Note: This page contains sample records for the topic plasma sheet electrons from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Dynamics of energetic plasma sheet electrons  

NASA Astrophysics Data System (ADS)

The dynamics of energetic plasma sheet electrons plays an important role in many geomagnetic processes. The intent of this thesis is to extend the current understanding of the relationship between the solar wind and energetic plasma sheet electrons (~> 40 keV ), as well as the variability of these electrons within the plasma sheet. The statistical relationship between tens of keV plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated, using plasma sheet measurements from Cluster (2001 - 2005) and Geotail (1998 - 2005), and concurrent solar wind measurements from ACE. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, IMF B z , and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) there is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity; (2) this correlation is valid throughout the plasma sheet and extends to distances of X GSM =-30 R E ; (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density; (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF); (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies; and (6) there is a strong correlation between energetic electrons in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. In addition, the variability of energetic electron fluxes within the plasma sheet is explored. Interesting events were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp (rising and falling) variations in plasma sheet energetic electron fluxes during a single plasma sheet crossing. Case studies are presented for each type of event. The time it takes to fill/empty the plasma sheet of energetic electrons is quantified based on these events. Extreme events, most of which are associated with enhanced geomagnetic activity, showed that energetic electrons in the plasma sheet can vary up to several orders of magnitude. Interestingly, the energetic electron fluxes inside the plasma sheet can still undergo rapid variations when the solar wind is calm and geomagnetic activity is low.

Burin Des Roziers, Edward

2009-06-01

2

Spatial distribution of energetic plasma sheet electrons.  

NASA Technical Reports Server (NTRS)

The spatial distribution of energetic plasma sheet electrons (E greater than 50 keV) out to a radial distance of 24 earth radii using data from electron spectrometer and fluxgate magnetometer experiments on Ogo 5 is presented. A comparison of distributions in geocentric solar magnetospheric coordinates (GSM) prepared with and without the use of a neutral sheet model indicates that the use of such a model facilitates organization of plasma sheet data. The percentage of flux occurrence above a given flux threshold falls off rapidly with distance from the neutral sheet. Contours of constant percentage of occurrence diverge slightly from the neutral sheet at local times away from midnight. This effect decreases with increasing flux threshold.

Walker, R. J.; Farley, T. A.

1972-01-01

3

Observations of Electron Vorticity in the Inner Plasma Sheet  

NASA Technical Reports Server (NTRS)

From a limited number of observations it appears that vorticity is a common feature in the inner plasma sheet. With the four Cluster spacecraft and the four PEACE instruments positioned in a tetrahedral configuration, for the first time it is possible to directly estimate the electron fluid vorticity in a space plasma. We show examples of electron fluid vorticity from multiple plasma sheet crossings. These include three time periods when Cluster passed through a reconnection ion diffusion region. Enhancements in vorticity are seen in association with each crossing of the ion diffusion region.

Gurgiolo, C.; Goldstein, M. L.; Vinas, A. F.; Matthaeus, W. H.; Fazakerley, A. N.

2011-01-01

4

Transport of the plasma sheet electrons to the geostationary distances  

NASA Astrophysics Data System (ADS)

The transport and acceleration of low energy electrons (10-250 keV) from the plasma sheet to the geostationary orbit were investigated. Two moderate storm events, which occurred on November 6-7, 1997 and June 12-14, 2005, were modeled using the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) with the boundary set at 10 RE in the plasma sheet. The output of the IMPTAM model was compared to the observed electron fluxes in four energy ranges measured onboard the LANL spacecraft by the SOPA instrument. It was found that the large-scale convection in combination with substorm-associated impulsive fields are the drivers of the transport of plasma sheet electrons from 10 RE to geostationary orbit at 6.6 RE during storm times. The addition of radial diffusion had no significant influence on the modeled electron fluxes. At the same time, comparison between the modeled electron fluxes and observed ones showed two orders of difference most likely due to inaccuracy of electron boundary conditions and omission of the important loss processes due to wave-particle interactions. This did not allow us to accuractly reproduce the dynamics of 150-225 keV electron fluxes. The choice of the large-scale convection electric field model used in simulations did not significantly influence on the modeled electron fluxes, since there is not much difference between the equipotential contours given by the Volland-Stern and Boyle et al. [1997] models at the distances from 10 to 6.6 RE in the plasma sheet. Using the TS05 model for the background magnetic field instead of the T96 model resulted in larger deviations of the modeled electron fluxes from the observed ones due to specific features of the TS05 model. The increase in the modeled electron fluxes can be as large as three orders of magnitude when substorm-associated electromagnetic fields were taken into account. The obtained model distribution of low energy electron fluxes can be used as an input to the radiation belt models. This seed population for radiation belts will affect the local acceleration up to relativistic energies.

Ganushkina, N. Y.; Amariutei, O. A.; Shprits, Y.; Liemohn, M. W.

2012-12-01

5

Quantitative Comparison of Measured Plasma Sheet Electron Energy Flux and Remotely Sensed Auroral Electron Energy Flux  

NASA Astrophysics Data System (ADS)

In situ plasma sheet observations and auroral images give us two views of magnetospheric dynamics. With in situ observations, we get a detailed point measurement; auroral images give us a global view. Previous studies have shown an excellent correlation between dynamic plasma behavior in the plasma sheet and auroral activity. Here we extend the previous work with quantitative comparisons between the two regions. We directly compare the electron energy flux measured in the plasma sheet with the electron energy flux into the ionosphere inferred from auroral images. We find that during quiet times, the plasma sheet is able to supply the aurora with nearly all of the observed energy flux. During intervals of intense auroral emission, the electron spectrum in the conjugate region of the plasma sheet changes, increasing the amount of energy flux incident on the ionosphere. However, the increases in the plasma sheet energy flux is not enough to account for the inferred energy flux into the ionosphere from the images by nearly an order of magnitude. This implies that additional energy flux must be entering the loss cone through pitch angle diffusion or through the presence of parallel electric fields between the plasma sheet and the ionosphere during intervals of intense auroral emission. A likely source of this additional energy flux is the low altitude auroral acceleration region. >http://www.ess.washington.edu/People/Students/matt/AGU2001/

Fillingim, M. O.; Parks, G. K.; Chua, D.; Germany, G. A.; Lin, R. P.; McCarthy, M.

2001-12-01

6

Cluster observations of energetic electron flux variations within the plasma sheet  

NASA Astrophysics Data System (ADS)

The variability of energetic electron fluxes (>40 keV) within the plasma sheet is explored using measurements from the Cluster spacecraft from 2001 through 2005. Only cases where the spacecraft remains inside the plasma sheet throughout the event are considered. Interesting cases were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp (rising and falling) variations in plasma sheet energetic electron fluxes during a single plasma sheet crossing. Case studies are presented for each type of event. The time it takes to fill/empty the plasma sheet of energetic electrons is quantified based on these events. Extreme events, most of which are associated with enhanced geomagnetic activity, showed that energetic electrons in the plasma sheet can vary up to several orders of magnitude. Interestingly, the energetic electron fluxes inside the plasma sheet can still undergo rapid variations when the solar wind is calm and geomagnetic activity is low.

Burin des Roziers, E.; Li, X.; Baker, D. N.; Fritz, T. A.; McPherron, R. L.; Dandouras, I.

2009-11-01

7

Graphene sheets embedded carbon film prepared by electron irradiation in electron cyclotron resonance plasma  

SciTech Connect

We used a low energy electron irradiation technique to prepare graphene sheets embedded carbon (GSEC) film based on electron cyclotron resonance plasma. The particular {pi} electronic structure of the GSEC film similar to bilayer graphene was verified by Raman spectra 2D band analyzing. The phase transition from amorphous carbon to GSEC was initiated when electron irradiation energy reached 40 eV, and the growth mechanism of GSEC was interpreted as inelastic scattering of low energy electrons. This finding indicates that the GSEC film obtained by low energy electron irradiation can be excepted for widely applications with outstanding electric properties.

Wang Chao; Diao Dongfeng; Fan Xue; Chen Cheng [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi'an Jiaotong University, 710049 Xi'an (China)

2012-06-04

8

Simultaneous excitation of broadband electrostatic noise and electron cyclotron waves in the plasma sheet  

NASA Technical Reports Server (NTRS)

Electron cyclotron harmonics and broadband electrostatic noise (BEN) are often observed in the earth's outer plasma sheet. While it is well known that ion beams in the plasma sheet boundary layer can generate BEN, new two-dimensional electrostatic simulations show that field-aligned ion beams with a small perpendicular ring distribution can drive not only BEN, but also electron cyclotron harmonic (ECH) waves simultaneously. Simulation results are presented here using detailed diagnostics of wave properties, including dispersion relations of all wave modes.

Berchem, Jean P.; Schriver, David; Ashour-Abdalla, Maha

1991-01-01

9

Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources  

NASA Technical Reports Server (NTRS)

Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the entire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function, and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8)eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, Thomas E.

1998-01-01

10

Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources  

NASA Technical Reports Server (NTRS)

Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.

1998-01-01

11

Tailward electrons at the lobe-plasma sheet interface detected upon dipolarizations  

Microsoft Academic Search

We report on highly asymmetric spectra of electrons observed at the lobe-plasma sheet interface in the near-Earth (R<15RE) magnetotail. The data were obtained as the Geotail spacecraft made the interface crossings when magnetic field dipolarizations were taking place. In the spectra, electrons in the 0.1 keV to a few keV energy range are seen to flow tailward, with their pitch

M. Fujimoto; T. Nagai; N. Yokokawa; Y. Yamade; T. Mukai; Y. Saito; S. Kokubun

2001-01-01

12

Sources of electron pitch angle anisotropy in the magnetotail plasma sheet  

NASA Astrophysics Data System (ADS)

We survey the properties of electron pitch angle distributions in the magnetotail plasma sheet at a distance between 15 and 19 RE from the Earth, using data from the Plasma Electron and Current Experiment (PEACE) instrument. We limit our survey to those pitch angle distributions measured when the interplanetary magnetic field (IMF) had been steadily northward or steadily southward for the previous 3 h. We find that, at sub-keV energies, the plasma sheet electron pitch angle distribution has an anisotropy such that there is a higher differential energy flux of electrons in the (anti-) field-aligned directions. Fitting the measured pitch angle distributions with both a single and two component kappa distribution reveals that this anisotropy is the result of the presence of a second, cold, component of electrons that is observed more often than not, and occurs during both the northward and southward IMF intervals. We present evidence that suggests the cold electron component has an ionospheric, rather than magnetosheath, source and is linked to the large-scale field-aligned current systems that couple the magnetosphere and ionosphere.

Walsh, Andrew P.; Fazakerley, A. N.; Forsyth, C.; Owen, C. J.; Taylor, M. G. G. T.; Rae, I. J.

2013-10-01

13

Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions  

SciTech Connect

The authors analyze 127 one-hour average samples of central plasma sheet ions and electrons in order to determine spectral characteristics of thee magnetotail particle populations during periods of low geomagnetic activity (AE<100nT). Particle data from the low energy proton and electron differential energy analyzer (LEPEDEA) and medium energy particle instrument (MEPI) on ISEE 1 were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances R > 12 R{sub E}. They find that, for even the longest periods sampled, the nearly isotropic central plasma sheet total ion and electron populations were measured to be continuous particle distributions from the lowest energy of tens of eV/e to a few hundred keV. The kappa distribution most often reproduces the observed differential energy spectra. Spectra dominated by a single kappa functional form are observed during 83 (99) hours for ions (electrons). Spectra which are not dominated by a single kappa functional form can usually be closely approximated by superposed kappa functional forms. For both ions and electrons {kappa} is typically in the range 4-8, with a most probable value between 5 and 6, so that the spectral shape is distinctly non-Maxwellian. E{sub oi} and E{sub oe} are highly correlated, whereas {kappa}{sub i} and {kappa}{sub e} are not correlated; {kappa}{sub i} is roughly proportional to E{sub oi}{sup 1/2}, whereas {kappa}{sub e} is not correlated with E{sub oe}. They statistically investigate the importance of flux and energy contributions from extramagnetospheric sources by separately analyzing intervals when simultaneously measured interplanetary particle fluxes are either enhanced or at low levels.

Christon, S.P.; Williams, D.J.; Mitchell, D.G. (Johns Hopkins Univ., Laurel, MD (USA)); Frank, L.A.; Huang, C.Y. (Univ. of Iowa, Iowa City (USA))

1989-10-01

14

Sources of Electron Pitch Angle Anisotropy in the Magnetotail Plasma Sheet  

NASA Astrophysics Data System (ADS)

We survey the properties of electron pitch angle distributions in the magnetotail plasma sheet at a distance between 15 and 19 RE from the Earth, using data from the Cluster PEACE instrument. We limit our survey to those pitch angle distributions measured when the IMF had been steadily northward or steadily southward for the previous three hours. We find that, at sub- keV energies the plasma sheet electron pitch angle distribution has an anisotropy such that there is a higher differential energy flux of electrons in the (anti- ) field-aligned directions. Fitting the measured pitch angle distributions with both a single and two component kappa distribution reveals that this anisotropy is the result of the presence of a second, cold, component of electrons that is observed more often than not, and occurs during both the northward and southward IMF intervals. We present evidence that suggests the cold electron component has an ionospheric, rather than magnetosheath, source and is linked to the large scale field aligned current systems that couple the magnetosphere and ionosphere.

Walsh, A. P.; Fazakerley, A. N.; Forsyth, C.; Owen, C. J.; Taylor, M. G.; Rae, J.

2013-12-01

15

Geomagnetic conjugate observations of plasma-sheet electrons by the FAST and THEMIS satellites  

NASA Astrophysics Data System (ADS)

