Note: This page contains sample records for the topic plasma sheet electrons from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Energetic electron spectra in Saturn's plasma sheet  

NASA Astrophysics Data System (ADS)

The differential spectra of energetic electrons (27-400 keV) in Saturn's plasma sheet can be characterized by power law or kappa distributions. Using all available fluxes from 2005 to 2010, fits to these distributions reveal a striking and consistent pattern of radial dependence in Saturn's plasma sheet (?z? < 1 RS = 60,268 km). The electron spectral indices show harder spectra at large radial distances (20-30 RS), softer spectra at middle radial distances (10-20 RS), and very steep spectra inside the orbit of Rhea (˜8.5 RS). The dayside spectra are somewhat harder than the nightside spectra outside the orbit of Titan (˜20 RS), although there is no local time dependence inside ˜10 RS. This spectral behavior exhibited essentially no dependence on pitch angle and remained remarkably constant throughout the Cassini mission. Inward of about 10 RS, the presence of the electron radiation belts and losses of lower-energy electrons to the gas and grain environment give rise to the very hard spectra in the inner magnetosphere, while the hard spectra in the outer magnetosphere may derive from auroral acceleration at high latitudes. The gradual softening of the spectra from 20 to 10 RS is explained by inward radial diffusion.

Carbary, J. F.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.

2011-07-01

2

Observations of ionospheric electron beams in the plasma sheet.  

PubMed

Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is ?n(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high ? plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities. PMID:23215495

Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K

2012-11-13

3

Transport of the plasma sheet electrons to the geostationary distances  

NASA Astrophysics Data System (ADS)

Abstract<p label="1">The transport and acceleration of low-energy <span class="hlt">electrons</span> (50-250 keV) from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the geostationary orbit were investigated. Two moderate storm events, which occurred on 6-7 November 1997 and 12-14 June 2005, were modeled using the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) with the boundary set at 10 RE in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The output of the IMPTAM was compared to the observed <span class="hlt">electron</span> fluxes in four energy ranges (50-225 keV) measured by the Synchronous Orbit Particle Analyzer instrument onboard the Los Alamos National Laboratory spacecraft. It was found that the large-scale convection in combination with substorm-associated impulsive fields is the drivers of the transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> from 10 RE to geostationary orbit at 6.6 RE during storm times. The addition of radial diffusion had no significant influence on the modeled <span class="hlt">electron</span> fluxes. At the same time, the modeled <span class="hlt">electron</span> fluxes are one (two) order(s) smaller than the observed ones for 50-150 keV (150-225 keV) <span class="hlt">electrons</span>, respectively, most likely due to inaccuracy of <span class="hlt">electron</span> boundary conditions. The loss processes due to wave-particle interactions were not considered. The choice of the large-scale convection electric field model used in simulations did not have a significant influence on the modeled <span class="hlt">electron</span> fluxes, since there is not much difference between the equipotential contours given by the Volland-Stern and the Boyle et al. (1997) models at distances from 10 to 6.6 RE in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Using the TS05 model for the background magnetic field instead of the T96 model resulted in larger deviations of the modeled <span class="hlt">electron</span> fluxes from the observed ones due to specific features of the TS05 model. The increase in the modeled <span class="hlt">electron</span> fluxes can be as large as two orders of magnitude when substorm-associated electromagnetic fields were taken into account. The obtained model distribution of low-energy <span class="hlt">electron</span> fluxes can be used as an input to the radiation belt models. This seed population for radiation belts will affect the local acceleration up to relativistic energies.</p> <div class="credits"> <p class="dwt_author">Ganushkina, N. Y.; Amariutei, O. A.; Shprits, Y. Y.; Liemohn, M. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">4</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.2220B"> <span id="translatedtitle">Energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and their relationship with the solar wind: A Cluster and Geotail study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The statistical relationship between tens of kiloelectron volts <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and the solar wind, as well as >2 MeV geosynchronous <span class="hlt">electrons</span>, is investigated using <span class="hlt">plasma</span> <span class="hlt">sheet</span> measurements from Cluster (2001-2005) and Geotail (1998-2005) and concurrent solar wind measurements from ACE. <span class="hlt">Plasma</span> <span class="hlt">sheet</span> selection criteria from previous studies are compared, and this study selects a new combination of criteria that are valid for both polar-orbiting and equatorial-orbiting satellites. <span class="hlt">Plasma</span> <span class="hlt">sheet</span> measurements are mapped to the point of minimum |B|, using the Tsyganenko T96 magnetic field model, to remove measurements taken on open field lines, which reduces the scatter in the results. Statistically, <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> flux variations are compared to solar wind velocity, density, dynamic pressure, interplanetary magnetic field (IMF) B z , and solar wind energetic <span class="hlt">electrons</span>, as well as >2 MeV <span class="hlt">electrons</span> at geosynchronous orbit. Several new results are revealed: (1) There is a strong positive correlation between energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and solar wind velocity, (2) this correlation is valid throughout the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and extends to distances of X GSM = -30 R E , , (3) there is evidence of a weak negative correlation between energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and solar wind density, (4) energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> are enhanced during times of southward interplanetary magnetic field (IMF), (5) there is no clear correlation between energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and solar wind <span class="hlt">electrons</span> of comparable energies, and (6) there is a strong correlation between energetic <span class="hlt">electrons</span> (>38 keV) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and >2 MeV <span class="hlt">electrons</span> at geosynchronous orbit measured 2 days later.</p> <div class="credits"> <p class="dwt_author">Burin des Roziers, E.; Li, X.; Baker, D. N.; Fritz, T. A.; Friedel, R.; Onsager, T. G.; Dandouras, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">5</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5137426"> <span id="translatedtitle">Energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and their relationship with the solar wind: A Cluster and Geotail study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The statistical relationship between tens of kiloelectron volts <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and the solar wind, as well as >2 MeV geosynchronous <span class="hlt">electrons</span>, is investigated using <span class="hlt">plasma</span> <span class="hlt">sheet</span> measurements from Cluster (2001-2005) and Geotail (1998-2005) and concurrent solar wind measurements from ACE. <span class="hlt">Plasma</span> <span class="hlt">sheet</span> selection criteria from previous studies are compared, and this study selects a new combination of criteria that</p> <div class="credits"> <p class="dwt_author">E. Burin des Roziers; X. Li; D. N. Baker; T. A. Fritz; R. Friedel; T. G. Onsager; I. Dandouras</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">6</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48909009"> <span id="translatedtitle">Energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and their relationship with the solar wind: A Cluster and Geotail study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The statistical relationship between tens of kiloelectron volts <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and the solar wind, as well as >2 MeV geosynchronous <span class="hlt">electrons</span>, is investigated using <span class="hlt">plasma</span> <span class="hlt">sheet</span> measurements from Cluster (2001–2005) and Geotail (1998–2005) and concurrent solar wind measurements from ACE. <span class="hlt">Plasma</span> <span class="hlt">sheet</span> selection criteria from previous studies are compared, and this study selects a new combination of criteria that</p> <div class="credits"> <p class="dwt_author">E. Burin des Roziers; X. Li; D. N. Baker; T. A. Fritz; R. Friedel; T. G. Onsager; I. Dandouras</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">7</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22025583"> <span id="translatedtitle">Graphene <span class="hlt">sheets</span> embedded carbon film prepared by <span class="hlt">electron</span> irradiation in <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We used a low energy <span class="hlt">electron</span> irradiation technique to prepare graphene <span class="hlt">sheets</span> embedded carbon (GSEC) film based on <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span>. The particular {pi} <span class="hlt">electronic</span> structure of the GSEC film similar to bilayer graphene was verified by Raman spectra 2D band analyzing. The phase transition from amorphous carbon to GSEC was initiated when <span class="hlt">electron</span> irradiation energy reached 40 eV, and the growth mechanism of GSEC was interpreted as inelastic scattering of low energy <span class="hlt">electrons</span>. This finding indicates that the GSEC film obtained by low energy <span class="hlt">electron</span> irradiation can be excepted for widely applications with outstanding electric properties.</p> <div class="credits"> <p class="dwt_author">Wang Chao; Diao Dongfeng; Fan Xue; Chen Cheng [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, 710049 Xi'an (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-04</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">8</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM53A..05S"> <span id="translatedtitle">Possible causes of the unmagnetized <span class="hlt">electron</span> motion in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the last decades, a number of studies has shown that turbulent processes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> contribute significantly to the <span class="hlt">plasma</span> and energy transport. Turbulent processes are also very important for our understanding of mechanisms leading to the stochastization and unmagnetization of the particle motion. Data from the THEMIS satellites being in tailward alignment inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were used to study the impact of the electric field fluctuations on the <span class="hlt">electron</span> motion for different <span class="hlt">electron</span> energies. It was found that the power spectra of <span class="hlt">electron</span> fluxes for a fixed <span class="hlt">electron</span> energy are similar to the electric field power spectra for the <span class="hlt">electrons</span> with energies of the order of 1-10 keV. We assume that interaction between <span class="hlt">electrons</span> and fluctuating electric fields is responsible for the <span class="hlt">electron</span> stochastization and unmagnetization and contributes significantly into the relaxation of non-Maxwellian distribution functions.</p> <div class="credits"> <p class="dwt_author">Stepanova, M. V.; Antonova, E. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">9</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM41C1892K"> <span id="translatedtitle">Loss time scales of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> in the morning side: Analysis based on THEMIS observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">One of the dominant loss processes of <span class="hlt">electrons</span> in the inner magnetosphere is pitch angle scattering by <span class="hlt">plasma</span> waves. <span class="hlt">Electrons</span> scattered into the loss cone precipitate into the atmosphere and contribute to diffuse auroral emissions. However, there is still much controversy on dominant scattering mechanism of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> because <span class="hlt">electrons</span> resonate with both electrostatic <span class="hlt">electron</span> cyclotron harmonic (ECH) waves and whistler-mode waves. The purpose of this study is to investigate what waves are mainly responsible for the loss of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span>. We estimated loss time scales of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> from the THEMIS observations, and compared them with the theoretical loss time scales due to the pitch angle scattering by whistler-mode chorus. We have derived global distributions of the average phase space density (PSD) in the first adiabatic invariants of 50 and 100 eV/nT, using the <span class="hlt">electron</span> data obtained from the electrostatic analyzer (ESA) on board the THEMIS satellites for 2 years. The <span class="hlt">electron</span> loss time scales were estimated, based on the PSD distributions, from spatial gradients of the PSD along the drift paths that are calculated from the UNH-IMEF electric field and TS04 magnetic field models. The theoretical loss time scales were evaluated from the pitch angle diffusion coefficients due to a typical spectrum of whistler-mode chorus waves. We also estimated the required wave amplitudes that can explain the loss time scales based on PSD distributions and compared them with the average chorus wave amplitudes obtained from the THEMIS wave measurements. The result showed that the required wave amplitudes are roughly consistent with the observed chorus amplitudes. These investigations strongly suggest that whistler-mode chorus is responsible for the loss of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and contributes to the generation of diffuse auroras in the morning side. We will extend the estimation of the loss time scales to lower and higher first adiabatic invariants to investigate the energy dependence of the <span class="hlt">electron</span> loss processes.</p> <div class="credits"> <p class="dwt_author">Kurita, S.; Miyoshi, Y.; Tsuchiya, F.; Nishimura, Y.; Hori, T.; Miyashita, Y.; Takada, T.; Morioka, A.; Albert, J. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Auster, H.; Misawa, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">10</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=4794830"> <span id="translatedtitle"><span class="hlt">SHEET</span> <span class="hlt">PLASMA</span> DEVICE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An ion-<span class="hlt">electron</span> <span class="hlt">plasma</span> heating apparatus of the pinch tube class was developed wherein a <span class="hlt">plasma</span> is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a <span class="hlt">sheet</span> of <span class="hlt">plasma</span> between two conductive plates disposed parallel and adjacent to the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat <span class="hlt">plasma</span> configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)</p> <div class="credits"> <p class="dwt_author">Henderson, O.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-07-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">11</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006cosp...36.2546L"> <span id="translatedtitle">Acceleration to MeV energies of energetic <span class="hlt">electrons</span> injected from <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Many spacecraft failures and anomalies have been attributed to energetic <span class="hlt">electrons</span> in the Earth s magnetosphere While the dynamics of these <span class="hlt">electrons</span> have been studied extensively for several decades the fundamental question of how they are accelerated is not fully resolved In this presentation we present observations of energetic <span class="hlt">electron</span> precipitation measured by the Korean satellite STSAT-1 which simultaneously detect 100eV -- 20 keV and 170 -- 360 keV energy <span class="hlt">electrons</span> at the 680 km orbit When the geomagnetic condition is disturbed for example October 13 2004 STAT-1 shows intense <span class="hlt">electron</span> precipitation in both energy ranges occur in the midnight sector clearly demonstrating that <span class="hlt">electrons</span> having wide energy band are injected from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> We propose this <span class="hlt">plasma</span> <span class="hlt">sheet</span> injection is the primary source of relativistic <span class="hlt">electron</span> 1 MeV flux increases that SAMPEX and GOES detected While these injected <span class="hlt">electrons</span> have low e-folding energy STSAT-1 data show clearly the e-folding energy of trapped <span class="hlt">electrons</span> increased even after storm time These sim 100 keV <span class="hlt">electrons</span> are the seed <span class="hlt">electrons</span> that are accelerated to 1 MeV energies in the model proposed by Baker et al 1998</p> <div class="credits"> <p class="dwt_author">Lee, J. J.; Parks, G. K.; Lee, E.; McCarthy, M. P.; Min, K. W.; Kim, H. J.; Park, J.; Hwang, J.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">12</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.P23C1258H"> <span id="translatedtitle">Interaction between terrestrial <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and the lunar surface: Kaguya (SELENE) observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The moon stays in the Earth’s magnetosphere for several days around the full moon period. The <span class="hlt">plasma</span> in the magnetosphere has different properties from the solar wind such as in density or energy, and interacts with the lunar surface. We found an interesting phenomenon concerning the lunar <span class="hlt">plasma</span> environment when the moon is in the magnetosphere through the analysis of the data obtained by MAP-PACE and MAP-LMAG onboard Kaguya (SELENE). Most <span class="hlt">electrons</span> in the magnetosphere gyrate around the magnetic field line with smaller Larmor radius than Kaguya's orbital height (nominally: 20-100 km). However, some of the <span class="hlt">electrons</span> in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> have the Larmor radii greater than or equal to Kaguya's orbital height (1 keV <span class="hlt">electron</span> has about 100 km Larmor radius in the 1 nT magnetic field). When the magnetic field is parallel to the lunar surface, these relatively high-energy <span class="hlt">electrons</span> hit the lunar surface and are absorbed. This can be observed as an empty region in the <span class="hlt">electron</span> distribution function, which is originally isotropic in the terrestrial <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We have examined the data obtained by Kaguya and found characteristic <span class="hlt">electron</span> distributions as we expected. However, we also found that the empty region in the observed phase space tends to be smaller than a theoretically derived forbidden region. One of the possible reasons for this is the presence of the electric field perpendicular to the magnetic field, and we can fit the forbidden region with the observed one if we assume the perpendicular electric field of 10 mV/m. Another possible reason is that the <span class="hlt">plasma</span> is diffused in the phase space to make the empty region smaller by unstable waves. Although those reasons should be examined carefully, the partial loss in the distribution function due to the absorption of gyrating particles by lunar surface may be a general phenomenon when <span class="hlt">plasma</span> and a solid surface interact.</p> <div class="credits"> <p class="dwt_author">Harada, Y.; Machida, S.; Saito, Y.; Yokota, S.; Asamura, K.; Nishino, M. N.; Tanaka, T.; Tsunakawa, H.; Shibuya, H.; Takahashi, F.; Matsushima, M.; Shimizu, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">13</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6144620"> <span id="translatedtitle">Study of the relationship between diffuse auroral and <span class="hlt">plasma-sheet</span> <span class="hlt">electron</span> distributions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This thesis deals with the relationship between the diffuse auroral and <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distributions in the midnight region (+/- 2 hrs MLT) of the earth's magnetosphere. Past studies have suggested that <span class="hlt">electron</span> cyclotron harmonic (ECH) waves in resonance are responsible for the pitch-angle diffusion of low-energy <span class="hlt">plasma-sheet</span> <span class="hlt">electrons</span> into the atmospheric loss cone and the resulting precipitation into the diffuse auroral ionosphere. However, the adequacy of ECH waves as the principal diffusion mechanism is currently in controversy and is tested empirically in this study. The data base used consisted of low-energy (50 eV to 25 keV) differential <span class="hlt">electron</span>-flux measurements from the low altitude polar-orbit in P78-1 satellite and the near-geosynchronous SCATHA satellite taken when the two spinning satellites were in conjunction, i.e., located at points along the same geomagnetic field line. The P78-1 measurements provided <span class="hlt">electron</span> pitch-angle distribution information within the loss cone during the conjunction events.</p> <div class="credits"> <p class="dwt_author">Schumaker, T.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">14</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..132L"> <span id="translatedtitle">Geomagnetic conjugate observations of <span class="hlt">plasma-sheet</span> <span class="hlt">electrons</span> by the FAST and THEMIS satellites</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><title type="main">Abstract<p label="1">We investigate pitch-angle distributions and spectral shapes of auroral <span class="hlt">electrons</span> simultaneously observed during three conjunction events by the FAST satellite at altitudes of 2500-3500 km and by the THEMIS satellite in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 7-13 RE. All three events were on the lower latitude of the auroral oval. Conjunction event 1 occurred at ~1914:45 UT on 10 April 2008. <span class="hlt">Electron</span> spectra at energies of 0.1-3 keV are correlated well between the two satellites, while the precipitating <span class="hlt">electrons</span> above 3 keV are missing at FAST. Event 2 occurred at 1255:26 UT on 26 April 2008. <span class="hlt">Electron</span> spectra above 3 keV are correlated well between the two satellites. An additional broad spectral peak at energies of 0.1-0.5 keV was observed by FAST. Event 3 occurred at 0058:04 UT on 25 December 2008. Precipitating <span class="hlt">electrons</span> of 0.5-5 keV obtained by FAST are correlated well with those of THEMIS-C, while a monoenergetic peak at 0.1-0.2 keV was observed only by FAST. For the three conjunction events, we conclude that high-energy precipitating auroral <span class="hlt">electrons</span> observed by FAST directly come from the equatorial <span class="hlt">plasma</span> <span class="hlt">sheet</span>, while low-energy precipitating <span class="hlt">electrons</span> may come from middle altitudes as a result of acceleration by static potential differences. For missing high-energy (>3 keV) <span class="hlt">electrons</span> of event 1, we speculate that the pitch-angle scattering by waves occurs only at a limited energy range.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Shiokawa, K.; McFadden, J. P.; Seki, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">15</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v089/iA03/JA089iA03p01553/JA089iA03p01553.pdf"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer is a temporally variable transition region located between the magnetotail lobes and the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We have made a survey of these regions by using particle spectra and three-dimensional velocity-space distributions sampled by the ISEE 1 LEPEDEA. Ion composition measurements obtained by the Lockhead ion mass spectrometers indicate that ionospheric ions play a crucial</p> <div class="credits"> <p class="dwt_author">T. E. Eastman; L. A. Frank; W.K. Peterson; W. Lennartsson</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013GeoRL..40.3362H"> <span id="translatedtitle">Small-scale magnetic fields on the lunar surface inferred from <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The origins of the lunar crustal magnetic fields remain unclear although dozens of magnetic field measurements have been conducted on and above the lunar surface. A major obstacle to resolving this problem is the extreme difficulty of determining a surface distribution of small-scale magnetization. We present a new technique to map small-scale magnetic fields using nonadiabatic scattering of high-energy <span class="hlt">electrons</span> in the terrestrial <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Particle tracing, utilizing three-dimensional lunar magnetic field data synthesized from magnetometer measurements, enables us to separate the contributions to <span class="hlt">electron</span> motion of small- and large-scale magnetic fields. We map significant kilometer-scale magnetic fields on the southwestern side of the South Pole-Aitken basin that are correlated with larger-scale magnetization. This implies that kilometer-scale magnetization may be ubiquitous over the lunar surface and related to the large-scale magnetization.</p> <div class="credits"> <p class="dwt_author">Harada, Yuki; Machida, Shinobu; Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Nishino, Masaki N.; Tsunakawa, Hideo; Shibuya, Hidetoshi; Takahashi, Futoshi; Matsushima, Masaki; Shimizu, Hisayoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.9220L"> <span id="translatedtitle">On energetic <span class="hlt">electrons</span> (>38 keV) in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Data analysis and modeling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The spatial distribution of >38 keV <span class="hlt">electron</span> fluxes in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) and the statistical relationship between the CPS <span class="hlt">electron</span> fluxes and the upstream solar wind and interplanetary magnetic field (IMF) parameters are investigated quantitatively using measurements from the Geotail satellite (1998-2004) at geocentric radial distances of 9-30 RE in the night side. The measured <span class="hlt">electron</span> fluxes increase with closer distance to the center of the neutral <span class="hlt">sheet</span>, and exhibit clear dawn-dusk asymmetry, with the lowest fluxes at the dusk side and increasing toward the dawn side. The asymmetry persists along the Earth's magnetotail region (at least to Geotail's apogee of 30 RE during the period of interest). Both the individual case and the statistical analysis on the relationship between >38 keV CPS <span class="hlt">electron</span> fluxes and solar wind and IMF properties show that larger (smaller) solar wind speed and southward (northward) IMF Bz imposed on the magnetopause result in higher (lower) energetic <span class="hlt">electron</span> fluxes in the CPS with a time delay of about 1 hour, while the influence of solar wind ion density on the energetic <span class="hlt">electrons</span> fluxes is insignificant. Interestingly, the energetic <span class="hlt">electron</span> fluxes at a given radial distance correlate better with IMF Bz than with the solar wind speed. Based on these statistical analyses, an empirical model is developed for the first time to describe the 2-D distribution (along and across the Earth's magnetotail) of the energetic <span class="hlt">electron</span> fluxes (>38 keV) in the CPS, as a function of the upstream solar wind and IMF parameters. The model reproduces the observed energetic <span class="hlt">electron</span> fluxes well, with a correlation coefficient R equal to 0.86. Taking advantage of the time delay, full spatial distribution of energetic <span class="hlt">electron</span> fluxes in the CPS can be predicted about 2 hours in advance using the real-time solar wind and IMF measurements at the L1 point: 1 hour for the solar wind to propagate to the magnetopause and a 1 hour delay for the best correlation. Such a prediction helps us to determine whether there are enough <span class="hlt">electrons</span> in the CPS available to be transported inward to enhance the outer <span class="hlt">electron</span> radiation belt.</p> <div class="credits"> <p class="dwt_author">Luo, Bingxian; Tu, Weichao; Li, Xinlin; Gong, Jiancun; Liu, Siqing; Burin des Roziers, E.; Baker, D. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7174737"> <span id="translatedtitle">Observations of correlated broadband electrostatic noise and <span class="hlt">electron</span>-cyclotron emissions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Technical report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electric field wave observations in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the earth's magnetosphere show the correlated occurrence of broadband electrostatic noise and electrostatic <span class="hlt">electron</span> cyclotron harmonic emissions. A model is proposed in which the broadband emissions are <span class="hlt">electron</span> acoustic waves generated by an observed low energy <span class="hlt">electron</span> beam, and the cyclotron emissions are generated by the hot <span class="hlt">electron</span> loss cone instability. The high degree of correlation between the two emissions is provided in the model by the presence of the cold <span class="hlt">electron</span> beam population, which allows both of the <span class="hlt">plasma</span> instabilities to grow.</p> <div class="credits"> <p class="dwt_author">Roeder, J.L.; Angelopoulos, V.; Baumjohann, W.; Anderson, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM43A1737P"> <span id="translatedtitle">Determining Mean <span class="hlt">Electron</span> Temperature Variation Along Magnetic Field Lines in the Earth's <span class="hlt">Plasma-sheet</span> Using Multipoint Measurements From Cluster</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Multi-point <span class="hlt">electron</span> temperature measurements from the Cluster constellation of spacecraft orbiting in tetrahedral formation provide a framework for calculating the local <span class="hlt">electron</span> temperature dependence on <span class="hlt">plasma</span> <span class="hlt">sheet</span> location. Separate parallel and perpendicular temperature components may vary strongly along two or even three dominant directions. Nevertheless, six representative <span class="hlt">plasma</span> <span class="hlt">sheet</span> crossings using varying Cluster tetrahedron scale sizes indicate the mean temperature variation in a given direction is dominated by the component along a single direction of maximal temperature change. The temperature variation perpendicular to this dominant direction is relatively small. Because <span class="hlt">plasma</span> transport occurs preferentially along the direction of the magnetic field, it is reasonable to infer the temperature should be constant along B-field lines. However, the observed magnetic field, and Tsyganenko-modeled field for our crossings have significant component along the dominant direction, and so exhibit large temperature variation along B. Temperature variations may persist regardless of <span class="hlt">plasma</span> mixing in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Implications for <span class="hlt">plasma</span> <span class="hlt">sheet</span> models, Alfven waves, and field-line resonances will be presented based on <span class="hlt">plasma</span>, energetic particle and magnetic field line detailed analysis.</p> <div class="credits"> <p class="dwt_author">Presicci, M. R.; Baker, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3762498"> <span id="translatedtitle">Probing the <span class="hlt">Plasma</span> Membrane Structure of Immune Cells Through the Analysis of Membrane <span class="hlt">Sheets</span> by <span class="hlt">Electron</span> Microscopy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">This chapter describes a method to generate <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span> that are large enough to visualize the membrane architecture and perform quantitative analyses of protein distributions. This procedure places the <span class="hlt">sheets</span> on <span class="hlt">electron</span> microscopy grids, parallel to the imaging plane of the microscope, where they can be characterized by transmission <span class="hlt">electron</span> microscopy. The basic principle of the technique is that cells are broken open (“ripped”) through mechanical forces applied by the separation of two opposing surfaces sandwiching the cell, with one of the surfaces coated onto an EM grid. The exposed inner membrane surfaces can then be visualized with <span class="hlt">electron</span> dense stains and specific proteins can be detected with gold conjugated probes.</p> <div class="credits"> <p class="dwt_author">Lillemeier, Bjorn F.; Davis, Mark M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM43A1906L"> <span id="translatedtitle">A statistical study of the THEMIS satellite data for <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> carrying auroral upward field-aligned currents</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The magnetospheric <span class="hlt">electron</span> precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric <span class="hlt">electrons</span> accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without <span class="hlt">electron</span> acceleration. We statistically investigate <span class="hlt">electron</span> density, temperature, thermal current, and conductivity in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(? nT^(1/2) where n is <span class="hlt">electron</span> density and T is <span class="hlt">electron</span> temperature in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>), represents the upper limit to field aligned current that can be carried by magnetospheric <span class="hlt">electrons</span> without field-aligned potential difference. The conductivity, K(? nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is important in understanding the ability of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral <span class="hlt">electron</span> data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral <span class="hlt">electrons</span> with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), <span class="hlt">electrons</span> can make sufficient thermal current without field-aligned potential difference, particularly during active time (AE > 100 nT). On the other hand, in the dusk side outer magnetosphere (source of the region 1), <span class="hlt">electron</span> density and temperature are small, thus the thermal current is much smaller than the typical auroral current suggested by Iijima and Potemra (JGR, 1976). From this result, we suppose that <span class="hlt">electron</span> acceleration is necessary on the dusk side region 1 upward field-aligned current. Our preliminary result, however, does not consider contamination of the radiation belt particles into the ESA data that is apparent inside 9 Re. In the presentation, we show the results with removal of the radiation belt particle contamination.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Shiokawa, K.; McFadden, J. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40946519"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> particle precipitation: A kinetic model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Ionospheric and <span class="hlt">plasma</span> <span class="hlt">sheet</span> particle densities, fluxes and bulk velocities along an auroral magnetic field line have been calculated for an ion-exosphere model. It is shown that such a collisionless model accounts for many features observed above the auroral regions. Except for very strong <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> precipitation, no large potential difference is needed along the magnetic field lines to</p> <div class="credits"> <p class="dwt_author">J. Lemaire; M. Scherer</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54077033"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">electronics</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper reviews the main directions and achievements in <span class="hlt">plasma</span> <span class="hlt">electronics</span> research in the U.S.S.R. This research encompasses fundamental <span class="hlt">plasma</span> investigations, the wave and oscillatory properties of <span class="hlt">plasmas</span>, various instabilities, and turbulence in <span class="hlt">plasmas</span>, with the purpose of achieving significant increases in the limiting currents, powers, and energies of beams as compared with the limits of vacuum technology. Aspects of</p> <div class="credits"> <p class="dwt_author">Ia. B. Fainberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/820113"> <span id="translatedtitle">MHD Ballooning Instability in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the <span class="hlt">plasma</span> compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the <span class="hlt">plasma</span> compressibility the MHD ballooning modes are unstable for the entire <span class="hlt">plasma</span> <span class="hlt">sheet</span> where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current <span class="hlt">sheet</span> region in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped <span class="hlt">electron</span> dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current <span class="hlt">sheet</span> region where the free energy associated with the <span class="hlt">plasma</span> pressure gradient and magnetic field curvature is maximum.</p> <div class="credits"> <p class="dwt_author">C.Z. Cheng; S. Zaharia</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AnGeo..30..751M"> <span id="translatedtitle">Evolution of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> pitch angle distribution by whistler-mode chorus waves in non-dipole magnetic fields</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a detailed numerical study on the effects of a non-dipole magnetic field on the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution and its implication for diffuse auroral precipitation. Use of the modified bounce-averaged Fokker-Planck equation developed in the companion paper by Ni et al. (2012) for 2-D non-dipole magnetic fields suggests that we can adopt a numerical scheme similar to that used for a dipole field, but should evaluate bounce-averaged diffusion coefficients and bounce period related terms in non-dipole magnetic fields. Focusing on nightside whistler-mode chorus waves at L = 6, and using various Dungey magnetic models, we calculate and compare of the bounce-averaged diffusion coefficients in each case. Using the Alternative Direction Implicit (ADI) scheme to numerically solve the 2-D Fokker-Planck diffusion equation, we demonstrate that chorus driven resonant scattering causes <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> to be scattered much faster into loss cone in a non-dipole field than a dipole. The <span class="hlt">electrons</span> subject to such scattering extends to lower energies and higher equatorial pitch angles when the southward interplanetary magnetic field (IMF) increases in the Dungey magnetic model. Furthermore, we find that changes in the diffusion coefficients are the dominant factor responsible for variations in the modeled temporal evolution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution. Our study demonstrates that the effects of realistic ambient magnetic fields need to be incorporated into both the evaluation of resonant diffusion coefficients and the calculation of Fokker-Planck diffusion equation to understand quantitatively the evolution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution and the occurrence of diffuse aurora, in particular at L > 5 during geomagnetically disturbed periods when the ambient magnetic field considerably deviates from a magnetic dipole.</p> <div class="credits"> <p class="dwt_author">Ma, Q.; Ni, B.; Tao, X.; Thorne, R. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005GeoRL..3224103L"> <span id="translatedtitle">Duskside auroral undulations observed by IMAGE and their possible association with large-scale structures on the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On February 6, 2002 large-scale undulations along the equatorward edge of the afternoon/dusk auroral oval were observed with the IMAGE FUV/Wideband Imaging Camera (WIC) during the late expansion/recovery phase of a substorm. The undulations are similar to others previously reported, but occur at higher than usual latitudes and map to the outer duskside magnetosphere, 1 to 2 RE beyond a plasmaspheric drainage plume. The mapping suggests that the undulations result from large-scale fluctuations on the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span>. 2.5-D simulations using representative <span class="hlt">plasma</span> parameters for this region indicate that such large-scale coherent structures can be created by a kinetic drift wave driven by the ion pressure gradient in the destabilizing curvature and grad B drift of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions.</p> <div class="credits"> <p class="dwt_author">Lewis, W. S.; Burch, J. L.; Goldstein, J.; Horton, W.; Perez, J. C.; Frey, H. U.; Anderson, P. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM13B2040M"> <span id="translatedtitle">Evolution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> pitch angle distribution by whistler-mode chorus waves in non-dipole magnetic fields: Comparisons with the use of dipole model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a detailed numerical study on the effects of non-dipole magnetic field on Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution and its implication for diffuse auroral precipitation. Use of the modified bounce-averaged Fokker-Planck equation for 2-D non-dipole magnetic fields suggests that we can follow the numerical schemes used for a dipole field but should evaluate bounce-averaged diffusion coefficients and bounce period related terms in non-dipole magnetic fields. Focusing on nightside whistler-mode chorus waves at L=6 within the Dungey magnetic models, we calculate and make comparison of the bounce-averaged diffusion coefficients in each case. Adoption of the Alternative Direction Implicit scheme to numerically solve 2-D Fokker-Planck diffusion equation gives the result that chorus driven resonant scattering diffuses the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> much faster into loss cone and also expands to lower energies and higher equatorial pitch angles when the southward interplanetary magnetic field increases in the Dungey magnetic model. Furthermore, we find that changes in diffusion coefficients are the dominant factor responsible for variations in modeled temporal evolution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution. Our study demonstrates that the effects of realistic ambient magnetic fields are required to be incorporated into both evaluation of resonant diffusion coefficients and calculation of Fokker-Planck diffusion equation to quantitatively understand the evolution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distribution and the occurrence of diffuse aurora, in particular at L>5 during geomagnetically disturbed periods when the ambient magnetic field considerably deviates from a magnetic dipole.</p> <div class="credits"> <p class="dwt_author">Ma, Q.; Ni, B.; Tao, X.; Thorne, R. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM24A..03C"> <span id="translatedtitle">Studying the Important Relationship Between Earth's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> and the Outer Radiation Belt <span class="hlt">Electrons</span> Using Newly Calibrated and Corrected Themis-Sst Data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Most recently, the solid-state telescope (SST) data from the THEMIS mission, which consisted of 5 spacecraft in highly elliptic, equatorial orbits that have traversed the outer radiation belt and sampled the <span class="hlt">plasma</span> <span class="hlt">sheet</span> for more than 4 years, have been characterized, calibrated, and decontaminated. Here, we present a brief introduction on this corrected dataset and go into detail on the valuable resource it provides to address science questions concerning the important relationship between ~1 keV-10's keV <span class="hlt">electrons</span> in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and 100's keV-MeV <span class="hlt">electrons</span> in Earth's outer radiation belt. We demonstrate this by presenting preliminary results on: studying phase space density (PSD) radial gradients for fixed first and second adiabatic invariants from the radiation belt into the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, examining pitch angle distributions near the boundary between these two regions, and studying the boundary region itself around the last closed drift shell and the role of magnetopause shadowing losses. We examine the dependence of PSD radial gradients on the first and second invariants to test previous results [e.g., Turner et al., GRL, 2008; Kim et al., JGR, 2010] that reveal mostly positive radial gradients for lower energy <span class="hlt">electrons</span> (10's - couple hundred keV) but negative gradients for relativistic <span class="hlt">electrons</span> beyond geosynchronous orbit. This directly relates to the current theory that lower energy <span class="hlt">electrons</span> have a source in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and are introduced to the ring current and radiation belt via substorm injections and enhanced convection, and these particles then generate the waves necessary to accelerate a fraction of this seed population to relativistic energies, providing a source of the outer radiation belt. Next, we take advantage of the pitch angle resolved differential energy fluxes to examine variations in pitch angle distributions to establish the role that Shabansky drift orbits, which break <span class="hlt">electrons</span>' second adiabatic invariant, play on outer belt <span class="hlt">electron</span> dynamics. Finally, THEMIS spacecraft often sample the last closed drift shell and the dayside magnetopause, and we use this new dataset to investigate dynamics in this important region as well as losses to the outer boundary, which may be critical to outer radiation belt dropout events. These preliminary examples are just a small sampling of the variety of studies that can be conducted with the THEMIS-SST dataset. We conclude with a brief discussion of how this corrected dataset should prove invaluable for sampling the source population in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the outer radiation belt beyond geosynchronous orbit during the upcoming NASA Radiation Belt Storm Probes mission.</p> <div class="credits"> <p class="dwt_author">Cruce, P. R.; Turner, D. L.; Angelopoulos, V.; Larson, D. E.; Shprits, Y.; Huang, C.; Ukhorskiy, A. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..11611216W"> <span id="translatedtitle">Spatial distributions of ions and <span class="hlt">electrons</span> from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the inner magnetosphere: Comparisons between THEMIS-Geotail statistical results and the Rice convection model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To understand the processes responsible for the formation and structure of <span class="hlt">plasma</span> <span class="hlt">sheet</span> and ring current particles, we have used THEMIS and Geotail data to investigate statistically the distributions of ions and <span class="hlt">electrons</span> from the midtail to the inner magnetosphere and compared them with results from the Rice convection model (RCM). The observed distributions show clear magnetic local time (MLT) asymmetries in the thermal energy and energy fluxes of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles but many more MLT symmetric ring current particles. Our RCM runs include both self-consistent electric and magnetic fields and realistic MLT-dependent outer particle sources. Starting with no initial particles, particles released from the RCM outer sources move along electric and magnetic drift paths and change energy adiabatically. Comparison of the observation with the simulation indicates that the particles along the open drift paths can account for the observed <span class="hlt">plasma</span> <span class="hlt">sheet</span> populations and that the observed significant MLT variations are a combined result of species- and energy-dependent drift and location-dependent source strength. The simulated energy and spatial distributions of the particles within closed drift paths are found to be consistent with the observed ring current particles. These ring current particles are originally <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles which became trapped along closed paths due to temporal variations of drift paths. The good agreement in key features of the spatial distributions of thermal energy and energy fluxes between the RCM and observations clearly indicates that electric and magnetic drift transport and the associated energization play dominant roles in <span class="hlt">plasma</span> <span class="hlt">sheet</span> and ring current dynamics.</p> <div class="credits"> <p class="dwt_author">Wang, Chih-Ping; Gkioulidou, Matina; Lyons, Larry R.; Wolf, Richard A.; Angelopoulos, Vassilis; Nagai, Tsugunobu; Weygand, James M.; Lui, A. T. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.0D05W"> <span id="translatedtitle">Entropy and <span class="hlt">plasma</span> <span class="hlt">sheet</span> transport</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper presents a focused review of the role of entropy in <span class="hlt">plasma</span> <span class="hlt">sheet</span> transport and also describes new calculations of the implications of <span class="hlt">plasma</span> <span class="hlt">sheet</span> entropy conservation for the case where the <span class="hlt">plasma</span> pressure is not isotropic. For the isotropic case, the entropy varies in proportion to log[PV5/3], where P is <span class="hlt">plasma</span> pressure and V is the volume of a tube containing one unit of magnetic flux. Theory indicates that entropy should be conserved in the ideal MHD approximation, and a generalized form of entropy conservation also holds when transport by gradient/curvature drift is included. These considerations lead to the conclusion that under the assumption of strong, elastic pitch angle scattering, PV5/3 should be approximately conserved over large regions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, though gradient/curvature drift causes major violations in the innermost region. Statistical magnetic field and <span class="hlt">plasma</span> models lead to the conclusion that PV5/3 increases significantly with distance downtail (pressure balance inconsistency). We investigate the possibility that the inconsistency could be removed or reduced by eliminating the assumption of strong, elastic pitch angle scattering but find that the inconsistency becomes worse if the first two adiabatic invariants are conserved as the particles drift. We consider two previously suggested mechanisms, bubbles and gradient/curvature drift, and conclude that the combination of the two is likely adequate for resolving the pressure balance inconsistency. Quantitatively accurate estimation of the efficiency of these mechanisms depends on finding a method of estimating PV5/3 (or equivalent) from spacecraft measurements. Two present approaches to that problem are discussed.</p> <div class="credits"> <p class="dwt_author">Wolf, R. A.; Wan, Yifei; Xing, X.; Zhang, J.-C.; Sazykin, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40745975"> <span id="translatedtitle">Substorms in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Thin Current <span class="hlt">Sheets</span> (TCS) are regularly formed prior to substorm breakup, even in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium</p> <div class="credits"> <p class="dwt_author">O. Le Contel; S. Perraut; A. Roux; R. Pellat; A. Korth</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001GeoRL..28.2771O"> <span id="translatedtitle">Distant <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion distributions during reconnection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Previous models of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> following reconnection and current <span class="hlt">sheet</span> acceleration predict ’lima-bean’ ion distributions. These are inconsistent with observational constraints. We postulate that following initial interaction with the current <span class="hlt">sheet</span>, a fraction of outflow ions are backscattered and re-encounter the current <span class="hlt">sheet</span>. Fermi acceleration processes then generate an additional high-energy outflow population. In the backscatter region these ions form a complete shell in velocity space, providing sufficient pressure to support weak fields. Further from the current <span class="hlt">sheet</span>, where backscatter is less efficient, a hemispherical shell of ions moves away from the current <span class="hlt">sheet</span>, and field strengths are nearer the external lobe value. The fastest ions stream ahead of the bulk population to form the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. This model predicts a multi-layered <span class="hlt">plasma</span> <span class="hlt">sheet</span> structure, consistent with recent GEOTAIL observations.</p> <div class="credits"> <p class="dwt_author">Owen, C. J.; Mist, R. T.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v089/iA10/JA089iA10p08885/JA089iA10p08885.pdf"> <span id="translatedtitle">Particle and field characteristics of the high-latitude <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Particle and field data obtained by eight ISEE spacecraft experiments are used to define more precisely the characteristics of the high-latitude boundary region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. A region immediately adjacent to the high-latitude <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary has particle and field characteristics distinctly different from those observed in the lobe and deeper in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. <span class="hlt">Electrons</span> over a</p> <div class="credits"> <p class="dwt_author">G. K. Parks; M. McCarthy; R. J. Fitzenreiter; K. W. Ogilvie; J. Etcheto; K. A. Anderson; R. P. Lin; R. R. Anderson; T. E. Eastman; L. A. Frank; A. T. Y. Lui; A. Pedersen; H. Reme; D. J. Williams</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA539720"> <span id="translatedtitle">Hybrid Kinetic Model of Asymmetric Thin Current <span class="hlt">Sheets</span> with Sheared Flows in a Collisionless <span class="hlt">Plasma</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A new model of equilibrium current <span class="hlt">sheets</span> in a collisionless <span class="hlt">plasma</span> incorporating ion flows that are asymmetric and sheared across the current <span class="hlt">sheet</span> is developed. Ions are treated as single particles and <span class="hlt">electrons</span> as a massless fluid. The resulting curren...</p> <div class="credits"> <p class="dwt_author">A. Szabo D. E. Larson J. Chen R. A. Sabtoro</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001JGR...106.6179K"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> thickness and electric currents</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two years of Geotail data in the (-30<x<-8,|y|<15)RE region first were sorted into (x, y, ?) boxes. Direct measurements of the average <span class="hlt">electron</span> and ion current densities, symmetry assumptions, and the momentum equation were used to get three different estimates of the electric current in each box. The momentum equation method gave the most consistent results, while the other two methods provided complementary information about particle drifts. The average common drift of <span class="hlt">electrons</span> and ions was found to be comparable to the average differential drift of ions with respect to <span class="hlt">electrons</span>. These two components of the ion drift velocity tended to cancel on the dawnside, resulting in currents that were primarily carried by <span class="hlt">electrons</span> moving at the common drift speed. The two ion drifts added on the duskside where ions carried most of the cross-tail current. The particle and magnetic field measurements were used to estimate the z thickness of each ? box. A concentration of the long-term-averaged cross-tail current was seen near the neutral <span class="hlt">sheet</span>. The region of nonadiabatic orbital motion had an average characteristic length scale of ~0.4RE. The principal <span class="hlt">plasma</span> <span class="hlt">sheet</span> extended to ~2.5RE from the neutral <span class="hlt">sheet</span> at midnight and to ~5RE in the flanks. The final result is a method to create models in (x, y, z) coordinates of the long-term-averaged values of any of the measured fluid parameters or fields. The isotropic portion of the pressure tensor was used as an example of one parameter that can be modeled. These pressure plots showed that the x component of the long-term-averaged magnetic field line tension force is important everywhere, that the z component is small everywhere, and that the y component is significant in the flanks.</p> <div class="credits"> <p class="dwt_author">Kaufmann, Richard L.; Ball, Bryan M.; Paterson, W. R.; Frank, L. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM41C1883W"> <span id="translatedtitle">Ion and <span class="hlt">electron</span> pressure distributions from the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the inner magnetosphere: THEMIS and Geotail observations and comparisons with the RCM simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> pressure is one of the most important controlling factors in magnetospheric dynamics. Using 3 years of THEMIS data and 11 years of Geotail measurements, we have determined statistically how equatorial ion and <span class="hlt">electron</span> pressures change from the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> (r~30 Re) to the inner magnetosphere (r~5 Re), and how they vary with the strength of the cross polar-cap potential (CPCP). Both ion and <span class="hlt">electron</span> pressures increase by at least an order of magnitude from r=30 to 5 Re. With decreasing r, ion pressure becomes slightly larger (a factor of <~1.5) in the pre-midnight than the post-midnight sector, while an opposite and much stronger MLT asymmetry (up to a factor of 3) is seen in <span class="hlt">electron</span> pressure. As CPCP increases, number densities decrease while temperatures increase in the region outside r~10 Re, resulting in no substantial changes in pressures. Inside r~10 Re, ion pressure increases slightly with increasing CPCP mainly in the pre-midnight sector, while <span class="hlt">electron</span> pressure increases significantly in the post-midnight sector. In most of the nightside region (except very close to the Earth) and under different CPCP, total <span class="hlt">plasma</span> pressure is fairly isotropic. The <span class="hlt">electron</span> to proton pressure ratio is relatively constant (~0.15) at r > ~15 Re and does not change with CPCP. Inside r~15 Re, the ratio increases with decreasing r and becomes larger with increasing CPCP with larger ratio (up to > 0.5) in the post-midnight sector. To understand the above distributions in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> and inner magnetosphere, we have simulated ion and <span class="hlt">electron</span> pressures resulting from particle drift transport using the Rice Convection Model (RCM) and the Tsyganenko 96 magnetic field model (T96) with outer MLT-dependent <span class="hlt">plasma</span> boundary conditions (at r~20 Re) established from Geotail observations. Despite the simulations are not in force balance, there is qualitative agreement in pressure distributions between simulations and observations. The RCM shows that as particles drift toward smaller r, magnetic drift becomes stronger due to adiabatic energization, while electric drift becomes increasingly affected by eastward corotation. Since electric and magnetic drifts are in the same direction for <span class="hlt">electrons</span> but in the opposite directions for ions, the combined total drift results in more pronounced MLT asymmetry in <span class="hlt">electron</span> pressures than ion pressures. As CPCP increases, decrease of cold particle source in the tail results in the density decrease and temperature increase, while enhanced convection moves <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles closer to the Earth, resulting in the pressure increase seen at smaller r. We are currently running the RCM with force-balance magnetic fields so that quantitative comparisons can be made. In addition, we are evaluating magnetic field configuration, field aligned currents, and ionospheric mapping of the equatorial structures from 3D force-balanced magnetospheric configurations that we are now able to establish using the observed pressures and a force balance magnetic field code.</p> <div class="credits"> <p class="dwt_author">Wang, C.; Gkioulidou, M.; Zaharia, S. G.; Lyons, L. R.; Angelopoulos, V.; Nagai, T.; Lui, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v103/iA08/97JA02986/97JA02986.pdf"> <span id="translatedtitle">The driving of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> by the solar wind</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The coupling of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the solar wind is studied statistically using measurements from various satellite pairs: one satellite in the solar wind and one in either the magnetotail central <span class="hlt">plasma</span> <span class="hlt">sheet</span> or the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. It is found that the properties of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> are highly correlated with the properties of the solar wind: specifically</p> <div class="credits"> <p class="dwt_author">Joseph E. Borovsky; Michelle F. Thomsen; Richard C. Elphic</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM52A..07G"> <span id="translatedtitle">Region 2 field-aligned currents and earthward penetration of the <span class="hlt">electron</span> and ion <span class="hlt">plasma</span> <span class="hlt">sheet</span> obtained from RCM simulations with a modified Dungey magnetic field solver, and comparison with observations in ionosphere and magnetosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ionospheric conductivity and field aligned currents (FAC) are two of the most important factors that control the magnetosphere - ionosphere (M-I) coupling. The relative location between conductivity and FAC strongly affect the spatial distribution of convection electric field, including the Harang reversal and Sub-Auroral Polarization Streams that are crucial to development of substorms and storms. The night-side conductivity strongly depends on <span class="hlt">electron</span> precipitation, and thus the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> and precipitation rate. On the other hand, Region 2 (R2) FAC are associated with pressure gradients in the near-Earth magnetosphere built up by <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions. To understand this aspect of M-I coupling, we have run simulations with the Rice Convection Model (RCM), integrated with a modified Dungey magnetic field solver for equatorial force balance, to investigate the earthward penetration of <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons and <span class="hlt">electrons</span> of different energies into the near-Earth magnetosphere under weak and enhanced convection. We have investigated in our simulations how different precipitation rate affects the relative locations of conductivity and FAC and the resulting M-I coupling. We evaluate these simulation results by comparing the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions and <span class="hlt">electrons</span> and their relative earthward edges with in situ THEMIS statistical results, and by comparing the simulated precipitating <span class="hlt">electron</span> energy fluxes, different ion and <span class="hlt">electron</span> equatorward precipitation boundaries, as well as their locations relative to R2 FAC in ionosphere, with previous published statistical DMSP studies [Newell et al., 2009; Ohtani et al., 2010].</p> <div class="credits"> <p class="dwt_author">Gkioulidou, M.; Wang, C.; Lyons, L. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v101/iA11/96JA02313/96JA02313.pdf"> <span id="translatedtitle">Structure of <span class="hlt">plasma</span> <span class="hlt">sheet</span> in magnetotail: Double-peaked electric current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the distant magnetotail observed by the Geotail satellite is examined. We found that the observed structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is often different from the standard Harris-type <span class="hlt">plasma</span> <span class="hlt">sheet</span> [Harris, 1962]. The observed structure can be expressed as a double-peaked current <span class="hlt">sheet</span> which has a pair of localized electric currents away from the</p> <div class="credits"> <p class="dwt_author">M. Hoshino; A. Nishida; T. Mukai; Y. Saito; T. Yamamoto; S. Kokubun</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE90013158"> <span id="translatedtitle">Nature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The regions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> adjacent to the north and south lobes of the magnetotail have been described by many experimenters as locations of beams of energetic ions and fast-moving <span class="hlt">plasma</span> directed primarily earthward and tailward along magnetic fiel...</p> <div class="credits"> <p class="dwt_author">E. W. Hones</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998JGR...10314995P"> <span id="translatedtitle">Mode conversion at the Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> wave data obtained by Galileo in Jupiter's magnetosphere often exhibit three distinct frequency bands in the frequency range between a few hertz and a few kilohertz. It is shown that these emissions are generally electromagnetic. They are identified by relating their characteristic frequencies to the solutions of the cold <span class="hlt">plasma</span> dispersion relation. Four modes are possible: X, Z, O, and whistler. Knowing the <span class="hlt">electron</span> gyrofrequency fee measured by the fluxgate magnetometer, we have considered two different hypotheses for the observed lower-frequency cutoff of the intermediate frequency emissions which occur below fee. Under these assumptions, characteristic frequencies have been computed from the cold <span class="hlt">plasma</span> theory and compared with the set of cutoff frequencies derived from the observations. Consistency checks lead to the identification of the intermediate frequency band as being on O mode with a low-frequency cutoff at the <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency fp. Below the O mode, Galileo detects whistler mode emissions (below fp). Above fee the observed emission is consistent with being X mode. An attempt is made to identify the source of the O mode radiation. Quasi-electrostatic waves are sometimes identified below the upper hybrid frequency when the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary is crossed. We suggest that these electrostatic waves, which are presumably generated by field-aligned <span class="hlt">electron</span> beams flowing along <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary, are successively mode converted into Z and later O mode. Thus the O mode observed mostly outside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is generated by mode conversion of primary electrostatic waves.</p> <div class="credits"> <p class="dwt_author">Perraut, Sylvaine; Roux, Alain; Louarn, Philippe; Gurnett, Donald A.; Kurth, Willaim S.; Khurana, K. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5184272"> <span id="translatedtitle"><span class="hlt">Electron</span> beam cutting in amorphous alumina <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have found that nanometer diameter holes and slots can be cut in thin <span class="hlt">sheets</span> of amorphous alumina using an intense <span class="hlt">electron</span> beam. The holes, formed by a nonthermal process, are uniform in diameter, are surrounded by metallic aluminum, and can penetrate a 100-nm <span class="hlt">sheet</span> in a few seconds. The amorphous alumina <span class="hlt">sheets</span> are formed by anodization of electropolished high purity aluminum. The <span class="hlt">electron</span> beam cutting seems very similar to the process reported in the metal ..beta..-aluminas. Since uniform, stable, and easily handled <span class="hlt">sheets</span> of amorphous alumina can be fabricated and <span class="hlt">electron</span> beam cut, this process is now practical for nanolithography as well as many other applications.</p> <div class="credits"> <p class="dwt_author">Mochel, M.E.; Eades, J.A.; Metzger, M.; Meyer, J.I.; Mochel, J.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..11612202L"> <span id="translatedtitle">A statistical study of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> carrying auroral upward field-aligned currents measured by Time History of Events and Macroscale Interactions during Substorms (THEMIS)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have statistically investigated the <span class="hlt">electron</span> density ne,M and temperature Te,M in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> in terms of the magnetosphere-ionosphere coupling process, as measured by the electrostatic analyzer (ESA) on board the Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) satellite from November 2007 to January 2010. To find out when and where an aurora can occur, either with or without <span class="hlt">electron</span> acceleration, the thermal current j?th and the conductivity K along the magnetic field line were also estimated from observations of the magnetospheric <span class="hlt">electrons</span> with pitch angle information inside 12 RE. The thermal current, j?th(? ne,M Te,M1/2), represents the upper limit of the field-aligned current that can be carried by magnetospheric <span class="hlt">electrons</span> without a field-aligned potential difference. The conductivity, K(? ne,M Te,M-1/2), relates the upward field-aligned current, j?, to the field-aligned potential difference, V?, assuming adiabatic <span class="hlt">electron</span> transport. The thermal current is estimated by two methods: (1) from the relation by using ne,M and Te,M and (2) from the total downward <span class="hlt">electron</span> number flux. We find that in the dawnside inner magnetosphere, the thermal currents estimated by both methods are sufficient to carry typical region 2 upward field-aligned current. On the other hand, in the duskside outer magnetosphere, a field-aligned potential difference is necessary on the region 1 current since the estimated thermal current is smaller than the typical region 1 current. By using the relationship, j? = KV?, where K is the conductivity estimated from Knight's relation and j? is the typical auroral current, we conclude that a field-aligned potential difference of V? = 2-5 kV is necessary on the duskside region 1 upward field-aligned current.