of the development of electrical propulsion into these prospects and the current research of particularly the VASIMIR Thruster are reviewed. Theoretical questions that need to be addressed in that development are explored.

  7. Cholecystokinin elevates mouse plasma lipids.

    PubMed

    Zhou, Lichun; Yang, Hong; Lin, Xinghua; Okoro, Emmanuel U; Guo, Zhongmao

    2012-01-01

    Cholecystokinin (CCK) is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR(-/-)) mice. The same dose of [Thr28, Nle31]-CCK induced 6 and 13% increases in plasma triglyceride and cholesterol, respectively, in wild-type mice. However, these particular before and after CCK treatment values did not achieve statistical significance. Oral feeding of olive oil further elevated plasma triglycerides, but did not alter plasma cholesterol levels in CCK-treated mice. The increased plasma cholesterol in CCK-treated mice was distributed in very-low, low and high density lipoproteins (VLDL, LDL and HDL) with less of an increase in HDL. Correspondingly, the plasma apolipoprotein (apo) B48, B100, apoE and apoAI levels were significantly higher in the CCK-treated mice than in untreated control mice. Ligation of the bile duct, blocking CCK receptors with proglumide or inhibition of Niemann-Pick C1 Like 1 transporter with ezetimibe reduced the hypercholesterolemic effect of [Thr28, Nle31]-CCK in LDLR(-/-) mice. These findings suggest that CCK-increased plasma cholesterol and triglycerides as a result of the reabsorption of biliary lipids from the intestine. PMID:23300532

  8. Lysosomes and the plasma membrane

    PubMed Central

    Andrews, Norma W.

    2002-01-01

    Studies of the cell invasion mechanism of the parasite Trypanosoma cruzi led to a series of novel findings, which revealed a previously unsuspected ability of conventional lysosomes to fuse with the plasma membrane. This regulated exocytic process, previously regarded mostly as a specialization of certain cell types, was recently shown to play an important role in the mechanism by which cells reseal their plasma membrane after injury. PMID:12147679

  9. Features of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Strickler, D. J.

    1985-12-01

    The spherical torus is a very small aspect ratio (A less than 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q greater than 2 are characterized by high toroidal beta ((BETA)/sub t/ greater than 0.2), low poloidal beta ((BETA)/sub p/ less than 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ greater than 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q greater than 1), the spherical pinch (1 greater than q greater than O), and the spherical RFP (q less than O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs.

  10. 21 CFR 640.30 - Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one...

  11. 21 CFR 866.2160 - Coagulase plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that...

  12. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human...

  13. 21 CFR 640.30 - Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one...

  14. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Source Plasma. 640.60 Section 640.60 Food and Drugs... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human blood collected...

  15. 21 CFR 866.2160 - Coagulase plasma.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that...

  16. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human...

  17. 21 CFR 640.30 - Plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one...

  18. 21 CFR 866.2160 - Coagulase plasma.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that...

  19. 21 CFR 866.2160 - Coagulase plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that...

  20. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human...

  1. 21 CFR 640.30 - Plasma.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one...

  2. 21 CFR 866.2160 - Coagulase plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coagulase plasma. 866.2160 Section 866.2160 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2160 Coagulase plasma. (a) Identification. Coagulase plasma is a device that consists of freeze-dried animal or human plasma that...

  3. 21 CFR 640.60 - Source Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Source Plasma. 640.60 Section 640.60 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.60 Source Plasma. The proper name of the product shall be Source Plasma. The product is defined as the fluid portion of human...

  4. 21 CFR 640.30 - Plasma.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Plasma. 640.30 Section 640.30 Food and Drugs FOOD... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.30 Plasma. (a) Proper name and definition. The proper name of this component is Plasma. The component is defined as: (1) The fluid portion of one...

  5. Plasma Rocket With Hybrid Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Chang, Franklin R.

    1987-01-01

    Proposed plasma rocket, described in report, generates hybrid exhaust plume comprising annular layer of relatively cool neutral gas around plasma core. Plasma and gas intermix, providing gradual radial transition between the two. Amount of gas injected adjusted to control propulsive efficiency; relatively cool gas boundary layer at surface of nozzle insulates nozzle from high plasma temperature.

  6. The physics of laser plasma interactions

    SciTech Connect

    Kruer, W.L.

    1988-01-01

    Contents, abridged: Computer simulation of plasmas using particle codes. Propagation of obliquely incident light waves. Collisional absorption of electromagnetic waves in plasmas. Parametric excitation of electron and ion waves. Stimulated Raman scattering. Stimulated Brillouin scattering. Heating by plasma waves. Laser plasma experiments.

  7. Nonlinear gyrokinetic simulations of improved confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Carmody, Daniel; Pueschel, M. J.; Anderson, J. K.; Terry, P. W.