Abstract<p label="1">We investigate pitch-angle distributions and spectral shapes of auroral <span class="hlt">electrons</span> simultaneously observed during three conjunction events by the FAST satellite at altitudes of 2500-3500 km and by the THEMIS satellite in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 7-13 RE. All three events were on the lower latitude of the auroral oval. Conjunction event 1 occurred at ~1914:45 UT on 10 April 2008. <span class="hlt">Electron</span> spectra at energies of 0.1-3 keV are correlated well between the two satellites, while the precipitating <span class="hlt">electrons</span> above 3 keV are missing at FAST. Event 2 occurred at 1255:26 UT on 26 April 2008. <span class="hlt">Electron</span> spectra above 3 keV are correlated well between the two satellites. An additional broad spectral peak at energies of 0.1-0.5 keV was observed by FAST. Event 3 occurred at 0058:04 UT on 25 December 2008. Precipitating <span class="hlt">electrons</span> of 0.5-5 keV obtained by FAST are correlated well with those of THEMIS-C, while a monoenergetic peak at 0.1-0.2 keV was observed only by FAST. For the three conjunction events, we conclude that high-energy precipitating auroral <span class="hlt">electrons</span> observed by FAST directly come from the equatorial <span class="hlt">plasma</span> <span class="hlt">sheet</span>, while low-energy precipitating <span class="hlt">electrons</span> may come from middle altitudes as a result of acceleration by static potential differences. For missing high-energy (>3 keV) <span class="hlt">electrons</span> of event 1, we speculate that the pitch-angle scattering by waves occurs only at a limited energy range.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Shiokawa, K.; McFadden, J. P.; Seki, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">16</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..1610718G"> <span id="translatedtitle">Transport and acceleration of <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> to geostationary orbit (Invited)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transport and acceleration of the <span class="hlt">electrons</span> with energies less than 200 keV from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to geostationary orbit were investigated. These <span class="hlt">electron</span> fluxes constitute the seed population for the high energy MeV particles in the radiation belts and are responsible for hazardous phenomena such as surface charging. We modeled several quiet and storm events, when the presence of isolated substorms was seen in the AE index. We used the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with the boundary at 10 Re with Tsyganenko and Mukai moment values for the <span class="hlt">electrons</span> in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The output of the IMPTAM modeling was compared to the observed <span class="hlt">electron</span> fluxes in ten energy ranges (from 5 to 50 keV) measured onboard the AMC 12 geostationary spacecraft by the CEASE II ESA instrument and to LANL data from MPA and SOPA instruments. The behavior of the fluxes depends on the <span class="hlt">electron</span> energy. IMPTAM model, driven by the observed parameters such as IMF By and Bz, solar wind velocity, number density and dynamic pressure and the Dst index, was not able to reproduce the observed peaks in the <span class="hlt">electron</span> fluxes when no significant variations are present in those parameters. The variations of the observed fluxes during this non-storm period are due to substorm activity. We introduced the substorm-associated electromagnetic fields by launching several electromagnetic pulses at the substorm onsets during the modeled period. The substorm-associated increases in the observed fluxes can be captured by IMPTAM when substorm-associated electromagnetic fields are taken into account. Modifications of the pulse model used here are needed, especially related to the pulse front velocity and arrival time.</p> <div class="credits"> <p class="dwt_author">Ganushkina, Natalia</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">17</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5597563"> <span id="translatedtitle">The relationship between diffuse auroral and <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distributions near local midnight</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A study of the relationship between diffuse auroral and <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electron</span> distributions in the energy range from 50 eV to 20 keV in the midnight region was conducted using data from the P78-1 and SCATHA satellites. From 1 1/2 years of data, 14 events were found where the polar-orbiting P78-1 satellite and the near-geosynchronous SCATHA satellite were approximately on the same magnetic field line simultaneously, with SCATHA in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and P78-1 in the diffuse auroral region. For all cases the spectra from the two satellites are in good quantitative agreement. For 13 of the 14 events the pitch angle distribution measured at P78-1 was isotropic for angles mapping into the loss cone at the SCATHA orbit. For one event the P78-1 <span class="hlt">electron</span> flux decreased with pitch angle toward the field line direction. At SCATHA the distributions outside the loss cone were most commonly butterfly or pancake, although distributions peaked toward the field line were sometimes observed at energies below 1 keV. <span class="hlt">Electron</span> distributions, as measured where there is isotropy within the loss cone but anisotropy outside the loss cone, are inconsistent with current theories for the scattering of cone for the distribution measured at SCATHA, the <span class="hlt">electron</span> precipitation lifetimes were calculated for the 14 events. Because the distributions are anisotropic at pitch angles away from the loss cone, the calculated lifetimes significantly exceed the lifetimes in the limit when the flu is isotropic at all pitch angles. The computed precipitation lifetimes are found to be weakly dependent on magnetic activity. The average lifetimes exceed those for the case of isotropy at all pitch angles by a factor between 2 and 3 for {ital Kp}{le}2 and approximately 1.5 for {ital Kp}{gt}2. {copyright} American Geophysical Union 1989</p> <div class="credits"> <p class="dwt_author">Schumaker, T.L. (Physics Department, Boston College, Chestnut Hill, Massachusetts (US)); Gussenhoven, M.S. (Physics Department, Boston College, Chestnut Hill, Massachusetts (US)); Hardy, D.A. (Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts); Carovillano, R.L. (Physics Department, Boston College, Chestnut Hill, Massachusetts)</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">18</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.9220L"> <span id="translatedtitle">On energetic <span class="hlt">electrons</span> (>38 keV) in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Data analysis and modeling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The spatial distribution of >38 keV <span class="hlt">electron</span> fluxes in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) and the statistical relationship between the CPS <span class="hlt">electron</span> fluxes and the upstream solar wind and interplanetary magnetic field (IMF) parameters are investigated quantitatively using measurements from the Geotail satellite (1998-2004) at geocentric radial distances of 9-30 RE in the night side. The measured <span class="hlt">electron</span> fluxes increase with closer distance to the center of the neutral <span class="hlt">sheet</span>, and exhibit clear dawn-dusk asymmetry, with the lowest fluxes at the dusk side and increasing toward the dawn side. The asymmetry persists along the Earth's magnetotail region (at least to Geotail's apogee of 30 RE during the period of interest). Both the individual case and the statistical analysis on the relationship between >38 keV CPS <span class="hlt">electron</span> fluxes and solar wind and IMF properties show that larger (smaller) solar wind speed and southward (northward) IMF Bz imposed on the magnetopause result in higher (lower) energetic <span class="hlt">electron</span> fluxes in the CPS with a time delay of about 1 hour, while the influence of solar wind ion density on the energetic <span class="hlt">electrons</span> fluxes is insignificant. Interestingly, the energetic <span class="hlt">electron</span> fluxes at a given radial distance correlate better with IMF Bz than with the solar wind speed. Based on these statistical analyses, an empirical model is developed for the first time to describe the 2-D distribution (along and across the Earth's magnetotail) of the energetic <span class="hlt">electron</span> fluxes (>38 keV) in the CPS, as a function of the upstream solar wind and IMF parameters. The model reproduces the observed energetic <span class="hlt">electron</span> fluxes well, with a correlation coefficient R equal to 0.86. Taking advantage of the time delay, full spatial distribution of energetic <span class="hlt">electron</span> fluxes in the CPS can be predicted about 2 hours in advance using the real-time solar wind and IMF measurements at the L1 point: 1 hour for the solar wind to propagate to the magnetopause and a 1 hour delay for the best correlation. Such a prediction helps us to determine whether there are enough <span class="hlt">electrons</span> in the CPS available to be transported inward to enhance the outer <span class="hlt">electron</span> radiation belt.</p> <div class="credits"> <p class="dwt_author">Luo, Bingxian; Tu, Weichao; Li, Xinlin; Gong, Jiancun; Liu, Siqing; Burin des Roziers, E.; Baker, D. N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">19</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7174737"> <span id="translatedtitle">Observations of correlated broadband electrostatic noise and <span class="hlt">electron</span>-cyclotron emissions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Technical report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electric field wave observations in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the earth's magnetosphere show the correlated occurrence of broadband electrostatic noise and electrostatic <span class="hlt">electron</span> cyclotron harmonic emissions. A model is proposed in which the broadband emissions are <span class="hlt">electron</span> acoustic waves generated by an observed low energy <span class="hlt">electron</span> beam, and the cyclotron emissions are generated by the hot <span class="hlt">electron</span> loss cone instability. The high degree of correlation between the two emissions is provided in the model by the presence of the cold <span class="hlt">electron</span> beam population, which allows both of the <span class="hlt">plasma</span> instabilities to grow.</p> <div class="credits"> <p class="dwt_author">Roeder, J.L.; Angelopoulos, V.; Baumjohann, W.; Anderson, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-11-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">20</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6920970"> <span id="translatedtitle"><span class="hlt">Plasma</span> physics and <span class="hlt">plasma</span> <span class="hlt">electronics</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This book contains the proceedings on <span class="hlt">plasma</span> physics and <span class="hlt">plasma</span> <span class="hlt">electronics</span>. Topics covered included: experiments on the L-2 stellarator, investigation of <span class="hlt">plasma</span> radiation on the L-2 stellarator, investigation of peripheral <span class="hlt">plasma</span> on the L-2 stellarator, and formation, evolution and explosive disruption of current <span class="hlt">sheets</span> in <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Kovrizhnykh, L.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a style="font-weight: bold;">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_2");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_1 div --> <div id="page_2" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">21</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gl/v023/i013/96GL01600/96GL01600.pdf"> <span id="translatedtitle">Fast impulsive reconnection and current <span class="hlt">sheet</span> intensification due to <span class="hlt">electron</span> pressure gradients in semi-collisional <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A numerical simulation of forced reconnection and current <span class="hlt">sheet</span> growth due to inward boundary flows in semi-collisional <span class="hlt">plasmas</span> is presented, and contrasted with the results of an incompressible resistive MHD simulation in the high-Lundquist-number regime. Due to the presence of <span class="hlt">electron</span> pressure (or Hall currents) in the generalized Ohm's law, the reconnection dynamics makes an impulsive transition from a slow</p> <div class="credits"> <p class="dwt_author">Z. W. Ma; A. Bhattacharjee</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">22</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N19990071231"> <span id="translatedtitle">Inner Magnetospheric Superthermal <span class="hlt">Electron</span> Transport: Photoelectron and <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> <span class="hlt">Electron</span> Sources.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Two time-dependent kinetic models of superthermal <span class="hlt">electron</span> transport are combined to conduct global calculations of the nonthermal <span class="hlt">electron</span> distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this co...</p> <div class="credits"> <p class="dwt_author">G. V. Khazanov M. W. Liemohn J. U. Kozyra T. E. Moore</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">23</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880052817&hterms=Ion+driven+instability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DIon%2Bdriven%2Binstability"> <span id="translatedtitle">Simulation of electrostatic turbulence in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer with <span class="hlt">electron</span> currents and bean-shaped ion beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> data from ISEE-1 show the presence of <span class="hlt">electron</span> currents as well as energetic ion beams in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV <span class="hlt">electrons</span> and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold <span class="hlt">electron</span> beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold <span class="hlt">electron</span> beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.</p> <div class="credits"> <p class="dwt_author">Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">24</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53785192"> <span id="translatedtitle">Excitation of electrostatic <span class="hlt">electron</span>-ion hybrid waves due to sheared flows in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The nature and origin of observed low frequency wave activity in the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> is not yet well understood. Spacecraft observations reveal the simultaneous presence of an ambipolar south-north electric field that is localized to the interface of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer with the tail lobes. This inhomogeneous electric field which is transverse to the earthward directed magnetic</p> <div class="credits"> <p class="dwt_author">Peter Schuck; Gurudas Ganguli; Adinarayan Sundaram; Donald Fairfield; Abhijit Sen</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">25</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21103818"> <span id="translatedtitle">Study of magnetic configuration effects on <span class="hlt">plasma</span> boundary and measurement of edge <span class="hlt">electron</span> density in the spherical tokamak compact <span class="hlt">plasma</span> wall interaction experimental device using Li <span class="hlt">sheet</span> beam</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Two-dimensional lithium beam imaging technique has been applied in the spherical tokamak CPD (compact <span class="hlt">plasma</span> wall interaction experimental device) to study the effects of magnetic field configurations on rf <span class="hlt">plasma</span> boundary in the absence of any <span class="hlt">plasma</span> current, and also for the measurement of a two-dimensional edge <span class="hlt">electron</span> density profile. With the present working condition of the diagnostics, the minimum measured <span class="hlt">electron</span> density can be {approx}1.0x10{sup 16} m{sup -3}; this is considered to be the definition for the <span class="hlt">plasma</span> boundary. The performance of the lithium <span class="hlt">sheet</span> beam is absolutely calibrated using a quartz crystal monitor. Experimental results reveal that magnetic field configuration, either mirror or so-called null, critically affects the rf <span class="hlt">plasma</span> boundary. A sharp lower boundary is found to exist in magnetic null configuration, which is quite different from that in the weak mirror configuration. Theoretical calculations of particle drift orbit and magnetic connection length (wall-to-wall) suggest that only mirror trapped particles are confined within a region where the magnetic connection length is {approx}4.0 m or more. A two-dimensional edge <span class="hlt">electron</span> density profile is obtained from the observed Li I intensity profile. Overdense <span class="hlt">plasma</span> formation is discussed from the viewpoint of mode conversion of rf wave into <span class="hlt">electron</span> Bernstein wave and its dependence on the <span class="hlt">electron</span> density profile.</p> <div class="credits"> <p class="dwt_author">Bhattacharyay, R.; Inada, Y.; Kikukawa, T.; Watanabe, S.; Sasaki, K.; Ryoukai, T. [Interdisciplinary Graduate School of Engineering Science, Kyushu University, Kasuga, Fukuoka 816 8580 (Japan); Zushi, H.; Hasegawa, M.; Hanada, K.; Sato, K. N.; Nakamura, K.; Sakamoto, M.; Idei, H.; Yoshinaga, T.; Kawasaki, S.; Nakashima, H.; Higashijima, A. [Research Institute of Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816 8580 (Japan); Morisaki, T. [National Institute for Fusion Science, Toki 509 5292 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-02-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">26</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JGR....9411791K"> <span id="translatedtitle">On Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Several models of Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> structure are studied, focusing on the ways in which they organize aspects of the observed Voyager 2 magnetic field characteristics as a function of radial distance from Jupiter. A technique which locates the interfaces between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the lobes from magnetic data is presented. This boundary location is used to test models of the magnetotail. Improved variations of the hinged-magnetodisk and the magnetic anomaly models are given in which the parameters are optimized by using structural information from observed magnetic equator and <span class="hlt">plasma-sheet</span>-lobe boundary crossings.</p> <div class="credits"> <p class="dwt_author">Khurana, Krishan K.; Kivelson, Margaret G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">27</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..11611205A"> <span id="translatedtitle">Periodic motion of Saturn's nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Saturn's magnetosphere is replete with magnetospheric periodicities; magnetic fields, <span class="hlt">plasma</span> parameters, energetic particle fluxes, and radio emissions have all been observed to vary at a period close to that of Saturn's assumed sidereal rotation rate. In particular, periodicities in Saturn's magnetotail can be interpreted in terms of periodic vertical motion of Saturn's outer magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The phase relationships between periodicities in different measurable quantities are a key piece of information in validating the various published models that attempt to relate periodicities in different quantities at different locations. It is important to empirically extract these phase relationships from the data in order to distinguish between these models, and to provide further data on which to base new conceptual models. In this paper a simple structural model of the flapping of Saturn's <span class="hlt">plasma</span> <span class="hlt">sheet</span> is developed and fitted to <span class="hlt">plasma</span> densities in the outer magnetosphere, measured by the Cassini <span class="hlt">electron</span> spectrometer. This model is used to establish the phase relationships between magnetic field periodicities in the cam region of the magnetosphere and the flapping of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We find that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flaps in phase with Br and B$\\theta$ and in quadrature with the B$\\varphi$ component in the core/cam region. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> phase also has a strong local time asymmetry. These results support some conceptual periodicity models but are in apparent contradiction with others, suggesting that future work is required to either modify the models or study additional phase relationships that are important for these models.</p> <div class="credits"> <p class="dwt_author">Arridge, C. S.; Andr, N.; Khurana, K. K.; Russell, C. T.; Cowley, S. W. H.; Provan, G.; Andrews, D. J.; Jackman, C. M.; Coates, A. J.; Sittler, E. C.; Dougherty, M. K.; Young, D. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">28</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSM42B..07G"> <span id="translatedtitle">Effect of an MLT dependent <span class="hlt">electron</span> loss rate on the inner magnetosphere electrodynamics and <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration to the ring current region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles into the ring current region is strongly affected by the penetrating convection electric field, which is the result of the large-scale magnetosphere-ionosphere (M-I) electromagnetic coupling. One of the main factors controlling this coupling is the ionospheric conductance. As <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> drift earthward, they get scattered into the loss cone due to wave-particle interactions and precipitate to the ionosphere, producing auroral conductance. Realistic <span class="hlt">electron</span> loss is thus important for modeling the (M-I) coupling and penetration of <span class="hlt">plasma</span> <span class="hlt">sheet</span> into the inner magnetosphere. To evaluate the significance of <span class="hlt">electron</span> loss rate, we used the Rice Convection Model (RCM) coupled with a force-balanced magnetic field to simulate <span class="hlt">plasma</span> <span class="hlt">sheet</span> transport under different <span class="hlt">electron</span> loss rates and under self-consistent electric and magnetic field. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion and <span class="hlt">electron</span> sources for the simulations are based on the Geotail observations. Two major rates are used: different portions of i) strong pitch-angle diffusion everywhere <span class="hlt">electron</span> loss rate (strong rate) and ii) a more realistic loss rate with its MLT dependence determined by wave activity (MLT rate). We found that the dawn-dusk asymmetry in the precipitating <span class="hlt">electron</span> energy flux under the MLT rate, with much higher energy flux at dawn than at dusk, agrees better with statistical DMSP observations. <span class="hlt">Electrons</span> trapped inside L ~ 8 RE can remain there for many hours under the MLT rate, while those under the strong rate get lost within minutes. Compared with the strong rate, the remaining <span class="hlt">electrons</span> under the MLT rate cause higher conductance at lower latitudes, allowing for less efficient electric field shielding to convection enhancement, thus further earthward penetration of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> into the inner magnetosphere. Therefore, our simulation results indicate that the <span class="hlt">electron</span> loss rate can significantly affect the electrodynamics of the ring current region. Development of a more realistic <span class="hlt">electron</span> loss rate model for the inner magnetosphere is thus much needed and will become feasible with new observations from the upcoming RBSP mission.</p> <div class="credits"> <p class="dwt_author">Gkioulidou, M.; Wang, C.; Wing, S.; Lyons, L. R.; Wolf, R. A.; Hsu, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">29</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5057689"> <span id="translatedtitle">Variability of <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">From 1200 UT on October 27 to 1200 UT on October 28, 1972, Imp 7 moved across the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 35 R/sub E/ and remained within 2 R/sub E/ of the expected position at the neutral <span class="hlt">sheet</span>. During this 24-hour interval, at least five substorms occurred on the ground. We present Imp 7 observations by using high-time resolution data that illustrate the rapid variability and multiplicity of <span class="hlt">plasma</span> <span class="hlt">sheet</span> phenomena both during and between substorms. Tailward <span class="hlt">plasma</span> flows, lasting for intervals as short as 2 min and as long as 40 min, were associated with four, and possibly five, of the substorm onsets. Prolonged earthward flow was detected during the expansion phases of two substorms. Between substorms, moderate but variable <span class="hlt">plasma</span> flows were observed, including two intervals of dawn-directed flow and large B/sub y/ field components. Hence the tail field can be significantly distorted out of the noon-midnight meridian, possibly by the associated <span class="hlt">plasma</span> flow stresses. During a rapid 90-s neutral <span class="hlt">sheet</span> crossing the magnetic field rotated smoothly through 180 /sup 0/ with B/sub y/ dominating the field strength at the center. The smooth field rotation suggests that the structure of the neutral <span class="hlt">sheet</span> may sometimes resemble the hydromagnetic rotational discontinuity. Highly turbulent magnetic fields were detected during an earthward <span class="hlt">plasma</span> flow interval in which the north-south component changed from +8 ..gamma.. to -8 ..gamma.. in 1 s; the field exhibited large fluctuations in all three components on time scales of 1--10 s. The high level of magnetic turbulence may significantly contribute to <span class="hlt">plasma</span> <span class="hlt">sheet</span> dissipation.</p> <div class="credits"> <p class="dwt_author">Coroniti, F.V.; Frank, L.A.; Williams, D.J.; Lepping, R.P.; Scarf, F.L.; Krimigis, S.M.; Gloeckler, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">30</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v085/iA06/JA085iA06p02957/JA085iA06p02957.pdf"> <span id="translatedtitle">Variability of <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">From 1200 UT on October 27 to 1200 UT on October 28, 1972, Imp 7 moved across the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 35 R\\/sub E\\/ and remained within 2 R\\/sub E\\/ of the expected position at the neutral <span class="hlt">sheet</span>. During this 24-hour interval, at least five substorms occurred on the ground. We present Imp 7 observations by using high-time resolution</p> <div class="credits"> <p class="dwt_author">F. V. Coroniti; L. A. Frank; D. J. Williams; R. P. Lepping; F. L. Scarf; S. M. Krimigis; G. Gloeckler</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">31</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/820113"> <span id="translatedtitle">MHD Ballooning Instability in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the <span class="hlt">plasma</span> compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the <span class="hlt">plasma</span> compressibility the MHD ballooning modes are unstable for the entire <span class="hlt">plasma</span> <span class="hlt">sheet</span> where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current <span class="hlt">sheet</span> region in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped <span class="hlt">electron</span> dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current <span class="hlt">sheet</span> region where the free energy associated with the <span class="hlt">plasma</span> pressure gradient and magnetic field curvature is maximum.</p> <div class="credits"> <p class="dwt_author">C.Z. Cheng; S. Zaharia</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">32</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JGRA..116.6215J"> <span id="translatedtitle">A statistical study of the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the net convection potential as a function of geomagnetic activity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A widely accepted explanation of the location of the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its dependence on <span class="hlt">electron</span> energy is based on drift motions of individual particles. The boundary is identified as the separatrix between drift trajectories linking the tail to the dayside magnetopause (open paths) and trajectories closed around the Earth. A statistical study of the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> using THEMIS Electrostatic Analyzer <span class="hlt">plasma</span> data from November 2007 to April 2009 enabled us to examine this model. Using a dipole magnetic field and a Volland-Stern electric field with shielding, we find that a steady state drift boundary model represents the average location of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary and reflects its variation with the solar wind electric field in the local time region between 21:00 and 06:00, except at high activity levels. However, the model does not reproduce the observed energy dispersion of the boundaries. We have also used the location of the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> to parameterize the potential drop of the tail convection electric field as a function of solar wind electric field (Esw) and geomagnetic activity. The range of Esw examined is small because the data were acquired near solar minimum. For the range of values tested (meaningful statistics only for Esw < 2 mV/m), reasonably good agreement is found between the potential drop of the tail convection electric field inferred from the location of the inner edge and the polar cap potential drop calculated from the model of Boyle et al. (1997).</p> <div class="credits"> <p class="dwt_author">Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.; Hsu, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">33</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMSM41C1880J"> <span id="translatedtitle">Magnetospheric convection strength inferred from inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its relation to the polar cap potential drop</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The sharp inner edge of the nightside <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed by the THEMIS spacecraft is shown to provide a measure of the effective convection strength that transports <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">plasma</span> into the inner magnetosphere. The effective convection strength is characterized by the difference of potential between the magnetopause terminators at dawn and at dusk. We have surveyed inner boundary crossings of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> measured by three THEMIS probes on orbits from Nov. 2007 to Apr. 2009. The values of the convection electric potential are inferred from the locations of the inner edge for different energy channels using a steady-state drift boundary model with a dipole magnetic field and a Volland-Stern electric field. When plotted against the solar wind electric field ( ), the convection electric potential is found to have a quasi-linear relationship with the driving solar wind electric field for the range of values tested (meaningful statistics only for Esw < 1.5 mV/m). Reasonably good agreement is found between the convection electric potential and the polar-cap potential drop calculated from model of Boyle et al. [1997] when the degree of shielding in the Volland-Stern potential is selected as gamma=1.5.</p> <div class="credits"> <p class="dwt_author">Jiang, F.; Kivelson, M. G.; Walker, R. J.; Khurana, K. K.; Angelopoulos, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">34</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810040197&hterms=swiss&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dswiss%2BR%2526D"> <span id="translatedtitle">Energetic ion composition of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Data obtained from the energetic ion mass spectrometer experiment on Isee 1 in the distant <span class="hlt">plasma</span> <span class="hlt">sheet</span> are presented. These data show that (1) the <span class="hlt">plasma</span> <span class="hlt">sheet</span> has a significant and variable ionospheric component (H(+) and O(+)) representing from 10% to more than 50% of the total number density and (2) there is more than one process responsible for the energization of solar wind <span class="hlt">plasma</span> (H(+) and He(++)) to <span class="hlt">plasma</span> <span class="hlt">sheet</span> energies.</p> <div class="credits"> <p class="dwt_author">Peterson, W. K.; Sharp, R. D.; Shelley, E. G.; Johnson, R. G.; Balsiger, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">35</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6581087"> <span id="translatedtitle"><span class="hlt">Electron</span> energization in the geomagnetic tail current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Electron</span> motion in the distant tail current <span class="hlt">sheet</span> is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most <span class="hlt">electrons</span> within the energy range approx.10/sup -1/-10/sup 2/ keV that enter the current <span class="hlt">sheet</span> become trapped within the magnetic field reversal region. These <span class="hlt">electrons</span> then convect earthward and gain energy from the cross-tail electric field. If the energy spectrum of <span class="hlt">electrons</span> entering the current <span class="hlt">sheet</span> is similar to that of <span class="hlt">electrons</span> from the boundary layer surrounding the magnetotail, the energy gain from the electric field produces <span class="hlt">electron</span> energy spectra comparable to those observed in the earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Thus current <span class="hlt">sheet</span> interactions can be a significant source of particles and energy for <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> as well as for <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions. A small fraction of <span class="hlt">electrons</span> within the current <span class="hlt">sheet</span> has its pitch angles scattered so as to be ejected from the current <span class="hlt">sheet</span> within the atmospheric loss cone. These <span class="hlt">electrons</span> can account for the <span class="hlt">electron</span> precipitation near the high-latitude boundary of energetic <span class="hlt">electrons</span>, which is approximately isotropic in pitch angle up to at least several hundred keV. Current <span class="hlt">sheet</span> interaction should cause approximately isotropic auroral precipitation up to several hundred keV energies, which extends to significantly lower latitudes for ions than for <span class="hlt">electrons</span> in agreement with low-altitude satellite observations. <span class="hlt">Electron</span> precipitation associated with diffuse aurora generally has a transition at 1-10 keV to anisotropic pitch angle distributions. Such <span class="hlt">electron</span> precipitation cannot be explained by current <span class="hlt">sheet</span> interactions, but it can be explained by pitch angle diffusion driven by <span class="hlt">plasma</span> turbulence.</p> <div class="credits"> <p class="dwt_author">Lyons, L.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">36</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060041666&hterms=Streamer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DStreamer"> <span id="translatedtitle">Heliospheric <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> and Coronal Streamers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">In-situ measurements of solar wind <span class="hlt">plasma</span> and magnetic field between 0.3 and 1 AU are used to investigate the structure of the heliospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span>, namely the region of enhanced <span class="hlt">plasma</span> density that surrounds the helioshperic current <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Bavassano, B.; Woo, R.; Bruno, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">37</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.7200L"> <span id="translatedtitle">Rapid loss of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic <span class="hlt">electrons</span> associated with the growth of whistler mode waves inside the bursty bulk flows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">the interval ~07:45:36-07:54:24 UT on 24 August 2005, Cluster satellites (C1 and C3) observed an obvious loss of energetic <span class="hlt">electrons</span> (~3.2-95 keV) associated with the growth of whistler mode waves inside some bursty bulk flows (BBFs) in the midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span> (XGSM ~ -17.25 RE). However, the fluxes of the higher-energy <span class="hlt">electrons</span> (?128 keV) and energetic ions (10-160 keV) were relatively stable in the BBF-impacted regions. The energy-dependent <span class="hlt">electron</span> loss inside the BBFs is mainly due to the energy-selective pitch angle scatterings by whistler mode waves within the time scales from several seconds to several minutes, and the <span class="hlt">electron</span> scatterings in different pitch angle distributions are different in the wave growth regions. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic <span class="hlt">electrons</span> have mainly a quasi-perpendicular pitch angle distribution (30<?<150) during the expansion-to-recovery development of a substorm (AE index decreases from 1677 nT to 1271 nT), and their loss can occur at almost all pitch angles in the wave growth regions inside the BBFs. Unlike the energetic <span class="hlt">electrons</span>, the low-energy <span class="hlt">electrons</span> (~0.073-2.1 keV) have initially a field-aligned pitch angle distribution (0???30 and 150???180) in the absence of whistler mode waves, and their loss in field-aligned directions is accompanied by their increase in quasi-perpendicular directions in the wave growth regions, but the loss of the low-energy <span class="hlt">electrons</span> inside the BBFs is not obvious in the presence of their large background fluxes. These observations indicate that the resonant <span class="hlt">electrons</span> in an anisotropic pitch angle distribution mainly undergo the rapid pitch angle scattering loss during the wave-particle resonances.</p> <div class="credits"> <p class="dwt_author">Li, L. Y.; Yu, J.; Cao, J. B.; Zhang, D.; Wei, X. H.; Rong, Z. J.; Yang, J. Y.; Fu, H. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">38</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920034377&hterms=thermodynamics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522thermodynamics%2522"> <span id="translatedtitle">On the thermodynamics of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The present study reinvestigates the evidence for nonadiabatic transport in the quiet central <span class="hlt">plasma</span> <span class="hlt">sheet</span>, using AMPTE IRM data from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer and active times selected on the basis of large AE values. It is found that as the <span class="hlt">plasma</span> is transported from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer into the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>, both its temperature and its density (n) increase. The <span class="hlt">plasma</span> obeys the relation p varies as n exp 4/3 for quiet times (AE is less than 100 nT) and p varies as n exp 5/3 for AE greater than 300 nT. The temperature in the quiet <span class="hlt">plasma</span> <span class="hlt">sheet</span> is usually less than 6 keV, and high-temperature values are more likely to be observed in what is defined as the active <span class="hlt">plasma</span> <span class="hlt">sheet</span>. It is suggested that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> contains a mixture of high-entropy 'bubbles' and low-entropy 'blobs.' It is argued that these either merge or are lost from the tail before they are convected into the near-earth tail.</p> <div class="credits"> <p class="dwt_author">Baumjohann, W.; Goertz, C. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">39</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14.4663P"> <span id="translatedtitle">Kinetic Ballooning/Interchange Instability in a Bent <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We use THEMIS and GOES observations to investigate the <span class="hlt">plasma</span> <span class="hlt">sheet</span> evolution on 28 February 2008 between 6:50 and 7:50 UT, when there developed strong magnetic field oscillations with period of 100 s. Using multi-spacecraft analysis of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> observations and an empirical <span class="hlt">plasma</span> <span class="hlt">sheet</span> model, we determine both the large-scale evolution of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the properties of the oscillations. We found that the oscillations exhibited signatures of kinetic ballooning/interchange instability fingers that developed in a bent current <span class="hlt">sheet</span>. The interchange oscillations had a sausage structure, propagated duskward at a velocity of about 100 km/s, and were associated with periodical radial <span class="hlt">electron</span> flows. We suggest that the observed negative gradient of the ZGSM magnetic field component (dBZ/dX) was a free energy source for the kinetic ballooning/interchange instability. Tens of minutes later a fast elongation of ballooning/interchange fingers was detected between 6 and 16 RE downtail with the legnth-to-width ratio exceeding 20. The finger elongation ended with signatures of reconnection in an embedded current <span class="hlt">sheet</span> near the bending point. These observations suggest a complex interplay between the midtail and near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics, involving localized fluctuations both in cross-tail and radial directions before current <span class="hlt">sheet</span> reconnection.</p> <div class="credits"> <p class="dwt_author">Panov, E. V.; Nakamura, R.; Baumjohann, W.; Kubyshkina, M. G.; Artemyev, A. V.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Glassmeier, K.-H.; McFadden, J. P.; Larson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">40</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..117.6228P"> <span id="translatedtitle">Kinetic ballooning/interchange instability in a bent <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) and GOES observations to investigate the <span class="hlt">plasma</span> <span class="hlt">sheet</span> evolution on 28 February 2008 between 6:50 and 7:50 UT, when there developed strong magnetic field oscillations with periods of 100 s. Using multispacecraft analysis of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> observations and an empirical <span class="hlt">plasma</span> <span class="hlt">sheet</span> model, we determine both the large-scale evolution of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the properties of the oscillations. We found that the oscillations exhibited signatures of kinetic ballooning/interchange instability fingers that developed in a bent current <span class="hlt">sheet</span>. The interchange oscillations had a sausage structure, propagated duskward at a velocity of about 100 km/s, and were associated with fast radial <span class="hlt">electron</span> flows. We suggest that the observed negative gradient of the ZGSM magnetic field component (?BZ/?X) was a free energy source for the kinetic ballooning/interchange instability. Tens of minutes later a fast elongation of ballooning/interchange fingers was detected between 6 and 16 RE downtail with the length-to-width ratio exceeding 20. The finger elongation ended with signatures of reconnection in an embedded current <span class="hlt">sheet</span> near the bending point. These observations suggest a complex interplay between the midtail and near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics, involving localized fluctuations in both cross-tail and radial directions before current <span class="hlt">sheet</span> reconnection.</p> <div class="credits"> <p class="dwt_author">Panov, E. V.; Nakamura, R.; Baumjohann, W.; Kubyshkina, M. G.; Artemyev, A. V.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Glassmeier, K.-H.; McFadden, J. P.; Larson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_1");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a style="font-weight: bold;">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_3");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_2 div --> <div id="page_3" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">41</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950047201&hterms=ucrp&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522ucrp%2522"> <span id="translatedtitle">Observations of a quasi-static <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">No high-speed flows or discernible counterstreaming ion beams were observed during a series of <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary encounters resulting from solar wind-driven <span class="hlt">plasma</span> <span class="hlt">sheet</span> motions. We conclude that the boundary may be active primarily during <span class="hlt">plasma</span> <span class="hlt">sheet</span> 'recovery'. A temporal onset of flows in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> (IPS) was associated with the appearance of counterstreaming beams embedded in an already isotropic <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary and close to the neutral <span class="hlt">sheet</span> may have a common generation mechanism.</p> <div class="credits"> <p class="dwt_author">Angelopoulos, V.; Kennel, C. F.; Coroniti, F. V.; Feldman, W. C.; Gosling, J. T.; Kivelson, M. G.; Walker, R. J.; Russell, C. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">42</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v103/iA08/97JA02986/97JA02986.pdf"> <span id="translatedtitle">The driving of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> by the solar wind</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The coupling of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to the solar wind is studied statistically using measurements from various satellite pairs: one satellite in the solar wind and one in either the magnetotail central <span class="hlt">plasma</span> <span class="hlt">sheet</span> or the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. It is found that the properties of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> are highly correlated with the properties of the solar wind: specifically</p> <div class="credits"> <p class="dwt_author">Joseph E. Borovsky; Michelle F. Thomsen; Richard C. Elphic</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">43</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v101/iA11/96JA02313/96JA02313.pdf"> <span id="translatedtitle">Structure of <span class="hlt">plasma</span> <span class="hlt">sheet</span> in magnetotail: Double-peaked electric current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the distant magnetotail observed by the Geotail satellite is examined. We found that the observed structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is often different from the standard Harris-type <span class="hlt">plasma</span> <span class="hlt">sheet</span> [Harris, 1962]. The observed structure can be expressed as a double-peaked current <span class="hlt">sheet</span> which has a pair of localized electric currents away from the</p> <div class="credits"> <p class="dwt_author">M. Hoshino; A. Nishida; T. Mukai; Y. Saito; T. Yamamoto; S. Kokubun</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">44</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5184272"> <span id="translatedtitle"><span class="hlt">Electron</span> beam cutting in amorphous alumina <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We have found that nanometer diameter holes and slots can be cut in thin <span class="hlt">sheets</span> of amorphous alumina using an intense <span class="hlt">electron</span> beam. The holes, formed by a nonthermal process, are uniform in diameter, are surrounded by metallic aluminum, and can penetrate a 100-nm <span class="hlt">sheet</span> in a few seconds. The amorphous alumina <span class="hlt">sheets</span> are formed by anodization of electropolished high purity aluminum. The <span class="hlt">electron</span> beam cutting seems very similar to the process reported in the metal ..beta..-aluminas. Since uniform, stable, and easily handled <span class="hlt">sheets</span> of amorphous alumina can be fabricated and <span class="hlt">electron</span> beam cut, this process is now practical for nanolithography as well as many other applications.</p> <div class="credits"> <p class="dwt_author">Mochel, M.E.; Eades, J.A.; Metzger, M.; Meyer, J.I.; Mochel, J.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">45</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008GeoRL..3524101C"> <span id="translatedtitle">Periodic tilting of Saturn's <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">From the vantage of the dawn sector, the INCA instrument on Cassini imaged neutral hydrogen atoms (20-50 keV) emitted from the center of the Saturn's <span class="hlt">plasma</span> <span class="hlt">sheet</span> for five days during late 2004. Points along the center of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were found from contoured images projected onto the noon-midnight plane; points within 20 RS of Saturn were fitted to straight lines, and the slopes of these lines were examined as a function of time at one hour resolution. The slopes vary between ~17 and ~24 with a period of 10.80 hours, the same as that of Saturn kilometric radiation (SKR). This periodic tilting of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is in phase with SKR radiation in the sense that the maximum tilt angle occurs when the maximum in the SKR power occurs, and the tilt angle periodicity has a phase angle of ~47 in SLS-3 longitude.</p> <div class="credits"> <p class="dwt_author">Carbary, J. F.; Mitchell, D. G.; Brandt, P.; Roelof, E. C.; Krimigis, S. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">46</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001JGR...106.8381S"> <span id="translatedtitle">Rapid flux transport and <span class="hlt">plasma</span> <span class="hlt">sheet</span> reconfiguration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On the basis of 3 1/2 years of Geotail data we examine typical <span class="hlt">plasma</span> <span class="hlt">sheet</span> reconfigurations that are observed during rapid flux transport events (RFTs) in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. RFTs are bursts of rapid earthward or tailward <span class="hlt">plasma</span> flow with a large flux transport rate, EC=[(VXBZ)2+(VYBZ)2]1/2>2mVm-1. A superposed epoch analysis shows that earthward RFTs are related to nonadiabatic heating, dipolarization, and thickening of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, features typically seen during substorm expansion phase. The average earthward velocity component of the RFTs decreases toward Earth, whereas the average convection electric field, VXBZ, is practically independent of radial distance. Earthward RFTs show characteristics of bubbles, i.e., flux tubes with lower ion density and slightly higher magnetic field strength than the surrounding medium. Tailward RFTs beyond a radial distance of ~20RE can be associated either with a northward or a southward magnetic field, and their signatures show that they are probably related to the leading and trailing edges of tailward ejected plasmoids. Inside of 20RE, yet another type of tailward RFTs with BZ>0 can be observed. These events are possibly signatures of vortices or rebouncing flows in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Schdel, R.; Nakamura, R.; Baumjohann, W.; Mukai, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007JGRA..11210213P"> <span id="translatedtitle">Thinning and stretching of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">With Cluster observations in the magnetotail we study dynamics of <span class="hlt">plasma</span> <span class="hlt">sheet</span> thinning and stretching during 39 intervals associated with substorm growth phases. The cross-tail current density and normal magnetic field generally scale as Bn TpNp1/2/J0, but with frequent transient variations. Typical pre-onset values are Bz 1-2 nT, J0 4-8 nA/m2, thickness (Harris estimate) >3000 km. A current density increase in each particular event is not accompanied with a corresponding number density increase. About 30% of the events are characterized by a large (>5 nT) field component parallel to the current (in most of cases equal to By), implying adiabatic particle dynamics even with small Bz. Most local onsets, associated with the ends of thin <span class="hlt">sheet</span> intervals, were accompanied with tailward <span class="hlt">plasma</span> flows. In some cases embedded current <span class="hlt">sheet</span> structure was detected and, therefore, estimation of thickness requires caution.</p> <div class="credits"> <p class="dwt_author">Petrukovich, A. A.; Baumjohann, W.; Nakamura, R.; Runov, A.; Balogh, A.; RMe, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41985975"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> ion energization during dipolarization events</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents simulation results for acceleration processes for ions during what are referred to as dipolarization events associated with storm activity. Time variations of magnetic fields over cyclotron periods, and generation of electric fields parallel to the geomagnetic field, both contribute to ion acceleration in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Calculations support the observation of earthward injection of ions during such</p> <div class="credits"> <p class="dwt_author">D. C. Delcourt; J. A. Sauvaud</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18834827"> <span id="translatedtitle">Discharge characteristics of <span class="hlt">plasma</span> <span class="hlt">sheet</span> actuators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The electrical characteristics of a <span class="hlt">plasma</span> <span class="hlt">sheet</span> device used for subsonic airflow control are studied in this paper. Experiments are undertaken with a two-wire asymmetrical (different diameters, opposite polarity) electrode configuration connected to dc high voltage sources in the presence of a dielectric plate and under different gases (dry air, nitrogen and oxygen). For large distances electrode-plates it has been</p> <div class="credits"> <p class="dwt_author">R. Sosa; G. Artana; D. Grondona; H. Kelly; A. Mrquez; F. Minotti</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.P11B1260C"> <span id="translatedtitle">Periodic Tilting of Saturn's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">From the vantage of the dawn sector, the INCA instrument on Cassini imaged neutral hydrogen atoms (20-50 keV) emitted from the center of the Saturn's <span class="hlt">plasma</span> <span class="hlt">sheet</span> at a time resolution of one hour for five days during late 2004. Points along the center of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were found from contoured images projected onto the noon-midnight plane; points within 20 RS of Saturn were fitted to straight lines, and the slopes of these lines were examined as a function of time. In the Sun-Saturn-orbit frame, these slopes vary between 17 deg and 25 deg with a well-defined period of 10.80 hours, the same period as that of Saturn kilometric radiation (SKR). This periodic tilting of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is in phase with SKR radiation in the sense that the maximum tilt angle occurs when the maximum in the SKR variation occurs. When fitted to a cosine in SLS3 longitude, the tilt angle periodicity has a phase angle of 47 deg. The periodic tilting of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> agrees qualitatively with predictions of the "asymmetric-lift" model of Saturn's magnetosphere and offers direct evidence of a mechanism exciting waves that travel down the magnetotail.</p> <div class="credits"> <p class="dwt_author">Carbary, J.; Mitchell, D.; Brandt, P.; Roelof, E.; Krimigis, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.igpp.ucla.edu/people/mkivelson/Publications/283-2004JA010581.pdf"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> turbulence observed by Cluster II</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical</p> <div class="credits"> <p class="dwt_author">James M. Weygand; M. G. Kivelson; K. K. Khurana; H. K. Schwarzl; S. M. Thompson; R. L. McPherron; A. Balogh; L. M. Kistler; M. L. Goldstein; J. Borovsky; D. A. Roberts</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/874183"> <span id="translatedtitle">Thermomechanical processing of <span class="hlt">plasma</span> sprayed intermetallic <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A powder metallurgical process of preparing a <span class="hlt">sheet</span> from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The <span class="hlt">sheet</span> can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal <span class="hlt">sheet</span> by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or <span class="hlt">plasma</span> spraying, forming a cold rolled <span class="hlt">sheet</span> by cold rolling the non-densified metal <span class="hlt">sheet</span> so as to increase the density and reduce the thickness thereof and annealing the cold rolled <span class="hlt">sheet</span>. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the <span class="hlt">sheet</span> can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired <span class="hlt">sheet</span> thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled <span class="hlt">sheet</span> recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.</p> <div class="credits"> <p class="dwt_author">Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19840051849&hterms=energy+sector&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denergy%2Bsector"> <span id="translatedtitle">Relationship of dusk sector radial electric field to energy dispersion at the inner edge of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">It is shown that, by assuming that the magnetospheric particle boundaries are the result of steady state convection, the <span class="hlt">electron</span> boundaries in the dusk sector are essentially sensitive to the local, not the global, electric field configuration. A simple, direct relationship is obtained between the dusk sector radial electric field and the inner edge of <span class="hlt">electron</span> boundaries at various energies.</p> <div class="credits"> <p class="dwt_author">Horwitz, J. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JOM....66d.608B"> <span id="translatedtitle"><span class="hlt">Plasma</span> Synthesis of Nitrogen Clusters on Carbon Nanotube <span class="hlt">Sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The radio frequency <span class="hlt">plasma</span> synthesis of nitrogen clusters stabilized on carbon nanotube <span class="hlt">sheets</span> has been demonstrated under various conditions. Characterization of the samples produced has been carried out using micro-Raman and attenuated total reflectance-Fourier transform infrared spectroscopy. Initial investigations of the sample morphologies and compositions have also been performed using scanning <span class="hlt">electron</span> microscopy combined with energy-dispersive x-ray analysis and transmission <span class="hlt">electron</span> microscopy. The spectroscopic results, together with density functional theory calculations, suggest that a linear chain nitrogen cluster is formed under the <span class="hlt">plasma</span> conditions employed and is stabilized most likely inside the walls of the carbon nanotubes that are used as substrates during the synthesis.</p> <div class="credits"> <p class="dwt_author">Benchafia, El Mostafa; Yu, Chi; Sosnowski, Marek; Ravindra, N. M.; Iqbal, Zafar</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950036505&hterms=ideal+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dideal%2Bstructure"> <span id="translatedtitle">Nonlinear current <span class="hlt">sheet</span> formation in ideal <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We present a numerical study of the formation of current <span class="hlt">sheets</span> in ideal <span class="hlt">plasmas</span>. First we confirm the development of singular current <span class="hlt">sheets</span> in a one-dimensional model. In a second step we extend the analysis to two-dimensional equilibria. Here it is found that the resulting structures are quiet insensitive to the boundary conditions. For the special case of a magnetotail like equilibrium it will be shown that the resulting current distribution provides a possibility to understand the onset of a localized anomalous resistivity from a macroscopic point of view. Furthermore, the resulting structures provide an explanation for the dramatic decrease of the thickness of the current <span class="hlt">sheet</span> in the magnetotail prior to the onset of geomagnetic substorms.</p> <div class="credits"> <p class="dwt_author">Voge, A.; Schindler, K.; Otto, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhRvA..89e2509T"> <span id="translatedtitle">Casimir interaction between spherical and planar <span class="hlt">plasma</span> <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We consider the interaction between a spherical <span class="hlt">plasma</span> <span class="hlt">sheet</span> and a planar <span class="hlt">plasma</span> <span class="hlt">sheet</span> due to the vacuum fluctuations of electromagnetic fields. We derive the TGTG formula for the Casimir interaction energy and study its asymptotic behaviors. In the small separation regime, we confirm the proximity force approximation and calculate the first correction beyond the proximity force approximation. This study has potential application to model Casimir interaction between objects made of materials that can be modeled by <span class="hlt">plasma</span> <span class="hlt">sheets</span> such as graphene <span class="hlt">sheets</span>.</p> <div class="credits"> <p class="dwt_author">Teo, L. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950059028&hterms=gsm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2522gsm%2522"> <span id="translatedtitle">Birkeland currents in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A search was conducted for the signatures of Birkeland currents in the Earth's magnetic tail, using observed values of B(sub x) and B(sub y) from large sets of spacecraft data. The data were binned by x and y for -10 greater than x(sub GSM) greater than -35 and absolute value of y(sub GSM) less than or equal to 20 R(sub E) (less than or equal to 30 R(sub E) for x(sub GSM) less than or equal to -25 R(sub E)) and in each bin their distribution in the (B(sub x), B(sub y)) plane was fitted by least squares to a piecewise linear function. That gave average x-y distributions of the flaring angle between B(sub xy) and the x direction, as well as that angle's variation across the thickness of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Angles obtained in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> differed from those derived near the lobe boundary. That is the expected signature if earthward or tailward Birkeland current <span class="hlt">sheets</span> are embedded in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and from this dfiference we derived the dawn-dusk profiles of the tail Birkeland currents for several x(sub GSM) intervals. It was found that (1) the Birkeland currents have the sense of region 1 currents, when mapped to the ionosphere; (2) both the linear current density (kiloamperes/R(sub E)) and the net magnitude of the field-aligned currents decrease rapidly down the tail; (3) the total Birkeland current at x approximately equals -10 R(sub E) equals approximately equals 500-700 kA, which is approx. 30% of the net region 1 current observed at ionospheric altitudes, in agreement with model mapping results; and (4) the B(sub z) and B(sub y) components of the interplanetary magnetic field influence the distribution of Birkeland currents in the tail.</p> <div class="credits"> <p class="dwt_author">Tsyganenko, Nikolai A.; Stern, David P.; Kaymaz, Zerefsan</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870044042&hterms=ac+dc+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dac%2Bdc%2Bcurrent"> <span id="translatedtitle"><span class="hlt">Plasma</span> processes driven by current <span class="hlt">sheets</span> and their relevance to the auroral <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> processes dealing with ac and dc electric fields, the formation of ion beams and conics, and <span class="hlt">electron</span> acceleration are considered, and similarities between simulation results and satellite-based observations are discussed. Electrostatic shock-type electric fields are found to occur near the current <span class="hlt">sheet</span> edges, and double layers having upward electric fields form inside the <span class="hlt">sheet</span> and are distinguishable from the large perpendicular electric fields only in wide <span class="hlt">sheets</span> with thicknesses much greater than the ion Larmor radius. It is found that the most energetic ions have pitch angles near 90 deg, indicating a large perpendicular acceleration of the ions, and that the downward accelerating <span class="hlt">electrons</span> inside the <span class="hlt">sheet</span> are neither monoenergetic nor perfectly field aligned.</p> <div class="credits"> <p class="dwt_author">Singh, Nagendra; Thiemann, H.; Schunk, R. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5384282"> <span id="translatedtitle">A pincer-shaped <span class="hlt">plasma</span> <span class="hlt">sheet</span> at Uranus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A model from Voigt et al. (1987) and an MHD simulation from Walker et al. (1989) both show that the curvature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at Uranus changes as the dipole tilt varies between 38{degree} and 22{degree}. The models suggest that one of the two partial traversals of the uranian <span class="hlt">plasma</span> <span class="hlt">sheet</span> made during the outbound trajectory of Voyager 2 can be explained as an entry into the highly curved <span class="hlt">plasma</span> <span class="hlt">sheet</span> that develops when Uranus is near the maximum dipole tilt value of 38{degree}; previously both partial traversals have been explained as anomalous. The spacecraft would have reversed its motion relative to the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as the continued rotation diminished the dipole tilt and the retreating <span class="hlt">plasma</span> <span class="hlt">sheet</span> uncurled. As the dipole tilt approached its minimum value, spacecraft motion towards the neutral <span class="hlt">sheet</span> resumed and the traversal of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> was completed. Evidence from the PWS <span class="hlt">plasma</span> wave detector suggests that the spacecraft trajectory skimmed the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer for several hours prior to the partial immersion. The <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the Voigt et al. model was not located near the spacecraft during this time interval. On the other hand, the MHD simulation reveals a <span class="hlt">plasma</span> <span class="hlt">sheet</span> that is more curved than in the Boigt et al. model; near maximum dipole tilt, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is pincer-shaped. The unusual geometry implies that Voyager 2 remained near the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer during the period suggested by the PWS data. Thus the simulation accounts easily for the first of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> encounters previously called anomalous. The second partial immersion remains anomalous, having previously been related to substorm activity, and thus is not discussed here. The stagnation distances of the earth and Uranus at the nose of the magnetopause were used to scale the Walker et al. (1989) simulation of the terrestrial magnetosphere to represent the uranian magnetosphere.</p> <div class="credits"> <p class="dwt_author">Hammond, C.M.; Walker, R.J.; Kivelson, M.G. (Univ. of California, Los Angeles (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004cosp...35..980R"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span>/magnetosheath <span class="hlt">plasma</span> mixing and LLBL formation(INTERBALL/TAIL probe observations)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On the basis of <span class="hlt">plasma</span>, energetic particle and magnetic field measurements the low latitude boundary layer (LLBL) of the Earth's magnetosphere is studied. LLBL is formed due to the mixing of magnetosheath and <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">plasma</span> but the conditions leading to such mixing are not well investigated till now. The mixing process is studied on the base of INTERBALL/Tail probe observations. The variations of the fluxes of ions (measured by CORALL instrument), <span class="hlt">electrons</span> (measured by ELECTON instrument) and particles with energies more then 25 keV measured by DOK-2 instrument) are analyzed for the number of cases when the satellite intersects LLBL, <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its boundaries. The variations of the magnetic field are compared with the variations of particle fluxes. The thickness of the region containing <span class="hlt">plasma</span> from LLBL is estimated. The stress balance across the analyzed boundary is discussed.</p> <div class="credits"> <p class="dwt_author">Rossolenko, S. S.; Antonova, E. E.; Yermolaev, Yu. I.; Kirpichev, I. P.; Lutsenko, V. N.