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Shiokawa, K.; McFadden, J. P.; Nishimura, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002AnGeo..20.1737S"> <span id="translatedtitle">The storm time central <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> plays a key role during magnetic storms because it is the bottleneck through which large amounts of magnetic flux that have been eroded from the dayside magnetopause have to be returned to the dayside magnetosphere. Using about five years of Geotail data we studied the average properties of the near- and midtail central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) in the 10 30 RE range during magnetic storms. The earthward flux transport rate is greatly enhanced during the storm main phase, but shows a significant earthward decrease. Hence, since the magnetic flux cannot be circulated at a sufficient rate, this leads to an average dipolarization of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. An increase of the specific entropy of the CPS ion population by a factor of about two during the storm main phase provides evidence for nonadiabatic heating processes. The direction of flux transport during the main phase is consistent with the possible formation of a near-Earth neutral line beyond ~20 RE.</p> <div class="credits"> <p class="dwt_author">Schödel, R.; Dierschke, K.; Baumjohann, W.; Nakamura, R.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ApJ...771L..27T"> <span id="translatedtitle">Current <span class="hlt">Sheets</span> and Collisionless Damping in Kinetic <span class="hlt">Plasma</span> Turbulence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present the first study of the formation and dissipation of current <span class="hlt">sheets</span> at <span class="hlt">electron</span> scales in a wave-driven, weakly collisional, three-dimensional kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionless damping via resonant wave-particle interactions versus dissipation in small-scale current <span class="hlt">sheets</span> in weakly collisional <span class="hlt">plasma</span> turbulence. Current <span class="hlt">sheets</span> form self-consistently from the wave-driven turbulence, and their filling fraction is well correlated to the <span class="hlt">electron</span> heating rate. However, the weakly collisional nature of the simulation necessarily implies that the current <span class="hlt">sheets</span> are not significantly dissipated via Ohmic dissipation. Rather, collisionless damping via the Landau resonance with the <span class="hlt">electrons</span> is sufficient to account for the measured heating as a function of scale in the simulation, without the need for significant Ohmic dissipation. This finding suggests the possibility that the dissipation of the current <span class="hlt">sheets</span> is governed by resonant wave-particle interactions and that the locations of current <span class="hlt">sheets</span> correspond spatially to regions of enhanced heating.</p> <div class="credits"> <p class="dwt_author">TenBarge, J. M.; Howes, G. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22047039"> <span id="translatedtitle"><span class="hlt">Plasma</span> dynamics in laboratory-produced current <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Evolution of currents and Ampere forces in current <span class="hlt">sheets</span> are analyzed on the basis of magnetic measurements. Two new effects are observed in the current distributions at the later stage of the <span class="hlt">sheet</span> evolution: first, a broadening of the current area at the side edges of the current <span class="hlt">sheet</span>; second, a generation of reverse currents followed by their propagation from the edges to the center of the <span class="hlt">sheet</span>. Super-thermal <span class="hlt">plasma</span> flows moving across the width of the current <span class="hlt">sheet</span> are observed by spectroscopic methods. The energies of <span class="hlt">plasma</span> jets are consistent with the spatial structure and time dependences of the Ampere forces in the current <span class="hlt">sheets</span>. The assumption is advanced that <span class="hlt">plasma</span> acceleration may be more effective at the regions with lower <span class="hlt">plasma</span> density, which are located at some distances from the <span class="hlt">sheet</span> mid-plane. Generation of reverse currents provides an additional confirmation of transfer of energetic <span class="hlt">plasma</span> jets toward the <span class="hlt">sheet</span> edges.</p> <div class="credits"> <p class="dwt_author">Frank, Anna G.; Kyrie, Natalya P.; Satunin, Sergey N. [A.M. Prokhorov Institute of General Physics of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v084/iA11/JA084iA11p06471/JA084iA11p06471.pdf"> <span id="translatedtitle">ISEE 1 and 2 particle observations of outer <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Observations of particles structures by a medium-energy particle structures by a medium-energy particle experiment on ISEE 1 and 2 spacecraft at approx.20-R\\/sub E\\/ distance in the geomagnetic tail are presented. Comparison of our data with <span class="hlt">plasma</span> data indicated the existence of a layer of energetic <span class="hlt">electrons</span> and ions just outside the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The region outside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in</p> <div class="credits"> <p class="dwt_author">G. K. Parks; C. S. Lin; K. A. Anderson; R. P. Lin; H. Reme</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5384282"> <span id="translatedtitle">A pincer-shaped <span class="hlt">plasma</span> <span class="hlt">sheet</span> at Uranus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A model from Voigt et al. (1987) and an MHD simulation from Walker et al. (1989) both show that the curvature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at Uranus changes as the dipole tilt varies between 38{degree} and 22{degree}. The models suggest that one of the two partial traversals of the uranian <span class="hlt">plasma</span> <span class="hlt">sheet</span> made during the outbound trajectory of Voyager 2 can be explained as an entry into the highly curved <span class="hlt">plasma</span> <span class="hlt">sheet</span> that develops when Uranus is near the maximum dipole tilt value of 38{degree}; previously both partial traversals have been explained as anomalous. The spacecraft would have reversed its motion relative to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as the continued rotation diminished the dipole tilt and the retreating <span class="hlt">plasma</span> <span class="hlt">sheet</span> uncurled. As the dipole tilt approached its minimum value, spacecraft motion towards the neutral <span class="hlt">sheet</span> resumed and the traversal of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> was completed. Evidence from the PWS <span class="hlt">plasma</span> wave detector suggests that the spacecraft trajectory skimmed the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer for several hours prior to the partial immersion. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the Voigt et al. model was not located near the spacecraft during this time interval. On the other hand, the MHD simulation reveals a <span class="hlt">plasma</span> <span class="hlt">sheet</span> that is more curved than in the Boigt et al. model; near maximum dipole tilt, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is pincer-shaped. The unusual geometry implies that Voyager 2 remained near the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer during the period suggested by the PWS data. Thus the simulation accounts easily for the first of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> encounters previously called anomalous. The second partial immersion remains anomalous, having previously been related to substorm activity, and thus is not discussed here. The stagnation distances of the earth and Uranus at the nose of the magnetopause were used to scale the Walker et al. (1989) simulation of the terrestrial magnetosphere to represent the uranian magnetosphere.</p> <div class="credits"> <p class="dwt_author">Hammond, C.M.; Walker, R.J.; Kivelson, M.G. (Univ. of California, Los Angeles (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AnGeo..24.2685K"> <span id="translatedtitle">Energy-dispersed ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer and associated phenomena: Ion heating, <span class="hlt">electron</span> acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b). Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several <span class="hlt">plasma</span>-field characteristics: (a) bimodal ion conics (<1 keV), (b) field-aligned <span class="hlt">electron</span> flow (<1 keV), (c) perpendicular electric field spikes (~20 mV/m), (d) broadband electrostatic ELF wave packets (<12.5 Hz), and (e) enhanced broadband electromagnetic waves (<4 kHz). The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1-2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f) electrostatic waves (BEN) (up to 4 kHz), (g) traveling and standing ULF Alfvén waves, (h) field-aligned currents (FAC), and (i) auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster) of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest) than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines from the distant magnetotail to the ionosphere than the ion beams.</p> <div class="credits"> <p class="dwt_author">Keiling, A.; Parks, G. K.; Rème, H.; Dandouras, I.; Wilber, M.; Kistler, L.; Owen, C.; Fazakerley, A. N.; Lucek, E.; Maksimovic, M.; Cornilleau-Wehrlin, N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6645115"> <span id="translatedtitle">Periodic magnetic focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams focused by periodically cusped magnetic (PCM) fields are stable against low-frequency velocity-shear instabilities (such as the diocotron mode). This is in contrast to the more familiar unstable behavior in uniform solenoidal magnetic fields. A period-averaged analytic model shows that a PCM-focused beam is stabilized by ponderomotive forces for short PCM periods. Numerical particle simulations for a semi-infinite <span class="hlt">sheet</span> beam verify this prediction and also indicate diocotron stability for long PCM periods is less constraining than providing for space-charge confinement and trajectory stability in the PCM focusing system. In this article the issue of beam matching and side focusing for <span class="hlt">sheet</span> beams of finite width is also discussed. A review of past and present theoretical and experimental investigations of <span class="hlt">sheet</span>-beam transport is presented.</p> <div class="credits"> <p class="dwt_author">Booske, J.H.; Basten, M.A.; Kumbasar, A.H. (Electrical and Computer Engineering, University of Wisconsin---Madison, Madison, Wisconsin 53706 (United States)); Antonsen, T.M. Jr.; Bidwell, S.W.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Radack, D.J. (Laboratory for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA364135"> <span id="translatedtitle">X-Band Microwave Properties of a Rectangular <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Detailed scans of x-band microwave transmission, reflection and noise emission of various Agile Mirror <span class="hlt">plasma</span> <span class="hlt">sheets</span> as a function of frequency have been performed. The reflected microwave signal from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is compared to that reflected from an...</p> <div class="credits"> <p class="dwt_author">D. P. Murphy R. F. Fernsler R. A. Meger R. E. Pechacek</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990JGR....9514987H"> <span id="translatedtitle">A pincer-shaped <span class="hlt">plasma</span> <span class="hlt">sheet</span> at Uranus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An MHD simulation of the terrestrial magnetosphere, rescaled to represent the Uranian magnetotail, is carried out. The 3p immersion can be explained in terms of possible extreme departures from average <span class="hlt">plasma</span> <span class="hlt">sheet</span> shapes in the Uranian magnetosphere. The orientation of the Uranian dipole and rotation axes produce a dynamically curved <span class="hlt">plasma</span> <span class="hlt">sheet</span> which is an unusual feature of the Uranian magnetosphere.</p> <div class="credits"> <p class="dwt_author">Hammond, C. Max; Walker, Raymond J.; Kivelson, Margaret G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1539...66S"> <span id="translatedtitle">Multi-spacecraft observations of the heliospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The heliospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span> (HPS) has been described both as quasi-stationary and transient in nature. In order to better quantify the temporal and spatial scales under which each description is appropriate we have compared observations of the HPS from the two STEREO observatories and Wind. Identification criteria of the HPS included a change in magnetic sector from "towards" to "away" (or vice versa, identified using <span class="hlt">electron</span> pitch angle distributions), an increase in proton density, and minima in the proton specific entropy argument (T/n?-1) and alpha to proton number density ratio. Following the technique of Liu et al. (2010), we have classified each <span class="hlt">plasma</span> <span class="hlt">sheet</span> as leading, following, straddling, or absent from the heliospheric current <span class="hlt">sheet</span>. We find the configuration of the HPS agrees between the three spacecraft when longitudinal separation between observation points is 10 degrees or less (temporal separation of less than 1 day). Preliminary results show that in some cases the HPS is quasi-stationary over longitudinal scales of at least 25 degrees.</p> <div class="credits"> <p class="dwt_author">Simunac, K. D. C.; Galvin, A. B.; Farrugia, C. J.; Liu, Y. C.-M.; Luhmann, J. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38.2026K"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span>-like structures in the magnetotail lobes: discrete structures or transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>/lobe interface?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The INTERBALL-1 (IB-1) orbit gave the rare opportunity to study the near (up to -27 RE ) magnetotail lobes. The analysis of magnetic field, <span class="hlt">electron</span> and ion measurements during 576 hours of lobe observations shows that several types of <span class="hlt">plasma</span> regimes are encountered, but they can be organized in two main classes reflecting their origin: <span class="hlt">plasmas</span> in which both <span class="hlt">electrons</span> and ions have energies typical for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (PS) and <span class="hlt">plasmas</span>, in which the <span class="hlt">electrons</span> have energies up to few hundreds eV typical for the magnetosheath, accompanied by ions with different characteristics. In the present work we discus the first class of structures -those with PS-like <span class="hlt">electrons</span>. Previous studies performed on the basis of only ion (IB-1) measurements (Grigorenko et al., 2002) found two types of lobe ion structures with PS energies -field-aligned beams of accelerated ions and <span class="hlt">plasma</span> structures of various durations with quasi-isotropic veloc-ity distribution functions. The field-aligned ion beams (beamlets) were successfully interpreted as a result of non-adiabatic ion acceleration in the current <span class="hlt">sheet</span> of the Earth's magnetotail. The mechanism of formation of the PS-structures (<span class="hlt">plasma</span> clouds) was not obvious. Moreover it seemed that different mechanisms act depending on the direction of the interplanetary mag-netic field. Re-examination of the <span class="hlt">plasma</span> clouds, already using <span class="hlt">electron</span> and magnetic field measurements, gives new insight of their nature. For example, it proved that some cases were identified as different structures only because week ion fluxes in the lobes are more difficult to be measured in comparison with the <span class="hlt">electron</span> fluxes. Multipoint CLUSTER observations allow studying spatial geometry of these structures. We analyzed several cases when, at one and the same time, some of CLUSTER satellites register <span class="hlt">plasma</span> clouds and others register beamlets, which unambiguously is due to the different spatial location of the spacecraft. Beamlets are considered a signature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer so the analyzed discrete structures are in fact transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> -lobe interface. The non-adiabatic beam-let acceleration takes place in a localised (in dawn-dusk direction) source in the current <span class="hlt">sheet</span> and then at the lobe-PS interface there are flux tubes, containing beamlets and flux tubes, containing isotropic <span class="hlt">plasma</span>. Our hypothesis is that the observed by IB-1 <span class="hlt">plasma</span> clouds in their majority are not discrete structures but transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> -lobe interface.</p> <div class="credits"> <p class="dwt_author">Koleva, Rositza; Grigorenko, Elena; Sauvaud, Jean-Andre; Zeleniy, Lev</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM43A1739K"> <span id="translatedtitle">Entropy Gradients in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Geotail data from near the neutral <span class="hlt">sheet</span> were used to study the spatial and flow speed dependencies of the entropy per unit volume, the entropy per unit flux tube, and the average entropy per particle. It was found that some interaction associated with the acceleration of fast flows was not isentropic. It also was found that entropy in the fastest flows exhibited little y-dependence, showing that the process that generates these flows near midnight is similar to the process that acts near the flanks. The PV^5/3 parameter that is commonly used to study variations of the entropy per unit flux tube along a streamline was found to be suitable to use whenever either the number of particles per unit flux tube or the energy invariant was being conserved. Problems related to statistical fluctuations of the counts per energy-angle box arose when evaluating a parameter designed to measure the deviation of the measured nonMaxwellian <span class="hlt">plasma</span> from equilibrium. The most reliable result from this part of the study was that fast flow <span class="hlt">plasmas</span> were farther from equilibrium than were slow flow <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Kaufmann, R. L.; Paterson, W. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50059990"> <span id="translatedtitle"><span class="hlt">Electronically</span> steerable <span class="hlt">plasma</span> mirror</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electronic</span> steering of microwave beams using a <span class="hlt">plasma</span> mirror allows the use of wide instantaneous bandwidth waveforms. Areas of application for a <span class="hlt">plasma</span> mirror based antenna system include ship self-defense, high-resolution radar imaging, high data rate communications, spread spectrum links, and remote sensing. Recent experiments have demonstrated that a planar <span class="hlt">plasma</span> mirror immersed in a magnetic field, can be formed</p> <div class="credits"> <p class="dwt_author">J. Mathew; R. A. Meger; J. A. Gregor; D. P. Murphy; R. E. Pechacek; R. F. Fernsler; W. M. Manheimer</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53527409"> <span id="translatedtitle">Dynamics and seasonal variations in Saturn's magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span>, as measured by Cassini</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyze <span class="hlt">electron</span> <span class="hlt">plasma</span>, energetic ion, and magnetic field data from four almost vertical Cassini passes through the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span> of Saturn (segments of the high-latitude orbits of the spacecraft) separated in two subsets: two passes of identical geometry from January 2007 with Cassini crossing the equatorial plane in the postmidnight sector at a distance of ˜21 Saturn radii</p> <div class="credits"> <p class="dwt_author">N. Sergis; C. S. Arridge; S. M. Krimigis; D. G. Mitchell; A. M. Rymer; D. C. Hamilton; N. Krupp; M. K. Dougherty; A. J. Coates</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..DPPUO1011F"> <span id="translatedtitle">Influence of a Structureof Magnetic Field with X-line on <span class="hlt">Plasma</span> Parameters in Current <span class="hlt">Sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Spatial distribution of <span class="hlt">electron</span> concentration in current <span class="hlt">sheets</span> (CS) formed in magnetic fields with X-lines, in a presence of Bz-component along X-line, have been studied by the interference-holographic method. We obtained 2D distributions of <span class="hlt">plasma</span> density at a plane normal to X-line and observed evolution of <span class="hlt">plasma</span> configurations. It was shown earlier that CS with <span class="hlt">plasma</span> compressed into the <span class="hlt">sheet</span> could be formed in the fields with X-lines [1,2]. Now we demonstrate that <span class="hlt">plasma</span> density and <span class="hlt">sheet</span> thickness are rather sensitive to Bz-strength. Its increase brings about a fall of <span class="hlt">plasma</span> density throughout the <span class="hlt">sheet</span> and an enlarged <span class="hlt">sheet</span> thickness; <span class="hlt">plasma</span> density gradient goes down sharply, but a total amount of <span class="hlt">electrons</span> inside CS does not significantly vary. Thus a strong magnetic field component along the X-line results in lower <span class="hlt">plasma</span> compression, the effect is likely due to enhancement of longitudinal field inside CS. Supported by the Russian Foundation for Basic Research, grant 99-02-18351. 1. Bogdanov S.Yu., et al. // JETP Lett. 2000. V.71. P.53. 2. Frank A.G., et al.// EPS 2001. V.53.</p> <div class="credits"> <p class="dwt_author">Frank, Anna; Bogdanov, Sergey; Markov, Vladimir; Dreiden, Galina; Komissarova, Irina; Ostrovskaya, Galya; Shedova, Elena</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6495552"> <span id="translatedtitle">Thinning of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorms. Technical report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Concurrent measurements of <span class="hlt">plasma</span> by the SCATHA satellite in near-synchronous orbit and by ISEE 2 in the near magnetotail are used to examine the phenomenon of <span class="hlt">plasma-sheet</span> thinning associated with substorms. Results show that thinning occurs in two stages, thought to be attributable to two different processes. For 30-60 minutes before expansive phase offset, gradual thinning occurred over the region from geosynchronous orbit out to 20 RE in the tail. This was attributable to the tail-like configuration thought to lead to neutral line formation and the beginning of magnetic reconnection within the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. At expansive phase onset, extreme thinning was seen and is thought to occur as a portion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (a plasmoid), severed by magnetic connection at a near-earth neutral line, quickly departs tailward. Earthward of the neutral line, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> expanded. Results generally support the neutral-line model of substorms.</p> <div class="credits"> <p class="dwt_author">Hones, E.W.; Bame, S.J.; Fennell, J.F.; Croley, D.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-03-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26676966"> <span id="translatedtitle">Processing Effects in <span class="hlt">Plasma</span> Forming of <span class="hlt">Sheet</span> Metal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A non-transferred arc <span class="hlt">plasma</span> torch has been used as a controllable heat source to produce internal stress in <span class="hlt">sheet</span> metals, causing plastic deformation without the necessity of hard tooling. This method has the potential to reduce development cost and lead time for forming <span class="hlt">sheet</span> metal prototype parts. Experimental work using a robotic system has been performed on 0.8mm thick <span class="hlt">sheets</span></p> <div class="credits"> <p class="dwt_author">A. T. Male; C. Pan; Y. W. Chen; P. J. Li; Y. M. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010GeoRL..3721101K"> <span id="translatedtitle">Escape of O+ through the distant tail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In February 2007, the STEREO-B spacecraft encountered the magnetosheath, <span class="hlt">plasma</span> <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer from about 200 RE to 300 RE downtail. This time period was during solar minimum, and there was no storm activity during this month. Using data from the PLASTIC instrument, we find that even during quiet times, O+ is a constant feature of the deep magnetotail, with an O+ density of about 15% of the O+ density in the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The total outflow rate of the O+ down the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is 1.1 × 1024 ions/s, which is 10% of the total outflow rate of 1 × 1025 ions/s, and of the same order as the estimated loss from dayside transport.</p> <div class="credits"> <p class="dwt_author">Kistler, L. M.; Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.; Farrugia, C.; Moebius, E.; Lee, M. A.; Blush, L. M.; Bochsler, P.; Wurz, P.; Klecker, B.; Wimmer-Schweingruber, R. F.; Opitz, A.; Sauvaud, J.-A.; Thompson, B.; Russell, C. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1980Natur.287..813B"> <span id="translatedtitle">The dynamic expansion and contraction of the Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Observations suggesting the sequential expansion and compression of the Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> are reported. <span class="hlt">Plasma</span> flow in the vicinity of Jupiter was monitored by the four modulated-grid Faraday cups on board each of the Voyager spacecraft at times of closest Jupiter approach. Sensor measurements reveal the flow of magnetospheric <span class="hlt">plasma</span> to be directed away from the equatorial current <span class="hlt">sheet</span> near local noon and to be directed towards the <span class="hlt">sheet</span> in the dusk to midnight sector. The observed flow patterns are interpreted in terms of short-time-scale perturbations of magnetic flux tubes due to the compression of the dayside magnetosphere by the solar wind. It is noted that such a dynamic motion is quite different from what would be expected of slower, quasi-static equilibrium <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansion and contraction.</p> <div class="credits"> <p class="dwt_author">Belcher, J. W.; McNutt, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1981JGR....86.7543A"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> motions inferred from medium-energy ion measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Cross-field motions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during the expansion phase of substorm recovery are followed based on ISEE 2 measurements of ions of energy greater than 25 keV. Simultaneous measurements at four points 1 gyroradius from the satellite were obtained by the WAPS and NAPS instruments on 13 separate recovery events. Upward velocities of about 50 km/sec are generally found from local measurements of <span class="hlt">plasma</span> <span class="hlt">sheet</span> edge crossings, a value high in comparison with two-satellite measurements. The high speeds may be explained by waves in the form of field-aligned corrugations of the <span class="hlt">sheet</span> boundary. After the passage of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary, particle fluxes drifting downward toward the neutral <span class="hlt">sheet</span> are often encountered which are interpreted as an E x B drift. At the outer <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary, the streaming ion layer is found to have a peaked spectrum that softens as the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is approached. Results are consistent with the tailward motion of a source region together with a cross-tail electric field.</p> <div class="credits"> <p class="dwt_author">Andrews, M. K.; Keppler, E.; Daly, P. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM33B1900K"> <span id="translatedtitle">Escape of O+ Through the Distant Tail <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the early orbit phase of the STEREO mission, in February, 2007, the STEREO-B spacecraft went down the deep magnetotail, and encountered the magnetosheath, <span class="hlt">plasma</span> <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer from about 200 Re to 300 Re downtail, before finally exiting to the solar wind. This time period was during solar minimum, and there was no storm activity during this month. We have used the ion composition data from the PLASTIC instrument to determine how much ionospheric O+ is in the deep tail <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and to calculate the loss rate through this path. Surprisingly, we find that during this solar and geomagnetically quiet time, O+ is a constant feature of the deep magnetotail. We find that the O+ density is about 15% of the density in the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The observations provide a consistent picture that some O+ is transported into the distant tail in the lobe/mantle region, and then enters the <span class="hlt">plasma</span> <span class="hlt">sheet</span> tailward of the distant neutral line. The total outflow of the O+ down the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is a rate of 1.1x1024 ions/s, which is 10% of the total outflow rate of 1x 1025 ions/s, and of the same order as the estimated loss from dayside transport.</p> <div class="credits"> <p class="dwt_author">Kistler, L. M.; Galvin, A. B.; Popecki, M.; Simunac, K. D.; Farrugia, C. J.; Moebius, E.; Lee, M. A.; Blush, L. M.; Bochsler, P. A.; Wurz, P.; Klecker, B.; Wimmer-Schweingruber, R. F.; Opitz, A.; Sauvaud, J.; Russell, C. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20722065"> <span id="translatedtitle">Experimental study of <span class="hlt">plasma</span> compression into the <span class="hlt">sheet</span> in three-dimensional magnetic fields with singular X lines</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The formation and evolution of the <span class="hlt">plasma</span> <span class="hlt">sheets</span> resulting from the <span class="hlt">plasma</span> compression in diversified three-dimensional (3D) magnetic configurations with singular X lines are reported on. The research was focused on the correlation between the structure of a <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the topology of the initial 3D magnetic configuration, especially on the impact of the guide field aligned with the X line. It has been demonstrated experimentally that <span class="hlt">plasma</span> compression and formation of extended <span class="hlt">plasma</span> <span class="hlt">sheets</span> can take place in configurations with the X lines in the presence of a strong guide field. The <span class="hlt">electron</span> density distributions in the <span class="hlt">plasma</span> <span class="hlt">sheets</span> were found to be rather sensitive to the magnetic field topology. The experiments revealed the effect of progressive decrease of the <span class="hlt">plasma</span> compression ratio in response to increasing guide field. This effect has two basic manifestations: a decrease of the maximum <span class="hlt">plasma</span> density and an enlargement of the <span class="hlt">sheet</span> thickness. Based on the experimental data we advanced a concept that the deterioration of <span class="hlt">plasma</span> compression into the <span class="hlt">sheet</span> is due to enhancement of the guide field inside the <span class="hlt">sheet</span> over its initial value, and due to excitation of additional currents in the plane perpendicular to the singular X line and to the original current in the <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Frank, Anna G.; Bogdanov, Sergey Yu.; Markov, Vladimir S.; Ostrovskaya, Galya V.; Dreiden, Galina V. [A.M. Prokhorov Institute of General Physics of the Russian Academy of Sciences, Moscow (Russian Federation); A.F. Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52654663"> <span id="translatedtitle">Camera data <span class="hlt">sheet</span> for pictorial <span class="hlt">electronic</span> still cameras</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A data <span class="hlt">sheet</span> is presented outlining the performance and characteristics of a Kodak DCS 200mi camera. In addition to providing information on this camera, the format and content of the data <span class="hlt">sheet</span> could serve as a guide in the organization and display of pertinent information on <span class="hlt">electronic</span> still cameras in general. Such data <span class="hlt">sheets</span> are already common in silver halide</p> <div class="credits"> <p class="dwt_author">Sabine Susstrunk; Jack M. Holm</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/28506"> <span id="translatedtitle">Auroral ionospheric signatures of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer in the evening sector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors report on particles and fields observed during Defense Meteorological Satellite Program (DMSP) F9 and DE 2 crossings of the polar cap/auroral oval boundary in the evening MLT sector. Season-dependent, latitudinally narrow regions of rapid, eastward <span class="hlt">plasma</span> flows were encountered by DMSP near the poleward boundary of auroral <span class="hlt">electron</span> precipitation. Ten DE 2 orbits exhibiting electric field spikes that drive these <span class="hlt">plasma</span> flows were chosen for detailed analysis. The boundary region is characterized by pairs of oppositely-directed, field-aligned current <span class="hlt">sheets</span>. The more poleward of the two current <span class="hlt">sheets</span> is directed into the ionosphere. Within this downward current <span class="hlt">sheet</span>, precipitating <span class="hlt">electrons</span> either had average energies of a few hundred eV or were below polar rain flux levels. Near the transition to upward currents, DE 2 generally detected intense fluxes of accelerated <span class="hlt">electrons</span> and weak fluxes of ions, both with average energies between 5 and 12 keV. In two instances, precipitating ions with energies >5 keV spanned both current <span class="hlt">sheets</span>. Comparisons with satellite measurements at higher altitudes suggest that the particles and fields originated in the magnetotail inside the distant reconnection region and propagated to Earth through the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. Auroral <span class="hlt">electrons</span> are accelerated by parallel electric fields produced by the different pitch angle distributions of protons and <span class="hlt">electrons</span> in this layer interacting with the near-Earth magnetic mirror. Electric field spikes driving rapid <span class="hlt">plasma</span> flows along the poleward boundaries of intense, keV <span class="hlt">electron</span> precipitation represent ionospheric responses to the field-aligned currents and conductivity gradients. The generation of field-aligned currents in the boundary layer may be understood qualitatively as resulting from the different rates of earthward drift for <span class="hlt">electrons</span> and protons in the magnetotail`s current <span class="hlt">sheet</span>. 45 refs., 7 figs., 2 tabs.</p> <div class="credits"> <p class="dwt_author">Burke, W.J.; Machuzak, J.S.; Maynard, N.C. [Phillips Lab., Hanscom Air Force Base, MA (United States); Basinska, E.M.; Erickson, G.M. [Boston Univ., MA (United States); Hoffman, R.A.; Slavin, J.A. [Goddard Space Flight Center, Greenbelt, MD (United States); Hanson, W.B. [Univ. of Texas, Dallas, Richardson, TX (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PlST...15..979H"> <span id="translatedtitle">Upper Hybrid Resonance of Microwaves with a Large Magnetized <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A large magnetized <span class="hlt">plasma</span> <span class="hlt">sheet</span> with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the <span class="hlt">electron</span> density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the <span class="hlt">electron</span> density of this magnetized <span class="hlt">plasma</span> <span class="hlt">sheet</span> apparatus. Moreover, it is pointed out that the operating parameters of the large <span class="hlt">plasma</span> <span class="hlt">sheet</span> in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.</p> <div class="credits"> <p class="dwt_author">Huo, Wenqing; Guo, Shijie; Ding, Liang; Xu, Yuemin</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001JGR...106.6161W"> <span id="translatedtitle">Modeling the quiet time inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In order to understand the characteristics of the quiet time inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons, we use a modified version of the Magnetospheric Specification Model to simulate the bounce averaged electric and magnetic drift of isotropic <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons in an approximately self-consistent magnetic field. Proton differential fluxes are assigned to the model boundary to mimic a mixed tail source consisting of hot <span class="hlt">plasma</span> from the distant tail and cooler <span class="hlt">plasma</span> from the low latitude boundary layer (LLBL). The source is local time dependent and is based on Geotail observations and the results of the finite tail width convection model. For the purpose of self-consistently simulating <span class="hlt">plasma</span> motion and a magnetic field, the Tsyganenko 96 magnetic field model is incorporated with additional adjustable ring-current shaped current loops. We obtain equatorial proton flow and midnight and equatorial profiles of proton pressure, number density, and temperature. We find that our results agree well with observations. This indicates that the drift motion dominates the <span class="hlt">plasma</span> transport in the quiet time inner <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Our simulations show that cold <span class="hlt">plasma</span> from the LLBL enhances the number density and the proton pressure in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> and decreases the dawn-dusk asymmetry of the equatorial proton pressure. From our approximately force-balanced simulations the magnetic field responds to the increase of pressure gradient force in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> by changing its configuration to give a stronger magnetic force. At the same time, the <span class="hlt">plasma</span> dynamics is affected by the changing field configuration and its associated pressure gradient force becomes smaller. Our model predicts a quiet time magnetic field configuration with a local depression in the equatorial magnetic field strength at the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and a cross-tail current separated from the ring current, results that are supported by observations. A scale analysis of our results shows that in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> the magnitude of the Hall term in the generalized Ohm's law is not small compared with the quiet time electric field. This suggests that the frozen-in condition <bold>E</bold>=-<bold>v</bold>×<bold>B</bold> is not valid in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> and that the Hall term needs to be included to obtain an appropriate approximation of the generalized Ohm's law in that region.</p> <div class="credits"> <p class="dwt_author">Wang, Chih-Ping; Lyons, Larry R.; Chen, Margaret W.; Wolf, Richard A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50042106"> <span id="translatedtitle"><span class="hlt">Electronically</span> steerable <span class="hlt">plasma</span> mirror for surveillance radar applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An alternative to using a phased array to steer a radar beam is to <span class="hlt">electronically</span> control the orientation of an inertialess broadband microwave reflector. Recent experiments have demonstrated that a planar <span class="hlt">plasma</span> mirror immersed in a magnetic field, can be formed with <span class="hlt">electron</span> densities high enough to reflect X-band microwaves. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be steered in elevation using the</p> <div class="credits"> <p class="dwt_author">J. Mathew; R. A. Meger; J. A. Gregort; D. P. Murphy; R. E. Pechacek; R. F. Fernsler; W. M. Manheimer</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM52A..03H"> <span id="translatedtitle">Roles of double lobe reconnection and Kelvin-Helmholtz instability in the formation of the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span>: A statistical study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is well known that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> becomes cold and dense under prolonged northward IMF conditions [e.g., Terasawa et al., 1997]. Two major candidates, (1) high latitude reconnections in both hemispheres which capture magnetosheath <span class="hlt">plasmas</span> on the newly closed field lines (double lobe reconnection) [e.g., Song and Russell, 1992] and (2) effective diffusive transport of magnetosheath <span class="hlt">plasma</span> induced by the Kelvin-Helmholtz instability at the flank magnetopause [e.g., Hasegawa et al., 2004], have been discussed to account for the formation of the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The relative importance of the double lobe reconnection and the Kelvin-Helmholtz instability in the formation of the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> is so far an open question. We quantitatively examined the properties of the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> by fitting the observed ion and <span class="hlt">electron</span> velocity distributions to a single/two-component Maxwellian. We statistically show that the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the dusk magnetosphere is characterized by ions consisting of separate cold and hot component and <span class="hlt">electrons</span> consisting of a single cold component. Although the absence of a hot <span class="hlt">electron</span> component in the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be explained naturally if we blame the formation of the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> on the double lobe reconnection scenario, it is hard to be explained by diffusion induced by the Kelvin-Helmholtz instability at the magnetopause. We also show that a sharp boundary exists between the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the hot tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The observed velocity distributions of ions and <span class="hlt">electrons</span> in the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> bordered by the hot tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span> indicate the supply of the hot ion component by diffusion and gradient/curvature B drift. The cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed just inside the Kelvin-Helmholtz unstable magnetopause further suggests that the double lobe reconnection and the Kelvin-Helmholtz instability can occur simultaneously.</p> <div class="credits"> <p class="dwt_author">Hirai, M.; Hoshino, M.; Hashimoto, K.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48945815"> <span id="translatedtitle">Ballooning instability at the <span class="hlt">plasma</span> <span class="hlt">sheet</span>–lobe interface and its implications for polar arc formation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Huang et al. (1987, 1989) reported hot filaments of <span class="hlt">plasma</span> <span class="hlt">sheet</span> origin filling the magnetospheric lobes during northward interplanetary magnetic field (IMF). On the other hand, cold <span class="hlt">plasma</span> transients of presumably lobe origin are often observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These features can be interpreted in terms of <span class="hlt">plasma</span> exchange at the <span class="hlt">plasma</span> <span class="hlt">sheet</span>–lobe interface (PSLI) proceeding in a filamentary</p> <div class="credits"> <p class="dwt_author">I. V. Golovchanskaya; A. Kullen; Y. P. Maltsev; H. Biernat</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.space.irfu.se/anita/jgr06.pdf"> <span id="translatedtitle">Ballooning instability at the <span class="hlt">plasma</span> <span class="hlt">sheet</span>-lobe interface and its implications for polar arc formation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Huang et al. (1987, 1989) reported hot filaments of <span class="hlt">plasma</span> <span class="hlt">sheet</span> origin filling the magnetospheric lobes during northward interplanetary magnetic field (IMF). On the other hand, cold <span class="hlt">plasma</span> transients of presumably lobe origin are often observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These features can be interpreted in terms of <span class="hlt">plasma</span> exchange at the <span class="hlt">plasma</span> <span class="hlt">sheet</span>-lobe interface (PSLI) proceeding in a filamentary</p> <div class="credits"> <p class="dwt_author">I. V. Golovchanskaya; A. Kullen; Y. P. Maltsev; H. Biernat</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7061442"> <span id="translatedtitle">Effects of ion demagnetization in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The processes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the earth's magnetotail that can generate the field-aligned currents associated with auroral arcs are investigated using a two-and-a-half-dimensional nonradiative electromagnetic particle code in the Darwin approximation. All three components of the magnetic field, as well as the effect of electrostatic interaction, are calculated. The results include the response of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the application of a convection electric field, the heating of <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions, and the generation of y-directed magnetic fields and currents in the plane of simulation. The relation of these results to other morphological features of auroral/magnetospheric substorms is discussed. 17 refs.</p> <div class="credits"> <p class="dwt_author">Swift, D.W. (Alaska Univ., Fairbanks (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFMSM11C..05R"> <span id="translatedtitle">Cold Dense <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Formation During Northward IMF</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A cold, dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CDPS) is often observed when the IMF has been northward for an extended time period, usually several hours. One such period occurred October 22/23, 2003. During that period the IMF was strongly northward for approximately 36 hours, while Cluster II observed a cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We present detailed global simulation results for this event that show how the CDPS develops due to lobe reconnection, which causes IMF flux tubes to be captured and subsequently convected into the tail, forming the CDPS.</p> <div class="credits"> <p class="dwt_author">Raeder, J.; Li, W.; Dorelli, J.; Oieroset, M.; Phan, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..774P"> <span id="translatedtitle">Observations of polar cap flow channel and <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow bursts during substorm expansion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present the first simultaneous observations of an enhanced polar cap flow impinging on the nightside polar cap boundary (PCB), two flow bursts in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and a conjugate ionospheric flow burst within the auroral oval. The ionospheric measurements on 3 September 2006 were made by the European Incoherent Scatter (EISCAT) radars and the magnetospheric measurements by the four Cluster spacecraft. In the end of a substorm growth phase, EISCAT measured a channel of enhanced equatorward <span class="hlt">plasma</span> flow within the polar cap, which was about 1° wide in latitude and drifted slowly equatorward. During the substorm expansion phase, the PCB started to contract poleward. The interaction between the equatorward drifting polar cap flow channel and the poleward contracting PCB took 2-3 min. During this time, the F-region <span class="hlt">electron</span> temperature was elevated at the PCB, which is interpreted as a possible signature of an auroral poleward boundary intensification (PBI). After that, enhanced equatorward flows were measured inside the auroral oval by EISCAT. During this period, the Cluster satellites measured two fast earthward flow bursts in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which were associated with dipolarizations of the magnetic field, depletions in <span class="hlt">plasma</span> density, and return flows. We suggest that the second flow burst in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> represents the same flow burst that is seen in the ionosphere by EISCAT and propose that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow bursts were triggered by the enhanced flow structure on open polar cap field lines. The suggestion is in line with Lyons et al. (2011).</p> <div class="credits"> <p class="dwt_author">PitkäNen, T.; Aikio, A. T.; Juusola, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phy6.org/Education/Ielect.html"> <span id="translatedtitle"><span class="hlt">Electrons</span>, Ions and <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This explanation of the factors that produce the polar aurora, (northern lights) discusses the role of <span class="hlt">electrons</span> in the ionosphere, positive ions in the solar wind, and the mixing of the two to create <span class="hlt">plasma</span>. The work of Kristian Birkeland of Norway in exploring the cause of the aurora is cited and a link leads to in-depth information on auroras, including some dramatic photographs.</p> <div class="credits"> <p class="dwt_author">Stern, David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phy6.org/Education/welect.html"> <span id="translatedtitle"><span class="hlt">Electrons</span>, Ions and <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This series of web pages provides information on a range of topics regarding charged particles. Starting with the properties of atomic <span class="hlt">electrons</span>, this material describes the Edison and photoelectric effects, the interaction between charged particles and magnetic fields, and the creation of <span class="hlt">plasmas</span> and positive ions. Other topics, including the history of research on charges, are covered in linked pages. This is part of a series of non-mathematical, linked explorations of the Earth's Magnetosphere.</p> <div class="credits"> <p class="dwt_author">Peredo, Mauricio; Mendez, J.; Stern, David P. (David Peter), 1931-</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004NPGeo..11..579Z"> <span id="translatedtitle">Nonlinear equilibrium structure of thin currents <span class="hlt">sheets</span>: influence of <span class="hlt">electron</span> pressure anisotropy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Thin current <span class="hlt">sheets</span> represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current <span class="hlt">sheet</span> structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current <span class="hlt">sheet</span> dynamics, including the well-known current <span class="hlt">sheet</span> bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current <span class="hlt">sheets</span> in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the <span class="hlt">plasma</span> pressure gradients was developed earlier. The influence of the anisotropic <span class="hlt">electron</span> population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the <span class="hlt">plasma</span> is taken into account. It is assumed that the <span class="hlt">electron</span> motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current <span class="hlt">sheet</span>, i.e. a narrow sharp peak of <span class="hlt">electron</span> current in the very center of the <span class="hlt">sheet</span> due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to <span class="hlt">electron</span> temperature ratio, the curvature of the magnetic field lines, and the average <span class="hlt">electron</span> magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current <span class="hlt">sheets</span> and their potential impact on substorm dynamics are presented.</p> <div class="credits"> <p class="dwt_author">Zelenyi, L. M.; Malova, H. V.; Popov, V. Yu.; Delcourt, D.; Sharma, A. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGRA..113.4215I"> <span id="translatedtitle">Current carriers in the bifurcated tail current <span class="hlt">sheet</span>: Ions or <span class="hlt">electrons</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have studied statistical distributions of the current density in the geomagnetic tail current <span class="hlt">sheet</span> for different sets of local <span class="hlt">plasma</span> parameters using Cluster data. It is shown that the electric current density calculated from 4-point magnetic field measurements exhibits no correlation with the number flux of ions. We conclude that main current carriers in the magnetospheric system of reference are <span class="hlt">electrons</span>.</p> <div class="credits"> <p class="dwt_author">Israelevich, P. L.; Ershkovich, A. I.; Oran, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..11611219K"> <span id="translatedtitle">Magnetic reconnection in the Jovian tail: X-line evolution and consequent <span class="hlt">plasma</span> <span class="hlt">sheet</span> structures</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Magnetic reconnection in planetary magnetospheres plays important roles in energy and mass transfer in the steady state, and also possibly in transient large-scale disturbances. In this paper we report observations of a reconnection event in the Jovian magnetotail by the Galileo spacecraft on 17 June 1997. In addition to the tailward retreat of a main X-line, signatures of recurrent X-line formations are found by close examination of energetic particle anisotropies. Furthermore, detailed analyses of multi-instrumental data for this period provide various spatiotemporal features in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. A significant density decrease was detected in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>, indicative of the transition to lobe (open field line) reconnection from <span class="hlt">plasma</span> <span class="hlt">sheet</span> (closed field line) reconnection. When Galileo vertically swept through the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, a velocity layer structure was observed. We also analyze a strong southward magnetic field which is similar to dipolarization fronts observed in the terrestrial magnetotail: the ion flow (˜450 km s-1) was observed behind the magnetic front, whose thickness of 10000-20000 km was of the order of ion inertial length. The <span class="hlt">electron</span> anisotropy in this period suggests an anomalously high-speed <span class="hlt">electron</span> jet, implying ion-<span class="hlt">electron</span> decoupling behind the magnetic front. Particle energization was also seen associated with these structures. These observations suggest that X-line evolution and consequent <span class="hlt">plasma</span> <span class="hlt">sheet</span> structures are similar to those in the terrestrial magnetosphere, whereas their generality in the Jovian magnetosphere and influence on the magnetospheric/ionospheric dynamics including transient auroral events need to be further investigated with more events.</p> <div class="credits"> <p class="dwt_author">Kasahara, S.; Kronberg, E. A.; Krupp, N.; Kimura, T.; Tao, C.; Badman, S. V.; Retinò, A.; Fujimoto, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54313090"> <span id="translatedtitle">Velocity shear instabilities in the multicomponent <span class="hlt">plasma</span> <span class="hlt">sheet</span> region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In the presence of ionospheric O+ ions, the velocity shear instability of ultralow frequency surface wave in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is investigated. By considering protons and O+ ions flow in the same macrospeed and keeping the velocity curl term in the magnetohydrodynamic equations, the general dispersion relation of surface wave perturbation was obtained. It is found that the velocity shear</p> <div class="credits"> <p class="dwt_author">Lu Li; Liu Zhen-Xing; Li Zhong-Yua</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/ja0303/2002JA009707/2002JA009707-20040421.pdf"> <span id="translatedtitle">Tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> models derived from Geotail particle data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Simple analytical models have been derived for the first time, describing the 2-D distribution (along and across the Earth's magnetotail) of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) ion temperature, density, and pressure, as functions of the incoming solar wind and interplanetary magnetic field (IMF) parameters, at distances between 10 and 50 RE. The models are based on a large set of</p> <div class="credits"> <p class="dwt_author">N. A. Tsyganenko; T. Mukai</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EPJD...54..271P"> <span id="translatedtitle">ADBD <span class="hlt">plasma</span> surface treatment of PES fabric <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> treatment of textile fabrics is investigated as an alternative to the environmentally hazardous wet chemical fabric treatment and pretreatment processes. <span class="hlt">Plasma</span> treatment usually results in modification of the uppermost atomic layers of a material surface and leaves the bulk characteristics unaffected. It may result in desirable surface modifications, e.g. surface etching, surface activation, cross-linking, chain scission and oxidation. Presented paper contains results of the applicability study of the atmospheric pressure dielectric discharge (ADBD), i.e. dielectric barrier discharge sustaining in air at atmospheric pressure and ambient temperature for synchronous treatment of several <span class="hlt">sheets</span> of fabric. For tests <span class="hlt">sheets</span> of polyester fabric were used. Effectivity of the modification process was determined with hydrophilicity measurements evaluated by means of the drop test. Hydrophilicity of individual <span class="hlt">sheets</span> of fabric has distinctly increased after <span class="hlt">plasma</span> treatment. <span class="hlt">Plasma</span> induced surface changes of textiles were also proven by identification of new functional groups at the modified polyester fabric surface. Existence of new functional groups was detected by ESCA scans. For verification of surface changes we also applied high-resolution microphotography. It has shown distinct variation of the textile surface after <span class="hlt">plasma</span> treatment. Important aspect for practical application of the <span class="hlt">plasma</span> treatment is the modification effect time-stability, i.e. time stability of acquired surface changes of the fabric. The recovery of hydrophobicity was fastest in first days after treatment, later gradually diminished until reached almost original untreated state.</p> <div class="credits"> <p class="dwt_author">Píchal, J.; Klenko, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM41A1695P"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Thickness During A Bursty Bulk Flow Reversal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On 17 March 2008 around 9:12 UT the five THEMIS spacecraft P1-P5 were in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> between 22 and 23 hours magnetic local time (MLT), covering radial distances between 15 Earth radii (Re) (P1) and 9 Re (P5). All the spacecraft consecutively observed a bursty bulk flow (BBF) that traveled earthward, slowed down from ~400 km/s to 50 km/s between P1 and P5, and then turned in the opposite direction. The most tailward-located spacecraft, P1 and P2, detected thinning and then thickening of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> around the time of the flow direction change. Meanwhile, the other three THEMIS spacecraft, which were located in a more dipolar region, observed <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickening and then thinning. Observations indicated that the thinning/thickening was stronger around the BBF funnel. Further, during the interaction of the earthward-flowing BBF <span class="hlt">plasma</span> with the Earth's dipolar field lines, the BBF was deflected by about 70 degrees at a scale of about 5 Re. The radial pressure gradient was substantially increased when the BBF reached the shortest radial distance to the Earth and substantially decreased after the tailward <span class="hlt">plasma</span> flow. We conclude that the tailward pressure pulse produced by the enhanced radial pressure gradients after the earthward BBF stopped could be responsible for the observed tailward <span class="hlt">plasma</span> flows.</p> <div class="credits"> <p class="dwt_author">Panov, E.; Nakamura, R.; Baumjohann, W.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Volwerk, M.; Retino, A.; Takada, T.; Glassmeier, K.; McFadden, J. P.; Larson, D. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.5213P"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> thickness during a bursty bulk flow reversal</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On 17 March 2008 around 0912 UT the five THEMIS spacecraft P1-P5 were in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> between 2200 and 2300 h magnetic local time (MLT), covering radial distances between 15 Earth radii (Re) (P1) and 9 Re (P5). All the spacecraft consecutively observed a bursty bulk flow (BBF) that traveled earthward, slowed down from 400 km/s to 50 km/s between P1 and P5, and then turned in the opposite direction. The most tailward-located spacecraft, P1 and P2, detected thinning and then thickening of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> around the time of the flow direction change. Meanwhile, the other three THEMIS spacecraft, which were located in a more dipolar region, observed <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickening and then thinning. Observations indicated that the thinning/thickening was stronger around the BBF funnel. Further, during the interaction of the earthward-flowing BBF <span class="hlt">plasma</span> with the Earth's dipolar field lines, the BBF was deflected by about 70° at a scale of about 5 Re. The radial pressure gradient was substantially increased when the BBF reached the shortest radial distance to the Earth and substantially decreased after the tailward <span class="hlt">plasma</span> flow. We conclude that the tailward pressure pulse produced by the enhanced radial pressure gradients after the earthward BBF stopped could be responsible for the observed tailward <span class="hlt">plasma</span> flows.</p> <div class="credits"> <p class="dwt_author">Panov, E. V.; Nakamura, R.; Baumjohann, W.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Volwerk, M.; Retinò, A.; Takada, T.; Glassmeier, K.-H.; McFadden, J. P.; Larson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56736406"> <span id="translatedtitle">Current <span class="hlt">Sheet</span> in a Coaxial <span class="hlt">Plasma</span> Gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic- and electric-probe measurements have been made on the thin current layer which is accelerated in a coaxial (Marshall) <span class="hlt">plasma</span> gun. It is found that this layer does not act as a ``snowplow,'' but rather has the character of a strong shock wave.</p> <div class="credits"> <p class="dwt_author">L. C. Burkhardt; R. H. Lovberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56062729"> <span id="translatedtitle">Current <span class="hlt">Sheet</span> in a Coaxial <span class="hlt">Plasma</span> Gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic- and electric-probe measurements were made on the thin carrent ; layer which is accelerated in a coaxial (Marshall) <span class="hlt">plasma</span> gun. It is found that ; this layer does not act as a snowplow, but rather has the character of a strong ; shock wave. (auth);</p> <div class="credits"> <p class="dwt_author">L. C. Burkhardt; R. H. Lovberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM23B0425V"> <span id="translatedtitle">Laboratory Investigations of Current <span class="hlt">Sheets</span> at the <span class="hlt">Electron</span> Skin Depth Scale</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laboratory Investigations of Current <span class="hlt">Sheets</span> at the <span class="hlt">Electron</span> Skin Depth Scale. Theoretical investigations, in situ spacecraft and rocket missions, and laboratory studies form an essential triad for understanding the variety of current <span class="hlt">sheet</span> phenomena found in space <span class="hlt">plasmas</span>. In the Large <span class="hlt">Plasma</span> Device (LAPD) at UCLA, the formation dynamics, equilibrium state, and wave-mediated disruptions of current <span class="hlt">sheets</span> can be studied with great spatial and temporal resolution using a variety of probes as well as non-invasive laser induced fluorescence and other optical diagnostics. The LAPD is aptly suited for studying current <span class="hlt">sheets</span> flowing in a magnetized background <span class="hlt">plasma</span> which is capable of supporting Alfvén waves. The cylindrical device is 20m long and one meter in diameter with a solenoidal magnetic field as high as 3000 Gauss. For the parameters in this experiment, the <span class="hlt">plasma</span> column is ten shear Alfvén wavelengths along the field and 100 <span class="hlt">electron</span> inertial lengths (?e) (or 200 ?i) in the perpendicular direction. An <span class="hlt">electron</span> current <span class="hlt">sheet</span> is created in the <span class="hlt">plasma</span> by placing a thin copper plate in the <span class="hlt">plasma</span> column at one end of the device and pulsing this plate positive with respect to the chamber wall. The current <span class="hlt">sheet</span> extends for the length of the device and has an initial cross-field size of roughly 45 ?e by 0.5?e. A parallel flow of ions is observed with similar dimensions and moves in the same direction as the <span class="hlt">electrons</span> in the current <span class="hlt">sheet</span> with a velocity of 0.2 times the ion sound speed. A much weaker sheared perpendicular flow is also measured. Cross-sections of the ion flow are measured at several axial locations over a distance of six meters. Second, as the ion flow increases in magnitude, a much broader (8?i) density depletion (n=0.25nO) develops around the flow. The gradient scale length of the depletion shortens until the spontaneous growth of drift waves occurs. This disrupts the <span class="hlt">electron</span> current and ion flow, and leads to cross-field transport of <span class="hlt">plasma</span> and a relaxation of the density gradient. The process of steepening and disruption repeats during the bias pulse. Detailed two-dimensional correlation measurements reveal the density and magnetic field propagation of the waves and statistics on the wave fluctuations.</p> <div class="credits"> <p class="dwt_author">Vincena, S.; Gekelman, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53690223"> <span id="translatedtitle">Substorm Physical Process in the Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The physical processes of substorm onset and subsequent current disruption in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed by AMPTE\\/CCE are presented. Toward the end of growth phase (approximately 2 minutes before the substorm onset) a low frequency instability with a wave period of 50-75 sec is excited and grows exponentially to a large amplitude with delta B \\/ B >= 0.3</p> <div class="credits"> <p class="dwt_author">C. Z. Cheng; A. T. Y. Lui</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD667501"> <span id="translatedtitle"><span class="hlt">Electrons</span> within the Neutral <span class="hlt">Sheet</span> of the Magnetospheric Tail.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The distribution, intensity and energy spectra of <span class="hlt">electrons</span> near and within the neutral <span class="hlt">sheet</span> are studied using the simultaneous measurements of the University of Chicago Au-Si surface-barrier detector (<span class="hlt">electron</span> energies > 160 kev) and the University of C...</p> <div class="credits"> <p class="dwt_author">T. Murayama J. A. Simpson</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20110024199"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Velocity Measurement Techniques for the Pulsed <span class="hlt">Plasma</span> Thruster SIMP-LEX.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The velocity of the first <span class="hlt">plasma</span> <span class="hlt">sheet</span> was determined between the electrodes of a pulsed <span class="hlt">plasma</span> thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic f...</p> <div class="credits"> <p class="dwt_author">A. Nawaz M. Lau</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50028281"> <span id="translatedtitle">Stable transport and side-focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams in periodically cusped magnetic field configurations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams and configurations with multiple <span class="hlt">electron</span> beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using <span class="hlt">sheet</span> <span class="hlt">electron</span> beams include <span class="hlt">sheet</span>-beam klystrons, grating TWTs, and planar FELs. Historically, implementation of <span class="hlt">sheet</span></p> <div class="credits"> <p class="dwt_author">J. Anderson; M. A. Basten; L. Rauth; J. H. Booske; J. Joe; J. E. Scharer</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM51C1838W"> <span id="translatedtitle">Gyrokinetic <span class="hlt">Electron</span> and Fully Kinetic Ion Particle Simulation of Instabilities in a Harris Current <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A simulation scheme based on gyrokinetic dynamics for <span class="hlt">electrons</span> and fully kinetic dynamics for ions has been developed [Lin et al., PPCF, 2005] for the purpose of investigation of magnetic reconnection in collisionless <span class="hlt">plasmas</span>. In this model, the rapid <span class="hlt">electron</span> cyclotron motion is removed, while retaining the finite <span class="hlt">electron</span> Larmor radii, wave-particle interaction, and off-diagonal components of the <span class="hlt">electron</span> pressure tensor. This treatment results in a larger time step and allows one to treat the realistic ion-to-<span class="hlt">electron</span> mass ratio mi/me in a large-scale system. In this talk, we introduce the GeFi model and present our simulations of (1) tearing mode instability and (2)current-<span class="hlt">sheet</span> driven instabilities in a Harris <span class="hlt">sheet</span> using the linearized delta-f GeFi code. The simulation is carried out for a broad range of finite guide field BG and with a realistic mi/me. Code benchmark is conducted against our eigenmode theory of the tearing instability and compared with the asymptotic matching results of Drake and Lee [Phys. Fluids, 1977]. For the current-<span class="hlt">sheet</span> driven instability, quasi-electrostatic modified two-stream instability/whistler mode is found on the edge of current <span class="hlt">sheet</span>. In addition, a new mode is found to be confined in the <span class="hlt">sheet</span> center and carry a compressional By along the direction of <span class="hlt">electron</span> drift, which may scatter <span class="hlt">electrons</span> and contribute to the anomalous resistivity in reconnection. The presence of finite BG is found to modify the physics of current <span class="hlt">sheet</span> significantly.