    2014-10-01

    The reversed field pinch (RFP), a device dominated by global tearing modes in standard modes of operation, has been able to achieve reduced transport and increased energy confinement time through the use of pulsed poloidal current drive (PPCD), a current profile control technique. To evaluate the potential contributions of microinstabilities to transport fluxes in the PPCD regime of the Madison Symmetric Torus, we use the gyrokinetic code GENE and experimental profile data. Linear results from 200 kA and 500 kA PPCD discharges show the dominant instabilities to be an ion temperature gradient mode and a density-gradient-driven trapped electron mode, respectively. Nonlinear simulations of the 500 kA case show strong zonal flow activity that results in a significant Dimits-like shift, with a nonlinear threshold about a factor of three larger than the linear critical value. We find magnetic shear to play an important role in determining the nonlinear saturation levels, with lower shear resulting in the reduction of zonal flow shearing rate and the enhancement of linear growth rates. The nonlinear threshold occurs at roughly the experimental value, suggesting that microturbulent processes may be an important factor in determining experimental transport levels. Work supported by US DOE Grant No. DE-FG02-85ER53212.

  8. Variability of Plasmas Near Europa

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Lipatov, A. S.; Gershman, D. J.

    2013-12-01

    Observations of particles and fields acquired at the orbit of Europa during the Gailileo mission indicate significant variability of the plasma environment there. It is found that the background plasma density can vary by a factor ~10. Potential causes include changes in the production or transport of plasmas from the Io torus, local-time and longitudinal effects, such as systematic changes in the location of plasma-sheet gradients, or inherent variability of the plasma production rate at Europa. Measurements of the energy and angular distributions of the ions provide a capability for distinguishing thermalized torus ions from pickup ions that have recently been produced within a Europa neutral cloud. Thus the relative density of thermal ions and pickup ions is a measure that can provide insight into the cause of the overall variability of the plasma density at Europa's orbit. In this presentation, we provide an overview of the Galileo observations and discuss their significance in relationship with this above-identified ambiguity.

  9. Plasma Sensing Using Terahertz Waves

    NASA Astrophysics Data System (ADS)

    Altan, H.

    The terahertz (THz) region of the electromagnetic spectrum, the far-infrared, has numerous applications towards characterizing low-energy phenomena in a number of wide and diverse materials. One of these exciting new areas is in plasma diagnostics. There are many experimental and theoretical methods to determine plasma parameters in a dc glow discharge. Pulsed terahertz (THz) techniques such as THz-Time Domain Spectroscopy (THz-TDS) can offer a non-contact solution towards characterizing various plasma properties. Further studies in the area of millimeter and microwave radiation have shown that the interaction of the THz radiation with fundamental plasma such as DC glow discharge plasma can be utilized towards development of inexpensive detection schemes and detectors. Here we discuss the importance of these schemes in lieu of imaging systems and describe experiments we have conducted which support these results. In particular we find that a typical Drude model approach is insufficient in describing the transmission of the THz waves through the "cold" plasma. Results are given in the area of this promising research.

  10. Antimicrobial outcomes in plasma medicine

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2015-03-01

    Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.

  11. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  12. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  13. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low-pressure microwave plasmas in an N2 and O2 gas mixture M K Singh, A Ogino and M Nagatsu Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma H J Lee, C H Shon, Y S Kim, S Kim, G C Kim and M G Kong The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air A Helmke, D Hoffmeister, N Mertens, S Emmert, J Schuette and W Vioel Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet D L Bayliss, J L Walsh, G Shama, F Iza and M G Kong The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging René Pompl, Ferdinand Jamitzky, Tetsuji Shimizu, Bernd Steffes, Wolfram Bunk, Hans-Ulrich Schmidt, Matthias Georgi, Katrin Ramrath, Wilhelm Stolz, Robert W Stark, Takuya Urayama, Shuitsu Fujii and Gregor Eugen Morfill Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure Mi Hee Lee, Bong Joo Park, Soo Chang Jin, Dohyun Kim, Inho Han, Jungsung Kim, Soon O Hyun, Kie-Hyung Chung and Jong-Chul Park Cell permeabilization using a non-thermal plasma M Leduc, D Guay, R L Leask and S Coulombe Physical and biological mechanisms of direct plasma interaction with living tissue Danil Dobrynin, Gregory Fridman, Gary Friedman and Alexander Fridman Nosocomial infections-a new approach towards preventive medicine using plasmas G E Morfill, T Shimizu, B Steffes and H-U Schmidt Generation and transport mechanisms of chemical species by a post-discharge flow for inactivation of bacteria Takehiko Sato, Shiroh Ochiai and Takuya Urayama Low pressure plasma discharges for the sterilization and decontamination of surfaces F Rossi, O Kylián, H Rauscher, M Hasiwa and D Gilliland Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding S P Kuo, O Tarasenko, J Chang, S Popovic, C Y Chen, H W Fan, A Scott, M Lahiani, P Alusta, J D Drake and M Nikolic A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine QY Nie, Z Cao, C S Ren, D Z Wang and M G Kong A novel plasma source for sterilization of living tissues E Martines, M Zuin, R Cavazzana, E Gazza, G Serianni, S Spagnolo, M Spolaore, A Leonardi, V Deligianni, P Brun, M Aragona, I Castagliuolo and P Brun Designing plasmas for chronic wound disinfection T Nosenko, T Shimizu and G E Morfill Plasma medicine: an introductory review M G Kong, G Kroesen, G Morfill, T Nosenko, T Shimizu, J van Dijk and J L Zimmermann

  14. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  15. Structure of pulsed plasma jets

    SciTech Connect

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied.