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6645115"> <span id="translatedtitle">Periodic magnetic focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams focused by periodically cusped magnetic (PCM) fields are stable against low-frequency velocity-shear instabilities (such as the diocotron mode). This is in contrast to the more familiar unstable behavior in uniform solenoidal magnetic fields. A period-averaged analytic model shows that a PCM-focused beam is stabilized by ponderomotive forces for short PCM periods. Numerical particle simulations for a semi-infinite <span class="hlt">sheet</span> beam verify this prediction and also indicate diocotron stability for long PCM periods is less constraining than providing for space-charge confinement and trajectory stability in the PCM focusing system. In this article the issue of beam matching and side focusing for <span class="hlt">sheet</span> beams of finite width is also discussed. A review of past and present theoretical and experimental investigations of <span class="hlt">sheet</span>-beam transport is presented.</p> <div class="credits"> <p class="dwt_author">Booske, J.H.; Basten, M.A.; Kumbasar, A.H. (Electrical and Computer Engineering, University of Wisconsin---Madison, Madison, Wisconsin 53706 (United States)); Antonsen, T.M. Jr.; Bidwell, S.W.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Radack, D.J. (Laboratory for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhDT........10C"> <span id="translatedtitle">Electric fields and current <span class="hlt">sheet</span> structure in magnetospheric <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The electric currents of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> play a pivotal role in the dynamics of the Earth's magnetosphere. I describe new instrumentation developed for measuring its properties, and analyze data from existing instruments. The analysis shows the structure and physical current-carrying mechanisms of the quiescent central <span class="hlt">plasma</span> <span class="hlt">sheet</span> in new detail. Electric field observations are critical for this work. I discuss two aspects of space-based double-probe electric field experiments: the probe design and the signal processing. I develop a numerical model that self-consistently solves for the interaction between the probes and the nearby <span class="hlt">plasma</span> environment, including the effects of the spacecraft and its attendant photoelectrons. I also describe the signal processing hardware developed for the 5-satellite THEMIS mission, known as the Digital Fields Boards (DFB). THEMIS was launched in February 2007, and all 5 DFBs are working as intended. Since THEMIS is only recently launched, I analyze data from the 4-satellite Cluster mission, which has similar instrumentation. With Cluster data, the position of the current <span class="hlt">sheet</span> relative to the satellite can be determined, allowing direct comparisons between observations and models. To encompass the wide variety of possible current-carrying mechanisms, I develop a kinetic model based on the quasi-isotropic formalism of Schindler and Birn [2002]. The model fits many of the observed <span class="hlt">sheets</span> well. The observations reveal a wide variety of current-carrying mechanisms. Some of the thinnest currents consist entirely of a pair of <span class="hlt">electron</span> Hall currents which together form a bifurcated current <span class="hlt">sheet</span> driven by strong inward-pointing electric fields.</p> <div class="credits"> <p class="dwt_author">Cully, C. M.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JPSJ...80h4001S"> <span id="translatedtitle">Kinetic Theory of Dawson <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A kinetic theory of one-dimensional <span class="hlt">plasma</span> <span class="hlt">sheet</span> model (Dawson model) is developed. The Vlasov equation, the Landau equation, and the Balescu--Lenard equation corresponding to this model are derived. For the Vlasov equation, it is shown that the linearized Vlasov equation exhibits a typical behavior of <span class="hlt">plasmas</span> as in the three-dimensional space. The Landau collision term and the Balescu--Lenard collision term are identically zero. The fact of the vanishing collision term agrees with the behavior of generic one-dimesional systems. In an approximation that the system is in a thermal bath, the derived Landau equation and Balescu--Lenard equation are transformed into the Fokker--Planck equations. Some physical quantities such as thermal conductivity, relaxation rate, etc., are estimated. A discussion on physical meaning of these results, in particular, the zero collision terms, will be given.</p> <div class="credits"> <p class="dwt_author">Sano, Mitsusada M.; Kitahara, Kazuo</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20000023162&hterms=kaya&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaya"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Source and Loss Processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central <span class="hlt">plasma</span> <span class="hlt">sheet</span> proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial <span class="hlt">plasma</span> source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles along reconfigured ("dipolarized") magnetic field lines.</p> <div class="credits"> <p class="dwt_author">Lennartsson, O. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860056276&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcattell"> <span id="translatedtitle">ISEE observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary, <span class="hlt">plasma</span> <span class="hlt">sheet</span>, and neutral <span class="hlt">sheet</span>. I - Electric field, magnetic field, <span class="hlt">plasma</span>, and ion composition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The first simultaneous study of dc and ac electric and magnetic fields, E x B velocity, <span class="hlt">plasma</span> flows, ratio of <span class="hlt">plasma</span> to magnetic field pressure, total energy density, energetic particles, and ion composition from the ISEE satellites and ground and interplanetary magnetic fields has been made to determine (1) the relationship of the previously observed electric fields at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary and at the neutral <span class="hlt">sheet</span> to <span class="hlt">plasma</span> parameters, and (2) whether the phenomena occurring during quiet and active times were consistent with the formation of a near-earth neutral line during substorms or with the boundary layer model. Five observations made during the study of two substorms were seen to be in agreement with the neutral-line model. The observations are consistent with the satellite being located at varying distances from the neutral line and diffusion region where reconnection and <span class="hlt">plasma</span> acceleration were occurring. Although the z component (into or out of the ecliptic plane) of E x B convection was generally toward the neutral <span class="hlt">sheet</span>, there were examples when it was consistent with the inferred motion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> past the satellite. A synthesis of previous reports on large electric fields at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary and variable fields at the neutral <span class="hlt">sheet</span> including the associated <span class="hlt">plasma</span> flows is also described.</p> <div class="credits"> <p class="dwt_author">Cattell, C. A.; Mozer, F. S.; Hones, E. W., Jr.; Anderson, R. R.; Sharp, R. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012GeoRL..39.1104D"> <span id="translatedtitle">Bursty escape fluxes in <span class="hlt">plasma</span> <span class="hlt">sheets</span> of Mars and Venus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">High resolution measurements of <span class="hlt">plasma</span> in the <span class="hlt">plasma</span> <span class="hlt">sheets</span> of Mars and Venus performed by almost identical <span class="hlt">plasma</span> instruments ASPERA-3 on the Mars Express spacecraft and ASPERA-4 on Venus Express reveal similar features of bursty fluxes of escaping planetary ions. A period of bursts lasts about 1-2 min. Simultaneous magnetic field measurements on Venus Express show that these burst-like features arise due to flapping motions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Their occurrence can be related to large-amplitude waves propagating on the <span class="hlt">plasma</span> <span class="hlt">sheet</span> surface and launched by reconnection in the magnetic tails.</p> <div class="credits"> <p class="dwt_author">Dubinin, E.; Fraenz, M.; Woch, J.; Zhang, T. L.; Wei, J.; Fedorov, A.; Barabash, S.; Lundin, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19518640"> <span id="translatedtitle">Observations of double layers in earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current <span class="hlt">sheet</span>, and in <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. PMID:19518640</p> <div class="credits"> <p class="dwt_author">Ergun, R E; Andersson, L; Tao, J; Angelopoulos, V; Bonnell, J; McFadden, J P; Larson, D E; Eriksson, S; Johansson, T; Cully, C M; Newman, D N; Goldman, M V; Roux, A; LeContel, O; Glassmeier, K-H; Baumjohann, W</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21180385"> <span id="translatedtitle">Observations of Double Layers in Earth's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the first direct observations of parallel electric fields (E{sub parallel}) carried by double layers (DLs) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E{sub parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current <span class="hlt">sheet</span>, and in <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Ergun, R. E.; Tao, J. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309 (United States); Andersson, L.; Eriksson, S.; Johansson, T. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309 (United States); Angelopoulos, V. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90055 (United States); Bonnell, J.; McFadden, J. P.; Larson, D. E. [Space Sciences Laboratory, University of California, Berkeley, California, 94720 (United States); Cully, C. M. [Swedish Institute of Space Physics, Uppsala (Sweden); Newman, D. N.; Goldman, M. V. [Center for Integrated Plasma Studies, University of Colorado, Boulder, Colorado 80309 (United States); Roux, A.; LeContel, O. [Centre d'etude des Environnements Terrestre et Planetaires, Velizy (France); Glassmeier, K.-H. [TUBS, Braunschweig, D-38106 (Germany); Baumjohann, W. [Space Research Institute, Austrian Academy of Sciences, A-8042 Graz (Austria)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008PhDT.......258H"> <span id="translatedtitle">Cluster multi-point observations of the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This thesis presents observations of the terrestrial magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> made by the European Space Agency Cluster mission. The Cluster mission is composed of four identical spacecraft, the first such multi-spacecraft mission, and enables, for the first time, the disambiguation of time versus space phenomena. Using the data from 2003, when the spacecraft were at their smallest average separation to date, many small-scale processes, both microphysical and macrophysical, are investigated. In the first study presented, two small flux ropes, a possible signature of multiple X-line reconnection, are investigated. By the development and utilisation of various multi-spacecraft methods, the currents and magnetic forces internal and external to the flux ropes, as well as the internal structure of the flux ropes, are investigated. In addition, a theory of their early evolution is suggested. In the second study presented, various terms of the generalised Ohm's law for a <span class="hlt">plasma</span> are determined, including, for the first time, the divergence of the full <span class="hlt">electron</span> pressure tensor, during the passage past the spacecraft of an active reconnection X-line. It is found that the electric field contribution from the divergence of the <span class="hlt">electron</span> pressure tensor is anti-correlated with the contribution from the Hall term in the direction normal to the neutral <span class="hlt">sheet</span>. In addition, further signatures of reconnection are quantified, such as parallel electric field generation and Hall quadrupolar magnetic field and current systems. In the final study presented, the anti-correlation between the divergence of the <span class="hlt">electron</span> pressure tensor and Hall terms is investigated further. It is found that the anti-correlation is general, appearing in the direction normal to the neutral <span class="hlt">sheet</span> because of a cross tail current. In a simple magnetohydrostatic treatment, a force balance argument leads to the conclusion that the gradient of the anti-correlation is a function of the ratio of the <span class="hlt">electron</span> to ion temperatures, as well as providing information regarding the spatial scales of the pressure tensors.</p> <div class="credits"> <p class="dwt_author">Henderson, Paul David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5102573"> <span id="translatedtitle">Average electric wave spectra in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Dependence on ion density and ion beta</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using 4 months of tail data obtained by the ELF/MF spectrum analyzer and the <span class="hlt">plasma</span> instrument on board the AMPTE/IRM satellite, more than 50,000 ten-second-averaged electric wave spectra were analyzed in order to establish typical spectra for periods of high and low ion density and high and low ion {beta}. The general spectral slope of the spectra in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> follows an f{sup {minus}2} law. Ion {beta} has a stronger influence on the spectral form than the ion density. Highest average spectral densities are obtained in the low-{beta} <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, where the spectrum is that of broadband electrostatic noise extending to frequencies near and above the upper hybrid frequency. Lowest wave intensities are encountered in the high-{beta} inner central <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The outer central <span class="hlt">plasma</span> <span class="hlt">sheet</span> has generally low wave intensities and is dominated by <span class="hlt">electron</span> cyclotron odd half-harmonics and <span class="hlt">electron</span> regions of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> while higher odd half-harmonics dominate the low-{beta} and low-density inner central <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Baumjohann, W.; Treumann, R.A. (Max-Planck-Inst. fuer Physik und Astrophysik, Garching (West Germany)); LaBelle, J. (Dartmouth College, Hanover, NH (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010cosp...38.2026K"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span>-like structures in the magnetotail lobes: discrete structures or transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>/lobe interface?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The INTERBALL-1 (IB-1) orbit gave the rare opportunity to study the near (up to -27 RE ) magnetotail lobes. The analysis of magnetic field, <span class="hlt">electron</span> and ion measurements during 576 hours of lobe observations shows that several types of <span class="hlt">plasma</span> regimes are encountered, but they can be organized in two main classes reflecting their origin: <span class="hlt">plasmas</span> in which both <span class="hlt">electrons</span> and ions have energies typical for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (PS) and <span class="hlt">plasmas</span>, in which the <span class="hlt">electrons</span> have energies up to few hundreds eV typical for the magnetosheath, accompanied by ions with different characteristics. In the present work we discus the first class of structures -those with PS-like <span class="hlt">electrons</span>. Previous studies performed on the basis of only ion (IB-1) measurements (Grigorenko et al., 2002) found two types of lobe ion structures with PS energies -field-aligned beams of accelerated ions and <span class="hlt">plasma</span> structures of various durations with quasi-isotropic veloc-ity distribution functions. The field-aligned ion beams (beamlets) were successfully interpreted as a result of non-adiabatic ion acceleration in the current <span class="hlt">sheet</span> of the Earth's magnetotail. The mechanism of formation of the PS-structures (<span class="hlt">plasma</span> clouds) was not obvious. Moreover it seemed that different mechanisms act depending on the direction of the interplanetary mag-netic field. Re-examination of the <span class="hlt">plasma</span> clouds, already using <span class="hlt">electron</span> and magnetic field measurements, gives new insight of their nature. For example, it proved that some cases were identified as different structures only because week ion fluxes in the lobes are more difficult to be measured in comparison with the <span class="hlt">electron</span> fluxes. Multipoint CLUSTER observations allow studying spatial geometry of these structures. We analyzed several cases when, at one and the same time, some of CLUSTER satellites register <span class="hlt">plasma</span> clouds and others register beamlets, which unambiguously is due to the different spatial location of the spacecraft. Beamlets are considered a signature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer so the analyzed discrete structures are in fact transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> -lobe interface. The non-adiabatic beam-let acceleration takes place in a localised (in dawn-dusk direction) source in the current <span class="hlt">sheet</span> and then at the lobe-PS interface there are flux tubes, containing beamlets and flux tubes, containing isotropic <span class="hlt">plasma</span>. Our hypothesis is that the observed by IB-1 <span class="hlt">plasma</span> clouds in their majority are not discrete structures but transient observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> -lobe interface.</p> <div class="credits"> <p class="dwt_author">Koleva, Rositza; Grigorenko, Elena; Sauvaud, Jean-Andre; Zeleniy, Lev</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PhPl...16e7103K"> <span id="translatedtitle">Pulsed <span class="hlt">plasma</span> <span class="hlt">electron</span> sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There is a continuous interest in research of <span class="hlt">electron</span> sources which can be used for generation of uniform <span class="hlt">electron</span> beams produced at E<=105 V/cm and duration <=10-5 s. In this review, several types of <span class="hlt">plasma</span> <span class="hlt">electron</span> sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) <span class="hlt">plasma</span> sources. The operation of passive sources is governed by the formation of flashover <span class="hlt">plasma</span> whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode <span class="hlt">plasma</span> sources the <span class="hlt">plasma</span> parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the <span class="hlt">plasma</span> and generated <span class="hlt">electron</span> beam were characterized.</p> <div class="credits"> <p class="dwt_author">Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21277194"> <span id="translatedtitle">Pulsed <span class="hlt">plasma</span> <span class="hlt">electron</span> sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">There is a continuous interest in research of <span class="hlt">electron</span> sources which can be used for generation of uniform <span class="hlt">electron</span> beams produced at E{<=}10{sup 5} V/cm and duration {<=}10{sup -5} s. In this review, several types of <span class="hlt">plasma</span> <span class="hlt">electron</span> sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) <span class="hlt">plasma</span> sources. The operation of passive sources is governed by the formation of flashover <span class="hlt">plasma</span> whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode <span class="hlt">plasma</span> sources the <span class="hlt">plasma</span> parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the <span class="hlt">plasma</span> and generated <span class="hlt">electron</span> beam were characterized.</p> <div class="credits"> <p class="dwt_author">Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J. [Department of Physics, Technion, 32000 Haifa (Israel)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51296634"> <span id="translatedtitle">Periodic magnetic focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams focused by periodically cusped magnetic (PCM) fields are stable against low-frequency velocity-shear instabilities (such as the diocotron mode). This is in contrast to the more familiar unstable behavior in uniform solenoidal magnetic fields. A period-averaged analytic model shows that a PCM-focused beam is stabilized by ponderomotive forces for short PCM periods. Numerical particle simulations for a semi-infinite</p> <div class="credits"> <p class="dwt_author">J. H. Booske; M. A. Basten; A. H. Kumbasar; T. M. Antonsen Jr.; S. W. Bidwell; Y. Carmel; W. W. Destler; V. L. Granatstein; D. J. Radack</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6049787"> <span id="translatedtitle">Average electric wave spectra across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and their relation to ion bulk speed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using 4 months of tail data obtained by the ELF/MF spectrum analyzer of the wave experiment and the three-dimensional <span class="hlt">plasma</span> instrument on board the AMPTE/IRM satellite, the authors have done a statistical survey on the electric wave spectral density in the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. More that 50,000 10-s-averaged electric wave spectra were analyzed with respect to differences between their values in the inner and outer central <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer as well as their dependence on radial distance and ion bulk speed. High-speed flows are dominated by broadband electrostatic noise with highest spectral densities in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, where broadband electrostatic noise also exists during periods of low-speed flows. The broadband electrostatic noise has a typical spectral index of about {minus}2. During low-speed flows the spectra in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> show distinct emissions at the <span class="hlt">electron</span> cyclotron odd half-harmonic and upper hybrid frequency. On average, such waves do not appear as distinct emissions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer, where they are either absent or masked by the intense broadband electrostatic noise always observed there. Finally, wave intensities during episodes of fast perpendicular flows are higher than those associated with fast parallel flows.</p> <div class="credits"> <p class="dwt_author">Baumjohann, W.; Treumann, R.A. (Max-Planck-Institut fuer Physik and Astrophysik, Garching (Germany, F.R.)); LaBelle, J. (Utah State Univ., Logan (USA)); Anderson, R.R. (Univ. of Iowa, Iowa City (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720058742&hterms=firehose&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfirehose"> <span id="translatedtitle">On the balance of stresses in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The stress resulting from magnetic tension on the neutral <span class="hlt">sheet</span> must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of <span class="hlt">plasma</span> flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral <span class="hlt">sheet</span>, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> just outside the neutral <span class="hlt">sheet</span>. The second case requires, in addition, that the <span class="hlt">plasma</span> flow speed within the neutral <span class="hlt">sheet</span> be of the order of or larger than the Alfven speed outside the neutral <span class="hlt">sheet</span>. Stress balance in the third case requires that just outside the neutral <span class="hlt">sheet</span> the <span class="hlt">plasma</span> pressure obey the marginal firehose stability condition.</p> <div class="credits"> <p class="dwt_author">Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850041180&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcattell"> <span id="translatedtitle">Electric fields in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Results obtained by Forbes et al. (1981) on the basis of time delay measurements between ISEE 1 and ISEE 2 imply that the <span class="hlt">plasma</span> flow and the boundary contracting velocity were nearly the same, whereas the expanding boundary velocity was not accompanied by any significant <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">plasma</span> motion. In the present study, this observation is discussed in conjunction with electric field data. The study is based on electric field data from the spherical double probe experiment on ISEE 1. Electric field data from GEOS 2 are used to some extent to monitor the electric fields near the geostationary orbit during the considered eve nts. Electric field data during CDAW 6 events are discussed, taking into account positions of ISEE 1/ISEE 2 and GEOS 2; March 22, 0600-1300 UT; and March 22, UT; and March 31, 1400-2400 UT.</p> <div class="credits"> <p class="dwt_author">Pedersen, A.; Knott, K.; Cattell, C. A.; Mozer, F. S.; Falthammar, C.-G.; Lindqvist, P.-A.; Manka, R. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014AAS...22410401M"> <span id="translatedtitle">Empirical Study of Turbulent Diffusion in Flare <span class="hlt">Plasma</span> <span class="hlt">Sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Velocity fields in the hot (>10 MK) <span class="hlt">plasma</span> <span class="hlt">sheets</span> above post-eruption flare arcades have the hallmarks of turbulent flow. Tracking and measuring these velocity fields enables empirical estimation of transport parameters, e.g. turbulent diffusivity, that are important for determining the spectrum of length scales present in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These transport parameters thus help to set the rate of magnetic reconnection, and may help us to understand how reconnection can be triggered, accelerated, and prolonged in eruptive flares. In this work we show measurements, for the first time, of transport parameters in flare <span class="hlt">plasma</span> <span class="hlt">sheets</span>, enabled by high-resolution observations from SDO and local correlation tracking.</p> <div class="credits"> <p class="dwt_author">McKenzie, David Eugene; Freed, Michael</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6977917"> <span id="translatedtitle">Shape and postion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in earth's magnetotail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The configuration of the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> in earth's magnetotail has been calculated in connection with a three-dimensional magnetospheric B field modle. This model is based on the idea that thermal <span class="hlt">plasma</span>, tail currents, and magnetic field be in magnetohydrostatic equilibrium during time periods of magnetically quiet conditions. The tail configuration is generated by a separation method assuming a cylindrical magnetotail boundary with constant radius. The separation method restricts self-consistency to planes perpendicular to the tail axis. The computed tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> is flexible and reacts to changes of the earth's dipole tilt angle and changes of the solar wind pressure. Consequences for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> configuration with respect to the assumed tail magnetopause shape and the separation method are the following: (1) the <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickness increases in Y/sub GSM/ direction toward the flanks of the tail; (2) the <span class="hlt">plasma</span> <span class="hlt">sheet</span> becomes thicker and more diffuse with increasing distance from the earth; (3) during the northern hemisphere summer, the neutral <span class="hlt">sheet</span> is raised above the magnetospheric equatorial plane around local midnight but crosses this plane and is depressed below it near the flanks of the tail. The latter result agrees qualitatively with Fairfield's empirical neutral <span class="hlt">sheet</span> model which he derived from spacecraft measurements of the tail field polarity. This agreement between theory and observational material provides a further piece of evidence that the magnetohydrostatic theory is an appropriate level for describing quantitatively the quiet state of the magnetosphere.</p> <div class="credits"> <p class="dwt_author">Voigt, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008GeoRL..3524201C"> <span id="translatedtitle">Direct observation of warping in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> of Saturn</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ENA images from the Ion Neutral CAmera (INCA) on the Cassini spacecraft are projected onto the noon-midnight plane of Sun-Saturn orbital coordinates, and a composite ``image'' of Saturn's <span class="hlt">plasma</span> <span class="hlt">sheet</span> is constructed from dawn-side observations of 20-50 keV hydrogens obtained from days 352 to 361 in 2004. The maxima in the intensity contours define the center of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the noon-midnight plane. This <span class="hlt">plasma</span> <span class="hlt">sheet</span> surface displays a distinct bending or ``warping'' above Saturn's equatorial plane at radial distances of beyond ~15 RS on the nightside. On the dayside, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> lies close to the equator all the way to the magnetopause. The observed warping agrees with the ``bowl'' model derived from measurements of Saturn's magnetic field, but fits more closely a simple third-order polynomial.</p> <div class="credits"> <p class="dwt_author">Carbary, J. F.; Mitchell, D. G.; Paranicas, C.; Roelof, E. C.; Krimigis, S. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999PhDT........16L"> <span id="translatedtitle">Neutrino <span class="hlt">electron</span> <span class="hlt">plasma</span> instability</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Weak interactions play an important role in early universe <span class="hlt">plasma</span> collection, especially on neutrinos and the corresponding leptons. It also has important effects on the detail balance of the primordial nucleosynthesis, especially on the production of He and light elements. At around T = 300 GeV, the primordial <span class="hlt">plasma</span> undergone electroweak spontaneous symmetry breaking (SSB) phase transition. Some of the gauge bosons and other particles gain mass via Higgs mechanism. Deduced from Weinberg-Salam electroweak theory, a Boltzmann equation and subsequent fluid equations are derived for the primordial <span class="hlt">electron</span>-positron-neutrino- photon <span class="hlt">plasma</span>. A collective instability that separates the phases of <span class="hlt">electrons</span> (and positrons) and neutrinos (and anti-neutrinos) is discussed. We also discussed the application of the fluctuation-dissipation theory in this system of <span class="hlt">plasma</span>. An approach with Hubble expansion included in Boltzmann equation is also discussed. Astrophysical applications and implications are explored, particularly in supernovae.</p> <div class="credits"> <p class="dwt_author">Lai, Chi-Hsuan</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM22A..06D"> <span id="translatedtitle">Convection-driven delivery of <span class="hlt">plasma</span> <span class="hlt">sheet</span> material to the inner magnetosphere.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present data from the MENA instrument onboard the IMAGE satellite taken during a period of enhanced convection on 26 June 2001. During the interval, MENA observes energetic neutral atoms (ENAs) in the magnetotail and an Earthwards-propagating enhancement in their flux, at the same time as the convection strength increases (as measured by the Kp and MBI indices). Data from the magnetospheric <span class="hlt">plasma</span> analyser (MPA) instrument onboard satellites in geosynchronous orbit indicate that enhanced ion and <span class="hlt">electron</span> fluxes at <span class="hlt">plasma</span> <span class="hlt">sheet</span> energies (~1-45 keV) are detected at the same time as enhanced ENA flux are observed at the satellite location. We interpret the results as a convection-driven delivery of <span class="hlt">plasma</span> <span class="hlt">sheet</span> material, the ENA signature of which we observe with IMAGE/MENA. We use the rate of the propagation of the ENA enhancement to infer the speed of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> delivery to the inner magnetosphere.</p> <div class="credits"> <p class="dwt_author">Denton, M. H.; Thomsen, M. F.; Lavraud, B.; Skoug, R. M.; Henderson, M. G.; Funsten, H. O.; Jahn, J.; Pollock, C. J.; Weygand, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PlST...15..979H"> <span id="translatedtitle">Upper Hybrid Resonance of Microwaves with a Large Magnetized <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A large magnetized <span class="hlt">plasma</span> <span class="hlt">sheet</span> with size of 60 cm 60 cm 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the <span class="hlt">electron</span> density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the <span class="hlt">electron</span> density of this magnetized <span class="hlt">plasma</span> <span class="hlt">sheet</span> apparatus. Moreover, it is pointed out that the operating parameters of the large <span class="hlt">plasma</span> <span class="hlt">sheet</span> in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion.</p> <div class="credits"> <p class="dwt_author">Huo, Wenqing; Guo, Shijie; Ding, Liang; Xu, Yuemin</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950037043&hterms=hanscom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dhanscom"> <span id="translatedtitle">Auroral ionospheric signatures of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer in the evening sector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We report on particles and fields observed during Defense Meteorological Satellite Program (DMSP) F9 and DE 2 crossings of the polar cap/auroral oval boundary in the evening magnetic local time (MLT) sector. Season-dependent, latitudinally narrow regions of rapid, eastward <span class="hlt">plasma</span> flows were encountered by DMSP near the poleward boundary of auroral <span class="hlt">electron</span> precipitation. Ten DE 2 orbits exhibiting electric field spikes that drive these <span class="hlt">plasma</span> flows were chosen for detailed analysis. The boundary region is characterized by pairs of oppositely-directed, field-aligned current <span class="hlt">sheets</span>. The more poleward of the two current <span class="hlt">sheets</span> is directed into the ionosphere. Within this downward current <span class="hlt">sheet</span>, precipitating <span class="hlt">electrons</span> either had average energies of a few hundred eV or were below polar rain flux levels. Near the transition to upward currents, DE 2 generally detected intense fluxes of accelerated <span class="hlt">electrons</span> and weak fluxes of ions, both with average energies between 5 and 12 keV. In two instances, precipitating ions with energies greater than 5 keV spanned both current <span class="hlt">sheets</span>. Comparisons with satellite measurements at higher altitudes suggest that the particles and fields originated in the magnetotail inside the distant reconnection region and propagated to Earth through the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. Auroral <span class="hlt">electrons</span> are accelerated by parallel electric fields produced by the different pitch angle distributions of protons and <span class="hlt">electrons</span> in this layer interacting with the near-Earth magnetic mirror. Electric field spikes driving rapid <span class="hlt">plasma</span> flows along the poleward boundaries of intense, keV <span class="hlt">electron</span> precipitation represent ionospheric responses to the field-aligned currents and conductivity gradients. The generation of field-aligned currents in the boundary layer may be understood qualitatively as resulting from the different rates of earthward drift for <span class="hlt">electrons</span> and protons in the magnetotail's current <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Burke, W. J.; Machuzak, J. S.; Maynard, N. C.; Basinska, E. M.; Erickson, G. M.; Hoffman, R. A.; Slavin, J. A.; Hanson, W. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008GeoRL..3517S13G"> <span id="translatedtitle">Propagation characteristics of <span class="hlt">plasma</span> <span class="hlt">sheet</span> oscillations during a small storm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">On 24 March 2007, the THEMIS spacecraft were in a string-of-pearls configuration through the dusk <span class="hlt">plasma</span> <span class="hlt">sheet</span> at the recovery phase of a small storm. Large undulations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were observed that brought the five probes from one lobe to another. Each neutral <span class="hlt">sheet</span> crossing was accompanied by bursty bulk flows and Pi2 oscillations. In this paper we focus on the low frequency (~10 min) large scale <span class="hlt">plasma</span> <span class="hlt">sheet</span> undulations and determine their propagation characteristics, origin, and properties in the presence of storm-time substorms. As the first case of ``flapping waves'' observed and analyzed during storm-time, it is interesting to find their characteristics coincide with those described by previous quiet-time observations. These characteristics include flankward propagation of the undulations with velocities generally between ~40-130 km/s.</p> <div class="credits"> <p class="dwt_author">Gabrielse, C.; Angelopoulos, V.; Runov, A.; Kepko, L.; Glassmeier, K. H.; Auster, H. U.; McFadden, J.; Carlson, C. W.; Larson, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009APS..APR.K1011S"> <span id="translatedtitle">Current <span class="hlt">Sheet</span> Formation and Self-Organization in Turbulent <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Self-Organization can be defined as the process by which a physical system, in the course of its evolution, changes its spatial structure, the form of its equations of motion, or key coefficients in those equations. A turbulent magnetohydrodynamic (MHD) fluid can exhibit self-organization, so defined. A turbulent MHD fluid with collisional resistivity has a low rate of dissipation of turbulent energy. However, as the turbulence develops, it forms thin current <span class="hlt">sheets</span> in which the current density increases exponentially. When the <span class="hlt">electron</span> drift speed becomes comparable to or exceeds the ion acoustic speed, <span class="hlt">plasma</span> instabilities can enhance the resistivity, and thus the dissipation rate. In turbulent evolution of this kind, an MHD fluid can transform itself from a low dissipation to a high dissipation state. Calculations show that it is plausible that turbulence in the solar corona could exhibit this behavior.</p> <div class="credits"> <p class="dwt_author">Spangler, Steven</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990ITED...37..840M"> <span id="translatedtitle">Design principles for a <span class="hlt">sheet</span>-beam <span class="hlt">electron</span> gun for a quasi-optical gyrotron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The design considerations for a magnetized <span class="hlt">sheet</span> beam for which the <span class="hlt">electrons</span> have energy both perpendicular and parallel to the magnetic field are examined, including the basic design principles and scaling laws, the issue of orbit crossing and electrode synthesis in a <span class="hlt">sheet</span> beam configuration, limiting currents both in the guide tube and across the resonator, and the edge effects and their reduction or elimination by the use of edge focusing electrodes. The application envisioned for the <span class="hlt">sheet</span> beam is the driving of a quasi-optical gyrotron for <span class="hlt">electron</span> cyclotron resonance heating and current drive in fusion <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Manheimer, Wallace M.; Fliflet, Arne W.; Lee, Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900029440&hterms=MF&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2522MF%2522"> <span id="translatedtitle">Average electric wave spectra across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and their relation to ion bulk speed</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Using 4 months of tail data obtained by the ELF/MF spectrum analyzer of the wave experiment and the three-dimensional <span class="hlt">plasma</span> instrument on board the AMPTE/IRM satellite, a statistical survey on the electric wave spectral density in the earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> has been conducted. More than 50,000 10-s-averaged electric wave spectra were analyzed with respect to differences between their values in the inner and outer central <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer as well as their dependence on radial distance and ion bulk speed. High-speed flows are dominated by broadband electrostatic noise with highest spectral densities in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary, where broadband electrostatic noise also exists during periods of low-speed flows. The broadband electrostatic noise has a typical spectral index of about -2. During low-speed flows the spectra in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> show distinct emissions at the <span class="hlt">electron</span> cyclotron odd half-harmonic and upper hybrid frequency. Wave intensities during episodes of fast perpendicular flows are higher than those associated with fast parallel flows.</p> <div class="credits"> <p class="dwt_author">Baumjohann, W.; Treumann, R. A.; Labelle, J.; Anderson, R. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50657856"> <span id="translatedtitle">3D simulation of Wiggler field focusing <span class="hlt">sheet</span> <span class="hlt">electron</span> beam</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Under the condition of the solenoid focusing magnetic fields, Diocotron instability easily forms in the <span class="hlt">sheet</span> <span class="hlt">electron</span> beam, which could lead to collapse in beam propagation. This formation of Diocotron instability is presented in detail in this paper by using a three dimensional (3D) particle-in-cell (PIC) simulation. Then the Wiggler field is used to focus <span class="hlt">sheet</span> <span class="hlt">electron</span> beam, and the</p> <div class="credits"> <p class="dwt_author">Zhaoyun Duan; Tongbo Wang; Yubin Gong; Zhanliang Wang; Xiankui Guo; Yanyu Wei; Wenxiang Wang</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.9747K"> <span id="translatedtitle">Magnetospheric Tail <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundaries in Observations and Models.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This study is focused on magnetospheric tail current <span class="hlt">sheet</span> structure in the inner and middle magnetotail as observed by CLUSTER and reproduced in a set of Tsyganenko-type empirical models. Tail current <span class="hlt">sheet</span> is one of the most important sources of magnetospheric activity and a key region for understanding storm and substorm phenomena. Many studies were carried out to explore the structure and behavior of the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> during the periods of different activity. Still, due to a huge sizes and high variability, <span class="hlt">plasma</span> <span class="hlt">sheet</span> is much less explored if compared to the ring current regions. All the available spacecraft observations of magnetic field values in the area of magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span> were accumulated in the empirical magnetic field models to constrain the model configuration of a current system, which will adequately reproduce the effects of the real tail current <span class="hlt">sheet</span>. In this study we compare the observed <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary position with that predicted by a set of Tsyganenko models. We then analyze the results obtained with different magnetic field models and compare the ionospheric footpoints of observed <span class="hlt">plasma</span> <span class="hlt">sheet</span> outer boundary with observed Polar Cup boundary. We also explore magnetic field lines, which start from the Polar Cup boundary position. The study is based on a set of simultaneous observations of Cluster <span class="hlt">plasma</span> <span class="hlt">sheet</span> outer boundary crossings (transition from <span class="hlt">plasma</span> <span class="hlt">sheet</span> to magnetospheric lobes) and Polar Cup boundary observations by low altitude spacecraft (NOAA - type orbits). In order to have more accurate mapping we selected for this study a number of events (18 events by now) with a possibility to make the adaptive magnetic field model, which, if compared to standard Tsyganenko models, give considerably better representation of the observed magnetic field in the points of observations. These were the events where magnetic field values were measured by several spacecraft located in the similar local time region - in this study we used magnetic field observations from CLUSTER, GEOTAIL and GOES in the periods of different activity levels during the years 2005-2008 .</p> <div class="credits"> <p class="dwt_author">Kubyshkina, Marina; Boakes, Peter; Sergeev, Victor; Nakamura, Rumi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984pvs..conf....1T"> <span id="translatedtitle"><span class="hlt">Electron</span> channeling and EBIC studies of polycrystalline silicon <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> channeling and EBIC studies were performed on silicon <span class="hlt">sheets</span> grown by the edge-supported pulling (ESP) and low-angle silicon <span class="hlt">sheet</span> (LASS) process. The dominant grain structure of the ESP <span class="hlt">sheets</span> was found to be long, narrow grains with surface normals oriented near 011; grains with this structure tend to have better <span class="hlt">electronic</span> quality than random grains. The twin-stabilized planar growth material of LASS <span class="hlt">sheets</span> was also studied. This material, grown at 200 sq cm/min, is essentially single-crystal.</p> <div class="credits"> <p class="dwt_author">Tsuo, Y. S.; Matson, R. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998APS..DPP.K6S51K"> <span id="translatedtitle"><span class="hlt">Plasma</span> Density in a Planar Current <span class="hlt">Sheet</span> Produced under High-Pressure He-filling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Formation of current <span class="hlt">sheets</span> (CS) in 2D magnetic fields with a null-line is usually accompanied by effective <span class="hlt">plasma</span> compression into planar <span class="hlt">sheets</span> and in a significant increase in the <span class="hlt">electron</span> concentration as compared with the initial <span class="hlt">plasma</span> density. We have demonstrated recently that CS formation is also possible under high-pressure He-filling (300 mTorr), if the radial gradient of magnetic field was strong enough. Now we report the results of spectroscopic measurements on the time evolution of <span class="hlt">electron</span> concentrations in different regions of CS. In addition, we observed the decay in the He-Ne laser (632.8 nm) intensity because of its refraction in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. So a gradient of <span class="hlt">electron</span> concentration was obtained. Experiments were carried out with the device CS-3D. <span class="hlt">Plasma</span> emission from the central part of the CS <span class="hlt">plasma</span> was analyzed with the standard monochromator and the detector MORS-3 (CCD-line array combined with a microchannel plate). The profiles of He II and He I spectral lines have been recorded at successive stages of the CS evolution and processed using special codes. <span class="hlt">Plasma</span> density at the CS middle plane increased up to 10E17 per cc, the value exceeded about ten times the initial atomic concentration. Supported by INTAS (grant 96-456) and by RFBR (grant 96- 02-18546).</p> <div class="credits"> <p class="dwt_author">Kunze, H.-J.; Busher, St.; Frank, A. G.; Kyrie, N. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900043492&hterms=Maha&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DMaha"> <span id="translatedtitle">Cold <span class="hlt">plasma</span> heating in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer - Theory and simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Satellite observations in recent years have confirmed that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer is a permanent feature of the earth's magnetotail located between the lobe and central <span class="hlt">plasma</span> <span class="hlt">sheet</span> during both quiet and active magnetic periods. Distinct features of the boundary layer include field aligned ion beams and intense electrostatic emissions known as broadband electrostatic noise. Since the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer is a spatial feature of the magnetotail, within it will occur thermal mixing of the resident warm boundary layer <span class="hlt">plasma</span> with inflowing (convecting) cold ionospheric <span class="hlt">plasma</span>. A theoretical study involving linear theory and nonlinear numerical particle simulations is presented which examines ion beam instabilities in the presence of a thermally mixed hot and cold background <span class="hlt">plasma</span>. It is found that the free energy in the ion beams can heat the cool ionospheric <span class="hlt">plasma</span> to ambient <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer temperatures via broadband electrostatic noise. These results, along with recent observational reports that ionospheric outflow can account for measured <span class="hlt">plasma</span> <span class="hlt">sheet</span> densities, suggest that the ionospheric role in <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics and content may be as large as the solar wind.</p> <div class="credits"> <p class="dwt_author">Schriver, David; Ashour-Abdalla, Maha</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880059306&hterms=DALY&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DDALY"> <span id="translatedtitle">Magnetic configuration of the distant <span class="hlt">plasma</span> <span class="hlt">sheet</span> - ISEE 3 observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The influence of the IMF orientation and magnitude and substorm activity on the magnetic configuration of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> at 20-240 earth radii down the geomagnetic tail is investigated on the basis of ISEE-3 data. The results are presented graphically, and high-speed antisolar bulk flows threaded by southward magnetic fields are shown to be present in the distant <span class="hlt">plasma</span> <span class="hlt">sheet</span> after periods of substorm activity and southward IMF Bz. The effective dayside reconnection efficiency is estimated as 25 + or - 4 percent, in good agreement with theoretical models.</p> <div class="credits"> <p class="dwt_author">Slavin, J. A.; Smith, E. J.; Daly, P. W.; Sanderson, T. R.; Wenzel, K.-P.; Lepping, R. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phy6.org/Education/welect.html"> <span id="translatedtitle"><span class="hlt">Electrons</span>, Ions and <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This series of web pages provides information on a range of topics regarding charged particles. Starting with the properties of atomic <span class="hlt">electrons</span>, this material describes the Edison and photoelectric effects, the interaction between charged particles and magnetic fields, and the creation of <span class="hlt">plasmas</span> and positive ions. Other topics, including the history of research on charges, are covered in linked pages. This is part of a series of non-mathematical, linked explorations of the Earth's Magnetosphere.</p> <div class="credits"> <p class="dwt_author">Mendez, J.; Peredo, Mauricio; Stern, David P. (David Peter), 1931-</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-04-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.phy6.org/Education/Ielect.html"> <span id="translatedtitle"><span class="hlt">Electrons</span>, Ions and <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This explanation of the factors that produce the polar aurora, (northern lights) discusses the role of <span class="hlt">electrons</span> in the ionosphere, positive ions in the solar wind, and the mixing of the two to create <span class="hlt">plasma</span>. The work of Kristian Birkeland of Norway in exploring the cause of the aurora is cited and a link leads to in-depth information on auroras, including some dramatic photographs.</p> <div class="credits"> <p class="dwt_author">Stern, David</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..774P"> <span id="translatedtitle">Observations of polar cap flow channel and <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow bursts during substorm expansion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present the first simultaneous observations of an enhanced polar cap flow impinging on the nightside polar cap boundary (PCB), two flow bursts in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and a conjugate ionospheric flow burst within the auroral oval. The ionospheric measurements on 3 September 2006 were made by the European Incoherent Scatter (EISCAT) radars and the magnetospheric measurements by the four Cluster spacecraft. In the end of a substorm growth phase, EISCAT measured a channel of enhanced equatorward <span class="hlt">plasma</span> flow within the polar cap, which was about 1 wide in latitude and drifted slowly equatorward. During the substorm expansion phase, the PCB started to contract poleward. The interaction between the equatorward drifting polar cap flow channel and the poleward contracting PCB took 2-3 min. During this time, the F-region <span class="hlt">electron</span> temperature was elevated at the PCB, which is interpreted as a possible signature of an auroral poleward boundary intensification (PBI). After that, enhanced equatorward flows were measured inside the auroral oval by EISCAT. During this period, the Cluster satellites measured two fast earthward flow bursts in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which were associated with dipolarizations of the magnetic field, depletions in <span class="hlt">plasma</span> density, and return flows. We suggest that the second flow burst in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> represents the same flow burst that is seen in the ionosphere by EISCAT and propose that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow bursts were triggered by the enhanced flow structure on open polar cap field lines. The suggestion is in line with Lyons et al. (2011).</p> <div class="credits"> <p class="dwt_author">PitkNen, T.; Aikio, A. T.; Juusola, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.7331H"> <span id="translatedtitle">The Self-Consistent Generation of Current <span class="hlt">Sheets</span> by Alfven Wave Collisions in <span class="hlt">Plasma</span> Turbulence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Turbulence plays a key role in the evolution of space and astrophysical <span class="hlt">plasmas</span>, mediating the transfer of energy from large-scale turbulent motions to small scales where the turbulent energy is ultimately converted to <span class="hlt">plasma</span> heat. The cascade of energy from large to small scales is mediated by the nonlinear interactions between counterpropagating Alfven waves, or Alfven wave "collisions," the fundamental building block of astrophysical <span class="hlt">plasma</span> turbulence. At small scales, simulations of magnetized <span class="hlt">plasma</span> turbulence inherently generate current <span class="hlt">sheets</span> down to the scale of the <span class="hlt">electron</span> Larmor radius, and these current <span class="hlt">sheets</span> play an important, but as yet only partially understood, role in the kinetic dissipation of turbulence under the weakly collisional <span class="hlt">plasma</span> conditions relevant to the solar wind and solar corona. Here I demonstrate from first principles how Alfven wave collisions lead to the generation of current <span class="hlt">sheets</span> at small scales. The result is the first model of <span class="hlt">plasma</span> turbulence that self-consistently ties together the physics of Alfven waves and small-scale current <span class="hlt">sheets</span>.</p> <div class="credits"> <p class="dwt_author">Howes, Gregory</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860057121&hterms=tilt+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtilt%2Bearth"> <span id="translatedtitle">The warped neutral <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the near-earth geomagnetic tail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">An analysis of ISEE 2 <span class="hlt">plasma</span> and magnetic field data indicates that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and neutral <span class="hlt">sheet</span> in the near-earth magnetotail are warped in such a manner that in summer (winter) the neutral <span class="hlt">sheet</span> rises above (dips below) the solar magnetospheric equatorial plane near the center of the tail, but dips below (rises above) the equatorial plane along the tail flanks. In the near tail, the neutral <span class="hlt">sheet</span> crosses the equatorial plane at about 12 earth radii from the aberrated X axis, considerably closer to the center of the tail than has been inferred from data obtained farther downstream. This increase in the warp with decreasing distance from the earth is consistent with theoretical predictions. In the near tail, the warp is sufficiently strong when the dipole tilt angle is large that even in quiet times the upper or lower edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be found close to the solar magnetospheric equatorial plane along the tail flanks. The seasonal dependence of the warp can produce certain dawn-dusk asymmetries in satellite data which are more apparent than real.</p> <div class="credits"> <p class="dwt_author">Gosling, J. T.; Mccomas, D. J.; Thomsen, M. F.; Bame, S. J.; Russell, C. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110024199&hterms=xxx&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dxxx"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Velocity Measurement Techniques for the Pulsed <span class="hlt">Plasma</span> Thruster SIMP-LEX</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The velocity of the first <span class="hlt">plasma</span> <span class="hlt">sheet</span> was determined between the electrodes of a pulsed <span class="hlt">plasma</span> thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.</p> <div class="credits"> <p class="dwt_author">Nawaz, Anuscheh; Lau, Matthew</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/ja/v089/iA07/JA089iA07p05479/JA089iA07p05479.pdf"> <span id="translatedtitle"><span class="hlt">Electron</span> energization in the geomagnetic tail current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electron</span> motion in the distant tail current <span class="hlt">sheet</span> is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most <span class="hlt">electrons</span> within the energy range approx.10⁻¹⁻¹°sup 2\\/ keV that enter the current <span class="hlt">sheet</span> become trapped within the magnetic field reversal region. These <span class="hlt">electrons</span> then convect earthward and gain energy from the cross-tail electric field.</p> <div class="credits"> <p class="dwt_author">L. R. Lyons</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17166939"> <span id="translatedtitle">Xenopus oocyte <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span> for FRET analysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Plasma</span> membrane <span class="hlt">sheets</span> from Xenopus oocytes have been isolated for use in fluorescence resonance energy transfer (FRET) measurements. This system has the following advantages: 1) fluorescent recordings from a large surface area to maximize the signal-to-noise ratio, 2) reduction in background fluorescence from proteins retained in intracellular compartments, and 3) access to the cytoplasmic surface of the <span class="hlt">plasma</span> membrane for rapid solution changes. To demonstrate the utility of this approach, we have examined a previously published FRET-based Ca(2+) sensor, namely, the Cameleon-PM. This construct targets to the <span class="hlt">plasma</span> membrane and, upon various Ca(2+) additions to the cytoplasmic face of the membrane, shows ratiometric FRET changes. From the ratiometric changes recorded, an apparent Ca(2+) affinity of 1.65 microM was determined. Thus preparation of Xenopus oocyte <span class="hlt">plasma</span> membrane <span class="hlt">sheets</span> and FRET measurements demonstrates all three of the advantages outlined above. PMID:17166939</p> <div class="credits"> <p class="dwt_author">Ottolia, Michela; Philipson, Kenneth D; John, Scott</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EPJD...54..271P"> <span id="translatedtitle">ADBD <span class="hlt">plasma</span> surface treatment of PES fabric <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> treatment of textile fabrics is investigated as an alternative to the environmentally hazardous wet chemical fabric treatment and pretreatment processes. <span class="hlt">Plasma</span> treatment usually results in modification of the uppermost atomic layers of a material surface and leaves the bulk characteristics unaffected. It may result in desirable surface modifications, e.g. surface etching, surface activation, cross-linking, chain scission and oxidation. Presented paper contains results of the applicability study of the atmospheric pressure dielectric discharge (ADBD), i.e. dielectric barrier discharge sustaining in air at atmospheric pressure and ambient temperature for synchronous treatment of several <span class="hlt">sheets</span> of fabric. For tests <span class="hlt">sheets</span> of polyester fabric were used. Effectivity of the modification process was determined with hydrophilicity measurements evaluated by means of the drop test. Hydrophilicity of individual <span class="hlt">sheets</span> of fabric has distinctly increased after <span class="hlt">plasma</span> treatment. <span class="hlt">Plasma</span> induced surface changes of textiles were also proven by identification of new functional groups at the modified polyester fabric surface. Existence of new functional groups was detected by ESCA scans. For verification of surface changes we also applied high-resolution microphotography. It has shown distinct variation of the textile surface after <span class="hlt">plasma</span> treatment. Important aspect for practical application of the <span class="hlt">plasma</span> treatment is the modification effect time-stability, i.e. time stability of acquired surface changes of the fabric. The recovery of hydrophobicity was fastest in first days after treatment, later gradually diminished until reached almost original untreated state.</p> <div class="credits"> <p class="dwt_author">Pchal, J.; Klenko, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AnGeo..28.1813H"> <span id="translatedtitle">Geomagnetic activity effects on <span class="hlt">plasma</span> <span class="hlt">sheet</span> energy conversion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this article we use three years (2001, 2002, and 2004) of Cluster <span class="hlt">plasma</span> <span class="hlt">sheet</span> data to investigate what happens to localized energy conversion regions (ECRs) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during times of high magnetospheric activity. By examining variations in the power density, EJ, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs) and Concentrated Generator Regions (CGRs) from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. A higher geomagnetic activity hence increases the general level of energy conversion in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the <span class="hlt">plasma</span> <span class="hlt">sheet</span> magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.</p> <div class="credits"> <p class="dwt_author">Hamrin, M.; Norqvist, P.; Marghitu, O.; Buchert, S.; Klecker, B.; Kistler, L. M.; Dandouras, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950029531&hterms=energy+sector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Denergy%2Bsector"> <span id="translatedtitle">Contribution of low-energy ionospheric protons to the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The magnetospheric transport of low-energy ionospheric ions is examined by means of three-dimensional particle codes. Emphasis is placed on the behavior of polar wind and cleft originating protons. It is demonstrated that, via nonadiabatic motion inside the neutral <span class="hlt">sheet</span>, these ions can significantly contribute to the populations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The importance of this contribution is found to depend critically upon the dynamics of particles originating from the highest latitudes, as these possibly have access to the distant tail. Hence it is shown that polar wind H(+) expelled into the magnetosphere at very low energies (in the <span class="hlt">electron</span> volt range) preferentially feed the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during quiet times, experiencing accelerations up to several kiloelectron volts upon return into the inner magnetosphere. In contrast, during disturbed times, the intensifying magnetospheric convection confines this population to low L shells where it travels in a nearly adiabatic manner. As for the protons originating from the cleft fountain, the simulations reveal that they can be transported up to the vicinity of the distant neutral line in the nightside sector. Via interaction with the neutral <span class="hlt">sheet</span>, these ionospheric ions are rapidly raised to the characteristic <span class="hlt">plasma</span> <span class="hlt">sheet</span> energy range. The density levels contributed by these populations are quite substantial when compared to those measured in situ. These simulations establish an active role of low-energy ionospheric ions in the overall magnetospheric dynamics.</p> <div class="credits"> <p class="dwt_author">Delcourt, D. C.; Moore, T. E.; Chappell, C. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007GeoRL..34.4105D"> <span id="translatedtitle">Transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> material to the inner magnetosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The reaction of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in response to an increase in magnetospheric convection is examined using a combination of energetic neutral atom (ENA) imaging and in situ observations. Data from the IMAGE/MENA instrument are examined in conjunction with observations from the magnetospheric <span class="hlt">plasma</span> analyzer (MPA) instrument onboard the Los Alamos 1994-084 satellite located in geosynchronous orbit. Examination of the MENA data during an enhanced convection event reveal that between 12:00 and 14:30 UT on 26 June 2001, ENA emissions from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> material are observed to strengthen and move Earthwards. A simple calculation of the motion of the peak in ENA emissions following an increase in the convection gives an averaged speed of this sunward surge of around 8 km s-1 between 12:00 and 14:30 UT.</p> <div class="credits"> <p class="dwt_author">Denton, M. H.; Thomsen, M. F.; Lavraud, B.; Henderson, M. G.; Skoug, R. M.; Funsten, H. O.; Jahn, J.-M.; Pollock, C. J.; Weygand, J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20040086547&hterms=substorm+current+wedge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522substorm%2Bcurrent%2Bwedge%2522"> <span id="translatedtitle">Substorm Evolution in the Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This grant represented one-year, phase-out funding for the project of the same name (NAG5-9110 to Boston University) to determine precursors and signatures of local substorm onset and how they evolve in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the Geotail near-Earth database. We report here on two accomplishments: (1) Completion of an examination of <span class="hlt">plasma</span> velocity signature at times of local onsets in the current disruption (CD) region. (2) Initial investigation into quantification of near-Earth flux-tube contents of injected <span class="hlt">plasma</span> at times of substorm injections.</p> <div class="credits"> <p class="dwt_author">Erickson, Gary M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56062729"> <span id="translatedtitle">Current <span class="hlt">Sheet</span> in a Coaxial <span class="hlt">Plasma</span> Gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic- and electric-probe measurements were made on the thin carrent ; layer which is accelerated in a coaxial (Marshall) <span class="hlt">plasma</span> gun. It is found that ; this layer does not act as a snowplow, but rather has the character of a strong ; shock wave. (auth);</p> <div class="credits"> <p class="dwt_author">L. C. Burkhardt; R. H. Lovberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56736406"> <span id="translatedtitle">Current <span class="hlt">Sheet</span> in a Coaxial <span class="hlt">Plasma</span> Gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic- and electric-probe measurements have been made on the thin current layer which is accelerated in a coaxial (Marshall) <span class="hlt">plasma</span> gun. It is found that this layer does not act as a ``snowplow,'' but rather has the character of a strong shock wave.</p> <div class="credits"> <p class="dwt_author">L. C. Burkhardt; R. H. Lovberg</p> <p class="dwt_publisher"></p> <p class="publishDate">1962-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMSM32A1144T"> <span id="translatedtitle">CLUSTER Measurements of Substorm Electric Fields at the Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The four-satellite CLUSTER mission offers the opportunity to look at the time sequence and spatial pattern of electric field intensification at times near substorm onset. Using data from the <span class="hlt">Electron</span> Drift Instrument (EDI), the Flux-Gate Magnetometer(FGM), and the Composition instrument ( CODIF), intense perpendicular flows ( ~40 km/s) towards the neutral <span class="hlt">sheet</span> can often be seen around the time of onset, followed by expansion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Comparisons of these observations with MHD simulations of substorms will be presented.