</p> <div class="credits"> <p class="dwt_author">Wang, X.; Lin, Y.; Chen, L.; Kong, W.; Lv, X.; Zhang, W.; Lin, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999AnGeo..17.1592H"> <span id="translatedtitle">High-beta <span class="hlt">plasma</span> blobs in the morningside <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5-15-min duration outside about 9RE during the late-night/early-morning hours. Very high-<span class="hlt">plasma</span> beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these <span class="hlt">plasma</span> blobs and their lifetime. They are typically 5-10° wide in longitude and have an antisymmetric <span class="hlt">plasma</span> or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena (< 15°). They drift slowly sunward, exchange <span class="hlt">plasma</span> across the equator and have a lifetime of at least 15-30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta <span class="hlt">plasma</span>. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this <span class="hlt">plasma</span>. This would be consistent with the preference of the <span class="hlt">plasma</span> blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.</p> <div class="credits"> <p class="dwt_author">Haerendel, G.; Baumjohann, W.; Georgescu, E.; Nakamura, R.; Kistler, L. M.; Klecker, B.; Kucharek, H.; Vaivads, A.; Mukai, T.; Kokubun, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6736944"> <span id="translatedtitle">Large scale instabilities and dynamics of the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The stability properties of the magnetotail current <span class="hlt">sheet</span> against large scale modes is reviewed in the framework of ideal MHD, resistive MHD, and collisionless Vlasov theory. It appears that the small deviations from a plane <span class="hlt">sheet</span> pinch (in particular a magnetic field component normal to the <span class="hlt">sheet</span>) are important to explain the transition of the tail from a quiet stable state to an unstable dynamic state. It is found that the tail is essentially stable in ideal MHD, but unstable in resistive MHD, while both stable and unstable configurations are found within collisionless theory. The results favor an interpretation where the onset of magnetotail dyanmics leading to a sudden thinning of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the ejection of a plasmoid is caused by the onset of a collisionless instability that either directly leads to the growth of a collisionless tearing mode or via microscopic turbulence to the growth of a resistive mode. The actual onset conditions are not fully explored yet by rigorous methods. The onset may be triggered by local conditions as well as by boundary conditions at the ionosphere or at the magnetopause (resulting from solar wind conditions). 53 refs., 5 figs.</p> <div class="credits"> <p class="dwt_author">Birn, J.; Schindler, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..117.2215W"> <span id="translatedtitle">Thin filament simulations for Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Interchange oscillations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper presents a quantitative theory of “interchange oscillations,” which occur as an earthward-moving low-entropy <span class="hlt">plasma</span> bubble slows and eventually comes to rest. Our theoretical picture is based on an idealized situation where an ideal-MHD magnetic filament moves without friction through a stationary background that represents the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. If the relevant region of the background <span class="hlt">plasma</span> <span class="hlt">sheet</span> is interchange stable, then the filament usually executes a damped oscillation about an equilibrium position, where its entropy parameter matches the local background. The oscillations are typically dramatic only if the equatorial <span class="hlt">plasma</span> beta is greater than about one. We derive an approximate analytic formula for the oscillation period, which is not simply related to slow- or intermediate-wave travel times. For an oscillation that Panov and collaborators carefully studied using THEMIS data, our simple theory, though based on an unrealistic 2D background magnetic field, predicted an oscillation period that agrees with the observations within about 40%. The simulations suggest that the ionospheric oscillation should lag behind the magnetospheric one by between 40 and 90 degrees. Ionospheric conductance affects the damping rate, which maximizes for an auroral zone conductance ˜2 S. Adding a friction force acting between the filament and the background increases the decay rate of the oscillation.</p> <div class="credits"> <p class="dwt_author">Wolf, R. A.; Chen, C. X.; Toffoletto, F. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM51A2058A"> <span id="translatedtitle">Stability of the turbulent <span class="hlt">plasma</span> <span class="hlt">sheet</span> during quiet geomagnetic conditions and during substorms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent studies have shown the importance of turbulent processes in the dynamics of the magnetosphere of the Earth, including the <span class="hlt">plasma</span> <span class="hlt">sheet</span> stability. Antonova and Ovchinnikov (1996, 1999,2001) proposed that a compact and comparatively stable turbulent <span class="hlt">plasma</span> <span class="hlt">sheet</span> is formed when the regular <span class="hlt">plasma</span> transport related to the dawn-dusk electric field across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is compensated by the eddy diffusion turbulent transport. To verify this theory we used the CLUSTER satellite data inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and obtained the variation of the magnetic field, eddy-diffusion coefficients, <span class="hlt">plasma</span> number density and temperature across the <span class="hlt">sheet</span>. The corresponding values of dawn-dusk electric field potential were obtained from the SuperDarn measurements. Our results have shown that this theory reproduces the dynamics of the turbulent <span class="hlt">plasma</span> <span class="hlt">sheet</span>, including its thickness in the wide range of geomagnetic conditions.</p> <div class="credits"> <p class="dwt_author">Arancibia Riveros, K. A.; Stepanova, M. V.; Antonova, E. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/286877"> <span id="translatedtitle">Retarding field energy analyzer for the characterization of negative glow <span class="hlt">sheet</span> <span class="hlt">plasmas</span> in a magnetic field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A retarding field energy analyzer has been developed for diagnosing 300 {mu}s duration, 60 cm{times}60 cm negative glow, <span class="hlt">sheet</span> <span class="hlt">plasmas</span> immersed in a 150{endash}250 G axial magnetic field. The <span class="hlt">electron</span> density in these 4.5 kV, 13 A, 120 mTorr discharges in air and other gases, is high enough to reflect {ital X}-band microwaves. The presence of the magnetic field makes the suppression of secondary <span class="hlt">electrons</span> from the Faraday collector surface more difficult. The approach taken here is to bias the entire collection circuit and the amplifiers 90 V positive with respect to the data acquisition room. The differentially pumped analyzer is designed to accept <span class="hlt">electrons</span> with a large range of perpendicular velocities, and it measures the parallel velocity distribution function of the discharge <span class="hlt">electrons</span> entering a 0.64-mm-diam hole in the anode plate. It gives valuable information about the energy spectrum of the energetic beam <span class="hlt">electrons</span> emitted from the cathode, and the effect of energy loss and scattering processes on this propagating beam component. Additionally, since the analyzer sampling hole is offset from the anode-cathode axis, the current density profile can be measured for different bias voltages on the retarding grid, by rotating the linear cathode about the vertical anode-cathode axis. These profiles give the <span class="hlt">sheet</span> thickness for the beam and <span class="hlt">plasma</span> components of the negative glow discharge. It also gives useful information about the scattering induced beam spreading and its effects on the <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickness and <span class="hlt">electron</span> density. {copyright} {ital 1996 American Institute of Physics.}</p> <div class="credits"> <p class="dwt_author">Mathew, J.; Meger, R.A.; Fernsler, R.F. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States); Gregor, J.A. [Institute for Plasma Physics, University of Maryland, College Park, Maryland 20742 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006cosp...36.2183Y"> <span id="translatedtitle">A statistical study on correlations between <span class="hlt">plasma</span> <span class="hlt">sheet</span> and solar wind based on DSP explorations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By using the data of two spacecraft TC-1 and ACE Advanced Composition Explorer a statistical study on the correlations between <span class="hlt">plasma</span> <span class="hlt">sheet</span> and solar wind has been carried out The results obtained shows that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at geocentric distances of about 9 sim 13 4 Re has apparent driving relationship with solar wind It is found that 1 There is a positive correlation between the duskward component of interplanetary magnetic field IMF and the duskward component of geomagnetic field in <span class="hlt">plasma</span> <span class="hlt">sheet</span> with a proportionality constant of about 1 09 It indicates that the duskward component of the IMF can effectively penetrate into the near earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9 sim 13 4 Re 2 The increase of the density or the dynamic pressure of the solar wind will generally lead to the increase of the density of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> 3 The ion thermal pressure in the near earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> is significantly controlled by the dynamic pressure of solar wind 4 Under the northward IMF condition the ion temperature and ion thermal pressure in <span class="hlt">plasma</span> <span class="hlt">sheet</span> decrease as the solar wind speed increases This feature indicates that <span class="hlt">plasmas</span> in the near earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> can come from magnetosheath through LLBL Northward IMF is one important condition for the transport of the cold <span class="hlt">plasmas</span> of magnetosheath into <span class="hlt">plasma</span> <span class="hlt">sheet</span> through LLBL and fast solar wind will enhance such transport process</p> <div class="credits"> <p class="dwt_author">Yan, G. Q.; Shen, C.; Liu, Z. X.; Carr, C. M.; Rème, H.; Zhang, T. L.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993JGR....98.3999H"> <span id="translatedtitle">The Uranian corona as a charge exchange cascade of <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The paper uses models of magnetic convection and interparticle interactions to examine the collisional interactions between atmospheric neutral hydrogen and magnetospheric charged particles observed by Voyager to be convecting through the Uranian magnetosphere. The e(-)-H collisional ionization process, continually reenergized by compressional heating of the <span class="hlt">electrons</span> as they drift toward Uranus, produces a cascade of new <span class="hlt">plasma</span>. This process has been suggested elsewhere as the source of the warm (10 eV at L = 5) <span class="hlt">plasma</span> and is found in the present study to continue in a cascade to even cooler and more abundant <span class="hlt">plasma</span>. This newly created <span class="hlt">plasma</span> consists almost entirely of <span class="hlt">electrons</span> and protons because He and H2 are nearly absent from the uppermost layers of the atmosphere. If this <span class="hlt">plasma</span> crosses the dayside magnetopause and mixes with magnetopause boundary layers such as the <span class="hlt">plasma</span> mantle, there to be swept back along the magnetotail, reincorporated into the magnetotail by the same processes postulated for solar wind <span class="hlt">plasma</span> entry, and reenergized in the magnetotail current <span class="hlt">sheet</span>, it would constitute an important source for the hot <span class="hlt">plasma</span> observed by Voyager.</p> <div class="credits"> <p class="dwt_author">Herbert, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JGR....94.6995F"> <span id="translatedtitle"><span class="hlt">Electron</span> velocity distributions and <span class="hlt">plasma</span> waves associated with the injection of an <span class="hlt">electron</span> beam into the ionosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An <span class="hlt">electron</span> beam was injected into earth's ionosphere on August 1, 1985, during the flight of the Space Shuttle Challenger as part of the objectives of the Spacelab 2 mission. In the wake of the Space Shuttle a magnetically aligned <span class="hlt">sheet</span> of <span class="hlt">electrons</span> returning from the direction of propagation of the beam was detected with the free-flying <span class="hlt">Plasma</span> Diagnostics Package. The thickness of this <span class="hlt">sheet</span> of returning <span class="hlt">electrons</span> was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this <span class="hlt">sheet</span> of <span class="hlt">electrons</span>. A numerical simulation of the interaction of the <span class="hlt">electron</span> beam with the ambient ionospheric <span class="hlt">plasmas</span> is employed to show that the <span class="hlt">electron</span> beam excites <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillations and that it is possible for the ion acoustic instability to provide a returning flux of hot <span class="hlt">electrons</span> by means of quasi-linear diffusion.</p> <div class="credits"> <p class="dwt_author">Frank, L. A.; Paterson, W. R.; Kurth, W. S.; Ashour-Abdalla, M.; Schriver, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/927792"> <span id="translatedtitle">A Gridded <span class="hlt">Electron</span> Gun for a <span class="hlt">Sheet</span> Beam Klystron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes the development of an <span class="hlt">electron</span> gun for a <span class="hlt">sheet</span> beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.</p> <div class="credits"> <p class="dwt_author">Read, M.E.; Miram, G.; Ives, R.L.; /Calabazas Creek Res., Saratoga; Ivanov, V.; Krasnykh, A.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23581329"> <span id="translatedtitle">Dense attosecond <span class="hlt">electron</span> <span class="hlt">sheets</span> from laser wakefields using an up-ramp density transition.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Controlled <span class="hlt">electron</span> injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense <span class="hlt">plasma</span> target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic <span class="hlt">electron</span> <span class="hlt">sheet</span> that is injected and accelerated in the wakefield. A peaked <span class="hlt">electron</span> energy spectrum and high charge (?nC) distinguish the final <span class="hlt">sheet</span>. PMID:23581329</p> <div class="credits"> <p class="dwt_author">Li, F Y; Sheng, Z M; Liu, Y; Meyer-ter-Vehn, J; Mori, W B; Lu, W; Zhang, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55456680"> <span id="translatedtitle"><span class="hlt">Electron</span> Interactions in Reactive <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Gas discharge <span class="hlt">plasmas</span> are complex systems that consist of various groups of interacting particles such as neutral gas atoms and molecules in the ground state or in excited states, <span class="hlt">electrons</span>, ions, and photons. In principle, one needs to understand and describe all possible interactions between these particles in order to model the properties of the <span class="hlt">plasma</span> and to predict its</p> <div class="credits"> <p class="dwt_author">Kurt Becker</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6907757"> <span id="translatedtitle">Association of <span class="hlt">plasma</span> <span class="hlt">sheet</span> variations with auroral changes during substorms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with <span class="hlt">plasma</span> measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.</p> <div class="credits"> <p class="dwt_author">Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.4059T"> <span id="translatedtitle">Magnetic field topology of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">magnetic field topology of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) and its neighborhood is examined using a steady, two-dimensional (2-D), ideal MHD reconstruction method. We study four PSBL crossings, from the lobe toward the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and back into the lobe, by the Cluster spacecraft in the Earth's magnetotail around (x, y, z) = (-17.3, 4.3, -6.3) RE in GSM. The four PSBL events are selected for having no intense ion beams. Two reconstructed magnetic field topologies give, for the first time, a 3-D view of the PSBL, showing that one has a rather large gradient in the magnetic structure than another. A quantitative agreement of the current density between the reconstruction and curlometer methods is achieved for the overall results but with some discrepancies remaining, which will be discussed in terms of 3-D and temporal effects. This agreement indicates that the current density can be estimated by the reconstruction if certain conditions are satisfied. Finally, we point out that a PSBL structure with intense ion beams would somehow degrade the accuracy of the ideal MHD reconstruction. This degradation may be due to the nonideal MHD properties and/or the transient properties of the ion beams. Further sophisticated investigations on this issue are needed for clarification.</p> <div class="credits"> <p class="dwt_author">Teh, W.-L.; Nakamura, R.; Baumjohann, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1216..588C"> <span id="translatedtitle">Fermi I <span class="hlt">electron</span> acceleration by magnetic reconnection exhausts on closely stacked current <span class="hlt">sheets</span> near the heliopause</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent observations (up to 32 AU) of solar wind reconnection exhausts suggest fairly frequent occurrence of such events on current <span class="hlt">sheets</span> associated with the ICME fronts and on the heliospheric current <span class="hlt">sheet</span> (HCS). Comparison of relevant <span class="hlt">plasma</span> ? values and magnetic field strengths with conditions in the heliosheath indicates that reconnection may also take place in the heliosheath, especially towards the heliopause where the folds of HCS are expected to be pressed together by the slowing of solar <span class="hlt">plasma</span> flow. We propose a Fermi I type acceleration mechanism in which particles gain energy by random collisions reconnection exhausts expanding typically with local Alfven speed. The most probable place for this process is a (several wide) region of tightly folded HCS near the nose of heliopause. The process may in particular provide the mechanism of accelerating the <span class="hlt">electrons</span> needed for generation of 2-3 kHz heliospheric emissions.</p> <div class="credits"> <p class="dwt_author">Czechowski, A.; Grzedzielski, S.; Strumik, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PlPhR..38..960K"> <span id="translatedtitle"><span class="hlt">Plasma</span> acceleration in current <span class="hlt">sheets</span> formed in helium in two- and three-dimensional magnetic configurations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The processes of heating and acceleration of <span class="hlt">plasma</span> in current <span class="hlt">sheets</span> formed in 2D and 3D magnetic configurations with an X-line in helium <span class="hlt">plasma</span> have been investigated using spectroscopic methods. It is found that, in 2D magnetic configurations, <span class="hlt">plasma</span> flows with energies of 400-1000 eV, which are substantially higher than the ion thermal energy, are generated and propagate along the width (the larger transverse dimension) of the <span class="hlt">sheet</span>. In 3D configurations, the influence of the longitudinal (directed along the X-line) component of the magnetic field on the <span class="hlt">plasma</span> parameters in the current <span class="hlt">sheet</span> has been studied. It is shown that <span class="hlt">plasma</span> acceleration caused by the Ampère force can be spatially inhomogeneous in the direction perpendicular to the <span class="hlt">sheet</span> surface, which should lead to sheared <span class="hlt">plasma</span> flows in the <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Kyrie, N. P.; Frank, A. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22053894"> <span id="translatedtitle"><span class="hlt">Electron</span> cyclotron resonance <span class="hlt">plasma</span> photos</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In order to observe and study systematically the <span class="hlt">plasma</span> of <span class="hlt">electron</span> cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light <span class="hlt">plasma</span> photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR <span class="hlt">plasma</span> device, temporarily. An 8MP digital camera was used to record photos of <span class="hlt">plasmas</span> made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the <span class="hlt">plasma</span>. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Racz, R.; Palinkas, J. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary); University of Debrecen, H-4010 Debrecen, Egyetem ter 1 (Hungary); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem ter 18/c (Hungary)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFM.P51A1404S"> <span id="translatedtitle">Preliminary Results on Saturn's Inner <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> as Observed by Cassini: Comparison with Voyager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We will present preliminary results of our analysis of Saturn's inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> as observed by the Cassini <span class="hlt">Plasma</span> Spectrometer (CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere and when the spacecraft was put into orbit around Saturn. For this initial analysis ion fluxes are divided into two sub-groups: protons and water group ions. Depending on the status of our preliminary analysis we will discuss the ion composition and details of the fluid parameters. These results will eventually allow us to solve the force balance equation along the magnetic field (ions and <span class="hlt">electrons</span>) and predict the vertical distribution of the <span class="hlt">plasma</span> along the magnetic field. Once this is done we will be in a position to make detailed comparisons with the Voyager results.</p> <div class="credits"> <p class="dwt_author">Sittler, E. C.; Johnson, R. E.; Smith, H. T.; Chornay, D.; Shappirio, M. D.; Simpson, D. G.; Coates, A. J.; Rymer, A. M.; Crary, F.; McComas, D. J.; Young, D. T.; Thomsen, M. F.; Reisenfeld, D.; Hill, T. W.; Dougherty, M. K.; Andre, N.; Connerney, J. E.; Richardson, J. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004DPS....36.1828S"> <span id="translatedtitle">Preliminary Results on Saturn's Inner <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> as Observed by Cassini: Comparison with Voyager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We will present preliminary results of our analysis of Saturn's inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> as observed by the Cassini <span class="hlt">Plasma</span> Spectrometer (CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere and when the spacecraft was put into orbit around Saturn. For this initial analysis ion fluxes are divided into two sub-groups: protons and water group ions. Depending on the status of our preliminary analysis we will discuss the ion composition and details of the fluid parameters. These results will eventually allow us to solve the force balance equation along the magnetic field (ions and <span class="hlt">electrons</span>) and predict the vertical distribution of the <span class="hlt">plasma</span> along the magnetic field. Once this is done we will be in a position to make detailed comparisons with the Voyager results.</p> <div class="credits"> <p class="dwt_author">Sittler, E. C.; Johnson, R. E.; Smith, H. T.; Chornay, D.; Shappirio, M. D.; Simpson, D.; Coates, A. J.; Crary, F.; McComas, D. J.; Young, D. T.; Thomsen, M.; Reisenfeld, D.; Hill, T. W.; Dougherty, M.; Andre, N.; Connerney, J. E. P.; Richardson, J. D.; Rymer, A. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2827348"> <span id="translatedtitle">Rapid model building of ?-<span class="hlt">sheets</span> in <span class="hlt">electron</span>-density maps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A method for rapidly building ?-<span class="hlt">sheets</span> into <span class="hlt">electron</span>-density maps is presented. ?-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C? atoms along the strand averaged over all repeats present in the strand. The ?-strands obtained are then assembled into a single atomic model of the ?-<span class="hlt">sheet</span> regions. The method was tested on a set of 42 experimental <span class="hlt">electron</span>-density maps at resolutions ranging from 1.5 to 3.8?Å. The ?-­<span class="hlt">sheet</span> regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5?Å resolution in which a third of the residues in ?-<span class="hlt">sheets</span> were built and a structure at 3.8?Å in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5?Å.</p> <div class="credits"> <p class="dwt_author">Terwilliger, Thomas C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5706022"> <span id="translatedtitle">Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> morphology: particle and field observations by the Galileo spacecraft</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present results from an investigation of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> encounter signatures observed in the Jovian magnetosphere by the Energetic Particles Detector (EPD) and Magnetometer (MAG) onboard the Galileo spacecraft. Maxima in ion flux were used to identify over 500 spacecraft encounters with the <span class="hlt">plasma</span> <span class="hlt">sheet</span> between radial distances from Jupiter from 20 to 140RJ during the first 25 orbits</p> <div class="credits"> <p class="dwt_author">L. S. Waldrop; T. A. Fritz; M. G. Kivelson; K. Khurana; N. Krupp; A. Lagg</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42033770"> <span id="translatedtitle">The separatrix tentacle effect of ion acceleration to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors describe the effect of a continuous ion-acceleration in the Earth's magnetotail due to chaotic particle scattering caused by separatrix traversals in the velocity space. This effect operates almost everywhere in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, but outside and independent of neutral lines. As a distributed inner source it supports fast ion streams at the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">J. Buechner; Lev M. Zelenyi</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55462801"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> dynamics - Effects on, and feedback from, the polar ionosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> is shown to play a major role in determining the electric fields, currents, and particle precipitation regions in the polar ionosphere and upper atmosphere. In turn, ionospheric effects on electric fields and currents within the magnetotail are potentially important for <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics. The whole is a particularly complex instance of magnetosphere-ionosphere coupling, not adequately yielding to</p> <div class="credits"> <p class="dwt_author">V. M. Vasyliunas</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGRA..113.7S31H"> <span id="translatedtitle">The relationship between j × B and ?·Pe in the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Cluster observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper we report an extension to Henderson et al.'s (2006) case study, in which we investigate the generality of the anticorrelation between the ?·?e and j × B terms in Ohm's law observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Further current <span class="hlt">sheet</span> crossings are investigated which occurred on 17 August 2003 and 24 September 2003. Data from this period are particularly relevant as the interspacecraft separations are at their smallest for the Cluster mission. We confirm the generality of the observed anticorrelation and observe that the contributions to the electric field were mainly in the direction normal to the neutral <span class="hlt">sheet</span>. A simple magnetohydrostatic treatment is used to explain the correlation and directional organization. The treatment is able to explain the anticorrelation and how the relative contributions to the electric field from the ?·?e and j × B terms in Ohm's law may be linked to the temperature ratio of the different <span class="hlt">plasma</span> constituents as well as their spatial scales. In the examples reported here, the scale length over which the <span class="hlt">electron</span> pressure changed le was smaller than the scale over which the ion pressure changed li, with le/li being between ˜0.1 and ˜0.4.</p> <div class="credits"> <p class="dwt_author">Henderson, P. D.; Owen, C. J.; Lahiff, A. D.; Alexeev, I. V.; Fazakerley, A. N.; Yin, L.; Walsh, A. P.; Lucek, E.; RéMe, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21274276"> <span id="translatedtitle">Validity of closed periodic magnetic focusing for <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Theoretical analyses and numerical calculations have demonstrated that a closed periodic cusped magnetic (PCM) field can effectively confine a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam in two transverse directions (i.e., in the wide and narrow dimensions, simultaneously) for stable long distance transport in which the sizes of the beam cross section are set by referring to the present state of the art. Moreover, the method for matching the transverse magnetic focusing force and the inner space charge force in the wide dimension of the <span class="hlt">sheet</span> <span class="hlt">electron</span> beam is given, and the longitudinal periodic length and the cross sectional shape of the closed PCM focusing structure can be determined. Calculations also demonstrate that the optimum focusing state can be attained by adjusting the wide dimension on the transverse section of the closed PCM structure independently. The work presented in this paper indicates that the closed PCM structure is very promising for the confinement of the <span class="hlt">sheet</span> <span class="hlt">electron</span> beam, and it can be helpful for guiding practical engineering design.</p> <div class="credits"> <p class="dwt_author">Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PhPl...16k3102Z"> <span id="translatedtitle">Validity of closed periodic magnetic focusing for <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Theoretical analyses and numerical calculations have demonstrated that a closed periodic cusped magnetic (PCM) field can effectively confine a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam in two transverse directions (i.e., in the wide and narrow dimensions, simultaneously) for stable long distance transport in which the sizes of the beam cross section are set by referring to the present state of the art. Moreover, the method for matching the transverse magnetic focusing force and the inner space charge force in the wide dimension of the <span class="hlt">sheet</span> <span class="hlt">electron</span> beam is given, and the longitudinal periodic length and the cross sectional shape of the closed PCM focusing structure can be determined. Calculations also demonstrate that the optimum focusing state can be attained by adjusting the wide dimension on the transverse section of the closed PCM structure independently. The work presented in this paper indicates that the closed PCM structure is very promising for the confinement of the <span class="hlt">sheet</span> <span class="hlt">electron</span> beam, and it can be helpful for guiding practical engineering design.</p> <div class="credits"> <p class="dwt_author">Zhao, Ding</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008NIMPB.266.2627N"> <span id="translatedtitle">Optimized H- extraction in an argon magnesium seeded magnetized <span class="hlt">sheet</span> <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The enhancement and optimization of H- extraction through argon and magnesium seeding of hydrogen discharges in a magnetized <span class="hlt">sheet</span> <span class="hlt">plasma</span> source are reported. The paper first presents the modification of the production chamber into a hexapole multicusp configuration resulting in decreased power requirements, improved <span class="hlt">plasma</span> confinement and longer filament lifetime. By this, a wider choice of discharge currents for sustained quiescent <span class="hlt">plasmas</span> is made possible. Second, the method of adding argon to the hydrogen <span class="hlt">plasma</span> similar to the scheme in Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689] was performed to find the optimum conditions for H- formation and extraction. Using an E × B probe, H- yields were investigated at varied argon hydrogen admixtures, different discharge currents and spatial points relative to the core <span class="hlt">plasma</span>. The optimum H- current density extracted at 3.0 cm from the <span class="hlt">plasma</span> core using 3.0 A <span class="hlt">plasma</span> current with 10% argon seeding increased by a factor of 2.42 (0.63 A/m2) compared to the measurement of Abate and Ramos [Y. Abate, H. Ramos, Rev. Sci. Instr. 71 (10) (2000) 3689]. Third, the argon hydrogen <span class="hlt">plasma</span> at the extraction chamber is seeded with magnesium. Mg disk with an effective area of 22 cm2 is placed at the extraction region’s anode biased 175 V with respect to the cathode. With Mg seeding, the optimum H- current density at the same site and discharge conditions increased by 4.9 times (3.09 A/m2). The enhancement effects were analyzed vis-à-vis information gathered from the usual Langmuir probe (<span class="hlt">electron</span> temperature and density), <span class="hlt">electron</span> energy distribution function (EEDF) and the ensuing dissociative attachment (DA) reaction rates at different spatial points for various <span class="hlt">plasma</span> discharges and gas ratios. Investigations on the changes in the effective <span class="hlt">electron</span> temperature and <span class="hlt">electron</span> density indicate that the enhancement is due to increased density of low-energy <span class="hlt">electrons</span> in the volume, conducive for DA reactions. With Mg, the density of <span class="hlt">electrons</span> with <span class="hlt">electron</span> temperature of about 3 eV increased 3 orders of magnitude from 2.76 × 1012 m-3 to 2.90 × 1015 m-3.</p> <div class="credits"> <p class="dwt_author">Noguera, Virginia R.; Blantocas, Gene Q.; Ramos, Henry J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.7747F"> <span id="translatedtitle">High latitude observations of magnetotail <span class="hlt">plasma-sheet</span> <span class="hlt">plasma</span> in conjunction with a transpolar arc</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transpolar arcs (TPAs) are auroral features which extend into the polar cap from the night side of the main auroral oval. In their most developed form, TPAs and the main auroral oval resemble a Greek 'theta', hence their alternative name of theta auroras. Observations from low-altitude spacecraft have reported that the <span class="hlt">plasma</span> distribution above a TPA is similar to that above the main auroral oval, indicating that TPAs exist on closed magnetic field lines embedded within the open polar cap, but very few simultaneous observations have been reported of TPAs and conjugate points further out in the magnetotail. A major candidate mechanism for TPA formation invokes the closure of lobe flux in a twisted magnetotail, where the closed flux is prevented from returning to the dayside as the twist causes the northern and southern hemisphere footprints of the closed field lines to straddle the midnight meridian. In this mechanism, closed flux builds up on the night side, so <span class="hlt">plasma</span> similar to typical <span class="hlt">plasma</span> <span class="hlt">sheet</span> distributions should be observed at high latitudes embedded within the lobe. We present preliminary observations of three cases where the Cluster spacecraft observes <span class="hlt">plasma-sheet</span> <span class="hlt">plasma</span> embedded within the lobes, and at much higher latitudes than those at which the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is usually observed. The <span class="hlt">plasma</span> distributions are indicative of closed field lines, and the locations of the spacecraft map to a point on the TPA that is significantly poleward of the main auroral oval. These observations are consistent with TPAs being formed by the proposed reconnection/twisted magnetotail mechanism.</p> <div class="credits"> <p class="dwt_author">Fear, R. C.; Milan, S. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.6214H"> <span id="translatedtitle">Poleward arcs of the auroral oval during substorms and the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An analytical model for the connection between the near-Earth edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at substorm onset and the auroral arcs at the poleward edge of the auroral oval is presented. The connection is established through the existence of a Boström type I current system. Its generator is assumed to be constituted by a narrow high-beta <span class="hlt">plasma</span> layer located at the interface between the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the outer edge of the near-dipolar field of the magnetosphere. The energy balance between the downward Poynting flux and the energy conversion in the auroral acceleration region and ionosphere provides a relation for the electric fields as a function of the upward field-aligned current. Only the upward current region is being considered in this work. An interesting effect, incorporated in the energy balance, is the feedback of the auroral electrojet on the magnetospheric <span class="hlt">plasma</span> by dragging the latter eastward from below under the action of a Hall generator. Thereby a relation arises between the westward electric field, tangential to the arc, and the equatorward polarization field. Quantitative solution of the energy equation is achieved by using the empirical relations between auroral energy flux and <span class="hlt">electron</span> energy and the integrated Hall and Pedersen conductivities. Accommodation of the downward energy flux requires the existence of a minimum arc length. The resulting quantities are consistent with typical auroral data sets. Relating the downward energy flux to the parameters of the generator reveals a strong dependence of polarization electric field, overall energy dissipation, and total current strength on the <span class="hlt">plasma</span> beta of the generator. The dumping of excess energy from the high-beta <span class="hlt">plasma</span> layer into the auroral arc(s) allows the stretched tail field lines to transform into dipolar field lines. It opens, so-to-speak, the gate into the outer magnetosphere.</p> <div class="credits"> <p class="dwt_author">Haerendel, Gerhard</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21269036"> <span id="translatedtitle">Roles of ion and <span class="hlt">electron</span> dynamics in the onset of magnetic reconnection due to current <span class="hlt">sheet</span> instabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Roles of ion and <span class="hlt">electron</span> kinetic effects in the trigger mechanism of magnetic reconnection due to current <span class="hlt">sheet</span> instabilities are investigated by means of (2+1/2)D explicit particle simulation. The simulation is performed for the Harris equilibrium without guide fields in the plane perpendicular to the antiparallel magnetic fields. The instabilities excited in the vicinity of the neutral <span class="hlt">sheet</span> are classified into two modes, i.e., one is a longer wavelength kink mode and the other is a shorter wavelength kink mode. The growth of the longer kink mode depends only on the ion mass, while the growth of the shorter one depends only on the <span class="hlt">electron</span> mass. Before the growth of these kink modes, the lower hybrid drift instability leads to two types of <span class="hlt">plasma</span> diffusion: diffusion at the periphery controlled by ions and diffusion in the vicinity of the neutral <span class="hlt">sheet</span> controlled by <span class="hlt">electrons</span>. The diffusion at the periphery affects the ion distribution function at the neutral <span class="hlt">sheet</span> through the ion meandering motion, and the ion-ion kink mode is destabilized as the <span class="hlt">electron</span>-independent longer kink mode. The generation of the reconnection electric field at the neutral <span class="hlt">sheet</span> due to the longer wavelength kink mode is characterized only by the ion dynamics and can take place commonly in ion-scale current <span class="hlt">sheets</span> observed in the magnetosphere and laboratories.</p> <div class="credits"> <p class="dwt_author">Moritaka, Toseo [Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Horiuchi, Ritoku [National Institute for Fusion Science, Toki 509-5292 (Japan) and Graduate University for Advanced Studies, Toki 509-5292 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..11710230K"> <span id="translatedtitle">Dependence of <span class="hlt">plasma</span> <span class="hlt">sheet</span> energy fluxes and currents on solar wind-magnetosphere coupling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The epsilon solar wind-magnetosphere coupling function was used to estimate the rate at which energy from the solar wind was being dissipated in the inner magnetosphere and ionosphere. The Geotail CPI ion and <span class="hlt">electron</span> data sets showed that the average percentage of this energy that was carried earthward by energetic particles at |z| < 2.5 RE in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> increased from approximately zero at x = -28 RE to 25% at x = -10 RE when epsilon was high. Much of this increase was attributed to the adiabatic energization of particles as flux tubes collapsed following reconnection events. The Geotail magnetometer and CPI ion data sets also were used to estimate the average electric fields and currents. These parameters provided an alternative viewpoint from which to examine particle energization. The parallel volume current density exhibited a stronger dependence on epsilon than did the perpendicular <span class="hlt">sheet</span> current density. During disturbed times, a maximum of the parallel current density at a fixed x, y location existed at a distance of ˜3 RE from the neutral <span class="hlt">sheet</span>. A strong dawn-dusk asymmetry was seen in the long-term averaged region 1 field-aligned currents. The ratio of upgoing dusk side to downgoing dawn side currents at the same x was ˜1.7 throughout the portion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> that could be studied, and was seen during both quiet and disturbed conditions. Previous papers showed that most of this excess upgoing dusk side parallel current was closed through connections to a dusk side downgoing region 0 current system.</p> <div class="credits"> <p class="dwt_author">Kaufmann, Richard L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM33B0455N"> <span id="translatedtitle">Average <span class="hlt">Plasma</span> Vorticity Field in the Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Understanding the processes which generate field-aligned currents in the nightside magnetosphere is one of the important issues in the solar-terrestrial physics. Flow vorticity in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is considered to be one of the sources of the field-aligned currents. In this paper, a two-dimensional pattern of <span class="hlt">plasma</span> vorticity in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> (R = 9-30 Re) is derived from long term <span class="hlt">plasma</span> measurement by the Geotail spacecraft. The Geocentric Solar Wind (GSW) coordinate system is used in this study. We use the data during non-storm periods (symH > -30 nT) to avoid intense magnetospheric disturbances. Fast flows such as bursty bulk flows are also excluded from the database. Vorticity in the vicinity of the Earth is northward (southward) in the dawn (dusk) side. Vorticity in the low-latitude boundary layer is southward (northward) in the dawn (dusk) side due to flow shears. Calculating the vorticity generation rate S (=v · grad ?) from flow velocity v and vorticity ?, we found that spatial distribution of S is consistent with the Region1/Region2 current system. The <span class="hlt">plasma</span> data are also sorted by the interplanetary magnetic field (IMF) direction, and the dependence of vorticity on IMF is also discussed.</p> <div class="credits"> <p class="dwt_author">Nagata, D.; Machida, S.; Nagai, T.; Saito, Y.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..11710216Z"> <span id="translatedtitle">Emergence of the active magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary from transient, localized ion acceleration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Observations of the Earth's magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) have been typically accompanied by field-aligned crescent-shaped ion beams, thought to emanate at distant or mid-tail semi-permanent or impulsive acceleration sites. Typically such observations, and the theoretical and modeling efforts to explain them, have been disjoint from the adjacent <span class="hlt">plasma</span> <span class="hlt">sheet</span> properties near the equatorial projection of the observation. Thus the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer has been thought of as a harbinger of remote, rather than local <span class="hlt">plasma</span> <span class="hlt">sheet</span> activity, exception of <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions during the recovery phase of substorms. Using case and statistical studies from THEMIS, obtained simultaneously at the near-Earth PSBL and at its adjacent central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS), we study the transient and impulsive nature of PSBL beams and their inherent connection with CPS bursty bulk flows and associated dipolarization fronts. We show that PSBL beams typically commence a few minutes before CPS flow bursts, which in turn are seen tens of seconds ahead of the arrival of dipolarization fronts. These timing correlations, the crescent shapes of PSBL ion beams, the CPS ion flux enhancements in the earthward and dawnward directions, and other particle distribution characteristics can all be well reproduced by a simple model of ion reflection and acceleration at earthward-propagating dipolarization fronts associated with CPS flow bursts. The emerging paradigm, therefore, unifies impulsive transport phenomena across latitudes in the near-Earth magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Zhou, X.-Z.; Angelopoulos, V.; Runov, A.; Liu, J.; Ge, Y. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM11A1544G"> <span id="translatedtitle">Effect of tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions on the penetration of the convection electric field in the inner magnetosphere: RCM simulations with self-consistent magnetic field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in <span class="hlt">plasma</span> heating and magnetic field stretching, which become very significant in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions. Outer proton and <span class="hlt">electron</span> sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot <span class="hlt">plasma</span> <span class="hlt">sheet</span> population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which is found following northward IMF, than for the hotter and more tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span> found following southward IMF. Our simulation results so far indicate further earthward penetration of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given <span class="hlt">plasma</span> pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing <span class="hlt">plasma</span> <span class="hlt">sheet</span> number density and temperature and to more quantitatively determine the correlation between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration to the development of the storm-time ring current.</p> <div class="credits"> <p class="dwt_author">Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..11512225E"> <span id="translatedtitle">Multiple harmonic ULF waves in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer observed by Cluster</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The passage of the Cluster satellites in a polar orbit through Earth's magnetotail has provided numerous observations of harmonically related Pc 1-2 ULF wave events, with the fundamental near the local proton cyclotron frequency ?cp. Broughton et al. (2008) reported observations by Cluster of three such events in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, and used the wave telescope technique to determine that their wave vectors k were nearly perpendicular to B. This paper reports the results of a search for such waves throughout the 2003 Cluster tail passage. During the 4 month period of July-October 2003, 35 multiple-harmonic wave events were observed, all in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). From the first observed event (22 July) to the last (28 October), 13 of Cluster's 42 tail passes had at least one event. The wave events were rather evenly distributed from XGSE = -7 RE out to the Cluster apogee distance of -18 RE, with one event observed at -4 RE. ZGSE for these events ranged from -10 to -3 RE and +3 to +7 RE (i.e., there were no events for ?Z? < 3 RE). The wave events, with durations from ˜1 to 50 min, were consistently associated with signatures of the PSBL: elevated fluxes of counterstreaming ions with energies ranging from ˜3 to 30 keV, and elevated fluxes of <span class="hlt">electrons</span> with energies ranging from 0.25 to ˜5 keV. Analysis of <span class="hlt">plasma</span> parameters suggests that although waves occurred only when the ion beta exceeded 0.1 (somewhat larger than typical for the PSBL), ion particle pressure may be of more physical importance in controlling wave occurrence. <span class="hlt">Electron</span> distributions were more isotropic in pitch angles than the ion distributions, but some evidence of counterstreaming <span class="hlt">electrons</span> was detected in 83% of the events. The ions also showed clear signatures of shell-like or ring-like distributions; i.e., with reduced fluxes below the energy of maximum flux. The suprathermal ion fluxes were asymmetric in all events studied, with more ions streaming earthward (for events both north and south of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>). Good agreement between the observed frequency of the fundamental harmonic and the local ?cp suggests that the waves were observed near the region of their origin and did not propagate along B, consistent with the wave telescope analysis.</p> <div class="credits"> <p class="dwt_author">Engebretson, M. J.; Kahlstorf, C. R. G.; Posch, J. L.; Keiling, A.; Walsh, A. P.; Denton, R. E.; Broughton, M. C.; Owen, C. J.; FornaçOn, K.-H.; RèMe, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984JGR....89.2169V"> <span id="translatedtitle">The shape and position of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in earth's magnetotail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A three-dimensional magnetospheric B field model having its basis in the concept that thermal <span class="hlt">plasma</span>, tail currents, and magnetic field are to be in magnetohydrostatic equilibrium during periods of magnetically quiet conditions, is presently applied to the configuration of the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the earth's magnetotail. Consequences for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> configuration with respect to the assumed tail magnetopause shape and separation method include, during the Northern Hemisphere summer, a raising of the neutral <span class="hlt">sheet</span> above the magnetospheric equatorial plane around local midnight. The <span class="hlt">sheet</span> then crosses this plane, and is depressed below it, near the flanks of the tail. This result is in qualitative agreement with Fairfield's (1980) empirical neutral <span class="hlt">sheet</span> model, which was derived from spacecraft measurements of the tail field polarity.</p> <div class="credits"> <p class="dwt_author">Voigt, G.-H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40840382"> <span id="translatedtitle">Growth model for <span class="hlt">plasma</span>-CVD growth of carbon nano-tubes on Ni-<span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">plasma</span> enhanced chemical vapor deposition (PECVD) of carbon nano-tubes (CNT) on nickel <span class="hlt">sheets</span> is considered as efficient production method of great technologically interest. Different morphologies of CNT on Ni-<span class="hlt">sheets</span> can be achieved by a variation of the process parameters, like partial pressure of the acetylene and ammoniac inlet gas mixture, the total gas pressure, and temperature. The results are</p> <div class="credits"> <p class="dwt_author">Wilfried Wunderlich</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007APS..GECSR1011W"> <span id="translatedtitle">Ion Energy Measurements in Continuous <span class="hlt">Electron</span> Beam-Generated <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The US Naval Research Laboratory has developed a <span class="hlt">plasma</span> processing system that relies on a magnetically collimated, <span class="hlt">sheet</span> of multi-kilovolt <span class="hlt">electrons</span> to ionize the background gas and produce a planar <span class="hlt">plasma</span>. High-energy <span class="hlt">electron</span> beams are efficient at producing high-density <span class="hlt">plasmas</span> (ne > 1010 cm-3) with low <span class="hlt">electron</span> temperatures (Te < 1.0 eV) over the volume of the beam, resulting in large fluxes of low-energy ions (< 5 eV) at surfaces located adjacent to the <span class="hlt">electron</span> beam. In this work we present <span class="hlt">plasma</span> diagnostic results using a recently developed, continuous <span class="hlt">electron</span> beam source. In this work, an energy-resolving mass spectrometer is used to determine the ion energies and fluxes at electrodes located adjacent to the <span class="hlt">electron</span> beam. These measurements are made as a function <span class="hlt">electron</span> beam intensity and energy, and electrode bias in argon, nitrogen, and their mixtures at various total pressures. We employ both DC and RF biasing schemes in an effort to provide well-controlled incident ion energies for applications requiring both low and high ion energies. The results of this work are related to bulk <span class="hlt">plasma</span> properties determined using Langmuir probe diagnostics (See paper by E.H. Lock et al. at this conference).</p> <div class="credits"> <p class="dwt_author">Walton, Scott; Lock, Evgeniya; Fernsler, Richard</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/227126"> <span id="translatedtitle">Low-energy ion spectral peaks detected by CRRES in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors have examined energy-versus time color spectrograms compiled by the low-energy <span class="hlt">plasma</span> analyzer (LEPA) during 140 orbits of the Combined Release Radiation Effects Satellite (CRRES). Over the period of interest, the apogee of CRRES` orbit precessed from near dawn to near midnight. During more than half of the orbits LEPA detected low-energy ion spectral peaks (LISPs) that fell into two categories: isotropic and field aligned. Isotropic LISPs were detected most frequently in the 0200-0500 magnetic local time (MLT) sector and relatively high levels of Kp. They always were detected in the company of >10 keV <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and appeared in one or, at most, two LEPA energy channels. Field-aligned LISPs were evenly distributed over the sampled MLT sector and magnetic activity levels. They could be either bidirectional or monodirectional. They too were detected along with <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> whose spectra may or may not contain significant fluxes at energies {ge} 10 keV. Although some field-aligned LISPs were detected in one or two energy channels, others were quite spread in energy. Isotropic LISPs are interpreted as signatures of CRRES charging. Field-aligned LISPs cannot be due to charging. On the basis of other measurements at geostationary orbit, the authors interpret them as being of ionospheric origin. Their detection in the postmidnight sector suggests that they were initially accelerated perpendicular to (ion conics) rather than along (ion beams) the Earth`s magnetic field. 23 refs., 3 figs., 1 tab.</p> <div class="credits"> <p class="dwt_author">Rubin, A.G.; Burke, W.J.; Hardy, D.A. [Hanscom Air Force Base, MA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013aero.confE.127H"> <span id="translatedtitle">Creating standardized <span class="hlt">electronic</span> data <span class="hlt">sheets</span> for applications and devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Air Force Research Laboratory (AFRL) continues to develop infrastructure to enable the modular construction of satellites using an open network architecture and off-the-shelf avionics for space systems. Recent efforts have included the refinement of an ontology to formalize a standard language for the exchange of data and commands between components, including hardware and software, which is still evolving. AFRL is also focusing effort on creating standard interfaces using <span class="hlt">electronic</span> data <span class="hlt">sheets</span> based on this recently defined ontology. This paper will describe the development of standard interfaces that are documented in terms of an <span class="hlt">electronic</span> datasheet for a specific application. The datasheet will identify the standard interfaces between hardware devices and software applications that are needed for a specific satellite function, in this case, a spacecraft guidance, navigation, and control (GN& C) application for Sun pointing. Finally, the benefits of using standardized interfaces will be discussed.</p> <div class="credits"> <p class="dwt_author">Hansen, L. J.; Lanza, D.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52666453"> <span id="translatedtitle">Formation and transport of <span class="hlt">sheet-electron</span> beams and multibeam configurations for high-power microwave devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams and configurations with multiple <span class="hlt">electron</span> beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single RF interaction circuit. Possible microwave device applications using <span class="hlt">sheet</span> <span class="hlt">electron</span> beams include <span class="hlt">sheet</span>-beam klystrons, rectangular grating circuits, and planar FELs. Historically, implementation of <span class="hlt">sheet</span></p> <div class="credits"> <p class="dwt_author">Mark A. Basten; Jon H. Booske; Jim Anderson; John E. Scharer</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1426214"> <span id="translatedtitle">Microwave emission from <span class="hlt">plasmas</span> produced by magnetically confined-<span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Microwave emission, in the x-band frequency range (8.2-12.4 GHz), from a thin, large, rectangular <span class="hlt">sheet</span> <span class="hlt">plasma</span> has been measured. The <span class="hlt">plasma</span> <span class="hlt">electron</span> density was such that the <span class="hlt">plasma</span> frequency was within or just above this frequency range. The <span class="hlt">plasma</span> was immersed in an external magnetic field from a set of Helmholz coils. The magnetic field was oriented parallel to the</p> <div class="credits"> <p class="dwt_author">Donald P. Murphy; Richard F. Fernsler; Robert E. Pechacek; Robert A. Meger</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.5216R"> <span id="translatedtitle">A THEMIS multicase study of dipolarization fronts in the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss results of a superposed epoch analysis of dipolarization fronts, rapid (?t < 30 s), high-amplitude (?Bz > 10 nT) increases in the northward magnetic field component, observed during six Time History of Events and Macroscale Interactions during Substorms (THEMIS) conjunction events. All six fronts propagated earthward; time delays at multiple probes were used to determine their propagation velocity. We define typical magnetic and electric field and <span class="hlt">plasma</span> parameter variations during dipolarization front crossings and estimate their characteristic gradient scales. The study reveals (1) a rapid 50% decrease in <span class="hlt">plasma</span> density and ion pressure, (2) a factor of 2-3 increase in high-energy (30-200 keV) <span class="hlt">electron</span> flux and <span class="hlt">electron</span> temperature, and (3) transient enhancements of ˜5 mV/m in duskward and earthward electric field components. Gradient scales of magnetic field, <span class="hlt">plasma</span> density, and particle flux were found to be comparable to the ion thermal gyroradius. Current densities associated with the Bz increase are, on average, 20 nA/m2, 5-7 times larger than the current density in the cross-tail current <span class="hlt">sheet</span>. Because j · E > 0, the dipolarization fronts are kinetic-scale dissipative regions with Joule heating rates of 10% of the total bursty bulk flow energy.</p> <div class="credits"> <p class="dwt_author">Runov, A.; Angelopoulos, V.; Zhou, X.-Z.; Zhang, X.-J.; Li, S.; Plaschke, F.; Bonnell, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51682833"> <span id="translatedtitle">Comparative studies of multi-scale convective transport through the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this dissertation we explore multi-scale, convective transport through the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> using in situ observations and global terrestrial magnetospheric simulations. We statistically test the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model with observations from the Geotail spacecraft at a variety of spatial and temporal scales within the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These comparisons, in addition to quantifying the LFM range of</p> <div class="credits"> <p class="dwt_author">Timothy Bryan Guild</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54749791"> <span id="translatedtitle">Structure of the tail <span class="hlt">plasma</span>\\/current <span class="hlt">sheet</span> at ~11 RE and its changes in the course of a substorm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">At the end of April 2, 1978, the ISEE 1 and 2 spacecraft moved inbound at ~11 RE on the nightside (0130 MLT). Due to a flapping motion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> the spacecraft crossed the neutral <span class="hlt">sheet</span> region (central region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>) more than 10 times in the hour between 2115 and 2215 UT. This provided a</p> <div class="credits"> <p class="dwt_author">V. A. Sergeev; D. G. Mitchell; C. T. Russell; D. J. Williams</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22047453"> <span id="translatedtitle">Energy efficiency of <span class="hlt">electron</span> <span class="hlt">plasma</span> emitters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electron</span> emission influence from gas-discharge <span class="hlt">plasma</span> on <span class="hlt">plasma</span> emitter energy parameters is considered. It is shown, that <span class="hlt">electron</span> emission from <span class="hlt">plasma</span> is accompanied by energy contribution redistribution in the gas-discharge from <span class="hlt">plasma</span> emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of <span class="hlt">electron</span> emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.</p> <div class="credits"> <p class="dwt_author">Zalesski, V. G., E-mail: V.Zalesski@mail.ru [Polotsk State University (Belarus)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40434865"> <span id="translatedtitle">Generation of <span class="hlt">electron</span>-beam produced <span class="hlt">plasmas</span> and applications to surface modification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">NRL has developed a number of hollow cathodes to generate <span class="hlt">sheets</span> of <span class="hlt">electrons</span> culminating in a ‘Large Area <span class="hlt">Plasma</span> Processing System’ (LAPPS) based on the <span class="hlt">electron</span>-beam ionization process. Beam ionization is fairly independent of gas composition and produces low temperature <span class="hlt">plasma</span> <span class="hlt">electrons</span> (<0.5 eV in molecular gases) in high densities (109–1012 cm?3). The present system consists of a pulsed planar</p> <div class="credits"> <p class="dwt_author">D. Leonhardt; C. Muratore; S. G. Walton; D. D. Blackwell; R. F. Fernsler; R. A. Meger</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004JGRA..10912202W"> <span id="translatedtitle">Modeling the transition of the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> from weak to enhanced convection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We seek to determine whether the adiabatic <span class="hlt">plasma</span> transport and energization resulting from electric and magnetic drift can quantitatively account for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> under weak and enhanced convection observed by Geotail presented in the companion paper [, 2004]. We use a modified Magnetospheric Specification Model to simulate the dynamics and distributions of protons originating from the deep tail and low-latitude boundary layer (LLBL) under an assigned, slowly increasing convection electric field. The magnetic field is Tsyganenko 96 model, modified so that force balance is maintained along the midnight meridian. Our simulation results reproduce well the observed radial profiles and magnitudes of pressure and magnetic field. The changes of these parameters with convection strength are also well reproduced, indicating that the electric and magnetic drift control the large-scale structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The <span class="hlt">plasma</span> flows near midnight are diverted toward dusk by diamagnetic drift. We obtain a steady state <span class="hlt">plasma</span> <span class="hlt">sheet</span> under strong and steady convection, showing that magnetic drift and field line stretching bring the <span class="hlt">plasma</span> <span class="hlt">sheet</span> away from possible convection disruption. The protons from the LLBL strongly affect the <span class="hlt">plasma</span> <span class="hlt">sheet</span> density and temperature during quiet times but not during enhanced convection. For the same cross-polar cap potential, stronger shielding of the convection electric field results in smaller energization. The penetration electric field is important in moving the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to smaller geocentric radial distance. Our results suggest that the frozen-in condition E = -v × B is not valid in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> because of strong diamagnetic drift.</p> <div class="credits"> <p class="dwt_author">Wang, Chih-Ping; Lyons, Larry R.; Chen, Margaret W.; Toffoletto, Frank R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40435511"> <span id="translatedtitle"><span class="hlt">Plasma</span> enhanced surface treatments using <span class="hlt">electron</span> beam-generated <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">NRL has developed a ‘large area <span class="hlt">plasma</span> processing system’ (LAPPS) utilizing a high energy (?2 keV) modulated <span class="hlt">electron</span> beam to drive the <span class="hlt">plasma</span> ionization. This system has been shown to be (1) efficient at producing <span class="hlt">plasma</span> in any gas composition, (2) capable of producing low temperature <span class="hlt">plasma</span> <span class="hlt">electrons</span> (<0.5 eV) in high densities (109–1012 cm?3) and (3) scalable to large</p> <div class="credits"> <p class="dwt_author">D. Leonhardt; C. Muratore; S. G. Walton; R. A. Meger</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003JGRA..108.1136T"> <span id="translatedtitle">Tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> models derived from Geotail particle data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Simple analytical models have been derived for the first time, describing the 2-D distribution (along and across the Earth's magnetotail) of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) ion temperature, density, and pressure, as functions of the incoming solar wind and interplanetary magnetic field (IMF) parameters, at distances between 10 and 50 RE. The models are based on a large set of data of the Low-Energy Particle (LEP) and Magnetic Field (MGF) instruments, taken by Geotail spacecraft between 1994 and 1998, comprising 7234 1-min average values of the CPS temperature and density. Concurrent solar wind and IMF data were provided by the Wind and IMP 8 spacecraft. The accuracy of the models was gauged by the correlation coefficient (c.c.) R between the observed and predicted values of a parameter. The CPS ion density N is controlled mostly by the solar wind proton density and by the northward component of the IMF. Being the least stable characteristic of the CPS, it yielded the lowest c.c. RN = 0.57. The CPS temperature T, controlled mainly by the solar wind speed V and the IMF Bz, gave a higher c.c. RT = 0.71. The CPS ion pressure P was best controlled by the solar wind ram pressure Psw and by an IMF-related parameter F = B??, where B? is the perpendicular component of the IMF and ? is its clock angle. In a striking contrast with N and T, the model pressure P revealed a very high c.c. with the data, RP = 0.95, an apparent consequence of the force balance between the CPS and the tail lobe magnetic field. No significant dawn-dusk asymmetry of the CPS was found beyond the distance 10 RE, in line with the observed symmetry of the tail lobe magnetic field. The <span class="hlt">plasma</span> density N is lowest at midnight and increases toward the tail's flanks. Larger (smaller) solar wind ion densities and northward (southward) IMF Bz result in larger (smaller) N in the CPS. In contrast to the density N, the temperature T peaks at the midnight meridian and falls off toward the dawn/dusk flanks. Faster (slower) solar wind flow and southward (northward) IMF Bz result in a hotter (cooler) CPS. The CPS ion pressure P is essentially a function of only XGSM in the midtail (20-50 RE); at closer distances the isobars gradually bend to approximately follow the contours of constant geomagnetic field strength. For northward IMF conditions combined with a slow solar wind, the isobars remain quasi-circular up to larger distances, reflecting a weaker tail current and, hence, more dipole-like magnetic field.