  16. Spectroscopic diagnostics of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim

    2014-10-01

    The formation of carbon nanoparticles particles in low pressure magnetized hydrocarbon plasmas is investigated using infrared quantum cascade laser absorption spectroscopy (QCLAS), mass spectrometry (MS) and laser extinction spectroscopy (LES). Results showed that dust formation is correlated to the presence of a large amount of large positively charged hydrocarbon ions. Large negative ions or neutral species were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas. Growth of carbon nanoparticles has been widely studied in RF plasma. Our aim is to complete these studies in different discharge system, in which the growth mechanisms may be different. In particular, we focus our work on dipolar ECR microwave discharge. The magnetic field of the plasma source is likely to trap carbon-containing charged particles and then modify the dust growth kinetics. In the present study the combination of these diagnostics gives us the tools to study the kinetics of plasma processes. In this way both qualitative and quantitative characteristics could be obtained. An outstanding role may be attributed to the positive ions in the monitored magnetized plasmas, whereas usually formation of dust is supposed driven by negative ions. In addition, we focus our work in tungsten nanoparticle in particular with LES, this noninvasive technique provide us the tool to follow the dynamics and concentration dust. K. Ouaras, L. Colina Delacqua, G. Lombardi, K. Hassouni, and X. Bonnin.

  17. Physics of Dusty Plasmas: Seventh Workshop. Proceedings

    SciTech Connect

    Horanyi, M.; Robertson, S.; Walch, B.

    1998-10-01

    These proceedings represent papers presented at the Seventh Workshop on the Physics of Dusty Plasmas, held in Boulder, Colorado in April, 1998. Dusty Plasmas are multicomponent plasmas where, in addition to electrons and ions, microscopic charge carriers are present. Dusty plasmas is perhaps the fastest growing area of plasma physics. The papers presented at the Workshop included, among others, the following topics: dust charging, waves and instabilities, laboratory and industrial plasmas, strongly coupled systems, and astrophysical, space and atmospheric plasmas. There were 37 papers presented at the conference,out of which 10 have been abstracted for the Energy,Science and Technology database.(AIP)

  18. Characterisation of plasma in a rail gun

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1986-01-01

    The mechanism of plasma and projectile acceleration in a DC rail gun is described from a microscopic point of view through the establishment of the Hall field. The plasma conductivity is shown to be a tensor, indicating that there is a small component of current parallel to the direction of acceleration. The plasma characteristics are evaluated in the experiment of Bauer et. al., as a function of plasma mass through a simple fluid mechanical analysis of the plasma. By equating the energy dissipatated in the plasma with the radiation heat loss, the properties of the plasma are determined.

  19. Injection of plasma into the Trimyx Galathea

    SciTech Connect

    Morozov, A. I.; Bugrova, A. I.; Bishaev, A. M.; Kozintseva, M. V.; Lipatov, A. S.; Vasil'ev, V. I.; Strunnikov, V. M.

    2006-03-15

    The Galathea-3 device, which consists of a coaxial plasma gun, a plasma guide, a lock chamber, and the Trimyx Galathea confinement system with three myxines, is briefly described. The plasma parameters at the outlet from the plasma gun, in the plasma guide, and in the confinement system are presented. It is shown that the plasma can be efficiently entrapped into the Galathea and spread out along it. The confined plasma is found to go beyond the Ohkawa surfaces. Estimates show that the particle losses from the system are on the order of the classical ones.

  20. Experiment of THz transmission through plasma

    NASA Astrophysics Data System (ADS)

    Sun, Jinhai; Gallacher, Jordan; Issac, Riju; Huang, Zhixun; Jaroszynski, Dino

    2014-12-01

    Research on terahertz wave transmission through plasma is significant for researches on plasma itself and transmission discipline of terahertz wave through plasma. It is possible for plasma with suitable density to be an available stealth outerwear for plane or missile in THz waveband. In this paper, plasma is gotten by ionizing inert gases such as argon and helium gases with pulsed high alternating voltage. With electro-optic pump-probe measurement, THz transmission phenomena through plasma have been studied. The experiments show that some parts of THz frequency components have been cut off by plasma, and with the density of plasma rising, the starting frequency of THz prohibited by plasma is going higher. Experiments also provide an assistant scheme for plasma diagnose with terahertz technique.