</p> <div class="credits"> <p class="dwt_author">Torbert, R. B.; Paschmann, G.; Quinn, J.; Kistler, L.; Mouikis, C.; Puhl-Quinn, P.; Georgescu, E.; Raeder, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890046144&hterms=imf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dimf"> <span id="translatedtitle">Comparison of <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition with the IMF and solar wind <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> energetic ion data (0.1- to 16 keV/e) obtained by the <span class="hlt">Plasma</span> Composition Experiment on ISEE-1 between 10 and 23 earth radii are compared with concurrent IMF and solar wind <span class="hlt">plasma</span> data. The densities of H(+) and He(++) ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> are found to be the highest, and the most nearly proportional to the solar wind density, when the IMF B(z) is not northward. The density of terrestrial O(+) ions increases strongly with increasing magnitude of the IMF, in apparent agreement with the notion that the IMF plays a fundamental role in the electric coupling between the solar wind and the ionosphere.</p> <div class="credits"> <p class="dwt_author">Lennartsson, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.1883S"> <span id="translatedtitle">Ion temperature in pre- and post-dipolarization <span class="hlt">plasma</span> <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using the ECLAT event list of magnetotail dipolarizations, limited to the cases that were presented in Schmid et al. [2011], we study the ion temperature and its anisotropy (i.e. T?-T?) in the pre- and post-dipolarization <span class="hlt">plasma</span> <span class="hlt">sheets</span> in the Earth's magnetotail. Earlier studies have shown that in the quiescent magnetotail the ion temperature is isotropic, however, during fast flow times there is a strong anisotropy. Lately it has been shown, using THEMIS data, that this anisotropy in the magnetotail is structured in (T?-T?, ??)-space, strongly bound by temperature anisotropy driven instability thresholds (mirror mode, ion cyclotron mode and fire hose instability), and that the ion temperature isotropizes as the flow moves Earthward [Wu et al., 2012, submitted to JGR]. In this study, superposed epoch analysis is performed on the events, where a split-up is made into local time sectors and on pre-dipolarization <span class="hlt">plasma</span> <span class="hlt">sheet</span> characteristics.</p> <div class="credits"> <p class="dwt_author">Schmid, Daniel; Volwerk, Martin; Vrs, Zoltan; Boakes, Pete; Nakamura, Rumi; Wu, MingYu; Milan, Steve</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56010667"> <span id="translatedtitle">Periodic focusing and ponderomotive stabilization of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Particle simulations compare the behavior of nonrelativistic <span class="hlt">sheet</span> <span class="hlt">electron</span> beams in uniform static and nonuniform time-harmonic magnetic fields. The time-harmonic fields are equivalent to periodically cusped magnetic (PCM) focusing. While the <span class="hlt">sheet</span> beam in a uniform field exhibits diocotron instability, the PCM-focused beam is stabilized by ponderomotive forces, in agreement with recent analytic predictions [J. Appl. Phys. 73, 4140 (1993)].</p> <div class="credits"> <p class="dwt_author">J. H. Booske; A. H. Kumbasar; M. A. Basten</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910036461&hterms=Net+Neutrality&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DNet%2BNeutrality"> <span id="translatedtitle">Equilibrium structure of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer-lobe interface</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Observations are presented which show that <span class="hlt">plasma</span> parameters vary on a scale length smaller than the ion gyroradius at the interface between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) <span class="hlt">electron</span> flows develop whose peak velocities are on the order of the <span class="hlt">electron</span> thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency and extending below the lower hybrid frequency.</p> <div class="credits"> <p class="dwt_author">Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880059313&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcattell"> <span id="translatedtitle">Substorm-associated lower hybrid waves in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> observed by ISEE 1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Observations of the electric field at frequencies from 2-128 Hz, using the burst mode of the spherical double probe on ISEE 1, have been examined for a time period previously identified as containing the traversal of a near-earth neutral line past the satellite. Intense waves (3 to over 30 mV/m) at approximately half the lower hybrid frequency were observed throughout the <span class="hlt">plasma</span> <span class="hlt">sheet</span> from the neutral <span class="hlt">sheet</span> to the boundary, but only during the period of the large dc electric field and E x B velocity associated with the substorm neutral line. The wave number deduced from linear fits of the data was comparable to the inverse <span class="hlt">electron</span> gyroradius. These results are consistent with the lower-hybrid drift instability. Although peaks between the ion and <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency were sometimes observed simultaneously, the integrated power below 100 Hz was usually at least one to two orders of magnitude greater than that above 100 Hz. Although theoretical work has suggested that the instability would be suppressed at the neutral <span class="hlt">sheet</span>, the largest waves observed occurred right at the neutral <span class="hlt">sheet</span> when the southward component of the magnetic field was 6 gamma. The observed waves could provide an anomalous resistivity of about (3-1000) x 10 to the -7th S (compared to the classical value of 1 x 10 to the -18th S).</p> <div class="credits"> <p class="dwt_author">Cattell, C. A.; Mozer, F. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvB..88t5426T"> <span id="translatedtitle">Theory of the <span class="hlt">plasma</span>-wave photoresponse of a gated graphene <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The photoresponse of graphene has recently received considerable attention. The main mechanisms yielding a finite dc response to an oscillating radiation field which have been investigated include responses of photovoltaic, photothermoelectric, and bolometric origin. In this article, we present a fully analytical theory of a photoresponse mechanism which is based on the excitation of <span class="hlt">plasma</span> waves in a gated graphene <span class="hlt">sheet</span>. By employing the theory of relativistic hydrodynamics, we demonstrate that <span class="hlt">plasma</span>-wave photodetection is substantially influenced by the massless Dirac fermion character of carriers in graphene, and that the efficiency of photodetection can be improved with respect to that of ordinary parabolic-band <span class="hlt">electron</span> fluids in semiconductor heterostructures.</p> <div class="credits"> <p class="dwt_author">Tomadin, Andrea; Polini, Marco</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50028281"> <span id="translatedtitle">Stable transport and side-focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams in periodically cusped magnetic field configurations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams and configurations with multiple <span class="hlt">electron</span> beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using <span class="hlt">sheet</span> <span class="hlt">electron</span> beams include <span class="hlt">sheet</span>-beam klystrons, grating TWTs, and planar FELs. Historically, implementation of <span class="hlt">sheet</span></p> <div class="credits"> <p class="dwt_author">J. Anderson; M. A. Basten; L. Rauth; J. H. Booske; J. Joe; J. E. Scharer</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830031162&hterms=Frank+young&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DFrank%2Byoung"> <span id="translatedtitle">On the relationship of the plasmapause to the equatorward boundary of the auroral oval and to the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">ISEE 1 observations of the plasmapause are compared with simultaneous observations of the <span class="hlt">electron</span> <span class="hlt">plasma</span> <span class="hlt">sheet</span> and also the auroral oval observed in DMSP photographs. Only a limited amount of appropriate data was available for the comparisons: the plasmapause/<span class="hlt">plasma</span> <span class="hlt">sheet</span> inner edge comparisons were restricted to the early and late morning sectors, while there were two satisfactory comparisons of the plasmapause and the equatorward boundary of the auroral oval in the evening sector. However, these examples indicate that the plasmapause location often coincides to within a change in L of about 0.1-0.2 with both the <span class="hlt">plasma</span> <span class="hlt">sheet</span> inner boundary and the field line threading the equatorward boundary of the auroral oval. This co-location of the plasmapause and the <span class="hlt">plasma</span> <span class="hlt">sheet</span> inner edge may be due to shielding of the magnetospheric convection electric field by an Alfven layer located at the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as discussed by Jaggi and Wolf (1973) and others.</p> <div class="credits"> <p class="dwt_author">Horwitz, J. L.; Cobb, W. K.; Baugher, C. R.; Chappell, C. R.; Frank, L. A.; Eastman, T. E.; Anderson, R. R.; Shelley, E. G.; Young, D. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1982-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMSM32A1134W"> <span id="translatedtitle">Timing of Substorm Signals in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> and the Auroral Region</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Both the Medium Energy Neutral Atom (MENA) and High Energy Neutral Atom (HENA) imagers onboard the IMAGE spacecraft have been able to observe ENA emissions from the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The MENA observations showed enhanced emissions associated with high solar wind densities during magnetospheric storm intervals. The HENA observations showed decreases of emissions from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> following dipolarization associated with substorms. We present forward modeling of ENA emission from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the Tsyganenko <span class="hlt">plasma</span> <span class="hlt">sheet</span> model. In the model it is found that assuming a flow velocity toward the Earth of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">plasma</span> has a strong effect on the strength of the modeled ENA flux. Thus the ENA observations are used to infer the timing of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flow relative to the substorm signal seen in the FUV imager onboard IMAGE.</p> <div class="credits"> <p class="dwt_author">Wang, X.; Perez, J. D.; Jahn, J.; Pollock, C. J.; Valek, P.; C:Son Brandt, P.; Mitchell, D. G.; Mende, S. B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..16.6821D"> <span id="translatedtitle">MESSENGER Observations of Magnetic Flux Ropes in Mercury's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">MESSENGER orbital observations provide a new opportunity to investigate magnetic reconnection in the cross-tail current <span class="hlt">sheet</span> of Mercury's magnetotail. Here we use measurements collected by the Magnetometer and Fast Imaging <span class="hlt">Plasma</span> Spectrometer (FIPS) during 'hot seasons,' when the orbital periapsis is on Mercury's dayside and MESSENGER crosses the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at distances of ~1.5 to 3 RM (where RM is Mercury's radius, or 2440 km). These data frequently contain signatures of large-scale magnetic reconnection in the form of plasmoid-type magnetic flux ropes and southward magnetic fields in the post-plasmoid <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In the cross-tail current <span class="hlt">sheet</span>, which separates the north and south lobes of the magnetotail, flux ropes are formed by reconnection at two or more X-lines and are then transported either toward or away from the planet by the Alfvnic flow emanating from the X-lines. Here we present a survey of 49 plasmoid-type flux ropes identified during seven MESSENGER 'hot seasons,' for which minimum variance analysis indicates that the spacecraft passed near the central axis of the structure. The locations of the selected flux ropes range between 1.7 and 2.8 RM down the tail from the center of the planet. With FIPS measurements, we determined an average proton density of 2.55 cm-3 in the adjacent <span class="hlt">plasma</span> <span class="hlt">sheet</span> surrounding the flux ropes, implying an Alfvn speed of ~450 km s-1. Under the assumption that the flux ropes are moving at the local Alfvn speed, we used the mean duration of 0.74 0.15 s to calculate a typical diameter of ~0.14 RM, or ~340 km. We have modeled the plasmoids as force-free flux ropes in order to confirm this result. A superposed epoch analysis demonstrates that the magnetic structure of the flux ropes is similar to what is observed at Earth, but the timescales are 40 times faster at Mercury. The results of this flux rope survey indicate that intense magnetic reconnection occurs frequently in the cross-tail current layer of this small but extremely dynamic magnetosphere.</p> <div class="credits"> <p class="dwt_author">DiBraccio, Gina A.; Slavin, James A.; Imber, Suzanne M.; Gershman, Daniel J.; Raines, Jim M.; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; McNutt, Ralph L., Jr.; Solomon, Sean C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000GeoRL..27..843C"> <span id="translatedtitle">Multicomponent <span class="hlt">plasma</span> distributions in the tail current <span class="hlt">sheet</span> associated with substorms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The 3D <span class="hlt">plasma</span> instrument on the Wind spacecraft has obtained new features of <span class="hlt">plasma</span> distributions in the region of the geomagnetic tail current <span class="hlt">sheet</span> (CS) that have not been previously reported. In addition to the isotropic <span class="hlt">plasma</span> <span class="hlt">sheet</span> component, ion beams of energy 1-3 keV are observed. The beams are generally counter streaming but unidirectional beams are also observed streaming parallel and antiparallel to the direction of the magnetic field. In addition, a low energy (a few hundred eV) ion component appears in close association with Bz increases. The <span class="hlt">electron</span> distributions have bidirectional anisotropy with T?/T? ?1.5, and they are often accompanied by counter streaming beams. However, a few keV unidirectional <span class="hlt">electron</span> beam is also observed with bidirectional anisotropic distributions. These keV <span class="hlt">electrons</span> are streaming away from the CS, suggesting they have been accelerated in the CS and subsequently ejected. The <span class="hlt">plasma</span> distribution in the CS is multicomponent and thus requires a kinetic description of the dynamics.</p> <div class="credits"> <p class="dwt_author">Chen, LiJen; Larson, D.; Lin, R. P.; McCarthy, M.; Parks, G.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720028786&hterms=lunar+eclipse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlunar%2Beclipse"> <span id="translatedtitle"><span class="hlt">Plasma-sheet</span> ions at lunar distance preceding substorm onset.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During the partial lunar eclipse of August 17, 1970, four intense, transient bursts of kV-energy positive ions were detected at the lunar surface by the Rice University ALSEP Suprathermal Ion Detector Experiment. The eclipse happened to occur during a main-phase geomagnetic storm while the moon was within a few earth radii of the calculated position of the neutral <span class="hlt">sheet</span>. The two most intense ion bursts were each followed roughly one-half hour later by the sudden onset of a several thousand gamma polar magnetic substorm at the earth's surface. Two smaller ion enhancements were also followed by smaller magnetic disturbances. This observation is interpreted in terms of a downstream escape of <span class="hlt">plasma-sheet</span> particles associated with the substorm growth phase.</p> <div class="credits"> <p class="dwt_author">Garrett, H. B.; Hill, T. W.; Fenner, M. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993JGR....98.3999H"> <span id="translatedtitle">The Uranian corona as a charge exchange cascade of <span class="hlt">plasma</span> <span class="hlt">sheet</span> protons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The paper uses models of magnetic convection and interparticle interactions to examine the collisional interactions between atmospheric neutral hydrogen and magnetospheric charged particles observed by Voyager to be convecting through the Uranian magnetosphere. The e(-)-H collisional ionization process, continually reenergized by compressional heating of the <span class="hlt">electrons</span> as they drift toward Uranus, produces a cascade of new <span class="hlt">plasma</span>. This process has been suggested elsewhere as the source of the warm (10 eV at L = 5) <span class="hlt">plasma</span> and is found in the present study to continue in a cascade to even cooler and more abundant <span class="hlt">plasma</span>. This newly created <span class="hlt">plasma</span> consists almost entirely of <span class="hlt">electrons</span> and protons because He and H2 are nearly absent from the uppermost layers of the atmosphere. If this <span class="hlt">plasma</span> crosses the dayside magnetopause and mixes with magnetopause boundary layers such as the <span class="hlt">plasma</span> mantle, there to be swept back along the magnetotail, reincorporated into the magnetotail by the same processes postulated for solar wind <span class="hlt">plasma</span> entry, and reenergized in the magnetotail current <span class="hlt">sheet</span>, it would constitute an important source for the hot <span class="hlt">plasma</span> observed by Voyager.</p> <div class="credits"> <p class="dwt_author">Herbert, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910040943&hterms=moghaddam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmoghaddam"> <span id="translatedtitle"><span class="hlt">Plasma</span> convection and ion beam generation in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Because of the dawn-dusk electric field E(dd), <span class="hlt">plasma</span> in the magnetotail convects from the lobe toward the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS). In the absence of space or velocity diffusion due to <span class="hlt">plasma</span> turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a <span class="hlt">plasma</span> beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) and outer central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the <span class="hlt">plasma</span> density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the <span class="hlt">plasma</span> temperature in the OCPS.</p> <div class="credits"> <p class="dwt_author">Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/25005914"> <span id="translatedtitle"><span class="hlt">Electronic</span> and optical properties of silicon based porous <span class="hlt">sheets</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Si based <span class="hlt">sheets</span> have attracted tremendous attention due to their compatibility with the well-developed Si-based semiconductor industry. On the basis of state-of-the-art theoretical calculations, we systematically study the stability, <span class="hlt">electronic</span> and optical properties of Si based porous <span class="hlt">sheets</span> including g-Si4N3, g-Si3N4, g-Si3N3 and g-Si3P3. We find that the g-Si3N3 and g-Si3P3 <span class="hlt">sheets</span> are thermally stable, while the g-Si4N3 and g-Si3N4 are unstable. Different from the silicene-like <span class="hlt">sheets</span> of SiN and Si3N which are nonplanar and metallic, both the porous g-Si3N3 and g-Si3P3 <span class="hlt">sheets</span> are planar and nonmetallic, and the former is an indirect band gap semiconductor with a band gap of 3.50 eV, while the latter is a direct band gap semiconductor with a gap of 1.93 eV. Analysis of the optical absorption spectrum reveals that the g-Si3P3 <span class="hlt">sheet</span> may have applications in solar absorbers owing to its narrow direct band gap and wide range optical absorption in the visible light spectrum. PMID:25005914</p> <div class="credits"> <p class="dwt_author">Guo, Yaguang; Zhang, Shunhong; Wang, Qian</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-07-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50275870"> <span id="translatedtitle">An <span class="hlt">electron</span> gun for a <span class="hlt">sheet</span> beam klystron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary form only given. Calabazas Creek Research, Inc. (CCR) is developing a rectangular, gridded, thermionic, dispenser-cathode gun for <span class="hlt">sheet</span> beam devices. The first application is expected to be klystrons for advanced particle accelerators and colliders. The current generation of accelerators typically use klystrons with a cylindrical beam generated by a Pierce-type <span class="hlt">electron</span> gun. As RF power is pushed to higher</p> <div class="credits"> <p class="dwt_author">M. E. Read; G. Miram; R. L. Ives; A. Krasnykh; V. Ivanov</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/927792"> <span id="translatedtitle">A Gridded <span class="hlt">Electron</span> Gun for a <span class="hlt">Sheet</span> Beam Klystron</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes the development of an <span class="hlt">electron</span> gun for a <span class="hlt">sheet</span> beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.</p> <div class="credits"> <p class="dwt_author">Read, M.E.; Miram, G.; Ives, R.L.; /Calabazas Creek Res., Saratoga; Ivanov, V.; Krasnykh, A.; /SLAC</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990080077&hterms=mccarthy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmccarthy"> <span id="translatedtitle">Understanding Substorms from the Auroral Ionosphere to the Distant <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The global polar UVI images have been correlated with observations from the ground, ionosphere, geomagnetic tail between 10-20 earth radii and the interplanetary space. One of the objectives of our study is to better understand the connection among many complex phenomena occurring close to Earth and those in the near--earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We have examined the details of how the auroral and polar cap boundaries at different local times behave in relation to variations occurring in the solar wind, ionosphere and <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorms. We have also compared locations of boundaries deduced from images to <span class="hlt">electron</span> flux "boundaries" observed by polar orbiting spacecraft. Our results indicate that the ionospheric dynamics is important and polar cap and auroral oval boundaries expand and contract in a complicated but systematic way. These variations are correlated to solar wind parameters and growth and recovery phenomena in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These results can be interpreted in terms of directly driven and/or unloading substorm processes.</p> <div class="credits"> <p class="dwt_author">Parks, G. K.; Brittnacher, M.; Chen, L.; Chua, D.; Elsen, R.; Fillingim, M.; McCarthy, M.; Wilber, M.; Germany, G.; Spann, J.; Lin, R. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23581329"> <span id="translatedtitle">Dense attosecond <span class="hlt">electron</span> <span class="hlt">sheets</span> from laser wakefields using an up-ramp density transition.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Controlled <span class="hlt">electron</span> injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense <span class="hlt">plasma</span> target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic <span class="hlt">electron</span> <span class="hlt">sheet</span> that is injected and accelerated in the wakefield. A peaked <span class="hlt">electron</span> energy spectrum and high charge (?nC) distinguish the final <span class="hlt">sheet</span>. PMID:23581329</p> <div class="credits"> <p class="dwt_author">Li, F Y; Sheng, Z M; Liu, Y; Meyer-ter-Vehn, J; Mori, W B; Lu, W; Zhang, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvL.110m5002L"> <span id="translatedtitle">Dense Attosecond <span class="hlt">Electron</span> <span class="hlt">Sheets</span> from Laser Wakefields Using an Up-Ramp Density Transition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Controlled <span class="hlt">electron</span> injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense <span class="hlt">plasma</span> target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic <span class="hlt">electron</span> <span class="hlt">sheet</span> that is injected and accelerated in the wakefield. A peaked <span class="hlt">electron</span> energy spectrum and high charge (nC) distinguish the final <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Li, F. Y.; Sheng, Z. M.; Liu, Y.; Meyer-ter-Vehn, J.; Mori, W. B.; Lu, W.; Zhang, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JGRA..119.1827C"> <span id="translatedtitle">The quiet evening auroral arc and the structure of the growth phase near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">plasma</span> pressure and current configuration of the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current <span class="hlt">sheet</span>, which forms during the development of the growth phase enhancement of convection. The current <span class="hlt">sheet</span>'s large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the <span class="hlt">electron</span> precipitation responsible for the arc's luminosity. The QEA is located in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the <span class="hlt">plasma</span> pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of <span class="hlt">plasma</span> <span class="hlt">sheet</span> pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.</p> <div class="credits"> <p class="dwt_author">Coroniti, F. V.; Pritchett, P. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920045465&hterms=moebius&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522moebius%2522"> <span id="translatedtitle">Pressure changes in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorm injections</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Data from the CHEM instrument on AMPTE CCE, data from the 3D <span class="hlt">plasma</span> instrument and the SULEICA instrument on AMPTE IRM, and magnetometer data from both spacecraft are used to determine the particle pressure and total pressure as a function of radial distance in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> for periods before and after the onset of substorm-associated ion enhancements over the range 7-19 RE. Events were chosen that occurred during times of increasing magnetospheric activity, as determined by an increasing AE index, in which a sudden increase, or 'injection', of energetic particle flux is observed. It is shown that the simultaneous appearance of energetic particles and changes in the magnetic field results naturally from pressure balance and does not necessarily indicate that the local changing field is accelerating the particles.</p> <div class="credits"> <p class="dwt_author">Kistler, L. M.; Moebius, E.; Baumjohann, W.; Paschmann, G.; Hamilton, D. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6907757"> <span id="translatedtitle">Association of <span class="hlt">plasma</span> <span class="hlt">sheet</span> variations with auroral changes during substorms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with <span class="hlt">plasma</span> measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.</p> <div class="credits"> <p class="dwt_author">Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a000000/a000008/index.html"> <span id="translatedtitle">Topological Features of a Compressible <span class="hlt">Plasma</span> Vortex <span class="hlt">Sheet</span>: 6 Cases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Voyager and Pioneer Spacecraft have detected large-scale quasi-periodic <span class="hlt">plasma</span> fluctuations in the outer heliosphere beyond 20 AU. A <span class="hlt">plasma</span> vortex <span class="hlt">sheet</span> model can explain these fluctuations and the observed correlations between various physical variables. The large scale outer heliosphere is modeled by solving the 3-D compressible magnetohydrodynamic equations involving three interacting shear layers. Computations were done on a Cray computer at the NASA Center for Computational Sciences. Six cases are animated: Weak magnetic field and strong magnetic field, each at three values of tau, the vortex street characteristic time. Contours of density are shown as dark transparent tubes. Critical points of the velocity field are represented by Glyphs. Vortex cores are shown in orange and blue.</p> <div class="credits"> <p class="dwt_author">Starr, Cindy; Oneil, Pamela; Siregar, Edouard; Ghosh, Sanjoy</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993PhRvL..71.3979B"> <span id="translatedtitle">Periodic focusing and ponderomotive stabilization of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Particle simulations compare the behavior of nonrelativistic <span class="hlt">sheet</span> <span class="hlt">electron</span> beams in uniform static and nonuniform time-harmonic magnetic fields. The time-harmonic fields are equivalent to periodically cusped magnetic (PCM) focusing. While the <span class="hlt">sheet</span> beam in a uniform field exhibits diocotron instability, the PCM-focused beam is stabilized by ponderomotive forces, in agreement with recent analytic predictions [J. Appl. Phys. 73, 4140 (1993)]. Mismatched Pcm-focused beams exhibit envelope oscillation and initially rapid emittance growth followed by a region of slower increase, in agreement with a recent semianalytic Fokker-Planck model.</p> <div class="credits"> <p class="dwt_author">Booske, J. H.; Kumbasar, A. H.; Basten, M. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19800024817&hterms=microstate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522microstate%2522"> <span id="translatedtitle">Survey of the <span class="hlt">plasma</span> <span class="hlt">electron</span> environment of Jupiter: A view from Voyager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> environment within Jupiter's bow shock is considered in terms of the in situ, calibrated <span class="hlt">electron</span> <span class="hlt">plasma</span> measurements made between 10 eV and 5.95 keV by the Voyager <span class="hlt">plasma</span> science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local <span class="hlt">electron</span> density and temperature. It is tentatively concluded that the radial temperature profile within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is caused by the intermixing of two different <span class="hlt">electron</span> populations that probably have different temporal histories and spatial paths to their local observation. The cool <span class="hlt">plasma</span> source of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and spikes is probably the Io <span class="hlt">plasma</span> torus and arrives in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the <span class="hlt">plasma</span> from the centrifugal equator. The hot suprathermal populations in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> have most recently come from the sparse, hot mid-latitude "bath" of <span class="hlt">electrons</span> which were directly observed juxtaposed to the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Scudder, J. D.; Sittler, E. C., Jr.; Bridge, H. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.4059T"> <span id="translatedtitle">Magnetic field topology of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">magnetic field topology of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) and its neighborhood is examined using a steady, two-dimensional (2-D), ideal MHD reconstruction method. We study four PSBL crossings, from the lobe toward the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and back into the lobe, by the Cluster spacecraft in the Earth's magnetotail around (x, y, z) = (-17.3, 4.3, -6.3) RE in GSM. The four PSBL events are selected for having no intense ion beams. Two reconstructed magnetic field topologies give, for the first time, a 3-D view of the PSBL, showing that one has a rather large gradient in the magnetic structure than another. A quantitative agreement of the current density between the reconstruction and curlometer methods is achieved for the overall results but with some discrepancies remaining, which will be discussed in terms of 3-D and temporal effects. This agreement indicates that the current density can be estimated by the reconstruction if certain conditions are satisfied. Finally, we point out that a PSBL structure with intense ion beams would somehow degrade the accuracy of the ideal MHD reconstruction. This degradation may be due to the nonideal MHD properties and/or the transient properties of the ion beams. Further sophisticated investigations on this issue are needed for clarification.</p> <div class="credits"> <p class="dwt_author">Teh, W.-L.; Nakamura, R.; Baumjohann, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56673743"> <span id="translatedtitle"><span class="hlt">Electron</span> vortices in magnetized <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article is devoted to a systematic development of the theory of distributed <span class="hlt">electron</span> vortices in magnetized <span class="hlt">plasmas</span>. Such vortices are nonlinear stationary propagating solutions of the model of <span class="hlt">electron</span> magnetohydrodynamics. Two types of vortices are investigated: two-dimensional dipole and spherical vortices. In both cases dispersion relations are derived and vortex structures are analyzed. The dynamics and stability properties of</p> <div class="credits"> <p class="dwt_author">B. N. Kuvshinov; J. Rem; T. J. Schep; E. Westerhof</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40744110"> <span id="translatedtitle">Modelling the LLBL as the source of <span class="hlt">plasma</span> for the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during very quiet conditions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> characteristics during very quiet conditions at the northward IMF hardly can be modelled if the only source is the mantle. On the other hand, satellite observations show that the stagnant part of the LLBL is thick and dense during such conditions. In this study there are analyzed some sample trajectories of the particles injected at the magnetosphere</p> <div class="credits"> <p class="dwt_author">D. Zwolakowska</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011APS..DPPCP9026S"> <span id="translatedtitle">Communication through a <span class="hlt">plasma</span> <span class="hlt">sheet</span> around a fast moving vehicle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Investigation of the complicated problem of scattering of electromagnetic waves on turbulent pulsations induced by a sheared flow inside a <span class="hlt">plasma</span> sheath is important for many applications including communication with hypersonic and re-entry vehicles. Theoretical and computational work aimed at improving the understanding of electromagnetic wave scattering processes in such turbulent <span class="hlt">plasmas</span> is presented. We analyze excitation of low frequency ion-acoustic type oscillations in a compressible <span class="hlt">plasma</span> flow with flow velocity shear and influence of such turbulent pulsations on scattering of high frequency electromagnetic waves used for communication purposes. We have appropriately included in our analysis the presence of <span class="hlt">electron</span> and ion collisions with neutrals as well as <span class="hlt">electron</span> - ion collisions. Results of numerical solutions for <span class="hlt">plasma</span> density and electric field perturbations for different velocity profiles have been used in the derived expressions for scattered wave energy and scattering cross section.</p> <div class="credits"> <p class="dwt_author">Sotnikov, V. I.; Mudaliar, S.; Genoni, T.; Rose, D.; Oliver, B. V.; Mehlhorn, T. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-11-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004DPS....36.1828S"> <span id="translatedtitle">Preliminary Results on Saturn's Inner <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> as Observed by Cassini: Comparison with Voyager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We will present preliminary results of our analysis of Saturn's inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> as observed by the Cassini <span class="hlt">Plasma</span> Spectrometer (CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere and when the spacecraft was put into orbit around Saturn. For this initial analysis ion fluxes are divided into two sub-groups: protons and water group ions. Depending on the status of our preliminary analysis we will discuss the ion composition and details of the fluid parameters. These results will eventually allow us to solve the force balance equation along the magnetic field (ions and <span class="hlt">electrons</span>) and predict the vertical distribution of the <span class="hlt">plasma</span> along the magnetic field. Once this is done we will be in a position to make detailed comparisons with the Voyager results.</p> <div class="credits"> <p class="dwt_author">Sittler, E. C.; Johnson, R. E.; Smith, H. T.; Chornay, D.; Shappirio, M. D.; Simpson, D.; Coates, A. J.; Crary, F.; McComas, D. J.; Young, D. T.; Thomsen, M.; Reisenfeld, D.; Hill, T. W.; Dougherty, M.; Andre, N.; Connerney, J. E. P.; Richardson, J. D.; Rymer, A. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFM.P51A1404S"> <span id="translatedtitle">Preliminary Results on Saturn's Inner <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> as Observed by Cassini: Comparison with Voyager</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We will present preliminary results of our analysis of Saturn's inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> as observed by the Cassini <span class="hlt">Plasma</span> Spectrometer (CAPS) experiment during Cassini's initial entry into Saturn's magnetosphere and when the spacecraft was put into orbit around Saturn. For this initial analysis ion fluxes are divided into two sub-groups: protons and water group ions. Depending on the status of our preliminary analysis we will discuss the ion composition and details of the fluid parameters. These results will eventually allow us to solve the force balance equation along the magnetic field (ions and <span class="hlt">electrons</span>) and predict the vertical distribution of the <span class="hlt">plasma</span> along the magnetic field. Once this is done we will be in a position to make detailed comparisons with the Voyager results.</p> <div class="credits"> <p class="dwt_author">Sittler, E. C.; Johnson, R. E.; Smith, H. T.; Chornay, D.; Shappirio, M. D.; Simpson, D. G.; Coates, A. J.; Rymer, A. M.; Crary, F.; McComas, D. J.; Young, D. T.; Thomsen, M. F.; Reisenfeld, D.; Hill, T. W.; Dougherty, M. K.; Andre, N.; Connerney, J. E.; Richardson, J. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24266197"> <span id="translatedtitle"><span class="hlt">Plasma</span> treatment of thin film coated with graphene flakes for the reduction of <span class="hlt">sheet</span> resistance.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We investigated the effects of <span class="hlt">plasma</span> treatment on the <span class="hlt">sheet</span> resistance of thin films spray-coated with graphene flakes on polyethylene terephthalate (PET) substrates. Thin films coated with graphene flakes show high <span class="hlt">sheet</span> resistance due to defects within graphene edges, domains, and residual oxygen content. Cl2 <span class="hlt">plasma</span> treatment led to decreased <span class="hlt">sheet</span> resistance when treatment time was increased, but when thin films were treated for too long the <span class="hlt">sheet</span> resistance increased again. Optimum treatment time was related to film thickness. The reduction of <span class="hlt">sheet</span> resistance may be explained by the donation of holes due to forming pi-type covalent bonds of Cl with carbon atoms on graphene surfaces, or by C--Cl bonding at the sites of graphene defects. However, due to radiation damage caused by <span class="hlt">plasma</span> treatment, <span class="hlt">sheet</span> resistance increased with increased treatment time. We found that the <span class="hlt">sheet</span> resistance of PET film coated with graphene flakes could be decreased by 50% under optimum conditions. PMID:24266197</p> <div class="credits"> <p class="dwt_author">Kim, Sung Hee; Oh, Jong Sik; Kim, Kyong Nam; Seo, Jin Seok; Jeon, Min Hwan; Yang, Kyung Chae; Yeom, Geun Young</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AdSpR..52..205W"> <span id="translatedtitle">Generation mechanism of the whistler-mode waves in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> prior to magnetic reconnection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The whistler-mode waves and <span class="hlt">electron</span> temperature anisotropy play a key role prior to and during magnetic reconnection. On August 21, 2002, the Cluster spacecrafts encountered a quasi-collisionless magnetic reconnection event when they crossed the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Prior to the southward turning of magnetospheric magnetic field and high speed ion flow, the whistler-mode waves and positive <span class="hlt">electron</span> temperature anisotropy are simultaneously observed. Theoretic analysis shows that the <span class="hlt">electrons</span> with positive temperature anisotropy can excite the whistler-mode waves via cyclotron resonances. Using the data of particles and magnetic field, we estimated the whistler-mode wave growth rate and the ratio of whistler-mode growth rate to wave frequency. They are 0.0016fce (<span class="hlt">Electron</span> cyclotron frequency) and 0.0086fce, respectively. Therefore the whistler-mode waves can grow quickly in the current <span class="hlt">sheet</span>. The combined observations of energetic <span class="hlt">electron</span> beams and waves show that after the southward turning of magnetic field, energetic <span class="hlt">electrons</span> in the reconnection process are accelerated by the whistler-mode waves.</p> <div class="credits"> <p class="dwt_author">Wei, X. H.; Cao, J. B.; Zhou, G. C.; Fu, H. S.; Santolk, O.; Rme, H.; Dandouras, I.; Cornilleau, N.; Fazakerley, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADP022472"> <span id="translatedtitle"><span class="hlt">Sheet</span>-beam <span class="hlt">Electron</span> Gun Design for Millimeter and Sub-millimeter Wave Vacuum <span class="hlt">Electronic</span> Sources.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We investigate the application of <span class="hlt">sheet</span> beams to slow wave sources as a means to increase output power. Our interest is for compact vacuum <span class="hlt">electronic</span> devices in the millimeter and submillimeter regimes. We consider previous work done on orotrons, clinitro...</p> <div class="credits"> <p class="dwt_author">B. Levush B. G. Danly J. J. Petillo J. X. Qiu</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56156330"> <span id="translatedtitle">Properties of energy conversion regions observed by Cluster in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We investigate localized energy conversion regions (ECRs) in the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In total we have studied 151 ECRs during 660h of <span class="hlt">plasma</span> <span class="hlt">sheet</span> data from the summer and fall of 2001 when Cluster was close to apogee at an altitude of about 15-20RE. Cluster offers appropriate conditions for the investigation of energy conversion by the evaluation of the power</p> <div class="credits"> <p class="dwt_author">M. Hamrin; P. Norqvist; O. Marghitu; S. C. Buchert; A. Vaivads; B. Klecker; L. M. Kistler; I. S. Dandouras</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880033410&hterms=cross+tail+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcross%2Btail%2Bcurrent"> <span id="translatedtitle">Processes associated with the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. [in geomagnetic tail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary is an important region of energy and mass transfer in the magnetotail. It is probably formed by energized ions ejected from the cross-tail current <span class="hlt">sheet</span>. Processes associated with the boundary layer are important to many areas of magnetospheric physics. These areas include energetic particles, <span class="hlt">plasma</span> <span class="hlt">sheet</span> sources, auroral precipitation, field-aligned currents and discrete auroral arcs, and substorm initiation.</p> <div class="credits"> <p class="dwt_author">Lyons, L. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850016251&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcattell"> <span id="translatedtitle">Electric fields in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Data from the spherical double probe electric-field experiment on ISEE-1 were used to study plasmasheet/lobe boundary crossings during substorms, identified by <span class="hlt">plasma</span> measurements and by using the electric field probes as a reference for measurements of the spacecraft potential. There are strong electric fields, with a dominant dawn-to-dusk component, throughout the boundary layer outside the plasmasheet for contracting and expanding motions of the plasmasheet and for different magnetic field directions. Characteristic amplitudes and durations are 5 to 10 mV/m and 5 to 15 min. The corresponding E x B vectors are always towards the plasmasheet.</p> <div class="credits"> <p class="dwt_author">Pedersen, A.; Cattell, C. A.; Faelthammar, C. G.; Knott, K.; Lindqvist, P. A.; Manka, R. H.; Mozer, F. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pdfserv.aip.org/PHPAEN/vol_1/iss_5/1714_1.pdf"> <span id="translatedtitle">Periodic magnetic focusing of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams @f|</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams focused by periodically cusped magnetic (PCM) fields are stable against low-frequency velocity-shear instabilities (such as the diocotron mode). This is in contrast to the more familiar unstable behavior in uniform solenoidal magnetic fields. A period-averaged analytic model shows that a PCM-focused beam is stabilized by ponderomotive forces for short PCM periods. Numerical particle simulations for a semi-infinite</p> <div class="credits"> <p class="dwt_author">J. H. Booske; M. A. Basten; A. H. Kumbasar; T. M. Antonsen; S. W. Bidwell; Y. Carmel; W. W. Destler; V. L. Granatstein; D. J. Radack</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JGRA..114.6214H"> <span id="translatedtitle">Poleward arcs of the auroral oval during substorms and the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An analytical model for the connection between the near-Earth edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at substorm onset and the auroral arcs at the poleward edge of the auroral oval is presented. The connection is established through the existence of a Bostrm type I current system. Its generator is assumed to be constituted by a narrow high-beta <span class="hlt">plasma</span> layer located at the interface between the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> and the outer edge of the near-dipolar field of the magnetosphere. The energy balance between the downward Poynting flux and the energy conversion in the auroral acceleration region and ionosphere provides a relation for the electric fields as a function of the upward field-aligned current. Only the upward current region is being considered in this work. An interesting effect, incorporated in the energy balance, is the feedback of the auroral electrojet on the magnetospheric <span class="hlt">plasma</span> by dragging the latter eastward from below under the action of a Hall generator. Thereby a relation arises between the westward electric field, tangential to the arc, and the equatorward polarization field. Quantitative solution of the energy equation is achieved by using the empirical relations between auroral energy flux and <span class="hlt">electron</span> energy and the integrated Hall and Pedersen conductivities. Accommodation of the downward energy flux requires the existence of a minimum arc length. The resulting quantities are consistent with typical auroral data sets. Relating the downward energy flux to the parameters of the generator reveals a strong dependence of polarization electric field, overall energy dissipation, and total current strength on the <span class="hlt">plasma</span> beta of the generator. The dumping of excess energy from the high-beta <span class="hlt">plasma</span> layer into the auroral arc(s) allows the stretched tail field lines to transform into dipolar field lines. It opens, so-to-speak, the gate into the outer magnetosphere.</p> <div class="credits"> <p class="dwt_author">Haerendel, Gerhard</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920050936&hterms=gsm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522gsm%2522"> <span id="translatedtitle">Bursty bulk flows in the inner central <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">High-speed flows in the inner central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (first reported by Baumjohann et al. (1990) are studied, together with the concurrent behavior of the <span class="hlt">plasma</span> and magnetic field, by using AMPTE/IRM data from about 9 to 19 R(E) in the earth magnetotail. The conclusions drawn from the detailed analysis of a representative event are reinforced by a superposed epoch analysis applied on two years of data. The high-speed flows organize themselves in 10-min time scale flow enhancements called here bursty-bulk flow (BBF) events. Both temporal and spatial effects are responsible for their bursty nature. The flow velocity exhibits peaks of very large amplitude with a characteristic time scale of the order of a minute, which are usually associated with magnetic field dipolarizations and ion temeperature increases. The BBFs represent intervals of enhanced earthward convection and energy transport per unit area in the y-z GSM direction of the order of 5 x 10 exp 19 ergs/R(E-squared).</p> <div class="credits"> <p class="dwt_author">Angelopoulos, V.; Baumjohann, W.; Kennel, C. F.; Coronti, F. V.; Kivelson, M. G.; Pellat, R.; Walker, R. J.; Luehr, H.; Paschmann, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21269036"> <span id="translatedtitle">Roles of ion and <span class="hlt">electron</span> dynamics in the onset of magnetic reconnection due to current <span class="hlt">sheet</span> instabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Roles of ion and <span class="hlt">electron</span> kinetic effects in the trigger mechanism of magnetic reconnection due to current <span class="hlt">sheet</span> instabilities are investigated by means of (2+1/2)D explicit particle simulation. The simulation is performed for the Harris equilibrium without guide fields in the plane perpendicular to the antiparallel magnetic fields. The instabilities excited in the vicinity of the neutral <span class="hlt">sheet</span> are classified into two modes, i.e., one is a longer wavelength kink mode and the other is a shorter wavelength kink mode. The growth of the longer kink mode depends only on the ion mass, while the growth of the shorter one depends only on the <span class="hlt">electron</span> mass. Before the growth of these kink modes, the lower hybrid drift instability leads to two types of <span class="hlt">plasma</span> diffusion: diffusion at the periphery controlled by ions and diffusion in the vicinity of the neutral <span class="hlt">sheet</span> controlled by <span class="hlt">electrons</span>. The diffusion at the periphery affects the ion distribution function at the neutral <span class="hlt">sheet</span> through the ion meandering motion, and the ion-ion kink mode is destabilized as the <span class="hlt">electron</span>-independent longer kink mode. The generation of the reconnection electric field at the neutral <span class="hlt">sheet</span> due to the longer wavelength kink mode is characterized only by the ion dynamics and can take place commonly in ion-scale current <span class="hlt">sheets</span> observed in the magnetosphere and laboratories.</p> <div class="credits"> <p class="dwt_author">Moritaka, Toseo [Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Horiuchi, Ritoku [National Institute for Fusion Science, Toki 509-5292 (Japan) and Graduate University for Advanced Studies, Toki 509-5292 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7033376"> <span id="translatedtitle">A study of the formation and dynamics of the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> using ion composition data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Over two years of data from the Lockheed <span class="hlt">Plasma</span> Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between <span class="hlt">plasma</span> <span class="hlt">sheet</span> and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on <span class="hlt">plasma</span> <span class="hlt">sheet</span> stability.</p> <div class="credits"> <p class="dwt_author">Lennartsson, O.W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19940025621&hterms=stream+composition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstream%2Bcomposition"> <span id="translatedtitle">A study of the formation and dynamics of the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> using ion composition data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Over two years of data from the Lockheed <span class="hlt">Plasma</span> Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between <span class="hlt">plasma</span> <span class="hlt">sheet</span> and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on <span class="hlt">plasma</span> <span class="hlt">sheet</span> stability.</p> <div class="credits"> <p class="dwt_author">Lennartsson, O. W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSM53A..02Z"> <span id="translatedtitle">Emergence of the active magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary from transient, localized ion acceleration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Observations of the Earth's magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL) have been typically accompanied by field-aligned crescent-shaped ion beams, thought to emanate at distant or mid-tail semi-permanent or impulsive acceleration sites. Typically such observations, and the theoretical and modeling efforts to explain them, have been disjoint from the adjacent <span class="hlt">plasma</span> <span class="hlt">sheet</span> properties near the equatorial projection of the observation. Thus the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer has been thought of as a harbinger of remote, rather than local <span class="hlt">plasma</span> <span class="hlt">sheet</span> activity, exception of <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansions during the recovery phase of substorms. Using case and statistical studies from THEMIS, obtained simultaneously at the near-Earth PSBL and at its adjacent central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS), we study the transient and impulsive nature of PSBL beams and their inherent connection with CPS bursty bulk flows and associated dipolarization fronts. We show that PSBL beams typically commence a few minutes before CPS flow bursts, which in turn are seen tens of seconds ahead of the arrival of dipolarization fronts. These timing correlations, the crescent shapes of PSBL ion beams, the CPS ion flux enhancements in the earthward and dawnward directions, and other particle distribution characteristics can all be well reproduced by a simple model of ion reflection and acceleration at earthward-propagating dipolarization fronts associated with CPS flow bursts. The emerging paradigm, therefore, unifies impulsive transport phenomena across latitudes in the near-Earth magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Zhou, X.; Angelopoulos, V.; Runov, A.; Liu, J.; Ge, Y. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFMSM11A1544G"> <span id="translatedtitle">Effect of tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions on the penetration of the convection electric field in the inner magnetosphere: RCM simulations with self-consistent magnetic field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transport of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in <span class="hlt">plasma</span> heating and magnetic field stretching, which become very significant in the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions. Outer proton and <span class="hlt">electron</span> sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot <span class="hlt">plasma</span> <span class="hlt">sheet</span> population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which is found following northward IMF, than for the hotter and more tenuous <span class="hlt">plasma</span> <span class="hlt">sheet</span> found following southward IMF. Our simulation results so far indicate further earthward penetration of <span class="hlt">plasma</span> <span class="hlt">sheet</span> particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given <span class="hlt">plasma</span> pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing <span class="hlt">plasma</span> <span class="hlt">sheet</span> number density and temperature and to more quantitatively determine the correlation between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetration to the development of the storm-time ring current.</p> <div class="credits"> <p class="dwt_author">Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830061985&hterms=vortices+plasma&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvortices%2Bplasma"> <span id="translatedtitle">New observations of <span class="hlt">plasma</span> vortices and insights into their interpretation. [in magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Two- and three-dimensional <span class="hlt">plasma</span> measurements and three-dimensional magnetic field measurements made with the ISEE 1 and 2 satellites during sixteen <span class="hlt">plasma</span> vortex occurrences in the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> are used to develop a fuller description of the vortex phenomenon than has existed heretofore. The phase and energy propagation properties of the vortex waves was studied in particular. The rotation period of the vortices (T = 10 + or - 5 minutes) is apparently independent of location, while the wavelength (lambda not less than several Re) increases with increasing distance down the tail, pointing to a global mode of propagation in which effects of inhomogeneous equilibrium are important. The flow rotation can be explained by propagation of surface waves or resonant waves in a uniform medium. Other observed features, however, require a nonuniform model: nonuniform propagation properties and differences of the phase propagation speed calculated from different components of velocity or magnetic field.</p> <div class="credits"> <p class="dwt_author">Hones, E. W., Jr.; Birn, J.; Bame, S. J.; Russell, C. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20030062107&hterms=substorm+current+wedge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522substorm%2Bcurrent%2Bwedge%2522"> <span id="translatedtitle">Substorm Evolution in the Near-Earth <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The goal of this project is to determine precursors and signatures of local substorm onset and how they evolve in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the Geotail near-Earth database. This project is part of an ongoing investigation involving this PI, Nelson Maynard (Mission Research Corporation), and William Burke (AFRL) toward an empirical understanding of the onset and evolution of substorms. The first year began with dissemination of our CRRES findings, which included an invited presentation and major publication. The Geotail investigation began with a partial survey of onset signature types at distances X less than 15 R(sub E) for the first five months (March-July 1995) of the Geotail near-Earth mission. During the second year, Geotail data from March 1995 to present were plotted. Various signatures at local onset were catalogued for the period through 1997. During this past year we performed a survey of current-disruption-like (CD-like) signatures at distances X less than or equal to 14 R(sub E) for the three years 1995-1997.</p> <div class="credits"> <p class="dwt_author">Erickson, Gary M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ApPhL..99b1502K"> <span id="translatedtitle">Vacuum <span class="hlt">electron</span> heating by surface <span class="hlt">plasma</span> wave</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Vacuum heating of <span class="hlt">electrons</span> by a large amplitude surface <span class="hlt">plasma</span> wave (SPW) over a metal surface due to the Brunel effect is studied. The surface <span class="hlt">plasma</span> wave has large normal component of electric vector. The normal field pulls the <span class="hlt">electrons</span> away from the <span class="hlt">plasma</span> during the half cycle. Each <span class="hlt">electron</span> sees, besides the E? of the surface <span class="hlt">plasma</span> wave, a static space charge field. As the <span class="hlt">electron</span> returns back to the interface, it possesses kinetic energy that is deposited into the <span class="hlt">plasma</span>, leading to <span class="hlt">plasma</span> heating.</p> <div class="credits"> <p class="dwt_author">Kumar, Pawan; Tripathi, V. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUSMSM44A..03D"> <span id="translatedtitle">The storm-time <span class="hlt">plasma</span> <span class="hlt">sheet</span> at geosynchronous orbit : CME- and CIR-dominated solar wind</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> <span class="hlt">sheet</span> provides the primary source population for the storm-time ring current, and characteristic storm signatures are produced by the <span class="hlt">plasma</span> <span class="hlt">sheet</span> penetrating deep into the inner magnetosphere. Geosynchronous orbit offers an excellent vantage point from which to monitor the <span class="hlt">plasma</span> <span class="hlt">sheet</span> population that ultimately becomes the storm-time ring current. For well over a complete solar cycle, Los Alamos has been fielding magnetospheric <span class="hlt">plasma</span> analyzers at geosynchronous orbit, creating an extensive multi-point database of <span class="hlt">plasma</span> <span class="hlt">sheet</span> conditions. Previous statistical analyses of these data have revealed important information about the access that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> has to the inner magnetosphere. More recently, we have performed superposed epoch studies of the variation of <span class="hlt">plasma</span> <span class="hlt">sheet</span> properties as a function of storm phase. In the current study, we examine the storm-time behaviour for storms sorted according to the likely solar wind driver, i.e., CME-driven and CIR high-speed-stream-driven, and according to the phase of the solar cycle. We compare the geosynchronous data with data from the MENA instrument on-board the IMAGE satellite to investigate the global distribution of energetic ions in the inner magnetosphere during such events.</p> <div class="credits"> <p class="dwt_author">Denton, M. H.; Thomsen, M. F.; Skoug, R. M.; Borovsky, J. E.; Henderson, M. G.; McPherron, R. L.; Pollock, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-05-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/861295"> <span id="translatedtitle">Injection into <span class="hlt">electron</span> <span class="hlt">plasma</span> traps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Computational studies and experimental measurements of <span class="hlt">plasma</span> injection into a Malmberg-Penning trap reveal that the number of trapped particles can be an order of magnitude higher than predicted by a simple estimates based on a ballistic trapping model. Enhanced trapping is associated with a rich nonlinear dynamics generated by the space-charge forces of the evolving trapped <span class="hlt">electron</span> density. A particle-in-cell simulation is used to identify the physical mechanisms that lead to the increase in trapped <span class="hlt">electrons</span>. The simulations initially show strong two-stream interactions between the <span class="hlt">electrons</span> emitted from the cathode and those reflected off the end plug of the trap. This is followed by virtual cathode oscillations near the injection region. As <span class="hlt">electrons</span> are trapped, the initially hollow longitudinal phase-space is filled, and the transverse radial density profile evolves so that the <span class="hlt">plasma</span> potential matches that of the cathode. Simple theoretical arguments are given that describe the different dynamical regimes. Good agreement is found between simulation and theory.</p> <div class="credits"> <p class="dwt_author">Gorgadze, Vladimir; Pasquini, Thomas A.; Fajans, Joel; Wurtele, Jonathan S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-02</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/227126"> <span id="translatedtitle">Low-energy ion spectral peaks detected by CRRES in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors have examined energy-versus time color spectrograms compiled by the low-energy <span class="hlt">plasma</span> analyzer (LEPA) during 140 orbits of the Combined Release Radiation Effects Satellite (CRRES). Over the period of interest, the apogee of CRRES` orbit precessed from near dawn to near midnight. During more than half of the orbits LEPA detected low-energy ion spectral peaks (LISPs) that fell into two categories: isotropic and field aligned. Isotropic LISPs were detected most frequently in the 0200-0500 magnetic local time (MLT) sector and relatively high levels of Kp. They always were detected in the company of >10 keV <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> and appeared in one or, at most, two LEPA energy channels. Field-aligned LISPs were evenly distributed over the sampled MLT sector and magnetic activity levels. They could be either bidirectional or monodirectional. They too were detected along with <span class="hlt">plasma</span> <span class="hlt">sheet</span> <span class="hlt">electrons</span> whose spectra may or may not contain significant fluxes at energies {ge} 10 keV. Although some field-aligned LISPs were detected in one or two energy channels, others were quite spread in energy. Isotropic LISPs are interpreted as signatures of CRRES charging. Field-aligned LISPs cannot be due to charging. On the basis of other measurements at geostationary orbit, the authors interpret them as being of ionospheric origin. Their detection in the postmidnight sector suggests that they were initially accelerated perpendicular to (ion conics) rather than along (ion beams) the Earth`s magnetic field. 23 refs., 3 figs., 1 tab.</p> <div class="credits"> <p class="dwt_author">Rubin, A.G.; Burke, W.J.; Hardy, D.A. [Hanscom Air Force Base, MA (United States)] [Hanscom Air Force Base, MA (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013aero.confE.127H"> <span id="translatedtitle">Creating standardized <span class="hlt">electronic</span> data <span class="hlt">sheets</span> for applications and devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Air Force Research Laboratory (AFRL) continues to develop infrastructure to enable the modular construction of satellites using an open network architecture and off-the-shelf avionics for space systems. Recent efforts have included the refinement of an ontology to formalize a standard language for the exchange of data and commands between components, including hardware and software, which is still evolving. AFRL is also focusing effort on creating standard interfaces using <span class="hlt">electronic</span> data <span class="hlt">sheets</span> based on this recently defined ontology. This paper will describe the development of standard interfaces that are documented in terms of an <span class="hlt">electronic</span> datasheet for a specific application. The datasheet will identify the standard interfaces between hardware devices and software applications that are needed for a specific satellite function, in this case, a spacecraft guidance, navigation, and control (GN& C) application for Sun pointing. Finally, the benefits of using standardized interfaces will be discussed.</p> <div class="credits"> <p class="dwt_author">Hansen, L. J.; Lanza, D.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870041537&hterms=Schindler&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2522Schindler%2522"> <span id="translatedtitle">On the generation of field-aligned <span class="hlt">plasma</span> flow at the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A possible cause of the large <span class="hlt">plasma</span> flow velocities parallel to the magnetic field (which were observed in spacecraft experiments) near the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the earth's magnetotail is considered in the framework of a magnetohydrodynamic model. It is shown for steady-state configurations that high parallel flow velocities can be expected to exist on field lines connecting to a region of weak magnetic field. The physical mechanism causing large values of the parallel velocity component can be visualized as a strong imbalance of perpendicular mass flux into and out of magnetic flux tubes passing through regions where the magnetic field is weak and inhomogeneous. The value of the parallel velocity component is evaluated, and it is found that it can substantially exceed the perpendicular velocity (by as much as a factor of 40). The results are applied to the earth's magnetotail; it is found that this mechanism is able to explain the parallel flow velocities near the boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the range of several hundreds of km/s.