</p> <div class="credits"> <p class="dwt_author">Tsyganenko, N. A.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21357551"> <span id="translatedtitle">Short pulse, high power microwave radiation source with a laser-induced <span class="hlt">sheet</span> <span class="hlt">plasma</span> mirror</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced <span class="hlt">sheet</span> <span class="hlt">plasma</span> mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced <span class="hlt">sheet</span> <span class="hlt">plasma</span> with an overdense <span class="hlt">plasma</span> acts as a <span class="hlt">plasma</span> mirror. The long pulse propagating in the gas-filled waveguide was sliced by the <span class="hlt">sheet</span> <span class="hlt">plasma</span> mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.</p> <div class="credits"> <p class="dwt_author">Higashiguchi, Takeshi; Yugami, Noboru [Graduate School of Engineering and Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982smsp.reptQ....U"> <span id="translatedtitle">Simple method of <span class="hlt">sheet</span> <span class="hlt">plasma</span> production for high current negative ion I</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By arranging two rectangular permanent magnets on both sides of a cylindrical <span class="hlt">plasma</span> along a magnetic field, two types of <span class="hlt">sheet</span> <span class="hlt">plasma</span> with thickness of about an ion cyclotron diameter can be produced. The one is called 'noshi-mochi' (flattened rice cake) <span class="hlt">plasma</span>, whose width is determined by the vacuum chamber diameter. The other is called 'kishimen' (flattened noodle) <span class="hlt">plasma</span>, whose width is determined by the aperture diameter of discharge anode.</p> <div class="credits"> <p class="dwt_author">Uramoto, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49950537"> <span id="translatedtitle">A reflector antenna for <span class="hlt">electron</span> <span class="hlt">plasma</span> waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary form only given. A linear antenna with a mesh reflector immersed in a <span class="hlt">plasma</span> was studied in the frequency range where <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can propagate. The <span class="hlt">electron</span> <span class="hlt">plasma</span> wave appears to be difficult to excite and to be buried in the noise level because it is damped by Landau damping except in a very small region of frequency</p> <div class="credits"> <p class="dwt_author">Y. Morita; R. Kurati; S. Egashira</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Nanot..24I5704S"> <span id="translatedtitle">Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir-Blodgett monolayer <span class="hlt">sheets</span> by ammonia <span class="hlt">plasma</span> treatment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Graphene oxide (GO) monolayer <span class="hlt">sheets</span>, transferred onto Si by the Langmuir-Blodgett technique, were subjected to ammonia <span class="hlt">plasma</span> treatment at room temperature with the objective of simultaneous reduction and doping. Scanning <span class="hlt">electron</span> microscopy and atomic force microscopy studies show that <span class="hlt">plasma</span> treatment at a relatively low power (˜10 W) for up to 15 min does not affect the morphological stability and monolayer character of GO <span class="hlt">sheets</span>. X-ray photoelectron spectroscopy has been used to study de-oxygenation of GO monolayers and the incorporation of nitrogen in graphitic-N, pyrrolic-N and pyridinic-N forms due to the <span class="hlt">plasma</span> treatment. The corresponding changes in the valence band <span class="hlt">electronic</span> structure, density of states at the Fermi level and work function have been investigated by ultraviolet photoelectron spectroscopy. These studies, supported by Raman spectroscopy and electrical conductivity measurements, have shown that a short duration <span class="hlt">plasma</span> treatment of up to 5 min results in an increase of sp2-C content along with a substantial incorporation of the graphitic-N form, leading to the formation of n-type reduced GO. Prolonged <span class="hlt">plasma</span> treatment for longer durations results in a decrease of electrical conductivity, which is accompanied by a substantial decrease of sp2-C and an increase in defects and disorder, primarily attributed to the increase in pyridinic-N content.</p> <div class="credits"> <p class="dwt_author">Singh, Gulbagh; Sutar, D. S.; Divakar Botcha, V.; Narayanam, Pavan K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/70490"> <span id="translatedtitle">Relation between electrostatic solitary waves and hot <span class="hlt">plasma</span> flow in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer: GEOTAIL observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors present studies which show correlations between <span class="hlt">plasma</span> ion flow properties in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, and the spectral properties of the broadband radiation observed there by GEOTAIL, referred to as electrostatic solitary waves. The width and spacing between the pulses is observed to change on time scales of milliseconds.</p> <div class="credits"> <p class="dwt_author">Kojima, H.; Matsumoto, H.; Miyatake, T.; Fujita, A. [Kyoto Univ. (Japan); Nagano, I. [Kanazawa Univ. (Japan); Frank, L.A.; Paterson, W.R.; Anderson, R.R. [Univ. of Iowa, Iowa City, IA (United States); Mukai, T.; Saito, Y. [Institute of Space and Astronautical Science, Kanagawa (Japan)] [and others</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFMSM32A..04S"> <span id="translatedtitle">Structure, Variation and Pressure Balance in the Saturnian <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>. Combined MIMI, CAPS and MAG Measurements From Cassini</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Combined <span class="hlt">plasma</span>, energetic particle and magnetic field measurements, obtained by the Magnetospheric Imaging Instrument (MIMI), the Cassini <span class="hlt">Plasma</span> Spectrometer (CAPS) sensors and the magnetometer (MAG) respectively, are used to study the Saturnian <span class="hlt">plasma</span> <span class="hlt">sheet</span> as revealed through 2 nearly vertical passes of Cassini (days 8/2007 to 42/2007) during its high latitude orbits. Trajectories of such geometry favor the clear detection of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundaries, both through magnetic field and particle data. As the in-situ Cassini measurements offer complete energy coverage (eV to MeV) of the cold <span class="hlt">plasma</span> and the energetic particle population, where present, the computation of the particle temperature and total <span class="hlt">plasma</span> pressure is made possible. The extent and temporal variation of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is examined, and its scale height is calculated for the cold <span class="hlt">plasma</span> and the energetic particle population, using different methods (e.g. exponential decay, Harris profile), per ion specie where possible. Initial results indicate that the dayside <span class="hlt">plasma</span> <span class="hlt">sheet</span> is wide in latitude (±45 deg) and extends up to the magnetopause, with its pressure decreasing with radial distance. The night side <span class="hlt">plasma</span> <span class="hlt">sheet</span> appears to be much thinner, with a larger scale height for energetic ions (2Rs) compared to the cold-warm <span class="hlt">plasma</span> (1Rs). <span class="hlt">Plasma</span> beta is kept close to or above 1 inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> region, outside ~8 Rs. Furthermore, based on combined <span class="hlt">plasma</span> density, particle pressure and magnetic field measurements, the stress balance inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is also addressed.</p> <div class="credits"> <p class="dwt_author">Sergis, N.; Arridge, C. S.; Krimigis, S. M.; Mitchell, D. G.; Rymer, A. M.; Hamilton, D. C.; Krupp, N.; Roelof, E. C.; Dougherty, M. K.; Coates, A. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM41C1884G"> <span id="translatedtitle">Effect of self-consistent magnetic field on <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration to the inner magnetosphere under enhanced convection: RCM simulations combined with force-balance magnetic field solver</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in <span class="hlt">plasma</span> heating and magnetic field stretching, which become very significant in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore <span class="hlt">plasma</span> <span class="hlt">sheet</span> population, depends on <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between <span class="hlt">plasma</span> pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, <span class="hlt">plasma</span> pressure, <span class="hlt">plasma</span> beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar <span class="hlt">plasma</span> <span class="hlt">sheet</span> profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher <span class="hlt">plasma</span> pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration into the inner magnetosphere. In comparison with results using the T96, <span class="hlt">plasma</span> transport under self-consistent magnetic field results in proton and <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated <span class="hlt">plasma</span> <span class="hlt">sheet</span> properties by comparing them with statistical results obtained from Geotail and THEMIS observations.</p> <div class="credits"> <p class="dwt_author">Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM51B2098P"> <span id="translatedtitle">THEMIS Observation of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Evolution Leading To a Substorm Onset</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate THEMIS observations on 28 February 2008 between 7:00 and 8:00 UT. Using the AM-03 adapted Tsyganenko model we found that the change in the Z-component of the solar wind velocity between 7:09 and 7:24 UT forced stronger bending of the Earth's magnetotail in the positive ZGSM-direction downtail from 9 Re. The final bend angle reached 30 degrees. The bending appeared to be the reason for the negative gradient in the ZGSM-component of the magnetic field (dBZ/dX) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The negative dBZ/dX can be a free energy source for the drift-kink and ballooning/interchange instabilities in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which can be seen as <span class="hlt">plasma</span> <span class="hlt">sheet</span> flapping. Indeed, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> started to exhibit flapping oscillations near the bending point at the radial distance 11 Re. The amplitude of the oscillations has grown substantially with larger bending angles after 7:12 UT. The value of the dBZ/dX continued becoming more negative up to 7:38 UT. At 7:30 UT the region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flapping extended to 16 Re downtail. Between 7:30 and 7:39 UT THEMIS observed gradual vanishing of the pressure gradient between 11 Re and 16 Re, Finally, at 7:39 UT THEMIS detected earthward <span class="hlt">plasma</span> flows at the radial distance 11 Re and tailward <span class="hlt">plasma</span> flows at 16 to 29 Re downtail. Simultaneously, at the footpoints of the field lines leading to the THEMIS spacecraft, the THEMIS all-sky camera array observed a substorm breakup arc. We discuss the possible relationship between the current <span class="hlt">sheet</span> bending and the evolution of the current <span class="hlt">sheet</span> instability that may relate to the substorm onset.</p> <div class="credits"> <p class="dwt_author">Panov, E.; Nakamura, R.; Baumjohann, W.; Artemyev, A.; Kubyshkina, M.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Glassmeier, K.; McFadden, J. P.; Larson, D. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUSMSM43C..02S"> <span id="translatedtitle">Study of the turbulence in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the CLUSTER satellite data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent studies are shown that the turbulent processes in the space <span class="hlt">plasmas</span> are very important. It includes the behavior of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">plasma</span> during geomagnetic substorms and storms. Study of the <span class="hlt">plasma</span> turbulence in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> was made using the CLUSTER satellite mission data. For this studies we used the Cluster Ion Spectrometry experiment (CIS), and fluxgate magnetometer (FGM) data for studying fluctuations of the <span class="hlt">plasma</span> bulk velocity and geomagnetic field fluctuations for different levels of geomagnetic activity and different locations inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Case studies for the orbits during quiet geomagnetic conditions, different phases of geomagnetic substroms and storms showed that the properties of <span class="hlt">plasma</span> turbulence inside the <span class="hlt">sheet</span> differ significantly for all afore mentioned cases. Variations in the probability distribution functions, flatness factors, local intermittency measure parameters, and eddy diffusion coefficients indicate that the turbulence increases significantly during substorm growth and expansion phases and decreases slowly to the initial level during the recovery phase. It became even stronger during the storm main phase.</p> <div class="credits"> <p class="dwt_author">Stepanova, M.; Arancibia Riveros, K.; Bosqued, J.; Antonova, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N8230080"> <span id="translatedtitle">Simple Method of <span class="hlt">Sheet</span> <span class="hlt">Plasma</span> Production for High Current Negative Ion I.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">By arranging two rectangular permanent magnets on both sides of a cylindrical <span class="hlt">plasma</span> along a magnetic field, two types of <span class="hlt">sheet</span> <span class="hlt">plasma</span> with thickness of about an ion cyclotron diameter can be produced. The one is called 'noshi-mochi' (flattened rice cake)...</p> <div class="credits"> <p class="dwt_author">J. Uramoto</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE84701966"> <span id="translatedtitle">Simple Method of <span class="hlt">Sheet</span> <span class="hlt">Plasma</span> Production for High Current Negative Ion, I.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">By arranging two rectangular permanent magnets on both sides of a cylindrical <span class="hlt">plasma</span> along magnetic field, we simply produced two types of <span class="hlt">sheet</span> <span class="hlt">plasma</span> with thickness of about ion cyclotron diameter. The one is called ''Noshi-mochi'' (flattened rice cake)...</p> <div class="credits"> <p class="dwt_author">J. Uramoto</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Nanos...5.9264W"> <span id="translatedtitle">Intrinsic <span class="hlt">electronic</span> and transport properties of graphyne <span class="hlt">sheets</span> and nanoribbons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing <span class="hlt">electronic</span> properties as graphene. Although the <span class="hlt">electronic</span>, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their <span class="hlt">electron</span> transport behaviors have not been understood. Here we report a comprehensive study of the intrinsic <span class="hlt">electronic</span> and transport properties of four distinct polymorphs of graphyne (?, ?, ?, and 6,6,12-graphynes) and their nanoribbons (GyNRs) using density functional theory coupled with the non-equilibrium Green's function (NEGF) method. Among the four graphyne <span class="hlt">sheets</span>, 6,6,12-graphyne displays notable directional anisotropy in the transport properties. Among the GyNRs, those with armchair edges are nonmagnetic semiconductors whereas those with zigzag edges can be either antiferromagnetic or nonmagnetic semiconductors. Among the armchair GyNRs, the ?-GyNRs and 6,6,12-GyNRs exhibit distinctive negative differential resistance (NDR) behavior. On the other hand, the zigzag ?-GyNRs and zigzag 6,6,12-GyNRs exhibit symmetry-dependent transport properties, that is, asymmetric zigzag GyNRs behave as conductors with nearly linear current-voltage dependence, whereas symmetric GyNRs produce very weak currents due to the presence of a conductance gap around the Fermi level under finite bias voltages. Such symmetry-dependent behavior stems from different coupling between ?* and ? subbands. Unlike ?- and 6,6,12-GyNRs, both zigzag ?-GyNRs and zigzag ?-GyNRs exhibit NDR behavior regardless of the symmetry.Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing <span class="hlt">electronic</span> properties as graphene. Although the <span class="hlt">electronic</span>, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their <span class="hlt">electron</span> transport behaviors have not been understood. Here we report a comprehensive study of the intrinsic <span class="hlt">electronic</span> and transport properties of four distinct polymorphs of graphyne (?, ?, ?, and 6,6,12-graphynes) and their nanoribbons (GyNRs) using density functional theory coupled with the non-equilibrium Green's function (NEGF) method. Among the four graphyne <span class="hlt">sheets</span>, 6,6,12-graphyne displays notable directional anisotropy in the transport properties. Among the GyNRs, those with armchair edges are nonmagnetic semiconductors whereas those with zigzag edges can be either antiferromagnetic or nonmagnetic semiconductors. Among the armchair GyNRs, the ?-GyNRs and 6,6,12-GyNRs exhibit distinctive negative differential resistance (NDR) behavior. On the other hand, the zigzag ?-GyNRs and zigzag 6,6,12-GyNRs exhibit symmetry-dependent transport properties, that is, asymmetric zigzag GyNRs behave as conductors with nearly linear current-voltage dependence, whereas symmetric GyNRs produce very weak currents due to the presence of a conductance gap around the Fermi level under finite bias voltages. Such symmetry-dependent behavior stems from different coupling between ?* and ? subbands. Unlike ?- and 6,6,12-GyNRs, both zigzag ?-GyNRs and zigzag ?-GyNRs exhibit NDR behavior regardless of the symmetry. <span class="hlt">Electronic</span> supplementary information (ESI) available. See DOI: 10.1039/c3nr03167e</p> <div class="credits"> <p class="dwt_author">Wu, Wenzhi; Guo, Wanlin; Zeng, Xiao Cheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/70511"> <span id="translatedtitle">Acceleration and heating of cold ion beams in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer observed with GEOTAIL</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors discuss observations made in the magnetotail of cold ion flows in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layers, and their motions, drifts and apparant heating as they drift further toward the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Here the authors used particle measurements and magnetic field measurements to account for the energy distribution of ions in different regions of the tail, and possible processes resulting in ion energization. From the direction of drift of ions into the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and their gain in energy perpendicular to the magnetic field lines the authors infer E{times}B effects contribute to heating. The inferred electric field direction is in the north south direction, which is not what is generally thought typical of tail <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Hirahara, M.; Nakamura, M.; Tersawa, T. [Univ. of Tokyo (Japan); Mukai, T.; Saito, Y.; Yamamoto, T.; Nishida, A. [Institute of Space and Astronautical Science, Sagamihara (Japan); Machida, S. [Kyoto Univ. (Japan); Kokubun, S. [Nagoya Univ., Toyokawa (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003EAEJA.....3720V"> <span id="translatedtitle">Multifractal and wavelet analysis of magnetic turbulence in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent studies provide evidence for the multi-scale nature of magnetic turbulence in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Multifractal and wavelet methods represent modern time series analysis techniques suitable for the description of statistical characteristics of multi-scale turbulence. Physical processes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> exhibit, however, statistically transitory and non-stationary properties and the inherent magnetic fluctuations can be associated with both spatial and temporal structures. These features complicate the implementation of multifractal and wavelet techniques and make it more difficult to interpretate the statistical analysis. Using the above methods, we investigate the robustness of second-order and higher-order statistics within overlapping and non-overlapping analysing windows. We study Cluster FGM magnetic field high-resolution (~22 Hz and ~67 Hz) measurements during intervals in which the spacecraft are in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We show that, physical processes exhibit non-steady properties on MHD and small, possibly kinetic scales, as Cluster passes through different <span class="hlt">plasma</span> regions.</p> <div class="credits"> <p class="dwt_author">Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Zhang, T. L.; Volwerk, M.; Eichelberger, H. U.; Balogh, A.; Horbury, T. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JGR....94.3495R"> <span id="translatedtitle">Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> density profile from low-frequency radio waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By using planetary radio astronomy (PRA), <span class="hlt">plasma</span> wave system (PWS), and magnetometer (MAG) data from Voyager 1 and 2 (V1 and V2), essential features of the nightside Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> are derived, and the density gradient of the corotating <span class="hlt">plasma</span> structure in the middle Jovian magnetosphere is calculated. The PRA experiment gives information about the <span class="hlt">plasma</span> wave polarization. The density profile of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is determined using the hinge point position of the <span class="hlt">plasma</span> disk derived from MAG data, and the low-frequency cutoffs observed at three frequencies (562 Hz, 1 kHz, and 1.78 kHz) from the PWS experiment. It is shown that the hinge point position varies with the solar wind ram pressure.</p> <div class="credits"> <p class="dwt_author">Rucker, H. O.; Ladreiter, H. P.; Leblanc, Y.; Jones, D.; Kurth, W. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/183241"> <span id="translatedtitle">Structured <span class="hlt">plasma</span> <span class="hlt">sheet</span> thinning observed by Galileo and 1984-129</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that is crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the same local time sector. Flux dropout events are associated with <span class="hlt">plasma</span> <span class="hlt">sheet</span> thinning in the near-Earth tail during the growth phase of substorms. This period is unique in that Galileo provided a rapid radial profile of the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft the authors can distinguish between spatial structures and temporal changes. Their observations confirm that the geosynchronous flux dropout events are consistent with <span class="hlt">plasma</span> <span class="hlt">sheet</span> thinning which changes the spacecraft`s magnetic connection from the trapping region to the more distant <span class="hlt">plasma</span> <span class="hlt">sheet</span>. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours. 28 refs., 10 figs.</p> <div class="credits"> <p class="dwt_author">Reeves, G.D.; Belian, R.D.; Fritz, T.A. [Los Alamos National Lab., NM (United States)] [and others</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..117.7219M"> <span id="translatedtitle">Tailward leap of multiple expansions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during a moderately intense substorm: THEMIS observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A moderately intense substorm on 1 March 2008, from 0830 to 1000 UT, observed by THEMIS probes and the Ground Based Observatory (GBO) is examined to investigate the global evolution of substorm phenomena. During this interval, all five THEMIS probes are closely aligned along the tail axis near midnight covering a radial range from ˜9 Re to ˜18 Re. After the substorm onset, <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions take place successively at multiple locations in the magnetotail as measured by different probes. The positions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions have a tailward leap progression with an average velocity of ˜36 km/s. There are two types of dipolarization detected in this substorm. The first type is the dipolarization front which is associated with the bursty bulk flow (BBF). While the second type, which we call ‘global dipolarization’, is associated with <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions. In the substorm studied, there are four intensifications as shown in the THEMIS AE index. We can detect the effects of localized and short-lived magnetic energy release processes occurring in the magnetotail corresponding to each of the four AE intensifications. Furthermore, the inner four probes can detect the global dipolarization signatures ˜4-15 min earlier than <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions, while the outermost probe (P1) cannot detect this before the <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansion. These two phenomena are caused by the same process (magnetic energy release process) but the effects detected by probes locally appear delayed. The observations in this case are not sufficient to distinguish between the two competing substorm models.</p> <div class="credits"> <p class="dwt_author">Ma, Yonghui; Shen, Chao; Angelopoulos, V.; Lui, A. T. Y.; Li, Xinlin; Frey, H. U.; Dunlop, M.; Auster, H. U.; McFadden, J. P.; Larson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22288579"> <span id="translatedtitle">Highly efficient <span class="hlt">electron</span> field emission from graphene oxide <span class="hlt">sheets</span> supported by nickel nanotip arrays.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Electron</span> field emission is a quantum tunneling phenomenon whereby <span class="hlt">electrons</span> are emitted from a solid surface due to a strong electric field. Graphene and its derivatives are expected to be efficient field emitters due to their unique geometry and electrical properties. So far, <span class="hlt">electron</span> field emission has only been achieved from the edges of graphene and graphene oxide <span class="hlt">sheets</span>. We have supported graphene oxide <span class="hlt">sheets</span> on nickel nanotip arrays to produce a high density of sharp protrusions within the <span class="hlt">sheets</span> and then applied electric fields perpendicular to the <span class="hlt">sheets</span>. Highly efficient and stable field emission with low turn-on fields was observed for these graphene oxide <span class="hlt">sheets</span>, because the protrusions appear to locally enhance the electric field and dramatically increase field emission. Our simple and robust approach provides prospects for the development of practical <span class="hlt">electron</span> sources and advanced devices based on graphene and graphene oxide field emitters. PMID:22288579</p> <div class="credits"> <p class="dwt_author">Ye, Dexian; Moussa, Sherif; Ferguson, Josephus D; Baski, Alison A; El-Shall, M Samy</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.5207Y"> <span id="translatedtitle">RCM-E simulation of ion acceleration during an idealized <span class="hlt">plasma</span> <span class="hlt">sheet</span> bubble injection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper, we investigate the role of <span class="hlt">plasma</span> <span class="hlt">sheet</span> bubbles in the ion flux variations at geosynchronous orbit during substorm injections by using the Rice Convection Model with an equilibrated magnetic field model (RCM-E). The bubble is initiated in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> with a localized reduction in entropy parameter PV5/3 following a substorm growth phase. In the expansion phase, characteristic features of substorm injections are reproduced; that is, there is a prominent dispersionless flux increase for energetic protons (>40 keV) and a flux decrease for lower-energy protons near midnight geosynchronous orbit while there is dispersive flux enhancement near the dusk sector. We find that the injection boundary is well coincident with the earthward boundary of the bubble, inside which the depletion of <span class="hlt">plasma</span> content causes the magnetic field dipolarization, and in return, the magnetic field collapse energizes particles and alters the drift paths dramatically. Our results also show that a high-PV5/3 island is pushed ahead of the fast earthward propagating bubble, and a dipolarization front forms between them. Within the high-PV5/3 island, the diamagnetic effect makes the <span class="hlt">plasma</span> pressure increase and the strength of the magnetic field decrease to a local minimum. We suggest that <span class="hlt">plasma</span> <span class="hlt">sheet</span> bubbles are elementary vehicles of substorm time particle injections from the main <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the inner magnetosphere.</p> <div class="credits"> <p class="dwt_author">Yang, J.; Toffoletto, F. R.; Wolf, R. A.; Sazykin, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18619285"> <span id="translatedtitle">[Emission spectroscopy diagnostics of <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Electron</span> temperature is one of the important parameters of <span class="hlt">plasma</span>. It is very difficult to measure the <span class="hlt">electron</span> temperature exactly and instantly owing to its complexity during discharge. As a <span class="hlt">plasma</span> diagnostics technique, emission spectroscopy is widely applied in the study and diagnosis of any kind of <span class="hlt">plasma</span>, because of its simple instrument system, noninterference of measurement, high sensitivity and fast responsibility. In the present paper, some methods for <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature diagnosis, such as two lines method, multiline slope method, isoelectronic line method, Saha-Boltzmann equation, absolute intensity method, were introduced. And the applications of these methods were reviewed to provide reference for choosing appropriate methods in practice. PMID:18619285</p> <div class="credits"> <p class="dwt_author">Wu, Rong; Li, Yan; Zhu, Shun-Guan; Feng, Hong-Yan; Zhang, Lin; Wang, Jun-De</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AASP....3...53S"> <span id="translatedtitle">Vortex and ULF wave structures in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the Earth magnetosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We studied the ULF wave packet propagation in the Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> making use of the magnetic field measurements from FGM detector and <span class="hlt">plasma</span> properties from CORRAL detector aboard the Interball-Tail spacecraft. The MHD vortex structures were observed simultaneously with the Pc5 ULF waves. The vortex spatial scale was found to be about 1200-3600 km and the velocity is 4-16 km/s transverse to the background magnetic field. We studied numerically the dynamics of the initial vortex perturbations in the <span class="hlt">plasma</span> system with parameters observed in the Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The system with the vector nonlinearity was processed making use of the full reduction scheme. The good agreement of the experimental value of the vortex structure velocity with numerical results was obtained. The velocity was found to be close to the local <span class="hlt">plasma</span> drift velocity.</p> <div class="credits"> <p class="dwt_author">Saliuk, D. A.; Agapitov, O. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21277184"> <span id="translatedtitle">Multispacecraft observations of the <span class="hlt">electron</span> current <span class="hlt">sheet</span>, neighboring magnetic islands, and <span class="hlt">electron</span> acceleration during magnetotail reconnection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Open questions concerning structures and dynamics of diffusion regions and <span class="hlt">electron</span> acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of <span class="hlt">electron</span> distribution functions measured by the four spacecraft, distinct <span class="hlt">electron</span> regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended <span class="hlt">electron</span> current <span class="hlt">sheet</span> (ecs), a series of magnetic islands, and bursts of energetic <span class="hlt">electrons</span> within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of <span class="hlt">electron</span>-scale electric fields normal to the ecs and pointing toward the ecs center plane. Both the observed <span class="hlt">electron</span> and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal <span class="hlt">electrons</span> whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the <span class="hlt">electron</span> scale at certain phases of reconnection, <span class="hlt">electrons</span> and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary <span class="hlt">electron</span> acceleration occurs within the islands.</p> <div class="credits"> <p class="dwt_author">Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire, Durham, New Hampshire 03824 (United States); Lefebvre, Bertrand; Vaith, Hans; Puhl-Quinn, Pamela; Torbert, Roy [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Asnes, Arne [ESTEC/ESA, Keplerlaan 1, 2201AZ Noordwijk (Netherlands); Santolik, Ondrej [Institute of Atmospheric Physics, Prague CZ14131 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Prague CZ18000 (Czech Republic); Fazakerley, Andrew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); Khotyaintsev, Yuri [Swedish Institute of Space Physics, SE-75121 Uppsala (Sweden); Daly, Patrick [Max-Planck-Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20217895"> <span id="translatedtitle"><span class="hlt">Plasma</span> sources for <span class="hlt">electrons</span> and ion beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Plasma</span> devices are commonly used for the production of ion beams. It has been demonstrated that the multicusp generator can produce very low energy ion beams for ion projection lithography applications. The multicusp source has also found important applications in focused ion beam systems. With its high and uniform <span class="hlt">plasma</span> density, attempts have been made to extract high brightness <span class="hlt">electron</span> beams from this type of <span class="hlt">plasma</span> source, making it also useful for <span class="hlt">electron</span> beam lithography applications. (c) 1999 American Vacuum Society.</p> <div class="credits"> <p class="dwt_author">Leung, Ka-Ngo [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987JGR....92.5741S"> <span id="translatedtitle">Io <span class="hlt">plasma</span> torus <span class="hlt">electrons</span> - Voyager 1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A thermal Maxwellian component of the <span class="hlt">electron</span> distribution function, together with a suprathermal, non-Maxwellian one, are featured in the present analysis of in situ <span class="hlt">plasma</span> <span class="hlt">electron</span> observations made by the Voyager 1 <span class="hlt">plasma</span> science experiment in the Io <span class="hlt">plasma</span> torus. A large difference in the hot <span class="hlt">electron</span> pressure P(H) is noted between the inbound and the outbound data; this is interpreted as a latitudinal gradient, with P(H) being maximum at the magnetic equator. The presence of a neutral corona around Io is inferred from the observed decrease and symmetry with respect to Io of the cold <span class="hlt">electron</span> temperature.</p> <div class="credits"> <p class="dwt_author">Sittler, E. C.; Strobel, D. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/166232"> <span id="translatedtitle">Low altitude signature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer: Observations and model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Low-altitude spacecraft on magnetotail field lines often detect a distinctive signature in the precipitating ion flux. A velocity-dispersed ion structure is often observed near the poleward boundary of the auroral oval. At the low-latitude edge of this structure an absence of precipitating ions is seen, previously referred to as {open_quotes}the gap,{close_quotes} separating the velocity-dispersed ions at the higher latitudes from the more diffuse, <span class="hlt">plasma</span> <span class="hlt">sheet</span>-like ions at lower latitudes. The authors present a model of low-altitude particle precipitation that reproduces these observed features in the ion spectra and provides a quantitative estimate of the downtail <span class="hlt">plasma</span> <span class="hlt">sheet</span> properties. The model calculations are compared with observations from the Akebono spacecraft. In this model, the dispersed ion velocity signature maps to a region in the distant <span class="hlt">plasma</span> <span class="hlt">sheet</span> where the <span class="hlt">plasma</span> has a field-aligned bulk flow. The gap maps to a region in the distant magnetotail where the ion fluxes are below the detection threshold of the instrument, due to the low <span class="hlt">plasma</span> <span class="hlt">sheet</span> density and temperature in that region. 15 refs., 2 figs.</p> <div class="credits"> <p class="dwt_author">Onsager, T.G. [Univ. of New Hampshire, Durham, NH (United States); Mukai, T. [Institute of Space and Astronautical Science, Sagamihara (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AdSpR..31.1271G"> <span id="translatedtitle">Coupling of transient <span class="hlt">plasma</span> structures observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer and in the auroral region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a statistical study of high velocity ion beams (beamlets) observed by Interball-1 (Tail Probe) and Interball-2 (Auroral Probe) satellites. In both data sets beamlets manifest themselves as bursty <span class="hlt">plasma</span> events with duration ~60s and ion energies about several keV accompanied by cold (200-300eV) <span class="hlt">electrons</span>. We used an epoch superposition technique to define statistically the beamlet registration zones in the geomagnetic tail (X~-25Re) as well as in the auroral region. We have found that in the Earth magnetotail beamlets are localized at about 0.6Re above the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (PS) boundary. This distance corresponds to the invariant latitude interval of ~0.5° from the high-latitude PS boundary. The same statistical analysis of Interball-Auroral data has shown that at the middle altitudes (~3Re) bean-lets are registered also poleward from the high-latitude PS boundary inside a 0.8° latitudinal interval, that is in good agreement with Interball-Tail data. We made also a statistical analysis of beamlet energies versus latitude for both Interball-Auroral and Interball-Tail data. The analysis has shown the similar beamlet energy dependencies on latitude in the middle-altitude and in the mid-tail regions. When interplanetary magnetic field (IMF) was mostly southward beamlet energies increase with latitude while for northward IMF the inverse beamlet energy dependence is observed. Our statistical analysis proves that in both regions we encounter the similar phenomenon of transient <span class="hlt">plasma</span> energization in distant parts of the Earth's magnetotail.</p> <div class="credits"> <p class="dwt_author">Grigorenko, E. E.; Fedorov, A. O.; Zelenyi, L. M.; Sauvaud, J.-A.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JIMTW..31..649W"> <span id="translatedtitle">The Conditions for Stable <span class="hlt">Sheet</span> <span class="hlt">Electron</span> Beams Transport in Periodic Permanent Magnet Fields</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The stable focusing or transport of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams is an essential technology for an emerging class of high-power high-frequency planar-structure microwave devices. This paper, in consideration of space-charge field and cyclotron motion, describes theoretical study and simulation on <span class="hlt">sheet</span> beams transport in periodic permanent magnetic (PPM) fields. Based on the theoretical study, we obtain the clear conditions for the stable <span class="hlt">sheet</span> beams transport in PPM field. And the three-dimensional simulations of the <span class="hlt">sheet</span> beam transport are in good agreement with our theoretical study. Our research will be useful in further study and experimental.</p> <div class="credits"> <p class="dwt_author">Wang, Zhan-Liang; Gong, Yu-Bin; Wei, Yan-Yu; Duan, Zhao-Yun; Gong, Hua-Rong; Yue, Ling-Na; Yin, Hai-Rong; Lu, Zhi-Gang; Xu, Jin; Chen, Bei-Ran; Liu, Pu-Kun; Park, Gun-Sik</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999PhDT........93G"> <span id="translatedtitle">Resonant laser <span class="hlt">plasma</span> interactions and <span class="hlt">electron</span> acceleration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The interaction between intense laser radiation and a <span class="hlt">plasma</span> is often dominated by the generation of large amplitude <span class="hlt">plasma</span> waves. These <span class="hlt">plasma</span> waves can drastically affect both the <span class="hlt">plasma</span> particles of which they are composed and the laser radiation by which they are driven. This dissertation addresses two facets of these processes. In part I, the acceleration of <span class="hlt">electrons</span> by highly nonlinear <span class="hlt">plasma</span> waves is addressed. It is shown experimentally that energy gains exceeding the dephasing limit of linear theory are possible. In part II, the recent theory of electromagnetically induced transparency in a <span class="hlt">plasma</span> is examined. It is found that the requirements of causality do not allow for the transmission of electromagnetic radiation through an overdense <span class="hlt">plasma</span> as conceived in the original theory. However, it is possible for radiation below the cutoff frequency to be generated by a <span class="hlt">plasma</span>. Also, a Raman-type instability is found to afflict electromagnetic waves in a <span class="hlt">plasma</span> even when the density exceeds quarter-critical.</p> <div class="credits"> <p class="dwt_author">Gordon, Daniel Francis</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5259524"> <span id="translatedtitle">Nonresonant low-frequency instabilities in multibeam <span class="hlt">plasmas</span>: Applications to cometary environments and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Low-frequency electromagnetic fluctuations dominate the wave spectrum observed during strong <span class="hlt">plasma</span> flows in the region upstream of a cometary nucleus and in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer of the Earth's magnetotail. A theoretical framework is established in the long-wavelength limit for nonresonant instabilities in a multibeam <span class="hlt">plasma</span>, for any number of beams. Both the growth rates of the instabilities and the ultimate levels of magnetic field turbulence are given. A two-beam <span class="hlt">plasma</span> models the contamination of the upstream solar wind by cometary material, whereas a three-beam model is invoked for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, with two counterstreaming proton beams in the presence of an oxygen beam. If the two proton beams by themselves already excite a low-frequency instability, the injection of oxygen at rest in the center-of-mass frame does not chaneg the instability characteristics. Where the two proton beams alone are stable, a sufficient amount of oxygen with a sufficient velocity offset in the center-of-mass frame can render the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer unstable. In both cases, the theoretical levels of low-frequency turbulence are in good agreement with observations and/or numerical simulations.</p> <div class="credits"> <p class="dwt_author">Verheest, F. (Physical Research Lab., Ahmedabad (India)); Lakhina, G.S. (Indian Institute of Geomagnetism, Bombay (India))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7021929"> <span id="translatedtitle">On the generation of field-aligned <span class="hlt">plasma</span> flow at the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper deals with a possible cause of the large <span class="hlt">plasma</span> flow velocities parallel to the magnetic field observed near the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the earth's magnetotail. For a large class of steady state configurations with typical cases involving magnetic reconnection we first show qualitatively that high parallel flow velocities can be expected to exist on field lines connecting to a region of weak magnetic field. For reconnection configurations this weak field region contains the diffusion region. The maximum value of the parallel flow velocity is sensitive to the lowest magnetic field magnitude just outside the diffusion region. The physical mechanism causing large values of the parallel velocity component v/sub parallel/ can be visualized as a strong imbalance of perpendicular mass flux into and out of magnetic flux tubes passing through regions where the magnetic field is weak and inhomogeneous. In a steady state the unbalanced perpendicular flow requires large parallel flow to establish mass conservation. The presence of a parallel velocity is not unusual in MHD systems. The new (generic) aspect is that near the separatrix, parallel flow is the dominant form of <span class="hlt">plasma</span> transport. For a quantitative evaluation we consider an MHD model specialized for the domains where the inertia force can be neglected. By a self-consistent treatment we evaluate v/sub parallel/ and find that chemically bond v/sub parallel/ chemically bond can substantially exceed the perpendicular velocity v/sub n/ = E/B; in a typical example with stretched magnetic field lines we obtain chemically bond v/sub parallel/ chemically bondapprox. =40v/sub perpendicular/.</p> <div class="credits"> <p class="dwt_author">Schindler, K.; Birn, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004JGRA..10912201W"> <span id="translatedtitle">Midnight radial profiles of the quiet and growth-phase <span class="hlt">plasma</span> <span class="hlt">sheet</span>: The Geotail observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To evaluate the <span class="hlt">plasma</span> <span class="hlt">sheet</span> transition from weak to strong convection, we investigate ion moments and magnetic field observed by Geotail. The Geotail data from 1995 to 1997 within the area -9 RE ? XGSM ? -30 RE and ?YGSM? ? 5 RE were sorted for periods of quiet times and the substorm growth phase, which gives a better indication of convection strength than do global indexes. We find that the overall growth-phase ion pressure is a factor of ˜1.55 higher than the quiet-time ion pressure. Density is higher and temperature is lower during quiet times. Ions drift mainly earthward and duskward, and the drift speed is about twice stronger during the growth phase. The duskward drift is dominated by ions' diamagnetic drift. The ?Bx? in the lobes increases strongly, while Bz near the current <span class="hlt">sheet</span> at small radial distance decreases as convection increases, indicating that field lines become more stretched during the growth phase because of the earthward penetration of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The increase in the lobe magnetic field is sufficient to maintain force balance in the z direction with the enhanced ion pressure in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Intervals of negative Bz are observed during both quiet and growth-phase conditions. The observed negative Bz intervals near the current <span class="hlt">sheet</span> are short and are likely caused by perturbations, while those in the lobes are substantially longer and are likely associated with field line flaring.</p> <div class="credits"> <p class="dwt_author">Wang, Chih-Ping; Lyons, Larry R.; Nagai, T.; Samson, J. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/958416"> <span id="translatedtitle">Identification of the <span class="hlt">Electron</span> Diffusion Region during Magnetic Reconnection in a Laboratory <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the first identification of the <span class="hlt">electron</span> diffusion region, where demagnetized <span class="hlt">electrons</span> are accelerated to super-Alfvenic speed, in a reconnecting laboratory <span class="hlt">plasma</span>. The <span class="hlt">electron</span> diffusion region is determined from measurements of the out-of-plane quadrupole magnetic field in the neutral <span class="hlt">sheet</span> in the Magnetic Reconnection Experiment. The width of the <span class="hlt">electron</span> diffusion region scales with the <span class="hlt">electron</span> skin depth (? 5.5-7.5c=?pi) and the peak <span class="hlt">electron</span> outflow velocity scales with the <span class="hlt">electron</span> Alfven velocity (? 0.12 - 0.16VeA), independent of ion mass.</p> <div class="credits"> <p class="dwt_author">Yang Ren, Masaaki Yamada, Hantao Ji, Stefan Gerhardt, and Russell Kulsrud</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-26</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992NIMPA.321..417K"> <span id="translatedtitle">Broad beam <span class="hlt">electron</span> sources with <span class="hlt">plasma</span> cathodes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> cathodes are used in large-cross-section <span class="hlt">electron</span> beam sources. The cathode <span class="hlt">plasma</span> is created by a low-pressure arc discharge with a hollow anode. The physical processes in the discharge anode region associated with <span class="hlt">electron</span> emission from the <span class="hlt">plasma</span> and the formation of a stable <span class="hlt">plasma</span> boundary as well as the methods used for reaching a more uniform <span class="hlt">electron</span> current density distribution are discussed. The <span class="hlt">electron</span> source designs allowing one to produce <span class="hlt">electron</span> beams with currents of 10-103 A, durations of 10-5-10-3s, current densities of 0.1-1.0 A/cm2, and cross sections of ~104cm2 are described.</p> <div class="credits"> <p class="dwt_author">Koval, N. N.; Oks, E. M.; Schanin, P. M.; Kreindel, Yu. E.; Gavrilov, N. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22086320"> <span id="translatedtitle">RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT <span class="hlt">SHEET</span> IN A RELATIVISTICALLY MAGNETIZED <span class="hlt">PLASMA</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The linear stability of a current <span class="hlt">sheet</span> that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current <span class="hlt">sheet</span> embedded in relativistically magnetized <span class="hlt">plasma</span> always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current <span class="hlt">sheet</span>, which can induce the so-called turbulent reconnection, the rate of which is essentially free from <span class="hlt">plasma</span> resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.</p> <div class="credits"> <p class="dwt_author">Inoue, Tsuyoshi, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ApJ...760...43I"> <span id="translatedtitle">Richtmyer-Meshkov-type Instability of a Current <span class="hlt">Sheet</span> in a Relativistically Magnetized <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The linear stability of a current <span class="hlt">sheet</span> that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current <span class="hlt">sheet</span> embedded in relativistically magnetized <span class="hlt">plasma</span> always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current <span class="hlt">sheet</span>, which can induce the so-called turbulent reconnection, the rate of which is essentially free from <span class="hlt">plasma</span> resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.</p> <div class="credits"> <p class="dwt_author">Inoue, Tsuyoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002Prama..58...67G"> <span id="translatedtitle">Numerical investigation of space charge electric field for a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam between two conducting planes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Analytical and numerical study of the stability of <span class="hlt">sheet</span> <span class="hlt">electron</span> beam in periodically cusped magnetic field (PCM) is made. The beam has been considered as having diffused density profile. The conditions for beam focusing are discussed.</p> <div class="credits"> <p class="dwt_author">Gokhale, Arti; Vyas, Preeti; Panikar, J.; Choyal, Y.; Maheshwari, K. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12951610"> <span id="translatedtitle">Analytical investigation of the composition of <span class="hlt">plasma</span>-induced functional groups on carbon nanotube <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To increase the applicability of carbon nanotubes (CNTs) oxygen-containing functional groups were generated on their widely inert surface by using glow-discharge <span class="hlt">plasmas</span>. CNT-<span class="hlt">sheets</span> (bucky papers) produced from the powder-like raw material were used as substrates allowing for a more defined characterization of one and the same surface by different analytical techniques. The <span class="hlt">plasma</span> composition was analyzed by optical emission spectroscopy.</p> <div class="credits"> <p class="dwt_author">Nicolas Peer Zschoerpera; Verena Katzenmaier; Uwe Vohrer; Michael Haupt; Christian Oehr; Thomas Hirth</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003ESASP.535..511W"> <span id="translatedtitle">The influence of ion-acoustic turbulence on the <span class="hlt">electron</span> acceleration in current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Under the assumption of quasi-stable magnetic reconnection, we argue that the ion acoustic wave should be excited due to the average drift velocity of <span class="hlt">electrons</span> relative to protons inside the current <span class="hlt">sheet</span> larger than <span class="hlt">electron</span> thermal velocity. Then, based on the time scales of the <span class="hlt">electron</span> acceleration in the reconnecting current <span class="hlt">sheets</span>, we study the evolution of energetic <span class="hlt">electrons</span> in different parameters by solving the Fokker-Planck equation including electric field and ion-acoustic turbulence scattering. The calculated energy spectra of <span class="hlt">electrons</span> are basically consistent with the observations and may be used to explain the evolution of the hard X-ray spectrum.</p> <div class="credits"> <p class="dwt_author">Wu, G. P.; Huang, G. L.; Tang, Y. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1012877"> <span id="translatedtitle"><span class="hlt">Electronic</span> and magnetic properties of substituted BN <span class="hlt">sheets</span>: A density functional theory study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using density functional calculations, we investigate the geometries, <span class="hlt">electronic</span> structures and magnetic properties of hexagonal BN <span class="hlt">sheets</span> with 3d transition metal (TM) and nonmetal atoms embedded in three types of vacancies: VB, VN, and VB+N. We show that some embedded configurations, except TM atoms in VN vacancy, are stable in BN <span class="hlt">sheet</span> and yield interesting phenomena. For instance, the band gaps and magnetic moments of BN <span class="hlt">sheet</span> can be tuned depending on the embedded dopant species and vacancy type. In particular, embedment such as Cr in VB+N, Co in VB, and Ni in VB leads to half-metallic BN <span class="hlt">sheets</span> interesting for spin filter applications. From the investigation of Mn-chain (CMn) embedments, a regular 1D structure can be formed in BN <span class="hlt">sheet</span> as an <span class="hlt">electron</span> waveguide, a metal nanometer wire with a single atom thickness.</p> <div class="credits"> <p class="dwt_author">Zhou, Yungang; Yang, Ping; Wang, Zhiguo; Zu, Xiaotao T.; Xiao, Hai Yan; Sun, Xin; Khaleel, Mohammad A.; Gao, Fei</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40438121"> <span id="translatedtitle">Surface modification of silicone <span class="hlt">sheets</span> and tubes using <span class="hlt">plasma</span>-based ion implantation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Silicone (polydimethylsiloxane) <span class="hlt">sheets</span> and tubes were irradiated with Ar ions using <span class="hlt">plasma</span>-based ion implantation (PBII). The roughness of the surface increased dramatically with increasing applied high voltage. The Raman spectra showed a destruction of methyl groups and the formation of amorphous carbon structures. The RBS measurements indicated an enrichment of carbon atoms and the presence of implanted ions at the</p> <div class="credits"> <p class="dwt_author">Tomohiro Kobayashi; Rui Katou; Toshihiko Yokota; Yoshiaki Suzuki; Masaya Iwaki; Takayuki Terai</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1425958"> <span id="translatedtitle">A high-power millimeter-wave <span class="hlt">sheet</span> beam free-<span class="hlt">electron</span> laser amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The results of experiments with a short period (9.6 mm) wiggler <span class="hlt">sheet</span> <span class="hlt">electron</span> beam (1.0 mm×2.0 cm) millimeter-wave free <span class="hlt">electron</span> laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for <span class="hlt">sheet</span> beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance</p> <div class="credits"> <p class="dwt_author">Shiqiu Cheng; William W. Destler; Victor L. Granatstein; Thomas M. Antonsen; Baruch Levush; John Rodgers; Z. X. Zhang</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012APS..DMP.T1003G"> <span id="translatedtitle">How <span class="hlt">electron</span> collisions shape an ultracold <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Excitation of diatomic nitric oxide in a supersonic molecular beam forms a Rydberg gas with a temperature less than 1 K in the moving frame. This system relaxes to a molecular ultracold <span class="hlt">plasma</span> with properties very comparable to <span class="hlt">plasmas</span> formed by Rydberg excitation or threshold photoionization of atoms in a MOT. While, both MOT and molecular beam <span class="hlt">plasmas</span> expand on a microsecond timescale with velocities determined by the <span class="hlt">electron</span> temperature and the mass of the positive ions, molecular beam <span class="hlt">plasmas</span> appear to expand slower than MOT <span class="hlt">plasmas</span> suggesting a state of strong coupling. This observation challenges the conventional understanding of these systems. The nitric oxide <span class="hlt">plasma</span> differs from MOT <span class="hlt">plasmas</span> in one very important fundamental respect. Molecular cations carry the positive charge, and when a diatomic NO^+ ion recombines with an <span class="hlt">electron</span>, it can dissociate to neutral atoms. The spatial distribution of ions and <span class="hlt">electrons</span> in a quasi-neutral <span class="hlt">plasma</span> determines the driving force for expansion. Dissociative recombination occurs fastest in the core of the <span class="hlt">plasma</span>. This loss channel flattens the charged-particle density distribution in the centre. Model calculations show that this suppresses the expansion of the core, channeling the thermal energy of the <span class="hlt">electrons</span> to flow instead to the hydrodynamic motion of the peripheral ions.</p> <div class="credits"> <p class="dwt_author">Grant, Edward</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21443325"> <span id="translatedtitle">Emission current formation in <span class="hlt">plasma</span> <span class="hlt">electron</span> emitters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A model of the <span class="hlt">plasma</span> <span class="hlt">electron</span> emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in <span class="hlt">plasma</span> are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in <span class="hlt">plasma</span> on the accelerating voltage and geometrical sizes of the emission channel are presented.</p> <div class="credits"> <p class="dwt_author">Gruzdev, V. A.; Zalesski, V. G. [Polotsk State University (Belarus)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JPhCS.388d2049Z"> <span id="translatedtitle"><span class="hlt">Electron</span> scattering in hot-dense <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Hot-dense <span class="hlt">plasmas</span> have direct industrial applications in inertial confinement fusion. We have used the convergent close-coupling (CCC) method to investigate <span class="hlt">electron</span> scattering off hydrogen and helium atoms in a hot-dense weakly coupled (Debye) <span class="hlt">plasma</span>. The Yukawa-type Debye-Hückel potential has been used to describe the <span class="hlt">plasma</span> screening effects. Integrated excitation, total ionization and total cross sections have been calculated over a broad range of energies and various Debye lengths, D.</p> <div class="credits"> <p class="dwt_author">Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AdSpR..48.1531K"> <span id="translatedtitle">Kink-like mode of a double gradient instability in a compressible <span class="hlt">plasma</span> current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A linear MHD instability of the electric current <span class="hlt">sheet</span>, characterized by a small normal magnetic field component, varying along the <span class="hlt">sheet</span>, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the <span class="hlt">sheet</span>. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the <span class="hlt">plasma</span> parameters. This work is an extended numerical study of the so called "double gradient instability", - a possible candidate for the explanation of flapping oscillations in the magnetotail current <span class="hlt">sheet</span>, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible <span class="hlt">plasma</span>. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Korovinskiy, D. B.; Ivanova, V. V.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Biernat, H. K.; Zellinger, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..653Z"> <span id="translatedtitle">Nature of axial tail instability and bubble-blob formation in near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">ABSTRACTPrevious global magnetohydrodynamic (MHD) simulations of substorm events have identified the dynamic presence of an axial tail instability that is uniform in the dawn-dusk direction in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The axial tail instability is found to be a major cause of the initial growing MHD force imbalance on closed field lines prior to the subsequent magnetic reconnection and substorm expansion onset processes. In this work, energy principle analysis indicates that a two-dimensional thin current <span class="hlt">sheet</span> configuration in the magnetotail is typically stable to the axial mode within the framework of ideal MHD model. However, linear resistive MHD calculations find axial tail instabilities on closed field lines in the generalized Harris <span class="hlt">sheet</span> configurations. The properties of these instabilities are similar to the axial tail modes observed in the global MHD simulations. The axial tail mode is unstable in regimes of low Lundquist number and regions with small normal component of magnetic field. Such resistive axial tail instability would by many researchers be considered as tearing instability in a two-dimensional tail configuration. Unlike the conventional tearing mode of Harris <span class="hlt">sheet</span>, the linear axial tail instability does not involve any reconnection process. Instead, the nature of the mode is dominantly a slippage process among neighboring flux tubes as facilitated by resistive dissipation. A natural consequence of the axial tail instability is shown to be the formation of bubble-blob pairs in the pressure and entropy profiles in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Zhu, P.; Raeder, J.; Hegna, C. C.; Sovinec, C. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ChPhL..30f6102L"> <span id="translatedtitle">The Origin of BC7 <span class="hlt">Sheet</span> Metallicity and the Tuning of its <span class="hlt">Electronic</span> Properties by Hydrogenation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using first-principles calculations, we investigate the structural, <span class="hlt">electronic</span> and hydrogenated properties of the hexagonal BC7 <span class="hlt">sheet</span>. The computed energy bands and density of states indicate that the BC7 <span class="hlt">sheet</span> is a metal, and its metallicity mainly originates from the non-bonding pz <span class="hlt">electrons</span> of the diagonal carbon of the B atom. When these carbon atoms are fully passivated by H atoms, the BC7 <span class="hlt">sheet</span> becomes a semiconductor with a band gap of 2.41 eV. Our studies demonstrate that changing both the proportion of the boron atoms in the boron carbon <span class="hlt">sheet</span> and its hydrogenation can tune the <span class="hlt">electronic</span> properties of boron carbon two-dimensional material.</p> <div class="credits"> <p class="dwt_author">Lei, Xue-Ling; Liu, Gang; Wu, Mu-Sheng; Xu, Bo; Ouyang, Chu-Ying; Pan, Bi-Cai</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Ap%26SS.tmp..338A"> <span id="translatedtitle">Study of gradient effects on inertial Alfvén waves in <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer region—kinetic approach</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Inertial Alfvén waves are investigated using Maxwell-Boltzmann-Vlasov equation to evaluate the dispersion relation and growth/damping rate in inhomogeneous <span class="hlt">plasma</span>. Expressions for the dispersion relation and growth/damping rate are evaluated in inhomogeneous <span class="hlt">plasma</span>. The effects of density, temperature and velocity gradient are included in the analysis. The results are interpreted for the space <span class="hlt">plasma</span> parameters appropriate to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. It is found that the inhomogeneities of <span class="hlt">plasma</span> contribute significantly to enhance the growth rate of inertial Alfvén wave. The applicability of this model is assumed for auroral acceleration region and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer.</p> <div class="credits"> <p class="dwt_author">Agarwal, P.; Varma, P.; Tiwari, M. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.2211M"> <span id="translatedtitle">First IBEX observations of the terrestrial <span class="hlt">plasma</span> <span class="hlt">sheet</span> and a possible disconnection event</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of energetic neutral atoms (ENAs) emitted from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the magnetosheath stagnation region at the nose of the magnetosphere. This study provides the first IBEX images of the ENA emissions from the nightside magnetosphere and <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We show images from two IBEX orbits: one that displays typical <span class="hlt">plasma</span> <span class="hlt">sheet</span> emissions, which correlate reasonably well with a model magnetic field, and a second that shows a significant intensification that may indicate a near-Earth (˜10 RE behind the Earth) disconnection event. IBEX observations from ˜0.5-6 keV indicate the simultaneous addition of both a hot (several keV) and colder (˜700 eV) component during the intensification; if IBEX directly observed magnetic reconnection in the magnetotail, the hot component may signify the <span class="hlt">plasma</span> energization.</p> <div class="credits"> <p class="dwt_author">McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Fuselier, S. A.; Goldstein, J.; Jahn, J.-M.; Janzen, P.; Mitchell, D. G.; Petrinec, S. M.; Reisenfeld, D. B.; Schwadron, N. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM53A..03E"> <span id="translatedtitle">Electrostatic Turbulence, Parallel Electric Fields, and Alfvénic Turbulence in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Intense electrostatic turbulence that includes double layers, <span class="hlt">electron</span> phase-space holes, and other large-amplitude structures in the parallel electric field are observed to be associated with Alfvénic turbulence in the bursty bulk flow breaking region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Alfvénic turbulence is revealed through its strong earthward Poynting flux. This association suggests that Alfvén waves can interact with non-linear kinetic structures. The interaction is thought to take place through a match in perpendicular scales of electrostatic turbulence with those of kinetic Alfvén waves, even though the parallel scales of the Alfvén waves are many orders of magnitude larger than those of the non-linear kinetic structures. We suggest a scenario in which kinetic Alfvén waves with small perpendicular scales are generated in the turbulent bursty bulk flow breaking region. These waves drive strong, localized, field-aligned currents, which generate intense electrostatic turbulence. The rapid growth of parallel electric fields, in turn, alter the Alfvén waves. In essence, the strong electrostatic turbulence in the parallel electric field expedites the turbulent cascade of Alfvén waves to shorter scales.</p> <div class="credits"> <p class="dwt_author">Ergun, R. E.; Tao, J.; Andersson, L.; Angelopoulos, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48899932"> <span id="translatedtitle">The Saturnian <span class="hlt">plasma</span> <span class="hlt">sheet</span> as revealed by energetic particle measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Since July 2004 Cassini is in orbit around Saturn providing in-situ measurements of the Saturnian magnetosphere. One of the three sensors of the Magnetospheric Imaging Instrument (MIMI) is the Low Energy Magnetospheric Measurement System (LEMMS) that responds to energetic particles which can serve as indicators of key regions (Krimigis et al., 2005) and ongoing <span class="hlt">plasma</span> processes in the magnetosphere. In</p> <div class="credits"> <p class="dwt_author">N. Krupp; A. Lagg; J. Woch; S. M. Krimigis; S. Livi; D. G. Mitchell; E. C. Roelof; C. Paranicas; B. H. Mauk; D. C. Hamilton; T. P. Armstrong; M. K. Dougherty</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002cosp...34E1131W"> <span id="translatedtitle">Modeling the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> pressure and magnetic field under enhanced convection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In order to understand the evolution of the proton pressure and magnetic field in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> from quiet to disturbed times, we incorporate a modified version of the Magnetospheric Specification Model with a modified version of the Tsyganenko 96 magnetic field model to self-consistently simulate protons and magnetic field under an increasing convection electric field with two-dimensional force balance maintained along the midnight meridian. The local-time dependent proton differential fluxes assigned to the model boundary are mixture of hot <span class="hlt">plasma</span> from the distant tail and cooler <span class="hlt">plasma</span> from the low latitude boundary layer and are constructed based on Geotail observations and the results of the finite-tail-width- convection model. We previously used this model to simulate the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> under weak convection corresponding to a cross polar-cap potential drop ( PC) equal to 26 kV and obtained two-dimensional quiet time equilibrium for proton and magnetic field that agrees well with observations both qualitatively and quantitatively. We start our simulation for enhanced convection with this quiet time equilibrium and time independent boundary particle sources and increase thePC steadily from 26 kV to 146 kV in 5 hours. The simulations are also run to steady states separately by keepingP C constant after it is increased to 98 and to 146 kV. The magnitude of the simulated proton pressure and its increase from quiet to moderate activity ( P C = 98 kV) are consistent with most observations. Our results at high activity (P C = 146 kV) underestimate the observed pressure, a disagreement that indicates possible dependence of the boundary particle sources on activity. The pressure equatorial profiles show a dawn dusk asymmetry as a result of stronger enhancement on the dusk side than on the dawn side as convection is increased. The equatorial m gnetic field strength decreases more in the near-Eartha <span class="hlt">plasma</span> <span class="hlt">sheet</span> than at larger radial distances as theP C increases, resulting in an increasing flat radial profile with enhancing convection strength. The feedbacks from diamagnetic drift and magnetic fields to increasing convection are to restrain the increase in <span class="hlt">plasma</span> pressure. Based on the good agreement between our pressure and observations at moderate activity, our magnetic field indicates the <span class="hlt">plasma</span> and magnetic field in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> are in a state far from possible force balance inconsistency. A scale analysis of our results shows that the frozen-in condition E = - - v × B is not valid in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span>, at least to an enhanced convection condition corresponding to moderate activity.</p> <div class="credits"> <p class="dwt_author">Wang, C.; Lyons, L.; Chen, M.; Wolf, R.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5123766"> <span id="translatedtitle">Survey of low-energy <span class="hlt">plasma</span> <span class="hlt">electrons</span> in Saturn's magnetosphere: Voyagers 1 and 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper is a survey of the low-energy <span class="hlt">plasma</span> <span class="hlt">electron</span> environment within Saturn's magnetosphere made by the <span class="hlt">plasma</span> science experiment (PLS) during the Voyager encounters with Saturn. Over the full energy range of the PLS instrument (10 eV to 6 keV) the <span class="hlt">electron</span> of distribution functions are clearly non-Maxwellian in character; they are composed of a cold (thermal) component with Maxwellian shape and a hot (suprthermal) non-Maxwellian component. A large-scale positive radial gradient in <span class="hlt">electron</span> temperature is observed, increasing from less than 1 eV in the inner magnetosphere to as high as 800 eV in the outer magetosphere. This increase in <span class="hlt">electron</span> temperature explains the observed order of magnitude increase in <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickness with increasing radial distance from Saturn. Scale heights of the cold heavy ion <span class="hlt">plasma</span> can be as small as 0.2 R/sub S/ in the inner magnetosphere and as much as 3 R/sub S/ in the outer magnetosphere. Many of the observed density variations can be attributed to changes in density scale height without a change in <span class="hlt">plasma</span> flux tube content. Three fundamentally different <span class="hlt">plasma</span> regimes have been identified from the measurements: (1) the hot outer magnetosphere. (2) the extended <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and (3) the inner <span class="hlt">plasma</span> torus. The hot outer magnetopshere is a region within which the suprathermal <span class="hlt">electrons</span> are the dominant contributors to the <span class="hlt">electron</span> pressure, and a times to the <span class="hlt">electron</span> density. Near the noon meridian, the <span class="hlt">electrons</span> display a highly time dependent behavior with order of magnitudes changes in density an temperature, which can occur in less than 96 s. Sudden density enhancements of cold <span class="hlt">plasma</span> occur, which are thought to be either, ''plumes'' associated with Titan (Eviatar et al., 1982) or <span class="hlt">plasma</span> ''blobs'', (Goertz, 1983).</p> <div class="credits"> <p class="dwt_author">Sittler, E.C. Jr.; Ogilvie, K.W.; Scudder, J.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21251576"> <span id="translatedtitle"><span class="hlt">Electronic</span> Broadening operator for relativistic <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion lines in relativistic <span class="hlt">plasma</span>. Mainly we focuss our work on the collision operator for relativistic <span class="hlt">electrons</span>. In this case, the <span class="hlt">electron</span> trajectory around a positive charge in the <span class="hlt">plasma</span> differs drastically from those known earlier as hyperbolic. The effect of this difference on the collision operator is discussed with respect the various <span class="hlt">plasma</span> conditions. Some theoretical and practical aspects of lines -shape calculations are discussed. Detailed calculations are performed for the collision operator in the semiclassical (dipole) impact approximation.</p> <div class="credits"> <p class="dwt_author">Meftah, M. T. [Laboratoire Lenreza, Departement de Physique, Faculte des Sciences et Sciences de l'ingenieur, Universite de Ouargla 30000 (Algeria); Naam, A. [Departement de Physique, Faculte des Sciences et Sciences de l'ingenieur, Universite de Ouargla 30000 (Algeria)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-10-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM14B..03L"> <span id="translatedtitle">ELF wave intensification in conjunction with fast earthward flow in the mid-tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> ------- A THEMIS survey</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A number of recent studies have revealed a close association between the fast earthward flows and dipolarization fronts in the magnetotail and the <span class="hlt">plasma</span> wave intensifications in the ELF/VLF range, including the lower-hybrid waves, whistler-mode and <span class="hlt">electron</span> cyclotron waves. Those waves may play crucial roles in the acceleration and pitch-angle scattering of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span>, and in turn produce a macroscopic effect accompanying the fast flows. In this study, we perform a statistical survey of the THEMIS B/C data over the 2008 and 2009 tail seasons, and select ~110 fast earthward flow intervals in which the probes were mostly located in the mid-tail central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) region. We investigate the filterbank (FBK) dataset of the electric field instrument (EFI) and search coil magnetometer (SCM) during the collected fast flow intervals, and identify an unambiguous trend of increasing ELF wave intensities with the convective flow enhancement. Notwithstanding the relatively wide bandwidth of FBK data we may still distinguish the existence of the lower-hybrid waves, the whistler-mode waves, and the electrostatic waves at f>f_ce. On a further examining of the flow-associated whistler-mode waves we notice a mixture of the quasi-electrostatic and electromagnetic wave modes, implying a broad distribution of the wave normal angles. We tentatively suggest that the energetic <span class="hlt">electron</span> beam originated from the reconnection site and/or the local dipolarizatoin front might be the main driving mechanism of the flow-associated ELF wave intensifications.</p> <div class="credits"> <p class="dwt_author">Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Themis Team</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003PhDT........56N"> <span id="translatedtitle">Acceleration of <span class="hlt">electrons</span> using relativistic <span class="hlt">plasma</span> waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> beat-wave accelerator in the Neptune Laboratory at UCLA uses a ˜1 terawatt two-wavelength CO2 laser pulse to tunnel ionize hydrogen gas at conditions of resonance for driving a relativistic <span class="hlt">plasma</span> wave. This <span class="hlt">plasma</span> wave is used as an accelerating structure for an externally injected, ˜12 MeV, <span class="hlt">electron</span> beam from the Neptune Photo-injector. The accelerated <span class="hlt">electron</span> energy spectrum is measured using an <span class="hlt">electron</span> spectrometer, consisting of a dipole magnet, and an array of surface barrier detectors and phosphors. Accelerated <span class="hlt">electrons</span> have been detected out to ˜50 MeV using this setup. These experiments are also modeled in 2-D particle-in-cell simulations. These simulations show the self-channeling of the laser beam due to ion motion, which overcomes the defocusing caused by ionization induced refraction, effectively increasing the interaction length between the injected <span class="hlt">electrons</span> and the <span class="hlt">plasma</span> wave. Simulations are also performed to study the guiding of shorter (50--500 fs), but more intense, 0.8 mum laser pulses by preformed <span class="hlt">plasma</span> channels. The three laser acceleration schemes, laser wake-field acceleration, <span class="hlt">plasma</span> beat-wave acceleration, and self-modulated laser wake-field acceleration, are explored.</p> <div class="credits"> <p class="dwt_author">Narang, Ritesh</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6008309"> <span id="translatedtitle">An <span class="hlt">electron</span> gun with a <span class="hlt">plasma</span> emitter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes a continuous-running <span class="hlt">electron</span> gun which has a <span class="hlt">plasma</span> emitter that is based on a reflective arc discharge in a cold hollow cathode, which provides an <span class="hlt">electron</span> beam carrying a current of 1 A. The beam current can be regulated smoothly from 1 mA to 1 A by varying the potential of the emitter cathode.</p> <div class="credits"> <p class="dwt_author">Gruzdev, V.A.; Kreindel', Y.E.; Rempe, N.G.; Troyan, O.E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54073421"> <span id="translatedtitle">New <span class="hlt">electron</span> energy analyzer for magnetized <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A single selecting electrode device for the measurement of <span class="hlt">electron</span> energy distributions parallel to a strong magnetic field in a <span class="hlt">plasma</span> is described. A series of parallel plates eliminates ion entry into the analyzer and selectively retards <span class="hlt">electrons</span> for energy analysis. The device was tested in a hot cathode discharge in the University of Maryland Mirror Machine. Results compare favorably</p> <div class="credits"> <p class="dwt_author">D. N. Arion; R. F. Ellis</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://silis.phys.strath.ac.uk/publications/Articles/Reitsma-plasma_kinetic_theory-ptrsa06.pdf"> <span id="translatedtitle"><span class="hlt">Electron</span> and photon beams interacting with <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A comparison is made between the interaction of <span class="hlt">electron</span> bunches and intense laser pulses with <span class="hlt">plasma</span>. The laser pulse is modelled with photon kinetic theory, i.e. a representation of the electromagnetic field in terms of classical quasi-particles with space and wave number coordinates, which enables a direct comparison with the phase space evolution of the <span class="hlt">electron</span> bunch. Analytical results are</p> <div class="credits"> <p class="dwt_author">Albert Reitsma; Dino Jaroszynski</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM53D..04S"> <span id="translatedtitle">Relationship Between Ground-based and In-situ <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Measurements of Convection Penetration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Shortly after the discovery of bursty <span class="hlt">plasma</span> <span class="hlt">sheet</span> convection, a number of observational studies have suggested a link between earthward flow bursts observed near the midnight central <span class="hlt">plasma</span> <span class="hlt">sheet</span> and auroral intensifications at the polar cap boundary (“polar cap boundary intensifications” or PBIs) and the southward propagating aurora (“auroral streamers”). Three different stages are identified during the southward progression of the streamers. In the first stage there is a boundary brightening followed, often within a few minutes, by the start of the propagation of aurora in the southward direction. The second stage, which usually lasts up to ten minutes, consists of the propagation of the auroral streamer into the equatorward edge of the aurora. In the third stage, the arrival of the streamer to the equatorward edge of the oval coincides with the onset of a bright spot that can last for as long as 20 minutes. Bursty convection is observed in association with streamers most commonly during steady magnetospheric convection and substorm recovery, although it is also observed in general during periods of sustained geomagnetic activity. This investigation has two objectives. The first is to determine whether reconnection is enhanced concurrently with the PBIs and whether the duration of the enhancement coincides with the southward expansion of the auroral streamers. The second objective is to determine whether the enhanced tail reconnection is associated with penetration of under-dense flux tubes into near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Ground-based multi-spectral optical measurements and in-situ Geotail and THEMIS measurements in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during extended periods of southward IMF show the causal chain whereby PBIs are indeed the optical manifestation of reconnection intensifications that power, in some cases, the penetration of fast convection into the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Observations show, however, that there are also intense flow bursts (~ 1000 km/s) without any clear indication of streamers and streamers without a corresponding flow burst. We discuss the consequences of these apparent discrepancies on the paradigm of penetration of under-dense flux tubes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Sanchez, E. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008cosp...37.1044G"> <span id="translatedtitle">Using PEACE data from the four Cluster spacecraft to measure compressibility, vorticity, and the Taylor microscale in the magnetosheath and <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present determinations of compressibility and vorticity in the magnetosheath and <span class="hlt">plasma</span> <span class="hlt">sheet</span> using moments from the four PEACE thermal <span class="hlt">electron</span> instruments on Cluster. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and <span class="hlt">plasma</span> <span class="hlt">sheet</span> is usually less than the Alfvén speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this e four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using <span class="hlt">electron</span> velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.</p> <div class="credits"> <p class="dwt_author">Goldstein, Mevlyn; Parks, George; Decreau, Pierrette; Gurgiolo, C.; Fazakerley, Andrew N.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.5467L"> <span id="translatedtitle">Transport of cold ions from the polar ionosphere to the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ionospheric outflow is believed to be a significant contribution to the magnetospheric <span class="hlt">plasma</span> population. Ions are extracted from the ionosphere and transported downtail by the large-scale convection motion driven by dayside reconnection. In this paper, we use a comprehensive data set of cold ion (total energy less than 70 eV) measurements combined with simultaneous observations from the solar wind to investigate the fate of these ions. By tracing the trajectories of the ions, we are able to find out where in the magnetotail ions end up. By sorting the observation according to geomagnetic activity and solar wind parameters, we then generate maps of the fate regions in the magnetotail and investigate the effects of these drivers. Our results suggest that, on overall, for about 85% of the cases, the outflowing ions are transported to the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The region where the ions are deposited into the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is larger during geomagnetic quiet time than during disturbed conditions. A persistent dawn-dusk asymmetry in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> deposition is also observed.</p> <div class="credits"> <p class="dwt_author">Li, Kun; Haaland, S.; Eriksson, A.; André, M.; Engwall, E.; Wei, Y.; Kronberg, E. A.; Fränz, M.; Daly, P. W.; Zhao, H.; Ren, Q. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGRA..113.7S35K"> <span id="translatedtitle">Response of the inner magnetosphere and the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to a sudden impulse</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The passage of an interplanetary shock caused a sudden compression of the magnetosphere between 0900 UT and 0915 UT on 24 August 2005. An estimate of the shock normal from solar wind data obtained by Geotail upstream of the bow shock indicates symmetric compression with respect to the noon-midnight meridian. Compression-related disturbances of the magnetic and electric field and <span class="hlt">plasma</span> motion were observed by Double Star Program (DSP) Tan Ce 1 (TC1) and Tan Ce 2 (TC2) in the inner magnetosphere and by the Cluster spacecraft in the dawnside <span class="hlt">plasma</span> <span class="hlt">sheet</span>. DSP/TC1 and TC2 observations suggest that the disturbances in the inner magnetosphere are propagating from the dayside magnetopause. Cluster S/C 4 observations indicate that the front normal of the disturbances in the dawnside <span class="hlt">plasma</span> <span class="hlt">sheet</span> is ? ˜ 180° at 0902:50 UT and ? = 107° at 0904:34 UT, where ? is the longitude in GSM coordinates, if we assume that the measured electric field is on the front plane and the normal lies on the X-Y plane. The timing analysis applied to magnetic field data from the four Cluster spacecraft independently gives a front normal, which is calculated to be ? = 131° at about 0904:20 UT. Shock-associated magnetic and electric field disturbances propagating from both the dayside and flank magnetopauses are detected in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>; the latter makes the dominant contribution. Substorms are, however, not triggered at the passage of the disturbances.</p> <div class="credits"> <p class="dwt_author">Keika, K.; Nakamura, R.; Baumjohann, W.; Runov, A.; Takada, T.; Volwerk, M.; Zhang, T. L.; Klecker, B.; Lucek, E. A.; Carr, C.; RèMe, H.; Dandouras, I.; André, M.; Frey, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21277305"> <span id="translatedtitle">Nonlinear interaction of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with <span class="hlt">electron</span> acoustic waves in <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An analysis of interaction between two temperature <span class="hlt">electron</span> species in the presence of static neutralizing ion background is presented. It is shown that <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can nonlinearly interact with <span class="hlt">electron</span> acoustic wave in a time scale much longer than {omega}{sub p}{sup -1}, where {omega}{sub p} is <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency. A set of coupled nonlinear differential equations is shown to exist in such a scenario. Propagating soliton solutions are demonstrated from these equations.</p> <div class="credits"> <p class="dwt_author">Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Calcutta 700 064 (India); Sengupta, Sudip [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..GECRF1005L"> <span id="translatedtitle"><span class="hlt">Electron</span> Beam Diagnostics in <span class="hlt">Plasmas</span> Based on <span class="hlt">Electron</span> Beam Ionization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Over the last few years, <span class="hlt">electron</span> beam ionization has been shown to be a viable generator of high density <span class="hlt">plasmas</span> with numerous applications in materials modification. To better understand these <span class="hlt">plasmas</span>, we have fielded <span class="hlt">electron</span> beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the <span class="hlt">plasma</span>. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the <span class="hlt">plasma</span> but pass high energy beam <span class="hlt">electrons</span>. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy <span class="hlt">electron</span> beams through gases and appropriate disparities and caveats will be discussed. Finally, <span class="hlt">plasma</span> parameters are correlated to the measured beam parameters for a more global picture of <span class="hlt">electron</span> beam produced <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhPl...18a2106G"> <span id="translatedtitle">Amplitude modulation of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves in a quantum <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using the one dimensional quantum hydrodynamic model for a two-component <span class="hlt">electron</span>-ion dense quantum <span class="hlt">plasma</span> the linear and nonlinear properties of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves are studied including ion motion. By using the standard method of multiple scales perturbation technique a nonlinear Schrödinger equation containing quantum effects is derived. From this equation it is shown that with immobile ions an <span class="hlt">electron</span> <span class="hlt">plasma</span> wave becomes modulationally unstable in two distinct regions of the wavenumber. Numerical calculation shows that the stability domain of the wavevector shrinks with the increase in quantum diffraction effect. It is also found that the growth rate of instability in the high wavenumber region increases with the increase in quantum effect. Ion motion is found to have significant effect in changing the stability/instability domains of the wavenumber in the low k-region.</p> <div class="credits"> <p class="dwt_author">Ghosh, Basudev; Chandra, Swarniv; Paul, S. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21532159"> <span id="translatedtitle">Amplitude modulation of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves in a quantum <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using the one dimensional quantum hydrodynamic model for a two-component <span class="hlt">electron</span>-ion dense quantum <span class="hlt">plasma</span> the linear and nonlinear properties of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves are studied including ion motion. By using the standard method of multiple scales perturbation technique a nonlinear Schroedinger equation containing quantum effects is derived. From this equation it is shown that with immobile ions an <span class="hlt">electron</span> <span class="hlt">plasma</span> wave becomes modulationally unstable in two distinct regions of the wavenumber. Numerical calculation shows that the stability domain of the wavevector shrinks with the increase in quantum diffraction effect. It is also found that the growth rate of instability in the high wavenumber region increases with the increase in quantum effect. Ion motion is found to have significant effect in changing the stability/instability domains of the wavenumber in the low k-region.</p> <div class="credits"> <p class="dwt_author">Ghosh, Basudev; Chandra, Swarniv [Department of Physics, Jadavpur University, Kolkata 700032 (India); Paul, S. N. [Swami Vivekananda Institute of Science and Technology, Dakshin Gobindapur, P.S.-Sonarpur, Kolkata 700145 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5916052"> <span id="translatedtitle">Free <span class="hlt">electron</span> laser with small period wiggler and <span class="hlt">sheet</span> <span class="hlt">electron</span> beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The use of a small period wiggler (/ell//sub ..omega../ < 1 cm) together with a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam has been proposed as a low cost source of power for <span class="hlt">electron</span> cyclotron resonance heating (ECRH) in magnetic fusion <span class="hlt">plasmas</span>. Other potential applications include space-based radar systems. We have experimentally demonstrated stable propagation of a <span class="hlt">sheet</span> beam (18 A. 1 mm /times/ 20 mm) through a ten-period wiggler electromagnet with peak field of 1.2 kG. Calculation of microwave wall heating and pressurized water cooling have also been carried out, and indicate the feasibility of operating a near-millimeter, <span class="hlt">sheet</span> beam FEL with an output power of 1 MW CW (corresponding to power density into the walls of 2 kW/cm/sup 2/). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 ..mu..s pulses: <span class="hlt">electron</span> energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs.</p> <div class="credits"> <p class="dwt_author">Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.; Destler, W.W.; Finn, J.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Radack, D.; Rodgers, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM14B..06Z"> <span id="translatedtitle">Nature of Axial Tail Instability and Bubble-Blob Formation in Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>*</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Previous global MHD simulations of substorm events have identified the dynamic presence of an axial tail instability with dawn-dusk symmetry in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> as a major cause of the initial loss of MHD equilibrium on closed field lines prior to the subsequent magnetic reconnection and substorm expansion onset processes [Raeder et al. 2010; Siscoe et al. 2009]. In this work, energy principle analysis indicates that a two-dimensional thin current <span class="hlt">sheet</span> configuration in the magnetotail is typically stable to the axial mode within the framework of ideal MHD model. Linear resistive MHD calculations find axial tail instabilities on closed field lines in the generalized Harris <span class="hlt">sheet</span> configurations. The properties of these instabilities are similar to the axial tail modes observed in the global MHD simulations. The axial tail mode is unstable in regimes of low Lundquist number and regions with small normal component of magnetic field. Mode growth and structure show both similarities and differences in comparison to the linear resistive tearing mode of a one-dimensional Harris <span class="hlt">sheet</span>. Unlike the conventional tearing mode of Harris <span class="hlt">sheet</span>, the linear axial tail instability does not involve any reconnection process. Instead, the nature of the mode is dominantly an interchange or slippage process among neighboring flux tubes as facilitated by dissipations such as resistivity. The formation of bubble-blob pairs in pressure and entropy distributions in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> is shown to be a natural component as well as consequence of this axial instability process. *Supported by NSF grants AGS-0902360 and PHY-0821899. REFERENCES: Raeder, J., P. Zhu, Y. Ge, and G. Siscoe (2010), Open Geospace General Circulation Model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset, J. Geophys. Res., 115, A00I16, doi:10.1029/2010JA015876. Siscoe, G. L., M. M. Kuznetsova, and J. Raeder (2009), Search for an onset mechanism that operates for both CMEs and substorms, Ann. Geophys., 27, 31413146.</p> <div class="credits"> <p class="dwt_author">Zhu, P.; Raeder, J.; Hegna, C. C.; Sovinec, C. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AdSpR..41.1585T"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> oscillations and their relation to substorm development: Cluster and double star TC1 case study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We examined two consecutive <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current <span class="hlt">sheet</span> thinning and <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillations of 3 5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillations in the near-Earth magnetotail. One of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillations can reach the region.</p> <div class="credits"> <p class="dwt_author">Takada, T.; Nakamura, R.; Asano, Y.; Baumjohann, W.; Runov, A.; Volwerk, M.; Zhang, T. L.; Vörös, Z.; Keika, K.; Klecker, B.; Rème, H.; Lucek, E. A.; Carr, C.; Frey, H. U.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20637088"> <span id="translatedtitle">Discharge mode transitions in low-frequency inductively coupled <span class="hlt">plasmas</span> with internal oscillating current <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Transitions between the two discharge modes in a low-frequency ({approx}460 kHz) inductively coupled <span class="hlt">plasma</span> sustained by an internal oscillating radio frequency (rf) current <span class="hlt">sheet</span> are studied. The unidirectional rf current <span class="hlt">sheet</span> is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the <span class="hlt">plasma</span> source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E-mode argon <span class="hlt">plasma</span> glow is found remarkably higher than in inductively coupled <span class="hlt">plasmas</span> with external flat spiral 'pancake' coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the <span class="hlt">plasma</span> source. Under certain conditions, it appears possible to achieve a spontaneous E{yields}H transition ('self-transition'). The observed phenomenon can be attributed to the thermal drift of the <span class="hlt">plasma</span> parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed.</p> <div class="credits"> <p class="dwt_author">Tsakadze, Z.L.; Ostrikov, K.; Tsakadze, E.L.; Xu, S. [Plasma Sources and Applications Center, NIE, Nanyang Technological University, 1 Nanyang Walk, 637616 Singapore (Singapore); School of Physics, University of Sydney, New South Wales 2006 (Australia); Optics and Plasma Research Department, Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark); Plasma Sources and Applications Center, NIE, Nanyang Technological University, 1 Nanyang Walk, 637616 Singapore (Singapore)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13019437"> <span id="translatedtitle">Paper-like <span class="hlt">electronic</span> displays: Large-area rubber- stamped plastic <span class="hlt">sheets</span> of <span class="hlt">electronics</span> and microencapsulated electrophoretic inks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electronic</span> systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flex- ibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large ('5 3 5-inch) mechanically flexible <span class="hlt">sheets</span> of <span class="hlt">electronic</span></p> <div class="credits"> <p class="dwt_author">John A. Rogers; Zhenan Bao; Kirk Baldwin; Ananth Dodabalapur; Brian Crone; V. R. Raju; Valerie Kuck; Howard Katz; Karl Amundson; Jay Ewing; Paul Drzaic</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pdfserv.aip.org/PHPAEN/vol_17/iss_4/043111_1.pdf"> <span id="translatedtitle"><span class="hlt">Electron</span> beam transport analysis of W-band <span class="hlt">sheet</span> beam klystron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The formation and transport of high-current density <span class="hlt">electron</span> beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the <span class="hlt">electron</span> gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band <span class="hlt">sheet</span> beam klystron circuit, which exhibited poor beam transmission (<=55%), have</p> <div class="credits"> <p class="dwt_author">Jian-Xun Wang; Larry R. Barnett; Neville C. Luhmann; Young-Min Shin; Stanley Humphries</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6588740"> <span id="translatedtitle">Survey of low energy <span class="hlt">plasma</span> <span class="hlt">electrons</span> in Saturn's magnetosphere: Voyagers 1 and 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The low energy <span class="hlt">plasma</span> <span class="hlt">electron</span> environment within Saturn's magnetosphere was surveyed by the <span class="hlt">Plasma</span> Science Experiment (PLS) during the Voyager encounters with Saturn. Over the full energy range of the PLS instrument (10 eV to 6 keV) the <span class="hlt">electron</span> distribution functions are clearly non-Maxwellian in character. They are composed of a cold (thermal) component with Maxwellian shape and a hot (suprathermal) non-Maxwellian component. A large scale positive radial gradient in <span class="hlt">electron</span> temperature is observed, increasing from less than 1 eV in the inner magnetosphere to as high as 800 eV in the outer magnetosphere. Three fundamentally different <span class="hlt">plasma</span> regimes were identified from the measurements: (1) the hot outer magnetosphere, (2) the extended <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and (3) the inner <span class="hlt">plasma</span> torus.</p> <div class="credits"> <p class="dwt_author">Sittler, E.C. Jr.; Ogilvie, K.W.; Scudder, J.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7161718"> <span id="translatedtitle">Rapid variations of the <span class="hlt">plasma</span> bulk flow direction observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at X[sub GSE [approximately</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors report data observed by the Low Energy Particle (LEP) diagnostic on the GEOTAIL satellite. At a location of X[sub GSE][approx][minus]60R[sub e], the diagnostic observed variations in the bulk <span class="hlt">plasma</span> flow in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. This variation could be broken down into a slowly, and rapidly varying component. The slowly varying component seems related to the direction of the magnetic field. The more rapidly varying component is not so simply explained, and the authors discuss several possible explanations for its behavior.</p> <div class="credits"> <p class="dwt_author">Saito, Yoshifumi; Mukai, Toshifumi; Nishida, Atsuhiro (Institute of Space and Astronautical Science, Kanagawa (Japan)); Machida, Shinobu (Kyoto Univ. (Japan)); Hirahara, Masafumi; Terasawa, Toshio (Univ. of Tokyo (Japan))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PPCF...55c5008G"> <span id="translatedtitle">Magnetic <span class="hlt">electron</span> drift solitons in <span class="hlt">electron</span> magnetohydrodynamic <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The finite amplitude nonlinear evolution of magnetic <span class="hlt">electron</span> drift wave (MEDW) in collisionless <span class="hlt">electron</span> magnetohydrodynamic <span class="hlt">plasmas</span> is investigated. The dynamics of the nonlinear MEDW is shown to be governed by a Korteweg-de Vries-Zakharov-Kuztensov (KdV-ZK) equation in two dimensions which exhibits a soliton solution. The multi-dimensional stability using the small -k expansion yields that the magnetic <span class="hlt">electron</span> drift solitary waves are unstable with respect to the perturbation in the transverse direction.</p> <div class="credits"> <p class="dwt_author">Ghosh, Samiran; Chakrabarti, Nikhil</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMSM21B0200G"> <span id="translatedtitle">A Statistical Study of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Parameters in Geotail Data and the LFM MHD Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a comparison of statistical analyses of flow patterns in the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the geomagnetic tail, and in the near-earth simulation domain of global MHD simulations of the magnetosphere. To ensure a valid data/model comparison, we include in the investigation only subsets of both datasets with similar solar wind input conditions. Statistical earthward flow patterns in the geomagnetic tail have been interpreted as the return flow of reconnected field lines in the Dungey convection model of an open magnetosphere. A similar statistically averaged flow pattern in physics-based global MHD models should provide a necessary but not sufficient condition for model validation. We also investigate trends in other MHD parameters to test for comparison validity, and attempt to measure in both datasets the earthward convecting average mass, momentum, and energy flux through the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as functions of solar wind conditions, geomagnetic activity, and convection speed.</p> <div class="credits"> <p class="dwt_author">Guild, T.; Spence, H.; Kepko, L.; Wiltberger, M.; Lyon, J.; Goodrich, C.; Huang, C.; Petschek, H.; Hughes, J.; Mukai, T.; Kokubun, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41976107"> <span id="translatedtitle">Simultaneous measurements of energetic ion ( ge 50 keV) and <span class="hlt">electron</span> ( ge 220 keV) activity upstream of earth's bow shock and inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Magnetospheric source for the November 3 and December 3, 1977 upstream events</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Simultaneous observations of energetic ions ({approx gt}50 keV) and <span class="hlt">electrons</span> ({approx gt}220 keV) by the IMP 7 and 8 spacecraft, carrying identical instruments and located within the distant (â¼37 R{sub E}) magnetotail and upstream from the bow shock, have been employed to separate temporal variations from spatial variations during the upstream ion events observed on December 3, 1977 and November</p> <div class="credits"> <p class="dwt_author">E. T. Sarris; G. C. Anagnostopoulos; S. M. Krimigis</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.7204G"> <span id="translatedtitle">Formation of the Harang reversal and its dependence on <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions: Rice convection model simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The goal of this paper is to understand the formation of the Harang reversal and its association with the region 2 field-aligned current (FAC) system, which couples the <span class="hlt">plasma</span> <span class="hlt">sheet</span> transport to the ionosphere. We have run simulations with the Rice convection model (RCM) using the Tsyganenko 96 magnetic field model and realistic <span class="hlt">plasma</span> <span class="hlt">sheet</span> particle boundary conditions on the basis of Geotail observations. Our results show that the existence of an overlap in magnetic local time (MLT) of the region 2 upward and downward FAC is necessary for the formation of the Harang reversal. In the overlap region the downward FAC, which is located at lower latitudes, is associated with low-energy ions that penetrate closer to Earth toward the dawn side, while the upward FAC, which is located at higher latitudes, is associated with high-energy ions. Under the same enhanced convection we compare the Harang reversal resulting from a hotter and more tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span> with the one resulting from a colder and denser <span class="hlt">plasma</span> <span class="hlt">sheet</span>. For the former case the shielding of the convection electric field is less efficient than for the latter case, allowing low-energy protons to penetrate further earthward, resulting in a Harang reversal that extends to lower latitudes, expands wider in MLT, and is located further equatorward than the upward FAC peak and the conductivity peak. The return flows of the Harang reversal in the hot and tenuous case are located in a low conductivity region. This leads to an enhancement of these westward flows, resulting in subauroral polarization streams (SAPS).</p> <div class="credits"> <p class="dwt_author">Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.; Wolf, Richard A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/l61p7781g4007707.pdf"> <span id="translatedtitle">Stall control at high angle of attack with <span class="hlt">plasma</span> <span class="hlt">sheet</span> actuators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyzed the modifications of the airflow around an NACA 0015 airfoil when the flow was perturbed with electrohydrodynamic\\u000a forces. The actuation was produced with a <span class="hlt">plasma</span> <span class="hlt">sheet</span> device (PSD) consisting in two bare electrodes flush mounted on the\\u000a surface of the wing profile operated to obtain a discharge contouring the body in the inter-electrode space. We analyze the\\u000a influence</p> <div class="credits"> <p class="dwt_author">Roberto Sosa; Guillermo Artana; Eric Moreau; Gérard Touchard</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUSMSM73A..04F"> <span id="translatedtitle">The Role of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Conditions in Ring Current Formation and Energetic Neutral Atom Emissions: TWINS Results and CRCM Comparison</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The dynamics of the ring current is sensitive to <span class="hlt">plasma</span> <span class="hlt">sheet</span> density and temperature. The situation is further complicated by ionospheric feedback and the existence of electric shielding at low latitudes. Most of the ring current pressure is carried by ions with energies of ~5-50 keV. In this energy range, H-H+ charge exchange cross section falls sharply with increasing energy. As a result, the intensity of energetic neutral atoms (ENA) emitted from the ring current is very sensitive to the ion energy distribution, which, in turn, is controlled by the <span class="hlt">plasma</span> <span class="hlt">sheet</span> temperature. Using the Comprehensive Ring Current Model (CRCM) with different <span class="hlt">plasma</span> <span class="hlt">sheet</span> models, we calculate ENA emissions during several moderate storms in years 2008 and 2009. We compare the simulated images with those from the TWINS imagers and study the effects of <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions on the ring current and the associated ENA emissions.</p> <div class="credits"> <p class="dwt_author">Fok, M.; Buzulukova, N.; McComas, D.; Brandt, P.; Goldstein, J.; Valek, P.; Alquiza, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005JGRA..110.9207K"> <span id="translatedtitle">Bouncing ion clusters in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer observed by Cluster-CIS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on ion beams injected into the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (at or near the separatrix) at distances >39 RE and up to 169 RE that bounced several times back and forth (up to three echoes) while remaining in coherent bunches before thermalizing in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These bouncing ion clusters (BIC) interacted with the far-tail current <span class="hlt">sheet</span> with a possible curvature parameter, ?, of less than 2. The existence of these BIC shows that ion beams can interact several times nonadiabatically with the far-tail current <span class="hlt">sheet</span> and still remain coherent. Owing to the large-scale E × B drift, echoes also appeared in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) after several bounces. The echoes had higher energies compared with the initially injected ion cluster which can be attributed to additional nonadiabatic acceleration during their second and third interaction with the tail current <span class="hlt">sheet</span>. After multiple bounces, the ion cluster became thermalized isotropic <span class="hlt">plasma</span> mixing with the CPS. The three BIC events presented here were identified on the basis of the energy dispersion slopes associated with the ions. Simple model calculations showed, however, that in the case of these far-tail ion injections the 1:3:5:etc.-ratios of travel distances for echoes, used as diagnostics for near-Earth adiabatic BIC, are not valid. This is largely due to a significant shortening of the tail field lines, caused by earthward convection, during the large ion travel times. The model calculations also reproduced newly observed properties such as concave dispersion slopes for the echoes. Furthermore, we argue here that the energy dispersion of the BIC was dominated by a time-of-flight effect. The injection region for the three BIC events, determined on the basis of this time-of-flight interpretation, covered broad ranges of ?X (GSE) = 26-40 RE. Two BIC events occurred during the substorm recovery phase; the other BIC event occurred during quiet geomagnetic activity. For two BIC events, UV images were available showing that they were magnetically connected to the poleward arc of the double oval. One BIC event was also conjugate to a small active region inside the poleward arc. We conclude that these nonadiabatic BIC are different from the adiabatic BIC that are routinely reported in the CPS.</p> <div class="credits"> <p class="dwt_author">Keiling, A.; Parks, G. K.; RèMe, H.; Dandouras, I.; Bosqued, J. M.; Wilber, M.; McCarthy, M.; Mouikis, C.; Amata, E.; Klecker, B.; Korth, A.; Lundin, R.; Frey, H. U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55792249"> <span id="translatedtitle"><span class="hlt">Plasma</span>-loaded free-<span class="hlt">electron</span> laser with thermal <span class="hlt">electron</span> beam and background <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Thermal properties of a <span class="hlt">plasma</span>-loaded free-<span class="hlt">electron</span> laser are studied with the aid of a dispersion relation obtained from the kinetic theory. The <span class="hlt">electron</span> beam and the background <span class="hlt">plasma</span> are assumed to have, respectively, small and finite momentum spread in the axial direction, using water-bag distribution functions. Thermal effects of the beam <span class="hlt">electrons</span> are found to be stronger than those of</p> <div class="credits"> <p class="dwt_author">S. Babaei; B. Maraghechi</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48952966"> <span id="translatedtitle">Cluster <span class="hlt">electron</span> observations of the separatrix layer during traveling compression regions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present Cluster 4-point observations of <span class="hlt">electrons</span> during traveling compression regions (TCRs) on 19 September 2001. The <span class="hlt">electron</span> and ?B? signatures vary with distance from the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, confirming that transient <span class="hlt">plasma</span> <span class="hlt">sheet</span> bulges propagate past Cluster. TCRs with ?B? increases have either no <span class="hlt">electron</span> signature, or unidirectional ?1 keV <span class="hlt">electrons</span> at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> edge. However, spacecraft initially near</p> <div class="credits"> <p class="dwt_author">C. J. Owen; J. A. Slavin; A. N. Fazakerley; M. W. Dunlop; A. Balogh</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Ap%26SS.tmp..350E"> <span id="translatedtitle">Magnetosonic rogons in <span class="hlt">electron</span>-ion <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Magnetosonic rogue waves (rogons) are investigated in an <span class="hlt">electron</span>-ion <span class="hlt">plasma</span> by deriving the nonlinear Schrödinger (NLS) equation for low frequency limit. The first- and second-order rogue wave solutions of the NLS equation are obtained analytically and examined numerically. It is found that for dense <span class="hlt">plasma</span> and stronger magnetic field the nonlinearity decreases, which causes the rogon amplitude becomes shorter. However, the <span class="hlt">electron</span> temperature pumping more energy to the background waves which are sucked to create rogue waves with taller amplitudes.</p> <div class="credits"> <p class="dwt_author">El-Awady, E. I.; Rizvi, H.; Moslem, W. M.; El-Labany, S. K.; Raouf, A.; Djebli, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AdSpR..41.1643H"> <span id="translatedtitle"><span class="hlt">Electron</span> temperature anisotropy effects on tearing mode in ion-scale current <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent two-dimensional (2-D) particle-in-cell (PIC) simulations have shown that there is a critical thickness of a current <span class="hlt">sheet</span>, above which no significant saturation amplitude of the 2-D tearing (TI) mode can be expected. Here, we have introduced the initial <span class="hlt">electron</span> temperature anisotropy (?e0 = Te?/Te|| > 1), which is known to raise significantly the linear growth rates, and inspected if ?e0 > 1 can change the saturation level of the TI in a super-critical current <span class="hlt">sheet</span>. Varying ?e0 and D (D: the current <span class="hlt">sheet</span> half-thickness) systematically, we have found that while ?e0 boosts up the linear growth rate in both sub- and super-critical current <span class="hlt">sheets</span>, macroscopic effects are obtained only in sub-critical current <span class="hlt">sheets</span>, that is, energy transfer from the fastest growing short wavelength modes to longer wavelength modes are available only in the sub-critical regime. Since the critical thickness is a fraction of the ion inertial length, the tearing mode assisted by the <span class="hlt">electron</span> temperature anisotropy alone, despite its significant boost in the linear growth rate, cannot be the agent for reconnection triggering in a current <span class="hlt">sheet</span> of ion-scale thickness.</p> <div class="credits"> <p class="dwt_author">Haijima, K.; Tanaka, K. G.; Fujimoto, M.; Shinohara, I.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23992073"> <span id="translatedtitle">Kinetic theory of <span class="hlt">plasma</span> sheaths surrounding <span class="hlt">electron</span>-emitting surfaces.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A one-dimensional kinetic theory of sheaths surrounding planar, <span class="hlt">electron</span>-emitting surfaces is presented which accounts for <span class="hlt">plasma</span> <span class="hlt">electrons</span> lost to the surface and the temperature of the emitted <span class="hlt">electrons</span>. It is shown that ratio of <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature to emitted <span class="hlt">electron</span> temperature significantly affects the sheath potential when the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature is within an order of magnitude of the emitted <span class="hlt">electron</span> temperature. The sheath potential goes to zero as the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature equals the emitted <span class="hlt">electron</span> temperature, which can occur in the afterglow of an rf <span class="hlt">plasma</span> and some low-temperature <span class="hlt">plasma</span> sources. These results were validated by particle in cell simulations. The theory was tested by making measurements of the sheath surrounding a thermionically emitting cathode in the afterglow of an rf <span class="hlt">plasma</span>. The measured sheath potential shrunk to zero as the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature cooled to the emitted <span class="hlt">electron</span> temperature, as predicted by the theory. PMID:23992073</p> <div class="credits"> <p class="dwt_author">Sheehan, J P; Hershkowitz, N; Kaganovich, I D; Wang, H; Raitses, Y; Barnat, E V; Weatherford, B R; Sydorenko, D</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvL.111g5002S"> <span id="translatedtitle">Kinetic Theory of <span class="hlt">Plasma</span> Sheaths Surrounding <span class="hlt">Electron</span>-Emitting Surfaces</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A one-dimensional kinetic theory of sheaths surrounding planar, <span class="hlt">electron</span>-emitting surfaces is presented which accounts for <span class="hlt">plasma</span> <span class="hlt">electrons</span> lost to the surface and the temperature of the emitted <span class="hlt">electrons</span>. It is shown that ratio of <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature to emitted <span class="hlt">electron</span> temperature significantly affects the sheath potential when the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature is within an order of magnitude of the emitted <span class="hlt">electron</span> temperature. The sheath potential goes to zero as the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature equals the emitted <span class="hlt">electron</span> temperature, which can occur in the afterglow of an rf <span class="hlt">plasma</span> and some low-temperature <span class="hlt">plasma</span> sources. These results were validated by particle in cell simulations. The theory was tested by making measurements of the sheath surrounding a thermionically emitting cathode in the afterglow of an rf <span class="hlt">plasma</span>. The measured sheath potential shrunk to zero as the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature cooled to the emitted <span class="hlt">electron</span> temperature, as predicted by the theory.</p> <div class="credits"> <p class="dwt_author">Sheehan, J. P.; Hershkowitz, N.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Barnat, E. V.; Weatherford, B. R.; Sydorenko, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006APS..DPPCI2003L"> <span id="translatedtitle">Fundamentals and Applications of a <span class="hlt">Plasma</span> Processing System Based on <span class="hlt">Electron</span> Beam Ionization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> beam (e-beam) ionization has been shown to be both efficient at producing <span class="hlt">plasma</span> and scalable to large area (square meters). NRL has developed a number of advanced research tools culminating in a ``Large Area <span class="hlt">Plasma</span> Processing System'' (LAPPS) based on an e-beam <span class="hlt">sheet</span> geometry. We have demonstrated that the beam ionization process is fairly independent of gas composition and capable of producing low temperature <span class="hlt">plasma</span> <span class="hlt">electrons</span> (<0.5 eV in molecular gases) in high densities (10^9-10^12 cm-3). This system can offer increased control of <span class="hlt">plasma</span>-to-surface fluxes and the ability to modify materials' surface properties uniformly over large areas. The systems to be discussed consist of continuous and pulsed planar <span class="hlt">plasma</span> distributions generated by a magnetically collimated <span class="hlt">sheet</span> of 2-3kV, < 1 mA/cm^2 <span class="hlt">electrons</span> injected into a neutral gas background (oxygen, nitrogen, sulfur hexafluoride, argon). Typical operating pressures range from 20-150 mTorr with beam-collimating magnetic fields (100-200 Gauss) for <span class="hlt">plasma</span> localization. The attributes of beam-generated <span class="hlt">plasmas</span> make them ideal for many materials applications. These systems have been investigated for a broad range of applications, including surface activation, line edge roughening, and anisotropic etching of polymers, <span class="hlt">electron</span>-ion and ion-ion <span class="hlt">plasma</span> etching, low-temperature metal nitriding and thin film deposition (reactive sputtering and <span class="hlt">plasma</span> enhanced chemical vapor deposition). Details of some of these applications will be discussed in terms of the critical <span class="hlt">plasma</span> physics and chemistry, with complementary time-resolved in situ <span class="hlt">plasma</span> diagnostics (Langmuir probes, microwave transmission, energy-resolved mass spectrometry and laser spectroscopy).</p> <div class="credits"> <p class="dwt_author">Leonhardt, Darrin</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20860117"> <span id="translatedtitle"><span class="hlt">Electron</span> acoustic solitons in a relativistic <span class="hlt">plasma</span> with nonthermal <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electron</span> acoustic solitary waves (EASWs) are studied using Sagdeev's pseudopotential technique for a <span class="hlt">plasma</span> comprising relativistic ions, cold relativistic <span class="hlt">electrons</span>, and nonthermal hot <span class="hlt">electrons</span>. The parametric range considered here is valid for the auroral zone. It is found that the present <span class="hlt">plasma</span> model supports EASWs having negative potential. It is seen that the relativistic effect significantly restricts the region of existence for solitary waves. The region of existence of solitary waves also depends crucially on {alpha}, the parameter that determines the population of the energetic nonthermal <span class="hlt">electrons</span>. For example, for {alpha}>0.18 with the soliton velocity 1.05 and u{sub 0c}/c=0.001, solitary wave solutions will not exist. We also find that for small values of {alpha}, solitary waves would exist for V<1.</p> <div class="credits"> <p class="dwt_author">Sahu, Biswajit; Roychoudhury, Rajkumar [Department of Mathematics, Dinhata College, Coochbehar-736135 (India); Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21612220"> <span id="translatedtitle"><span class="hlt">Electron</span> beam-<span class="hlt">plasma</span> interaction in a dusty <span class="hlt">plasma</span> with excess suprathermal <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The existence of large-amplitude <span class="hlt">electron</span>-acoustic solitary structures is investigated in an unmagnetized and collisionless two-temperature dusty <span class="hlt">plasma</span> penetrated by an <span class="hlt">electron</span> beam. A nonlinear pseudopotential technique is used to investigate the occurrence of stationary-profile solitary waves, and their parametric dependence on the <span class="hlt">electron</span> beam and dust perturbation is discussed.</p> <div class="credits"> <p class="dwt_author">Danehkar, A. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Saini, N. S. [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India); Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Kourakis, I. [Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN (United Kingdom)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-29</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40435395"> <span id="translatedtitle"><span class="hlt">Electron</span>-beam-generated <span class="hlt">plasmas</span> for materials processing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The results of investigations aimed at characterizing pulsed, <span class="hlt">electron</span>-beam-produced <span class="hlt">plasmas</span> for use in materials processing applications are discussed. In situ diagnostics of the bulk <span class="hlt">plasma</span> and at the <span class="hlt">plasma</span>\\/surface interface are reported for <span class="hlt">plasmas</span> produced in Ar, N2, and mixtures thereof. Langmuir probes were employed to determine the local <span class="hlt">electron</span> temperature, <span class="hlt">plasma</span> density, and <span class="hlt">plasma</span> potential within the <span class="hlt">plasma</span>, while</p> <div class="credits"> <p class="dwt_author">S. G Walton; C Muratore; D Leonhardt; R. F Fernsler; D. D Blackwell; R. A Meger</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..11512239M"> <span id="translatedtitle">Pressure changes associated with substorm depolarization in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We have studied <span class="hlt">plasma</span> (ion) pressure changes that occurred in association with the dipolarization in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> around substorm onsets. Using Geotail data, we have performed a superposed epoch analysis in addition to detailed examinations of two individual cases with special emphasis on the contribution of high-energy particles to the <span class="hlt">plasma</span> pressure. It is found that, unlike previously reported results, the <span class="hlt">plasma</span> pressure does increase in association with the initial dipolarization at X > ˜-12 RE and -2 < Y < 6 RE, with the increase largely due to high-energy particles. Outside the initial dipolarization region, particularly tailward and duskward of this region, the <span class="hlt">plasma</span> pressure begins to decrease owing to the magnetic reconnection before onset or before the dipolarization region reaches there. At later times, the <span class="hlt">plasma</span> pressure tends to increase there, related to the expanding dipolarization region, but the contribution of high-energy particles is not very large. These observations suggest the following. The rarefaction wave scenario proposed in the current disruption model is questionable. The radial and azimuthal pressure gradients may strengthen between the initial dipolarization and outside regions, possibly resulting in stronger braking of fast earthward flows and changes in field-aligned currents. The characteristics of the dipolarization may differ between the initial dipolarization and tailward regions, which would be possibly reflected in the auroral features. Furthermore, we have examined the specific entropy and the ion ?. The specific entropy increases in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the dipolarization region as well as in the midtail region in conjunction with substorm onsets, suggesting from the ideal MHD point of view that the substorm processes are nonadiabatic. The ion ? is found to peak at the magnetic equator in the initial dipolarization region around dipolarization onsets.</p> <div class="credits"> <p class="dwt_author">Miyashita, Y.; Machida, S.; Ieda, A.; Nagata, D.; Kamide, Y.; Nosé, M.; Liou, K.; Mukai, T.; Christon, S. P.; Russell, C. T.; Shinohara, I.; Saito, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011GeoRL..38.1107Y"> <span id="translatedtitle">Accelerated thinning of the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> caused by a bubble-blob pair</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the late stage of a substorm growth phase, the magnetic field in the near-Earth region is highly stretched. We assume that such conditions can lead to violation of the frozen-in-flux condition, allowing transfer of <span class="hlt">plasma</span> from one flux tube to another and creating a <span class="hlt">plasma</span> blob tailward of a <span class="hlt">plasma</span> bubble. In this letter we present results of a simulation where we artificially impose a bubble-blob pair by introducing a disturbance in PV5/3 in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In the subsequent evolution, as calculated by the equilibrium version of the Rice Convection Model (RCM-E), the bubble surges earthward and the blob moves tailward, while the magnetic field between them weakens and the localized cross-tail current density increases. We speculate that, at substorm onset, there could be a positive feedback in which the breakdown of the frozen-in condition would increasingly make the current <span class="hlt">sheet</span> thinner until magnetic reconnection occurs.</p> <div class="credits"> <p class="dwt_author">Yang, J.; Wolf, R. A.; Toffoletto, F. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM24A..05T"> <span id="translatedtitle">Sources of Cold Dense <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>:A Multi-Satellite, Multipoint Case Study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During conditions of northward interplanetary magnetic field (IMF), the near tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> is known to become denser and cooler, and is described as the cold dense <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CDPS). The source of this <span class="hlt">plasma</span> is of great interest, in particular, whether it is transferred to the magnetosphere via poleward-of-cusp, lobe reconnection or via mechanisms at the flank magnetopause. This paper addresses this question via a case study of data from the 5th December 2004, utilizing a wide variety of spacecraft observations, including ACE, Cluster, Double Star (TC-1 and TC-2), Polar, LANL GEO and IMAGE. Conjunctions between various sub-sets of this multi-spacecraft constellation enable a multi point investigation of magnetospheric dynamics related to CDPS formation, including: The global reaction of the magnetosphere to the impact of a coronal mass ejection (CME) related shock (Cluster, LANL GEO etc); Observations of boundary layer waves at the flank magnetopause (TC-1) along with non-wave like boundary layers (Polar); High -latitude observations of the CDPS in the northern (TC-2) and southern (Polar) hemisphere; Evidence of high-latitude, poleward-of-cusp reconnection (IMAGE, Polar). The pertinent aspects of this study suggest that although there is evidence of large-scale flank boundary waves and possible <span class="hlt">plasma</span>-transfer, poleward-of-cusp reconnection appears to produce sufficient CDPS like material.</p> <div class="credits"> <p class="dwt_author">Taylor, M. G.; Lavraud, B.; Thomsen, M. F.; Fazakerley, A. N.; Dunlop, M. W.; Davies, J. A.; Frey, H.; Friedel, R. H.; Escoubet, C. P.; Laakso, H.; Bogdanova, Y. V.; Carr, C. M.; Khan, H.; Lucek, E. A.; Masson, A.; Milan, S. E.; Nykyri, K.; Opgenoorth, H. J.; Owen, C. J.; Pitout, F.; Pu, Z.; Reme, H.; Russell, C. T.; Scudder, J. D.; Shen, C.; Sonnerup, B. U.; Zhang, T.; Zong, Q.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://gk.ps.uci.edu/zlin/bib/SciDAC09p.pdf"> <span id="translatedtitle">Advanced simulation of <span class="hlt">electron</span> heat transport in fusion <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electron</span> transport in burning <span class="hlt">plasmas</span> is more important since fusion products first heat <span class="hlt">electrons</span>. First-principles simulations of <span class="hlt">electron</span> turbulence are much more challenging due to the multi-scale dynamics of the <span class="hlt">electron</span> turbulence, and have been made possible by close collaborations between <span class="hlt">plasma</span> physicists and computational scientists. The GTC simulations of collisionless trapped <span class="hlt">electron</span> mode (CTEM) turbulence show that the <span class="hlt">electron</span></p> <div class="credits"> <p class="dwt_author">Zhihong Lin; Y. Xiao; I. Holod; W. Zhang; Wenjun Deng; Scott A Klasky; J. Lofstead; Chandrika Kamath; Nathan Wichmann</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56977255"> <span id="translatedtitle">Energy recuperator for <span class="hlt">sheet</span> beam of magnetized <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the <span class="hlt">electron</span> beams in a guiding magnetic field with significant energy and angular spreads of the particles two novel schemes of recuperator with different configurations are described. In the first one a special combination of transversal and longitudinal magnetic fields is used to separate <span class="hlt">electrons</span> due to different Larmour radii corresponded to different energy of their longitudinal motion. In</p> <div class="credits"> <p class="dwt_author">A. V. Arzhannikov; V. T. Astrelin; E. V. Diankova; V. S. Koidan; P. V. Petrov; S. L Sinitsky</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50027924"> <span id="translatedtitle"><span class="hlt">Electronically</span> steerable <span class="hlt">plasma</span> mirror for radar applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An alternative to using a phased array to steer a high frequency microwave beam is to <span class="hlt">electronically</span> control the orientation of an inertialess broadband microwave reflector. Such a system could steer one or more high power beams for search or tracking radars, and the system could possess wide instantaneous bandwidth. Experiments have demonstrated that a planar <span class="hlt">plasma</span> mirror can be</p> <div class="credits"> <p class="dwt_author">Joseph Mathew; Robert A. Meger; J. A. Gregor; R. E. Pechacek; R. F. Fernsler; Wallace M. Manheimer</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/44220650"> <span id="translatedtitle">Etching with <span class="hlt">electron</span> beam generated <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A modulated <span class="hlt">electron</span> beam generated <span class="hlt">plasma</span> has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and</p> <div class="credits"> <p class="dwt_author">D. Leonhardt; S. G. Walton; C. Muratore; R. F. Fernsler; R. A. Meger</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=24582"> <span id="translatedtitle">In situ synthesis of ?-glucan microfibrils on tobacco <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A major concern in plant morphogenesis is whether cortical microtubules are responsible for the arrangement and action of ?-glucan synthases in the <span class="hlt">plasma</span> membrane. We prepared isolated <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span> with cortical microtubules attached and tested whether ?