</p> <div class="credits"> <p class="dwt_author">Schindler, K.; Birn, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AnGeo..30..467L"> <span id="translatedtitle">Electromagnetic ELF wave intensification associated with fast earthward flows in mid-tail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this study we perform a statistical survey of the extremely-low-frequency wave activities associated with fast earthward flows in the mid-tail central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) based upon THEMIS measurements. We reveal clear trends of increasing wave intensity with flow enhancement over a broad frequency range, from below fLH (lower-hybrid resonant frequency) to above fce (<span class="hlt">electron</span> gyrofrequency). We mainly investigate two electromagnetic wave modes, the lower-hybrid waves at frequencies below fLH, and the whistler-mode waves in the frequency range fLH < f < fce. The waves at f < fLH dramatically intensify during fast flow intervals, and tend to contain strong electromagnetic components in the high-<span class="hlt">plasma</span>-beta CPS region, consistent with the theoretical expectation of the lower-hybrid drift instability in the center region of the tail current <span class="hlt">sheet</span>. ULF waves with very large perpendicular wavenumber might be Doppler-shifted by the flows and also partly contribute to the observed waves in the lower-hybrid frequency range. The fast flow activity substantially increases the occurrence rate and peak magnitude of the electromagnetic waves in the frequency range fLH < f < fce, though they still tend to be short-lived and sporadic in occurrence. We also find that the <span class="hlt">electron</span> pitch-angle distribution in the mid-tail CPS undergoes a variation from negative anisotropy (perpendicular temperature smaller than parallel temperature) during weak flow intervals, to more or less positive anisotropy (perpendicular temperature larger than parallel temperature) during fast flow intervals. The flow-related electromagnetic whistler-mode wave tends to occur in conjunction with positive <span class="hlt">electron</span> anisotropy.</p> <div class="credits"> <p class="dwt_author">Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Angelopoulos, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19950045562&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcattell"> <span id="translatedtitle">Geotail observations of spiky electric fields and low-frequency waves in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Electric field data from the Geotail spacecraft provide an opportunity to extend the observations of spiky fields made by International Sun Earth Explorer-1 (ISEE-1) to a region of the magnetosphere where quasistatic electric field measurements have not previously been msde, to examine their possible importance in the dynamics of the middle and distant tail, and to test some hypotheses about their formation. In this paper, examples of large fields in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its boundary at radial distances up to approximately 90 R(sub E) are presented. It is shown that three different types of large electric fields can occur: (1) spiky fields; (2) 'DC' fields; and (3) waves at frequencies comparable to the lower hybrid frequency. There is usually a gradation between (1) and (3), and often large electric field spikes are embedded in regions of lower amplitude waves. The waves tend to occur in short (few to 10's of seconds) packets whose start and stop times are not always correlated with changes in the magnetic field and/or density (as indicated by the spacecraft potential). The peak frequency is often less than but comparable to the lower hybrid frequency in agreement with theories of lower hybrid drift waves in the magnetotail. The largest spikes are not always associated with the largest changes in the spacecraft potential and/or magnetic field. It is suggested that the spiky fields may represent the nonlinear development of the waves.</p> <div class="credits"> <p class="dwt_author">Cattell, C.; Mozer, F.; Tsuruda, K.; Hayakawa, H.; Nakamura, M.; Okada, T.; Kokubun, S.; Yamamoto, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19770034016&hterms=Bergen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBergen"> <span id="translatedtitle">Multiple-satellite studies of magnetospheric substorms - Radial dynamics of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The radial dynamics of the nighttime <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorms is examined. The spatial dependence of <span class="hlt">plasma</span> <span class="hlt">sheet</span> variations at different radial distances is studied on the basis of simultaneous recordings from two closely spaced satellites. The simultaneous measurements of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> behavior earthward and tailward of r = 15 earth radii confirm substorm models which predict a thinning of the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> before the formation of an X-type neutral line, followed by a thickening on the earthward side and a further thinning on the tailward side. Temporal correlations between the <span class="hlt">plasma</span> <span class="hlt">sheet</span> variations and substorm development on the ground are studied by obtaining accurate timing of individual substorm expansion onsets. In particular, during multiple onset storms, the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> is found to experience a series of multiple expansions and contractions, which usually occur in a one-to-one relationship with ground Pi 2 bursts and are well correlated with auroral zone and low-altitude magnetic disturbances.</p> <div class="credits"> <p class="dwt_author">Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1553714"> <span id="translatedtitle"><span class="hlt">Plasma</span> Wave Wigglers for Free <span class="hlt">Electron</span> Lasers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We explore the possibility of using relativistic <span class="hlt">plasma</span> density waves as wigglers for producing free <span class="hlt">electron</span> laser radiation. Two possi- ble wave and beam geometries are explored. In the first, the wiggler is a purely electric wiggler with frequency ma (<span class="hlt">plasma</span> frequency) but (approximately) zero wavenumber k,. If an <span class="hlt">electron</span> beam is injected parallel to a wide <span class="hlt">plasma</span> wave wavefront,</p> <div class="credits"> <p class="dwt_author">C. Joshi; F. F. Chen; J. M. Dawson; T. Katsouleas; Y. T. Yan</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NRL.....7..268S"> <span id="translatedtitle">Thinning and functionalization of few-layer graphene <span class="hlt">sheets</span> by CF4 <span class="hlt">plasma</span> treatment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Structural changes of few-layer graphene <span class="hlt">sheets</span> induced by CF4 <span class="hlt">plasma</span> treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene <span class="hlt">sheets</span> subjected to prolonged CF4 <span class="hlt">plasma</span> treatment while <span class="hlt">plasma</span> treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the <span class="hlt">plasma</span> treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 <span class="hlt">plasma</span>-treated graphene <span class="hlt">sheets</span> that may have potential in future graphene-based micro/nanodevices.</p> <div class="credits"> <p class="dwt_author">Shen, Chao; Huang, Gaoshan; Cheng, Yingchun; Cao, Ronggen; Ding, Fei; Schwingenschlgl, Udo; Mei, Yongfeng</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22625875"> <span id="translatedtitle">Thinning and functionalization of few-layer graphene <span class="hlt">sheets</span> by CF4 <span class="hlt">plasma</span> treatment.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Structural changes of few-layer graphene <span class="hlt">sheets</span> induced by CF4 <span class="hlt">plasma</span> treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene <span class="hlt">sheets</span> subjected to prolonged CF4 <span class="hlt">plasma</span> treatment while <span class="hlt">plasma</span> treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the <span class="hlt">plasma</span> treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 <span class="hlt">plasma</span>-treated graphene <span class="hlt">sheets</span> that may have potential in future graphene-based micro/nanodevices. PACS: 81.05.ue; 73.22.Pr; 52.40.Hf. PMID:22625875</p> <div class="credits"> <p class="dwt_author">Shen, Chao; Huang, Gaoshan; Cheng, Yingchun; Cao, Ronggen; Ding, Fei; Schwingenschlgl, Udo; Mei, Yongfeng</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3458992"> <span id="translatedtitle">Thinning and functionalization of few-layer graphene <span class="hlt">sheets</span> by CF4 <span class="hlt">plasma</span> treatment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Abstract Structural changes of few-layer graphene <span class="hlt">sheets</span> induced by CF4 <span class="hlt">plasma</span> treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene <span class="hlt">sheets</span> subjected to prolonged CF4 <span class="hlt">plasma</span> treatment while <span class="hlt">plasma</span> treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the <span class="hlt">plasma</span> treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 <span class="hlt">plasma</span>-treated graphene <span class="hlt">sheets</span> that may have potential in future graphene-based micro/nanodevices. PACS 81.05.ue; 73.22.Pr; 52.40.Hf.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19720000372&hterms=plasma+laser&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplasma%2Blaser"> <span id="translatedtitle">Laser frequency modulation with <span class="hlt">electron</span> <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">When laser beam passes through <span class="hlt">electron</span> <span class="hlt">plasma</span> its frequency shifts by amount proportional to <span class="hlt">plasma</span> density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.</p> <div class="credits"> <p class="dwt_author">Burgess, T. J.; Latorre, V. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18816304"> <span id="translatedtitle">Global vortices in rotating pure <span class="hlt">electron</span> <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Global vortex solutions in a rotating pure <span class="hlt">electron</span> <span class="hlt">plasma</span> column are derived within the framework of a dissipationless, cold fluid model. These solutions represent nonlinear steady state diocotron modes and may be of relevance to recent computer simulations on crossed-field <span class="hlt">electron</span> flow and laboratory experiments on pure <span class="hlt">electron</span> <span class="hlt">plasma</span> columns.</p> <div class="credits"> <p class="dwt_author">S N Antani; A Sen; S Roy Choudhury</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990PhyS...42..581A"> <span id="translatedtitle">Global vortices in rotating pure <span class="hlt">electron</span> <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Global vortex solutions in a rotating pure <span class="hlt">electron</span> <span class="hlt">plasma</span> column are derived within the framework of a dissipationless, cold fluid model. These solutions represent nonlinear steady state diocotron modes and may be of relevance to recent computer simulations on crossed-field <span class="hlt">electron</span> flow and laboratory experiments on pure <span class="hlt">electron</span> <span class="hlt">plasma</span> columns.</p> <div class="credits"> <p class="dwt_author">Antani, S. N.; Sen, A.; Choudhury, S. Roy</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM51B2098P"> <span id="translatedtitle">THEMIS Observation of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Evolution Leading To a Substorm Onset</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate THEMIS observations on 28 February 2008 between 7:00 and 8:00 UT. Using the AM-03 adapted Tsyganenko model we found that the change in the Z-component of the solar wind velocity between 7:09 and 7:24 UT forced stronger bending of the Earth's magnetotail in the positive ZGSM-direction downtail from 9 Re. The final bend angle reached 30 degrees. The bending appeared to be the reason for the negative gradient in the ZGSM-component of the magnetic field (dBZ/dX) in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The negative dBZ/dX can be a free energy source for the drift-kink and ballooning/interchange instabilities in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which can be seen as <span class="hlt">plasma</span> <span class="hlt">sheet</span> flapping. Indeed, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> started to exhibit flapping oscillations near the bending point at the radial distance 11 Re. The amplitude of the oscillations has grown substantially with larger bending angles after 7:12 UT. The value of the dBZ/dX continued becoming more negative up to 7:38 UT. At 7:30 UT the region of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flapping extended to 16 Re downtail. Between 7:30 and 7:39 UT THEMIS observed gradual vanishing of the pressure gradient between 11 Re and 16 Re, Finally, at 7:39 UT THEMIS detected earthward <span class="hlt">plasma</span> flows at the radial distance 11 Re and tailward <span class="hlt">plasma</span> flows at 16 to 29 Re downtail. Simultaneously, at the footpoints of the field lines leading to the THEMIS spacecraft, the THEMIS all-sky camera array observed a substorm breakup arc. We discuss the possible relationship between the current <span class="hlt">sheet</span> bending and the evolution of the current <span class="hlt">sheet</span> instability that may relate to the substorm onset.</p> <div class="credits"> <p class="dwt_author">Panov, E.; Nakamura, R.; Baumjohann, W.; Artemyev, A.; Kubyshkina, M.; Sergeev, V. A.; Petrukovich, A. A.; Angelopoulos, V.; Glassmeier, K.; McFadden, J. P.; Larson, D. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910048734&hterms=substorm+current+wedge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2522substorm%2Bcurrent%2Bwedge%2522"> <span id="translatedtitle">Average patterns of precipitation and <span class="hlt">plasma</span> flow in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> flux tubes during steady magnetospheric convection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Average patterns of <span class="hlt">plasma</span> drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span> made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (convection jet); (2) the depleted <span class="hlt">plasma</span> energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span>. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the <span class="hlt">plasma</span> flow in the flux tubes connected to the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3040521"> <span id="translatedtitle">A Modified Porous Titanium <span class="hlt">Sheet</span> Prepared by <span class="hlt">Plasma</span>-Activated Sintering for Biomedical Applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">This study aimed to develop a contamination-free porous titanium scaffold by a <span class="hlt">plasma</span>-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium <span class="hlt">sheet</span> with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium <span class="hlt">sheet</span> was also evaluated in this study. The peak of TiC was detected on the titanium <span class="hlt">sheet</span> processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium <span class="hlt">sheet</span> processed within the TiN-coated carbon graphite mold. This modified <span class="hlt">plasma</span>-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium <span class="hlt">sheet</span>. The number of adherent cells on the modified titanium <span class="hlt">sheet</span> was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium <span class="hlt">sheets</span>. This modified titanium <span class="hlt">sheet</span> is expected to be a new tissue engineering material in orthopedic bone repair.</p> <div class="credits"> <p class="dwt_author">Tamaki, Yukimichi; Lee, Won Sik; Kataoka, Yu; Miyazaki, Takashi</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013Nanos...5.9264W"> <span id="translatedtitle">Intrinsic <span class="hlt">electronic</span> and transport properties of graphyne <span class="hlt">sheets</span> and nanoribbons</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing <span class="hlt">electronic</span> properties as graphene. Although the <span class="hlt">electronic</span>, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their <span class="hlt">electron</span> transport behaviors have not been understood. Here we report a comprehensive study of the intrinsic <span class="hlt">electronic</span> and transport properties of four distinct polymorphs of graphyne (?, ?, ?, and 6,6,12-graphynes) and their nanoribbons (GyNRs) using density functional theory coupled with the non-equilibrium Green's function (NEGF) method. Among the four graphyne <span class="hlt">sheets</span>, 6,6,12-graphyne displays notable directional anisotropy in the transport properties. Among the GyNRs, those with armchair edges are nonmagnetic semiconductors whereas those with zigzag edges can be either antiferromagnetic or nonmagnetic semiconductors. Among the armchair GyNRs, the ?-GyNRs and 6,6,12-GyNRs exhibit distinctive negative differential resistance (NDR) behavior. On the other hand, the zigzag ?-GyNRs and zigzag 6,6,12-GyNRs exhibit symmetry-dependent transport properties, that is, asymmetric zigzag GyNRs behave as conductors with nearly linear current-voltage dependence, whereas symmetric GyNRs produce very weak currents due to the presence of a conductance gap around the Fermi level under finite bias voltages. Such symmetry-dependent behavior stems from different coupling between ?* and ? subbands. Unlike ?- and 6,6,12-GyNRs, both zigzag ?-GyNRs and zigzag ?-GyNRs exhibit NDR behavior regardless of the symmetry.Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing <span class="hlt">electronic</span> properties as graphene. Although the <span class="hlt">electronic</span>, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their <span class="hlt">electron</span> transport behaviors have not been understood. Here we report a comprehensive study of the intrinsic <span class="hlt">electronic</span> and transport properties of four distinct polymorphs of graphyne (?, ?, ?, and 6,6,12-graphynes) and their nanoribbons (GyNRs) using density functional theory coupled with the non-equilibrium Green's function (NEGF) method. Among the four graphyne <span class="hlt">sheets</span>, 6,6,12-graphyne displays notable directional anisotropy in the transport properties. Among the GyNRs, those with armchair edges are nonmagnetic semiconductors whereas those with zigzag edges can be either antiferromagnetic or nonmagnetic semiconductors. Among the armchair GyNRs, the ?-GyNRs and 6,6,12-GyNRs exhibit distinctive negative differential resistance (NDR) behavior. On the other hand, the zigzag ?-GyNRs and zigzag 6,6,12-GyNRs exhibit symmetry-dependent transport properties, that is, asymmetric zigzag GyNRs behave as conductors with nearly linear current-voltage dependence, whereas symmetric GyNRs produce very weak currents due to the presence of a conductance gap around the Fermi level under finite bias voltages. Such symmetry-dependent behavior stems from different coupling between ?* and ? subbands. Unlike ?- and 6,6,12-GyNRs, both zigzag ?-GyNRs and zigzag ?-GyNRs exhibit NDR behavior regardless of the symmetry. <span class="hlt">Electronic</span> supplementary information (ESI) available. See DOI: 10.1039/c3nr03167e</p> <div class="credits"> <p class="dwt_author">Wu, Wenzhi; Guo, Wanlin; Zeng, Xiao Cheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5671976"> <span id="translatedtitle">Determination of Jupiter's <span class="hlt">electron</span> density profile from <span class="hlt">plasma</span> wave observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper summarizes the <span class="hlt">electron</span> density measurements obtained in the Jovian magnetosphere from the <span class="hlt">plasma</span> wave instruments on the Voyager 1 and 2 spacecraft. Three basic techniques are discussed for determining the <span class="hlt">electron</span> density: (1) local measurements from the low-frequency cutoff of continuum radiation, (2) local measurements from the frequency of upper hybrid resonance emissions, and (3) integral measurements from the dispersion of whistlers. The limitations and advantages of each technique are critically reviewed. In all cases the <span class="hlt">electron</span> densities are unaffected by spacecraft charging or sheath effects, which makes these measurements of particular importance for verifying in situ <span class="hlt">plasma</span> and low-energy charged particle measurments. In the outer regions of the dayside magnetosphere, beyond about 40 R/sub J/, the <span class="hlt">electron</span> densities range from about 3 x 10/sup -3/ to 3 x 10/sup -2/ cm/sup -3/. On Voyager 2, several brief excursions apparently occurred into the low-density region north of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> with densities less than 10/sup -3/ cm/sup -3/. Approaching the planet the <span class="hlt">electron</span> density gradually increases, with the <span class="hlt">plasma</span> frequency extending above the frequency range of the <span class="hlt">plasma</span> wave instrument (56 kHz, or about 38 <span class="hlt">electrons</span> cm/sup -3/) inside of about 8 R/sub J/. Within the high-density region of the Io <span class="hlt">plasma</span> torus, whistlers provide measurements of the north-south scale height of the <span class="hlt">plasma</span> torus, with scale heights ranging from about 0.9 to 2.5 R/sub J/.</p> <div class="credits"> <p class="dwt_author">Gurnett, D.A.; Scarf, F.L.; Kurth, W.S.; Shaw, R.R.; Poynter, R.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-09-30</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JGR....94.3495R"> <span id="translatedtitle">Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> density profile from low-frequency radio waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">By using planetary radio astronomy (PRA), <span class="hlt">plasma</span> wave system (PWS), and magnetometer (MAG) data from Voyager 1 and 2 (V1 and V2), essential features of the nightside Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> are derived, and the density gradient of the corotating <span class="hlt">plasma</span> structure in the middle Jovian magnetosphere is calculated. The PRA experiment gives information about the <span class="hlt">plasma</span> wave polarization. The density profile of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is determined using the hinge point position of the <span class="hlt">plasma</span> disk derived from MAG data, and the low-frequency cutoffs observed at three frequencies (562 Hz, 1 kHz, and 1.78 kHz) from the PWS experiment. It is shown that the hinge point position varies with the solar wind ram pressure.</p> <div class="credits"> <p class="dwt_author">Rucker, H. O.; Ladreiter, H. P.; Leblanc, Y.; Jones, D.; Kurth, W. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55814668"> <span id="translatedtitle"><span class="hlt">Electron</span> Cyclotron Resonance (ECR) <span class="hlt">Plasma</span> Thruster Research</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A study is being made on an electric propulsion system (EICR <span class="hlt">Plasma</span> Thruster) which can generate <span class="hlt">plasma</span> with ECRH (<span class="hlt">Electron</span> Cyclotron Resonance Heating), accelerate ions with ICRFH (Ion Cyclotron Range of Frequency Heating) via antenna, and adopts a gradient in magnetic field to obtain thrust. The <span class="hlt">plasma</span> thruster could achieve high power density and long lifetime since this system does</p> <div class="credits"> <p class="dwt_author">H. Nakashima; Y. Takao; Y. Mori; K. Uemura; T. Gouda; T. Miyamoto; T. Esaki; T. Maeyama; T. Muranaka</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19730045164&hterms=pm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dpm"> <span id="translatedtitle">Observation of a current-driven <span class="hlt">plasma</span> instability at the outer zone-<span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Several spacecraft experimenters have reported on the detection of large temporal variations in trapped <span class="hlt">electron</span> fluxes near L = 5 to 6 at midlatitudes in the night hemisphere. In this report we describe in detail the particle, wave, and field changes measured when Ogo 5 traversed an outer-zone trapping boundary of this type on September 7, 1968. It is shown that thermal proton concentrations and E greater than 50-keV <span class="hlt">electron</span> fluxes abruptly decreased when <span class="hlt">electrons</span> with (1-4) keV mean energy were detected. It is also shown that currents flowed along the average geomagnetic field direction near the <span class="hlt">plasma</span> boundaries and that these were accompanied by intense VLF electrostatic waves. It is proposed that turbulent resistivity produced by current-driven <span class="hlt">plasma</span> instabilities allows parallel dc electric fields to develop along this boundary.</p> <div class="credits"> <p class="dwt_author">Scarf, F. L.; Fredricks, R. W.; Russell, C. T.; Kivelson, M.; Neugebauer, M.; Chappell, C. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18619285"> <span id="translatedtitle">[Emission spectroscopy diagnostics of <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Electron</span> temperature is one of the important parameters of <span class="hlt">plasma</span>. It is very difficult to measure the <span class="hlt">electron</span> temperature exactly and instantly owing to its complexity during discharge. As a <span class="hlt">plasma</span> diagnostics technique, emission spectroscopy is widely applied in the study and diagnosis of any kind of <span class="hlt">plasma</span>, because of its simple instrument system, noninterference of measurement, high sensitivity and fast responsibility. In the present paper, some methods for <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature diagnosis, such as two lines method, multiline slope method, isoelectronic line method, Saha-Boltzmann equation, absolute intensity method, were introduced. And the applications of these methods were reviewed to provide reference for choosing appropriate methods in practice. PMID:18619285</p> <div class="credits"> <p class="dwt_author">Wu, Rong; Li, Yan; Zhu, Shun-Guan; Feng, Hong-Yan; Zhang, Lin; Wang, Jun-De</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22218331"> <span id="translatedtitle">Nonlinear <span class="hlt">electron</span> oscillations in a warm <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A class of nonstationary solutions for the nonlinear <span class="hlt">electron</span> oscillations of a warm <span class="hlt">plasma</span> are presented using a Lagrangian fluid description. The solution illustrates the nonlinear steepening of an initial Gaussian <span class="hlt">electron</span> density disturbance and also shows collapse behavior in time. The obtained solution may indicate a class of nonlinear transient structures in an unmagnetized warm <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Sarkar, Anwesa; Maity, Chandan; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India)] [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700 064 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE93624929"> <span id="translatedtitle">Wake field in <span class="hlt">electron</span>-positron <span class="hlt">plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We study the creation of wake field in cold <span class="hlt">electron</span> positron <span class="hlt">plasma</span> by <span class="hlt">electron</span> bunches. In the resulting <span class="hlt">plasma</span> inhomogeneity we study the propagation of short electromagnetic pulse. It is found that wake fields can change the frequency of the radiation...</p> <div class="credits"> <p class="dwt_author">K. Avinash V. I. Berezhiani</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhPl...20l2303S"> <span id="translatedtitle">Nonlinear <span class="hlt">electron</span> oscillations in a warm <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A class of nonstationary solutions for the nonlinear <span class="hlt">electron</span> oscillations of a warm <span class="hlt">plasma</span> are presented using a Lagrangian fluid description. The solution illustrates the nonlinear steepening of an initial Gaussian <span class="hlt">electron</span> density disturbance and also shows collapse behavior in time. The obtained solution may indicate a class of nonlinear transient structures in an unmagnetized warm <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Sarkar, Anwesa; Maity, Chandan; Chakrabarti, Nikhil</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990103021&hterms=mccarthy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmccarthy"> <span id="translatedtitle">Observations of Substorms from the Auroral Ionosphere to the Distant <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We have been studying how substorms work by examining the global polar Ultraviolet Imager (UVI) images in correlation with observations from the ground, interplanetary space and the geomagnetic tail between 10-20 earth radii. One of the objectives of our study is to better understand the connection among many complex phenomena going on close to Earth and those in the distant <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We have studied, for example, how the aurora[ and polar cap boundaries at different local times behave in relation to variations observed in the solar wind and <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorms. Preliminary results indicate that the polar cap and auroral oval boundaries expand and contract in a complicated but systematic way. These variations are correlated to solar wind parameters, and thinning and recovery phenomena in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. These results will be presented and interpreted in terms of directly driven and/or unloading substorm processes.</p> <div class="credits"> <p class="dwt_author">Parks, G.; Brittnacher, M.; Chen, L.; Chua, D.; Elsen, R.; Fillingim, M.; McCarthy, M.; Germany, G.; Spann, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AASP....3...53S"> <span id="translatedtitle">Vortex and ULF wave structures in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> of the Earth magnetosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We studied the ULF wave packet propagation in the Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> making use of the magnetic field measurements from FGM detector and <span class="hlt">plasma</span> properties from CORRAL detector aboard the Interball-Tail spacecraft. The MHD vortex structures were observed simultaneously with the Pc5 ULF waves. The vortex spatial scale was found to be about 1200-3600 km and the velocity is 4-16 km/s transverse to the background magnetic field. We studied numerically the dynamics of the initial vortex perturbations in the <span class="hlt">plasma</span> system with parameters observed in the Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The system with the vector nonlinearity was processed making use of the full reduction scheme. The good agreement of the experimental value of the vortex structure velocity with numerical results was obtained. The velocity was found to be close to the local <span class="hlt">plasma</span> drift velocity.</p> <div class="credits"> <p class="dwt_author">Saliuk, D. A.; Agapitov, O. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFM.P34C..05H"> <span id="translatedtitle"><span class="hlt">Electron</span> "bite-outs" in Dusty <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The study of dusty <span class="hlt">plasmas</span> is still an emerging new field that bridges a number of traditionally separate subjects, including for example, celestial mechanics, and <span class="hlt">plasma</span> physics. Dust particles immersed in <span class="hlt">plasmas</span> and UV radiation collect electrostatic charges and respond to electromagnetic forces in addition to all the other forces acting on uncharged grains. Simultaneously, dust can alter its <span class="hlt">plasma</span> environment. Dust particles in <span class="hlt">plasmas</span> are unusual charge carriers. They are many orders of magnitude heavier than any other <span class="hlt">plasma</span> particles, and they can have many orders of magnitude larger (negative or positive) time-dependent charges. Dust particles can communicate non-electromagnetic effects (gravity, drag, radiation pressure) to the <span class="hlt">plasma</span> that can represent new free energy sources. Their presence can influence the collective <span class="hlt">plasma</span> behavior, for example, by altering the traditional <span class="hlt">plasma</span> wave modes and by triggering new types of waves and instabilities. Dusty <span class="hlt">plasmas</span> represent the most general form of space, laboratory, and industrial <span class="hlt">plasmas</span>. Interplanetary space, comets, planetary rings, asteroids, the Moon, aerosols in the atmosphere, are all examples where <span class="hlt">electrons</span>, ions, and dust particles coexist. This talk will focus on "<span class="hlt">electron</span> bite-outs", the apparent reduction of the <span class="hlt">electron</span> density due to dust charging in a <span class="hlt">plasma</span> comprised of <span class="hlt">electrons</span>, ions and dust particles We will compare the recent observations of the <span class="hlt">plasma</span> conditions near Enceladus at Saturn to the decades old measurements in the Earth's mesosphere. We present model calculations of dust charging in a region where <span class="hlt">plasma</span> is maintained by UV radiation, and present the time-dependent charge distribution of grains as function of dust density and size distribution. We will also make estimates for possible dusty <span class="hlt">plasma</span> wave activities as function of the magnitude of the <span class="hlt">electron</span> "bite-outs".</p> <div class="credits"> <p class="dwt_author">Horanyi, M.; Hsu, S.; Kempf, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920071978&hterms=firehose&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfirehose"> <span id="translatedtitle">Interaction of reflected ions with the firehose marginally stable current <span class="hlt">sheet</span> - Implications for <span class="hlt">plasma</span> <span class="hlt">sheet</span> convection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The firehose marginally stable current <span class="hlt">sheet</span>, which may model the flow away from the distant reconnection neutral line, assumes that the accelerated particles escape and never return to re-encounter the current region. This assumption fails on the earthward side where the accelerated ions mirror in the geomagnetic dipole field and return to the current <span class="hlt">sheet</span> at distances up to about 30 R(E) down the tail. Two-dimensional particle simulations are used to demonstrate that the reflected ions drive a 'shock-like' structure in which the incoming flow is decelerated and the Bz field is highly compressed. These effects are similar to those produced by adiabatic choking of steady convection. Possible implications of this interaction for the dynamics of the tail are considered.</p> <div class="credits"> <p class="dwt_author">Pritchett, P. L.; Coroniti, F. V.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JGRA..119.1572L"> <span id="translatedtitle">The relationship between sawtooth events and O+ in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">order to study the relationship between sawtooth events and the composition of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, we perform a superposed epoch analysis (SEA) of the O+ concentration inside the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> during sawtooth events and substorms sorted by different geomagnetic storm phases, using Cluster/Composition Distribution Function data. The SEA shows that the O+ content increases during sawtooth growth phase, regardless of storm phase, and reaches 20% around the onset of dipolarization. For storm main phase events, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> O+ concentration during sawtooth events is only slightly higher than that observed during substorm events. However, for storm recovery phase and nonstorm time events, there is significantly more O+ within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during sawtooth events than during substorm events. No difference is found in the comparison between the O+/H+ density ratio changes during the first tooth and the subsequent teeth in a series of a sawtooth interval. Hence, there is no evidence to support the hypothesis that due to the higher O+ inside the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, subsequent teeth will lead to a closer near-Earth X line and then a wider magnetic local time response. Finally, despite the association between sawtooth events and high O+/H+ ratio, there are times when the O+/H+ density ratio is high in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> but no sawtooth event is observed, and there are sawtooth events when the O+/H+ ratio is low. This indicates that enhanced O+ is neither a necessary nor a sufficient condition but is likely one of many factors that play a role in triggering sawtooth events.</p> <div class="credits"> <p class="dwt_author">Liao, J.; Cai, X.; Kistler, L. M.; Clauer, C. R.; Mouikis, C. G.; Klecker, B.; Dandouras, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002JPFR...78..998S"> <span id="translatedtitle"><span class="hlt">Plasma</span> Absorption Probe Measurement of <span class="hlt">Electron</span> Density of Processing <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper reviews a novel and simple technique for measuring <span class="hlt">electron</span> density using a <span class="hlt">plasma</span> absorption probe (PAP). The PAP enables the measurement of local absolute <span class="hlt">electron</span> density even when the probe surface is soiled with processing <span class="hlt">plasmas</span>. The technique relies on the absorption of surface waves (SWs) resonantly excited around the probe head at critical frequencies which depend on the <span class="hlt">electron</span> density. The PAP consists of a small antenna connected to a coaxial cable and is enclosed in a tube of dielectric constant ?d inserted in a <span class="hlt">plasma</span> of <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency ?p. A network analyzer feeds a rf signal to the antenna and displays the frequency dependence of the power absorption. A series of resonant absorptions is observed at frequencies slightly above the SW resonance frequency, ?SW = ?p/(1+?d), which allows us to determine the <span class="hlt">electron</span> density. Typical examples of measured PAP data and future challenges are presented.</p> <div class="credits"> <p class="dwt_author">Sugai, Hideo</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21277184"> <span id="translatedtitle">Multispacecraft observations of the <span class="hlt">electron</span> current <span class="hlt">sheet</span>, neighboring magnetic islands, and <span class="hlt">electron</span> acceleration during magnetotail reconnection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Open questions concerning structures and dynamics of diffusion regions and <span class="hlt">electron</span> acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of <span class="hlt">electron</span> distribution functions measured by the four spacecraft, distinct <span class="hlt">electron</span> regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended <span class="hlt">electron</span> current <span class="hlt">sheet</span> (ecs), a series of magnetic islands, and bursts of energetic <span class="hlt">electrons</span> within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of <span class="hlt">electron</span>-scale electric fields normal to the ecs and pointing toward the ecs center plane. Both the observed <span class="hlt">electron</span> and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal <span class="hlt">electrons</span> whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the <span class="hlt">electron</span> scale at certain phases of reconnection, <span class="hlt">electrons</span> and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary <span class="hlt">electron</span> acceleration occurs within the islands.</p> <div class="credits"> <p class="dwt_author">Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire, Durham, New Hampshire 03824 (United States); Lefebvre, Bertrand; Vaith, Hans; Puhl-Quinn, Pamela; Torbert, Roy [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States); Asnes, Arne [ESTEC/ESA, Keplerlaan 1, 2201AZ Noordwijk (Netherlands); Santolik, Ondrej [Institute of Atmospheric Physics, Prague CZ14131 (Czech Republic); Faculty of Mathematics and Physics, Charles University, Prague CZ18000 (Czech Republic); Fazakerley, Andrew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); Khotyaintsev, Yuri [Swedish Institute of Space Physics, SE-75121 Uppsala (Sweden); Daly, Patrick [Max-Planck-Institute for Solar System Research, D-37191 Katlenburg-Lindau (Germany)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFMSM41A1447V"> <span id="translatedtitle">Reconnection AND Bursty Bulk Flow Associated Turbulence IN THE Earth'S <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Reconnection related fast flows in the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be associated with several accompanying phenomena, such as magnetic field dipolarization, current <span class="hlt">sheet</span> thinning and turbulence. Statistical analysis of multi-scale properties of turbulence facilitates to understand the interaction of the <span class="hlt">plasma</span> flow with the dipolar magnetic field and to recognize the remote or nearby temporal and spatial characteristics of reconnection. The main emphasis of this presentation is on differentiating between the specific statistical features of flow associated fluctuations at different distances from the reconnection site.</p> <div class="credits"> <p class="dwt_author">Voros, Z.; Nakamura, R.; Baumjohann, W.; Runov, A.; Volwerk, M.; Jankovicova, D.; Balogh, A.; Klecker, B.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870035851&hterms=cattell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcattell"> <span id="translatedtitle">ISEE-1 and -2 observations of magnetotail flux ropes - FTEs in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">ISEE-1 and 2 observations from about 20 Re down the near-earth magnetotail indicate the presence of magnetic flux ropes in the neutral <span class="hlt">sheet</span>. Magnetic and electric field and fast <span class="hlt">plasma</span> data show that these structures convect across the spacecraft at speeds of 200-600-km/s, and have scale sizes of roughly 3 5-Re. The rope axis orientation is approximately cross-tail. Their magnetic structure is similar to Venus ionospheric flux ropes, and to flux transfer events at the dayside magnetopause. These structures may arise from patchy reconnection or tearing mode reconnection within the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Elphic, R. C.; Cattell, C. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM11B2119S"> <span id="translatedtitle">Study of bursty bulk flow events in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the THEMIS satellite mission</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Statistical properties of the bursty bulk flow events have been studied using the THEMIS satellite data. The criteria used for the event selection are similar to ones established by Angelopoulos et al., (JGR, 1994), however we have added more statistical tools for studying the velocity vector rotation during a single BBF event. Spatial distribution of the BBFs in the inner and outer <span class="hlt">plasma</span> <span class="hlt">sheet</span> for quiet and disturbed geomagnetic conditions shows that BBFs could be an inherent component of the intermittent turbulent cascade in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Stepanova, M. V.; Antonova, E. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSM41A2182J"> <span id="translatedtitle">Time-Variability of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Particle Precipitation as Seen in ENA Observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The dynamics of energetic particles (ring current energies) in the inner magnetosphere is a well studied topic. The study of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the same region (primarily the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>) is possibly less intense. For one, the observation of <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics in the inner magnetosphere is made harder by the slower bulk <span class="hlt">plasma</span> motion. Particles with a few keV energy do respond to geomagnetic activity and events (e.g., storms, substorms). However, their motion is primarily driven on the relatively slow time scales of electrically induced convection, and it is much slower compared to the particle motion typical for ring current energies. Nevertheless, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> does respond measurably on a variety of time scales, from geomagnetic storms (several hours to days) down to substorm time scales (~3 hours). Recently, there has been increased focus on remote sensing ion precipitation into the atmosphere using low altitude energetic neutral atom (ENA) emissions (so-called LAEs). These emissions are created primarily when energetic <span class="hlt">plasma</span> precipitates into Earth's atmosphere and encounters the oxygen exobase, where there is a sudden increase in neutral (oxygen) density that results in a drastically increased ENA production. Current studies focus on the relationship between ion precipitation and geomagnetic storm phase, primarily studying the intensity, location, and extent of LAEs in relation with geomagnetic activity. We are expanding this work and investigate specifically the response of LAE (and thus, the amount of measured ion precipitation) on shorter time scales down to typical substorm durations (~ 3 hours across a complete substorm cycle). We are bringing the analysis techniques developed for storms studies to bear, correlating LAE emissions during the last solar maximum with Kp (which has proven to be a good measure of the location of the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>), and with substorm activity (auroral indices, geosynchronous ion injections, and ion precipitation induced UV signatures of auroral substorms).</p> <div class="credits"> <p class="dwt_author">Jahn, J.; Mackler, D. A.; Pollock, C. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48903356"> <span id="translatedtitle">Consequences of current interruption for <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A three-dimensional, fully electromagnetic particle simulation model is used to explore the upper limits to the physical effects which might be produced by the onset of anomalous resistance within the substorm growth phase thin near-Earth current <span class="hlt">sheet</span>. This is accomplished by blocking a local portion of the cross-tail current at regular intervals of ?2?pe?1. The blocking leads to an enhancement</p> <div class="credits"> <p class="dwt_author">P. L. Pritchett; F. V. Coroniti</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AIPC.1114...89A"> <span id="translatedtitle"><span class="hlt">Electron</span> Acoustic Waves in Pure Ion <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> Acoustic Waves (EAWs) are the low frequency branch of electrostatic <span class="hlt">plasma</span> waves. These waves exist in neutralized <span class="hlt">plasmas</span>, pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> and pure ion <span class="hlt">plasmas</span>. At small amplitude, EAWs have a phase velocity vph~=1.4 v and their frequencies are in agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies and their phase velocity is in the range of 1.4 v<=vph<=2.1 v. This frequency variability comes from the <span class="hlt">plasma</span> adjusting its velocity distribution so as to make the <span class="hlt">plasma</span> mode resonant with the drive frequency. These <span class="hlt">plasma</span> waves can also be excited with a chirped frequency drive resulting in extreme modification of the particle distribution, giving almost undamped waves with (?/?~10-5).</p> <div class="credits"> <p class="dwt_author">Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H. E.; O'Neil, Thomas M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40740772"> <span id="translatedtitle">Extreme energetic particle decreases near geostationary orbit: A manifestation of current diversion within the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> both earthward and tailward of a limited region near the</p> <div class="credits"> <p class="dwt_author">D. N. Baker; R. L. McPherron</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19830065820&hterms=moebius&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2522moebius%2522"> <span id="translatedtitle">Energetic particles in the vicinity of a possible neutral line in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Combined <span class="hlt">plasma</span>, magnetic field, and energetic particle data obtained from ISEE-1 in the geomagnetic tail during two successive energetic particle burst events are presented. The behavior of protons with energies of more than about 100 keV is very different from that of the 30-100 keV protons which represent the suprathermal tail of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> distribution. The more energetic ions appear on a time scale of several minutes following a northward turning of the tail magnetic field. At about the same time the <span class="hlt">plasma</span> measurements show a velocity of about 200 km/s in the tailward direction. From these results, it is argued that two successive magnetic neutral lines are created well within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and move close to the satellite position in the earthward direction. The extent of the neutral line is then limited to the dusk side of the tail.</p> <div class="credits"> <p class="dwt_author">Moebius, E.; Scholer, M.; Hovestadt, D.; Paschmann, G.; Gloeckler, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JFuE...32...50L"> <span id="translatedtitle">Magnetic Reynolds Number and Neon Current <span class="hlt">Sheet</span> Structure in the Axial Phase of a <span class="hlt">Plasma</span> Focus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Magnetic Reynolds Number (MRN) in neon is computed as a function of Neon shock speed. The magnetic field profiles at various positions in the axial run down phase of the INTI <span class="hlt">Plasma</span> Focus device are measured over a range of pressures from 2 to 20 Torr. These profiles are assessed for good electromagnetic coupling including measuring the current per unit current <span class="hlt">sheet</span> thickness as a comparative measure of current <span class="hlt">sheet</span> diffusion. It was found that at an axial current <span class="hlt">sheet</span> speed of over 3.5 cm/?s (corresponding to MRN > 15), the current <span class="hlt">sheet</span> has a compact profile with current density of 55 kA/cm of <span class="hlt">sheet</span> thickness whereas at speeds below 2.8 cm/?s (corresponding to MRN < 10) the profile is more diffuse with current density less than 30 kA/cm of <span class="hlt">sheet</span> thickness. Based on these studies it is proposed to take a speed of 3 cm/?s corresponding to an MRN of 10 as the minimum speed of neon current <span class="hlt">sheet</span> below which the electromagnetic coupling begins to weaken.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Saw, S. H.; Lee, P.; Rawat, R. S.; Devi, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012APS..DPPYP8070B"> <span id="translatedtitle"><span class="hlt">Plasma</span> Jet Diagnostic for Runaway <span class="hlt">Electron</span> Beam-<span class="hlt">Plasma</span> Interaction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">FAR-TECH's recently developed C60/C <span class="hlt">plasma</span> jet has the potential to rapidly and significantly increase <span class="hlt">electron</span> density, deep into tokamak <span class="hlt">plasma</span>, hence to change the `critical electric field' as well as the runaway <span class="hlt">electrons</span> (REs) collisional drag, during different phases of REs dynamics. Suitably chosen visible/UV lines emitted by the injected C ions can then be used for line intensity quantitative spectroscopy, allowing the diagnostic of the RE beam-<span class="hlt">plasma</span> interaction. The C60 delivered in 1 ms by the prototype <span class="hlt">plasma</span> jet system, estimated to be 75 mg, carries 4x10^21 C atoms and 2.4x10^22 <span class="hlt">electrons</span>, and would lead to an <span class="hlt">electron</span> density ne2.4x10^21 m-3, i.e. 60 times larger than typical DIII-D pre-disruption value (ne0 4x10^19 m-3). While the prototype's C60/C <span class="hlt">plasma</span> jet mass is not sufficient to achieve the Rosenbluth <span class="hlt">electron</span> density in DIII-D, it delivers a total number of <span class="hlt">electrons</span> 5 times larger than that of the Ar pellet, with the advantage of a much faster response and precisely chosen delivery time. We will present several proposed diagnostic schemes using rapid C60/C <span class="hlt">plasma</span> jet injection capability in different phases of the discharge in DIII-D.</p> <div class="credits"> <p class="dwt_author">Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.; Brockington, S.; Case, A.; Messer, S. J.; Witherspoon, F. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/958416"> <span id="translatedtitle">Identification of the <span class="hlt">Electron</span> Diffusion Region during Magnetic Reconnection in a Laboratory <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We report the first identification of the <span class="hlt">electron</span> diffusion region, where demagnetized <span class="hlt">electrons</span> are accelerated to super-Alfvenic speed, in a reconnecting laboratory <span class="hlt">plasma</span>. The <span class="hlt">electron</span> diffusion region is determined from measurements of the out-of-plane quadrupole magnetic field in the neutral <span class="hlt">sheet</span> in the Magnetic Reconnection Experiment. The width of the <span class="hlt">electron</span> diffusion region scales with the <span class="hlt">electron</span> skin depth (? 5.5-7.5c=?pi) and the peak <span class="hlt">electron</span> outflow velocity scales with the <span class="hlt">electron</span> Alfven velocity (? 0.12 - 0.16VeA), independent of ion mass.</p> <div class="credits"> <p class="dwt_author">Yang Ren, Masaaki Yamada, Hantao Ji, Stefan Gerhardt, and Russell Kulsrud</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JGRA..117.6219A"> <span id="translatedtitle">Adiabatic <span class="hlt">electron</span> heating in the magnetotail current <span class="hlt">sheet</span>: Cluster observations and analytical models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We consider the <span class="hlt">electron</span> distribution in current <span class="hlt">sheets</span> observed by Cluster mission in the Earth magnetotail. We use the statistics of 70 fast (less than 20 minutes) and 12 slow (more than one hour) crossings of horizontal current <span class="hlt">sheets</span>. We demonstrate that for both types <span class="hlt">electron</span> temperature decreases with increase of magnetic field ?Bx? away from the current <span class="hlt">sheet</span> center. We use the approximations Te?/Te? max ? 1 - ?T?(Bx/Bext)2 and Te?/Te? max ? 1 - ?T?(Bx/Bext)2, where Bext is value of Bx in the lobes. For statistics of thin current <span class="hlt">sheets</span> (fast crossings) we obtain mean values <?T?> ? <?T?> ? 1. For thick current <span class="hlt">sheets</span> (slow crossings) we also obtain <?T?> ? <?T?>, but <?T?>, <?T?> > 1. The <span class="hlt">electron</span> temperature anisotropy is about Te?/Te? = 1.1 - 1.2 and vertical profiles Te?/Te? ? const. Observed vertical distributions of Te? and Te? are described by the analytical model of <span class="hlt">electron</span> heating in the course of the earthward convection in thin current <span class="hlt">sheets</span> with (Bx(z), Bz(x)) and in thick current <span class="hlt">sheets</span> with (Bx(x, z), Bz(x, z)). We also show that the observed <span class="hlt">electron</span> temperature anisotropy is provided by the <span class="hlt">electron</span> population in the energy range between 50 ev and 3 keV. The cold core of <span class="hlt">electron</span> distribution (<50 eV) is isotropic and the hot tail (>5 keV) has Te?/Te? 1 or even Te?/Te? < 1. We consider <span class="hlt">electron</span> pressure tensor in observed thin current <span class="hlt">sheets</span> and demonstrate that <span class="hlt">electron</span> velocity distribution is gyrotropic with high accuracy.</p> <div class="credits"> <p class="dwt_author">Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19970016593&hterms=enrgy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Denrgy"> <span id="translatedtitle">Estimates of magnetic flux, and energy balance in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorm expansion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The energy and magnetic flux budgets of the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current <span class="hlt">sheet</span> is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.</p> <div class="credits"> <p class="dwt_author">Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19970026617&hterms=equia&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dequia"> <span id="translatedtitle">Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We show that <span class="hlt">plasma</span> <span class="hlt">sheet</span> B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of <span class="hlt">plasma</span> <span class="hlt">sheet</span> tilting. B(sub y) penetration into the <span class="hlt">plasma</span> <span class="hlt">sheet</span> implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).</p> <div class="credits"> <p class="dwt_author">Hau, L.-N.; Erickson, G. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..284S"> <span id="translatedtitle">THEMIS observations of ULF wave excitation in the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span> during sudden impulse events</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Sudden impulses (SIs) are an important source of ultra low frequency (ULF) wave activity throughout the Earth's magnetosphere. Most SI-induced ULF wave events have been reported in the dayside magnetosphere; it is not clear when and how SIs drive ULF wave activity in the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We examined the ULF response of the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span> to SIs using an ensemble of 13 SI events observed by THEMIS (Timed History of Events and Macroscale Interactions during Substorms) satellites (probes). Only three of these events resulted in ULF wave activity. The periods of the waves are found to be 3.3, 6.0, and 7.6 min. East-west magnetic and radial electric field perturbations, which typically indicate the toroidal mode, are found to be stronger and can have phase relationships consistent with standing waves. Our results suggest that the two largest-amplitude ULF responses to SIs in the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span> are tailward-moving vortices, which have previously been reported, and the dynamic response of cross-tail currents in the magnetotail to maintain force balance with the solar wind, which has not previously been reported as a ULF wave driver. Both mechanisms could potentially drive standing Alfvn waves (toroidal modes) observed via the field-line resonance mechanism. Furthermore, both involve frequency selection and a preference for certain driving conditions that can explain the small number of ULF wave events associated with SIs in the nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Shi, Q. Q.; Hartinger, M.; Angelopoulos, V.; Zong, Q.-G.; Zhou, X.-Z.; Zhou, X.-Y.; Kellerman, A.; Tian, A. M.; Weygand, J.; Fu, S. Y.; Pu, Z. Y.; Raeder, J.; Ge, Y. S.; Wang, Y. F.; Zhang, H.; Yao, Z. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/784048"> <span id="translatedtitle">Confinement of Pure Ion <span class="hlt">Plasma</span> In a Cylindrical Current <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 5 x 10{sup 11}cm{sup -3} with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 10{sup 7} cm{sup -3} trapped deuterium <span class="hlt">plasma</span> at the Brillouin limit (B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the <span class="hlt">plasma</span> is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the <span class="hlt">plasma</span> and diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j x B forces from this induced current, additional ions are injected into the <span class="hlt">plasma</span> along the axis to increase the density (and mutual electrostatic repulsion) of the target <span class="hlt">plasma</span>. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j x B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a <span class="hlt">plasma</span> can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4 x 10{sup 14}cm{sup -3}.</p> <div class="credits"> <p class="dwt_author">Stephen F. Paul; Edward H. Chao; Ronald C. Davidson; Cynthia K. Phillips</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21210384"> <span id="translatedtitle">Confinement of pure ion <span class="hlt">plasma</span> in a cylindrical current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 5x10{sup 11} cm{sup -3} with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 10{sup 7} cm{sup -3} trapped deuterium <span class="hlt">plasma</span> at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the <span class="hlt">plasma</span> is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the <span class="hlt">plasma</span> and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward jxB forces from this induced current, additional ions are injected into the <span class="hlt">plasma</span> along the axis to increase the density (and mutual electrostatic repulsion) of the target <span class="hlt">plasma</span>. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward jxB force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a <span class="hlt">plasma</span> can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4x10{sup 14} cm{sup -3}.</p> <div class="credits"> <p class="dwt_author">Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60139887"> <span id="translatedtitle">Confinement of Pure Ion <span class="hlt">Plasma</span> in a Cylindrical Current <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement properties of a Penning-Malmberg trap and some aspects of the magnetic field geometry of a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 5x1011 cm-3 with a 30-Tesla magnetic field. However, if the</p> <div class="credits"> <p class="dwt_author">C. K. Phillips; E. H. Chao; R. C. Davidson; S. F. Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999AIPC..498..435P"> <span id="translatedtitle">Confinement of pure ion <span class="hlt">plasma</span> in a cylindrical current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 51011 cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107 cm-3 trapped deuterium <span class="hlt">plasma</span> at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the <span class="hlt">plasma</span> is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the <span class="hlt">plasma</span> and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward jB forces from this induced current, additional ions are injected into the <span class="hlt">plasma</span> along the axis to increase the density (and mutual electrostatic repulsion) of the target <span class="hlt">plasma</span>. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward jB force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a <span class="hlt">plasma</span> can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 41014 cm-3.</p> <div class="credits"> <p class="dwt_author">Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pdfserv.aip.org/APCPCS/vol_498/iss_1/435_1.pdf"> <span id="translatedtitle">Confinement of pure ion <span class="hlt">plasma</span> in a cylindrical current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 51011 cm?3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local</p> <div class="credits"> <p class="dwt_author">Stephen F. Paul; Edward H. Chao; Ronald C. Davidson; Cynthia K. Phillips</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15113"> <span id="translatedtitle">Confinement of Pure Ion <span class="hlt">Plasma</span> in a Cylindrical Current <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement properties of a Penning-Malmberg trap and some aspects of the magnetic field geometry of a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 5x1011 cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107 cm-3 trapped deuterium <span class="hlt">plasma</span> in a conventional Penning-Malmberg trap at the Brillouin limit (B = 0.6 Tesla), the field is ramped to 30 Tesla. Because the <span class="hlt">plasma</span> is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the <span class="hlt">plasma</span> and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j x B forces from this induced current, additional ions are injected into the <span class="hlt">plasma</span> along the axis to increase the density (and mutual electrostatic repulsion) of the target <span class="hlt">plasma</span>. In the absence of the higher magnetic field in the center, the injected ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j x B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a <span class="hlt">plasma</span> can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4 x 1014 cm-3.</p> <div class="credits"> <p class="dwt_author">C.K. Phillips; E.H. Chao; R.C. Davidson; S.F. Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-12-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52998546"> <span id="translatedtitle">Confinement of pure ion <span class="hlt">plasma</span> in a cylindrical current <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density <span class="hlt">plasma</span> of about 51011 cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local</p> <div class="credits"> <p class="dwt_author">Stephen F. Paul; Edward H. Chao; Ronald C. Davidson; Cynthia K. Phillips</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60082239"> <span id="translatedtitle">Nonlinear interaction of quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with quantum <span class="hlt">electron</span> acoustic waves in <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An analysis of the interaction between modes involving two species with different pressures in the presence of a static-neutralizing ion background is presented using a quantum hydrodynamic model. It is shown that quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can nonlinearly interact with quantum <span class="hlt">electron</span> acoustic waves in a time scale much longer than <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillation response time. A set of coupled</p> <div class="credits"> <p class="dwt_author">Nikhil Chakrabarti; Janaki Sita Mylavarapu; Manjistha Dutta; Manoranjan Khan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54556629"> <span id="translatedtitle">Comment on ``<span class="hlt">Electron</span> vortices in magnetized <span class="hlt">plasmas</span>''</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A compact set of three-dimensional <span class="hlt">electron</span> magnetohydrodynamic (EMHD) equations for a nonuniform compressible magnetoplasma is presented. It is shown that the EMHD equations of Kuvshinov et al. [Phys. <span class="hlt">Plasmas</span> 8, 3232 (2001)] must be improved.</p> <div class="credits"> <p class="dwt_author">P. K. Shukla; L. Stenflo</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JPhCS.388d2049Z"> <span id="translatedtitle"><span class="hlt">Electron</span> scattering in hot-dense <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Hot-dense <span class="hlt">plasmas</span> have direct industrial applications in inertial confinement fusion. We have used the convergent close-coupling (CCC) method to investigate <span class="hlt">electron</span> scattering off hydrogen and helium atoms in a hot-dense weakly coupled (Debye) <span class="hlt">plasma</span>. The Yukawa-type Debye-Hckel potential has been used to describe the <span class="hlt">plasma</span> screening effects. Integrated excitation, total ionization and total cross sections have been calculated over a broad range of energies and various Debye lengths, D.</p> <div class="credits"> <p class="dwt_author">Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JPhD...43l4020K"> <span id="translatedtitle"><span class="hlt">Plasma</span> diagnostics using <span class="hlt">electron</span> paramagnetic resonance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Methods giving absolute concentrations of various species in the <span class="hlt">plasma</span> are of utmost importance to <span class="hlt">plasma</span> research. Besides currently prevalent laser methods, a method based on microwave absorption<span class="hlt">electron</span> paramagnetic resonancecan be successfully used for <span class="hlt">plasma</span> diagnostics. It is able to detect many atoms, molecules and radicals in the ground or excited states. In this paper we give an overview of the method and several practical examples.</p> <div class="credits"> <p class="dwt_author">Kudrle, V.; Vaina, P.; Tlsk, A.; Mrzkov, M.; tec, O.; Jan?a, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=UCRL51946"> <span id="translatedtitle">Mode Coupling of <span class="hlt">Electron</span> <span class="hlt">Plasma</span> Waves.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) <span class="hlt">plasma</span> in the one-dimensional, electrostatic model and applied to the coupling of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves. It is assumed that the electr...