-glucan synthases penetrated through the membrane to form microfibrils and whether these synthases moved in the fluid membrane along the cortical microtubules. This technique enabled us to examine synthesis of ?-glucan as a fiber with a two-dimensional structure. The synthesis of ?-glucan microfibrils was directed in arrays by cortical microtubules at many loci on the membrane <span class="hlt">sheets</span>. The microfibrils were mainly arranged along the microtubules, but the distribution of microfibrils was not always parallel to that of the microtubules. The rate of ?-glucan elongation as determined directly on the exoplasmic surface was 620 nm per min. When the assembly of microtubules was disrupted by treatment with propyzamide, the ?-glucans were not deposited in arrays but in masses. This finding shows that the arrayed cortical microtubules are not required for ?-glucan synthesis but are required for the formation of arranged microfibrils on the membrane <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Hirai, Noriko; Sonobe, Seiji; Hayashi, Takahisa</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.9204T"> <span id="translatedtitle">A series of <span class="hlt">plasma</span> flow vortices in the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> associated with solar wind pressure enhancement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A series of earthward-moving (˜140 km/s) <span class="hlt">plasma</span> flow vortices with anticlockwise (when viewed from above the ecliptic plane) rotation was detected in the dawnside tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> between 1255 and 1400 UT on 6 July 2003. These flow vortices were observed under the condition of northward interplanetary magnetic field with an enhanced solar wind dynamic pressure. Analysing the <span class="hlt">plasma</span> and magnetic field data from the Cluster spacecraft and using the Grad-Shafranov streamline reconstruction technique, we show that the vortex-like <span class="hlt">plasma</span> structures have a very similar shape: a Vx component dominant in the dawnside, while a distinct Vy component appears in the duskside, and each structure has a size of about 1.8 × 0.68 RE, approximately in the xy plane of GSM coordinates. It is found that the vortices contain both magnetosphere-originated hot (N ˜ 0.1 cm-3, E > 3 keV) and magnetosheath-originated denser and colder (N > 0.2 cm-3, E < 1 keV) populations on the closed field lines. The vortices involve fast earthward flows (Vx > 200 km/s) of mainly sheath-originated <span class="hlt">plasmas</span>. We suggest that these observed <span class="hlt">plasma</span> flow vortices are generated inside the magnetotail during the prolonged and intensified compression of the magnetosphere by the enhanced solar wind dynamic pressure.</p> <div class="credits"> <p class="dwt_author">Tian, A. M.; Zong, Q. G.; Wang, Y. F.; Shi, Q. Q.; Fu, S. Y.; Pu, Z. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002PhPl....9.4699D"> <span id="translatedtitle"><span class="hlt">Electron</span> temperature gradient instability in toroidal <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> temperature gradient (ETG) driven instability in toroidal <span class="hlt">plasmas</span> is studied with gyrokinetic theory. The full <span class="hlt">electron</span> kinetics including finite Larmor radius effects, toroidal (curvature and magnetic gradient) drift motion ?D, and transit k?v?, is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. A systematic parameter study is carried out for low ?(=<span class="hlt">plasma</span> pressure/magnetic pressure) circular flux surface equilibria. The basic characteristics of the modes are discussed. The scaling of the critical gradient with respect to toroidicity and to the ratio of <span class="hlt">electron</span> temperature over ion temperature is obtained. Estimation for the transport induced by the modes is given.</p> <div class="credits"> <p class="dwt_author">Dong, J. Q.; Sanuki, H.; Itoh, K.; Chen, Liu</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6941115"> <span id="translatedtitle"><span class="hlt">Electron</span> cyclotron emission from nonthermal tokamak <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electron</span> cyclotron emission can be a sensitive indicator of nonthermal <span class="hlt">electron</span> distributions. A new, comprehensive ray-tracing and cyclotron emission code that is aimed at predicting and interpreting the cyclotron emission from tokamak <span class="hlt">plasmas</span> is described. The radiation transfer equation is solved along Wentzel--Kramers--Brillouin (WKB) rays using a fully relativistic calculation of the emission and absorption from <span class="hlt">electron</span> distributions that are gyrotropic and toroidally symmetric, but may be otherwise arbitrary functions of the constants of motion. Using a radial array of <span class="hlt">electron</span> distributions obtained from a bounce-averaged Fokker--Planck code modeling dc <span class="hlt">electron</span> field and <span class="hlt">electron</span> cyclotron heating effects, the cyclotron emission spectra are obtained. A pronounced strong nonthermal cyclotron emission feature that occurs at frequencies relativistically downshifted to second harmonic cyclotron frequencies outside the tokamak is calculated, in agreement with experimental results from the DIII-D [J. L. Luxon and L. G. Davies, Fusion Technol. [bold 8], 441 (1985)] and FT-1 [D. G. Bulyginsky [ital et] [ital al]., in [ital Proceedings] [ital of] [ital the] 15[ital th] [ital European] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital <span class="hlt">Plasma</span>] [ital Heating], Dubrovnik, 1988 (European Physical Society, Petit-Lancy, 1988), Vol. 12B, Part II, p. 823] tokamaks. The calculations indicate the presence of a strong loss mechanism that operates on <span class="hlt">electrons</span> in the 100--150 keV energy range.</p> <div class="credits"> <p class="dwt_author">Harvey, R.W.; O'Brien, M.R.; Rozhdestvensky, V.V.; Luce, T.C.; McCoy, M.G.; Kerbel, G.D. (General Atomics, San Diego, California 92186-9784 (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18715703"> <span id="translatedtitle"><span class="hlt">Electron-electron</span> bremsstrahlung in a non-equilibrium <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electron-electron</span> bremsstrahlung in a weakly ionized uniform non-stationary <span class="hlt">plasma</span> is investigated. The respective problem is solved analytically for two initial <span class="hlt">electron</span>-distributions: maxwellian with the temperatureT0, and the delta distribution. In the case of initial maxwellian distribution the radiation intensity is proportional toT3\\/2, whereT=T+(T0-T) exp (-s),s=2mv1t\\/M,v1 is the momentum transfer frequency, and the other symbols are standard. In the case of</p> <div class="credits"> <p class="dwt_author">J. Kvasnica</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EGUGA..1112461F"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">electron</span> instrumentation for Cross-Scale</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Cross-Scale mission, proposed for ESA's Cosmic Visions programme, is designed to study fundamental processes that transport, convert or release energy in collision-less <span class="hlt">plasmas</span>. Recent space <span class="hlt">plasma</span> physics research has shown that in fundamental <span class="hlt">plasma</span> physics phenomena such as magnetic reconnection, turbulence and collision-less shocks, processes operating on different scales all participate simultaneously. The mutual interaction of processes operating on different scales is a critical yet little-understood aspect of the phenomena. The Cluster 4-spacecraft mission has been able to explore only one such scale in three dimensions at any one time, for example the time and length scales of ion motion, or the larger scales on which fluid descriptions of the <span class="hlt">plasma</span> are appropriate. Planned missions such as MMS will begin to address the smallest relevant scale, that on which <span class="hlt">electron</span> phenomena occur, which requires a new generation of particle instruments capable of very fast measurements. Cross-Scale will simultaneously address all three scales, using up to 12 spacecraft flying in formation in the Earth's magnetosphere and the solar wind. We will review the requirements for <span class="hlt">electron</span> instruments for Cross-Scale and discuss how the particular constraints of the mission may affect design choices for <span class="hlt">electron</span> instruments on spacecraft with different roles in the Cross-Scale constellation.</p> <div class="credits"> <p class="dwt_author">Fazakerley, A. N.; Owen, C. J.; Kataria, D. O.; Hancock, B. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003JGRA..108.1074W"> <span id="translatedtitle">Modeling the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons and magnetic field under enhanced convection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In order to understand the evolution of the protons and magnetic field in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> from quiet to disturbed conditions, we incorporate a modified version of the Magnetospheric Specification Model (MSM) with a modified version of the Tsyganenko 96 (T96) magnetic field model to simulate the protons and magnetic field under an increasing convection electric field with two-dimensional (2-D) force balance maintained along the midnight meridian. The local time dependent proton differential fluxes assigned to the model boundary are a mixture of hot <span class="hlt">plasma</span> from the mantle and cooler <span class="hlt">plasma</span> from the low latitude boundary layer (LLBL). We previously used this model to simulate the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> under weak convection corresponding to a cross polar cap potential drop (??PC) equal to 26 kV and obtained 2-D quiet time equilibrium for proton and magnetic field that agrees well with observations. We start our simulation for enhanced convection with this quiet time equilibrium and time-independent boundary particle sources and increase ??PC steadily from 26 to 146 kV in 5 hours. Simulations are also run separately to steady states by keeping ??PC constant after it is increased to 98 and 146 kV. The magnitudes of proton pressure, number density, and temperature and their increase from quiet to moderate activity (??PC = 98 kV) are consistent with most observations. Our simulation at high activity (??PC = 146 kV) underestimates the observed pressure and temperature. This disagreement indicates possible dependence of the boundary particle sources on activity and possible effects of solar wind dynamic pressure enhancements that have not yet been included in our simulation. The simulated equatorial pressures and temperatures show stronger enhancement on the dusk side than on the dawn side as convection is increased, while density profiles show an increase on the dawn side and a decrease on the dusk side. The simulated proton flow speed at the equatorial plane increases with enhancing convection while the overall flow direction does not change significantly, a result of enhancement in both the earthward electric drift and the azimuthal diamagnetic drift. The equatorial magnetic field strength decreases more in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> than at larger radial distances as ??PC increases, resulting in an increasing flat radial profile with enhancing convection. The feedbacks from diamagnetic drift and magnetic fields to increasing convection are found to restrain the pressure increase. Based on the good agreement between our results and observations at moderate activity, our magnetic field indicates that the <span class="hlt">plasma</span> and magnetic field in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be in a state far from possible force balance inconsistency during periods of moderately enhanced convection. A scale analysis of our results shows that the frozen-in condition E = -v × B is not valid in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> for moderate activity.</p> <div class="credits"> <p class="dwt_author">Wang, Chih-Ping; Lyons, Larry R.; Chen, Margaret W.; Wolf, Richard A.; Toffoletto, Frank R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM22B..03M"> <span id="translatedtitle">First IBEX Observations of the Terrestrial <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> and a Likely Disconnection Event</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of Energetic Neutral Atoms (ENAs) from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the nose of the magnetosphere. This study provides the first IBEX images of the night side magnetosphere and <span class="hlt">plasma</span> <span class="hlt">sheet</span>, as viewed from the side. We show images from two IBEX orbits - one that shows the <span class="hlt">plasma</span> <span class="hlt">sheet</span> mapping to a model magnetic field and a second that shows a significant intensification that can most likely be explained as a near-Earth disconnection event (see image). This event followed ~30 minutes of moderately southward IMF (Bz ~ -5nT) and occurred at a time when the IMF turned abruptly northward while the solar wind dynamic pressure simultaneously doubled. The ENA intensification indicates the simultaneous addition of both a hot (several keV) and colder component (~700 eV); the hot component may be a direct observation of the energization of <span class="hlt">plasma</span> via reconnection.</p> <div class="credits"> <p class="dwt_author">McComas, D. J.; Dayeh, M. A.; Funsten, H. O.; Fuselier, S. A.; Goldstein, J.; Jahn, J.; Janzen, P. H.; Petrinec, S. M.; Reisenfeld, D. B.; Schwadron, N. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/944293"> <span id="translatedtitle"><span class="hlt">Electron</span> Scattering in Hot/Warm <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electrical and thermal conductivities are presented for aluminum, iron and copper <span class="hlt">plasmas</span> at various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based on the continuum wave functions computed in the potential of the temperature and density dependent self-consistent 'average atom' (AA) model of the <span class="hlt">plasma</span>. The cross sections are calculated by using the phase shifts of the continuum <span class="hlt">electron</span> wave functions and also in the Born approximation. We show the combined effect of the thermal and radiative transport on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV. Comparisons with low temperature experimental data are also presented.</p> <div class="credits"> <p class="dwt_author">Rozsnyai, B F</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-18</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20702248"> <span id="translatedtitle">Runaway <span class="hlt">electrons</span> in a fully and partially ionized nonideal <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper reports on a study of <span class="hlt">electron</span> runaway for a nonideal <span class="hlt">plasma</span> in an external electric field. Based on pseudopotential models of nonideal fully and partially ionized <span class="hlt">plasmas</span>, the friction force was derived as a function of <span class="hlt">electron</span> velocities. Dependences of the <span class="hlt">electron</span> free path on <span class="hlt">plasma</span> density and nonideality parameters were obtained. The impact of the relative number of runaway <span class="hlt">electrons</span> on their velocity and temperature was considered for classical and semiclassical models of a nonideal <span class="hlt">plasma</span>. It has been shown that for the defined intervals of the coupled <span class="hlt">plasma</span> parameter, the difference between the relative numbers of runaway <span class="hlt">electron</span> values is essential for various <span class="hlt">plasma</span> models.</p> <div class="credits"> <p class="dwt_author">Ramazanov, T.S.; Turekhanova, K.M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.9220O"> <span id="translatedtitle">Distribution of O+ ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and locations of substorm onsets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss the effect of O+ ions on substorm onsets by examining the relation between the substorm onset location and the distribution of the O+/H+ number density ratio before the onset in the various regions within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (-8 RE > XGSM > -32 RE). We use 9-212 keV/e ion flux data observed by Geotail/Energetic Particles and Ion Composition (EPIC)/Suprathermal Ion Composition Spectrometer (STICS) instrument and the IMAGE/Far Ultra-Violet (FUV) substorm onset list presented by Frey et al. [Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109, A10304, doi:10.1029/2004JA010607]. The results are summarized as follows. Substorm onsets, which we identify by auroral initial brightenings, are likely to occur in the more dusk-(dawn-)ward region when the O+/H+ number density ratio is high in the dusk (dawn) side. This property is observed only in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> (at -8 RE > XGSM > -14 RE). The above-mentioned property holds in each of two groups: substorm events due to internal instability of the magnetosphere (i.e., internally triggered substorms) and events due to external changes in the solar wind or the interplanetary magnetic field (i.e., externally triggered substorms). Thus, we conclude that the substorm onset location depends on the density of O+ ions in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> prior to onset, whether the substorm is triggered internally or externally.</p> <div class="credits"> <p class="dwt_author">Ono, Y.; Christon, S. P.; Frey, H. U.; Lui, A. T. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23920166"> <span id="translatedtitle">Quantification of ridging in ferritic stainless steel <span class="hlt">sheets</span> by <span class="hlt">electron</span> backscattered diffraction R-value maps.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In ferritic stainless steel (FSS), undesirable surface defects of ridging appear during deep drawing. The formation of these defects is attributed to the inhomogeneous distribution of orientations of individual grains. In the present work, a new <span class="hlt">electron</span> backscattered diffraction R(?)-value map was introduced, and the dependence of the tensile directions on the formation of ridging in an FSS <span class="hlt">sheet</span> was discussed using this map. The results showed that large grain colonies in the R(?)-value maps lead to the formation of severe ridging in an FSS <span class="hlt">sheet</span>. PMID:23920166</p> <div class="credits"> <p class="dwt_author">Lee, Kye-Man; Park, Jieon; Kim, Sangseok; Park, Sooho; Huh, Moo-Young</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26192308"> <span id="translatedtitle">Design of <span class="hlt">Sheet</span>-Beam <span class="hlt">Electron</span> Gun with Planar Cathode for Terahertz Devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The design of a <span class="hlt">sheet</span>-beam <span class="hlt">electron</span> gun with planar cathode was made with the help of a three-dimensional electrostatic field\\u000a solver that was capable of forming a <span class="hlt">sheet</span>-beam of 19 mA at 12 kV. It uses one-dimensional three-fold beam cross-sectional\\u000a area compression meets the specific requirement of a beam to be formed of height 30 µm and width 600 µm at the beam–waist\\u000a position</p> <div class="credits"> <p class="dwt_author">Anurag Srivastava; Jin-Kyu So; Yiman Wang; Jinshu Wang; R. S. Raju; Seong-Tae Han; Gun-Sik Park</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50078605"> <span id="translatedtitle">Simulation of a <span class="hlt">plasma</span>-focused <span class="hlt">electron</span> gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary form only given. <span class="hlt">Plasma</span> can play an important role in the physics of an <span class="hlt">electron</span> gun. It can provide an important focusing mechanism, and <span class="hlt">plasmas</span> are often present in varying densities in many devices designed for vacuum operation. <span class="hlt">Plasma</span> can also be a source of noise and instability for a microwave beam device. A <span class="hlt">plasma</span>-focused <span class="hlt">electron</span> gun is modeled</p> <div class="credits"> <p class="dwt_author">J. P. Varboncoeur</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21409508"> <span id="translatedtitle">Thermal field theory in a layer: Applications of thermal field theory methods to the propagation of photons in a two-dimensional <span class="hlt">electron</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We apply the thermal field theory methods to study the propagation of photons in a <span class="hlt">plasma</span> layer, that is a <span class="hlt">plasma</span> in which the <span class="hlt">electrons</span> are confined to a two-dimensional plane <span class="hlt">sheet</span>. We calculate the photon self-energy and determine the appropriate expression for the photon propagator in such a medium, from which the properties of the propagating modes are obtained. The formulas for the photon dispersion relations and polarization vectors are derived explicitly in some detail for some simple cases of the thermal distributions of the charged particle gas, and appropriate formulas that are applicable in more general situations are also given.</p> <div class="credits"> <p class="dwt_author">Nieves, Jose F. [Laboratory of Theoretical Physics, Department of Physics, P.O. Box 23343, University of Puerto Rico, Rio Piedras, 00931-3343 (Puerto Rico)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AIPC.1187..555B"> <span id="translatedtitle"><span class="hlt">Electron</span> Cyclotron Heating in RFP <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Reversed field pinches (RFP) <span class="hlt">plasmas</span> are typically overdense (?pe>?ce) and thus not suitable for conventional <span class="hlt">electron</span> cyclotron (EC) heating and current drive. In recent high <span class="hlt">plasma</span> current discharges (Ip>1.5 MA), however, the RFX-mod device was operated in underdense conditions (?pe<?ce) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP <span class="hlt">plasma</span> core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive-as a heating system-with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.</p> <div class="credits"> <p class="dwt_author">Bilato, R.; Volpe, F.; Poli, E.; Köhn, A.; Cavazzana, R.; Paccagnella, R.; Farina, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21192446"> <span id="translatedtitle">Quantum condensation in <span class="hlt">electron</span>-hole <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We consider quantum condensation in the <span class="hlt">electron</span>-hole <span class="hlt">plasma</span> of highly excited semiconductors. A theoretical approach applying the concept of time long-range order in the framework of real time Green's functions is presented and generalizations of the basic equations of quantum condensation are derived. For the quasiequilibrium case, we solve the coupled system of number and gap equations in ladder approximation for a statically screened Coulomb potential. The resulting phase boundary shows a smooth crossover from the Bose-Einstein condensation (BEC) of excitons to a BCS state of <span class="hlt">electron</span>-hole pairs.</p> <div class="credits"> <p class="dwt_author">Kremp, D.; Semkat, D.; Henneberger, K. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23668815"> <span id="translatedtitle">Attachment of alginate microcapsules onto <span class="hlt">plasma</span>-treated PDMS <span class="hlt">sheet</span> for retrieval after transplantation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane(PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS <span class="hlt">sheets</span>, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS <span class="hlt">sheets</span> using a two-step oxygen <span class="hlt">plasma</span> treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a mono-layered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS <span class="hlt">sheet</span> indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. This article is protected by copyright. All rights reserved. PMID:23668815</p> <div class="credits"> <p class="dwt_author">Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-13</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Ap%26SS.tmp..361J"> <span id="translatedtitle">Electrostatic <span class="hlt">electron</span> acoustic solitons in <span class="hlt">electron</span>-positron-ion <span class="hlt">plasma</span> with superthermal <span class="hlt">electrons</span> and positrons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Properties of fully nonlinear <span class="hlt">electron</span>-acoustic solitary waves in an unmagnetized and collisionless <span class="hlt">electron</span>-positron-ion <span class="hlt">plasma</span> containing cold dynamical <span class="hlt">electrons</span>, superthermal <span class="hlt">electrons</span> and positrons obeying Cairns' distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal <span class="hlt">electrons</span>, the superthermal positron component can provide the restoring force to the cold inertial <span class="hlt">electrons</span> to excite <span class="hlt">electron</span>-acoustic waves. Moreover, superthermal <span class="hlt">electron</span> and positron populations seem to enhance the <span class="hlt">electron</span> acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of <span class="hlt">electron</span> acoustic soliton structures in the space and laboratory <span class="hlt">plasmas</span> with nonthermal <span class="hlt">electrons</span> and positrons.</p> <div class="credits"> <p class="dwt_author">Jilani, K.; Mirza, Arshad M.; Khan, Tufail A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhRvB..85p5206B"> <span id="translatedtitle">Nonlinear <span class="hlt">electron</span> transport in an <span class="hlt">electron</span>-hole <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Charge transport in an <span class="hlt">electron</span>-hole <span class="hlt">plasma</span> driven by high-field terahertz (THz) pulses is strongly influenced by <span class="hlt">electron</span>-hole interactions, as has been shown in a recent publication [P. Bowlan , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.256602 107, 256602 (2011)]. We introduce a picture of high-field THz transport which accounts for the roles of both types of carriers including their interactions. While holes make a negligible contribution to the current, they are heated by absorbing energy from the driving THz field and introduce a friction force for the <span class="hlt">electrons</span> over a period of about 500 fs. Our model uses an extended version of the loss-function concept to calculate the time-dependent friction. The local field that drives the <span class="hlt">electrons</span> differs from the incident THz field by screening due to Coulomb correlations in the <span class="hlt">plasma</span>. We illustrate how spatial correlations between charged particles (<span class="hlt">electrons</span>, holes, impurities) create a significant local-field correction to the THz driving field. The dominant contribution stems from Coulomb-correlated heavy-hole wave packets, which are strongly polarizable via inter-valence-band transitions.</p> <div class="credits"> <p class="dwt_author">Bowlan, P.; Kuehn, W.; Reimann, K.; Woerner, M.; Elsaesser, T.; Hey, R.; Flytzanis, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AnGeo..27.1729L"> <span id="translatedtitle">Cluster view of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer and bursty bulk flow connection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The high-latitude boundaries of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (PSBL) are dynamic latitude zones of recurring and transient (minutes to tens of minutes) earthward and magnetic field-aligned bursts of <span class="hlt">plasma</span>, each being more or less confined in longitude as well, whose ionic component is dominated by protons with flux, energies and density that are consistent with a central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) source at varying distance (varying rates of energy time dispersion), sometimes as close as the ~19 RE Cluster apogees, or closer still. The arguably most plausible source consists of so called "bursty bulk flows" (BBFs), i.e. proton bulk flow events with large, positive and bursty GSE vx. Known mainly from CPS observations made at GSE x>-30 RE, the BBF type events probably take place much further downtail as well. What makes the BBFs an especially plausible source are (1) their earthward bulk flow, which helps explain the lack of distinctive latitudinal PSBL energy dispersion, and (2) their association with a transient strong increase of the local tail Bz component ("local dipolarization"). The enhanced Bz provides intermittent access to higher latitudes for the CPS <span class="hlt">plasma</span>, resulting in local density reductions in the tail midplane, as illustrated here by proton data from the Cluster CIS CODIF instruments. Another sign of kinship between the PSBL bursts and the BBFs is their similar spatial fine structure. The PSBL bursts have prominent filaments aligned along the magnetic field with transverse flux gradients that are often characterized by local ~10 keV proton gyroradii scale size (or even smaller), as evidenced by Cluster measurements. The same kind of fine structure is also found during Cluster near-apogee traversals of the tail midplane, as illustrated here and implied by recently published statistics on BBFs obtained with Cluster multipoint observations at varying satellite separations. Altogether, the Cluster observations described here mesh rather well with theories about so called <span class="hlt">plasma</span> <span class="hlt">sheet</span> "bubbles," i.e. earthward drifting closed magnetic flux tubes with reduced particle pressure and enhanced magnetic field strength at their apex. It is argued that such bubbles may be initiated by localized diamagnetic instabilities.</p> <div class="credits"> <p class="dwt_author">Lennartsson, O. W.; Kistler, L. M.; Rème, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhDT........41V"> <span id="translatedtitle"><span class="hlt">Plasma</span> wave <span class="hlt">electronics</span> devices for THz detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on experimental and theoretical studies of novel semiconductor THz detectors, based on non-linear excitations of <span class="hlt">plasma</span> waves in a 2D <span class="hlt">electron</span> gas. A 2D gas channel acts as a resonant "cavity" for the <span class="hlt">plasma</span> waves, excited by the incident THz radiation, and non-linearity of these waves causes rectification of radiation induced currents. We study responsivity, sensitivity and response time of <span class="hlt">plasma</span> wave devices based on Si, GaAs and GaN material systems, and investigate load and bias dependences of the device performance in resonant and non-resonant detection regimes. We demonstrate that gated and ungated <span class="hlt">plasma</span> wave field effect transistors can effectively detect THz radiation with reasonable sensitivity comparable with sensitivity of commercially available THz detectors and fast temporal response. The DC electric current in the channel sharply increases the device responsivity and narrows the resonant detection peak. <span class="hlt">Plasma</span> wave gated and ungated transistors operate as selective and tunable detectors up to room temperature or higher. These novel THz detectors might find applications in fast, multicolor THz cameras for spectrum analysis, detection, and imaging and will enable numerous applications in radio astronomy, biomedical imaging, homeland security, and explosive detection.</p> <div class="credits"> <p class="dwt_author">Veksler, Dmitry B.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.9758F"> <span id="translatedtitle">In situ observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at high latitudes in conjunction with a transpolar arc</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transpolar arcs are auroral features which extend from the night side of the Earth's main auroral oval into the polar cap. Recent statistical studies have shown that they are formed by the closure of magnetic flux in the magnetotail during intervals when the IMF is northward and there is a cross-tail (BY ) component of the lobe magnetic field (due to the earlier IMF conditions). Under these circumstances, newly closed flux in the midnight sector has northern and southern hemisphere footprints that straddle the midnight meridian; this prevents the closed flux from returning to the day side in a simple manner. As tail reconnection continues, the footprints of closed field lines protrude into the polar cap, and the auroral emissions on these footprints form the transpolar arc. This mechanism predicts that closed flux should build up on the night side, embedded within the lobe. We present in situ observations of this phenomenon, taken by the Cluster spacecraft on 15th September 2005. Cluster was located at high latitudes in the southern hemisphere lobe (far from the typical location of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>), and a transpolar arc was observed by the FUV cameras on the IMAGE satellite. Cluster periodically observed <span class="hlt">plasma</span> similar to a typical <span class="hlt">plasma</span> <span class="hlt">sheet</span> distribution, but at much higher latitudes - indicative of closed flux embedded within the high latitude lobe. Each time that this <span class="hlt">plasma</span> distribution was observed, the footprint of the spacecraft mapped to the transpolar arc (significantly poleward of the main auroral oval). These observations are consistent with closed flux being trapped in the magnetotail and embedded within the lobe, and provide further evidence for transpolar arcs being formed by magnetotail reconnection.</p> <div class="credits"> <p class="dwt_author">Fear, Robert; Milan, Steve; Maggiolo, Romain</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PlPhR..38..590M"> <span id="translatedtitle"><span class="hlt">Plasma</span> parameters controlled by remote <span class="hlt">electron</span> shower in a double <span class="hlt">plasma</span> device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The principal feature of this experiment is the <span class="hlt">electron</span> showers consisting of three tungsten wires embedded by the <span class="hlt">plasma</span>, which are heated up consequently emitting <span class="hlt">electrons</span> inside the diffused <span class="hlt">plasma</span> to control the <span class="hlt">plasma</span> parameters in the discharge section of a double <span class="hlt">plasma</span> device. These cold <span class="hlt">electrons</span> emitted by the heated filament are free from maintenance of discharge which is sustained in the source section. The target <span class="hlt">plasma</span>, where <span class="hlt">electrons</span> are injected is produced as a result of diffusion from the source section. It is found that, <span class="hlt">plasma</span> density and <span class="hlt">plasma</span> potential can be effectively controlled in this way.</p> <div class="credits"> <p class="dwt_author">Mishra, M. K.; Phukan, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22068843"> <span id="translatedtitle">First-principles study of <span class="hlt">electronic</span> and magnetic properties of transition metal adsorbed h-BNC2 <span class="hlt">sheets</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Adsorption of Fe, Co and Ni atoms on a hybrid hexagonal <span class="hlt">sheet</span> of graphene and boron nitride is studied using density functional methods. Most favorable adsorption sites for these adatoms are identified for different widths of the graphene and boron nitride regions. <span class="hlt">Electronic</span> structure and magnetic properties of the TM-adsorbed <span class="hlt">sheets</span> are then studied in detail. The TM atoms change the <span class="hlt">electronic</span> structure of the <span class="hlt">sheet</span> significantly, and the resulting system can be a magnetic semiconductor, semi-metal, or a non-magnetic semiconductor depending on the TM chosen. This gives tunability of properties which can be useful in novel <span class="hlt">electronics</span> applications. Finally, barriers for diffusion of the adatoms on the <span class="hlt">sheet</span> are calculated, and their tendency to agglomerate on the <span class="hlt">sheet</span> is estimated. PMID:22068843</p> <div class="credits"> <p class="dwt_author">Srivastava, Pooja; Deshpande, Mrinalini; Sen, Prasenjit</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMSH32C..03S"> <span id="translatedtitle">Whistler-mode phenomena in <span class="hlt">electron</span> MHD <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">While the linear properties of plane whistler waves are well known, many new phenomena of bounded wavepackets and nonlinear effects are worth to describe. The present talk will review laboratory observations of whistler filaments, whistler vortices, whistler wings, whistler-sound modes in high-beta <span class="hlt">plasmas</span>, nonlinear whistlers forming magnetic null points, and magnetic reconnection in EMHD <span class="hlt">plasmas</span>. The time-varying magnetic field of a spatially bounded whistler wave packet consists of 3-D vortices. Each vortex can be decomposed into linked toroidal and poloidal field components. The self-helicity is positive for propagation along the field, negative for opposite propagation. Helicity injection from a suitable source produces unidirectional propagation. Magnetic helicity changes sign, i.e., is not conserved, when the propagation direction along B changes, for example due to reflection or propagation through a magnetic null point. In ideal EMHD the electric and magnetic forces on the <span class="hlt">electrons</span> are equal, -n e E +J x B=0, i.e., the <span class="hlt">electron</span> fluid is not compressed. Force-free vortices do not interact during collisions. Vortices are excited with pulsed magnetic antennas or pulsed electrodes. Both transient currents and fields can form vortices that propagate in the whistler mode. Moving dc magnets or dc current systems can also induce whistler modes in a magnetized <span class="hlt">plasma</span>. These form a Cherenkov-like radiation pattern, a ``whistler wing.'' Nonlinear phenomena arise from wave-induced modifications of the <span class="hlt">electron</span> temperature, density and magnetic field. In collisional <span class="hlt">plasmas</span> <span class="hlt">electrons</span> are heated by strong whistlers. Modifications of the classical conductivity leads to current filamentation. On a slower time scale density modifications arise from ambipolar fields associated with <span class="hlt">electron</span> heating. In a filamentation instability a strong whistler wave is ducted along a narrow field-aligned density depression. The ion density is also modified by the ac electric field of low-frequency whistlers in high-beta <span class="hlt">plasmas</span>. Pressure-gradient driven instabilities near the lower hybrid frequency produce coupled density and magnetic perturbations that propagate at the sound speed nearly across the field, forming a new whistler-sound mode. The net magnetic field is modified when the whistler magnetic field exceeds the background magnetic field. A field-reversed configuration (FRC) with two 3-D null points is produced. This EMHD structure does not propagate in the whistler mode. It elongates and precesses, which are manifestations of magnetic fields frozen into the <span class="hlt">electron</span> fluid flow. The free magnetic energy is converted into <span class="hlt">electron</span> heat by field line annihilation in the toroidal current <span class="hlt">sheet</span>. No reconnection is seen at the 3-D spiral nulls. The energy dissipation is anomalously fast due to current-driven ion sound turbulence. In contrast to linear vortices, two FRCs do interact and merge into a single one. These basic properties of EMHD fields will be applied to cases of interest in space <span class="hlt">plasmas</span> such as reconnection, strong turbulence, and possible active experiments. Work performed in collaboration with J.~M. Urrutia, M.~C. Griskey, and K.~D. Strohmaier with support from NSF PHY.</p> <div class="credits"> <p class="dwt_author">Stenzel, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001AGUFMSM11B0820G"> <span id="translatedtitle">The Statistical Study of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layer in the Tail and in the Middle Altitude Regions.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">ion beams (beamlets) observed by Interball-Tail and Interball- Auroral satellites. In the both data sets beamlets manifest themselves as bursty <span class="hlt">plasma</span> events with duration ? 60s and ion energies about several keV accompanied by cold (200-300eV) <span class="hlt">electrons</span>. We used an epoch superposition technique to define statistically the beamlet registration zones in the geomagnetic tail (X ? -25Re) as well as in the auroral region. We have found that in the Earth magnetotail beamlets are localized at about 0.6 Re above <span class="hlt">plasma</span> <span class="hlt">sheet</span> (PS) boundary. This distance corresponds to the invariant latitude interval of ? 0.5o from high-latitude PS boundary. The same statistical analysis of Interball-Auroral data has shown that at the middle altitudes beamlets are registered also poleward from high-latitude PS boundary at a 0.8o latitudinal distance, that is in good agreement with Interball-tail data. We made also a statistical analysis of beamlet's energy versus latitude for both Interball-Auroral and Interball-Tail data. The analysis has shown the similar beamlet energy dispersion in the middle-altitude and in the tail regions. When interplanetary magnetic field (IMF) was mostly southward beamlet energies increase with latitude while for northward IMF the inverse beamlet energy dispersion is observed.</p> <div class="credits"> <p class="dwt_author">Grigorenko, E.; Fedorov, A.; Zelenyi, L.; Sauvaud, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40317720"> <span id="translatedtitle">Effects of substrate rotation on the microstructure of metal <span class="hlt">sheet</span> fabricated by <span class="hlt">electron</span> beam physical vapor deposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The effects of substrate rotation speed and rotation mode on the microstructure of large-sized metal <span class="hlt">sheet</span> fabricated by <span class="hlt">electron</span> beam physical vapor deposition technique were investigated. Helical and columnar microstructures were found in the deposited <span class="hlt">sheet</span>. Both types of microstructures exhibit no preferential crystallographic orientation. The column inclination under asymmetric vapor incidence pattern was discussed. Integrated vapor incidence angle was</p> <div class="credits"> <p class="dwt_author">Yue Sun; Xiu Lin; Xiaodong He; Jiazhen Zhang; Mingwei Li; Guangping Song; Xinyan Li; Yijie Zhao</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.7223N"> <span id="translatedtitle">Geotail observations of <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition over 16 years: On variations of average <span class="hlt">plasma</span> ion mass and O+ triggering substorm model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We examined long-term variations of ion composition in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, using energetic (9.4-212.1 keV/e) ion flux data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particle and ion composition (EPIC) instrument on board the Geotail spacecraft. EPIC/STICS observations are available from 17 October 1992 for more than 16 years, covering the declining phase of solar cycle 22, all of solar cycle 23, and the early phase of solar cycle 24. This unprecedented long-term data set revealed that (1) the He+/H+ and O+/H+ flux ratios in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were dependent on the F10.7 index; (2) the F10.7 index dependence is stronger for O+/H+ than He+/H+; (3) the O+/H+ flux ratio is also weakly correlated with the ?Kp index; and (4) the He2+/H+ flux ratio in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> appeared to show no long-term trend. From these results, we derived empirical equations related to <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition and the F10.7 index and estimated that the average <span class="hlt">plasma</span> ion mass changes from ˜1.1 amu during solar minimum to ˜2.8 amu during solar maximum. In such a case, the Alfvén velocity during solar maximum decreases to ˜60% of the solar minimum value. Thus, physical processes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> are considered to be much different between solar minimum and solar maximum. We also compared long-term variation of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition with that of the substorm occurrence rate, which is evaluated by the number of Pi2 pulsations. No correlation or negative correlation was found between them. This result contradicts the O+ triggering substorm model, in which heavy ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> increase the growth rate of the linear ion tearing mode and play an important role in localization and initiation of substorms. In contrast, O+ ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> may prevent occurrence of substorms.</p> <div class="credits"> <p class="dwt_author">Nosé, M.; Ieda, A.; Christon, S. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/377834"> <span id="translatedtitle">A high-power millimeter-wave <span class="hlt">sheet</span> beam free-<span class="hlt">electron</span> laser amplifier</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The results of experiments with a short period (9.6 mm) wiggler <span class="hlt">sheet</span> <span class="hlt">electron</span> beam (1.0 mm x 2.0 cm) millimeter-wave free <span class="hlt">electron</span> laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for <span class="hlt">sheet</span> beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the <span class="hlt">sheet</span> beam FEL amplifier. The results of the studies will provide guidelines for the future development of <span class="hlt">sheet</span> beam FEL`s and/or other kinds of <span class="hlt">sheet</span> beam devices. These devices have fusion application.</p> <div class="credits"> <p class="dwt_author">Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X. [Univ. of Maryland, College Park, MD (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22093525"> <span id="translatedtitle"><span class="hlt">Electron</span>-helium scattering in Debye <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electron</span>-helium scattering in weakly coupled hot-dense (Debye) <span class="hlt">plasma</span> has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe <span class="hlt">plasma</span> Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a{sub 0}). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.</p> <div class="credits"> <p class="dwt_author">Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor [ARC Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Janev, R. K. [Macedonian Academy of Sciences and Arts, P.O. Box 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1048437"> <span id="translatedtitle"><span class="hlt">Electron</span> Recombination in a Dense Hydrogen <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced <span class="hlt">plasma</span> inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized <span class="hlt">electrons</span> load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized <span class="hlt">electrons</span> and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of <span class="hlt">electrons</span> in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of <span class="hlt">electron</span> recombination grows for larger clusters of hydrogen and so at the equilibrium of <span class="hlt">electron</span> production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.</p> <div class="credits"> <p class="dwt_author">Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; /Fermilab; Leonova, M.A.; Schwarz, T.A.; /Fermilab; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.thaiscience.info/journals/article/development%20of%20a%20thermal%20plasma%20torch%20for%20electronic%20waste%20management.pdf"> <span id="translatedtitle">?????????????????????????????????????????? ????????????????? Development of a Thermal <span class="hlt">Plasma</span> Torch for <span class="hlt">Electronic</span> Waste Management ???? ?????????? ??? ??? ????????? ???????????????????????? ????????????????? ???????????????????</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Use of thermal <span class="hlt">plasma</span> in <span class="hlt">electronic</span> waste (e-waste) management has gained increasingly attention for its capability of sterilization as well as volume reduction. In this research study the objectives were to develop a <span class="hlt">plasma</span> torch, evaluate its temperature distribution characteristics, and test run with e- waste in a batch reactor. High temperature <span class="hlt">plasma</span> was created from <span class="hlt">electron</span> emission under high</p> <div class="credits"> <p class="dwt_author">Parin Khongkrapan; Nakorn Tippayawong</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/334205"> <span id="translatedtitle">[<span class="hlt">Electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span> film deposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">During the third quarter of 1995, an <span class="hlt">electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span> film deposition facility was constructed at the University of New Mexico. This work was conducted in support of the Los Alamos/Tycom CRADA agreement to pursue methods of improving drill bit lifetime. Work in the fourth quarter will center on the coating of drill bits and the treating and testing of various test samples. New material systems as well as treatment techniques will be attempted during this period. The following is a brief description of the various subsystems of the film deposition facility. Particular emphasis is placed on the slotted waveguide system as requested.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1032746"> <span id="translatedtitle">Status of <span class="hlt">Plasma</span> <span class="hlt">Electron</span> Hose Instability Studies in FACET</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In the FACET <span class="hlt">plasma</span>-wakefield acceleration experiment a dense 23 GeV <span class="hlt">electron</span> beam will interact with lithium and cesium <span class="hlt">plasmas</span>, leading to <span class="hlt">plasma</span> ion-channel formation. The interaction between the <span class="hlt">electron</span> beam and the <span class="hlt">plasma</span> sheath-<span class="hlt">electrons</span> may lead to a fast growing <span class="hlt">electron</span> hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the <span class="hlt">plasma</span>, we investigate the transverse behavior of the beam in the <span class="hlt">plasma</span> as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future <span class="hlt">plasma</span> wakefield accelerators due to the <span class="hlt">electron</span> hose instability. The FACET <span class="hlt">plasma</span>-wakefield experiment at SLAC will study beam driven <span class="hlt">plasma</span> wakefield acceleration. A dense 23 GeV <span class="hlt">electron</span> beam will interact with lithium or cesium <span class="hlt">plasma</span>, leading to <span class="hlt">plasma</span> ion-channel formation. The interaction between the <span class="hlt">electron</span> beam and the <span class="hlt">plasma</span> sheath-<span class="hlt">electrons</span> drives the <span class="hlt">electron</span> hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and <span class="hlt">plasma</span> parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the <span class="hlt">plasma</span>, and observing the transverse behavior of the beam in the <span class="hlt">plasma</span> as function. The long-term objective of these studies is to quantify potential limitations on future <span class="hlt">plasma</span> wakefield accelerators due to the <span class="hlt">electron</span> hose instability.</p> <div class="credits"> <p class="dwt_author">Adli, Erik; /U. Oslo; England, Robert Joel; Frederico, Joel; Hogan, Mark; Li, Selina Zhao; Litos, Michael Dennis; Nosochkov, Yuri; /SLAC; An, Weiming; Mori, Warren; /UCLA</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PPCF...54l4039O"> <span id="translatedtitle">Ion and <span class="hlt">electron</span> heating characteristics of magnetic reconnection in tokamak <span class="hlt">plasma</span> merging experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently, the TS-3 and TS-4 tokamak merging experiments revealed significant <span class="hlt">plasma</span> heating during magnetic reconnection. A key question is how and where ions and <span class="hlt">electrons</span> are heated during magnetic reconnection. Two-dimensional measurements of ion and <span class="hlt">electron</span> temperatures and <span class="hlt">plasma</span> flow made clear that <span class="hlt">electrons</span> are heated inside the current <span class="hlt">sheet</span> mainly by the Ohmic heating and ions are heated in the downstream areas mainly by the reconnection outflows. The outflow kinetic energy is thermalized by the fast shock formation and viscous damping. The magnetic reconnection converts the reconnecting magnetic field energy mostly to the ion thermal energy in the outflow region whose size is much larger than the current <span class="hlt">sheet</span> size for <span class="hlt">electron</span> heating. The ion heating energy is proportional to the square of the reconnection magnetic field component B_p^2 . This scaling of reconnection heating indicates the significant ion heating effect of magnetic reconnection, which leads to a new high-field reconnection heating experiment for fusion <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; T, Ii; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMNG23A1480H"> <span id="translatedtitle">The evolution of <span class="hlt">electron</span> current <span class="hlt">sheet</span> and formation of secondary islands in guide field reconnection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two-dimensional particle-in-cell simulations are performed to investigate the evolution of the <span class="hlt">electron</span> current <span class="hlt">sheet</span> (ECS) in guide field reconnection. The ECS is formed by the <span class="hlt">electrons</span> accelerated by the inductive electric field in the vicinity of the X line. The ECS is then extended along the direction due to of the imbalance between the electric field force and the Ampere force. The tearing instability is unstable when the ECS becomes sufficiently long, and several seed islands are formed. These tiny islands may coalesce and form a larger secondary island in the center of the ion diffusion region.</p> <div class="credits"> <p class="dwt_author">Huang, C.; Lu, Q.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ChPhB..21j4103C"> <span id="translatedtitle">Linear theory of a dielectric-loaded rectangular Cerenkov maser with a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute <span class="hlt">electron</span> beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail.</p> <div class="credits"> <p class="dwt_author">Chen, Ye; Zhao, Ding; Liu, Wen-Xin; Wang, Yong; Wan, Xiao-Sheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AIPC..812..161B"> <span id="translatedtitle">Relativistic <span class="hlt">Electron</span> Beam Interaction With Semi-Bounded <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper we theoretically investigate phenomenon experimentally observed in [2]: reflection of a relativistic <span class="hlt">electron</span> beam of finite length and small radius from vacuum-<span class="hlt">plasma</span> boundary. We suppose that self-focusing of <span class="hlt">electron</span> beam has been finished. The <span class="hlt">electron</span> beam reflection on <span class="hlt">electron</span> time scale is also considered. So <span class="hlt">plasma</span> ions are fixed in space, but <span class="hlt">plasma</span> <span class="hlt">electrons</span> are accelerated in transversal direction. Thus a positive charge appears around the beam. The longitudinal shape of the electric potential is formed by <span class="hlt">electron</span> beam and positive charge at separation of the beam back front from the <span class="hlt">plasma</span> boundary. It was shown that this electric potential profile can be cause of reflection of an <span class="hlt">electron</span> beam part from the <span class="hlt">plasma</span> boundary. Dependence of the electric potential profile from a beam penetration depth and ratio of the <span class="hlt">plasma</span> and beam parameters are obtained.</p> <div class="credits"> <p class="dwt_author">Barchuk, S. V.; Harchenko, A. O.; Lapshin, V. I.; Maslov, V. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21064463"> <span id="translatedtitle"><span class="hlt">Electron</span> acceleration by surface <span class="hlt">plasma</span> waves in double metal surface structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two parallel metal <span class="hlt">sheets</span>, separated by a vacuum region, support a surface <span class="hlt">plasma</span> wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An <span class="hlt">electron</span> beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface <span class="hlt">plasma</span> wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface <span class="hlt">plasma</span> wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the <span class="hlt">electrons</span> away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.</p> <div class="credits"> <p class="dwt_author">Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Physics Department, Indian Institute of Technology, New Delhi 110016 (India); Laser Science and Technology Centre, Metcalfe House, Delhi 110054 (India); Physics Department, Indian Institute of Technology, New Delhi 110016 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/784719"> <span id="translatedtitle"><span class="hlt">Plasma</span> Focusing of High Energy Density <span class="hlt">Electron</span> and Positron Beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We present results from the SLAC E-150 experiment on <span class="hlt">plasma</span> focusing of high energy density <span class="hlt">electron</span> and, for the first time, positron beams. We also present results on <span class="hlt">plasma</span> lens-induced synchrotron radiation, longitudinal dynamics of <span class="hlt">plasma</span> focusing, and laser- and beam-<span class="hlt">plasma</span> interactions.</p> <div class="credits"> <p class="dwt_author">Ng, Johnny S.T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-10-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.5437Z"> <span id="translatedtitle">Two different types of plasmoids in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Cluster multisatellite analysis application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">fine magnetic field structure of two successive plasmoids previously reported is investigated by magnetic rotation analysis using four Cluster satellite data. Between these two plasmoids, opposite trends of curvature radius (Rc) variations of the magnetic field lines from the boundary to the inner part are found. The different variations of Rc reflect that the two plasmoids have different magnetic configurations. The electric current density distributions for both plasmoids are found distinct. The By increase and abundant field-aligned currents in the narrow core region of the first plasmoid indicate that a possible magnetic flux rope (MFR) core exists inside. The results indicate that the first observed plasmoid is of a magnetic loop (ML) type (with possible MFR core) and the second plasmoid is of a magnetic flux rope (MFR) type. The coexistence of ML and MFR in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> may imply that multiple X line reconnection can occur by either an antiparallel or a component-parallel way.</p> <div class="credits"> <p class="dwt_author">Zhang, Y. C.; Shen, C.; Liu, Z. X.; Rong, Z. J.; Zhang, T. L.; Marchaudon, A.; Zhang, H.; Duan, S. P.; Ma, Y. H.; Dunlop, M. W.; Yang, Y. Y.; Carr, C. M.; Dandouras, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20861387"> <span id="translatedtitle">Simulation of <span class="hlt">sheet</span>-shaped lithium beam probe performance for two-dimensional edge <span class="hlt">plasma</span> measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A <span class="hlt">sheet</span>-shaped thermal lithium beam probe has been developed for two-dimensional density measurements in the edge region of the torus <span class="hlt">plasma</span>. A numerical simulation was carried out to confirm the validity of the diagnostics for fast and transient phenomena such as edge localized modes or blobs, etc., where the velocity of blobs is faster than that of the probe beam. It was found in the simulation that the density of the blob itself is reconstructed to be low and unexpected ghosts appear in the reconstructed density profile near the blob, if the conventional reconstruction method is employed. These results invite our attention to the numerical errors in the density reconstruction process. On the other hand, the errors can be corrected by using the simulation results.</p> <div class="credits"> <p class="dwt_author">Tsuchiya, H.; Morisaki, T.; Komori, A.; Motojima, O. [Graduate University for Advanced Studies, Toki 509-5292 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD676201"> <span id="translatedtitle">Stability of a Pure <span class="hlt">Electron</span> <span class="hlt">Plasma</span> in Cylindrical Geometry.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The stability of a cylindrical cold <span class="hlt">plasma</span> consisting of <span class="hlt">electrons</span> only is investigated analytically. The geometry is similar to that of the proposed heavy ion <span class="hlt">plasma</span> accelerator. The dispersion equation is derived and discussed for the case that the plas...</p> <div class="credits"> <p class="dwt_author">G. Knorr</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51195988"> <span id="translatedtitle"><span class="hlt">Plasma</span> Walls Beyond the Perfect Absorber Approximation for <span class="hlt">Electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Plasma</span> walls accumulate <span class="hlt">electrons</span> more efficiently than ions, leading to wall potentials which are negative with respect to the <span class="hlt">plasma</span> potential. Theoretically, walls are usually treated as perfect absorber for <span class="hlt">electrons</span> and ions, implying perfect sticking of the particles to the wall and infinitely long desorption times for particles stuck to the wall. For <span class="hlt">electrons</span>, we question the perfect absorber</p> <div class="credits"> <p class="dwt_author">Franz X. Bronold; Rafael L. Heinisch; Johannes Marbach; Holger Fehske</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..117.9202C"> <span id="translatedtitle">Energy transport by kinetic-scale electromagnetic waves in fast <span class="hlt">plasma</span> <span class="hlt">sheet</span> flows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report observations from the THEMIS spacecraft characterizing the nature and importance of low frequency electromagnetic fluctuations on kinetic scales embedded within fast flows in the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. A consideration of wave property variations with frequency and flow speed suggest that for spacecraft frame frequencies satisfying |vf|/ñi ? ùsc ? 100|vf|/ñi (or 0.2 ? fsc ? 20 Hz) these fluctuations can generally be described as kinetic Alfvén waves. Here vf is the flow speed, ñi the ion gyroradius, and ùsc and fsc are the angular and cyclical frequencies respectively in the spacecraft frame. The statistics of energy transport via Poynting flux (S) in these fluctuations and ion energy flux (å) in the flow follow log normal distributions with mean values of <S> = 101.1 ± 0.7 and <?> = 102.4 ± 0.4 mW/m2 respectively where the values are ‘mapped’ to a reference magnetic field at 100 km altitude. Here the indices following ‘ ± ’ correspond to one standard deviation. We find that <S/?> = 10-1.3 ± 0.7 or that kinetic Alfvén waves on average transport ˜5% of the total energy transport in the flow but note that the values larger than 25% are within one standard deviation of the mean. Our observations show that these waves are continually radiated outward from the flow toward the auroral oval, low latitude boundary layer or lobes and that over several Earth-radii the integrated energy loss from the flow channel can be comparable to the total energy content of the flow itself. We find that this <span class="hlt">plasma</span> <span class="hlt">sheet</span> energy loss process is particularly effective within |XGSE| ? 15 RE.</p> <div class="credits"> <p class="dwt_author">Chaston, C. C.; Bonnell, J. W.; Clausen, L.; Angelopoulos, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/ja0907/2008JA013766/2008JA013766.pdf"> <span id="translatedtitle">Anisotropy of the Taylor scale and the correlation scale in <span class="hlt">plasma</span> <span class="hlt">sheet</span> and solar wind magnetic field fluctuations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic field data from nine spacecraft in the magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the solar wind are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple-point measurements for multiple intervals with a range of mean magnetic field directions. We have determined that in the solar wind the Taylor scale is independent of direction relative to the</p> <div class="credits"> <p class="dwt_author">James M. Weygand; W. H. Matthaeus; S. Dasso; M. G. Kivelson; L. M. Kistler; C. Mouikis</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55098636"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Response to the Reduction of the Lobe Magnetic Field Strength Caused by Northward IMF Turnings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Traditionally, mechanisms proposed to explain substorm onset have involved sudden or disruptive changes occurring in the internal state of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In recent years, however, convincing evidence has accumulated that many substorms are triggered by a northward shift in the interplanetary magnetic field (IMF). To date, no equally convincing theoretical model has been developed to explain these observations. In</p> <div class="credits"> <p class="dwt_author">P. L. Pritchett; F. V. Coroniti</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002JPCM...14L.605H"> <span id="translatedtitle">LETTER TO THE EDITOR: Novel <span class="hlt">electronic</span> wave interference patterns in nanographene <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Superperiodic patterns extending over a large distance in a nanographene <span class="hlt">sheet</span> observed using a scanning tunnelling microscope are discussed in terms of the interference of <span class="hlt">electronic</span> wavefunctions. The period and the amplitude of the oscillations decrease spatially in one direction. We explain the superperiodic patterns with a static linear potential, theoretically. In the k . p model, the oscillation period decreases, and agrees with experiments. The spatial difference of the static potential is estimated as 1.3 eV for 200 nm in distance, and this value seems to be reasonable preserving for the potential difference under the action of perturbations, for example, phonon fluctuations and impurity scatterings. It turns out that the long-distance oscillations arise from the band structure of the two-dimensional graphene <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Harigaya, Kikuo; Kobayashi, Yousuke; Takai, Kazuyuki; Ravier, Jérôme; Enoki, Toshiaki</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21560006"> <span id="translatedtitle">Nonlinear interaction of quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with quantum <span class="hlt">electron</span> acoustic waves in <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An analysis of the interaction between modes involving two species with different pressures in the presence of a static-neutralizing ion background is presented using a quantum hydrodynamic model. It is shown that quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can nonlinearly interact with quantum <span class="hlt">electron</span> acoustic waves in a time scale much longer than <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillation response time. A set of coupled nonlinear differential equations is obtained that is similar to the Zakharov equations but includes quantum correction terms. These equations are solved in a moving frame, showing that solitary-wave-like solutions may also be possible in quantum Zakharov equations. It is also shown that quantum effects can reduce the growth rate of the usual caviton instability. Possible applications of the theory are also outlined.</p> <div class="credits"> <p class="dwt_author">Chakrabarti, Nikhil; Mylavarapu, Janaki Sita; Dutta, Manjistha; Khan, Manoranjan [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Calcutta-700 064 (India); Department of Instrumentation Science, Jadavpur University, Calcutta-700 032 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33123"> <span id="translatedtitle">Paper-like <span class="hlt">electronic</span> displays: Large-area rubber-stamped plastic <span class="hlt">sheets</span> of <span class="hlt">electronics</span> and microencapsulated electrophoretic inks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary"><span class="hlt">Electronic</span> systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (?5 × 5-inch) mechanically flexible <span class="hlt">sheets</span> of <span class="hlt">electronic</span> paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic <span class="hlt">electronics</span>, including methods for (i) rubber stamping (microcontact printing) high-resolution (?1 ?m) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (?100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form <span class="hlt">sheets</span> of <span class="hlt">electronic</span> paper.</p> <div class="credits"> <p class="dwt_author">Rogers, John A.; Bao, Zhenan; Baldwin, Kirk; Dodabalapur, Ananth; Crone, Brian; Raju, V. R.; Kuck, Valerie; Katz, Howard; Amundson, Karl; Ewing, Jay; Drzaic, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013NIMPB.309..210D"> <span id="translatedtitle">Radiation by <span class="hlt">electrons</span> channeled in a <span class="hlt">plasma</span>-ion cavity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This work is devoted to the <span class="hlt">electron</span> motion in an infinite <span class="hlt">plasma</span>-ion channel formed by powerful ultra short laser pulse. Analytical expressions for both transverse energy levels and widths of <span class="hlt">plasma</span>-ion channeled <span class="hlt">electrons</span> in simplified approximation of a scalar particle have been derived. The spectra of electromagnetic radiation by channeled <span class="hlt">electrons</span> in a <span class="hlt">plasma</span>-ion cavity in the direction of relativistic motion with different initial conditions have been calculated.