</p> <div class="credits"> <p class="dwt_author">J. A. Harte</p> <p class="dwt_publisher"></p> <p class="publishDate">1975-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1425873"> <span id="translatedtitle"><span class="hlt">Plasma</span> effects in a free <span class="hlt">electron</span> laser</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The introduction of a <span class="hlt">plasma</span> and a strong guide magnetic field in a free <span class="hlt">electron</span> laser (FEL) slows down the phase velocity of radiation, significantly reducing the requirements on beam energy for generating frequencies below the <span class="hlt">electron</span>-cyclotron frequency (?1≲?c). Around <span class="hlt">plasma</span> resonance (?1~?p), the FEL mode couples to two-stream instability (TSI), attaining a large growth rate, comparable to that of</p> <div class="credits"> <p class="dwt_author">VIPIN K. TRIPATHI; CHUAN SHENG LIU</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999PhPl....6.1649O"> <span id="translatedtitle">Development of <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> guns</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The status of experimental research and ongoing development of <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of <span class="hlt">plasma</span> discharge systems can be used in <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed EB fields: Penning and magnetron. At the present time, <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and <span class="hlt">electron</span> energy from several keV to hundreds of keV. Applications include <span class="hlt">electron</span> beam melting and welding, surface treatment, <span class="hlt">plasma</span> chemistry, radiation technologies, laser pumping, microwave generation, and more.</p> <div class="credits"> <p class="dwt_author">Oks, Efim M.; Schanin, Peter M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JGRA..119..131Z"> <span id="translatedtitle">Ballooning instability-induced plasmoid formation in near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The formation of plasmoids in the near-Earth magnetotail is believed to be a key element of the substorm onset process. Previous work has identified a new scenario in MHD simulations where the nonlinear evolution of a ballooning instability is able to induce the formation of plasmoids in a generalized Harris <span class="hlt">sheet</span> with finite normal magnetic component. In present work, we further examine this novel mechanism for plasmoid formation and explore its implications in the context of substorm onset trigger problem. For that purpose, we adopt the generalized Harris <span class="hlt">sheet</span> as a model proxy to the near-Earth region of magnetotail during the substorm growth phase. In this region the magnetic component normal to the neutral <span class="hlt">sheet</span> Bn is weak but nonzero. The magnetic field lines are closed, and there are no Xlines. Simulation results indicate that in the higher Lundquist number regime S?104, the linear axial tail mode, which is also known as "two-dimensional resistive tearing mode," is stabilized by the finite Bn, hence cannot give rise to the formation of X lines or plasmoids by itself. On the other hand, the linear ballooning mode is unstable in the same region and regime, and its nonlinear development leads to the formation of a series of plasmoid structures in the near-Earth and middle magnetotail regions of <span class="hlt">plasma</span> <span class="hlt">sheet</span>. This new scenario of plasmoid formation suggests a critical role of ballooning instability in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> in triggering the onset of a substorm expansion.</p> <div class="credits"> <p class="dwt_author">Zhu, P.; Raeder, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19870040631&hterms=catastrophe+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcatastrophe%2Btheory"> <span id="translatedtitle">Thermal catastrophe in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer. [in substorm models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">This letter presents a first step towards a substorm model including particle heating and transport in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). The heating mechanism discussed is resonant absorption of Alfven waves. For some assumed MHD perturbation incident from the tail lobes onto the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, the local heating rate in the PSBL has the form of a resonance function of the one-fluid <span class="hlt">plasma</span> temperature. Balancing the local heating by convective transport of the heated <span class="hlt">plasma</span> toward the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>, an 'equation of state" is found for the steady-state PSBL whose solution has the form of a mathematical catastrophe: at a critical value of a parameter containing the incident power flux, the local density, and the convection velocity, the equilibrium temperature jumps discontinuously. Associating this temperature increase with the abrupt onset of the substorm expansion phase, the catastrophe model indicates at least three ways in which the onset may be triggered. Several other consequences related to substorm dynamics are suggested by the simple catastrophe model.</p> <div class="credits"> <p class="dwt_author">Smith, Robert A.; Goertz, Christoph K.; Grossmann, William</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JPhCS.518a2016K"> <span id="translatedtitle">Control of the area irradiated by the <span class="hlt">sheet</span>-type <span class="hlt">plasma</span> jet in atmospheric pressure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The sterilization effect has been investigated using the <span class="hlt">sheet</span>-type <span class="hlt">plasma</span> jet, which was generated between asymmetric electrodes with dielectric plates in gas flow released into the atmospheric air. In this paper, it is indicated there is a possibility that the <span class="hlt">plasma</span> jet irradiation area can be controlled only by supplied gases without changing a generator structure. The irradiation area control was evaluated from both the sterilization area size and the oxidizing substances distribution. The oxidizing substance distribution was obtained using the chemical reagent prepared in our laboratory. The width of the <span class="hlt">sheet</span>-type <span class="hlt">plasma</span> jet was able to be controlled by N2 addition into He gas. As a result, the width of the sterilization area was able to be controlled within the range of 2 to 12 mm at a constant height without changing the generator structure. On the other hand, the evaluation from the oxidizing substances distribution indicated that the irradiation area cannot be controlled in one direction.</p> <div class="credits"> <p class="dwt_author">Kawasaki, T.; Kawano, K.; Mizoguchi, H.; Yano, Y.; Yamashita, K.; Sakai, M.; Uchida, G.; Koga, K.; Shiratani, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PSST...23c5010L"> <span id="translatedtitle"><span class="hlt">Electron</span> heating in capacitively coupled <span class="hlt">plasmas</span> revisited</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We revisit the problem of <span class="hlt">electron</span> heating in capacitively coupled <span class="hlt">plasmas</span> (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in <span class="hlt">plasma</span> simulations. The proposed procedure, based on the <span class="hlt">electron</span> mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total <span class="hlt">electron</span> heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of <span class="hlt">electron</span> heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric <span class="hlt">plasmas</span> produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with <span class="hlt">electron</span> inertia.</p> <div class="credits"> <p class="dwt_author">Lafleur, T.; Chabert, P.; Booth, J. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM12B..06R"> <span id="translatedtitle">Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new <span class="hlt">plasma</span> created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and <span class="hlt">electron</span>-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the <span class="hlt">plasma</span>. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, <span class="hlt">electrons</span>, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying <span class="hlt">plasma</span>-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically on the production of new <span class="hlt">plasma</span>, the resulting radial outflow, and corotation lag profiles. The simulation has produced well-defined interchange fingers, regions of cold inner-magnetosphere <span class="hlt">plasma</span> that lag corotation and move radially outwards, which are balanced by the inward flow of hot tenuous <span class="hlt">plasma</span> from the outer magnetosphere. We quantify the rate of interchange finger production, and from these calculate the net outward rate of <span class="hlt">plasma</span> flow. We then compare simulation output with observational data from the Cassini spacecraft to validate the new physics that we have incorporated. In addition to internal mass production and corotation, we also investigate external driver effects, in particular the seasonal variation of curvature of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE00015113"> <span id="translatedtitle">Confinement of Pure Ion <span class="hlt">Plasma</span> in a Cylindrical Current <span class="hlt">Sheet</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A novel method for containing a pure ion <span class="hlt">plasma</span> at thermonuclear densities and temperatures has been modeled. The method combines the confinement properties of a Penning-Malmberg trap and some aspects of the magnetic field geometry of a pulsed theta-pinch...</p> <div class="credits"> <p class="dwt_author">C. K. Phillips E. H. Chao R. C. Davidson S. F. Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014JPhCS.511a2015D"> <span id="translatedtitle"><span class="hlt">Electron</span> inertia effect on floating <span class="hlt">plasma</span> potential</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The steady one-dimensional planar <span class="hlt">plasma</span> sheath problem, originally considered by Tonks and Langmuir, is revisited. Two-fluid equations for cold ions and isothermal <span class="hlt">electrons</span>, including terms for particle generation and <span class="hlt">electron</span> inertia, have been numerically integrated together with Poisson equation. The inclusion of <span class="hlt">electron</span> inertia in the model allows us to obtain the value of the <span class="hlt">plasma</span> floating potential as resulting from an <span class="hlt">electron</span> density discontinuity at the walls, where the <span class="hlt">electrons</span> attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential and particles velocities. Comparison with results from literature, corresponding to <span class="hlt">electron</span> Maxwell-Boltzmann distribution (neglecting <span class="hlt">electron</span> inertia), are also shown.</p> <div class="credits"> <p class="dwt_author">Duarte, V. N.; Clemente, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900043484&hterms=galeev&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522galeev%2522"> <span id="translatedtitle">Ion precipitation from the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span> due to stochastic diffusion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> ions do not conserve their first adiabatic invariant when the magnetic field is appreciably tail-like. They do conserve a different adiabatic invariant but only to linear, rather than exponential, accuracy in the appropriate small parameter. Thus significant stochastic diffusion can occur for particles crossing the separatrix dividing the segments of orbits on which the particles cross and do not cross the tail midplane. Such ions can escape the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and precipitate into the atmosphere. Stochastic scattering is strongest from those field lines where the ion's Larmor period in the normal component of the neutral <span class="hlt">sheet</span> magnetic field approximately equals its bounce period. By comparing the rates of stochastic ion loss and convection in the tail, it is possible to estimate the location and thickness of the inner edge of the ion <span class="hlt">plasma</span> <span class="hlt">sheet</span> created by stochastic ion loss. Ions of different masses precipitate into the atmosphere at slightly different locations. Since wave particle interactions are not needed, this precipitation will always occur and should be particularly evident during quiet geomagnetic conditions, when it is less likely to be masked by other precipitation mechanisms.</p> <div class="credits"> <p class="dwt_author">Zelenyi, L.; Galeev, A.; Kennel, C. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999JNuM..266..742Y"> <span id="translatedtitle">Hot spot formation on <span class="hlt">electron</span>-emissive target plate with <span class="hlt">plasma</span> potential variation across magnetic field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Nonlinear dynamic behavior of hot spot formation on tungsten (W) material surfaces is numerically investigated by introducing a transient heat pulse into the local area of the hot W <span class="hlt">sheet</span> immersed in high heat flux <span class="hlt">plasma</span>. It is found that the formation and development of hot spot depend not only on <span class="hlt">plasma</span> parameters (<span class="hlt">plasma</span> heat flow, <span class="hlt">plasma</span> potential variation) and the energy and time scale of heat pulse but also sensitively on <span class="hlt">electron</span>-emission characteristics of the tungsten surface as well as the size of hot spot in a nonlinear way.</p> <div class="credits"> <p class="dwt_author">Ye, M. Y.; Kudose, K.; Kuwabara, T.; Ohno, N.; Takamura, S.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AnGeo..31.1379V"> <span id="translatedtitle"><span class="hlt">Electron</span> beam relaxation in inhomogeneous <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this work, we studied the effects of background <span class="hlt">plasma</span> density fluctuations on the relaxation of <span class="hlt">electron</span> beams. For the study, we assumed that the level of fluctuations was so high that the majority of Langmuir waves generated as a result of beam-<span class="hlt">plasma</span> instability were trapped inside density depletions. The system can be considered as a good model for describing beam-<span class="hlt">plasma</span> interactions in the solar wind. Here we show that due to the effect of wave trapping, beam relaxation slows significantly. As a result, the length of relaxation for the <span class="hlt">electron</span> beam in such an inhomogeneous <span class="hlt">plasma</span> is much longer than in a homogeneous <span class="hlt">plasma</span>. Additionally, for sufficiently narrow beams, the process of relaxation is accompanied by transformation of significant part of the beam kinetic energy to energy of accelerated particles. They form the tail of the distribution and can carry up to 50% of the initial beam energy flux.</p> <div class="credits"> <p class="dwt_author">Voshchepynets, A.; Krasnoselskikh, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5947504"> <span id="translatedtitle">Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> density profile from low-frequency radio waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">By using planetary radio astronomy (PRA), <span class="hlt">plasma</span> wave system (PWS), and Magnetometer (MAG) data from Voyager 1 and 2 (V1 and V2), essential features of the nightside Jovian <span class="hlt">plasma</span> <span class="hlt">sheet</span> are derived, and the density gradient of the corotating <span class="hlt">plasma</span> structure in the middle Jovian magnetosphere is calculated. The PRA experiment gives information about the <span class="hlt">plasma</span> wave polarization. To determine the density profile of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, the authors have derived the hinge point position of the <span class="hlt">plasma</span> disc from MAG data and used the low-frequency cutoffs observed at three frequencies (562 Hz, 1 kHz, and 1.78 kHz) from the PWS experiment. They show that the hinge point position varies with the solar wind ram pressure, and the <span class="hlt">plasma</span> disc thickness decreases with distance up to about 60 R{sub J}. The average thickness for an isodensity contour corresponding to 1 kHz is 3.29 R{sub J} for V1 and 3.16 R{sub J} for V2.</p> <div class="credits"> <p class="dwt_author">Rucker, H.O. (Space Research Institute, Graz (Austria)); Ladreiter, H.P. (Univ. of Graz (Austria)); LeBlanc, Y. (Observatoire de Paris, Meudon (France)); Jones, D. (Natural Environment Research Council, Cambridge (England)); Kurth, W.S. (Univ. of Iowa, Iowa City (USA))</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001APS..APR.V9005S"> <span id="translatedtitle">Tearing mode instability of the magnetotail thin current <span class="hlt">sheet</span>: Roles of trapped and transient <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The stability of the tearing mode in the collisionless current <span class="hlt">sheet</span> with a nonzero component normal to the <span class="hlt">sheet</span> plane (the so-called quasi-neutral <span class="hlt">sheet</span>) has been debated for more than two decades. It has been shown recently [Sitnov et al., Geophys. Res. Lett., 25, 269, 1998] that the stability threshold of the mode, arising from the drift motion of magnetized trapped <span class="hlt">electrons</span>, may be considerably reduced by the presence of a transient <span class="hlt">electron</span> population and small enough <span class="hlt">electron</span>-to-ion temperature ratio. This result was however obtained by using a kinetic energy principle and it did not yield the instability growth rate. The tearing mode eigenvalue problem is solved using an integral stability analysis combined with a drift-kinetic description of the <span class="hlt">electron</span> response. This approach makes it possible to represent the effects of complicated particle orbits in the quasi-neutral <span class="hlt">sheet</span>. Our results confirm the previous result that the shielding effect of transient <span class="hlt">electron</span> population under small enough <span class="hlt">electron</span>-to-ion temperature ratio allows unstable tearing modes in the WKB approximation. This explains in particular the spontaneous reconnection in the tail of Earth's magnetosphere during substorms. Comparison of the theory and simulations with earlier MHD-like analysis [Galeev, 1984] shows that the metastable properties of the quasi-neutral <span class="hlt">sheet</span> with respect to tearing perturbations are controlled by the Hall effect and another completely kinetic effect arising from the different responses of the trapped and transient <span class="hlt">electron</span> populations.</p> <div class="credits"> <p class="dwt_author">Sitnov, Mikhail I.; Surjalal Sharma, A.; Guzdar, Parvez N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://media.iupac.org/publications/pac/1994/pdf/6606x1343.pdf"> <span id="translatedtitle">Processing of <span class="hlt">electronic</span> materials by microwave <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is now generally accepted that the frequency d27c at which a high frequency (HF) discharge is excited has considerable influence on the properties of the <span class="hlt">plasma</span>. The analysis which has been developed to account for observed differences between microwave (MW) and ra+ofrequency (RF) discharges, both used extensively in <span class="hlt">electronic</span> materials processing, calls on the dependence of the <span class="hlt">electron</span> energy</p> <div class="credits"> <p class="dwt_author">M. R. Wertheimer; M. MoisauO</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53110466"> <span id="translatedtitle">Vertical <span class="hlt">plasma</span> motions in prominence <span class="hlt">sheets</span> observed by Hinode</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyze the approximately vertical motions inside prominence <span class="hlt">plasma</span> observed by Hinode on 25 April 2007 in Halpha line and 30 November 2006 in CaH line. Well-established observational facts are that all filaments (prominences on the limb) are composed of fine threads of similar dimensions, rooted in the photosphere and presumably tracing magnetic field lines, and that continuous counter-streaming motions</p> <div class="credits"> <p class="dwt_author">Olga Panasenco; Marco Velli; Thomas Berger</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21277305"> <span id="translatedtitle">Nonlinear interaction of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with <span class="hlt">electron</span> acoustic waves in <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An analysis of interaction between two temperature <span class="hlt">electron</span> species in the presence of static neutralizing ion background is presented. It is shown that <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can nonlinearly interact with <span class="hlt">electron</span> acoustic wave in a time scale much longer than {omega}{sub p}{sup -1}, where {omega}{sub p} is <span class="hlt">electron</span> <span class="hlt">plasma</span> frequency. A set of coupled nonlinear differential equations is shown to exist in such a scenario. Propagating soliton solutions are demonstrated from these equations.</p> <div class="credits"> <p class="dwt_author">Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Calcutta 700 064 (India); Sengupta, Sudip [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21532159"> <span id="translatedtitle">Amplitude modulation of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves in a quantum <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Using the one dimensional quantum hydrodynamic model for a two-component <span class="hlt">electron</span>-ion dense quantum <span class="hlt">plasma</span> the linear and nonlinear properties of <span class="hlt">electron</span> <span class="hlt">plasma</span> waves are studied including ion motion. By using the standard method of multiple scales perturbation technique a nonlinear Schroedinger equation containing quantum effects is derived. From this equation it is shown that with immobile ions an <span class="hlt">electron</span> <span class="hlt">plasma</span> wave becomes modulationally unstable in two distinct regions of the wavenumber. Numerical calculation shows that the stability domain of the wavevector shrinks with the increase in quantum diffraction effect. It is also found that the growth rate of instability in the high wavenumber region increases with the increase in quantum effect. Ion motion is found to have significant effect in changing the stability/instability domains of the wavenumber in the low k-region.</p> <div class="credits"> <p class="dwt_author">Ghosh, Basudev; Chandra, Swarniv [Department of Physics, Jadavpur University, Kolkata 700032 (India); Paul, S. N. [Swami Vivekananda Institute of Science and Technology, Dakshin Gobindapur, P.S.-Sonarpur, Kolkata 700145 (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PhPl...16e5705A"> <span id="translatedtitle"><span class="hlt">Electron</span> acoustic waves in pure ion <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Standing <span class="hlt">electron</span> acoustic waves (EAWs) are observed in a pure ion <span class="hlt">plasma</span>. EAWs are slow nonlinear <span class="hlt">plasma</span> waves; at small amplitude their phase velocities (vph~=1.4v for small k?D) and their frequencies are in agreement with theory. At moderate amplitude, EAW-type <span class="hlt">plasma</span> waves can be excited over a broad range of frequencies. This frequency variability comes from the <span class="hlt">plasma</span> adjusting its velocity distribution so as to make the <span class="hlt">plasma</span> mode resonant with the drive frequency. Wave-coherent laser-induced fluorescence shows the intimate nature of the wave-particle interaction, and how the particle distribution function is modified by the wave driver until the <span class="hlt">plasma</span> mode is resonant with the driver.</p> <div class="credits"> <p class="dwt_author">Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.; Valentini, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGRA..113.7S35K"> <span id="translatedtitle">Response of the inner magnetosphere and the <span class="hlt">plasma</span> <span class="hlt">sheet</span> to a sudden impulse</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The passage of an interplanetary shock caused a sudden compression of the magnetosphere between 0900 UT and 0915 UT on 24 August 2005. An estimate of the shock normal from solar wind data obtained by Geotail upstream of the bow shock indicates symmetric compression with respect to the noon-midnight meridian. Compression-related disturbances of the magnetic and electric field and <span class="hlt">plasma</span> motion were observed by Double Star Program (DSP) Tan Ce 1 (TC1) and Tan Ce 2 (TC2) in the inner magnetosphere and by the Cluster spacecraft in the dawnside <span class="hlt">plasma</span> <span class="hlt">sheet</span>. DSP/TC1 and TC2 observations suggest that the disturbances in the inner magnetosphere are propagating from the dayside magnetopause. Cluster S/C 4 observations indicate that the front normal of the disturbances in the dawnside <span class="hlt">plasma</span> <span class="hlt">sheet</span> is ? 180 at 0902:50 UT and ? = 107 at 0904:34 UT, where ? is the longitude in GSM coordinates, if we assume that the measured electric field is on the front plane and the normal lies on the X-Y plane. The timing analysis applied to magnetic field data from the four Cluster spacecraft independently gives a front normal, which is calculated to be ? = 131 at about 0904:20 UT. Shock-associated magnetic and electric field disturbances propagating from both the dayside and flank magnetopauses are detected in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>; the latter makes the dominant contribution. Substorms are, however, not triggered at the passage of the disturbances.</p> <div class="credits"> <p class="dwt_author">Keika, K.; Nakamura, R.; Baumjohann, W.; Runov, A.; Takada, T.; Volwerk, M.; Zhang, T. L.; Klecker, B.; Lucek, E. A.; Carr, C.; RMe, H.; Dandouras, I.; Andr, M.; Frey, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850000068&hterms=silicone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsilicone"> <span id="translatedtitle">Silicone Coating on Polyimide <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Silicone coatings applied to polyimide <span class="hlt">sheeting</span> for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, <span class="hlt">electrons</span>, <span class="hlt">plasmas</span>, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-<span class="hlt">sheet</span> products.</p> <div class="credits"> <p class="dwt_author">Park, J. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5916052"> <span id="translatedtitle">Free <span class="hlt">electron</span> laser with small period wiggler and <span class="hlt">sheet</span> <span class="hlt">electron</span> beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The use of a small period wiggler (/ell//sub ..omega../ < 1 cm) together with a <span class="hlt">sheet</span> <span class="hlt">electron</span> beam has been proposed as a low cost source of power for <span class="hlt">electron</span> cyclotron resonance heating (ECRH) in magnetic fusion <span class="hlt">plasmas</span>. Other potential applications include space-based radar systems. We have experimentally demonstrated stable propagation of a <span class="hlt">sheet</span> beam (18 A. 1 mm /times/ 20 mm) through a ten-period wiggler electromagnet with peak field of 1.2 kG. Calculation of microwave wall heating and pressurized water cooling have also been carried out, and indicate the feasibility of operating a near-millimeter, <span class="hlt">sheet</span> beam FEL with an output power of 1 MW CW (corresponding to power density into the walls of 2 kW/cm/sup 2/). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 ..mu..s pulses: <span class="hlt">electron</span> energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs.</p> <div class="credits"> <p class="dwt_author">Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.; Destler, W.W.; Finn, J.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Radack, D.; Rodgers, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997APS..DPPkWP122G"> <span id="translatedtitle"><span class="hlt">Electron</span>--positron beam--<span class="hlt">plasma</span> experiments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span>-positron <span class="hlt">plasmas</span> possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of <A HREF=http://daedalus.ucsd.edu/positron.html>cold positrons in Penning-Malmberg traps</A> has made the study of such <span class="hlt">plasmas</span> possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-<span class="hlt">plasma</span> system by transmitting an <span class="hlt">electron</span> beam through a positron <span class="hlt">plasma</span> in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode <span class="hlt">electron</span> source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-<span class="hlt">plasma</span> system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (? E ? 0.05 eV) <span class="hlt">electron</span> beam based on the extraction of <span class="hlt">electrons</span> stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).</p> <div class="credits"> <p class="dwt_author">Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13019437"> <span id="translatedtitle">Paper-like <span class="hlt">electronic</span> displays: Large-area rubber- stamped plastic <span class="hlt">sheets</span> of <span class="hlt">electronics</span> and microencapsulated electrophoretic inks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Electronic</span> systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flex- ibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large ('5 3 5-inch) mechanically flexible <span class="hlt">sheets</span> of <span class="hlt">electronic</span></p> <div class="credits"> <p class="dwt_author">John A. Rogers; Zhenan Bao; Kirk Baldwin; Ananth Dodabalapur; Brian Crone; V. R. Raju; Valerie Kuck; Howard Katz; Karl Amundson; Jay Ewing; Paul Drzaic</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48952835"> <span id="translatedtitle">Current carriers in the bifurcated tail current <span class="hlt">sheet</span>: Ions or <span class="hlt">electrons</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have studied statistical distributions of the current density in the geomagnetic tail current <span class="hlt">sheet</span> for different sets of local <span class="hlt">plasma</span> parameters using Cluster data. It is shown that the electric current density calculated from 4-point magnetic field measurements exhibits no correlation with the number flux of ions. We conclude that main current carriers in the magnetospheric system of reference</p> <div class="credits"> <p class="dwt_author">P. L. Israelevich; A. I. Ershkovich; R. Oran</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM44A..04K"> <span id="translatedtitle">Dawn-dusk asymmetry in <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion temperatures during geomagnetic storms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span> consists of two ion populations: a cold (~300-600 eV) component and a hot (~3-10 keV) component. The hot ion component exhibits a dawn-dusk asymmetry, with higher ion temperatures toward dusk, especially within 20 RE of the Earth and during quiet intervals. This asymmetry is caused by the energy-dependent gradient-curvature drift. Less well understood are the dynamics during geomagnetically active periods. These ions are measured in situ by the electrostatic analyzer (ESA) instruments on the THEMIS mission and remotely by the energetic neutral atom (ENA) instruments on the TWINS mission. Ion spectra and calculated ion temperatures from each mission will be presented and compared to better understand the dawn-dusk characteristics of the hot ion component during storm intervals. Results will be categorized by storm driver to understand how coronal mass ejections and high speed streams affect ion energization in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Keesee, A. M.; Kissinger, J.; Chen, M.; Lui, A.; Scime, E. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19890059894&hterms=moghaddam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmoghaddam"> <span id="translatedtitle">Ion beam generation at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer by kinetic Alfven waves</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A two-dimensional quasi-linear numerical code was developed for studying ion beam generation at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer by kinetic Alfven waves. The model assumes that the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> is the particle source, and that the last magnetic field lines on which kinetic Alfven waves exist and diffusion occurs can be either open or closed. As the possible source for the excitement of the kinetic Alfven waves responsible for ion diffusion, the resonant mode conversion of the surface waves to kinetic Alfven waves is considered. It is shown that, depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., on whether field lines are open or closed, the ion distribution function may or may not reach a steady state.</p> <div class="credits"> <p class="dwt_author">Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.6202K"> <span id="translatedtitle">Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth's midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We provide indirect evidence for turbulent reconnection in Earth's midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span> by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. (2002, 2003, 2006). The events are divided into two groups: (1) those that map to ?XGSM? < 12 RE in the magnetotail and do not show scale-free statistics and (2) those that map to ?XGSM? > 12 RE and do show scale-free statistics. The ?XGSM? dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Klimas, Alex; Uritsky, Vadim; Donovan, Eric</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930026366&hterms=substorm+current+wedge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522substorm%2Bcurrent%2Bwedge%2522"> <span id="translatedtitle">Observations of <span class="hlt">plasma</span> <span class="hlt">sheet</span> expansion at substorm onset, R = 15 to 22 Re</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We have used a large number of auroral magnetograms to identify four isolated substorms and estimate their onset times. At the onsets, ISEE-1 was in the vicinity of magnetic midnight at radial distances of 15.6 to 21.8 Re and very near the outer boundary of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We find that, for each event, the <span class="hlt">plasma</span> <span class="hlt">sheet</span> expanded, and the magnetic field dipolarized at the inferred onset time. Our most definitive event occurred while ISEE was at a geocentric radial distance of 21.8 Re. This result conflicts with previous understanding, though further verification of the result is required. Our observations show very similar characteristics to those observed at synchronous orbit, and they are consistent with an extension of a portion of the substorm current wedge to the radial distance of the satellite. If this explanation is correct, ISEE must have been within the longitude range of the substorm current wedge at the onsets.</p> <div class="credits"> <p class="dwt_author">Lyons, L. R.; Huang, C. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM11B2105D"> <span id="translatedtitle">Statistical properties of Pi2 waves in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Based on the THEMIS observations, we perform a statistical study on the properties of Pi2 waves in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> (CPS) and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). The spatial distribution of the wave properties (such as wave power, transverse or compressional component, ellipticity, polarization properties and so on) is investigated. The effect of the interplanetary magnetic field (IMF) on the quiet-time Pi2s is also examined. Using the method of epoch analysis, we study the properties of Pi2 waves during some geospace events like substorm, burst bulk flow (BBF) and depolarization, and analyze their changes before and after the events. We try to identify which excitation mechanism should be mainly responsible for the Pi2s in the CPS and PSBL.</p> <div class="credits"> <p class="dwt_author">Du, J.; Wang, C.; Li, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19770028218&hterms=ohm+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dohm%2527s%2Blaw"> <span id="translatedtitle">High conductivity magnetic tearing instability. [of neutral <span class="hlt">plasma</span> <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Linearized equations of magnetohydrodynamics are used to investigate the tearing mode, for arbitrary values of the conductivity, through a consideration of the additional effect of the <span class="hlt">electron</span>-inertia contribution to Ohm's law. A description is provided of the equilibrium and subsequent instability in the magnetohydrodynamic approximation. A method for solving the perturbation equations in the linear approximation is discussed and attention is given to the results in the high conductivity limit.</p> <div class="credits"> <p class="dwt_author">Cross, M. A.; Van Hoven, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55933391"> <span id="translatedtitle"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> expansion at r=15-22RE: A recovery phase or expansion phase phenomenon?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It has been widely accepted that at radial distances r~15-20RE the <span class="hlt">plasma</span> <span class="hlt">sheet</span> abruptly thins at the onset of the substorm expansion phase and later expands during the substorm recovery phase. This dynamical behavior is dramatically different from that observed at r<~15RE and is a fundamental component of substorm models. Recent results, however, have shown an expansion, rather than a</p> <div class="credits"> <p class="dwt_author">L. R. Lyons; C. Y. Huang</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19880031406&hterms=Samarium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DSamarium"> <span id="translatedtitle">30-cm <span class="hlt">electron</span> cyclotron <span class="hlt">plasma</span> generator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Experimental results on the development of a 30-cm-diam <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span> generator are presented. This <span class="hlt">plasma</span> source utilizes samarium-cobalt magnets and microwave power at a frequency of 4.9 GHz to produce a uniform <span class="hlt">plasma</span> with densities of up to 3 x 10 to the 11th/cu cm in a continuous fashion. The <span class="hlt">plasma</span> generator contains no internal structures, and is thus inherently simple in construction and operation and inherently durable. The generator was operated with two different magnetic geometries. One used the rare-earth magnets arranged in an axial line cusp configuration, which directly showed <span class="hlt">plasma</span> production taking place near the walls of the generator where the <span class="hlt">electron</span> temperature was highest but with the <span class="hlt">plasma</span> density peaking in the central low B-field regions. The second configuration had magnets arranged to form azimuthal line cusps with approximately closed <span class="hlt">electron</span> drift surfaces; this configuration showed an improved electrical efficiency of about 135 eV/ion.</p> <div class="credits"> <p class="dwt_author">Goede, Hank</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JGRA..11312216K"> <span id="translatedtitle">Multiple intensifications inside the auroral bulge and their association with <span class="hlt">plasma</span> <span class="hlt">sheet</span> activities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this coordinated ground and space study, we report multiprobe measurements from Time History of Events and Macroscale Interactions during Substorms (THEMIS), LANL-97A, Polar, and ground observatories for a substorm that occurred on 23 March 2007. The THEMIS fleet and LANL-97A were located in the premidnight, near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the radial range from 6.6 to 13 RE, placing the spacecraft into different <span class="hlt">plasma</span> environments which were subject to different activities. Simultaneous global Polar Ultraviolet Imager images of the aurora revealed a fine structure in the auroral bulge in the form of several time-delayed regions of brightening. We demonstrate a correspondence between this fine structure and the spatially separated <span class="hlt">plasma</span> <span class="hlt">sheet</span> activities (substorm injections with energies >100 keV) by showing that both executed periodic (100-150 s) one-to-one correlated modulations. Additionally, the different auroral brightening regions were modulated approximately out of phase to one another, as were the separated <span class="hlt">plasma</span> <span class="hlt">sheet</span> activities. The periodic <span class="hlt">plasma</span> <span class="hlt">sheet</span> and optical modulations were also one-to-one correlated with large-amplitude (?H 150 nT) ground Pi2 pulsations. In contrast to the most energetic ions (>100 keV), the lower-energetic <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions executed separate oscillations during the development of the substorm, including the preintensification phase, and showed the following properties. (1) The oscillation periods were different at different spacecraft locations and had a tendency to increase during the evolution of the substorm. During the preintensification phase, multiple (possibly harmonic) spectral components existed. (2) The oscillations were coupled to westward moving perturbations of an energized <span class="hlt">plasma</span> boundary. The boundary perturbations were likely conjugate to azimuthally spaced auroral forms ("beads") observed by Polar-UVI during the preintensification phase and could play a role in the onset of the substorm intensification. (3) The oscillations of the lower-energetic ions were also one-to-one correlated with smaller-amplitude ground Pi2 pulsations (<15 nT). In conclusion, the combination of these observations allowed us to construct a 3-D picture of low-frequency, near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> phenomena associated with a substorm and their connection to aurora and the ground. It appeared that not only one substorm current wedge, but additional current structures existed which started at different times, pulsated out of phase, and mapped from different active regions into the ionosphere. The active space regions appeared to be coupled and transferring energy from one region to the other while pulsating. We propose that the wave-like structures in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, observed before and during the substorm/intensification phase, and their demonstrated properties support a wave phenomenon (such as a ballooning-type mode) for the onset and development of the substorm/intensification, rather than directly driven periodic bursty bulk flow activations.</p> <div class="credits"> <p class="dwt_author">Keiling, A.; Angelopoulos, V.; Larson, D.; McFadden, J.; Carlson, C.; Fillingim, M.; Parks, G.; Frey, S.; Glassmeier, K.-H.; Auster, H. U.; Magnes, W.; Liu, W.; Li, X.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992P%26SS...40...27M"> <span id="translatedtitle">On a steady-state <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the distant magnetotail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A complete unified description of the magnetically open steady-state magnetotail was produced by introducing a simple model of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and its associated magnetic field into the tail model of Macek et al. (1991). Using the new model, calculations are carried out of magnetotail cross sections, magnetic field strengths, and <span class="hlt">plasma</span> densities as a function of downstream distance. A comparison of the results with the ISEE 3 and Pioneer 7 data shows that the model accurately describes the gross features of the distant terrestrial magnetotail.</p> <div class="credits"> <p class="dwt_author">Macek, W. M.; Cowley, S. W. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860057099&hterms=rarefaction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Drarefaction"> <span id="translatedtitle">A statistical study of <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics using ISEE 1 and 2 energetic particle flux data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> <span class="hlt">sheet</span> dynamics during substorms are studied by analyzing 461 cases of transient dropout events of the 1.5 and 6-keV particle fluxes detected by ISEE 1 and 2 satellites. The instruments for detecting low- and high-energy particles are described. The spatial distribution of flux dropout events, and the events' relationship to magnetospheric activity level are examined. Substorm events without observed flux dropout events are investigated. The data reveal that the flux dropout distribution is isotropic, between 12-23 earth radii, and is present in the entire nightside <span class="hlt">plasma</span> <span class="hlt">sheet</span>; and the substorms without flux dropout are more frequent near earth and magnetospheric flanks. It is observed that tailward of 12 earth radii the flux dropout events and substorms without flux dropout are similar. The Chao et al. (1977) MHD rarefaction wave propagation model and the Hones (1973, 1980) near-tail, X-type magnetic neutral line formation model are discussed and compared to the experimental data. It is noted that neither model explains the <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics observed.</p> <div class="credits"> <p class="dwt_author">Dandouras, J.; Reme, H.; Saint-Marc, A.; Sauvaud, J. A.; Parks, G. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996AnGeo..14.1025Y"> <span id="translatedtitle">Travelling convection vortices in the ionosphere map to the central <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We investigate the magnetospheric domain responsible for the generation of ionospheric travelling convection vortices (TCV) by comparing the location of the TCV to the locations of the low-altitude particle-precipitation boundaries deduced from the DMSP satellite measurements. For three very well documented TCV events we are able to identify suitable satellite passes, in the sense that for each event we can identify two to three passes occurring close to the TCV observation in both time and space. In all three cases the comparisons place the TCV centres at or equatorward of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span>/boundary <span class="hlt">plasma</span> <span class="hlt">sheet</span> precipitation boundary. Thus our results indicate that the field-aligned currents related to the TCV originate in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> rather than at the magnetopause or in the low-latitude boundary layer, as previous studies suggest. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lhr for their help in evaluating this paper.--> Correspondence to: A. Yahnin--></p> <div class="credits"> <p class="dwt_author">Yahnin, A.; Moretto, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014Ap%26SS.349....5E"> <span id="translatedtitle">Magnetosonic rogons in <span class="hlt">electron</span>-ion <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Magnetosonic rogue waves (rogons) are investigated in an <span class="hlt">electron</span>-ion <span class="hlt">plasma</span> by deriving the nonlinear Schrdinger (NLS) equation for low frequency limit. The first- and second-order rogue wave solutions of the NLS equation are obtained analytically and examined numerically. It is found that for dense <span class="hlt">plasma</span> and stronger magnetic field the nonlinearity decreases, which causes the rogon amplitude becomes shorter. However, the <span class="hlt">electron</span> temperature pumping more energy to the background waves which are sucked to create rogue waves with taller amplitudes.</p> <div class="credits"> <p class="dwt_author">El-Awady, E. I.; Rizvi, H.; Moslem, W. M.; El-Labany, S. K.; Raouf, A.; Djebli, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013NaPho...7..932."> <span id="translatedtitle">Tamm states in <span class="hlt">electron</span> <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Researchers have fabricated a voltage-tunable plasmonic crystal in a two-dimensional <span class="hlt">electron</span> gas that operates at terahertz frequencies. Nature Photonics spoke to Eric Shaner, Greg Dyer and Greg Aizin about the observation of Tamm states at the crystal's edge.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989JGR....94.6481C"> <span id="translatedtitle"><span class="hlt">Plasma</span> and energetic <span class="hlt">electron</span> flux variations in the Mercury 1 C event - Evidence for a magnetospheric boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Charge-particle and magnetic-field data obtained during the first encounter (on March 29, 1974) of Mariner 10 with the planet Mercury are reexamined, and a new interpretation of the Mariner 10 energetic <span class="hlt">electron</span>, <span class="hlt">plasma</span> <span class="hlt">electron</span>, and magnetic field data near the outbound magnetopause at Mercury is presented. It is shown that Mariner 10 sampled the hot substorm energized magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span> for the first 36 sec of the C event and, for the next 48 sec, alternatiely sampled hot (<span class="hlt">plasma</span> <span class="hlt">sheet</span>) and cold (boundary-layer magnetosheathlike) <span class="hlt">plasma</span> regions. It is argued that the counting rate of the ID1 event (i.e., a particle event triggering detector D1 but not the D2, D3, or D7 detectors) thoughout the C event most probably represents a pulse pileup response to about 35-175 keV <span class="hlt">electrons</span>, rather than the nominal above-175 keV <span class="hlt">electrons</span> presumed in the earlier interpretations.</p> <div class="credits"> <p class="dwt_author">Christon, S. P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-06-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55849994"> <span id="translatedtitle">Resistance and <span class="hlt">sheet</span> resistance measurements using <span class="hlt">electron</span> beam induced current</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on <span class="hlt">electron</span> beam induced current (EBIC) technique, is described. High <span class="hlt">electron</span> beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the <span class="hlt">electron</span> beam is scanned along the measured object, whose load resistance varies with</p> <div class="credits"> <p class="dwt_author">A. Czerwinski; M. Pluska; J. Ratajczak; A. Szerling; J. KaPtcki</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900036674&hterms=cross+tail+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcross%2Btail%2Bcurrent"> <span id="translatedtitle">Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A qualitative model of cross-tail current flow is considered. It is suggested that when magnetic reconnection begins, the current effectively flows across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> both earthward and tailward of the disruption region near the neutral line. It is shown that an enhanced cross-tail current earthward of this region would thin the <span class="hlt">plasma</span> <span class="hlt">sheet</span> substantially due to the magnetic pinch effect. The results explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.</p> <div class="credits"> <p class="dwt_author">Baker, D. N.; Mcpherron, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52354290"> <span id="translatedtitle">Experimental Studies on AN Annular Nonneutral <span class="hlt">Electron</span> <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The properties of an annular pure <span class="hlt">electron</span> <span class="hlt">plasma</span> are examined experimentally. The <span class="hlt">electron</span> <span class="hlt">plasma</span> is confined radially by a uniform axial magnetic field and axially by electrostatic potentials. A conductor is placed on the axis of the machine to provide for <span class="hlt">plasma</span> stability and increased <span class="hlt">plasma</span> density. The low frequency electrostatic modes (<span class="hlt">plasma</span> waves and the diocotron instability) are explored.</p> <div class="credits"> <p class="dwt_author">Glenn Benson Rosenthal</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110015845&hterms=plasma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplasma"> <span id="translatedtitle">Effect of Inductive Coil Geometry and Current <span class="hlt">Sheet</span> Trajectory of a Conical Theta Pinch Pulsed Inductive <span class="hlt">Plasma</span> Accelerator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Results are presented demonstrating the e ect of inductive coil geometry and current <span class="hlt">sheet</span> trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive <span class="hlt">plasma</span> accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a <span class="hlt">plasma</span> current <span class="hlt">sheet</span> is simulated, substituting a conical copper frustum for the <span class="hlt">plasma</span>. The variation of system inductance as a function of <span class="hlt">plasma</span> position is obtained by displacing the simulated current <span class="hlt">sheet</span> from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current <span class="hlt">sheet</span> position closes a dynamical circuit model that is used to calculate the resulting current <span class="hlt">sheet</span> velocity for various coil and current <span class="hlt">sheet</span> con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current <span class="hlt">sheet</span> pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current <span class="hlt">sheets</span> of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current <span class="hlt">sheet</span> pinching conditions are used to estimate the magnetic pressure as a function of current <span class="hlt">sheet</span> radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration that accompanies the radial compression of the <span class="hlt">plasma</span> in conical theta pinches.</p> <div class="credits"> <p class="dwt_author">Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6232229"> <span id="translatedtitle">Pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> in asymmetric traps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> are routinely confined within cylindrically symmetric Penning traps. In this paper the static and dynamic properties of <span class="hlt">plasmas</span> confined in traps with applied electric field asymmetries are investigated. Simple analytical theories are derived and used to predict the shapes of the stable noncircular <span class="hlt">plasma</span> equilibria observed in experiments. Both analytical and experimental results agree with those of a vortex-in-cell simulation. For an l=1 diocotron mode in a cylindrically symmetric trap, the <span class="hlt">plasma</span> rotates as a rigid column in a circular orbit. In contrast, <span class="hlt">plasmas</span> in systems with electric field asymmetries are shown to have an analog to the l=1 mode in which the shape of the <span class="hlt">plasma</span> changes as it rotates in a noncircular orbit. These bulk <span class="hlt">plasma</span> features are studied with a Hamiltonian model. It is seen that, for a small <span class="hlt">plasma</span>, the area enclosed by the orbit of the center of charge is an invariant when electric field perturbations are applied adiabatically. This invariant has been observed experimentally. The breaking of the invariant is also studied. The dynamic Hamiltonian model is also used to predict the shape and frequency of the large amplitude l=1 and l=2 diocotron modes in symmetric traps.</p> <div class="credits"> <p class="dwt_author">Chu, R.; Wurtele, J.S. (Department of Physics and Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)); Notte, J.; Peurrung, A.J.; Fajans, J. (Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006APS..DPPCI2003L"> <span id="translatedtitle">Fundamentals and Applications of a <span class="hlt">Plasma</span> Processing System Based on <span class="hlt">Electron</span> Beam Ionization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> beam (e-beam) ionization has been shown to be both efficient at producing <span class="hlt">plasma</span> and scalable to large area (square meters). NRL has developed a number of advanced research tools culminating in a ``Large Area <span class="hlt">Plasma</span> Processing System'' (LAPPS) based on an e-beam <span class="hlt">sheet</span> geometry. We have demonstrated that the beam ionization process is fairly independent of gas composition and capable of producing low temperature <span class="hlt">plasma</span> <span class="hlt">electrons</span> (<0.5 eV in molecular gases) in high densities (10^9-10^12 cm-3). This system can offer increased control of <span class="hlt">plasma</span>-to-surface fluxes and the ability to modify materials' surface properties uniformly over large areas. The systems to be discussed consist of continuous and pulsed planar <span class="hlt">plasma</span> distributions generated by a magnetically collimated <span class="hlt">sheet</span> of 2-3kV, < 1 mA/cm^2 <span class="hlt">electrons</span> injected into a neutral gas background (oxygen, nitrogen, sulfur hexafluoride, argon). Typical operating pressures range from 20-150 mTorr with beam-collimating magnetic fields (100-200 Gauss) for <span class="hlt">plasma</span> localization. The attributes of beam-generated <span class="hlt">plasmas</span> make them ideal for many materials applications. These systems have been investigated for a broad range of applications, including surface activation, line edge roughening, and anisotropic etching of polymers, <span class="hlt">electron</span>-ion and ion-ion <span class="hlt">plasma</span> etching, low-temperature metal nitriding and thin film deposition (reactive sputtering and <span class="hlt">plasma</span> enhanced chemical vapor deposition). Details of some of these applications will be discussed in terms of the critical <span class="hlt">plasma</span> physics and chemistry, with complementary time-resolved in situ <span class="hlt">plasma</span> diagnostics (Langmuir probes, microwave transmission, energy-resolved mass spectrometry and laser spectroscopy).</p> <div class="credits"> <p class="dwt_author">Leonhardt, Darrin</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008cosp...37.1247H"> <span id="translatedtitle">Statistical study of energetic ions' hard spectra observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Generation of energetic particles is a longstanding unsolved problem in the Earth's magnetosphere. Magnetic reconnection has been proposed as one of the strong candidates for the generation of energetic particles. <span class="hlt">Plasma</span> turbulence has been also discussed as an important agent for the stochastic acceleration of particles, though the understanding of its role in the Earth's magnetosphere is still poor. We have investigated the energy spectra of ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> obtained by GEOTAIL LEP (32eV-43keV) and EPIC/ICS (67keV-1367keV). We have fitted the observed velocity distribution function to the model and have estimated the flux and the power-law index of energetic ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. We showed that there is a dawn-dusk asymmetry in the flux of energetic ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> that is consistent with the past studies. The hard spectrum (1.5-3) is observed together with the small flux of energetic particles when the thermal component is cold. On the other hand, we found comparably soft spectrum (4-6) when the thermal component is hot. We also showed that the flux of high-energy ions (over 539 keV) does not depend on the power-law index, though the flux of middle-energy ions (over 67 keV) increases as the spectrum becomes soft. These results indicate that the particles with the medium energy are generated in association with the heating process of the thermal component. Moreover, the large phase space density at the highest energy range (about 1 MeV) seems to be somehow kept when <span class="hlt">plasmas</span> experience the cooling process that result in the hard spectrum. We will report the physical process operating to make this hard spectrum from the inspection of the relationship between the low-frequency wave power and the power-law index of energetic ions, and discuss its implication to the role of <span class="hlt">plasma</span> turbulence playing for the particle acceleration in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Hirai, Mariko</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012RAA....12.1701W"> <span id="translatedtitle">The impact of turbulence on <span class="hlt">electron</span> heating and acceleration near the neutral point of externally driven reconnecting current <span class="hlt">sheets</span> in solar flares</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We aim to investigate the influence of <span class="hlt">plasma</span> instability on <span class="hlt">electron</span> acceleration and heating near the neutral point of a turbulent reconnecting current <span class="hlt">sheet</span> (RCS). Through numerically solving the one dimensional relativistic Vlasov equation with typical solar coronal parameters and a realistic mass ratio in the presence of a strong inductive electric field E0, we suggest that the wave-particle scattering may produce a flat <span class="hlt">electron</span> flux spectrum from thermal to nonthermal <span class="hlt">electrons</span> without a sudden low-energy cutoff in the acceleration region. The ratio between <span class="hlt">electron</span> heating and acceleration decreases with the increase of the induced electric field. It is about one for E0=1 V cm-1 and one fourth for E0=10 V cm-1. The unstable waves excited by the beam <span class="hlt">plasma</span> instability first accelerate the <span class="hlt">electrons</span>, then trap these <span class="hlt">electrons</span> from further acceleration by an induced electric field through wave-particle resonant interactions.</p> <div class="credits"> <p class="dwt_author">Wu, Gui-Ping; Ji, Hai-Sheng; Ning, Zong-Jun</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009APS..GEC.AM002K"> <span id="translatedtitle">Controlling <span class="hlt">electron</span> energy distributions for <span class="hlt">plasma</span> technologies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The basic function of low temperature <span class="hlt">plasmas</span> in society benefiting technologies is to channel power into specific modes of atoms and molecules to excite desired states or produce specified radicals. This functionality ultimately depends on the ability to craft an <span class="hlt">electron</span> energy distribution (EED) to match cross sections. Given electric fields, frequencies, gas mixtures and pressures, predicting EEDs and excitation rates can in large part be reliably done. The inverse problem, specifying the conditions that produce a given EED, is less well understood. Early strategies to craft EEDs include adjusting gas mixtures, such as the rare gas-Hg mixtures in fluorescent lamps, and externally sustained discharges, such as <span class="hlt">electron</span>-beam sustained <span class="hlt">plasmas</span> for molecular lasers. More recent strategies include spiker-sustainer circuitry which produces desired EEDs in non-self-sustained <span class="hlt">plasmas</span>; and adjusting frequency in capacitively coupled <span class="hlt">plasmas</span>. In this talk, past strategies for customizing EEDs in low pressure <span class="hlt">plasmas</span> will be reviewed and prospects for improved control of <span class="hlt">plasma</span> kinetics will be discussed using results from 2-dimensional computer models.</p> <div class="credits"> <p class="dwt_author">Kushner, Mark</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AGUFMSH54B..04H"> <span id="translatedtitle">Reconnection in <span class="hlt">electron</span> scale collisionless <span class="hlt">plasma</span> turbulence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present results from two dimensional, particle-in-cell (PIC) collisionless <span class="hlt">plasma</span> simulations initialized to study the decay of turbulent fluctuations. A power-law cascade is created down to scales of order the <span class="hlt">electron</span> gyro-radius, and guide field reconnection operates at locations with X-point field line geometry. We work with physical mass ratios for <span class="hlt">electrons</span> and protons, which limits our simulation size to a relatively small spatial and temporal size. We therefore focus our results on an analysis of <span class="hlt">electron</span> flows and temperatures. In this work we identify and track reconnection events, and find that the dissipation expected at short scales is not dominated by <span class="hlt">electron</span> heating at reconnection sites. We see geometries that have the appearance of Petschek-like reconnection, and where the <span class="hlt">electron</span> gyro-radius is small these display characteristic <span class="hlt">electron</span> in-flows and out-flows. Reconnection does not directly affect the power being transmitted between scales, or show significant <span class="hlt">electron</span> temperature increases at the locations where it is occurring, but it does play an important role by relaxing the magnetic topology changes that are injected into short scales by the turbulent cascade. It provides a means of <span class="hlt">plasma</span> mixing between magnetic islands, and acts as a source of large temperature anisotropy at <span class="hlt">electron</span> outflow regions. These regions may then play a role in generating instabilities that allow the transfer of energy at smaller scales in the power spectrum. This work is of relevance to space and astrophysical systems which are often fully turbulent.</p> <div class="credits"> <p class="dwt_author">Haynes, C. T.; Burgess, D.; Camporeale, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930071545&hterms=Ion+driven+instability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DIon%2Bdriven%2Binstability"> <span id="translatedtitle">Ion mixing in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer by drift instabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The linear stability properties of collisionless drift instabilities are analyzed in a Harris equilibrium model of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). The strearmng ions with drift-type instabilities driven in the PSBL are considered. The fluid approximation leads to growth but predicts that the mode width approaches the gyroradius of the energetic ions. Thus an integral equation theory for the modes is developed taking into account that in the PSBL the curvature drift is weak compared with the grad-B drift. The exact wave particle resonance is kept in the nonlocal response functions. <span class="hlt">Plasma</span> density, temperature, and magnetic gradient drift motions are taken into account. The drift modes produce an anomalous cross-field momentum transport mixing the PSBL ions on the time scale of tens of seconds. A nonlinear simulation is performed which shows the coalescence of the small scale, fast growing modes into large-scale vortices. The relation between these collective modes and <span class="hlt">plasma</span> <span class="hlt">sheet</span> transport phenomena is discussed including the comparison with the competing <span class="hlt">plasma</span> mixing from single-particle stochasticity.</p> <div class="credits"> <p class="dwt_author">Horton, W.; Dong, J. Q.; Su, X. N.; Tajima, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003JGRA..108.1201N"> <span id="translatedtitle">Change of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition during magnetic storm development observed by the Geotail spacecraft</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The present study aims to investigate how and where ions of ionospheric origin are accelerated to the ring current energy (a few tens to a few hundreds of keV) and how they are supplied to the ring current. We examined the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion composition during magnetic storm development, using energetic (9-210 keV) ion flux data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particle and ion composition (EPIC) instrument on board the Geotail spacecraft. We selected two magnetic storms, that is, the 16-17 May 2000 storm and the 25 December 1998 storm, for which the energy density ratios of O+/H+ and He+/H+ in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> were calculated from the EPIC/STICS data. These magnetic storms had a minimum of the SYM-H index (the 1-min Dst index) less than -50 nT and a duration of the main phase shorter than 6 hours. We obtained the following results: (1) Both the O+/H+ and He+/H+ energy density ratios were anticorrelated with the SYM-H index (?r? = 0.73-0.88); (2) The O+/H+ energy density ratio was rather constant at 0.1 before storms, but reached 0.3-1.0 at the storm maximum; and (3) The He+/H+ energy density ratio increased from 0.01-0.02 before storms to 0.04-0.1 at the storm maximum. These ion composition changes are comparable to those in the ring current, which have been reported by previous studies, indicating that ions of ionospheric origin are possibly convected to the ring current via the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. A close inspection of ion energy spectra revealed that the observed ion composition changes can be attributed to the mass-dependent acceleration of ions by the dawn-to-dusk electric field in the current <span class="hlt">sheet</span> and the additional transport of ionospheric ions into the <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Nos, Masahito; McEntire, Richard W.; Christon, Stephen P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.9204T"> <span id="translatedtitle">A series of <span class="hlt">plasma</span> flow vortices in the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> associated with solar wind pressure enhancement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A series of earthward-moving (140 km/s) <span class="hlt">plasma</span> flow vortices with anticlockwise (when viewed from above the ecliptic plane) rotation was detected in the dawnside tail <span class="hlt">plasma</span> <span class="hlt">sheet</span> between 1255 and 1400 UT on 6 July 2003. These flow vortices were observed under the condition of northward interplanetary magnetic field with an enhanced solar wind dynamic pressure. Analysing the <span class="hlt">plasma</span> and magnetic field data from the Cluster spacecraft and using the Grad-Shafranov streamline reconstruction technique, we show that the vortex-like <span class="hlt">plasma</span> structures have a very similar shape: a Vx component dominant in the dawnside, while a distinct Vy component appears in the duskside, and each structure has a size of about 1.8 0.68 RE, approximately in the xy plane of GSM coordinates. It is found that the vortices contain both magnetosphere-originated hot (N 0.1 cm-3, E > 3 keV) and magnetosheath-originated denser and colder (N > 0.2 cm-3, E < 1 keV) populations on the closed field lines. The vortices involve fast earthward flows (Vx > 200 km/s) of mainly sheath-originated <span class="hlt">plasmas</span>. We suggest that these observed <span class="hlt">plasma</span> flow vortices are generated inside the magnetotail during the prolonged and intensified compression of the magnetosphere by the enhanced solar wind dynamic pressure.