</p> <div class="credits"> <p class="dwt_author">Dik, A. V.; Ligidov, A. Z.; Dabagov, S. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFMSM51A1389Z"> <span id="translatedtitle">Energy filter effect for solar wind particle entry to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> via flank regions during southward IMF</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A set of mechanisms have been established to explain the entry of solar wind <span class="hlt">plasma</span> to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the magnetotail. In this paper, we mainly focus on a gradient drift entry (GDE) process in the equatorial flanks of the magnetosphere, and theoretically discuss its efficiency in different conditions using the adiabatic theory. It can be clearly shown that the GDE efficiency is much lower during southward IMF, with a strong energy filter effect for incoming solar wind particles. Given a typical condition, a critical energy for particle entry is calculated to be around ten keV. Only those particles with higher energy can penetrate the magnetopause, which can be also proved by test particle simulations. The lower efficiency in this condition is in agreement with the hot tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed during periods of southward IMF.</p> <div class="credits"> <p class="dwt_author">Zhou, X.; Pu, Z.; Zong, Q.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ApPhL..99a3112S"> <span id="translatedtitle">Klein tunnelling model of low energy <span class="hlt">electron</span> field emission from single-layer graphene <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By considering the effect of Klein tunneling for low energy <span class="hlt">electrons</span> with linear energy dispersion, a model has been constructed to calculate the amount of emitted line current density from a single-layer graphene <span class="hlt">sheet</span>, which is vertically aligned inside a dc gap. It is found that the current-voltage scaling obtained from the constructed Klein tunneling model is very different from the traditional field emission model based on the Fowler-Nordheim (FN) law. Under the same geometrical field enhancement factor, our model predicts a much higher emitted current as compared to the FN law at low voltages.</p> <div class="credits"> <p class="dwt_author">Sun, S.; Ang, L. K.; Shiffler, D.; Luginsland, J. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhRvB..81k5408J"> <span id="translatedtitle">Effect of <span class="hlt">electron</span> localization on the edge-state spins in a disordered network of nanographene <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The magnetism and its dynamical behavior is investigated in relation to <span class="hlt">electron</span>-localization effect for the edge-state spins of three-dimensional randomly networked nanographene <span class="hlt">sheets</span> which interact weakly with each other. The <span class="hlt">electron</span> transport is governed by Coulomb-gap variable-range hopping between nanographene <span class="hlt">sheets</span>. At high temperatures, the <span class="hlt">electron</span> spin resonance (ESR) signal with a feature of homogeneous spin system reveals the bottleneck effect in the spin relaxation to the lattice for a strongly coupled system of edge-state spins and conduction ? <span class="hlt">electrons</span>, in a given nanographene <span class="hlt">sheet</span>. Below 20 K, a discontinuous ESR line broadening accompanied by hole-burning proves the formation of an inhomogeneous spin state, indicating a static spatial distribution of on-resonance fields. This inhomogeneity originates from a distribution of the strengths of the ferrimagnetic moments on the individual nanographene <span class="hlt">sheets</span>, taking into account that the constituent nanographene <span class="hlt">sheets</span> with their shapes randomly varying have different strengths of ferrimagnetic moments. Strong <span class="hlt">electron</span> localization below 20 K in the internanographene <span class="hlt">electron</span> hopping is responsible for the crossover from the homogeneous spin state to the inhomogeneous one, in the latter of which ferrimagnetic short-range ordering is evident in the edge-state spin system.</p> <div class="credits"> <p class="dwt_author">Joly, V. L. Joseph; Takahara, Katsunori; Takai, Kazuyuki; Sugihara, Ko; Enoki, Toshiaki; Koshino, Mikito; Tanaka, Hidekazu</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001AGUFMSM51A0795P"> <span id="translatedtitle">Electrodynamic Coupling Between <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> and the Auroral Zone due to Nonlinear Feedback interaction: Studies Based on Nonlinear Dispersive Field Line Resonance Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Auroral arc structure and mechanism of arc formation are examined using a nonlinear dispersive field line resonance (NDFLR) wave model that includes spatial and temporal effects arising from nonlinear modification of the ionospheric Pedersen conductivity. The inhomogeneity in the conductivity is induced by low energy ( ~ 150 eV) elactrons which precipitate in the auroral region from the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. At the conjugate points where the field line resonance (FLR) encounters the ionosphere, the field-aligned current (FAC) increases the conductivity., reduces the FLR damping,and increases the FLR amplitude, that is, the FAC is intensified by the ionospheric feedback mechanism. Our studies show that the FAC carried by FLRs can grow to a significantly large amplitude and produce more pronounced structuring of a narrower width when compared with the case of uniform conductivity. A competition between the ionospheric feedback dissipation and the SAW dispersion results in large amplitude long-period oscillations of the FAC associated with emission of SAW wave-packets which propagate in the anti-Earthward (Northward) direction from the resonance. The NDFLR wave model predicts the current structure, electric field, and the magnetic field of FLRs based on conductivity in the nightside magnetosphere. These studies are consistent with the statistics of observations that discrete aurorae are formed in regions of low conductivity [Prakash and Rankin, 2001; Prakash et al., 2001]. We will present results on the auroral arc using the isotropic and anisotropic distribution in energy flux of the precipitating <span class="hlt">electrons</span> that originate from <span class="hlt">plasma</span> <span class="hlt">sheet</span>. M. Prakash and Robert Rankin, Role of ionospheric effects and <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics in the formation of auroral arc, Space Sci. Revs., 95 (1/2), 513, 2001. Prakash et al., Role of nonlinear feedback interactions in the formation and structuring of auroral arc, submitted to J. Geophys. Res., 2001.</p> <div class="credits"> <p class="dwt_author">Prakash, M.; Rankin, R.; Tikhonchuk, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993JGR....9817345S"> <span id="translatedtitle">Structure of the tail <span class="hlt">plasma</span>/current <span class="hlt">sheet</span> at ~11 RE and its changes in the course of a substorm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">At the end of April 2, 1978, the ISEE 1 and 2 spacecraft moved inbound at ~11 RE on the nightside (0130 MLT). Due to a flapping motion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> the spacecraft crossed the neutral <span class="hlt">sheet</span> region (central region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>) more than 10 times in the hour between 2115 and 2215 UT. This provided a unique opportunity to study the structure of the <span class="hlt">plasma</span>/current region and its evolution during substorm growth and early expansion before the final disruption of the current <span class="hlt">sheet</span>. Using minimum variance analysis of the magnetic field variations during the crossings as well as finite ion gyroradius diagnostics, we determine the orientation of the current <span class="hlt">sheet</span> (CS) and then estimate the CS thickness as well as the value of its normal component, Bn. Typically, the current distribution was inferred to be very inhomogeneous with a current concentrated in a very thin CS (only 0.2 to 0.8 RE as thick) embedded inside the thicker <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Current <span class="hlt">sheet</span> crossings could be classified as regular or turbulent. The first type prevailed during the growth phase and at the initial stage of expansion when the spacecraft were well outside (in longitude) of the active region of the substorm and no large <span class="hlt">plasma</span> flow was detected. The normal field component Bn was typically very small (~1 nT) in the CS center in comparison to the larger shear magnetic By component. In the course of the growth phase we inferred as increase of the lobe field Bx and a decrease of the CS half thickness h (from h~3000 km to ~800 km just before the expansion onset), i.e., a very large increase (up to an order of magnitude) of the current density. At the same time, in disagreement with the usual cartoon picture of magnetic reconfiguration, the magnetic field magnitude in the CS center increased (instead of decreased) at the expense of the shear component. Three turbulent crossings were found during substorm expansion within the longitude range of the substorm current wedge (SCW). The second of them was detected ~1 min before the main dipolarization and was characterized by a rather small CS thickness (h<600 km), by strong earthward <span class="hlt">plasma</span> flow and by a positive normal magnetic field component. That period showed signatures of concentration of both cross-B and field-aligned current at the outer edge of CS and may indicate a nearby reconnection region. The main result of this study is that the region of very thin current <span class="hlt">sheet</span> (thickness of the order of the gyroradius of thermal protons in the field just outside the current <span class="hlt">sheet</span>), which contained a very small normal component, clearly appeared in the near tail prior to the sudden onset of current disruption as predicted by some quantitative models of quasi-static evolution of earthward convecting <span class="hlt">plasma</span> <span class="hlt">sheet</span> flux tubes. Comparing these observations to theoretical results, we find that the threshold conditions for the growth of the tearing mode instability in sheared magnetic fields were apparently satisfied in this case, but the growth rate was too slow for sudden initiation of substorm expansion.</p> <div class="credits"> <p class="dwt_author">Sergeev, V. A.; Mitchell, D. G.; Russell, C. T.; Williams, D. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/829968"> <span id="translatedtitle">Vortices, Reconnection and Turbulence in High <span class="hlt">Electron</span>-Beta <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Plasmas</span> in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such <span class="hlt">plasmas</span> can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the <span class="hlt">electrons</span>. This project focuses on the detailed study of the transition regime of these <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Stenzel, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-08-31</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10140474"> <span id="translatedtitle">A relativistic solitary wave in <span class="hlt">electron</span>-positron ion <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves with relativistically strong amplitude in an unmagnetized cold <span class="hlt">electron</span>-positron ion <span class="hlt">plasma</span> is investigated. The possibility of finding soliton solutions in such a <span class="hlt">plasma</span> is explored. In one- and two-dimensions it is shown that the presence of a small fraction of massive ions in the <span class="hlt">plasma</span> leads to stable localized solutions.</p> <div class="credits"> <p class="dwt_author">Berezhiani, V.I. [Georgian Academy of Sciences, Tbilisi (Georgia). Institute of Physics; Mahajan, S.M. [Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies]|[International Centre for Theoretical Physics, Trieste (Italy)</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22089356"> <span id="translatedtitle">Generating <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span> using distributed scheme</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This study employs a distributed microwave input system and permanent magnets to generate large-area <span class="hlt">electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span>. ECR <span class="hlt">plasmas</span> were generated with nitrogen gas, and the <span class="hlt">plasma</span> density was measured by Langmuir probe. A uniform ECR <span class="hlt">plasma</span> with the <span class="hlt">electron</span> density fluctuation of {+-}9.8% over 500 mm Multiplication-Sign 500 mm was reported. The proposed idea of generating uniform ECR <span class="hlt">plasma</span> can be scaled to a much larger area by using n Multiplication-Sign n microwave input array system together with well-designed permanent magnets.</p> <div class="credits"> <p class="dwt_author">Huang, C. C. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China); Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chang, T. H.; Chen, N. C.; Chao, H. W. [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Chen, C. C. [Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chou, S. F. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JPSJ...58..856Y"> <span id="translatedtitle">Toroidal Equilibrium of <span class="hlt">Plasma</span> with Concentrated Relativistic <span class="hlt">Electron</span> Beam</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A simplified model has been given for toroidal equilibrium of a tokamak-type <span class="hlt">plasma</span> with high-current concentrated <span class="hlt">electron</span> beam. The <span class="hlt">plasma</span> has a thermal pressure, and the <span class="hlt">electron</span> beam has effective inertial pressure. Strong deformations of tokamak equilibria have been simulated by numerical calculations. Toroidal equilibria with relatively large vertical field are obtained when we consider high-energy intense <span class="hlt">electron</span> beam. The beam orbit, which is shifted outward from the magnetic axis of the <span class="hlt">plasma</span>, is closed by the sum of the externally applied relatively large vertical field and the poloidal magnetic field of the <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Yoshida, Zensho; Fujita, Takaaki; Fuke, Yasutaka</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003PhRvL..91a4802Y"> <span id="translatedtitle">Cohesive Acceleration and Focusing of Relativistic <span class="hlt">Electrons</span> in Overdense <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We describe our studies of the generation of <span class="hlt">plasma</span> wake fields by a relativistic <span class="hlt">electron</span> bunch and of phasing between the longitudinal and transverse fields in the wake. The leading edge of the <span class="hlt">electron</span> bunch excites a high-amplitude <span class="hlt">plasma</span> wake inside the overdense <span class="hlt">plasma</span> column, and the acceleration and focusing wake fields are probed by the bunch tail. By monitoring the dependence of the acceleration upon the <span class="hlt">plasma</span>'s density, we approached the beam-matching condition and achieved an energy gain of 0.6MeV over the 17mm <span class="hlt">plasma</span> length, corresponding to an average acceleration gradient of 35 MeV/m. Wake-induced modulation in energy and angular divergence of the <span class="hlt">electron</span> bunch are mapped within a wide range of <span class="hlt">plasma</span> density. We confirm a theoretical prediction about the phase offset between the accelerating and focusing components of <span class="hlt">plasma</span> wake.</p> <div class="credits"> <p class="dwt_author">Yakimenko, V.; Pogorelsky, I. V.; Pavlishin, I. V.; Ben-Zvi, I.; Kusche, K.; Eidelman, Yu.; Hirose, T.; Kumita, T.; Kamiya, Y.; Urakawa, J.; Greenberg, B.; Zigler, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21274160"> <span id="translatedtitle">Quantum correction to Landau damping of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">It is often assumed that quantum effects will be significant only in the low temperature and high density <span class="hlt">plasmas</span>. In this paper this assumption is challenged by considering the quantum contribution to the Landau damping of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves in normal temperature and high density <span class="hlt">plasmas</span>. Starting from the linearized Vlasov equation which contains the Bohm quantum potential, the dispersion relation of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves propagating in a quantum <span class="hlt">plasma</span> is derived. A linear Landau damping rate and equations for this process are also deduced. Result indicates that quantum effects enlarge effective frequency of <span class="hlt">plasmas</span>, which is attributed to an increase in charge or number density of <span class="hlt">plasma</span> <span class="hlt">electrons</span>. As a result, Debye length is reduced, and the Debye screening effect becomes obvious. So the quantum behavior appears screening effect here. Landau damping rate is reduced by quantum effects and the exchange of energy between particles and waves is retarded.</p> <div class="credits"> <p class="dwt_author">Zhu Jun; Lu Nan [Department of Physics, Shanghai University, Shanghai 200444 (China); Ji Peiyong [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Astrophysics, Shanghai 200234 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56831542"> <span id="translatedtitle">Two-plane focusing of high-space-charge <span class="hlt">sheet</span> <span class="hlt">electron</span> beams using periodically cusped magnetic fields</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Numerical and theoretical analyses show that stable, two-plane focusing of finite width, elliptical cross section, <span class="hlt">sheet</span> <span class="hlt">electron</span> beams with high space charge (low voltage, high current density) can be accomplished using periodically cusped-magnetic (PCM) fields. Magnetic field strength requirements for focusing high-space-charge <span class="hlt">sheet</span> beams are within technological capabilities of modern permanent magnet technology. Both an offset-pole PCM stack and a</p> <div class="credits"> <p class="dwt_author">M. A. Basten; J. H. Booske</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1487261"> <span id="translatedtitle">Observation through surface coatings of domain structure in 3% Si-Fe <span class="hlt">sheet</span> by a high voltage scanning <span class="hlt">electron</span> microscope</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Direct observation of magnetic domains in commercial oriented silicon-iron <span class="hlt">sheet</span> has recently been made possible even under insulating coatings by use of a high voltage scanning <span class="hlt">electron</span> microscope(SEM). Detailed description is given of the technique for the domain observation. Also, the effects of coatings on domain structure in slit and sheared oriented silicon-iron <span class="hlt">sheet</span> are shown on the basis of</p> <div class="credits"> <p class="dwt_author">B. Fukuda; T. Irie; H. Shimanaka; T. Yamamoto</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6222898"> <span id="translatedtitle">Association of an auroral surge with <span class="hlt">plasma</span> <span class="hlt">sheet</span> recovery and the retreat of the substorm neutral line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">One of the periods being studied in the PROMIS CDAW (CDAW-9) workshops is the interval 0000-1200 UT on May 3, 1986, designated Event 9C.'' A well-defined substorm, starting at 0919 UT, was imaged by both DE 1 over the southern hemisphere and Viking over the northern hemisphere. The images from Viking, at 80-second time resolution, showed a surge-like feature forming at about 0952 UT at the poleward edge of the late evening sector of the oval. The feature remained relatively stationary until about 1000 UT when it seemed to start advancing westward. ISEE 1 and 2 were closely conjugate to the surge as mapped from both the DMSP and Viking images. We conclude that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> recovery was occasioned by the arrival at ISEE 1,2 of a westward traveling wave of <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickening, the wave itself being formed by westward progression of the substorm neutral line's tailward retreat. The westward traveling surge was the auroral manifestation of this nonuniform retreat of the neutral line. We suggest that the upward field aligned current measured by DMSP F7 above the surge head was driven by <span class="hlt">plasma</span> velocity shear in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at the duskward kink'' in the retreating neutral line. By analogy with this observation we propose that the westward traveling surges and the current wedge field aligned currents that characterize the expanding auroral bulge during substorm expansive phase are manifestations of (and are driven by) velocity shear in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> near the ends of the extending substorm neutral line.</p> <div class="credits"> <p class="dwt_author">Hones, E.W. (Mission Research Corp., Los Alamos, NM (USA)); Elphinstone, R.; Murphree, J.S. (Calgary Univ., AB (Canada). Dept. of Physics); Galvin, A.B. (Maryland Univ., College Park, MD (USA). Dept. of Space Physics); Heinemann, N.C. (Boston Coll., Chestnut Hill, MA (USA). Dept. of Physics); Parks, G.K. (Washington Univ., Seattle, WA (USA)); Rich, F.J. (Air Force Geophysics Lab., Hanscom AFB, MA</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5387328"> <span id="translatedtitle">Heating of the solar corona <span class="hlt">plasma</span> by fast <span class="hlt">electron</span> streams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The heating of the solar corona above active regions due to the dissipation of <span class="hlt">plasma</span> turbulence, which is excited by energetic <span class="hlt">electron</span> streams, is discussed. The efficiency of energy transfer from <span class="hlt">electron</span> beams to the main <span class="hlt">plasma</span> is estimated. It is shown that a layer of nonisothermal <span class="hlt">plasma</span> is formed in the corona above an active region during developed type III noise storms. The role of heat conduction in the process of formation of such a layer is discussed.</p> <div class="credits"> <p class="dwt_author">Levin, B.N.</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012Ap%26SS.339..269L"> <span id="translatedtitle">Double layers in strong turbulent <span class="hlt">plasma</span> with suprathermal <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Distributions of <span class="hlt">plasma</span> with excess numbers of superthermal <span class="hlt">electrons</span> are common in space environments and double layer (DL) is one of the very important electrostatic nonlinear wave structures ubiquitous in <span class="hlt">plasma</span> systems. Based on the modified Zakharov equations, the DLs are studied in the strong turbulent <span class="hlt">plasmas</span> with Kappa distributed <span class="hlt">electrons</span>. It appears that in the strong turbulence regime, the presence of additional superthermal particles does not make qualitative changes on the DLs behavior, but modify the thicknesses of the DLs.</p> <div class="credits"> <p class="dwt_author">Liu, S. Q.; Chen, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55400578"> <span id="translatedtitle">Fast <span class="hlt">electron</span> transport in improved-confinement RFP <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Hard-x-ray bremsstrahlung, with photon energies reaching 150 keV, is detected in reversed-field pinch (RFP) <span class="hlt">plasma</span> discharges with reduced tearing mode amplitudes, indicative of improved confinement of fast <span class="hlt">electrons</span> compared to the standard case. Current-driven tearing modes in standard RFP <span class="hlt">plasmas</span> create stochastic magnetic fields; fast <span class="hlt">electrons</span>, generated by a strong electric field in the <span class="hlt">plasma</span> core, are nearly collisionless and</p> <div class="credits"> <p class="dwt_author">Daniel J. Clayton</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhPl...17d3111W"> <span id="translatedtitle"><span class="hlt">Electron</span> beam transport analysis of W-band <span class="hlt">sheet</span> beam klystron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The formation and transport of high-current density <span class="hlt">electron</span> beams are of critical importance for the success of a number of millimeter wave and terahertz vacuum devices. To elucidate design issues and constraints, the <span class="hlt">electron</span> gun and periodically cusped magnet stack of the original Stanford Linear Accelerator Center designed W-band <span class="hlt">sheet</span> beam klystron circuit, which exhibited poor beam transmission (<=55%), have been carefully investigated through theoretical and numerical analyses taking advantage of three-dimensional particle tracking solvers. The re-designed transport system is predicted to exhibit 99.76% (cold) and 97.38% (thermal) beam transmission, respectively, under space-charge-limited emission simulations. The optimized design produces the required high aspect ratio (10:1) <span class="hlt">sheet</span> beam with 3.2 A emission current with highly stable propagation. In the completely redesigned model containing all the circuit elements, more than 99% beam transmission is experimentally observed at the collector located about 160 mm distant from the cathode surface. Results are in agreement of the predictions of two ray-tracing simulators, CST PARTICLE STUDIO and OMNITRAK which also predict the observed poor transmission in the original design. The quantitative analysis presents practical factors in the modeling process to design a magnetic lens structure to stably transport the elliptical beam along the long drift tube.</p> <div class="credits"> <p class="dwt_author">Wang, Jian-Xun; Barnett, Larry R.; Luhmann, Neville C.; Shin, Young-Min; Humphries, Stanley</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3435554"> <span id="translatedtitle">A novel biotinylated lipid raft reporter for <span class="hlt">electron</span> microscopic imaging of <span class="hlt">plasma</span> membrane microdomains[S</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The submicroscopic spatial organization of cell surface receptors and <span class="hlt">plasma</span> membrane signaling molecules is readily characterized by <span class="hlt">electron</span> microscopy (EM) via immunogold labeling of <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span>. Although various signaling molecules have been seen to segregate within <span class="hlt">plasma</span> membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span>, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor.</p> <div class="credits"> <p class="dwt_author">Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009RvMP...81.1229E"> <span id="translatedtitle">Physics of laser-driven <span class="hlt">plasma</span>-based <span class="hlt">electron</span> accelerators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laser-driven <span class="hlt">plasma</span>-based accelerators, which are capable of supporting fields in excess of 100GV/m , are reviewed. This includes the laser wakefield accelerator, the <span class="hlt">plasma</span> beat wave accelerator, the self-modulated laser wakefield accelerator, <span class="hlt">plasma</span> waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear <span class="hlt">plasma</span> waves are discussed, as well as <span class="hlt">electron</span> acceleration in <span class="hlt">plasma</span> waves. Methods for injecting and trapping <span class="hlt">plasma</span> <span class="hlt">electrons</span> in <span class="hlt">plasma</span> waves are also discussed. Limits to the <span class="hlt">electron</span> energy gain are summarized, including laser pulse diffraction, <span class="hlt">electron</span> dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense <span class="hlt">plasmas</span> is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform <span class="hlt">plasmas</span> and with preformed density channels. Instabilities relevant to intense short-pulse laser-<span class="hlt">plasma</span> interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality <span class="hlt">electron</span> bunches at energies of 0.1-1GeV , are summarized.</p> <div class="credits"> <p class="dwt_author">Esarey, E.; Schroeder, C. B.; Leemans, W. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012APS..DPPYP8048G"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Electron</span> Depletion via Cathode Spot Injection of Dielectric Particles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A method for addressing communication blackout associated with the formation of a dense <span class="hlt">plasma</span> around reentry vehicles is reported upon. Quenchant particles launched into a background <span class="hlt">plasma</span> via cathode spots is investigated as a means for free <span class="hlt">electron</span> depletion. Time resolved measurement of <span class="hlt">electron</span> density evolution during cathode spot ``on times'' is inferred by monitoring variations in the <span class="hlt">electron</span> saturation current. Corrections for magnetic effects are also taken into account in the interpretation of temporal variations in the <span class="hlt">electron</span> saturation current. Measurements indicated depletion levels of over 95% for model <span class="hlt">plasmas</span> investigated.</p> <div class="credits"> <p class="dwt_author">Gillman, Eric; Foster, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhDT........42N"> <span id="translatedtitle">Measurements of <span class="hlt">plasma</span> bremsstrahlung and <span class="hlt">plasma</span> energy density produced by <span class="hlt">electron</span> cyclotron resonance ion source <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The goal of this dissertation was to gain an understanding on the relative importance of microwave power, neutral pressure, and magnetic field configuration on the behavior of the hot <span class="hlt">electrons</span> within an <span class="hlt">Electron</span> Cyclotron Resonance Ion Source (ECRIS) <span class="hlt">plasma</span>. This was carried out through measurement of <span class="hlt">plasma</span> bremsstrahlung with both NaI(Tl) (hv > 30 keV) and CdTe (2 keV < hv < 70 keV) x-ray detectors, and through measurement of the <span class="hlt">plasma</span> energy density with a diamagnetic loop placed around the <span class="hlt">plasma</span> chamber. We also examined the anisotropy in x-ray power by simultaneously measuring the x-ray spectra in two orthogonal directions: radially and axially, using NaI(Tl) detectors. We have seen that for a 6.4 GHz ECRIS, both the x-ray power produced by confined <span class="hlt">electrons</span> and the <span class="hlt">plasma</span> energy density behave logarithmically with microwave power. The x-ray flux created by <span class="hlt">electrons</span> lost from the <span class="hlt">plasma</span>, however, does not saturate. Thus, the small increase in <span class="hlt">plasma</span> density that occurred at high microwave powers (> 150 W on a 6.4 GHz ECRIS) was accompanied by a large increase in total x-ray power. We suggest that the saturation of x-ray power and <span class="hlt">plasma</span> energy density was due to rf-induced pitch-angle scattering of the <span class="hlt">electrons</span>. X-ray power and <span class="hlt">plasma</span> energy density were also shown to saturate with neutral pressure, and to increase nearly linearly as the gradient of the magnetic field in the resonance zone was decreased. All of these findings were in agreement with the theoretical models describing ECRIS <span class="hlt">plasmas</span>. We have discussed the use of a diamagnetic loop as a means of exploring various <span class="hlt">plasma</span> time scales on a relative basis. Specifically, we focused much of our attention on studying how changing ion source parameters, such as microwave power and neutral pressure, would effect the rise and decay of the integrated diamagnetic signal, which can be related to <span class="hlt">plasma</span> energy density. We showed that increasing microwave power lowers the e-fold times at both the leading edge and the trailing edge of the microwave pulse. Microwave power, however, had almost no impact on the ignition times of the <span class="hlt">plasma</span>. The <span class="hlt">plasma</span> energy density e-fold times were insensitive to both neutral pressure and magnetic field setting. Neutral pressure, however, had a dramatic effect on the time of first appearance of the diamagnetic signal ("<span class="hlt">plasma</span> ignition time"). In addition to neutral pressure, ignition times were also a function the relative abundance of <span class="hlt">electrons</span> in the <span class="hlt">plasma</span> chamber at the beginning of a microwave pulse. In all instances, the rise time of the integrated diamagnetic signal was seen to be faster than the decay time. By comparing the unintegrated diamagnetic signal to the ratio of reflected to forward microwave power we theorized that the initial, exponential rise in the diamagnetic signal at the leading edge of a microwave pulse was due to rapid changes in both the average <span class="hlt">electron</span> energy and density. During the slowly decaying portion of the diamagnetic loop signal, only the hot tail of the <span class="hlt">electron</span> population was increasing. This theory was supported by time resolved, low energy x-ray measurements that showed that the period of rapid change of the ratio of reflected to forward microwave power coincided with a rapid change in average photon energy. We have also showed that x-rays production in an ECRIS <span class="hlt">plasma</span> was highly anisotropic, with radial x-ray counts being much greater than axial x-ray counts. This was shown to be true for both the "ECR" (operating at 6.4 GHz) and the higher performance "AECR-U" (operating at 14 GHz). Based on this, we can make the qualitative statement that the <span class="hlt">electron</span> energy was also highly anisotropic, with a much larger perpendicular energy than parallel energy. The degree of anisotropy was shown to increase with the operating frequency of the ion source. This increase was most likely attributable to the higher power density and greater confinement associated with higher performance machines, and implies that superconducting ECRIS operating at very high freq</p> <div class="credits"> <p class="dwt_author">Noland, Jonathan David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21259704"> <span id="translatedtitle"><span class="hlt">Electron</span> acoustic solitary waves in unmagnetized two <span class="hlt">electron</span> population dense <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">electron</span> acoustic solitary waves are studied in unmagnetized two population <span class="hlt">electron</span> quantum <span class="hlt">plasmas</span>. The quantum hydrodynamic model is employed with the Sagdeev potential approach to describe the arbitrary amplitude <span class="hlt">electron</span> acoustic waves in a two <span class="hlt">electron</span> population dense Fermi <span class="hlt">plasma</span>. It is found that hot <span class="hlt">electron</span> density hump structures are formed in the subsonic region in such type of quantum <span class="hlt">plasmas</span>. The wave amplitude as well as the width of the soliton are increased with the increase of percentage presence of cold (thinly populated) <span class="hlt">electrons</span> in a multicomponent quantum <span class="hlt">plasma</span>. It is found that an increase in quantum diffraction parameter broadens the nonlinear structure. Furthermore, the amplitude of the nonlinear <span class="hlt">electron</span> acoustic wave is found to increase with the decrease in Mach number. The numerical results are also presented to understand the formation of solitons in two <span class="hlt">electron</span> population Fermi <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Mahmood, S.; Masood, W. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore Islamabad (Pakistan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JGRA..112.5218G"> <span id="translatedtitle">Spatial-Temporal characteristics of ion beamlets in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer of magnetotail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The processes of nonadiabatic ion acceleration occurring in the vicinity of magnetic neutral lines produce highly accelerated (up to 2500 km/s) field-aligned ion beams (beamlets) with transient appearance streaming earthward in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) of the Earth's magnetotail. Previous studies of these phenomena based on single spacecraft (s/c) missions supported the view that beamlets are temporal transients, since the typical time of a beamlet observation at a given s/c very rarely exceeds ˜1-2 min. Now multipoint Cluster observations have led to a new understanding of these phenomena with a spatial rather than a temporal structure. On the basis of 3-year Cluster measurements made in the PSBL, we present statistical evaluation of the beamlet duration (at least 5-15 min) and confirm well-manifested localization of the beamlet along Z and in some cases along Y directions, i.e., approximately across the lobe magnetic field. Earlier results reporting shorter beamlet observations could be understood by invoking not only PSBL flapping motions but also of an additional effect revealed by Cluster: earthward propagation of kink-like perturbations along the beamlet filaments. Phase velocity of these perturbations is of the order of the local Alfven velocity (V ˜ 600-1400 km/s) and related fast flappings of localized beamlet structures in the Y-Z direction significantly decreasing the time of their observation at a given spacecraft. Multipoint observations of beamlets revealed that they represent long-living (˜5-15 min) <span class="hlt">plasma</span> filaments elongated along the lobe magnetic field (˜60-100RE) and strongly localized in direction perpendicular to the PSBL-lobe boundary (˜0.2-0.7RE). In some cases, it was also possible to estimate the width of beamlet in dawn-dusk direction which was of the order of fractions of RE.</p> <div class="credits"> <p class="dwt_author">Grigorenko, Elena E.; Sauvaud, Jean-Andre; Zelenyi, Lev M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.8205C"> <span id="translatedtitle">Geomagnetic signatures of current wedge produced by fast flows in a <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper uses the <span class="hlt">plasma</span> data from Cluster and TC-1 and geomagnetic data to study the geomagnetic signatures of the current wedge produced by fast-flow braking in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The three fast flows studied here occurred in a very quiet background and were accompanied by no (or weak) particle injections, thus avoiding the influences from other disturbances. All the geomagnetic signatures of a substorm current wedge can be found in the geomagnetic signatures of a current system produced by the braking of fast flows, indicating that the fast flows can produce a complete current wedge which contains postmidnight downward and premidnight upward field-aligned currents, as well as a westward electrojet. The Pi2 precursors exist not only at high latitudes but also at midlatitudes. The starting times of midlatitude Pi2 precursors can be identified more precisely than those of high-latitude Pi2 precursors, providing a possible method to determine the starting time of fast flows in their source regions. The AL drop that a bursty bulk flow produces is proportional to its velocity and duration. In three cases, the AL drops are <100 nT. Because the AE increase of a typical substorm is >200 nT, whether a substorm can be triggered depends mainly on the conditions of the braking regions before fast flows. The observations of solar wind before the three fast flows suggest that it is difficult for the fast flows to trigger a substorm when the interplanetary magnetic field Bz of solar wind is weakly southward.</p> <div class="credits"> <p class="dwt_author">Cao, Jin-Bin; Yan, Chunxiao; Dunlop, Malcolm; Reme, Henri; Dandouras, Iannis; Zhang, Tielong; Yang, Dongmei; Moiseyev, Alexey; Solovyev, Stepan I.; Wang, Z. Q.; Leonoviche, A.; Zolotukhina, N.; Mishin, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/75624"> <span id="translatedtitle">Structure of the tail <span class="hlt">plasma</span>/current <span class="hlt">sheet</span> at {approximately}11 R{sub E} and its changes in the course of a substorm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">At the end of April 2, 1978, the ISEE 1 and 2 spacecraft moved inbound at {approximately}11 R{sub E} on the nightside (0130 MLT). Due to a flapping motion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> the spacecraft crossed the neutral <span class="hlt">sheet</span> region (central region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>) more than 10 times in the hour between 2115 and 2215 UT. This provided a unique opportunity to study the structure of the <span class="hlt">plasma</span>/current region and its evolution during substorm growth and early expansion before the final disruption of the current <span class="hlt">sheet</span>. Using minimum variance analysis of the magnetic field variations during the crossings as well as finite ion gyroradius diagnostics, the authors determine the orientation of the current <span class="hlt">sheet</span> (CS) and then estimate the CS thickness as well as the value of its normal component, B{sub n}. Typically, the current distribution was inferred to be very inhomogeneous with a current concentrated in a very thin CS (only 0.2 to 0.8 R{sub E} as thick) embedded inside the thicker <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Current <span class="hlt">sheet</span> crossings could be classified as regular or turbulent. Three turbulent crossings were found during substorm expansion within the longitude range of the substorm current wedge (SCW). The second of them was detected {approximately}1 min before the main dipolarization and was characterized by a rather small CS thickness (h < 600 km), but strong earthward <span class="hlt">plasma</span> flow and by a positive normal magnetic field component. The main result of this study is that the region of very thin current <span class="hlt">sheet</span> (thickness of the order of the gyroradius of thermal protons in the field just outside the current <span class="hlt">sheet</span>), which contained a very small normal component, clearly appeared in the near tail prior to the sudden onset of current disruption as predicted by some quantitative models of quasi-static evolution of earthward convecting <span class="hlt">plasma</span> <span class="hlt">sheet</span> flux tubes. 56 refs., 9 figs., 3 tabs.</p> <div class="credits"> <p class="dwt_author">Sergeev, V.A. [Univ. of St. Petersburg (Russian Federation); Mitchell, D.G.; Williams, D.J. [John Hopkins Applied Physics Lab., Laurel, MD (United States); Russell, C.T. [Univ. of California, Los Angeles, CA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-10-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www-personal.umich.edu/~liemohn/Reprints/Khazanov_JASTP_2000.pdf"> <span id="translatedtitle">Global energy deposition to the topside ionosphere from superthermal <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The subauroral heat input to the topside ionosphere from two superthermal <span class="hlt">electron</span> sources, photoelectrons and <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span>, are calculated using a global kinetic model of <span class="hlt">electron</span> transport in the inner magnetosphere. Peak rates above 1010 eV cm?2 s?1 are found for photoelectrons in the midlatitude afternoon region, while the peak deposition rate for <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> only occasionally approaches</p> <div class="credits"> <p class="dwt_author">G. V. Khazanova; M. W. Liemohn; J. U. Kozyra; D. L. Gallagher</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006JGRA..111.5201Z"> <span id="translatedtitle">Auroral poleward boundary intensifications (PBIs): Their two-dimensional structure and associated dynamics in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Auroral poleward boundary intensifications (PBIs) are typically seen both in ground meridian scanning photometers (MSP) and in ground and spacecraft auroral images. They appear as a localized increase in intensity at or near the magnetic separatrix. This increase is often seen to extend equatorward through the ionospheric mapping of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. PBIs are associated with <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow bursts and are thus important for the remote monitoring of <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics. From the study of simultaneous ground MSP observations, IMAGE FUV auroral images, and Geotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> data, we find that PBIs correlate well with <span class="hlt">plasma</span> <span class="hlt">sheet</span> fast flows observed within the local time sector of the PBIs and that there can be several PBIs over the longitudinal range of fast flows in the tail. We infer that every north-south PBI is the ionospheric signature of a fast flow channel in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and that many fast flow channels exist simultaneously over a width of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> that can comprise the whole width of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> or only a part of it. Also, we find that there is a local time dependence on the type of PBI structure. Most PBIs are narrow auroral structures that are not strictly north-south oriented. Instead, PBIs are tilted counterclockwise away from the north-south direction, leading to a preferred orientation that is approximately aligned with a line going from 0300 magnetic local time (MLT) to 1700 MLT. This results in PBIs that are closer to north-south (NS) structures in the postmidnight sector and closer to east-west (EW) near the dusk sector. In the premidnight sector (2200-0000 MLT), PBIs start as EW arcs and then tilt and become primarily NS structures. We further found for one event that the PBI fast flows have a large Vy component resulting in tail convection that is both earthward and dawnward in the region of Geotail. We suggest that the continuous and strongly positive interplanetary magnetic field (IMF) By may order the two-dimensional convection as observed, thus offering a possible explanation for the alignment direction of PBIs in the ionosphere under the assumption that fast flow channels align themselves with the background convection. However, the projection of the PBI structures into the tail using the T96 model suggests that all PBIs, both EW and NS, map to radially stretched channels in the tail that do not have a significant dawnward component. Future work is needed to clarify this apparent contradiction. Finally, frequency analysis indicates that the PBI/bursty bulk flow (BBF) period is characterized by oscillations in the velocity and magnetic field with frequencies of ˜0.6 mHz and ˜1.3-1.5 mHz. This oscillation in velocity is superposed on the background strong convection.</p> <div class="credits"> <p class="dwt_author">Zesta, E.; Lyons, L.; Wang, C.-P.; Donovan, E.; Frey, H.; Nagai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM44A..07O"> <span id="translatedtitle">Energetic O+ and H+ Ions in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>: Implications for the Transport of Ionospheric Ions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present study statistically examines the characteristics of energetic ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the Geotail/EPIC data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results: (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy but only for geomagnetically active times; (2) The O+-to-H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+-to-H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity (see Figure); (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+-to-H+ ratios of number and energy densities increase toward Earth during all solar phases but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near-Earth region rather than through the distant tail.</p> <div class="credits"> <p class="dwt_author">Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUSMSM41A..06S"> <span id="translatedtitle">Field-Aligned Current at <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layers During Storm Time: Cluster Observation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The magnetic field data from the FGM instruments on board the four Cluster spacecrafts were used to study Field Aligned Current (FAC) at the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layers (PSBLs) with the so called "curlometer technique". We analyzed the date obtained in 2001 in the magnetotail and only two cases were found in the storm time. One (August 17, 2001) occurred from sudden commencement to main phase, and the other (October 1, 2001) lay in the main phase and recovery phase. The relationship between the FAC density and the AE index was studied and the results are shown as follows. (1) In the sudden commencement and the main phase the density of the FAC increases obviously, in the recovery phase the density of the FAC increases slightly. (2) From the sudden commencement to the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index. From the late stage of the main phase to initial stage of the recovery phase, the FAC increases with increasing AE index and decreases with decreasing AE index. In the late stage of the recovery phase the disturbance of the FAC is not so violent, so that the FAC varying with the AE index is not very obvious.</p> <div class="credits"> <p class="dwt_author">Shi, J.; Cheng, Z.; Zhang, T.; Dunlop, M.; Liu, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006cosp...36.1852S"> <span id="translatedtitle">An Investigation on Field-Aligned Current at <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layers in the Storm Time</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The four Cluster spacecraft enable simultaneous measurements of vector magnetic field allowing the electric current density to be calculated by the curlometer technique In this paper using the magnetic field data from the four Cluster spacecraft we study the FAC at the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layers PSBL during storm time Two cases are chosen to do analysis One August 17 2001 occurred at sudden commencement and main phase and the other October 1 2001 lay in the main phase and recovery phase We study the FAC from the current density and investigate the relationship between the density of FAC and the AE index The results are shown as follows 1 In the sudden commencement and the main phase the density of the FAC increases obviously in the recovery phase the density of the FAC increases slightly 2 In the sudden commencement and the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index In the main phase and initial stage of the recovery phase the FAC increases with increasing AE index and decreases with decreasing AE index In the late stage of the recovery phase the disturbance of the FAC is not so violent so that the FAC varying with the AE index is not very obvious</p> <div class="credits"> <p class="dwt_author">Shi, J. K.; Cheng, Z. W.; Zhang, T. L.; Dunlop, M.; Nakamura, R.; Liu, Z. X.; Lucek, E.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27603456"> <span id="translatedtitle"><span class="hlt">Plasma</span> walls beyond the perfect absorber approximation for <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Plasma</span> walls accumulate <span class="hlt">electrons</span> more efficiently than ions leading to wall\\u000apotentials which are negative with respect to the <span class="hlt">plasma</span> potential.\\u000aTheoretically, walls are usually treated as perfect absorber for <span class="hlt">electrons</span> and\\u000aions implying perfect sticking of the particles to the wall and infinitely long\\u000adesorption times for particles stuck to the wall. For <span class="hlt">electrons</span> we question the\\u000aperfect absorber</p> <div class="credits"> <p class="dwt_author">Franz X. Bronold; Rafael L. Heinisch; Johannes Marbach; Holger Fehske</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48935790"> <span id="translatedtitle">Ultra-low-frequency waves and associated wave vectors observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer by Cluster</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Waves in the Pc1–Pc2 frequency range (0.1–5 Hz) are studied using Cluster magnetic field data. In the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, Cluster observed harmonically related waves with the fundamental near the local proton cyclotron frequency (?p). These waves had components both parallel and perpendicular to the local magnetic field (B0). Application of the wave telescope yielded the full wave vector</p> <div class="credits"> <p class="dwt_author">M. C. Broughton; M. J. Engebretson; K.-H. Glassmeier; Y. Narita; A. Keiling; K.-H. Fornaçon; G. K. Parks</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52810924"> <span id="translatedtitle">Response of ions of ionospheric origin to storm time substorms: Coordinated observations over the ionosphere and in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We investigate variations of ion flux over the ionosphere and in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> when storm time substorms are initiated, using simultaneous observations of neutral atoms in the energy range of up to a few keV measured by the low-energy neutral atom (LENA) imager on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite, outflowing ion flux of <1 keV</p> <div class="credits"> <p class="dwt_author">M. Nosé; S. Taguchi; S. P. Christon; M. R. Collier; T. E. Moore; C. W. Carlson; J. P. McFadden</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/962209"> <span id="translatedtitle">Gyrokinetic <span class="hlt">Electron</span> and Fully Kinetic Ion Particle Simulation of Collisionless <span class="hlt">Plasma</span> Dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental <span class="hlt">plasma</span> processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between <span class="hlt">electrons</span> and ions, existing fully kinetic-particle codes have to employ either unrealistically high <span class="hlt">electron</span>-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the <span class="hlt">electrons</span> are treated as a massless fluid. The <span class="hlt">electron</span> kinetic effects, e.g., wave-particle resonances and finite <span class="hlt">electron</span> Larmor radius effects, are completely missing. Important physics, such as the <span class="hlt">electron</span> transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless <span class="hlt">plasmas</span> is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the <span class="hlt">electron</span> gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) <span class="hlt">electrons</span> and fully kinetic (FK) ions. In the GK-<span class="hlt">electron</span> and FK-ion (GKe/FKi) particle simulation model, the rapid <span class="hlt">electron</span> cyclotron motion is removed, while keeping finite <span class="hlt">electron</span> Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of <span class="hlt">electron</span> pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-<span class="hlt">electron</span> and FK-ion scheme, finished its benchmark for a uniform <span class="hlt">plasma</span> in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test and benchmark for a 2-D Harris current <span class="hlt">sheet</span> against tearing mode and other instabilities in linear theories/models. More importantly, we have, for the first time, carried out simulation of linear instabilities in a 2-D Harris current <span class="hlt">sheet</span> with a broad range of guide field BG and the realistic mi/me, and obtained important new results of current <span class="hlt">sheet</span> instabilities in the presence of a finite BG. Indeed the code has accurately reproduced waves of interest here, such as kinetic Alfven waves, compressional Alfven/whistler wave, and lower-hybrid/modified two-stream waves. Moreover, this simulation scheme is capable of investigating collisionless kinetic physics relevant to magnetic reconnection in the fusion <span class="hlt">plasmas</span>, in a global scale system for a long-time evolution and, thereby, produce significant new physics compared with both full-particle and hybrid codes. The results, with mi/me=1836 and moderate to large BG as in the real laboratory devices, have not been obtained in previous theory and simulations. The new simulation model will contribute significantly not only to the understanding of fundamental fusion (and space) <span class="hlt">plasma</span> physics but also to DOE's SciDAC initiative by further pushing the frontiers of simulating realistic fusion <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-11</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21268989"> <span id="translatedtitle">Analysis of wakefield <span class="hlt">electron</span> orbits in <span class="hlt">plasma</span> wiggler</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In relativistic laser <span class="hlt">plasma</span> interaction, <span class="hlt">electrons</span> can be simultaneously accelerated and wiggled in an ion cavity created in the wake of an intense short pulse laser propagating in an underdense <span class="hlt">plasma</span>. As a consequence of their motion, the accelerated <span class="hlt">electrons</span> emit an intense x-ray beam called laser produced betatron radiation. Being an emission from charged particles, the features of the betatron source are directly linked to the <span class="hlt">electrons</span> trajectories. In particular, the radiation is emitted in the direction of the <span class="hlt">electrons</span> velocity. In this article we show how an image of <span class="hlt">electrons</span> orbits in the wakefield cavity can be deduced from the structure of x-ray spatial profiles.</p> <div class="credits"> <p class="dwt_author">Ta Phuoc, Kim; Corde, Sebastien; Fitour, Romuald; Shah, Rahul; Albert, Felicie; Rousseau, Jean-Philippe; Burgy, Frederic; Rousse, Antoine [Laboratoire d'Optique Appliquee, ENSTA, CNRS UMR7639, Ecole Polytechnique, Chemin de la Huniere, 91761 Palaiseau (France); Seredov, Vasily; Pukhov, Alexander [Insitut fur Theoretische Physik I, Heinrich-Heine-Universitat, Duesseldorf, 40225 Duesseldorf (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1426472"> <span id="translatedtitle"><span class="hlt">Electron</span> temperature and <span class="hlt">plasma</span> density in surface-discharged alternating-current <span class="hlt">plasma</span> display panels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">electron</span> temperature and <span class="hlt">plasma</span> density at the lateral distance of 125 ?m from the center of sustaining electrode gap have been investigated by a Langmuir probe along with the high-speed discharge image in coplanar alternating current <span class="hlt">plasma</span> display panels. The <span class="hlt">plasma</span> density at the lateral distance of 125 ?m from the center of sustaining electrode gap is shown to</p> <div class="credits"> <p class="dwt_author">Eun Ha Choi; Jeong Chull Ahn; Min Wook Moon; Jin Goo Kim; Myung Chul Choi; Choon Gon Ryu; Sung Hyuk Choi; Tae Seung Cho; Yoon Jung; Guang Sup Cho; Han Sup Uhm</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55710510"> <span id="translatedtitle">Mechanistic studies of <span class="hlt">plasma</span>-surface interactions during nanoscale patterning of advanced <span class="hlt">electronic</span> materials using <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Photolithographic patterning of photoresist materials and transfer of these images into <span class="hlt">electronic</span> materials using directional <span class="hlt">plasma</span> etching techniques plays a critical role in the fabrication of integrated circuits. As critical device dimensions are reduced below 100 nm, precise control of the interactions of process <span class="hlt">plasmas</span> with materials is required for successful integration. This requires a scientific understanding of <span class="hlt">plasma</span>-surface interaction</p> <div class="credits"> <p class="dwt_author">Xuefeng Hua</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23387642"> <span id="translatedtitle">Multifunctional bulk <span class="hlt">plasma</span> source based on discharge with <span class="hlt">electron</span> injection.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A bulk <span class="hlt">plasma</span> source, based on a high-current dc glow discharge with <span class="hlt">electron</span> injection, is described. <span class="hlt">Electron</span> injection and some special design features of the <span class="hlt">plasma</span> arc emitter provide a <span class="hlt">plasma</span> source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including <span class="hlt">plasma</span> generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings. PMID:23387642</p> <div class="credits"> <p class="dwt_author">Klimov, A S; Medovnik, A V; Tyunkov, A V; Savkin, K P; Shandrikov, M V; Vizir, A V</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013RScI...84a3307K"> <span id="translatedtitle">Multifunctional bulk <span class="hlt">plasma</span> source based on discharge with <span class="hlt">electron</span> injection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A bulk <span class="hlt">plasma</span> source, based on a high-current dc glow discharge with <span class="hlt">electron</span> injection, is described. <span class="hlt">Electron</span> injection and some special design features of the <span class="hlt">plasma</span> arc emitter provide a <span class="hlt">plasma</span> source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including <span class="hlt">plasma</span> generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.</p> <div class="credits"> <p class="dwt_author">Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22401078"> <span id="translatedtitle"><span class="hlt">Electronic</span> detection of collective modes of an ultracold <span class="hlt">plasma</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Using a new technique to directly detect current induced on a nearby electrode, we measure <span class="hlt">plasma</span> oscillations in ultracold <span class="hlt">plasmas</span>, which are influenced by the inhomogeneous and time-varying density and changing neutrality. <span class="hlt">Electronic</span> detection avoids heating and evaporation dynamics associated with previous measurements and allows us to test the importance of the <span class="hlt">plasma</span> neutrality. We apply dc and pulsed electric fields to control the <span class="hlt">electron</span> loss rate and find that the charge imbalance of the <span class="hlt">plasma</span> has a significant effect on the resonant frequency, in excellent agreement with recent predictions suggesting coupling to an edge mode. PMID:22401078</p> <div class="credits"> <p class="dwt_author">Twedt, K A; Rolston, S L</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-08</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/ja0811/2008JA013527/2008JA013527.pdf"> <span id="translatedtitle">Simultaneous THEMIS observations in the near-tail portion of the inner and outer <span class="hlt">plasma</span> <span class="hlt">sheet</span> flux tubes at substorm onset</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyzed the measurements made by two Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes in ideal observational conditions (quiet background, near midnight, inside the substorm current wedge) during two distinct isolated substorm onsets, with probe P2 measuring the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> at ?8 Re and P1 near the <span class="hlt">plasma</span> <span class="hlt">sheet</span>–lobe interface at 11–12 Re. The earliest</p> <div class="credits"> <p class="dwt_author">V. A. Sergeev; S. V. Apatenkov; V. Angelopoulos; J. P. McFadden; D. Larson; J. W. Bonnell; M. Kuznetsova; N. Partamies; F. Honary</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eprints.lancs.ac.uk/26209/1/art_943.pdf"> <span id="translatedtitle">Simultaneous THEMIS observations in the near-tail portion of the inner and outer <span class="hlt">plasma</span> <span class="hlt">sheet</span> flux tubes at substorm onset</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyzed the measurements made by two Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes in ideal observational conditions (quiet background, near midnight, inside the substorm current wedge) during two distinct isolated substorm onsets, with probe P2 measuring the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> at ~8 Re and P1 near the <span class="hlt">plasma</span> <span class="hlt">sheet</span>-lobe interface at 11-12 Re. The earliest</p> <div class="credits"> <p class="dwt_author">V. A. Sergeev; S. V. Apatenkov; V. Angelopoulos; J. P. McFadden; D. Larson; J. W. Bonnell; M. Kuznetsova; N. Partamies; F. Honary</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23368060"> <span id="translatedtitle"><span class="hlt">Electron</span> acoustic shock waves in a collisional <span class="hlt">plasma</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A nonlinear analysis for the finite amplitude <span class="hlt">electron</span> acoustic wave (EAW) is considered in a collisional <span class="hlt">plasma</span>. The fluid model is used to describe the two-temperature <span class="hlt">electron</span> species in a fixed ion background. In general, in <span class="hlt">electron</span>-ion <span class="hlt">plasma</span>, the presence of wave nonlinearity, dispersion, and dissipation (arising from fluid viscosity) give rise to the Korteweg-de Vries Burgers (KdVB) equation which exhibits shock wave. In this work, it is shown that the dissipation due to the collision between <span class="hlt">electron</span> and ion in the presence of collective phenomena (<span class="hlt">plasma</span> current) can also introduce an anomalous dissipation that causes the Burgers term and thus leads to the generation of <span class="hlt">electron</span> acoustic shock wave. Both analytical and numerical analysis show the formation of transient shock wave. Relevance of the results are discussed in the context of space <span class="hlt">plasma</span>. PMID:23368060</p> <div class="credits"> <p class="dwt_author">Dutta, Manjistha; Ghosh, Samiran; Chakrabarti, Nikhil</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-18</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20669980"> <span id="translatedtitle"><span class="hlt">Electronic</span> properties of the biphenylene <span class="hlt">sheet</span> and its one-dimensional derivatives.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We have studied the <span class="hlt">electronic</span> properties and relative stability of the biphenylene <span class="hlt">sheet</span> composed of alternating eight-, six- and four-carbon rings and its one-dimensional derivatives including ribbons and tubes of different widths and morphologies by means of density functional theory calculations. The two-dimensional <span class="hlt">sheet</span> presents a metallic character that is also present in the planar strips with zigzag-type edges. Armchair-edged strips develop a band gap that decreases monotonically with the ribbon width. The narrowest armchair strip considered here (0.62 nm wide) presents a large band gap of 1.71 eV, while the 2.14 nm wide armchair strip exhibits a band gap of 0.08 eV. We have also found that tubes made by rolling these ribbons in a seamlessly manner are all metallic, independent of their chirality. However, while the calculated energy landscape suggests that planar strips present a relative stability comparable to that of C(60), in the tubular form, they present a more pronounced metastable nature with a Gibbs free energy of at least 0.2 eV per carbon higher than in C(60). PMID:20669980</p> <div class="credits"> <p class="dwt_author">Hudspeth, Mathew A; Whitman, Brandon W; Barone, Veronica; Peralta, Juan E</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-24</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhDT........36G"> <span id="translatedtitle">Expansion and <span class="hlt">electron</span> temperature evolution in an ultracold neutral <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This work describes the evolution of an ultracold neutral <span class="hlt">plasma</span> as it expands freely in vacuum. It presents a comprehensive study of the <span class="hlt">electron</span> temperature evolution under different initial conditions. Ultracold neutral <span class="hlt">plasmas</span> are created by photoionizing laser-cooled neutral atoms in ultrahigh vacuum. The ions are typically at a temperature of ˜ 1K while the <span class="hlt">electron</span> temperature can be set from 1--1000 K. After photoionization, some of the highly energetic <span class="hlt">electrons</span> escape from the cloud, leaving a net positive charge in the cloud. This creates a Coulomb well which traps the rest of the <span class="hlt">electrons</span>, and a <span class="hlt">plasma</span> is formed. Since the <span class="hlt">electrons</span> have a lot of kinetic energy, they tend to leave the cloud, however, the Coulomb force from the ion pulls the <span class="hlt">electrons</span> back into the cloud. This exerts a recoil force on the ions, and the whole <span class="hlt">plasma</span> starts expanding radially outwards. Since the expansion is caused by the thermal pressure of the <span class="hlt">electrons</span>, a study of the <span class="hlt">plasma</span> expansion unravels the complicated <span class="hlt">electron</span> temperature evolution, under different initial conditions. Many collisional processes become significant as a <span class="hlt">plasma</span> expands. These physical processes tend to heat or cool the ions and <span class="hlt">electrons</span>, leading to very different kinds of evolution depending on the initial conditions of the <span class="hlt">plasma</span>. This work demonstrates three different regions of parameter space where the degree of significance of these physical processes is different during the ultracold neutral <span class="hlt">plasma</span> evolution. The experimental results are verified by theoretical simulations, performed by Thomas Pohl, which untangle the complicated <span class="hlt">electron</span> temperature evolution.</p> <div class="credits"> <p class="dwt_author">Gupta, Priya</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21016275"> <span id="translatedtitle"><span class="hlt">Electron</span> <span class="hlt">plasma</span> wave propagation in external-electrode fluorescent lamps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The optical propagation observed along the positive column of external electrode fluorescent lamps is shown to be an <span class="hlt">electron</span> <span class="hlt">plasma</span> wave propagating with the <span class="hlt">electron</span> thermal speed of (kT{sub e}/m){sup 1/2}. When the luminance of the lamp is 10 000-20 000 cd/m{sup 2}, the <span class="hlt">electron</span> <span class="hlt">plasma</span> temperature and the <span class="hlt">plasma</span> density in the positive column are determined to be kT{sub e}{approx}1.26-2.12 eV and n{sub o}{approx}(1.28-1.69)x10{sup 17} m{sup -3}, respectively.