</p> <div class="credits"> <p class="dwt_author">Tian, A. M.; Zong, Q. G.; Wang, Y. F.; Shi, Q. Q.; Fu, S. Y.; Pu, Z. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PhPl...19i3117G"> <span id="translatedtitle">A research of W-band folded waveguide traveling wave tube with elliptical <span class="hlt">sheet</span> <span class="hlt">electron</span> beam</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Folded waveguide (FWG) traveling wave tube (TWT), which shows advantages in high power capacity, moderate bandwidth, and low-cost fabrication, has become the focus of vacuum <span class="hlt">electronics</span> recently. <span class="hlt">Sheet</span> <span class="hlt">electron</span> beam devices are better suited for producing radiation sources with large power in millimeter wave spectrum due to their characteristics of relatively low space charge fields and large transport current. A FWG TWT with elliptical <span class="hlt">sheet</span> beam working in W-band is presented in this paper, with the analysis of its dispersion characteristics, coupling impedance, transmission properties, and interaction characteristics. A comparison is also made with the traditional FWG TWT. Simulation results lead to the conclusion that the FWG TWT with elliptical <span class="hlt">sheet</span> beam investigated in this paper can make full use of relatively large electric fields and thus generate large output power with the same electric current density.</p> <div class="credits"> <p class="dwt_author">Guo, Guo; Wei, Yanyu; Yue, Lingna; Gong, Yubin; Zhao, Guoqing; Huang, Minzhi; Tang, Tao; Wang, Wenxiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21072631"> <span id="translatedtitle">Amplitude modulation of <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillations in a dense <span class="hlt">electron</span>-hole <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">By using a quantum hydrodynamic model, the amplitude modulation of <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillations (EPOs) in an unmagnetized dense <span class="hlt">electron</span>-hole (e-h) quantum <span class="hlt">plasma</span> is investigated. The standard reductive perturbation technique is used to derive one-dimensional nonlinear Schroedinger equation for the modulated EPO wave packet. The effects of the quantum diffraction, charged dust impurities and the effective e-h mass ratio on the propagation of linear dispersive EPOs, as well as on the modulational stability/instability of finite amplitude EPOs are examined. It is found that these parameters significantly affect the propagation of the EPOs as well as the nonlinear stability/instability domain of the wave vector, quite distinct from the classical and quantum <span class="hlt">electron</span>-ion or <span class="hlt">electron</span>-positron <span class="hlt">plasmas</span>. The relevance of our investigation to semiconductor <span class="hlt">plasmas</span> is discussed.</p> <div class="credits"> <p class="dwt_author">Misra, Amar P.; Shukla, P. K. [Department of Mathematics, Siksha Bhavana, Visva-Bharati University Santiniketan-731 235 (India); Institut fuer Theoretische Physik IV and Centre for Plasma Science and Astrophysics, Fakultaet fuer Physik and Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum, Germany and School of Physics, University of KwaZulu-Natal, 4000 Durban (South Africa)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009APS..DPPBP8072A"> <span id="translatedtitle"><span class="hlt">Electron</span> Acoustic Waves in Pure Ion <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> Acoustic Waves (EAW) are the low frequency branch of electrostatic <span class="hlt">plasma</span> waves. These waves exist in neutralized <span class="hlt">plasmas</span>, pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing m?= 0 mz= 1 EAWs in a pure ion <span class="hlt">plasma</span> column. At small amplitude, the EAWs have a phase velocity vph 1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v <=vph <=2.1 v. This frequency variability comes from the <span class="hlt">plasma</span> adjusting its velocity distribution so as to make the EAW resonant with the drive frequency. Our wave-coherent laser-induced fluorescence diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.</p> <div class="credits"> <p class="dwt_author">Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014GeoRL..41.1817Y"> <span id="translatedtitle">RCM-E simulation of bimodal transport in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">sheet</span> transport is bimodal, consisting of both large-scale adiabatic convection and intermittent bursty flows in both earthward and tailward directions. We present two comparison simulations with the Rice Convection ModelEquilibrium (RCM-E) to investigate how those high-speed flows affect the average configuration of the magnetosphere and its coupling to the ionosphere. One simulation represents pure large-scale slow-flow convection with time-independent boundary conditions; in addition to the background convection, the other simulation randomly imposes bubbles and blobs through the tailward boundary to a degree consistent with observed statistical properties of flows. Our results show that the bursty flows can significantly alter the magnetic and entropy profiles in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as well as the field-aligned current distributions in the ionosphere, bringing them into much better agreement with average observations.</p> <div class="credits"> <p class="dwt_author">Yang, Jian; Wolf, Richard A.; Toffoletto, Frank R.; Sazykin, Stanislav; Wang, Chih-Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24720450"> <span id="translatedtitle">Increased tensile strength of carbon nanotube yarns and <span class="hlt">sheets</span> through chemical modification and <span class="hlt">electron</span> beam irradiation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and <span class="hlt">sheets</span> has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of <span class="hlt">sheets</span> and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT <span class="hlt">sheets</span> and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and <span class="hlt">electron</span>-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT <span class="hlt">sheets</span> upon functionalization compared with unfunctionalized <span class="hlt">sheets</span>, while an additional 48% increase in tensile strength was observed when functionalized <span class="hlt">sheets</span> were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn. PMID:24720450</p> <div class="credits"> <p class="dwt_author">Miller, Sandi G; Williams, Tiffany S; Baker, James S; Sol, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S; Wilmoth, Nathan G; Gaier, James; Chen, Michelle; Meador, Michael A</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-14</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/944293"> <span id="translatedtitle"><span class="hlt">Electron</span> Scattering in Hot/Warm <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Electrical and thermal conductivities are presented for aluminum, iron and copper <span class="hlt">plasmas</span> at various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based on the continuum wave functions computed in the potential of the temperature and density dependent self-consistent 'average atom' (AA) model of the <span class="hlt">plasma</span>. The cross sections are calculated by using the phase shifts of the continuum <span class="hlt">electron</span> wave functions and also in the Born approximation. We show the combined effect of the thermal and radiative transport on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV. Comparisons with low temperature experimental data are also presented.</p> <div class="credits"> <p class="dwt_author">Rozsnyai, B F</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-18</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47671557"> <span id="translatedtitle">Effects of <span class="hlt">sheet</span> <span class="hlt">electron</span> beam irradiation on aircraft design stress of carbon fiber</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using <span class="hlt">sheet</span> <span class="hlt">electron</span> beam (EB) irradiation, reinforcement for carbon fiber was achieved. In order to annihilate twisting strain in carbon fiber, the fracture stress was precisely obtained by means of a twisting free tensile test developed. The EB treatment enhanced the fracture stress at different integrated fracture rates (Rf) and increased Weibull modulus. It also enhanced design stress, when the</p> <div class="credits"> <p class="dwt_author">Nishi Yoshitake; Akihiro Mizutani; Atsushi Kimura; Takashi Toriyama; Kazuya Oguri; Akira Tonegawa</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSH51C2116L"> <span id="translatedtitle">Transition in <span class="hlt">Electron</span> Physics of Magnetic Reconnection in Weakly Collisional <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current <span class="hlt">sheets</span>. Recent research in collisionless reconnection has shown that <span class="hlt">electron</span> kinetic physics plays a key role in the evolution. Large-scale <span class="hlt">electron</span> current <span class="hlt">sheets</span> may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these <span class="hlt">electron</span> structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into <span class="hlt">electrons</span> and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional <span class="hlt">plasmas</span> are discussed.</p> <div class="credits"> <p class="dwt_author">Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19900047760&hterms=cross+tail+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcross%2Btail%2Bcurrent"> <span id="translatedtitle">Extreme energetic particle decreases near geostationary orbit - A manifestation of current diversion within the inner <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">A qualitative model of magnetic field reconfiguration as might result from neutral line formation in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> late in a substorm growth phase is considered. It is suggested that magnetic reconnection probably begins before the substorm expansion phase and that cross-tail current is enhanced across the <span class="hlt">plasma</span> <span class="hlt">sheet</span> both earthward and tailward of a limited region near the neutral line. Such an enhanced cross-tail current earthward of the original X line region may contribute to thinning the <span class="hlt">plasma</span> <span class="hlt">sheet</span> substantially, and this would in turn affect the drift currents in that location, thus enhancing the current even closer toward the earth. In this way a redistribution and progressive diversion of normal cross-tail current throughout much of the inner portion of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> could occur. The resulting intensified current, localized at the inner edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, would lead to a very thin <span class="hlt">plasma</span> confinement region. This would explain the very taillike field and extreme particle dropouts often seen late in substorm growth phases.</p> <div class="credits"> <p class="dwt_author">Baker, D. N.; Mcpherron, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22362192"> <span id="translatedtitle">Long-term results of a cardiovascular implantable <span class="hlt">electronic</span> device wrapped with an expanded polytetrafluoroethylene <span class="hlt">sheet</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The use of an expanded polytetrafluoroethylene (ePTFE) <span class="hlt">sheet</span> wrapping device for patients with pacemaker contact dermatitis is still controversial. This study aimed to retrospectively investigate the occurrence rate of allergies and other complications after implantation of a cardiovascular implantable <span class="hlt">electronic</span> device (CIED) wrapped with an ePTFE <span class="hlt">sheet</span>. A total of 4,497 procedures of CIED implantation were performed at our institution between January 1993 and April 2010. Among 19 patients who underwent implantation of an <span class="hlt">electronic</span> cardiac device wrapped with an ePTFE <span class="hlt">sheet</span>, device implantation was performed in 11 patients for secondary prevention of device contact sensitivity, in 7 patients for primary prevention of device contact sensitivity, and in 1 patient for avoiding over-sensing of myopotentials. During follow-up periods (mean 4634months), there were no allergic or inflammatory reactions to components of the device or ePTFE itself. Among 11 patients with a device wrapped with an ePTFE <span class="hlt">sheet</span> for secondary prevention, 5 patients completed device replacement due to battery depletion and 3 patients had infections from the device. Wrapping implantable devices with an ePTFE <span class="hlt">sheet</span> is an effective way of preventing device sensitivity in patients who require CIED therapy. However, the risk of infection from the device should be taken into consideration. PMID:22362192</p> <div class="credits"> <p class="dwt_author">Yashiro, Bun; Shoda, Morio; Tomizawa, Yasuko; Manaka, Tetsuyuki; Hagiwara, Nobuhisa</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002APS..DPPFP1130G"> <span id="translatedtitle">Thermal Fluctuations in Pure <span class="hlt">Electron</span> <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two methods have recently been described for determining the temperature of pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> by measuring the thermal fluctuation spectrum on a surrounding sector probe. The first[1] employs the narrow resonant peaks associated with Trivelpiece-Gould modes of the the <span class="hlt">plasma</span>, and the second[2] makes use of the broad continuous spectrum associated with independent particle motion. We propose a simple model, using the warm <span class="hlt">plasma</span> dielectric function, for calculating the fluctuation spectrum. It is valid for both approaches and allows us to compare the two approaches. We find that there is a broad low frequency spectrum in the frequency range 0 < ohmega < kV, on which are superimposed peaks, one associated with each mode. V is the particle thermal velocity and k is the axial wave number. The frequency of a mode is closely given by cold <span class="hlt">plasma</span> theory, but the height and width of a mode is the determined by Landau damping, as shown in [1]. The broadband spectrum associated with independent particle motion presented in [2] is not, in general, correct since the particles are not independent and correlation effects must be taken into account. The modes are seen to emerge from the continuum as their Landau damping decreases. [1] Francois Anderegg, et al, CP606, Non-Neutral <span class="hlt">Plasma</span> Physics IV, AIP 2002, p253. [2] M. Takeshi Nakata, et al, CP606, Non-Neutral <span class="hlt">Plasma</span> Physics IV, AIP 2002, p 271.</p> <div class="credits"> <p class="dwt_author">Gould, Roy W.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20702248"> <span id="translatedtitle">Runaway <span class="hlt">electrons</span> in a fully and partially ionized nonideal <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper reports on a study of <span class="hlt">electron</span> runaway for a nonideal <span class="hlt">plasma</span> in an external electric field. Based on pseudopotential models of nonideal fully and partially ionized <span class="hlt">plasmas</span>, the friction force was derived as a function of <span class="hlt">electron</span> velocities. Dependences of the <span class="hlt">electron</span> free path on <span class="hlt">plasma</span> density and nonideality parameters were obtained. The impact of the relative number of runaway <span class="hlt">electrons</span> on their velocity and temperature was considered for classical and semiclassical models of a nonideal <span class="hlt">plasma</span>. It has been shown that for the defined intervals of the coupled <span class="hlt">plasma</span> parameter, the difference between the relative numbers of runaway <span class="hlt">electron</span> values is essential for various <span class="hlt">plasma</span> models.</p> <div class="credits"> <p class="dwt_author">Ramazanov, T.S.; Turekhanova, K.M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41998172"> <span id="translatedtitle">Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Evidence is presented that suggests that there is a significant self-organized criticality (SOC) component in the dynamics of substorms in the magnetosphere. We assume that observations of bursty bulk flows, fast flows, localized dipolarizations, <span class="hlt">plasma</span> turbulence, etc. show that multiple localized reconnection sites provide the basic avalanche phenomenon in the establishment of SOC in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. First results are</p> <div class="credits"> <p class="dwt_author">A. J. Klimas; J. A. Valdivia; D. Vassiliadis; D. N. Baker; M. Hesse; J. Takalo</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5797535"> <span id="translatedtitle">Relative contributions of terrestrial and solar wind ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A major uncertainty concerning the origins of <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions is due to the fact that terrestrial H(+) can have similar fluxes and energies as H(+) from the solar wind. The situation is especially ambiguous during magnetically quiet conditions (AE less than 60 gamma) when H(+) typically contributes more than 90 percent of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion population. In this study that problem is examined using a large data set obtained by the ISEE-1 <span class="hlt">Plasma</span> Composition Experiment. The data suggest that one component of the H(+) increases in energy with increasing activity, roughly in proportion to 1/4 the energy of the He(++), whereas the other H(+) component has about the same energy at all activity levels, as do the O(+) and the He(+). If it is assumed that the H(+) of solar wind origin on the average has about the same energy-per-nucleon as the He(++), which is presumably almost entirely from the solar wind, then the data imply that as much as 20-30 percent of the H(+) can be of terrestrial origin even during quiet conditions.</p> <div class="credits"> <p class="dwt_author">Lennartsson, W.; Sharp, R.D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFMSM24A..03W"> <span id="translatedtitle">Spatial correlation of <span class="hlt">plasma</span> <span class="hlt">sheet</span> and solar wind turbulence from two point measurements</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interplanetary turbulence is the best studied case of low frequency <span class="hlt">plasma</span> turbulence and the only directly quantified instance of astrophysical turbulence. Here, correlation analysis of interplanetary magnetic and <span class="hlt">plasma</span> <span class="hlt">sheet</span> turbulence is carried out, using for the first time only proper two point, single time measurements, providing a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous solar magnetic field data from the ACE, Cluster, Geotail, IMP 8, and Wind spacecraft are analyzed to determine the spatial correlation function, the correlation (outer) scale, and the inner (Taylor) microscale near Earth orbit. The two standard length scales are used to determine the effective magnetic Reynold number and the other standard turbulence length scale, the Kolmogorov scale. The correlation scale is determined to be 1.2 Mkm, the Taylor scale is 2500 km, and the effective magnetic Reynolds number is calculated to be 230,000 from the ratio of the Taylor scale and the outer scale. The Cluster magnetic field data are investigated to obtain the correlation scale and the Taylor scale in the Earth's <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The correlation scale calculated is 22,000 km, the Taylor scale is 2200 km, and the effective magnetic Reynolds number is 100. This two point correlation method provides us with a means of determining the effective magnetic Reynolds number without having to make estimates of conductivity or assumption about wave particle interactions.</p> <div class="credits"> <p class="dwt_author">Weygand, J. M.; Matthaeus, W. H.; Dasso, S.; Kivelson, M. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118..350J"> <span id="translatedtitle">Ionospheric signatures of a <span class="hlt">plasma</span> <span class="hlt">sheet</span> rebound flow during a substorm onset</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Magnetic reconnection in Earth's magnetotail produces fast earthward flows in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. Tailward flows are often observed associated with the earthward flows. Both return flow vortices at the flanks of an earthward flow channel and rebound of the earthward flow from the intense dipolar magnetic field of the inner magnetosphere have been shown to explain tailward flows observed near Earth. We combine <span class="hlt">plasma</span> <span class="hlt">sheet</span> measurements from Cluster with conjugate ground-based magnetic and auroral data to examine the development of earthward and tailward flow signatures during a substorm onset. We show for the first time observations of ionospheric signatures that appear to be associated with rebound flows. Because of the highly dynamic magnetotail configuration, special care is taken with the satellite footprint mapping. The ionospheric footprints produced by the event oriented AM02 model drift equatorward and poleward in response to tail magnetic field stretching and dipolarization, respectively. The footprint motion matches that of the ambient ionospheric structures, and the <span class="hlt">plasma</span> flow measured by Cluster agrees with that inferred from the conjugate ionospheric observations, confirming the validity of the AM02 mapping. The ionospheric signatures of fast earthward flows during a substorm onset are shown to resemble the known signatures of quiet-time flows, including equatorward propagating auroral streamers inside a channel of enhanced poleward equivalent current. However, the large-scale dipolarization results in additional poleward expansion of the signatures, as has been predicted by simulations.</p> <div class="credits"> <p class="dwt_author">Juusola, L.; Kubyshkina, M.; Nakamura, R.; PitkNen, T.; Amm, O.; Kauristie, K.; Partamies, N.; RMe, H.; Snekvik, K.; Whiter, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM11B2023L"> <span id="translatedtitle">Study of the turbulent transport in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> related to eddy-diffusion using THEMIS satellite data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent studies of the turbulent processes in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> have shown that the instantaneous profiles of the diagonal terms of eddy-diffusion coefficients tensor show an increase with distance from the Earth in the tailward direction [Pinto et al. 2011,Stepanova et al. 2011], which agree with previous statistical studies. In this study we analyzed the relevance of the off-diagonal terms of the eddy-diffusion coefficients tensor in the <span class="hlt">plasma</span> transport in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> as a function of the distance into the magnetic tail</p> <div class="credits"> <p class="dwt_author">L'Huissier, P.; Pinto, V. A.; Stepanova, M. V.; Antonova, E. E.; Valdivia, J. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19099954"> <span id="translatedtitle">Nonlinear magnetic <span class="hlt">electron</span> tripolar vortices in streaming <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Magnetic <span class="hlt">electron</span> modes in nonuniform magnetized and unmagnetized streaming <span class="hlt">plasmas</span>, with characteristic frequencies between the ion and <span class="hlt">electron</span> <span class="hlt">plasma</span> frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized <span class="hlt">plasma</span>) or self-generated (for the unmagnetized <span class="hlt">plasma</span> case) magnetic field, and the temperature, are solved</p> <div class="credits"> <p class="dwt_author">J. Vranjes; G. Maric; P. K. Shukla</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006APS..DPPQP1095K"> <span id="translatedtitle">Experimental Investigation of <span class="hlt">Electron</span> Acoustic Waves in <span class="hlt">Electron</span> <span class="hlt">Plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span>-acoustic wave (EAW) solutions of the linearized electrostatic Vlasov equations are usually ignored because their small phase velocity implies a huge linear damping. However, recent nonlinear theory and simulations found that <span class="hlt">electrons</span> trapped in wave potentials result in long-lived BGK states at the EAW mode frequency. Experimentally, the predicted modes are readily observed on pure <span class="hlt">electron</span> <span class="hlt">plasmas</span>, when they are excited by weak wall voltages which are resonant over 100 cycles. The modes have phase velocity v? 1.3 vth, in close agreement with theory; and the long-wavelength BGK states exhibit only weak damping (-?/ ?<=0.01) due to <span class="hlt">electron-electron</span> collisions. The mode frequencies are unambiguously calibrated by comparison to <span class="hlt">electron</span> <span class="hlt">plasma</span> wave frequencies. Discrete standing modes are observed, but modes with mz= 2,3... show a strong decay instability into mz=1. This instability corresponds to a merger of vortices in (z, vz) phase space, which can be suppressed (or enhanced) by application of potential barriers (or wells) between the high mz wavelengths. J.P. Holloway and J.J. Dorning, Phys. Rev. A. 44 3856 (1991). F. Valentini, T.M. O'Neil, D.H.E. Dubin, Phy Plas 13, 052303 (2006).</p> <div class="credits"> <p class="dwt_author">Kabantsev, A. A.; Driscoll, C. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.9220O"> <span id="translatedtitle">Distribution of O+ ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> and locations of substorm onsets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We discuss the effect of O+ ions on substorm onsets by examining the relation between the substorm onset location and the distribution of the O+/H+ number density ratio before the onset in the various regions within the <span class="hlt">plasma</span> <span class="hlt">sheet</span> (-8 RE > XGSM > -32 RE). We use 9-212 keV/e ion flux data observed by Geotail/Energetic Particles and Ion Composition (EPIC)/Suprathermal Ion Composition Spectrometer (STICS) instrument and the IMAGE/Far Ultra-Violet (FUV) substorm onset list presented by Frey et al. [Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109, A10304, doi:10.1029/2004JA010607]. The results are summarized as follows. Substorm onsets, which we identify by auroral initial brightenings, are likely to occur in the more dusk-(dawn-)ward region when the O+/H+ number density ratio is high in the dusk (dawn) side. This property is observed only in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> (at -8 RE > XGSM > -14 RE). The above-mentioned property holds in each of two groups: substorm events due to internal instability of the magnetosphere (i.e., internally triggered substorms) and events due to external changes in the solar wind or the interplanetary magnetic field (i.e., externally triggered substorms). Thus, we conclude that the substorm onset location depends on the density of O+ ions in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> prior to onset, whether the substorm is triggered internally or externally.</p> <div class="credits"> <p class="dwt_author">Ono, Y.; Christon, S. P.; Frey, H. U.; Lui, A. T. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AIPC.1187..555B"> <span id="translatedtitle"><span class="hlt">Electron</span> Cyclotron Heating in RFP <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Reversed field pinches (RFP) <span class="hlt">plasmas</span> are typically overdense (?pe>?ce) and thus not suitable for conventional <span class="hlt">electron</span> cyclotron (EC) heating and current drive. In recent high <span class="hlt">plasma</span> current discharges (Ip>1.5 MA), however, the RFX-mod device was operated in underdense conditions (?pe<?ce) for the first time in an RFP. Thus, it is now possible to envisage heating the RFP <span class="hlt">plasma</span> core by conventional EC at the 2nd harmonic, in the ordinary or extraordinary mode. We present a preliminary study of EC-heating feasibility in RFX-mod with the use of beam-tracing and full-wave codes. Although not competitive-as a heating system-with multi-MW Ohmic heating in an RFP, EC might be useful for perturbative transport studies, even at moderate power (hundreds of kW), and, more generally, for applications requiring localized power deposition.</p> <div class="credits"> <p class="dwt_author">Bilato, R.; Volpe, F.; Poli, E.; Khn, A.; Cavazzana, R.; Paccagnella, R.; Farina, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19910030164&hterms=moebius&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%2522moebius%2522"> <span id="translatedtitle">Spatial variations in the suprathermal ion distributions during substorms in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The preinjection and postinjection suprathermal energy spectra of the ion species H(+), O(+), He(+), and He(++) in two events in which substorm-associated particle injections were observed in both the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> and farther down the tail were determined using data obtained by the Suprathermal Energetic Ion Charge Analyzer on AMPTE IRM and the Charge Energy Mass Spectrometer on AMPTE CCE. Similar spectral changes were observed in both locations. In both cases, the spectra became harder with injection. Postinjection, the flux decreased exponentially with radial distance. The gradients observed for all ion species were very similar.</p> <div class="credits"> <p class="dwt_author">Kistler, L. M.; Moebius, E.; Klecker, B.; Gloeckler, G.; Ipavich, F. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53797591"> <span id="translatedtitle">Nonlocal collisionless and collisional <span class="hlt">electron</span> transport in low temperature <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The purpose of the talk is to describe recent advances in nonlocal <span class="hlt">electron</span> kinetics in low-pressure <span class="hlt">plasmas</span>. A distinctive property of partially ionized <span class="hlt">plasmas</span> is that such <span class="hlt">plasmas</span> are always in a non-equilibrium state: the <span class="hlt">electrons</span> are not in thermal equilibrium with the neutral species and ions, and the <span class="hlt">electrons</span> are also not in thermodynamic equilibrium within their own ensemble,</p> <div class="credits"> <p class="dwt_author">Igor Kaganovich</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5607700"> <span id="translatedtitle">Superthermal <span class="hlt">electron</span> production from hot underdense <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Very-high-energy <span class="hlt">electrons</span> of up to an energy of approx.2.3 MeV have been observed to be emitted from the hot underdense exploding thin foil <span class="hlt">plasmas</span> created by 10.6 ..mu..m CO/sub 2/ laser radiation at intensity levels up to approx.4 x 10/sup 14/ W/cm/sup 2/. As a supplement to the <span class="hlt">electron</span> measurements the forward and backward scattered light components were also measured. Correlation of these measurements shows that either Raman scattering or the high-temperature version of two-plasmon decay or both, manifesting themselves near the quarter-critical density region, are responsible for the production of a hot (T/sub h/approx.135 keV) tail of <span class="hlt">electrons</span> at least up to energies of 1 MeV. There are no indications that the Raman forward scattering (as distinct from Raman backward scattering) at lower densities plays any significant role. These experimental results are consistent with the results from a l 1/2 -dimensional particle-in-cell code simulation with a parabolic density profile resembling the experimental conditions. An apparent anomaly is discussed, which is that hot <span class="hlt">electrons</span> are produced (both in experiments and simulations) at energies higher than the trapping value appropriate to <span class="hlt">electron</span> <span class="hlt">plasma</span> waves whose phase velocity is equal to the matching value (C/(3)/sup 1/2/) at the turning point for the light of half the laser frequency.</p> <div class="credits"> <p class="dwt_author">Aithal, S.; Lavigne, P.; Pepin, H.; Johnston, T.W.; Estabrook, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003APS..DPPRP1101F"> <span id="translatedtitle"><span class="hlt">Electron</span> Transport In Magnetized Laser Hohlraum <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">plasma</span> conditions we expect to encounter in hohlraum experiments on the National Ignition Facility span from the familiar, relatively benign conditions of Nova and Omega to much more hostile environments in which <span class="hlt">electron</span> temperatures may be 10s of keV. In any of these situations simple estimates indicate that heat flow is very non-local, making the local diffusion approximation typically used in hydrocodes invalid. However, large, mega gauss magnetic fields which are generated primarily at the wall and fill the body of the hohlraum will tend to localize the <span class="hlt">electron</span> transport. In this paper we use the Fokker-Planck code IMPACT to study heat flow as a function of <span class="hlt">plasma</span> scale lengths compared to the <span class="hlt">electron</span> mean free path, and as a function of magnetization and compare the results with local and non-local theory for <span class="hlt">plasma</span> conditions of relevance to hohlraums driven by the National ignition Facility. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.</p> <div class="credits"> <p class="dwt_author">Friesen, Lorien; Edwards, John; Town, Richard; Kingham, Robert; Rozmus, Wojciech</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.7226C"> <span id="translatedtitle">Relations of the energetic proton fluxes in the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> with solar wind and geomagnetic activities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">this paper, using 9 years of Cluster data, we statistically investigate the relations of central <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic proton fluxes, ~30 keV to 380 keV, with the solar wind parameters and geomagnetic indexes. The energetic proton fluxes increase with increasing solar wind dynamical pressure and solar wind speed. The energetic proton fluxes are more correlated with solar wind dynamical pressure than with solar wind speed. During northward interplanetary magnetic field (IMF) Bz, energetic proton fluxes are independent of northward IMF Bz, while during southward IMF Bz, energetic proton fluxes are highly correlated with southward IMF Bz and increase with increasing |IMF Bz|. The response time of energetic proton flux to southward IMF Bz is between 40 and 100 min. The energetic proton fluxes are correlated with <span class="hlt">plasma</span> <span class="hlt">sheet</span> ion temperature. The energetic proton fluxes increase with increasing indexes of Kp, AE, and |Dst|. Among the three geomagnetic indexes, the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic proton fluxes are most correlated with Kp index with the largest correlation coefficient being 0.82. The energetic proton fluxes are large during positive Dst index, suggesting that the sharp increase of solar wind dynamical pressure can enhance the <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic proton fluxes. The enhanced <span class="hlt">plasma</span> <span class="hlt">sheet</span> energetic proton fluxes may be important for geomagnetic storms and substorms since they can possibly directly become the source of ring current and substorm-injected energetic particles without the need of additional acceleration process in the inner magnetosphere.</p> <div class="credits"> <p class="dwt_author">Cao, Jinbin; Duan, Aiying; Reme, Henri; Dandouras, Iannis</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19790031428&hterms=Bergen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DBergen"> <span id="translatedtitle">Multiple-satellite studies of magnetospheric substorms - <span class="hlt">Plasma</span> <span class="hlt">sheet</span> recovery and the poleward leap of auroral zone activity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Particle observations from pairs of satellites (OGO 5 and Vela 4A and 5A) during 28 <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickening events indicate that thickening of the nighttime <span class="hlt">plasma</span> <span class="hlt">sheet</span> during substorms occurs in two main stages. The early stage involves single or multiple expansions of the near-earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> at the onset of substorm expansions (Pi 2 bursts) on the ground, while the later stage of <span class="hlt">plasma</span> <span class="hlt">sheet</span> recovery starts near the time of maximum auroral zone bay activity. This stage is characterized by a large-scale thickening toward higher latitudes that occurs over a broad azimuthal scale and at heights that range from the ionosphere to beyond the Vela orbit. A detailed analysis of two-satellite observations during eight <span class="hlt">plasma</span> <span class="hlt">sheet</span> recoveries is presented, and events that occurred within 5 min in widely separated locations at small distances from the tail's midplane as well as events that occurred concurrently in the Vela orbit and at high latitudes in the near-earth region are revealed.</p> <div class="credits"> <p class="dwt_author">Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19810025909&hterms=energy+recovery&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Denergy%2Brecovery"> <span id="translatedtitle">Observations of a nonthermal ion layer at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary during substorm recovery</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Measurements of the energy and angular distributions of energetic protons and alpha particles (not less than 30 keV/charge) in the geomagnetic tail are presented. The measurements were made during the recovery phase of a geomagnetic substorm on Apr. 19, 1978, with the Max-Planck-Institut/University of Maryland sensor system on the Isee 1 satellite. The measurements were also correlated with <span class="hlt">plasma</span> observations made by the LASL/MPE instrument on Isee 1. The data reveal the presence of a thin nonthermal layer of protons and alpha particles at the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary. The particles have their maximum flux at 60 keV/charge and are streaming highly collimated in the earthward direction. The alpha particle layer is confined within the proton layer. Many aspects of the observations are in agreement with an acceleration model near the neutral line proposed by Jaeger and Speiser (1974)</p> <div class="credits"> <p class="dwt_author">Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://svs.gsfc.nasa.gov/vis/a000000/a000000/a000009/index.html"> <span id="translatedtitle">Topological Features of a Compressible <span class="hlt">Plasma</span> Vortex <span class="hlt">Sheet</span> - a Model of the Outer Heliospheric Wind</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">The Voyager and Pioneer Spacecraft have detected large-scale quasi-periodic <span class="hlt">plasma</span> fluctuations in the outer heliosphere beyond 20 AU. A <span class="hlt">plasma</span> vortex <span class="hlt">sheet</span> model can explain these fluctuations and the observed correlations between various physical variables. The large scale outer heliosphere is modeled by solving the 3-D compressible magnetohydrodynamic equations involving three interacting shear layers. Computations were done on a Cray computer at the NASA Center for Computational Sciences. Six cases are animated: Weak magnetic field and strong magnetic field, each at three values of tau, the vortex street characteristic time. Contours of density are shown as dark transparent tubes. Critical points of the velocity field are represented by Glyphs. Vortex cores are shown in orange and blue.</p> <div class="credits"> <p class="dwt_author">Starr, Cindy; Siregar, Edouard; Ghosh, Sanjoy</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-12-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008APS..DPPUI1003A"> <span id="translatedtitle"><span class="hlt">Electron</span> Acoustic Waves in Pure Ion <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> Acoustic Waves (EAWs) are the low frequency branch of electrostatic <span class="hlt">plasma</span> waves; these waves exist in neutralized <span class="hlt">plasmas</span>, pure <span class="hlt">electrons</span>, and pure ion <span class="hlt">plasmas</span>. The EAWs typically have a phase velocity Vphase / Vth 1.4, quite low compared to typical <span class="hlt">plasma</span> waves. Linear Landau damping would suggest that such slow phase velocity waves are strongly damped; but at finite wave amplitudes, trapping of particles at the phase velocity effectively flattens the distribution function, resulting in a ``BGK-like'' state with weak damping. Our experiments on standing mz= 1, m?= 0 waves show that the small-amplitude dispersion relation for both fast Trivelpiece-Gould (TG) and slow (EAW) <span class="hlt">plasma</span> modes is in close agreement with the ``thumb-shaped'' dispersion relation predicted by kinetic theory neglecting damping. However, the surprise here is that a moderate amplitude ``off-resonant'' drive readily modifies the velocity distribution so as to make the <span class="hlt">plasma</span> mode resonant with the drive frequency. We have observed the <span class="hlt">plasma</span> adjusting its velocity distribution so as to become resonant with a 100 cycle drive ranging from 10 kHz to 30 kHz. With a chirped frequency drive, the particle velocity distribution suffers extreme distortion, and the resulting <span class="hlt">plasma</span> wave is almost undamped with ?/ ?10-5. Laser-Induced-Fluorescence measurements of the wave-coherent particle distribution f (vz, t), clearly show particle trapping in the EAW, with trapping widths as expected from theory considering two non-interacting traveling waves forming the standing wave. The coherent f (vz, t ) measurement also shows that particles slower than the wave phase velocity vph oscillate in phase with the wave, contrasting with the 180^o out-of-phase response of the particles moving faster than vph. The differing response of the fast and slow particles results in a small net fluid velocity, because the electrostatic restoring force is almost totally balanced by the kinetic pressure, consistent with the low frequency nature of EAW. D.S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001). A.A. Kabantsev, F. Valentini, and C.F. Driscoll, AIP Conf. Proc. 862, 13 (2006). J.P. Holloway and J.J. Dorning, Phys. Rev. A 44, 3856 (1991). F. Valentini, T.M. O'Neil and D.H.E. Dubin, Phys. Plas. 13, 052303 (2006). W. Bertsche, J. Fajans, L. Friedland, Phys. Rev. Lett. 91, 265003 (2003); F. Peinetti et al., Phys. Plas. 12, 062112 (2005).</p> <div class="credits"> <p class="dwt_author">Anderegg, Francois</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008NIMPB.266.4987F"> <span id="translatedtitle">Formation of silicon hydride using hyperthermal negative hydrogen ions (H -) extracted from an argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An E B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H -) from a premixed 10% argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span>. With a vacuum background of 1.0 10 -6 Torr, H - extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A <span class="hlt">plasma</span> discharge. The EXBII is positioned 3 cm distance from the <span class="hlt">sheet</span> core as this is the region densely populated by cold <span class="hlt">electrons</span> ( Te 2 eV, Ne 3.4 10 11 cm -3) best suited for H - formation. The extracted H - ions of flux density 0.26 A/m 2 are segregated, accelerated to hyperthermal range (<100 eV) and subsequently deposited into a palladium-coated 1.1 1.1 cm 2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H - ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH 2. Absorbance peaks between 900-970 cm -1 (bending modes) and 2050-2260 cm -1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH 2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm -1 which are hydrides of nano-crystalline silicon.</p> <div class="credits"> <p class="dwt_author">Fernandez, Marcedon S.; Blantocas, Gene Q.; Ramos, Henry J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EGUGA..15.9758F"> <span id="translatedtitle">In situ observations of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at high latitudes in conjunction with a transpolar arc</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Transpolar arcs are auroral features which extend from the night side of the Earth's main auroral oval into the polar cap. Recent statistical studies have shown that they are formed by the closure of magnetic flux in the magnetotail during intervals when the IMF is northward and there is a cross-tail (BY ) component of the lobe magnetic field (due to the earlier IMF conditions). Under these circumstances, newly closed flux in the midnight sector has northern and southern hemisphere footprints that straddle the midnight meridian; this prevents the closed flux from returning to the day side in a simple manner. As tail reconnection continues, the footprints of closed field lines protrude into the polar cap, and the auroral emissions on these footprints form the transpolar arc. This mechanism predicts that closed flux should build up on the night side, embedded within the lobe. We present in situ observations of this phenomenon, taken by the Cluster spacecraft on 15th September 2005. Cluster was located at high latitudes in the southern hemisphere lobe (far from the typical location of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>), and a transpolar arc was observed by the FUV cameras on the IMAGE satellite. Cluster periodically observed <span class="hlt">plasma</span> similar to a typical <span class="hlt">plasma</span> <span class="hlt">sheet</span> distribution, but at much higher latitudes - indicative of closed flux embedded within the high latitude lobe. Each time that this <span class="hlt">plasma</span> distribution was observed, the footprint of the spacecraft mapped to the transpolar arc (significantly poleward of the main auroral oval). These observations are consistent with closed flux being trapped in the magnetotail and embedded within the lobe, and provide further evidence for transpolar arcs being formed by magnetotail reconnection.</p> <div class="credits"> <p class="dwt_author">Fear, Robert; Milan, Steve; Maggiolo, Romain</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21464566"> <span id="translatedtitle">Density effect on relativistic <span class="hlt">electron</span> beams in a <span class="hlt">plasma</span> fiber</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Intense short-petawatt-laser driven relativistic <span class="hlt">electron</span> beams in a hollow high-Z <span class="hlt">plasma</span> fiber embedded in low-Z <span class="hlt">plasmas</span> of different densities are studied. When the <span class="hlt">plasma</span> is of lower density than the hollow fiber, resistive filamentation of the <span class="hlt">electron</span> beam is observed. It is found that the <span class="hlt">electron</span> motion and the magnetic field are highly correlated with tens of terahertz oscillation frequency. Depending on the material property around the hollow fiber and the <span class="hlt">plasma</span> density, the beam <span class="hlt">electrons</span> can be focused or defocused as it propagates in the <span class="hlt">plasma</span>. Relativistic <span class="hlt">electron</span> transport and target heating are also investigated.</p> <div class="credits"> <p class="dwt_author">Zhou, C. T.; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Wang, X. G. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Wu, S. Z. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Cai, H. B. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Wang, F. [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20110011013&hterms=Statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DStatistics"> <span id="translatedtitle">Multiscale Auroral Emission Statistics as Evidence of Turbulent Reconnection in Earth's Midtail <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We provide indirect evidence for turbulent reconnection in Earth's midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span> by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. The events are divided into two groups: (1) those that map to absolute value of (X(sub GSM)) < 12 R(sub E) in the magnetotail and do not show scale-free statistics and (2) those that map to absolute value of (X(sub GSM)) > 12 R(sub E) and do show scale-free statistics. The absolute value of (X(sub GSM)) dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Klimas, Alex; Uritsky, Vadim; Donovan, Eric</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMNG23A1482M"> <span id="translatedtitle">Dynamical and Fractal Properties in a Soc Model for the Magnetospheric Central <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Earth's magnetosphere is a complex system that exhibits stochastic properties both in spatial and temporal domains of analysis as has been reported on ground and in-situ observations. Although physical mechanisms responsible for this behavior are not fully understood the fact that some magnetopsheric phenomena, such as auroral emissions, exhibit power law statistical relations, contribute to the idea that the magnetophere is in a self-organized critical (SOC) state. Assuming that central <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be thought as a collection of discrete straight flux tubes we studied the evolution of the magnetic field in a weakly perturbed magnetosphere using a simple 2D cellular automaton. This numerical model produced spatially and temporally intermittent, avalanche-like release of magnetic energy, with frequency distributions of avalanche size parameters in the form of power laws as shown in W.W. Liu et al., JGR, 2010 (116). In this work we calculate the spreading exponents and some geometrical properties of avalanches. We corroborate that the growth of avalanches in this model exhibits power-laws correlations that are numerically consistent with the behavior of a general class of statistical physical systems in the vicinity of a stationary critical point. This demonstrates that the numerical model proposed indeed operates in a self-organized critical regime. The resulting spreading exponents closely compare with the values obtained earlier for the nighttime auroral emission statistics (V.M. Uritsky et al., JGR, 2002 (107)) characterizing bursty energy dissipation in the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Morales, L. F.; Liu, W. W.; Charbonneau, P.; Uritsky, V. M.; Manuel, J. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SoPh..tmp..265Z"> <span id="translatedtitle"><span class="hlt">Electron</span> Acceleration in a Dynamically Evolved Current <span class="hlt">Sheet</span> Under Solar Coronal Conditions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> acceleration in a drastically evolved current <span class="hlt">sheet</span> under solar coronal conditions is investigated via the combined 2.5-dimensional (2.5D) resistive magnetohydrodynamics (MHD) and test-particle approaches. Having a high magnetic Reynolds number (105), the long, thin current <span class="hlt">sheet</span> is torn into a chain of magnetic islands, which grow in size and coalesce with each other. The acceleration of <span class="hlt">electrons</span> is explored in three typical evolution phases: when several large magnetic islands are formed (phase 1), two of these islands are approaching each other (phase 2), and almost merging into a "monster" magnetic island (phase 3). The results show that for all three phases <span class="hlt">electrons</span> with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20 % of the <span class="hlt">electrons</span> can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The lower-energy <span class="hlt">electrons</span> are located away from the magnetic separatrices and the higher-energy <span class="hlt">electrons</span> are inside the magnetic islands. The most energetic <span class="hlt">electrons</span> have a tendency to be around the outer regions of the magnetic islands or to appear in the small secondary magnetic islands. It is the trapping effect of the magnetic islands and the distributions of E p that determine the acceleration and spatial distributions of the energetic <span class="hlt">electrons</span>.</p> <div class="credits"> <p class="dwt_author">Zhang, Shaohua; Du, A. M.; Feng, Xueshang; Cao, Xin; Lu, Quanming; Yang, Liping; Chen, Gengxiong; Zhang, Ying</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/624851"> <span id="translatedtitle">Structure and dynamics of current <span class="hlt">sheets</span> at Alfv{acute e}n resonances in a differentially rotating <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Alfv{acute e}n resonances, where the local flow speed relative to the boundary is equal to the local Alfv{acute e}n speed, introduce novel dynamical features in a differentially rotating <span class="hlt">plasma</span>. The spatial structure and dynamics of current <span class="hlt">sheets</span> in such <span class="hlt">plasmas</span> is investigated analytically as well as numerically. The current <span class="hlt">sheets</span> at Alfv{acute e}n resonances tend to power-law singularities. The growth of current <span class="hlt">sheets</span> is algebraic in time in the linear regime and saturates in the presence of dissipation without the intervention of nonlinear effects. These results have significant implications for forced reconnection and Alfv{acute e}n wave dissipation in laboratory and space <span class="hlt">plasmas</span>. {copyright} {ital 1998 American Institute of Physics.}</p> <div class="credits"> <p class="dwt_author">Wang, X.; Bhattacharjee, A.; Ma, Z.W. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa52246 (United States)] [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa52246 (United States); Ren, C.; Hegna, C.C.; Callen, J.D. [University of Wisconsin-Madison, 1500 Johnson Drive, Madison, Wisconsin53706 (United States)] [University of Wisconsin-Madison, 1500 Johnson Drive, Madison, Wisconsin53706 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMSH32C..03S"> <span id="translatedtitle">Whistler-mode phenomena in <span class="hlt">electron</span> MHD <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">While the linear properties of plane whistler waves are well known, many new phenomena of bounded wavepackets and nonlinear effects are worth to describe. The present talk will review laboratory observations of whistler filaments, whistler vortices, whistler wings, whistler-sound modes in high-beta <span class="hlt">plasmas</span>, nonlinear whistlers forming magnetic null points, and magnetic reconnection in EMHD <span class="hlt">plasmas</span>. The time-varying magnetic field of a spatially bounded whistler wave packet consists of 3-D vortices. Each vortex can be decomposed into linked toroidal and poloidal field components. The self-helicity is positive for propagation along the field, negative for opposite propagation. Helicity injection from a suitable source produces unidirectional propagation. Magnetic helicity changes sign, i.e., is not conserved, when the propagation direction along B changes, for example due to reflection or propagation through a magnetic null point. In ideal EMHD the electric and magnetic forces on the <span class="hlt">electrons</span> are equal, -n e E +J x B=0, i.e., the <span class="hlt">electron</span> fluid is not compressed. Force-free vortices do not interact during collisions. Vortices are excited with pulsed magnetic antennas or pulsed electrodes. Both transient currents and fields can form vortices that propagate in the whistler mode. Moving dc magnets or dc current systems can also induce whistler modes in a magnetized <span class="hlt">plasma</span>. These form a Cherenkov-like radiation pattern, a ``whistler wing.'' Nonlinear phenomena arise from wave-induced modifications of the <span class="hlt">electron</span> temperature, density and magnetic field. In collisional <span class="hlt">plasmas</span> <span class="hlt">electrons</span> are heated by strong whistlers. Modifications of the classical conductivity leads to current filamentation. On a slower time scale density modifications arise from ambipolar fields associated with <span class="hlt">electron</span> heating. In a filamentation instability a strong whistler wave is ducted along a narrow field-aligned density depression. The ion density is also modified by the ac electric field of low-frequency whistlers in high-beta <span class="hlt">plasmas</span>. Pressure-gradient driven instabilities near the lower hybrid frequency produce coupled density and magnetic perturbations that propagate at the sound speed nearly across the field, forming a new whistler-sound mode. The net magnetic field is modified when the whistler magnetic field exceeds the background magnetic field. A field-reversed configuration (FRC) with two 3-D null points is produced. This EMHD structure does not propagate in the whistler mode. It elongates and precesses, which are manifestations of magnetic fields frozen into the <span class="hlt">electron</span> fluid flow. The free magnetic energy is converted into <span class="hlt">electron</span> heat by field line annihilation in the toroidal current <span class="hlt">sheet</span>. No reconnection is seen at the 3-D spiral nulls. The energy dissipation is anomalously fast due to current-driven ion sound turbulence. In contrast to linear vortices, two FRCs do interact and merge into a single one. These basic properties of EMHD fields will be applied to cases of interest in space <span class="hlt">plasmas</span> such as reconnection, strong turbulence, and possible active experiments. Work performed in collaboration with J.~M. Urrutia, M.~C. Griskey, and K.~D. Strohmaier with support from NSF PHY.</p> <div class="credits"> <p class="dwt_author">Stenzel, R. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6897000"> <span id="translatedtitle">Secondary <span class="hlt">electron</span> emission-capacitive probes for <span class="hlt">plasma</span> potential measurements in <span class="hlt">plasmas</span> with hot <span class="hlt">electrons</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">It is shown that a secondary <span class="hlt">electron</span> emission-capacitive probe can determine the <span class="hlt">plasma</span> potential when T/sub e/ greater than or equal to50 eV. The probe is wideband (1 Hz to greater than 20 MHz) and relatively simple to operate. The Phaedrus-B tandem mirror <span class="hlt">plasma</span> where T/sub e/ --40--60 eV and napprox. =5 x 10/sup 12/ cm/sup -3/ is used to verify this technique.</p> <div class="credits"> <p class="dwt_author">Wang, E.Y.; Hershkowitz, N.; Diebold, D.; Intrator, T.; Majeski, R.; Persing, H.; Severn, G.; Nelson, B.; Wen, Y.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-05-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990099700&hterms=larsen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2522larsen%2522"> <span id="translatedtitle">The Relationship of Ion Beams and Fast Flows in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Boundary Layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">We report new findings on the behavior of <span class="hlt">plasmas</span> in the vicinity of the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). A large geometrical factor detector on WIND (3D <span class="hlt">plasma</span> experiment) has discovered a unidirectional ion beam streaming in the tailward direction missed by previous observations. This tailward beam is as intense as the earthward streaming beam and it is found just inside the outer edge of the PSBL where earthward streaming beams are observed. The region where this tailward beam is observed includes an isotropic <span class="hlt">plasma</span> component which is absent in the outer edge where earthward streaming beams are found. When these different distributions are convolved to calculate the velocity moments, fast flows (greater than 400 km/s) result in the earthward direction and much slower flows (less than 200 km/s) in the tailward direction. These new findings are substantially different from previous observations. Thus, the interpretation of fast flows and earthward and counterstreaming ion beams in terms of a neutral line model must be reexamined.</p> <div class="credits"> <p class="dwt_author">Parks, G. K.; Reme, H.; Lin, R. P.; Sanderson, T.; Germany, G. A.; Spann, James F., Jr.; Brittnacher, M. J.; McCarthy, M.; Chen, L. J.; Larsen, D.; Phan, T. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/biblio/874126"> <span id="translatedtitle"><span class="hlt">Plasma</span> treatment for producing <span class="hlt">electron</span> emitters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary"><span class="hlt">Plasma</span> treatment for producing carbonaceous field emission <span class="hlt">electron</span> emitters is disclosed. A <span class="hlt">plasma</span> of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.</p> <div class="credits"> <p class="dwt_author">Coates, Don Mayo (Santa Fe, NM); Walter, Kevin Carl (Los Alamos, NM)</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/896940"> <span id="translatedtitle">Energy Measurements of Trapped <span class="hlt">Electrons</span> from a <span class="hlt">Plasma</span> Wakefield Accelerator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recent <span class="hlt">electron</span> beam driven <span class="hlt">plasma</span> wakefield accelerator experiments carried out at SLAC indicate trapping of <span class="hlt">plasma</span> <span class="hlt">electrons</span>. More charge came out of than went into the <span class="hlt">plasma</span>. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped <span class="hlt">electron</span> streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped <span class="hlt">electron</span> bunches with tens of GeV in energy.</p> <div class="credits"> <p class="dwt_author">Kirby, Neal; /SLAC; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20898721"> <span id="translatedtitle">Energy Measurements of Trapped <span class="hlt">Electrons</span> from a <span class="hlt">Plasma</span> Wakefield Accelerator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recent <span class="hlt">electron</span> beam driven <span class="hlt">plasma</span> wakefield accelerator experiments carried out at SLAC indicate trapping of <span class="hlt">plasma</span> <span class="hlt">electrons</span>. More charge came out of than went into the <span class="hlt">plasma</span>. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped <span class="hlt">electron</span> streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped <span class="hlt">electron</span> bunches with tens of GeV in energy.</p> <div class="credits"> <p class="dwt_author">Kirby, Neil; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark J.; Ischebeck, Rasmus; Iverson, Richard; Siemann, Robert H.; Walz, Dieter [Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Auerbach, David; Clayton, Christopher E.; Huang, Chengkun; Johnson, Devon; Joshi, Chandrashekhar; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Zhou, Miaomiao [University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095 (United States); Katsouleas, Thomas; Muggli, Patric [University of Southern California, Los Angeles, CA 90089 (United States)] (and others)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-11-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1995SPIE.2557..262B"> <span id="translatedtitle">Formation and transport of <span class="hlt">sheet-electron</span> beams and multibeam configurations for high-power microwave devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Sheet</span> <span class="hlt">electron</span> beams and configurations with multiple <span class="hlt">electron</span> beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single RF interaction circuit. Possible microwave device applications using <span class="hlt">sheet</span> <span class="hlt">electron</span> beams include <span class="hlt">sheet</span>-beam klystrons, rectangular grating circuits, and planar FELs. Historically, implementation of <span class="hlt">sheet</span> beams in microwave devices has been discouraged by their susceptibility to the diocotron instability in solenoidal focusing systems. However, recent theoretical and numerical studies have shown that stable transport of <span class="hlt">sheet</span> beams is possible in periodically cusped magnetic (PCM) fields. The use of an offset-pole PCM configuration has been shown analytically to provide side- fields for 2D focusing of the beam, and this has been recently verified with PIC code simulations. We will present further theoretical studies of <span class="hlt">sheet</span> and multibeam transport and discuss results from an experimental investigation of the formation, stability and transport of PCM-focused <span class="hlt">sheet</span> <span class="hlt">electron</span> beams. This includes a laboratory method of forming an elliptical <span class="hlt">sheet</span> beam using magnetic quadrupole pair and a round-beam Pierce gun.</p> <div class="credits"> <p class="dwt_author">Basten, Mark A.; Booske, Jon H.; Anderson, Jim; Scharer, John E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58720360"> <span id="translatedtitle">Comparative simulation studies of <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> (PCE) gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Pseudospark discharge based <span class="hlt">plasma</span> cathode has capability to provide high current density <span class="hlt">electron</span> beam during discharge process. In this paper an effort has been made to simulate the breakdown processes in the pseudospark discharge based <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun. The two-dimensional <span class="hlt">plasma</span> simulation codes VORPAL and OOPIC-Pro have been used and results are compared. The peak discharge current in the</p> <div class="credits"> <p class="dwt_author">Jitendra Prajapati; U N Pal; Niraj Kumar; D K Verma; Ram Prakash; V Srivastava</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFMSM33A2126G"> <span id="translatedtitle">The position of the Ion Isotropy Boundary relative to the inner edge of the Ion <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Auroral boundaries are the ionospheric projections of sharp gradients of magnetospheric features. Two of these boundaries are the isotropy boundary (IB), which is the transition between strong pitch angle scattering and quasi-stable bounce trapping, and the inner edge of the ion <span class="hlt">plasma</span> <span class="hlt">sheet</span>, which likely corresponds to the equatorward termination of the double loss cone. An investigation into the locations of these two boundaries aids in our understanding of the relationship between auroral morphology and magnetospheric <span class="hlt">plasma</span> populations, with the objectives of better understanding how convection shapes the inner magnetosphere <span class="hlt">plasma</span> environment and identifying the magnetospheric counterparts to these auroral boundaries. We use ESA ion data from more than 10000 Fast Auroral Snapshot (FAST) night-side overflights of the auroral zone to explore the relative positions of the IB and the inner edge of the ion <span class="hlt">plasma</span> <span class="hlt">sheet</span> and their dependence on the local time as well as the magnetospheric state. Our results show that the inner edge of the ion <span class="hlt">plasma</span> <span class="hlt">sheet</span> extends earthward of the region of strong pitch angle scattering (and thus the IB). Furthermore, in terms of latitudinal separation in the ionosphere, the inner edge can be anywhere from 0 degrees (meaning the IB marks the earthward edge of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>) to more than 5 degrees (meaning the <span class="hlt">plasma</span> <span class="hlt">sheet</span> extends significantly earthward of the IB). Recalling that the IB cannot be identified with in situ measurements near the equator, these results and consideration of magnetic flux conservation give us our first observational opportunity to explore where the strong pitch angle scattering cutoff is located in the equatorial magnetosphere.</p> <div class="credits"> <p class="dwt_author">Grant, J.; Donovan, E.; Spanswick, E. L.; Strangeway, R. J.; Jiang, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/334205"> <span id="translatedtitle">[<span class="hlt">Electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span> film deposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">During the third quarter of 1995, an <span class="hlt">electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span> film deposition facility was constructed at the University of New Mexico. This work was conducted in support of the Los Alamos/Tycom CRADA agreement to pursue methods of improving drill bit lifetime. Work in the fourth quarter will center on the coating of drill bits and the treating and testing of various test samples. New material systems as well as treatment techniques will be attempted during this period. The following is a brief description of the various subsystems of the film deposition facility. Particular emphasis is placed on the slotted waveguide system as requested.