</p> <div class="credits"> <p class="dwt_author">Cho, Guangsup; Kim, Jung-Hyun; Jeong, Jong-Mun; Hong, Byoung-Hee; Koo, Je-Huan; Choi, Eun-Ha; Verboncoeur, John P.; Uhm, Han Sup [Department of Electrophysics, Kwangwoon University, 447-1 Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Department of Nuclear Engineering, University of California, Berkeley, California 94720-1730 (United States); Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5915305"> <span id="translatedtitle">Explosive emission cathode <span class="hlt">plasmas</span> in intense relativistic <span class="hlt">electron</span> beam diodes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An experimental study of cathode <span class="hlt">plasmas</span> in planar diodes driven by a Sandia Nereus accelerator (270 kV, 60 kA, 70 ns), with particular attention devoted to <span class="hlt">plasma</span> uniformity and expansion velocity, has been carried out. This diode current density was varied over a factor of ten and the rate of rise of the applied field dE/dt was varied over a factor of six. Different cathode materials, coatings, and surface roughnesses were used and the effects of glow discharge cleaning and in situ heating of the cathode were examined. Framing photography, <span class="hlt">electron</span> beam dosimetry, perveance measurements, optical interferometry, and (spatially and temporally resolved) spectroscopy were used to diagnose the <span class="hlt">plasma</span> uniformity, <span class="hlt">electron</span> beam uniformity, <span class="hlt">plasma</span> front motion, <span class="hlt">electron</span> density, <span class="hlt">plasma</span> composition, motion of distinct species, <span class="hlt">electron</span> temperature, and ion (and neutral) densities. <span class="hlt">Electron</span> beam uniformity is seen to be related to cathode <span class="hlt">plasma</span> uniformity; this uniformity is enhanced by a high value of (the microscopic) dE/dt, which is determined both by the rise time of the applied field and by the cathode surface roughness. The significance of dE/dt is believed to be related to the screening effect of emitted <span class="hlt">electrons</span>. The motion of the <span class="hlt">plasma</span> front is seen to be affected by two phenomena. To begin with, all species of the cathode <span class="hlt">plasma</span> are seen to expand at the same rate. The ions are believed to be accelerated to velocities on the order of 2 to 3 cm/..mu..s in dense cathode spot regions at the cathode surface. <span class="hlt">Plasma</span> expansion is also influenced by electric pressure effects, which are determined by the shape of the driving power pulse. A simple cathode <span class="hlt">plasma</span> model, which explains the similarity of <span class="hlt">plasmas</span> in diodes with greatly differing parameters, is proposed. The relevance of these results to inductively driven diodes, repetitively pulsed diodes, and magnetically insulated transmission lines is also discussed.</p> <div class="credits"> <p class="dwt_author">Hinshelwood, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1423825"> <span id="translatedtitle">Optical emissions from a planar <span class="hlt">plasma</span> discharge</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A planar <span class="hlt">sheet</span> of <span class="hlt">plasma</span> is generated by propagating a kilovolt beam of <span class="hlt">electrons</span> produced by a hollow cathode along a magnetic field. The optical emissions from the <span class="hlt">plasma</span> illustrate the different regions of a glow discharge</p> <div class="credits"> <p class="dwt_author">R. A. Meger; J. A. Gregor; R. F. Fernsler; W. M. Manheimer; J. Mathew; D. P. Murphy; M. C. Myers; R. E. Pechacek</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7040349"> <span id="translatedtitle">Potential applications of an <span class="hlt">electron</span> cyclotron resonance multicusp <span class="hlt">plasma</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An <span class="hlt">electron</span> cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR <span class="hlt">plasma</span> source. This novel source produces large (about 25 cm diam), uniform (to within {plus minus}10%), dense ({gt}10{sup 11} cm{sup {minus}3}) <span class="hlt">plasmas</span> of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen <span class="hlt">plasma</span> for etching 12.7 cm (5 in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR <span class="hlt">plasma</span> source for <span class="hlt">plasma</span> processing of thin films are discussed.</p> <div class="credits"> <p class="dwt_author">Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L. (Oak Ridge National Laboratory, Oak Ridge, TN (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011APS..DPPYP9043M"> <span id="translatedtitle">PIC modeling of fast <span class="hlt">electron</span> transport in <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Understanding fast <span class="hlt">electron</span> transport in <span class="hlt">plasma</span> is crucial for fast ignition. A recent experiment [1] using the OMEGA EP laser (1 kJ/10 ps) study of fast <span class="hlt">electrons</span> transport from the Au layer into hot (40 eV) dense (30 mg/cc) <span class="hlt">plasma</span> created by shock heating of CH foam sandwiched between Au and Cu tracer layer, showed a strong reduction (20x) in Cu K?gyield compared to the cold target with a uniform and weak K? spot. To understand this transport experiment, 2D collisional PIC simulations, using the PICLS code, are performed to model fast <span class="hlt">electron</span> transport in such <span class="hlt">plasma</span> transport target. Simulations show a significant increase in fast <span class="hlt">electron</span> divergence going from high density Au to less dense <span class="hlt">plasma</span> transport layer due to strong B-fields generated at the Au/CH <span class="hlt">plasma</span> interface. Fine B-field structures in <span class="hlt">plasma</span> are also observed, possibly responsible for further <span class="hlt">electron</span> scattering resulting in poor K? yield.[4pt] [1] T Yabuuchi, ``Study of fast <span class="hlt">electron</span> transport in <span class="hlt">plasmas</span> using a kJ-class laser pulse,'' IFSA 2011</p> <div class="credits"> <p class="dwt_author">Mishra, R.; Yabuuchi, T.; Wei, M. S.; Sentoku, Y.; Stephens, R. B.; Beg, F. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007IJMPB..21..343B"> <span id="translatedtitle"><span class="hlt">Plasma</span> Wakes Driven by Neutrinos, Photons and <span class="hlt">Electron</span> Beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There is considerable interest in the propagation dynamics of intense <span class="hlt">electron</span> and photon neutrino beams in a background dispersive medium such as dense <span class="hlt">plasmas</span>, particularly in the search for a mechanism to explain the dynamics of type II supernovae. Neutrino interactions with matter are usually considered as single particle interactions. All the single particle mechanisms describing the dynamical properties of neutrino's in matter are analogous with the processes involving single <span class="hlt">electron</span> interactions with a medium such as Compton scattering, and Cerenkov radiation etc. However, it is well known that beams of <span class="hlt">electrons</span> moving through a <span class="hlt">plasma</span> give rise to a new class of processes known as collective interactions such as two stream instabilities which result in either the absorption or generation of <span class="hlt">plasma</span> waves. Intense photon beams also drive collective interactions such as modulational type instabilities. In both cases relativistic <span class="hlt">electron</span> beams of <span class="hlt">electrons</span> and photon beams can drive <span class="hlt">plasma</span> wakefields in <span class="hlt">plasmas</span>. Employing the relativistic kinetic equations for neutrinos interacting with dense <span class="hlt">plasmas</span> via the weak force we explore collective <span class="hlt">plasma</span> streaming instabilities driven by Neutrino <span class="hlt">electron</span> and photon beams and demonstrate that all three types of particles can drive wakefields.</p> <div class="credits"> <p class="dwt_author">Bingham, R.; Silva, L. O.; Mendonca, J. T.; Shukla, P. K.; Mori, W. B.; Serbeto, A.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.slac.stanford.edu/pubs/slacpubs/3250/slac-pub-3487.pdf"> <span id="translatedtitle">Acceleration of <span class="hlt">electrons</span> by the interaction of a bunched <span class="hlt">electron</span> beam with a <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new scheme for accelerating <span class="hlt">electrons</span>, employing a bunched relativistic <span class="hlt">electron</span> beam in a cold <span class="hlt">plasma</span>, is analyzed. We show that energy gradients can exceed 1 GeV\\/m and that the driven <span class="hlt">electrons</span> can be accelerated from ..gamma..âmc² to 3..gamma..âmc² before the driving beam slows down enough to degrade the <span class="hlt">plasma</span> wave. If the driving <span class="hlt">electrons</span> are removed before they cause</p> <div class="credits"> <p class="dwt_author">Pisin Chen; J. M. Dawson; ROBERT W. HUFF; T. Katsouleas</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21974587"> <span id="translatedtitle"><span class="hlt">Electron</span> current extraction from a permanent magnet waveguide <span class="hlt">plasma</span> cathode.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span> produced in a cylindrical waveguide with external permanent magnets was investigated as a possible <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the <span class="hlt">plasma</span>, the erosion of which limits operating lifetime. <span class="hlt">Plasma</span> bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted <span class="hlt">electron</span> currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the <span class="hlt">plasma</span> cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. PMID:21974587</p> <div class="credits"> <p class="dwt_author">Weatherford, B R; Foster, J E; Kamhawi, H</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007ExFl...42..143S"> <span id="translatedtitle">Stall control at high angle of attack with <span class="hlt">plasma</span> <span class="hlt">sheet</span> actuators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We analyzed the modifications of the airflow around an NACA 0015 airfoil when the flow was perturbed with electrohydrodynamic forces. The actuation was produced with a <span class="hlt">plasma</span> <span class="hlt">sheet</span> device (PSD) consisting in two bare electrodes flush mounted on the surface of the wing profile operated to obtain a discharge contouring the body in the inter-electrode space. We analyze the influence of different parameters of the actuation (frequency, input power, electrodes position) on the aerodynamic performance of the airfoil, basing our study on measurements of the surface pressure distribution and of the flow fields with particle image velocimetry technique. The experiments indicated that at moderate Reynolds numbers (150,000 < Re < 333,000) and at high angles of attack, steady or periodic actuations enabled large improvement of the lift and drag/lift aerodynamic coefficients by reattaching the flow along the extrados. However, to attain the same results steady actuations required larger power consumption. When exciting the flow with a moderate value of non-dimensional power coefficient (ratio of electric power flow with the kinetic power flow), a frequency of excitation produced a peak on the coefficients that evaluate the airfoil performance. This peak in terms of a non-dimensional frequency was close to 0.4 and can be associated to an optimal frequency of excitation. However, our work indicates that this peak is not constant for all stalled flow conditions and should be analyzed considering scale factors that take into account the ratio of the length where the forcing acts and the cord length.</p> <div class="credits"> <p class="dwt_author">Sosa, Roberto; Artana, Guillermo; Moreau, Eric; Touchard, Gérard</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.6218O"> <span id="translatedtitle">Tailward flows with positive BZ in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present study examines tailward flows in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> using Geotail measurements at X ? -31 R E . A focus is placed on the midnight near-Earth 8 > X ? -15 R E and ?Y? < 5 R E ) region. It is found that the B Z component is predominantly positive when the X component of the perpendicular flow velocity $V\\perp, X is negative and that a substantial portion (37%) of earthward magnetic flux transport is canceled by tailward flows. This ratio is larger than farther down the tail (-15 > X ? -31 R E ), 25%, suggesting that there is a cause of tailward flows that works favorably in the near-Earth region. The tailward flow velocity occasionally exceeds 200 km/s. The results of a superposed epoch analysis and case studies of such fast tailward flows are summarized as follows: (1) the typical duration of a fast tailward flow is 1 min; (2) E Y is negative, suggesting that the fast tailward flow is an electric drift; (3) the local magnetic configuration tends to become more dipolar; (4) the ion temperature and density increases and decreases, respectively, and there is no significant change in ion pressure; (5) a fast tailward flow is often preceded by a fast earthward flow; and (6) the Y component of the flow velocity is generally smaller than $\\vert V_{\\perp, X\\vert$. It is also found that the geosynchronous magnetic field on the night side rarely changes during these fast tailward flows. The rebound of fast earthward flows is suggested as the most plausible cause of fast tailward flows.</p> <div class="credits"> <p class="dwt_author">Ohtani, S.; Miyashita, Y.; Singer, H.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006NPGeo..13..377S"> <span id="translatedtitle">Experimental study of nonlinear interaction of <span class="hlt">plasma</span> flow with charged thin current <span class="hlt">sheets</span>: 2. Hall dynamics, mass and momentum transfer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Proceeding with the analysis of Amata et al. (2005), we suggest that the general feature for the local transport at a thin magnetopause (MP) consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current <span class="hlt">sheet</span> (TCS) is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the <span class="hlt">plasma</span> jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the <span class="hlt">plasma</span> flow just inside MP (Amata et al., 2005), which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different <span class="hlt">plasmas</span> results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton cyclotron one, in extended turbulent zones are a promising alternative in place of the usual parallel electric fields invoked in the macro-reconnection scenarios. Further cascading towards <span class="hlt">electron</span> scales is supposed to be due to unstable parallel <span class="hlt">electron</span> currents, which neutralize the potential differences, either resulted from the ion- burst interactions or from the inertial drift. The complicated MP shape suggests its systematic velocity departure from the local normal towards the average one, inferring domination for the MP movement of the non-local processes over the small-scale local ones. The measured Poynting vector indicates energy transmission from the MP into the upstream region with the waves triggering impulsive downstream flows, providing an input into the local flow balance and the outward movement of the MP. Equating the transverse electric field inside the MP TCS by the Hall term in the Ohm's law implies a separation of the different <span class="hlt">plasmas</span> primarily by the Hall current, driven by the respective part of the TCS surface charge. The Hall dynamics of TCS can operate either without or as a part of a macro-reconnection with the magnetic field annihilation.</p> <div class="credits"> <p class="dwt_author">Savin, S.; Amata, E.; Andre, M.; Dunlop, M.; Khotyaintsev, Y.; Decreau, P. M. E.; Rauch, J. L.; Trotignon, J. G.; Buechner, J.; Nikutowski, B.; Blecki, J.; Skalsky, A.; Romanov, S.; Zelenyi, L.; Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Song, P.; Reme, H.; Volosevich, A.; Alleyne, H.; Panov, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52334790"> <span id="translatedtitle">Launched <span class="hlt">electrons</span> in <span class="hlt">plasma</span> opening switches</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Plasma</span> opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving <span class="hlt">plasma</span> control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry</p> <div class="credits"> <p class="dwt_author">C. W. Mendel Jr.; G. E. Rochau; M. A. Sweeney; D. H. McDaniel; J. P. Quintenz; M. E. Savage; E. L. Lindman; J. M. Kindel</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23215040"> <span id="translatedtitle">Structure, stability, and <span class="hlt">electronic</span> interactions of polyoxometalates on functionalized graphene <span class="hlt">sheets</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Polyoxometalates (H(3)PMo(12)O(40), H(3)PW(12)O(40), H(4)PMo(11)VO(40)) supported on oxygen- and alkyl-functionalized graphene <span class="hlt">sheets</span> were investigated. Discrete molecular species were directly observed by <span class="hlt">electron</span> microscopy at loadings below 20 wt.%. The interaction between the polyoxometalates and the graphene surface was found to significantly impact their vibrational spectra and a linear correlation between the frequency of the M-O(c)-M vibration and the dispersion was evidenced by FTIR. While bulk-like <span class="hlt">electronic</span> properties were observed for small aggregates (2-5 nm), UV-vis spectroscopy and cyclic voltammetry revealed changes in the <span class="hlt">electronic</span> structure of isolated molecular species as a result of their interaction with graphene. Because of the ability to disperse alkyl-functionalized graphene in a variety of polar and nonpolar solvents, the materials synthesized in this work provide an opportunity to disperse polyoxometalates in media in which they would not dissolve if unsupported. PMID:23215040</p> <div class="credits"> <p class="dwt_author">Tessonnier, Jean-Philippe; Goubert-Renaudin, Stephanie; Alia, Shaun; Yan, Yushan; Barteau, Mark A</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-24</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.6207Y"> <span id="translatedtitle">Hybrid Kelvin-Helmholtz/Rayleigh-Taylor instability in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper is to generalize the previous linear analysis of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability in a system of the magnetosphere-ionosphere (M-I) coupling, which is valid in the long-wavelength limit of Lk y $\\ll$ 2, where k y is the azimuthal wave number and L stands for the scale length of a latitudinal profile in azimuthal velocity or energy density. For the first time, the linear growth rate profile of a hybrid wave can be revealed in an essentially overall range of k y . When the gradient of the energy density is directed inward (toward inner magnetic shells), the hybrid growth rate is positive (meaning growth) in a certain range of k y : 0 < Lk y < $\\widetilde{ky m . As the inertial relaxation rate v approaches zero, the growth rate curve is close to the KH “spectrum” with $\\widetilde{ky m = 2, where v ? ? P /C m , the ratio between the inertial capacitance of the magnetospheric <span class="hlt">plasma</span> and the height-integrated Pedersen conductivity in the ionosphere. Without a velocity shear in the background flow, the spectrum much broadens, namely, the RT spectrum appears. The hybrid growth rate is shown to have a spectrum intermediate between the two ones of the corresponding KH and RT “root” instabilities. It is also found that the electrostatic KH instability is completely suppressed when the KH growth rate, estimated excluding the M-I coupling, is less than v, which is a straightforward extension of that previous work. On the basis of the evaluation of C m in the Tsyganenko model, electrostatic waves (with wavelengths greater than a few tens of kilometers at the ionospheric height) are unlikely to grow by the KH instability alone in the nighttime <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Instead, hybrid waves can grow at the places where the particle energy density has an inward gradient. This fact may account for the frequent appearance of periodic auroral luminosity in a high-latitude part of the nighttime oval as well as the formation of omega bands typically in the recovery phase of a substorm.</p> <div class="credits"> <p class="dwt_author">Yamamoto, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA056788"> <span id="translatedtitle">Excitation of Large Amplitude <span class="hlt">Plasma</span> Waves by Runaway <span class="hlt">Electrons</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A relativistic computer simulation demonstrates that the application of a DC electric field enhances the excitation of <span class="hlt">plasma</span> waves through runaway <span class="hlt">electrons</span>. The presence of an elongated tail in the distribution function gives rise to acoustic-type modes...</p> <div class="credits"> <p class="dwt_author">J. N. Leboeuf T. Tajima G. J. Morales</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22075915"> <span id="translatedtitle">Controlling <span class="hlt">electron</span> injection in laser <span class="hlt">plasma</span> accelerators using multiple pulses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Use of counter-propagating pulses to control <span class="hlt">electron</span> injection in laser-<span class="hlt">plasma</span> accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.</p> <div class="credits"> <p class="dwt_author">Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Tech-X Corporation, 5621 Arapahoe Ave, Suite A, Boulder CO 80303 (United States); Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States) and University of California, Berkeley, CA 94720 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-21</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51421443"> <span id="translatedtitle">Tearing mode instability of the magnetotail thin current <span class="hlt">sheet</span>: Roles of trapped and transient <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The stability of the tearing mode in the collisionless current <span class="hlt">sheet</span> with a nonzero component normal to the <span class="hlt">sheet</span> plane (the so-called quasi-neutral <span class="hlt">sheet</span>) has been debated for more than two decades. It has been shown recently [Sitnov et al., Geophys. Res. Lett., 25, 269, 1998] that the stability threshold of the mode, arising from the drift motion of magnetized</p> <div class="credits"> <p class="dwt_author">Mikhail I. Sitnov; A. Surjalal Sharma; Parvez N. Guzdar</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PhDT.......158K"> <span id="translatedtitle">Properties of trapped <span class="hlt">electron</span> bunches in a <span class="hlt">plasma</span> wakefield accelerator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span>-based accelerators use the propagation of a drive bunch through <span class="hlt">plasma</span> to create large electric fields. Recent <span class="hlt">plasma</span> wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch <span class="hlt">electrons</span> in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, <span class="hlt">electron</span> trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap <span class="hlt">electrons</span> that are released by ionization inside the <span class="hlt">plasma</span> wake and accelerate them to high energies. These trapped <span class="hlt">electrons</span> occupy and can degrade the accelerating portion of the <span class="hlt">plasma</span> wake, so it is important to understand their origins and how to remove them. Here, the onset of <span class="hlt">electron</span> trapping is connected to the drive bunch properties. Additionally, the trapped <span class="hlt">electron</span> bunches are observed with normalized transverse emittance divided by peak current, epsilonN,x/I t, below the level of 0.2 microm/kA. A theoretical model of the trapped <span class="hlt">electron</span> emittance, developed here, indicates that the emittance scales inversely with the square root of the <span class="hlt">plasma</span> density in the nonlinear "bubble" regime of the PWFA. This model and simulations indicate that the observed values of epsilonN,x/It result from multi-GeV trapped <span class="hlt">electron</span> bunches with emittances of a few mum and multi-kA peak currents. These properties make the trapped <span class="hlt">electrons</span> a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a <span class="hlt">plasma</span>-based particle collider. Then, the second chapter examines the physics of <span class="hlt">electron</span> trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped <span class="hlt">electron</span> bunches. Chapters four and five present the experimental diagnostics and measurements for the trapped <span class="hlt">electrons</span>. Next, the sixth chapter introduces suggestions for future trapped <span class="hlt">electron</span> experiments. Then, Chapter seven contains the conclusions. In addition, there is an appendix chapter that covers a topic which is extraneous to <span class="hlt">electron</span> trapping, but relevant to the PWFA. This chapter explores the feasibility of one idea for the production of a hollow channel <span class="hlt">plasma</span>, which if produced could solve some of the remaining issues for a <span class="hlt">plasma</span>-based collider.</p> <div class="credits"> <p class="dwt_author">Kirby, Neil Allen</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19139709"> <span id="translatedtitle">Boltzmann equation and Monte Carlo analysis of <span class="hlt">electron-electron</span> interactions on <span class="hlt">electron</span> distributions in nonthermal cold <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electron</span> distribution functions in nonthermal cold <span class="hlt">plasmas</span> generated by classical electrical discharges have been calculated from a powerful Boltzmann equation solution and an original Monte Carlo simulation. In these two methods both classical (i.e., elastic, inelastic, and superelastic) <span class="hlt">electron</span>-atom (or molecule) collisions and <span class="hlt">electron-electron</span> interactions are taken into account. The approximations considered to include long-range (<span class="hlt">electron-electron</span>) and short-range (<span class="hlt">electron</span>-atom) interactions</p> <div class="credits"> <p class="dwt_author">M. Yousfi; A. Himoudi; A. Gaouar</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41903573"> <span id="translatedtitle">Inertia driven tearing modes in <span class="hlt">electron</span>-positron <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is shown that the particle inertia can cause a tearing instability in an <span class="hlt">electron</span>-positron collisionless <span class="hlt">plasma</span> with sheared magnetic fields. An approximate analytical expression for the growth rate is obtained. It characterizes the magnetic reconnection timescale in a magnetized electronpositron <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">P. K. Shukla; S. Jammalamadaka; L. Stenflo</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54694642"> <span id="translatedtitle">Ion-acoustic solitons in <span class="hlt">electron</span>-positron-ion <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The ion-acoustic solitons are investigated in three-component <span class="hlt">plasmas</span>, whose constituents are <span class="hlt">electrons</span>, positrons, and singly charged ions. It is found that the presence of the positron component in such a multispecies <span class="hlt">plasma</span> can result in reduction of the ion-acoustic soliton amplitudes.</p> <div class="credits"> <p class="dwt_author">S. I. Popel; S. V. Vladimirov; P. K. Shukla</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19500006"> <span id="translatedtitle">Rarefaction ion acoustic solitons in two-<span class="hlt">electron</span>-temperature <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper shows that rarefaction ion acoustic solitons appear in a two-<span class="hlt">electron</span>-temperature <span class="hlt">plasma</span>. It also presents general conditions and physical mechanism for existence of the rarefaction solitons. It is found that finite amplitude rarefaction and compression solitons coexist in a <span class="hlt">plasma</span> within a certain parameter region.</p> <div class="credits"> <p class="dwt_author">Katsunobu Nishihara; Masayoshi Tajiri</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52612384"> <span id="translatedtitle">Wave production in an ultrarelativistic <span class="hlt">electron</span>-positron <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper we calculate the eigenmodes associated with an ultrarelativistic <span class="hlt">electron</span>-positron beam traversing a low-energy <span class="hlt">electron</span>-positron <span class="hlt">plasma</span> under physical conditions that may exist along open magnetic field lines above pulsar polar caps. We assume that both beam and <span class="hlt">plasma</span> are cold and charge neutral, and that magnetic field strength and particle density decrease as the cube of (1\\/R). In</p> <div class="credits"> <p class="dwt_author">P. E. Hardee; W. K. Rose</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/43115274"> <span id="translatedtitle">Wave production in an ultrarelativistic <span class="hlt">electron</span>-positron <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper we calculate the eigenmodes associated with an ultrarelativistic <span class="hlt">electron</span>-positron beam traversing a low-energy <span class="hlt">electron</span>-positron <span class="hlt">plasma</span> under physical conditions that may exist along open magnetic field lines above pulsar polar caps. We assume that both beam and <span class="hlt">plasma</span> are cold and charge neutral, and that magnetic field strength and particle density decrease as (1\\/R)³. In the superstrong magnetic</p> <div class="credits"> <p class="dwt_author">P. E. Hardee; W. K. Rose</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhPl...18c3111C"> <span id="translatedtitle"><span class="hlt">Plasma</span> wave undulator for laser-accelerated <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laser-<span class="hlt">plasma</span> accelerators have become compact sources of ultrashort <span class="hlt">electron</span> bunches at energies up to the gigaelectronvolt range thanks to the remarkable progress made over the past decade. A direct application of these <span class="hlt">electron</span> bunches is the production of short pulse x-ray radiation sources. In this letter, we study a fully optically driven x-ray source based on the combination of a laser-<span class="hlt">plasma</span> accelerator and a <span class="hlt">plasma</span> wave undulator. The longitudinal electric field of a laser-generated <span class="hlt">plasma</span> wave is used to wiggle <span class="hlt">electrons</span> transversally. The period of this <span class="hlt">plasma</span> undulator being equal to the <span class="hlt">plasma</span> wavelength, tunable photon energies in the 10 keV range can be achieved with <span class="hlt">electron</span> energies in the 100-200 MeV range. Considering a 10s TW class femtosecond laser system, undulators with a strength parameter K~0.5 and with about ten periods can be combined with a laser-<span class="hlt">plasma</span> accelerator, resulting in several 10-2 emitted x-ray photons per <span class="hlt">electron</span>.</p> <div class="credits"> <p class="dwt_author">Corde, S.; Ta Phuoc, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhPl...20c4502S"> <span id="translatedtitle"><span class="hlt">Plasma</span> parameters and <span class="hlt">electron</span> energy distribution functions in a magnetically focused <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Spatially resolved measurements of ion density, <span class="hlt">electron</span> temperature, floating potential, and the <span class="hlt">electron</span> energy distribution function (EEDF) are presented for a magnetically focused <span class="hlt">plasma</span>. The measurements identify a central <span class="hlt">plasma</span> column displaying Maxwellian EEDFs at an <span class="hlt">electron</span> temperature of about 5 eV indicating the presence of a significant fraction of <span class="hlt">electrons</span> in the inelastic energy range (energies above 15 eV). It is observed that the EEDF remains Maxwellian along the axis of the discharge with an increase in density, at constant <span class="hlt">electron</span> temperature, observed in the region of highest magnetic field strength. Both <span class="hlt">electron</span> density and temperature decrease at the <span class="hlt">plasma</span> radial edge. <span class="hlt">Electron</span> temperature isotherms measured in the downstream region are found to coincide with the magnetic field lines.</p> <div class="credits"> <p class="dwt_author">Samuell, C. M.; Blackwell, B. D.; Howard, J.; Corr, C. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992JNuM..196..816P"> <span id="translatedtitle">Simulation of <span class="hlt">electron</span> transport in <span class="hlt">plasmas</span> and solids</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A cascade model for 1 105 eV <span class="hlt">electron</span> transport in <span class="hlt">plasmas</span> and solids is proposed. The model is based on the Monte Carlo technique and quantum mechanical description of <span class="hlt">electron</span>-ion elastic scattering, ionization of ion shells with <span class="hlt">electron</span> binding energy less than 100 eV, plasmon and <span class="hlt">electron</span>-hole generation and classical description of inner shell ionization. The main advantage of this model is the detailed description of secondary <span class="hlt">electron</span> generation without any semiempirical cross sections. The calculated <span class="hlt">electron</span> backscattering coefficients from Al and Ti are in good agreement with experiments.</p> <div class="credits"> <p class="dwt_author">Palov, A. P.; Pletnev, V. V.; Tel'Kovskii, V. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10148871"> <span id="translatedtitle">Measurements of beat wave accelerated <span class="hlt">electrons</span> in a toroidal <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electrons</span> are accelerated by large amplitude <span class="hlt">electron</span> <span class="hlt">plasma</span> waves driven by counter-propagating microwaves with a difference frequency approximately equal to the <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency. Energetic <span class="hlt">electrons</span> are observed only when the phase velocity of the wave is in the range 3v{sub e} < v{sub ph} < 7v{sub e} (v{sub ph} was varied 2v{sub e} < v{sub ph} < 10v{sub e}), where v{sub e} is the <span class="hlt">electron</span> thermal velocity, (kT{sub e}/m{sub e}){sup {1/2}}. As the phase velocity increases, fewer <span class="hlt">electrons</span> are accelerated to higher velocities. The measured current contained in these accelerated <span class="hlt">electrons</span> has the power dependence predicted by theory, but the magnitude is lower than predicted.</p> <div class="credits"> <p class="dwt_author">Rogers, J.H. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Hwang, D.W. [California Univ., Davis, CA (United States). Dept. of Applied Science]|[Lawrence Livermore National Lab., CA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004APS..DPPCP1079J"> <span id="translatedtitle">Study of <span class="hlt">electron</span> beam propagation in dense <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The generation and transport of relativistic <span class="hlt">electron</span> beams is a field of topical interest, in particular for the fast ignitor scheme relevant for inertial confinement fusion. We have studied the propagation of laser accelerated <span class="hlt">electrons</span> in dense <span class="hlt">plasmas</span>. Aluminium- and foam targets with various thicknesses were irradiated with the Petawatt laser beam at the Rutherford Appleton Laboratory (U.K.). The <span class="hlt">electron</span> beam is investigated by observing the coherent transition radiation (CTR) generated at the target rear side. A decrease of CTR intensity for the thicker targets is observed and explained by dephasing of the <span class="hlt">electron</span> bunches as they propagate through the <span class="hlt">plasma</span>. For the foam targets, a break-up of the <span class="hlt">electron</span> beam into filamentary structures is evident, showing that the relativistic <span class="hlt">electron</span> beam is sensitive to Weibel type instabilities due to the counter propagating current of cold <span class="hlt">electrons</span>. The experimental results are consistent with 3D PIC simulations.</p> <div class="credits"> <p class="dwt_author">Jung, Ralph</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008cosp...37.2236N"> <span id="translatedtitle">Kelvin-Helmholtz vortices around the magnetotail and cold <span class="hlt">plasma</span> <span class="hlt">sheet</span> formation: Insight as a multiscale phenomenon</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The magnetopause of the Earth's magnetosphere is a key region in magnetospheric physics, especially in the sense of multiscale coupling from global large-scale phenomena to microscale physics. The velocity shear across the magnetopause is believed to cause Kelvin-Helmholtz instability (KHI) on both the dawn and dusk sides when the interplanetary magnetic field (IMF) points northward; magnetic reconnection and some secondary instabilities are likely to occur in the vortical structure induced by KHI and to play a significant role in solar wind entry across the magnetopause as well as <span class="hlt">plasma</span> mixing there. This is a manifestation of multiscale coupling; that is, large-scale KH instability may induce micro-scale phenomenon in the rolled-up vortices and resultant formation of the cold <span class="hlt">plasma</span> <span class="hlt">sheet</span> in a wide region of the near-Earth magnetotail. Here we show a nice simultaneous measurement of solar wind entry associated with KHI on both sides of the magnetosphere under prolonged northward IMF. In the event that we have found, Cluster on the dawnside and Geotail on the duskside had an opportunity to stay around the magnetopause simultaneously on the opposite side to each other for more than several hours. Proton distribution function on the magnetosphere side of the magnetopause presents dawn-dusk asymmetry, which means that different <span class="hlt">plasma</span> mixing processes are actually taking place on both sides. Using the Grad-Shafranov reconstruction (GSR) technique that can visualize ambient <span class="hlt">plasma</span> and field around spacecraft, we clarify that vortical structures due to KHI indeed developed on both sides. These observations and reconstruction analysis suggest that vortical structures induced by KHI result in dawn-dusk asymmetry of <span class="hlt">plasma</span> mixing around the magnetopause and formation of the cold <span class="hlt">plasma</span> <span class="hlt">sheet</span> in a wide region of the near-Earth magnetotail.</p> <div class="credits"> <p class="dwt_author">Nishino, Masaki N.; Hasegawa, Hiroshi; Fujimoto, Masaki; Mukai, Toshifumi; Saito, Yoshifumi; Reme, Henri; Retino, Alessandro; Nakamura, Rumi; Lucek, Elizabeth</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59732818"> <span id="translatedtitle"><span class="hlt">Electron</span> temperature dynamics of TEXTOR <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To study <span class="hlt">plasma</span> properties in the presence of large and small MHD modes, new high-resolution ECE diagnostics have been installed at TEXTOR tokamak, and some of the already existing systems have been upgraded. Two models for the <span class="hlt">plasma</span> transport properties inside large m\\/n = 2\\/1 MHD islands have been found to give estimations for the heat diffusivities, which are much</p> <div class="credits"> <p class="dwt_author">Victor Sergeevich Udintsev</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22072318"> <span id="translatedtitle">Pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> confined for 90 ms in a stellarator without <span class="hlt">electron</span> sources or internal objects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report on the creation and up to 90 ms sustainment of pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> confined in a stellarator without internal objects. Injection of positrons into such <span class="hlt">plasmas</span> is expected to lead to the creation of the first <span class="hlt">electron</span>-positron <span class="hlt">plasma</span> experiments. These newly created <span class="hlt">plasmas</span> will also allow a study of pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> without the perturbing presence of internal objects. The <span class="hlt">plasmas</span> were created by thermionic emission of <span class="hlt">electrons</span> from a heated, biased filament that was retracted in 20 ms. The confinement of these transient <span class="hlt">plasmas</span> is different from that of steady state <span class="hlt">plasmas</span> with internal objects and emissive filaments, and is generally shorter, limited by ion buildup. The decay time is increased by lowering the neutral pressure, lowering the <span class="hlt">electron</span> <span class="hlt">plasma</span> temperature, or operating with neutrals with high ionization energies (helium). These findings are all consistent with ion accumulation being the cause for the shorter than expected confinement times. The magnetic field strength also moderately increases the decay times. The deleterious effect of ions is not expected to imply a similar deleterious effect when introducing positrons, but it implies that ion accumulation must be avoided also in an <span class="hlt">electron</span>-positron experiment.</p> <div class="credits"> <p class="dwt_author">Brenner, P. W.; Sunn Pedersen, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009APS..GEC.BM002K"> <span id="translatedtitle">Nonlocal collisionless and collisional <span class="hlt">electron</span> transport in low temperature <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The purpose of the talk is to describe recent advances in nonlocal <span class="hlt">electron</span> kinetics in low-pressure <span class="hlt">plasmas</span>. A distinctive property of partially ionized <span class="hlt">plasmas</span> is that such <span class="hlt">plasmas</span> are always in a non-equilibrium state: the <span class="hlt">electrons</span> are not in thermal equilibrium with the neutral species and ions, and the <span class="hlt">electrons</span> are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the <span class="hlt">electron</span> velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal <span class="hlt">plasma</span> parameters for applications, which make gas discharge <span class="hlt">plasmas</span> remarkable tools for a variety of <span class="hlt">plasma</span> applications, including <span class="hlt">plasma</span> processing, discharge lighting, <span class="hlt">plasma</span> propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal <span class="hlt">electron</span> kinetics, nonlocal electrodynamics with collisionless <span class="hlt">electron</span> heating, and nonlinear processes in the sheaths and in the bounded <span class="hlt">plasmas</span>. Significant progress in understanding the interaction of electromagnetic fields with real bounded <span class="hlt">plasma</span> created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton <span class="hlt">Plasma</span> Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. <span class="hlt">Plasma</span> Science 34, 895 (2006); Phys. <span class="hlt">Plasmas</span> 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and A. Smolyakov, Phys. <span class="hlt">Plasmas</span> 14, 057104 (2007). [0pt] [3] V.I. Demidov, C.A. DeJoseph, and A.A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2005); V.I. Demidov, C.A. DeJoseph, J. Blessington, and M.E. Koepke, Europhysics News, 38, 21 (2007).</p> <div class="credits"> <p class="dwt_author">Kaganovich, Igor</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21432248"> <span id="translatedtitle">Simulations of turbulent <span class="hlt">plasma</span> heating by powerful <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Basic mechanisms of turbulent <span class="hlt">plasma</span> heating by powerful <span class="hlt">electron</span> beams are studied using numerical simulations. Both particle-in-cell and hybrid codes are used to investigate how beam-<span class="hlt">plasma</span> instability evolves and saturates in the case of continuously injected <span class="hlt">electron</span> beam. For sufficiently high <span class="hlt">plasma</span> temperature beam driven turbulence is found to operate in the regime of the constant pump, when the saturation level of heating power is determined solely by the nonlinear interaction of beam particles with resonant waves and does not depend on the turbulence structure in the nonresonant part of the spectrum.</p> <div class="credits"> <p class="dwt_author">Timofeev, I. V.; Terekhov, A. V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Institute of Computational Mathematics and Mathematical Geophysics, 630090 Novosibirsk (Russian Federation) and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013HEDP....9..480R"> <span id="translatedtitle"><span class="hlt">Electron</span>–positron pair creation in burning thermonuclear <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Estimates are provided of the formation of <span class="hlt">electron</span>–positron pairs from ?–? annihilation in a <span class="hlt">plasma</span> under conditions of thermonuclear burn in inertial confinement fusion (ICF). Based on values of density, temperature and <span class="hlt">plasma</span> size that are representative of both burning DT and D <span class="hlt">plasmas</span> in current and potential future ICF schemes, we estimate the radiation field present and from that calculate the <span class="hlt">electron</span>–positron generation. In the most extreme conditions considered here, positron number densities of over 1023 cm?3 are predicted.</p> <div class="credits"> <p class="dwt_author">Rose, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ApPhL.101u4101Q"> <span id="translatedtitle">Secondary-<span class="hlt">electrons</span>-induced cathode <span class="hlt">plasma</span> in a relativistic magnetron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Results of time- and space-resolved spectroscopic studies of cathode <span class="hlt">plasma</span> during a S-band relativistic magnetron operation and a magnetically insulated diode having an identical interelectrode gap are presented. It was shown that in the case of the magnetron operation, one obtains an earlier, more uniform <span class="hlt">plasma</span> formation due to energetic <span class="hlt">electrons</span>' interaction with the cathode surface and ionization of desorbed surface monolayers. No differences were detected in the cathode's <span class="hlt">plasma</span> temperature between the magnetron and the magnetically insulated diode operation, and no anomalous fast cathode <span class="hlt">plasma</span> expansion was observed in the magnetron at rf power up to 350 MW.</p> <div class="credits"> <p class="dwt_author">Queller, T.; Gleizer, J. Z.; Krasik, Ya. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhyS...87d5503S"> <span id="translatedtitle">Magnetoacoustic solitary waves in pair ion-<span class="hlt">electron</span> <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The nonlinear properties of magnetoacoustic solitary waves (MASWs) are investigated in magnetized pair ion-<span class="hlt">electron</span> (PIE) <span class="hlt">plasmas</span>. The three-fluid collisionless electromagnetic model is considered and the reductive perturbation method is employed to derive the Korteweg-de Vries equation for MASWs in PIE <span class="hlt">plasmas</span>. It is found that the system under consideration admits compressive solitary structures. The effects of magnetic field intensity, <span class="hlt">plasma</span> number density and negative ions concentration on MASWs are studied. This study may have relevance to nonlinear wave formation and the propagation of pair ion <span class="hlt">plasmas</span> containing impurities.</p> <div class="credits"> <p class="dwt_author">Shisen, Ruan; Shan, Wu; Majid; Cheng, Ze</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM33B0450K"> <span id="translatedtitle">Non-adiabatic Bouncing Ion Clusters in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layer Observed by Cluster-CIS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We report on ion beams injected into the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (at or near the separatrix) at distances greater than 39 Re and up to 169 Re that bounced several times back and forth (up to three echoes) while remaining in coherent bunches before thermalizing in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS). These bouncing ion clusters (BIC) interacted with the far-tail current <span class="hlt">sheet</span> with a possible curvature parameter, kappa, of less than 2. The existence of these BIC shows that ion beams can interact several times non-adiabatically with the far-tail current <span class="hlt">sheet</span> and still remain coherent. Owing to the large-scale ExB drift, echoes also appeared in the CPS after several bounces. The echoes had higher energies compared to the initially injected ion cluster which can be attributed to additional non-adiabatic acceleration during their second and third interaction with the tail current <span class="hlt">sheet</span>. After multiple bounces, the ion cluster became thermalized isotropic <span class="hlt">plasma</span> mixing with the CPS. BIC events were identified on the basis of the energy dispersion slopes associated with the ions. Simple model calculations showed, however, that in the case of these far-tail ion injections the 1:3:5:etc.-ratios of travel distances for echoes, used as diagnostics for near-Earth adiabatic BIC, are not valid. This is largely due to a significant shortening of the tail field lines, caused by Earthward convection, during the large ion travel times. The model calculations also reproduced newly observed properties such as concave dispersion slopes for the echoes. Furthermore, we argue here that the energy dispersion of the BIC was dominated by a time-of-flight effect. The injection region for BIC events, determined on the basis of this time-of-flight interpretation, covered a broad range of X (GSE)=26-40 Re. BIC events were dominantly observed during the substorm recovery phase and during quiet geomagnetic activity. We conclude that these nonadiabatic BIC are different from the adiabatic BIC that are routinely reported in the CPS.</p> <div class="credits"> <p class="dwt_author">Keiling, A.; Parks, G.; Reme, H.; Dandouras, I.; Bosqued, J.; Wilber, M.; McCarthy, M.; Kistler, L.; Mouikis, C.; Klecker, B.; Korth, A.; Lundin, R.; Frey, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22053680"> <span id="translatedtitle">Enhanced confinement in <span class="hlt">electron</span> cyclotron resonance ion source <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Power loss by <span class="hlt">plasma</span>-wall interactions may become a limitation for the performance of ECR and fusion <span class="hlt">plasma</span> devices. Based on our research to optimize the performance of <span class="hlt">electron</span> cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of <span class="hlt">plasma</span> <span class="hlt">electrons</span> and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the <span class="hlt">plasma-electron</span> density and hence demonstrate the advantage by the MD-method.</p> <div class="credits"> <p class="dwt_author">Schachter, L.; Dobrescu, S. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Stiebing, K. E. [Institut fuer Kernphysik der J. W. Goethe-Universitaet, Frankfurt/Main (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22072533"> <span id="translatedtitle">Three-wave coupling in <span class="hlt">electron</span>-positron-ion <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The three-wave coupling processes in <span class="hlt">electron</span>-positron-ion <span class="hlt">plasmas</span> are investigated. The non-linear dispersion relation is derived along with the non-linear growth rate in both resonant and non resonant processes. It is shown that the inclusion of positron affects the dielectric properties of the <span class="hlt">plasma</span> as well as the nonlinear growth rates of parametric processes. As one increases the positron density to <span class="hlt">electron</span> density ratio from 0 to 1, maintaining quasi neutrality of the <span class="hlt">plasma</span>, the growth rates of stimulated Raman, Brillouin, and Compton scattering processes in an isothermal <span class="hlt">plasma</span> tend to zero due to the ponderomotive forces acting on <span class="hlt">electrons</span> and positrons due the pump and scattered waves being equal.</p> <div class="credits"> <p class="dwt_author">Tinakiche, N.; Annou, R. [Faculty of Physics, U.S.T.H.B. Algiers 16111 (Algeria); Tripathi, V. K. [Physics Department, I.T.T Delhi, New-Delhi 16 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-15</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhPl...18j2903U"> <span id="translatedtitle"><span class="hlt">Plasma</span>-beta dependence of the fast reconnection mechanism in an initially force-free current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present paper systematically studies the spontaneous fast reconnection mechanism in an initially force-free current <span class="hlt">sheet</span> in a wide range of <span class="hlt">plasma</span> beta (?) in our previous work it was studied for a special case of ? = 0.15. In each case, the evolution as well as the resulting structure of the fast reconnection is qualitatively similar to the one that was already reported for the case of ? = 0.15. Quantitatively, the fast reconnection evolution becomes more rapid and drastic for the lower <span class="hlt">plasma</span> beta. For the cases of very low <span class="hlt">plasma</span> beta (? = 0.01 or 0.02), the <span class="hlt">plasma</span> temperature is extremely enhanced to the value almost 1/? times larger than its initial value in the resulting fast reconnection jet and large-scale plasmoid regions. Once the fast reconnection mechanism is ignited in a local spot-like region, its basic structure eventually established is sustained almost steadily, giving rise to the plasmoid swelling with time and propagating outwards. Accordingly, the characteristic reconnection regions, where <span class="hlt">plasma</span> thermodynamic quantities are remarkably enhanced, rapidly expand in all (x, y, and z) directions in Alfven time scales, which may be responsible for the explosive expansion of large flares as well as for the distinct <span class="hlt">plasma</span> heating observed in the solar corona.</p> <div class="credits"> <p class="dwt_author">Ugai, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JGRA..112.6233Z"> <span id="translatedtitle">Energy filter effect for solar wind particle entry to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> via flank regions during southward interplanetary magnetic field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Several mechanisms have been used to explain solar wind <span class="hlt">plasma</span> entry into the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the magnetotail. In this paper, we focus on the gradient drift entry (GDE) process in the equatorial flanks of the magnetosphere, based on the magnetopause picture of a tangential discontinuity with a small tangential electric field as was suggested by Alfvén (1968). We discuss the GDE efficiency in different conditions using the adiabatic theory. It can be clearly shown that the GDE efficiency is much lower during southward interplanetary magnetic field (IMF), with a strong energy filter effect for incoming solar wind particles. Given a typical condition, a critical energy for particle entry is calculated to be several kiloelectron volts. Only those particles with higher energy can penetrate the magnetopause, a condition which can be also proved by test particle simulations. The lower efficiency than that during northward IMF during periods of southward IMF is in agreement with the different properties of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed, i.e., hot and tenuous when the IMF is southward, cold and dense for northward IMF.</p> <div class="credits"> <p class="dwt_author">Zhou, X.-Z.; Pu, Z. Y.; Zong, Q.-G.; Xie, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6732161"> <span id="translatedtitle">Study of <span class="hlt">electron</span> beam production by a <span class="hlt">plasma</span> focus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A preliminary investigation of the <span class="hlt">electron</span> beam produced by a <span class="hlt">plasma</span> focus device using a current charged transmission line is described. <span class="hlt">Electron</span> beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography.</p> <div class="credits"> <p class="dwt_author">Smith, J.R.; Luo, C.M.; Rhee, M.J.; Schneider, R.F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56687379"> <span id="translatedtitle">Energy limits on runaway <span class="hlt">electrons</span> in tokamak <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A test particle description of the runaway dynamics is used to analyze some of the main mechanisms limiting the runaway energy in a tokamak <span class="hlt">plasma</span>. It is found that the synchrotron radiation losses associated with the <span class="hlt">electron</span> gyromotion around the magnetic field lines can explain the energy limit of runaway <span class="hlt">electrons</span> found experimentally by observing their bremsstrahlung spectra during the</p> <div class="credits"> <p class="dwt_author">J. R. Marti´n-Soli´s; B. Esposito; R. Sa´nchez; J. D. Alvarez</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://bacterio.uc3m.es/investigacion/fusion/papers/php_runb_99.pdf"> <span id="translatedtitle">Energy limits on runaway <span class="hlt">electrons</span> in tokamak <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A test particle description of the runaway dynamics is used to analyze some of the main mechanisms limiting the runaway energy in a tokamak <span class="hlt">plasma</span>. It is found that the synchrotron radiation losses associated with the <span class="hlt">electron</span> gyromotion around the magnetic field lines can explain the energy limit of runaway <span class="hlt">electrons</span> found experimentally by observing their bremsstrahlung spectra during the</p> <div class="credits"> <p class="dwt_author">B. Esposito; R. Sanchez; J. D. Alvarez</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56792082"> <span id="translatedtitle">Raman backscattering in an <span class="hlt">electron</span> beam-<span class="hlt">plasma</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The parametric decay of an electromagnetic pump wave into a backscattered electromagnetic wave and an <span class="hlt">electron</span> electrostatic scatterer wave in a <span class="hlt">plasma</span> traversed by an <span class="hlt">electron</span> beam is investigated. A formula for the growth rate of the backscattered and scatterer waves is derived and studied numerically.</p> <div class="credits"> <p class="dwt_author">Joseph E. Willett</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1982JAP....53.9198W"> <span id="translatedtitle">Raman backscattering in an <span class="hlt">electron</span> beam-<span class="hlt">plasma</span> system</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The parametric decay of an electromagnetic pump wave into a backscattered electromagnetic wave and an <span class="hlt">electron</span> electrostatic scatterer wave in a <span class="hlt">plasma</span> traversed by an <span class="hlt">electron</span> beam is investigated. A formula for the growth rate of the backscattered and scatterer waves is derived and studied numerically.</p> <div class="credits"> <p class="dwt_author">Willett, J. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55445156"> <span id="translatedtitle">The effects of neutral gas pressure and <span class="hlt">electron</span> temperature on the dynamics of the <span class="hlt">electron</span> diffusion gauge experiment <span class="hlt">electron</span> <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The dynamics of pure, <span class="hlt">electron</span> <span class="hlt">plasmas</span> confined in cylindrically symmetric, Malmberg-Penning traps are strongly affected by imperfections in the trap fields and collisions with background gas molecules present in the vacuum. These imperfections in the trap torque the azimuthally rotating <span class="hlt">plasma</span>, causing it to expand radially. The <span class="hlt">Electron</span> Diffusion Gauge (EDG) device is used to determine whether the effects of</p> <div class="credits"> <p class="dwt_author">Kyle Adam Morrison</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22093733"> <span id="translatedtitle">Revisiting <span class="hlt">plasma</span> hysteresis with an <span class="hlt">electronically</span> compensated Langmuir probe</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The measurement of <span class="hlt">electron</span> temperature in <span class="hlt">plasma</span> by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in <span class="hlt">plasma</span> where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing <span class="hlt">plasma</span> measurements to be done with ion saturation current of the order of hundreds of {mu}A. The <span class="hlt">electron</span> temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured <span class="hlt">electron</span> temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in <span class="hlt">electron</span> temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the <span class="hlt">electron</span> temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of <span class="hlt">electron</span> temperature gradient in large volume <span class="hlt">plasma</span> device <span class="hlt">plasma</span> with frequency ordering {<=}50 kHz.</p> <div class="credits"> <p class="dwt_author">Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar 382 428 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=489098"> <span id="translatedtitle">Method for generating a <span class="hlt">plasma</span> wave to accelerate <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">The invention provides a method and apparatus for generating large amplitude nonlinear <span class="hlt">plasma</span> waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the <span class="hlt">plasma</span> wave phase space is found where the <span class="hlt">plasma</span> wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the <span class="hlt">electron</span> gun system, also called beam source, which preferably comprises photo cathode <span class="hlt">electron</span> source and RF-LINAC accelerator; <span class="hlt">electron</span> photo-cathode triggering system; the <span class="hlt">electron</span> diagnostics; and the feedback system between the <span class="hlt">electron</span> diagnostics and the laser system. The system also includes <span class="hlt">plasma</span> source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the <span class="hlt">plasma</span> wave, and thus the <span class="hlt">electron</span> acceleration, using the method of the invention. 21 figs.</p> <div class="credits"> <p class="dwt_author">Umstadter, D.; Esarey, E.; Kim, J.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-06-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21347274"> <span id="translatedtitle">A high current density <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The design, performance, and characteristics of a <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun are presented. The <span class="hlt">plasma</span> cathode is based on a hollow cathode direct current discharge, and the <span class="hlt">electron</span> beam is accelerated by pulse voltage. By discharging at high gas pressure and operating at low gas pressure, both the maximum accelerating voltage and maximum emitting current could be increased. Utilizing argon, with the accelerating voltage up to 9 kV and gas pressure down to 52 mPa, the gun is able to generate an <span class="hlt">electron</span> beam of about 4.7 A, and the corresponding emitting current density is about 600 A/cm{sup 2}.</p> <div class="credits"> <p class="dwt_author">Fu Wenjie; Yan Yang; Li Wenxu; Li Xiaoyun; Wu Jianqiang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22068878"> <span id="translatedtitle">Kinetic description of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with orbital angular momentum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We describe the kinetic theory of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with orbital angular momentum or twisted plasmons. The conditions for a twisted Landau resonance to exist are established, and this concept is introduced for the first time. Expressions for the kinetic dispersion relation and for the <span class="hlt">electron</span> Landau damping are derived. The particular case of a Maxwellian <span class="hlt">plasma</span> is examined in detail. The new contributions to wave dispersion and damping due the orbital angular momentum are discussed. It is shown that twisted plasmons can be excited by rotating <span class="hlt">electron</span> beams.</p> <div class="credits"> <p class="dwt_author">Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20861273"> <span id="translatedtitle">Three view <span class="hlt">electronically</span> scanned interferometer for <span class="hlt">plasma</span> <span class="hlt">electron</span> density measurements on the H-1 heliac</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the development of a three view <span class="hlt">electronically</span> scanned millimeter-wave interferometer for <span class="hlt">plasma</span> <span class="hlt">electron</span> density profile measurement on the H-1 heliac. The system utilizes an <span class="hlt">electronically</span> tunable backward-wave oscillator whose output is incident on a fixed blazed diffraction grating such that sweeping the source frequency effects a spatial scan of the <span class="hlt">plasma</span> cross section. Two diagonal views essentially span most of the <span class="hlt">plasma</span> cross section, while the horizontal arm views the lower half of the <span class="hlt">plasma</span>. The diffracted beams traverse the <span class="hlt">plasma</span> in <1 ms with a spatial resolution {approx}20 mm. A study of the density projection dependence on magnetic configuration shows that the presence of low-order rational surfaces in the <span class="hlt">plasma</span> gives rise to sharp density gradients in the vicinity of the surface.</p> <div class="credits"> <p class="dwt_author">Oliver, David; Howard, John; Kumar, Santhosh T. A.; Pretty, D. G.; Blackwell, B. D. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, Australian National University, Canberra, Acton 0200 (Australia)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/797847"> <span id="translatedtitle">Synchrotron radiation from <span class="hlt">electron</span> beams in <span class="hlt">plasma</span> focusing channels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Spontaneous radiation emitted from relativistic <span class="hlt">electrons</span> undergoing betatron motion in a <span class="hlt">plasma</span> focusing channel is analyzed and application to <span class="hlt">plasma</span> wakefield accelerator experiments and to the ion channel laser (ICL) are discussed. Important similarities and differences between a free <span class="hlt">electron</span> laser (FEL) and an ICL are delineated. It is shown that the frequency of spontaneous radiation is a strong function of the betatron strength parameter alpha-beta, which plays a similar role to that of the wiggler strength parameter in a conventional FEL. For alpha-beta > 1, radiation is emitted in numerous harmonics. Furthermore, alpha-beta is proportional to the amplitude of the betatron orbit, which varies for every <span class="hlt">electron</span> in the beam. The radiation spectrum emitted from an <span class="hlt">electron</span> beam is calculated by averaging the single <span class="hlt">electron</span> spectrum over the <span class="hlt">electron</span> distribution. This leads to a frequency broadening of the radiation spectrum, which places serious limits on the possibility of realizing an ICL.</p> <div class="credits"> <p class="dwt_author">Esarey, E.; Shadwick, B.A.; Catravas, P.; Leemans, W.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21274170"> <span id="translatedtitle">Nonlinear <span class="hlt">electron</span>-acoustic waves in quantum <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The nonlinear wave structure of <span class="hlt">electron</span>-acoustic waves (EAWs) is investigated in a three component unmagnetized dense quantum <span class="hlt">plasma</span> consisting of two distinct groups of <span class="hlt">electrons</span> (one inertial cold <span class="hlt">electron</span>, and other inertialess hot <span class="hlt">electrons</span>) and immobile ions. By employing one dimensional quantum hydrodynamic model and standard reductive perturbation technique, a Korteweg-de-Vries equation governing the dynamics of EAWs is derived. Both compressive and rarefactive solitons along with periodical potential structures are found to exist for various ranges of dimensionless quantum parameter H. The quantum mechanical effects are also examined numerically on the profiles of the amplitude and the width of <span class="hlt">electron</span>-acoustic solitary waves. It is observed that both the amplitude and the width of <span class="hlt">electron</span>-acoustic solitary waves are significantly affected by the parameter H. The relevance of the present investigation to the astrophysical ultradense <span class="hlt">plasmas</span> is also discussed.</p> <div class="credits"> <p class="dwt_author">Sah, O. P.; Manta, J. [Department of Physics, Birjhora Mahavidyalaya, Pancha-Swahid Path, Bongaigaon, Assam 783380 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55432785"> <span id="translatedtitle">Experiments on 2D Vortex Patterns with a Photoinjected Pure <span class="hlt">Electron</span> <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The equations governing the evolution of a strongly magnetized pure <span class="hlt">electron</span> <span class="hlt">plasma</span> are analogous to those of an ideal 2D fluid; <span class="hlt">plasma</span> density