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhPl...21e2115M"> <span id="translatedtitle">High and low frequency instabilities driven by counter-streaming <span class="hlt">electron</span> beams in space <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A four-component <span class="hlt">plasma</span> composed of a drifting (parallel to ambient magnetic field) population of warm <span class="hlt">electrons</span>, drifting (anti-parallel to ambient magnetic field) cool <span class="hlt">electrons</span>, stationary hot <span class="hlt">electrons</span>, and thermal ions is studied in an attempt to further our understanding of the excitation mechanisms of broadband electrostatic noise (BEN) in the Earth's magnetospheric regions such as the magnetosheath, plasmasphere, and <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer (PSBL). Using kinetic theory, beam-driven electrostatic instabilities such as the ion-acoustic, <span class="hlt">electron</span>-acoustic instabilities are found to be supported in our multi-component model. The dependence of the instability growth rates and real frequencies on various <span class="hlt">plasma</span> parameters such as beam speed, number density, temperature, and temperature anisotropy of the counter-streaming (relative to ambient magnetic field) cool <span class="hlt">electron</span> beam are investigated. It is found that the number density of the anti-field aligned cool <span class="hlt">electron</span> beam and drift speed play a central role in determining which instability is excited. Using <span class="hlt">plasma</span> parameters which are closely correlated with the measurements made by the Cluster satellites in the PSBL region, we find that the <span class="hlt">electron</span>-acoustic and ion-acoustic instabilities could account for the generation of BEN in this region.</p> <div class="credits"> <p class="dwt_author">Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5702177"> <span id="translatedtitle">Flute-interchange stability in a hot <span class="hlt">electron</span> <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Several topics in the kinetic stability theory of flute-interchange modes in a hot <span class="hlt">electron</span> <span class="hlt">plasma</span> are discussed. The stability analysis of the hot-<span class="hlt">electron</span>, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical <span class="hlt">plasma</span>. The cold <span class="hlt">electron</span> concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background <span class="hlt">plasma</span> in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-<span class="hlt">electron</span> diamagnetic effects, hot-<span class="hlt">electron</span> <span class="hlt">plasma</span> density, or finite (ion) Larmor radius effects.</p> <div class="credits"> <p class="dwt_author">Dominguez, R.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014EGUGA..1610463M"> <span id="translatedtitle">Transmission and consequences of solar wind fluctuations in the <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The purpose of this study is to quantify how solar wind conditions affect the energy and <span class="hlt">plasma</span> transport in the geomagnetic tail and it's large-scale configuration. To uniquely identify the role of various effects, the magnetospheric data will be sorted according to different solar wind <span class="hlt">plasma</span> and interplanetary magnetic field (IMF) parameters: Speed, dynamic pressure, Alfven mach number, IMF north-south component, and the power in the dynamic pressure and IMF Ultra Low Frequency (ULF) fluctuations. We will study and compare the magnetospheric magnetic field magnitude and configuration as well as the variations of the average flow speed pattern and the occurrence and properties of flow bursts in different solar wind conditions. Magnetospheric data from five THEMIS spacecrafts and solar wind data from NASA's omniweb will be used in this study. During the studied time period the five THEMIS spacecraft were periodically aligned in the night-side <span class="hlt">plasma</span> <span class="hlt">sheet</span> parallel to the Sun-Earth line covering distances from about 10 Re to 30 Re downtail. The studied time interval covers years from 2007 to 2009 and it corresponds to the extended and prolonged solar activity minimum between solar cycles 23 and 24, which will allow investigating magnetospheric processes and solar wind-magnetospheric coupling during the relatively quiet state of the magnetosphere. The motivation of this study is to improve our understanding on solar wind-magnetosphere coupling and thus ultimately improve space weather forecasting.</p> <div class="credits"> <p class="dwt_author">Myllys, Minna; Kilpua, Emilia; Pulkkinen, Tuija</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM11A2064P"> <span id="translatedtitle">Application of MineTool to <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Flux Rope Identification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Flux ropes are helical bundles of magnetic field lines formed in the Earth's magnetotail by reconnection at multiple x-lines. They are observed in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> moving away from the reconnection site, either towards the planet, or downtail, at velocities of ~500-1000 km s-1. Such observations are made using in situ measurements of the characteristic magnetic field and <span class="hlt">plasma</span> parameters as the structures pass over the spacecraft. These measurements are used to provide key information about the location and rate of reconnection taking place in the magnetotail. Historically, such investigations of flux ropes in the Earth's magnetotail have been constrained to case studies or small ensembles of events, as the structures are identified by eye. Such a method is both inherently subjective and time-consuming. In partnership with data-mining experts at SciberQuest Inc., we have developed an algorithm to automatically identify flux ropes using a combination of in situ magnetometer and <span class="hlt">plasma</span> data. This tool enables us to apply objective criteria to data sets spanning an entire solar cycle. In this study we present examples of events identified using our new algorithm, and compare these with the results of previous statistical studies.</p> <div class="credits"> <p class="dwt_author">Pothier, N. M.; Imber, S. M.; Slavin, J. A.; Sipes, T.; Karimabadi, H.; DiBraccio, G. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994PhDT.......100H"> <span id="translatedtitle">Particle Dynamics and Collisionless Conductivity of the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> in the Geomagnetic Tail.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A recurrent theme in magnetospheric research is that of the origin and quantification of the finite, collisionless electrical conductivity of the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the geomagnetic tail. Outside the quasineutral layer the charged particle orbits are described by the guiding center classical theory and the <span class="hlt">plasma</span> dynamics is given by ideal MHD theory. In the interior region where the magnetic field is weak and rapidly changing in direction, the particle orbits are complex, nonadiabatic, and receive a net acceleration from the dawn to dusk electric field (E_ {y}) over the correlation time tau_{c}. Lyons and Speiser (1985) take tau_{c} to be the time that the particles spend in the quasineutral layer and approximate this time by one half of the cyclotron period in the minimum of the magnetic field. On the other hand, Horton and Tajima (1990, 1991) take tau _{c} to be the finite velocity correlation time produced by intrinsic orbital stochasticity in the quasineutral layer. The present work develops the theory and applications of the decay of the velocity correlations approach. The spectral velocity correlations formalism is described and used to extend conductivity formulae to new regimes. The spectral velocity correlations formalism is shown to provide a systematic framework to derive conductivity formulae in collisionless <span class="hlt">plasmas</span> and is particularly useful in situations when the charged particle motion is a mixture of both chaotic and integrable motion or when the motion is integrable, but it is impractical to perform an analytical calculation of the conductivity.</p> <div class="credits"> <p class="dwt_author">Hernandez Ochoa, Jose Valente</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003PhDT........12U"> <span id="translatedtitle"><span class="hlt">Electron</span> temperature dynamics of TEXTOR <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To study <span class="hlt">plasma</span> properties in the presence of large and small MHD modes, new high-resolution ECE diagnostics have been installed at TEXTOR tokamak, and some of the already existing systems have been upgraded. Two models for the <span class="hlt">plasma</span> transport properties inside large m/n = 2/1 MHD islands have been found to give estimations for the heat diffusivities, which are much lower than the global <span class="hlt">plasma</span> heat diffusivity, which is in agreement with previous measurements in different tokamaks. The 3D-reconstruction of large m/n = 2/1 modes in TEXTOR with the help of all available ECE diagnostics allows modelling the island as a structure with closed flux surfaces. The main <span class="hlt">plasma</span> heat flux flows through the X-point area probably along stochastic magnetic field lines. The confinement is improved within the magnetic island, compared to the background <span class="hlt">plasma</span>. This is confirmed by a temperature profile flattening and sometimes even a secondary peaking inside the island, compared to the X-point. Making use of the mode rotation, assumed to be a rigid rotor, it has been possible to obtain information on the topology of the m = 1 precursor mode leading to sawtooth collapses. It becomes clear that this precursor cannot be described by an m = 1 cold tearing mode island but by a hot crescent wrapped around a cold high-density bubble. In the future multi-chord ECE-imaging will allow this mode reconstruction without the assumption of the rotation to be rigid. From the measurements of the broadband temperature and density fluctuations one can conclude that the turbulent structures inside the q = 1 surface are separated from the turbulence outside the q = 1 surface. This fits nicely with the observation that q = 1 surface acts as a barrier for the thermal transport. Correlation length and time measured inside q = 1 are in agreement with the observed turbulent heat diffusivity. Qualitative studies of non-thermal <span class="hlt">electrons</span> at different heating regimes (ECRH and Ohmic) at TEXTOR were done with the help of the combined 2nd -3rd harmonic X-mode ECE radiometer. It has been found that the lower energetic non-thermal <span class="hlt">electrons</span> are directly responsive to small density changes, in contrast to the highly energetic runaways with energy up to 20 MeV. Those are only affected by a substantial density ramp up.</p> <div class="credits"> <p class="dwt_author">Udintsev, Victor Sergeevich</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9615538"> <span id="translatedtitle">Integration Issues of a <span class="hlt">Plasma</span> Contactor Power <span class="hlt">Electronics</span> Unit.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A hollow cathode-based <span class="hlt">plasma</span> contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The <span class="hlt">plasma</span> contactor system consists of a hollow cathode assembly (HCA), a power <span class="hlt">electronics</span> unit (PEU), and an expellant manag...</p> <div class="credits"> <p class="dwt_author">L. R. Pinero K. W. York G. E. Bowers</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.luli.polytechnique.fr/docs/articles/03.lefebvre-NuclFus43.pdf"> <span id="translatedtitle"><span class="hlt">Electron</span> and photon production from relativistic laser <span class="hlt">plasma</span> interactions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The interaction of short and intense laser pulses with <span class="hlt">plasmas</span> is a very efficient source of relativistic <span class="hlt">electrons</span> with tunable properties. In low-density <span class="hlt">plasmas</span>, we observed bunches of <span class="hlt">electrons</span> up to 200 MeV, accelerated in the wakefield of the laser pulse. Less energetic <span class="hlt">electrons</span> (tens of megaelectronvolt) have been obtained, albeit with a higher efficiency, during the interaction with a</p> <div class="credits"> <p class="dwt_author">E. Lefebvre; N. Cochet; S. Fritzler; V. Malka; M.-M. Alonard; J.-F. Chemin; S. Darbon; L. Disdier; J. Faure; A. Fedotoff; O. Landoas; G. Malka; V. Mot; P. Morel; M. Rabec LeGloahec; A. Rouyer; Ch. Rubbelynck; V. Tikhonchuk; R. Wrobel; P. Audebert; C. Rousseaux</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20729258"> <span id="translatedtitle"><span class="hlt">Electron</span> Beam Emission Characteristics from <span class="hlt">Plasma</span> Focus Devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper we observed the characteristics of the <span class="hlt">electron</span> beam emission from our <span class="hlt">plasma</span> focus machine filling neon, argon, helium and hydrogen. Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal and energy distribution of <span class="hlt">electron</span> emission. And the preliminary results of deposited FeCo thin film using <span class="hlt">electron</span> beam from our <span class="hlt">plasma</span> focus device were presented.</p> <div class="credits"> <p class="dwt_author">Zhang, T.; Patran, A.; Wong, D.; Hassan, S.M.; Springham, S.V.; Tan, T.L.; Lee, P.; Lee, S.; Rawat, R.S. [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-05</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50916871"> <span id="translatedtitle">Nonlocal collisionless and collisional <span class="hlt">electron</span> transport in low temperature <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A distinctive property of partially ionized <span class="hlt">plasmas</span> is that such <span class="hlt">plasmas</span> are always in a non-equilibrium state: the <span class="hlt">electrons</span> are not in thermal equilibrium with the neutral species and ions, and the <span class="hlt">electrons</span> are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the <span class="hlt">electron</span> velocity distribution function from a Maxwellian. These non-equilibrium</p> <div class="credits"> <p class="dwt_author">I. D. Kaganovich; Y. Raitses; A. V. Khrabrov; V. I. Demidov; D. Sydorenko</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26281040"> <span id="translatedtitle">Formation of silicon hydride using hyperthermal negative hydrogen ions (H ?) extracted from an argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An EB probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H?) from a premixed 10% argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span>. With a vacuum background of 1.010?6Torr, H? extraction ensues at a total gas feed of 1.8mTorr, 0.5A <span class="hlt">plasma</span> discharge. The EXBII is</p> <div class="credits"> <p class="dwt_author">Marcedon S. Fernandez; Gene Q. Blantocas; Henry J. Ramos</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.5437Z"> <span id="translatedtitle">Two different types of plasmoids in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>: Cluster multisatellite analysis application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">fine magnetic field structure of two successive plasmoids previously reported is investigated by magnetic rotation analysis using four Cluster satellite data. Between these two plasmoids, opposite trends of curvature radius (Rc) variations of the magnetic field lines from the boundary to the inner part are found. The different variations of Rc reflect that the two plasmoids have different magnetic configurations. The electric current density distributions for both plasmoids are found distinct. The By increase and abundant field-aligned currents in the narrow core region of the first plasmoid indicate that a possible magnetic flux rope (MFR) core exists inside. The results indicate that the first observed plasmoid is of a magnetic loop (ML) type (with possible MFR core) and the second plasmoid is of a magnetic flux rope (MFR) type. The coexistence of ML and MFR in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> may imply that multiple X line reconnection can occur by either an antiparallel or a component-parallel way.</p> <div class="credits"> <p class="dwt_author">Zhang, Y. C.; Shen, C.; Liu, Z. X.; Rong, Z. J.; Zhang, T. L.; Marchaudon, A.; Zhang, H.; Duan, S. P.; Ma, Y. H.; Dunlop, M. W.; Yang, Y. Y.; Carr, C. M.; Dandouras, I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5851622"> <span id="translatedtitle">Computer simulations of electromagnetic ion instabilities in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Linear Vlasov dispersion theory and one-dimensional hybrid computer simulations are used to study electromagnetic instabilities driven by hot, anisotropic counterstreaming proton components which model those observed from ISEE in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> boundary layer of the near-Earth magnetotail. The proton anisotropies lead to the ion cyclotron anisotropy instability, which saturates at a low level of fluctuating fields and yields only weak proton scattering. Modest increases of the proton/proton relative drift, which might correspond to deeper tail conditions, excite the proton/proton nonresistant instability which attains larger fluctuation levels and more strongly heats the protons. If a relatively dense oxygen ion component is also introduced, the ion/ion right-hand resonant instability is excited; the consequent pitch-angle scattering of the protons resembles that indicated in the ISEE data. 6 refs., 5 figs.</p> <div class="credits"> <p class="dwt_author">Gary, S.P.; Winske, D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11088395"> <span id="translatedtitle">Nonlinear magnetic <span class="hlt">electron</span> tripolar vortices in streaming <span class="hlt">plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Magnetic <span class="hlt">electron</span> modes in nonuniform magnetized and unmagnetized streaming <span class="hlt">plasmas</span>, with characteristic frequencies between the ion and <span class="hlt">electron</span> <span class="hlt">plasma</span> frequencies and at spatial scales of the order of the collisionless skin depth, are studied. Two coupled equations, for the perturbed (in the case of magnetized <span class="hlt">plasma</span>) or self-generated (for the unmagnetized <span class="hlt">plasma</span> case) magnetic field, and the temperature, are solved in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found. PMID:11088395</p> <div class="credits"> <p class="dwt_author">Vranjes, J; Mari?, G; Shukla, P K</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19920042037&hterms=changing+frequency&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dchanging%2Bfrequency"> <span id="translatedtitle">Measuring ionospheric <span class="hlt">electron</span> density using the <span class="hlt">plasma</span> frequency probe</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During the past decade, the <span class="hlt">plasma</span> frequency probe (PFP) has evolved into an accurate, proven method of measuring <span class="hlt">electron</span> density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the <span class="hlt">plasma</span> and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the <span class="hlt">plasma</span> frequency, which is a direct function of free <span class="hlt">electron</span> concentration. The probe uses phase-locked loop technology to follow a changing <span class="hlt">electron</span> density. Several sections of the <span class="hlt">plasma</span> frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an <span class="hlt">electronically</span> tuned capacitor and inductor to give the wide tuning range needed for <span class="hlt">electron</span> density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different <span class="hlt">plasma</span> conditions demonstrate the capabilities of the PFP and show the importance of in situ <span class="hlt">electron</span> density measurements of understanding <span class="hlt">plasma</span> processes.</p> <div class="credits"> <p class="dwt_author">Jensen, Mark D.; Baker, Kay D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24664667"> <span id="translatedtitle">One-Step Synthesis of N-doped Graphene Quantum <span class="hlt">Sheets</span> from Monolayer Graphene by Nitrogen <span class="hlt">Plasma</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">High-quality N-doped graphene quantum <span class="hlt">sheets</span> are successfully fabricated from as-grown monolayer graphene on Cu using nitrogen <span class="hlt">plasma</span>, which can be transferred as a film-like layer or easily dispersed in an organic solvent for further optoelectronic or photoelectrochemical applications. PMID:24664667</p> <div class="credits"> <p class="dwt_author">Moon, Joonhee; An, Junghyun; Sim, Uk; Cho, Sung-Pyo; Kang, Jin Hyoun; Chung, Chul; Seo, Jung-Hye; Lee, Jouhahn; Nam, Ki Tae; Hong, Byung Hee</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7912633"> <span id="translatedtitle">Multiple-Satellite Studies of Magnetospheric Substorms: <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Recovery and the Poleward Leap of Auroral-Zone Activity.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the...</p> <div class="credits"> <p class="dwt_author">E. W. Hones H. I. West M. G. Kivelson R. L. Mcpherron T. Pytte</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19860061852&hterms=gsm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2522gsm%2522"> <span id="translatedtitle">ISEE-1 and 2 observations of magnetic flux ropes in the magnetotail - FTE's in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Magnetic field observations on ISEE-1 and 2 in and near the neutral <span class="hlt">sheet</span> about 20 Re down the near-earth magnetotail reveal the occurrence of structures resembling magnetic flux ropes. Both electric field and fast <span class="hlt">plasma</span> data show that these structures convect across the spacecraft at speeds of 200 - 600 km/s, and that they have scale sizes of roughly 3 5 Re. The rope axis orientation is across the tail, approximately in the -Y GSM direction. Their magnetic structure is strikingly similar to magnetic flux ropes observed in the Venus ionosphere, and to flux transfer events observed at the dayside magnetopause. The total field-aligned current within these ropes may approach a million amps. These structures may arise because of patchy reconnection within the <span class="hlt">plasma</span> <span class="hlt">sheet</span>, or may be tearing islands formed when the <span class="hlt">plasma</span> <span class="hlt">sheet</span> magnetic field has a cross-tail component. <span class="hlt">Plasma</span> <span class="hlt">sheet</span> flux ropes are not a common feature at ISEE orbital altitudes; this suggests that near-earth neutral line formation within ISEE apogee (22 Re) may be equally rare.</p> <div class="credits"> <p class="dwt_author">Elphic, R. C.; Russell, C. T.; Cattell, C. A.; Takahasi, K.; Bame, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21405781"> <span id="translatedtitle">Nonlinear interaction of quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves with quantum <span class="hlt">electron</span> acoustic waves in <span class="hlt">plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An analysis of the interaction between modes involving two species with different pressures in the presence of a static-neutralizing ion background is presented using a quantum hydrodynamic model. It is shown that quantum <span class="hlt">electron</span> <span class="hlt">plasma</span> waves can nonlinearly interact with quantum <span class="hlt">electron</span> acoustic waves in a time scale much longer than <span class="hlt">electron</span> <span class="hlt">plasma</span> oscillation response time. A set of coupled nonlinear differential equations is obtained that is similar to the Zakharov equations but includes quantum correction terms. These equations are solved in a moving frame, showing that solitary-wave-like solutions may also be possible in quantum Zakharov equations. It is also shown that quantum effects can reduce the growth rate of the usual caviton instability. Possible applications of the theory are also outlined. PMID:21405781</p> <div class="credits"> <p class="dwt_author">Chakrabarti, Nikhil; Mylavarapu, Janaki Sita; Dutta, Manjistha; Khan, Manoranjan</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12786328"> <span id="translatedtitle">Nonlinear drift waves in <span class="hlt">electron</span>-positron-ion <span class="hlt">plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is suggested that low-frequency drift waves can play an important role in the dynamics of <span class="hlt">electron</span>-positron <span class="hlt">plasmas</span> comprising some concentration of ions. In the electromagnetic case the drift wave couples with the shear Alfvn wave in an <span class="hlt">electron</span>-positron-ion <span class="hlt">plasma</span>. The drift wave frequency can be very low in such <span class="hlt">plasmas</span> depending on the concentration and density scale lengths of the <span class="hlt">plasma</span> components. In the nonlinear regime these waves can give rise to dipolar vortices in both electrostatic and electromagnetic limits. The velocity of the nonlinear structure turns out to be different compared to the case of an <span class="hlt">electron</span>-ion <span class="hlt">plasma</span>. PMID:12786328</p> <div class="credits"> <p class="dwt_author">Saleem, H; Haque, Q; Vranjes, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2014PhPl...21f3502S"> <span id="translatedtitle">Effects of emitted <span class="hlt">electron</span> temperature on the <span class="hlt">plasma</span> sheath</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It has long been known that <span class="hlt">electron</span> emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted <span class="hlt">electrons</span> assumes that the <span class="hlt">plasma</span> <span class="hlt">electrons</span> follow the Boltzmann relation and the emitted <span class="hlt">electrons</span> are emitted with zero energy and predicts a potential drop of 1.03Te/e across the sheath in the floating condition. By considering the modified velocity distribution function caused by <span class="hlt">plasma</span> <span class="hlt">electrons</span> lost to the wall and the half-Maxwellian distribution of the emitted <span class="hlt">electrons</span>, it is shown that ratio of <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature to emitted <span class="hlt">electron</span> temperature significantly affects the sheath potential when the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature is within an order of magnitude of the emitted <span class="hlt">electron</span> temperature. When the <span class="hlt">plasma</span> <span class="hlt">electron</span> temperature equals the emitted <span class="hlt">electron</span> temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic <span class="hlt">electron</span> beam to the Maxwellian <span class="hlt">plasma</span> <span class="hlt">electrons</span> were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted <span class="hlt">electron</span> flux is less than the beam flux.</p> <div class="credits"> <p class="dwt_author">Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Sydorenko, D.; Raitses, Y.; Hershkowitz, N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22253714"> <span id="translatedtitle">Probing the <span class="hlt">electronic</span> structure of graphene <span class="hlt">sheets</span> with various thicknesses by scanning transmission X-ray microscopy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">electronic</span> structure of an aggregation of graphene <span class="hlt">sheets</span> with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene <span class="hlt">sheets</span> in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The <span class="hlt">electronic</span> structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene <span class="hlt">sheets</span>.</p> <div class="credits"> <p class="dwt_author">Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn; Zhong, Jun, E-mail: xhsun@suda.edu.cn, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)] [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ChJOL..30...12W"> <span id="translatedtitle"><span class="hlt">Electron</span> transfer from sulfate-reducing becteria biofilm promoted by reduced graphene <span class="hlt">sheets</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Reduced graphene <span class="hlt">sheets</span> (RGSs) mediate <span class="hlt">electron</span> transfer between sulfate-reducing bacteria (SRB) and solid electrodes, and promote the development of microbial fuel cells (MFC). We have investigated RSG-promoted <span class="hlt">electron</span> transfer between SRB and a glassy carbon (GC) electrode. The RGSs were produced at high yield by a chemical sequence involving graphite oxidation, ultrasonic exfoliation of nanosheets, and N2H4 reduction. Cyclic voltammetric testing showed that the characteristic anodic peaks (around 0.3 V) might arise from the combination of bacterial membrane surface cytochrome c3 and the metabolic products of SRB. After 6 d, another anodic wave gradually increased to a maximum current peak and a third anodic signal became visible at around 0 V. The enhancements of two characteristic anodic peaks suggest that RSGs mediate <span class="hlt">electron</span>-transfer kinetics between bacteria and the solid electrode. Manipulation of these recently-discovered <span class="hlt">electron</span>-transport mechanisms will lead to significant advances in MFC engineering.</p> <div class="credits"> <p class="dwt_author">Wan, Yi; Zhang, Dun; Wang, Yi; Wu, Jiajia</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20731449"> <span id="translatedtitle">A Demo opto-<span class="hlt">electronic</span> power source based on single-walled carbon nanotube <span class="hlt">sheets</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT <span class="hlt">sheets</span> made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT <span class="hlt">sheets</span>. By integrating p- and n-type elements in series, we constructed a novel NIR opto-<span class="hlt">electronic</span> power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors. PMID:20731449</p> <div class="credits"> <p class="dwt_author">Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007PhPl...14k3101K"> <span id="translatedtitle">Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin <span class="hlt">plasma</span> layer: Dynamics of <span class="hlt">electrons</span> in a linearly polarized external field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Interaction of a high-power laser pulse having a sharp front with a thin <span class="hlt">plasma</span> layer is considered. General one-dimensional numerical-analytical model is elaborated, in which the <span class="hlt">plasma</span> layer is represented as a large collection of <span class="hlt">electron</span> <span class="hlt">sheets</span>, and a radiation reaction force is derived analytically. Using this model, trajectories of the <span class="hlt">electrons</span> of the <span class="hlt">plasma</span> layer are calculated numerically and compared with the <span class="hlt">electron</span> trajectories obtained in particle-in-cell simulations, and a good agreement is found. Two simplified analytical models are considered, in which only one <span class="hlt">electron</span> <span class="hlt">sheet</span> is used, and it moves transversely and longitudinally in the fields of an ion <span class="hlt">sheet</span> and a laser pulse (longitudinal displacements along the laser beam axis can be considerably larger than the laser wavelength). In the model I, a radiation reaction is included self-consistently, while in the model II a radiation reaction force is omitted. For the two models, analytical solutions for the dynamical parameters of the <span class="hlt">electron</span> <span class="hlt">sheet</span> in a linearly polarized laser pulse are derived and compared with the numerical solutions for the central <span class="hlt">electron</span> <span class="hlt">sheet</span> (positioned initially in the center) of the real <span class="hlt">plasma</span> layer, which are calculated from the general numerical-analytical model. This comparison shows that the model II gives better description for the trajectory of the central <span class="hlt">electron</span> <span class="hlt">sheet</span> of the real <span class="hlt">plasma</span> layer, while the model I gives more adequate description for a transverse momentum. Both models show that if the intensity of the laser pulse is high enough, even in the field with a constant amplitude, the <span class="hlt">electrons</span> undergo not only the transverse oscillations with the period of the laser field, but also large (in comparison with the laser wavelength) longitudinal oscillations with the period, defined by the system parameters and initial conditions of particular oscillation.</p> <div class="credits"> <p class="dwt_author">Kulagin, Victor V.; Cherepenin, Vladimir A.; Hur, Min Sup; Suk, Hyyong</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18647360"> <span id="translatedtitle">Simulation of laser<span class="hlt">plasma</span> interactions and fast-<span class="hlt">electron</span> transport in inhomogeneous <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new framework is introduced for kinetic simulation of laser<span class="hlt">plasma</span> interactions in an inhomogeneous <span class="hlt">plasma</span> motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized <span class="hlt">plasma</span> leading to the generation and transport of an energetic <span class="hlt">electron</span> component. The energetic <span class="hlt">electrons</span> propagate farther</p> <div class="credits"> <p class="dwt_author">B. I. Cohen; A. J. Kemp; L. Divol</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012PlPhR..38.1056G"> <span id="translatedtitle">Role of <span class="hlt">plasma</span> <span class="hlt">electrons</span> in the generation of a gas discharge <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The role of different ionization mechanisms in penning-type gas discharges used to generate an emitting <span class="hlt">plasma</span> in <span class="hlt">plasma</span> <span class="hlt">electron</span> sources is considered. It is shown that, under certain conditions, a substantial contribution to the process of gas ionization is provided by <span class="hlt">plasma</span> <span class="hlt">electrons</span>.</p> <div class="credits"> <p class="dwt_author">Gruzdev, V. A.; Zalesski, V. G.; Rusetski, I. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60617653"> <span id="translatedtitle">Hybrid Simulation of Laser-<span class="hlt">Plasma</span> Interactions and Fast <span class="hlt">Electron</span> Transport in Inhomogeneous <span class="hlt">Plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new framework is introduced for kinetic simulation of laser-<span class="hlt">plasma</span> interactions in an inhomogenous <span class="hlt">plasma</span> motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized <span class="hlt">plasma</span> leading to the generation and transport of an energetic <span class="hlt">electron</span> component. The energetic <span class="hlt">electrons</span> propagate farther</p> <div class="credits"> <p class="dwt_author">B I Cohen; A Kemp; L Divol</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002EGSGA..27.1138D"> <span id="translatedtitle">Poleward Boundary of Auroral Bulge and <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Flow Reversal Region Location During Substorms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Data from the Geotail spacecraft situated in the night side <span class="hlt">plasma</span> <span class="hlt">sheet</span> during 1996- 1997 were used to select events of the tailward-to-Earthward fast <span class="hlt">plasma</span> flow rever- sals. Then a subset was extracted including those events when UV auroral images were available from the Polar satellite. The Polar data supported by ground-based ob- servations showed that the auroral substorms were in progress during the flow reversal events. For every moment of the flow reversal observations we determined the au- roral bulge poleward boundary latitude at the meridian of the Geotail footprint and compared this latitude with the Geotail location in the magnetosphere. We found that within the range of 10-30 RE the auroral bulge latitude increases proportionally to the reversal region distance from the Earth. Moreover, tailward (Earthward) flows have a tendency to be observed when Geotail footprint is poleward (equatorward) of the poleward edge of bright auroras. This agrees with the idea that reconnection is the source of discrete auroras during substorms.</p> <div class="credits"> <p class="dwt_author">Despirak, I. V.; Yahnin, A. G.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD646891"> <span id="translatedtitle"><span class="hlt">Electron</span>-Heavy Particle Nonequilibrium in a Dense Argon <span class="hlt">Plasma</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A theoretical and experimental study of the degree of <span class="hlt">electron</span> heavy particle thermal nonequilibrium was conducted for a subsonic argon arcjet <span class="hlt">plasma</span> at one atmosphere. A criterion for '<span class="hlt">electron</span>-temperature freezing' was calculated, and indicated that alt...</p> <div class="credits"> <p class="dwt_author">P. F. Jacobs J. Grey</p> <p class="dwt_publisher"></p> <p class="publishDate">1966-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850004205&hterms=stream+composition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstream%2Bcomposition"> <span id="translatedtitle">Cold streams of ionospheric oxygen in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during the CDAW-6 event of March 22, 1979</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During magnetospheric substorm events, the <span class="hlt">plasma</span> and ion composition experiments in the ISEE-1 and 2 satellites detected cold ionospheric O+ streams, moving tailwards in the near Earth magnetotail. Flow is parallel to the magnetic field lines, with drift velocity in agreement with the electric field topology obtained by mapping the model ionospheric field along the magnetic field lines. Fluctuations of the flow velocity of the streams can be related to magnetotail movements. Oscillations of the flow direction and speed with periods ranging from 5 to 10 min that suggest the presence of waves are observed. The streams are observed at all distances between 15 and 6 Re from the Earth. When averaged over 360 deg, the streams show up as a low energy peak, superimposed on the distribution of isotropic <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions. This double-peak structure of the energy spectrum seems typical of the disturbed <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Orsini, S.; Amata, E.; Candidi, M.; Balsiger, H.; Stokholm, M.; Huang, C. Y.; Lennartsson, W.; Lindqvist, P. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19850051341&hterms=stream+composition&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dstream%2Bcomposition"> <span id="translatedtitle">Cold streams of ionospheric oxygen in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> during the CDAW 6 event of March 22, 1979</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">During magnetospheric substorm events, the <span class="hlt">plasma</span> and ion composition experiments in the ISEE-1 and 2 satellites detected cold ionospheric O+ streams, moving tailwards in the near earth magnetotail. Flow is parallel to the magnetic field lines, with drift velocity in agreement with the electric field topology obtained by mapping the model ionospheric field along the magnetic field lines. Fluctuations of the flow velocity of the streams can be related to magnetotail movements. Oscillations of the flow direction and speed with periods ranging from 5 to 10 min that suggest the presence of waves are observed. The streams are observed at all distances between 15 and 6 Re from the earth. When averaged over 360 deg, the streams show up as a low energy peak, superimposed on the distribution of isotropic <span class="hlt">plasma</span> <span class="hlt">sheet</span> ions. This double-peak structure of the energy spectrum seems typical of the disturbed <span class="hlt">plasma</span> <span class="hlt">sheet</span>.</p> <div class="credits"> <p class="dwt_author">Orsini, S.; Amata, E.; Candidi, M.; Balsiger, H.; Stokholm, M.; Huang, C.; Lennartsson, W.; Lindqvist, P.-A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/909294"> <span id="translatedtitle">Emittance Measurements of Trapped <span class="hlt">Electrons</span> from a <span class="hlt">Plasma</span> Wakefield Accelerator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recent <span class="hlt">electron</span> beam driven <span class="hlt">plasma</span> wakefield accelerator experiments carried out at SLAC showed trapping of <span class="hlt">plasma</span> <span class="hlt">electrons</span>. These trapped <span class="hlt">electrons</span> appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer's resolution, this connection allows for placing an upper limit on the trapped <span class="hlt">electron</span> emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm {center_dot} mrad.</p> <div class="credits"> <p class="dwt_author">Kirby, N.; Berry, M.; Blumenfeld, I.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Siemann, R.; Walz, D.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-06-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JIMTW..30..670S"> <span id="translatedtitle">Design of <span class="hlt">Sheet</span>-Beam <span class="hlt">Electron</span> Gun with Planar Cathode for Terahertz Devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The design of a <span class="hlt">sheet</span>-beam <span class="hlt">electron</span> gun with planar cathode was made with the help of a three-dimensional electrostatic field solver that was capable of forming a <span class="hlt">sheet</span>-beam of 19 mA at 12 kV. It uses one-dimensional three-fold beam cross-sectional area compression meets the specific requirement of a beam to be formed of height 30 m and width 600 m at the beam-waist position with over 100 A/cm2 uniform current density and 0.068 ?-mm-mrad emittance, typically, for 0.5 THz devices. A novel beam focusing electrode (BFE) provided with extended-corner rectangular-aperture geometry alleviating the commonly encountered <span class="hlt">sheet</span>-beam formation problem with a gun that uses a conventional BFE, as well as it reduced beam emittance more than 50%. The practicability of the design was tested by the high-voltage, the thermal and structural analyses. Work has been initiated to test the performance of special high current scandate cathode using anode-aperture mapping.</p> <div class="credits"> <p class="dwt_author">Srivastava, Anurag; So, Jin-Kyu; Wang, Yiman; Wang, Jinshu; Raju, R. S.; Han, Seong-Tae; Park, Gun-Sik</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/18831439"> <span id="translatedtitle">Mechanisms of a linear hollow cathode used for the production of a helium <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A hollow-cathode device has been shown to operate as a <span class="hlt">plasma</span> reflector for radar <span class="hlt">electronic</span> beam steering using helium in the 0.2-0.5 Torr pressure range. Compared to former experiments, the use of this light gas reduces significantly spurious sputtering effect on the cathode materials. In a previous paper, a semi-quantitative physical model was developed to calculate the time evolution of</p> <div class="credits"> <p class="dwt_author">L. Caillault; S. Larigaldie</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24570264"> <span id="translatedtitle">ELCS in ice: cryo-<span class="hlt">electron</span> microscopy of nuclear envelope-limited chromatin <span class="hlt">sheets</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Nuclear envelope-limited chromatin <span class="hlt">sheets</span> (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended <span class="hlt">sheets</span> within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission <span class="hlt">electron</span> microscopy, resemble a sandwich of apposed nuclear envelopes separated by ?30nm, containing a layer of parallel chromatin fibers. In this study, the ultrastructure of ELCS was compared by three different methods: (1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining, (2) high-pressure freezing/freeze substitution into plastic/sectioning and staining, and (3) high-pressure freezing/cryo-sectioning/cryo-<span class="hlt">electron</span> microscopy. ELCS could be clearly visualized by all three methods and, consequently, must exist in vivo and are not fixation artifacts. The ?30-nm chromatin fibers could only be observed following aldehyde fixation; none were seen in cryo-sections. <span class="hlt">Electron</span> microscopic tomography tangential views of aldehyde-fixed ELCS suggested an ordering of the separate chromatin fibers adjacent to the nuclear envelope. Possible mechanisms of this chromatin ordering are discussed. PMID:24570264</p> <div class="credits"> <p class="dwt_author">Eltsov, Mikhail; Sosnovski, Sergey; Olins, Ada L; Olins, Donald E</p> <p class="dwt_publisher"></p> <p class="publishDate">2014-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19930049304&hterms=tajima&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtajima"> <span id="translatedtitle">Low-frequency mobility response functions for the central <span class="hlt">plasma</span> <span class="hlt">sheet</span> with application to tearing modes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Consideration is given to the effect of constant cross-tail magnetic field By on the collisionless conductivity produced by chaotic scattering and stochastic diffusion of particles in the current <span class="hlt">sheet</span> for a parabolic geometry. It is shown that the correlation time scales as (By/Bz)-squared, and from this strong By scaling a strong tendency toward stabilization of the linear tearing modes with increasing values of By is inferred. This effect of increased dawn-dusk mobility is particularly dramatic when <span class="hlt">electrons</span> are introduced in the calculation, and is in agreement with the results of kinetic particle simulations. The collisionless conductivity is expressed in terms of the ensemble-averaged power spectrum of the single particle trajectories, which makes it possible to calculate directly the linear conductivity instead of deriving it from the calculation of the irreversible heating rates.</p> <div class="credits"> <p class="dwt_author">Hernandez, J.; Horton, W.; Tajima, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999JPhD...32.2044C"> <span id="translatedtitle">Transverse properties of radiation eigenmodes in a <span class="hlt">sheet</span>-beam free-<span class="hlt">electron</span> laser</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Radiation guiding properties in a <span class="hlt">sheet</span>-beam free-<span class="hlt">electron</span> laser are investigated. The relative roles of refractive guiding and gain guiding have been identified by scanning the wiggler strength from the Raman to Compton limits. A gradual transition of the eigenmode confinement property has been observed with a power law W~icons/Journals/Common/eta" ALT="eta" ALIGN="TOP"/>s, where W is the eigenmode width and icons/Journals/Common/eta" ALT="eta" ALIGN="TOP"/> is a diffraction parameter. The power s decreases from ~0.71 in the Raman limit to 0.6 in the Compton limit.</p> <div class="credits"> <p class="dwt_author">Choi, E. K.; Seo, Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1423840"> <span id="translatedtitle">Demonstration via simulation of stable confinement of <span class="hlt">sheet</span> <span class="hlt">electron</span> beams using periodic magnetic focusing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using a two and one-half dimensional (two-dimensional for fields, three-dimensional for particle velocities) particle-in-cell (PIC) code we simulate the dynamics of a highly-elliptic <span class="hlt">sheet</span> <span class="hlt">electron</span> beam focused by a periodically-cusped-magnetic (PCM) field array. For edge-focusing, a periodic-quadrupole-magnetic (PQM) array is placed along the sides. Very high-space-charge, low-voltage beams may be focused in this way, without disruptive diocotron instability. The PCM-PQM</p> <div class="credits"> <p class="dwt_author">John H. Booske; Mark A. Basten</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55493125"> <span id="translatedtitle">Theoretical Studies of Pure <span class="hlt">Electron</span> <span class="hlt">Plasmas</span> in Asymmetric Traps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Pure <span class="hlt">electron</span> <span class="hlt">plasmas</span> are routinely confined within cylindrically symmetric Penning traps by static electric and magnetic fields. However, the azimuthal symmetry can be broken by applied perturbations. In this thesis, the static and dynamic properties of <span class="hlt">plasmas</span> confined in traps with such applied electric field asymmetries are investigated. The shapes of the non-circular <span class="hlt">plasma</span> equilibria are studied both analytically and</p> <div class="credits"> <p class="dwt_author">Ronson Yiu-Yuen Chu</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19740002320&hterms=electron+cloud+containment&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Delectron%2Bcloud%2Bcontainment"> <span id="translatedtitle">The 3 DLE instrument on ATS-5. [<span class="hlt">plasma</span> <span class="hlt">electron</span> counter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The performance and operation of the DLE <span class="hlt">plasma</span> <span class="hlt">electron</span> counter on board the ATS 5 are described. Two methods of data presentation, microfilm line plots and spectrograms, are discussed along with <span class="hlt">plasma</span> dynamics, <span class="hlt">plasma</span> flow velocity, electrostatic charging, and wave-particle interactions.</p> <div class="credits"> <p class="dwt_author">Deforest, S. E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2002792823"> <span id="translatedtitle"><span class="hlt">Plasma</span> Focusing of High Energy Density <span class="hlt">Electron</span> and Positron Beams.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">We present results from the SLAC E-150 experiment on <span class="hlt">plasma</span> focusing of high energy density <span class="hlt">electron</span> and, for the first time, positron beams. We also present results on <span class="hlt">plasma</span> lens-induced synchrotron radiation, longitudinal dynamics of <span class="hlt">plasma</span> focusing, a...</p> <div class="credits"> <p class="dwt_author">J. S. T. Ng H. A. Baldis P. Bolton P. Chen D. Cline</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22089356"> <span id="translatedtitle">Generating <span class="hlt">electron</span> cyclotron resonance <span class="hlt">plasma</span> using distributed scheme</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This study employs a distributed microwave input system and permanent magnets to generate large-area <span class="hlt">electron</span> cyclotron resonance (ECR) <span class="hlt">plasma</span>. ECR <span class="hlt">plasmas</span> were generated with nitrogen gas, and the <span class="hlt">plasma</span> density was measured by Langmuir probe. A uniform ECR <span class="hlt">plasma</span> with the <span class="hlt">electron</span> density fluctuation of {+-}9.8% over 500 mm Multiplication-Sign 500 mm was reported. The proposed idea of generating uniform ECR <span class="hlt">plasma</span> can be scaled to a much larger area by using n Multiplication-Sign n microwave input array system together with well-designed permanent magnets.</p> <div class="credits"> <p class="dwt_author">Huang, C. C. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China); Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chang, T. H.; Chen, N. C.; Chao, H. W. [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Chen, C. C. [Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chou, S. F. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990116091&hterms=Admixture&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAdmixture"> <span id="translatedtitle">Whistler Solitons in <span class="hlt">Plasma</span> with Anisotropic Hot <span class="hlt">Electron</span> Admixture</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The longitudinal and transverse modulation instability of whistler waves in <span class="hlt">plasma</span>, with a small admixture of hot anisotropic <span class="hlt">electrons</span>, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such <span class="hlt">plasma</span>, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold <span class="hlt">plasma</span>. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold <span class="hlt">plasma</span> in the presence of hot <span class="hlt">electrons</span> is divided by stable domains. For both cases the role of hot <span class="hlt">electrons</span> is more significant for whistlers with smaller frequencies.</p> <div class="credits"> <p class="dwt_author">Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/102443"> <span id="translatedtitle">UV laser ionization and <span class="hlt">electron</span> beam diagnostics for <span class="hlt">plasma</span> lenses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A comprehensive study of focusing of relativistic <span class="hlt">electron</span> beams with overdense and underdense <span class="hlt">plasma</span> lenses requires careful control of <span class="hlt">plasma</span> density and scale lengths. <span class="hlt">Plasma</span> lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV <span class="hlt">electron</span> beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of <span class="hlt">plasmas</span> produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of <span class="hlt">plasma</span> lenses we have developed an <span class="hlt">electron</span> beam diagnostic using optical transition radiation to time resolve beam size and divergence. <span class="hlt">Electron</span> beam ionization of the <span class="hlt">plasma</span> has also been investigated.</p> <div class="credits"> <p class="dwt_author">Govil, R.; Volfbeyn, P.; Leemans, W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007RScI...78a3503K"> <span id="translatedtitle">Diagnosing pure-<span class="hlt">electron</span> <span class="hlt">plasmas</span> with internal particle flux probes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Techniques for measuring local <span class="hlt">plasma</span> potential, density, and temperature of pure-<span class="hlt">electron</span> <span class="hlt">plasmas</span> using emissive and Langmuir probes are described. The <span class="hlt">plasma</span> potential is measured as the least negative potential at which a hot tungsten filament emits <span class="hlt">electrons</span>. Temperature is measured, as is commonly done in quasineutral <span class="hlt">plasmas</span>, through the interpretation of a Langmuir probe current-voltage characteristic. Due to the lack of ion-saturation current, the density must also be measured through the interpretation of this characteristic thereby greatly complicating the measurement. Measurements are further complicated by low densities, low cross field transport rates, and large flows typical of pure-<span class="hlt">electron</span> <span class="hlt">plasmas</span>. This article describes the use of these techniques on pure-<span class="hlt">electron</span> <span class="hlt">plasmas</span> in the Columbia Non-neutral Torus (CNT) stellarator. Measured values for present baseline experimental parameters in CNT are ?p=-200+/-2 V, Te=4+/-1 eV, and ne on the order of 1012 m-3 in the interior.</p> <div class="credits"> <p class="dwt_author">Kremer, J. P.; Pedersen, T. Sunn; Marksteiner, Q.; Lefrancois, R. G.; Hahn, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52158323"> <span id="translatedtitle">Drift-dissipative excitation of <span class="hlt">electron</span> vortices in a <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Vortex tubes with a diameter smaller than the ion Larmor radius are generated in an inhomogeneous <span class="hlt">plasma</span> as a result of a dissipation involving <span class="hlt">electrons</span>. The mixing in these vortices may be the primary mechanism for the anomalous <span class="hlt">electron</span> thermal conductivity in a <span class="hlt">plasma</span> with m\\/M much less than beta much less than 1.</p> <div class="credits"> <p class="dwt_author">V. I. Petviashvili; I. O. Pogutse</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22025441"> <span id="translatedtitle">Influence of the renormalization <span class="hlt">plasma</span> screening on the <span class="hlt">electron</span>-atom collision in partially ionized <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The renormalization <span class="hlt">plasma</span> screening effects on the elastic <span class="hlt">electron</span>-atom collision are investigated in partially ionized dense hydrogen <span class="hlt">plasmas</span> using the eikonal method. It is found that the renormalization <span class="hlt">plasma</span> screening suppresses the eikonal phase shift and cross section for the elastic <span class="hlt">electron</span>-atom collision in partially ionized <span class="hlt">plasmas</span>. It is also found that the renormalization <span class="hlt">plasma</span> screening effect on the elastic <span class="hlt">electron</span>-atom collision process increases with an increasing impact parameter. In addition, it is found that the maximum position of the differential cross section is receded from the center of the atom with an increase of the Debye length.</p> <div class="credits"> <p class="dwt_author">Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of); Jung, Young-Dae [Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22218489"> <span id="translatedtitle"><span class="hlt">Electron</span> energy distribution function control in gas discharge <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The formation of the <span class="hlt">electron</span> energy distribution function (EEDF) and <span class="hlt">electron</span> temperature in low temperature gas discharge <span class="hlt">plasmas</span> is analyzed in frames of local and non-local <span class="hlt">electron</span> kinetics. It is shown, that contrary to the local case, typical for <span class="hlt">plasma</span> in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local <span class="hlt">electron</span> kinetics in strongly non-uniform electric fields. Such conditions naturally occur in some self-organized steady state dc and rf discharge <span class="hlt">plasmas</span>, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and <span class="hlt">electron</span> temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of <span class="hlt">plasma</span> disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge <span class="hlt">plasmas</span> are formulated.</p> <div class="credits"> <p class="dwt_author">Godyak, V. A. [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA and RF Plasma Consulting, Brookline, Massachusetts (United States)] [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109, USA and RF Plasma Consulting, Brookline, Massachusetts (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012RScI...83l3507I"> <span id="translatedtitle">Separation of finite <span class="hlt">electron</span> temperature effect on <span class="hlt">plasma</span> polarimetry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This study demonstrates the separation of the finite <span class="hlt">electron</span> temperature on the <span class="hlt">plasma</span> polarimetry in the magnetic confined fusion <span class="hlt">plasma</span> for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, ?, and ellipticity angle, ?, of polarization state have different dependency on the <span class="hlt">electron</span> density, ne, and the <span class="hlt">electron</span> temperature, Te, and that the separation of ne and Te from ? and ? is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak <span class="hlt">plasma</span> when the central <span class="hlt">electron</span> density was 1020 m-3, and the central <span class="hlt">electron</span> temperatures were 5, 10, 20, and 30 keV. For both cases when a total <span class="hlt">plasma</span> current, Ip, is known and when Ip is unknown, the profiles of <span class="hlt">plasma</span> current density, j?, ne, and Te are successfully reconstructed. The reconstruction of j? without the information of Ip indicates the new method of Ip measurement applicable to steady state operation of tokamak.</p> <div class="credits"> <p class="dwt_author">Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhPl...20j1611G"> <span id="translatedtitle"><span class="hlt">Electron</span> energy distribution function control in gas discharge <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The formation of the <span class="hlt">electron</span> energy distribution function (EEDF) and <span class="hlt">electron</span> temperature in low temperature gas discharge <span class="hlt">plasmas</span> is analyzed in frames of local and non-local <span class="hlt">electron</span> kinetics. It is shown, that contrary to the local case, typical for <span class="hlt">plasma</span> in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local <span class="hlt">electron</span> kinetics in strongly non-uniform electric fields. Such conditions ``naturally'' occur in some self-organized steady state dc and rf discharge <span class="hlt">plasmas</span>, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and <span class="hlt">electron</span> temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of <span class="hlt">plasma</span> disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge <span class="hlt">plasmas</span> are formulated.</p> <div class="credits"> <p class="dwt_author">Godyak, V. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012cosp...39..668G"> <span id="translatedtitle">Effects of near-Earth magnetic reconnection simultaneously observed in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> by Cluster and DSP spacecrafts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Cluster and DSP fortunate locations in the Central <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> (CPS) of magnetotail allowed studies of accelerated <span class="hlt">plasma</span> flows and currents observed in the tail and Earth side of near-Earth magnetic X-line located between the spacecrafts. The observed delays in registration of magnetic dipolarization fronts by DSP spacecraft and negative Bz enhancements by Cluster s/c provide an estimation of X-line location at ~-14 Re. Current <span class="hlt">Sheet</span> (CS) thinning (<0.17 Re)and bifurcation were clearly observed by Cluster s/c. An analysis of ion velocity distribution functions measured by both spacecrafts revealed that magnetic reconnection occurred at <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> (PS) field lines and had a duration ~7 min. After cessation of acceleration process both spacecraft stay in the PS and do not observe any X-line manifestations. But after ~ 8 min Cluster and DSP again start to observe accelerated <span class="hlt">plasma</span> flows moving earthward at both locations. This indicates on restart of acceleration process in the source located already in more distant part of magnetotail. During the period of interest no geomagnetic activity was observed not only in values of geomagnetic indices (like AL and Kp) but also in behavior of onground magnetic field measured by stations located near the DSP projection onto ionosphere. The absence of geomagnetic manifestations of this event may be related with strong localization of reconnection region.</p> <div class="credits"> <p class="dwt_author">Grigorenko, Elena; Zelenyi, Lev; Koleva, Rositza; Sauvaud, Jean-Andre</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFMSM13A1183D"> <span id="translatedtitle">Investigation of the Effects of IMF Orientation Upon Delivery of <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Material to the Inner Magnetosphere</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The orientation of the interplanetary magnetic field (IMF) is known to strongly control the entry of solar wind material into the Earth's magnetosphere. Within the magnetosphere various <span class="hlt">plasma</span> properties and parameters are known to be IMF dependent. In this study we use Magnetospheric <span class="hlt">Plasma</span> Analyser (MPA) data from the LANL constellation of satellites located in geosynchronous orbit, in conjunction with the imaging capabilities of the Medium Energy Neutral Atom (MENA) imager on-board the IMAGE satellite, to determine the effects of IMF orientation on the transport of <span class="hlt">plasma</span> from the <span class="hlt">plasma</span> <span class="hlt">sheet</span> into the inner magnetosphere. A statistical study of MPA data is performed to determine bulk <span class="hlt">plasma</span> properties at geosynchronous orbit in relation to IMF-By and IMF-Bz. In a parallel statistical study we use MENA data to determine the location of the peak nightside energetic neutral atom (ENA) emissons and to investigate whether this peak, which may indicate substorm injection regions, is IMF-dependent.</p> <div class="credits"> <p class="dwt_author">Denton, M. H.; Thomsen, M. F.; Skoug, R. M.; Henderson, M. G.; Pollock, C. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6222898"> <span id="translatedtitle">Association of an auroral surge with <span class="hlt">plasma</span> <span class="hlt">sheet</span> recovery and the retreat of the substorm neutral line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">One of the periods being studied in the PROMIS CDAW (CDAW-9) workshops is the interval 0000-1200 UT on May 3, 1986, designated Event 9C.'' A well-defined substorm, starting at 0919 UT, was imaged by both DE 1 over the southern hemisphere and Viking over the northern hemisphere. The images from Viking, at 80-second time resolution, showed a surge-like feature forming at about 0952 UT at the poleward edge of the late evening sector of the oval. The feature remained relatively stationary until about 1000 UT when it seemed to start advancing westward. ISEE 1 and 2 were closely conjugate to the surge as mapped from both the DMSP and Viking images. We conclude that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> recovery was occasioned by the arrival at ISEE 1,2 of a westward traveling wave of <span class="hlt">plasma</span> <span class="hlt">sheet</span> thickening, the wave itself being formed by westward progression of the substorm neutral line's tailward retreat. The westward traveling surge was the auroral manifestation of this nonuniform retreat of the neutral line. We suggest that the upward field aligned current measured by DMSP F7 above the surge head was driven by <span class="hlt">plasma</span> velocity shear in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at the duskward kink'' in the retreating neutral line. By analogy with this observation we propose that the westward traveling surges and the current wedge field aligned currents that characterize the expanding auroral bulge during substorm expansive phase are manifestations of (and are driven by) velocity shear in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> near the ends of the extending substorm neutral line.</p> <div class="credits"> <p class="dwt_author">Hones, E.W. (Mission Research Corp., Los Alamos, NM (USA)); Elphinstone, R.; Murphree, J.S. (Calgary Univ., AB (Canada). Dept. of Physics); Galvin, A.B. (Maryland Univ., College Park, MD (USA). Dept. of Space Physics); Heinemann, N.C. (Boston Coll., Chestnut Hill, MA (USA). Dept. of Physics); Parks, G.K. (Washington Univ., Seattle, WA (USA)); Rich, F.J. (Air Force Geophysics Lab., Hanscom AFB, MA</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22038512"> <span id="translatedtitle">Physics of laser-driven <span class="hlt">plasma</span>-based <span class="hlt">electron</span> accelerators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Laser-driven <span class="hlt">plasma</span>-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the <span class="hlt">plasma</span> beat wave accelerator, the self-modulated laser wakefield accelerator, <span class="hlt">plasma</span> waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear <span class="hlt">plasma</span> waves are discussed, as well as <span class="hlt">electron</span> acceleration in <span class="hlt">plasma</span> waves. Methods for injecting and trapping <span class="hlt">plasma</span> <span class="hlt">electrons</span> in <span class="hlt">plasma</span> waves are also discussed. Limits to the <span class="hlt">electron</span> energy gain are summarized, including laser pulse diffraction, <span class="hlt">electron</span> dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense <span class="hlt">plasmas</span> is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform <span class="hlt">plasmas</span> and with preformed density channels. Instabilities relevant to intense short-pulse laser-<span class="hlt">plasma</span> interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality <span class="hlt">electron</span> bunches at energies of 0.1-1 GeV, are summarized.</p> <div class="credits"> <p class="dwt_author">Esarey, E.; Schroeder, C. B.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6232566"> <span id="translatedtitle">Waves in a cold pure <span class="hlt">electron</span> <span class="hlt">plasma</span> of finite length</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A theory for low-frequency electrostatic modes of a finite length pure <span class="hlt">electron</span> <span class="hlt">plasma</span> column is presented. The <span class="hlt">plasma</span> is modeled as a cold uniform density cylinder with flat ends. An interesting result is that the diocotron mode can have an axial wavelength that is much larger than the <span class="hlt">plasma</span> length. Also, for particular values of the <span class="hlt">plasma</span> density, the axial magnetic field, and the dimensions of the <span class="hlt">plasma</span>, the diocotron mode is degenerate with a <span class="hlt">plasma</span> mode and this results in a strong mixing of the modes.</p> <div class="credits"> <p class="dwt_author">Prasad, S.A.; O'Neil, T.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhPl...20l2113S"> <span id="translatedtitle"><span class="hlt">Plasma</span> response to <span class="hlt">electron</span> energy filter in large volume <span class="hlt">plasma</span> device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An <span class="hlt">electron</span> energy filter (EEF) is embedded in the Large Volume <span class="hlt">Plasma</span> Device <span class="hlt">plasma</span> for carrying out studies on excitation of <span class="hlt">plasma</span> turbulence by a gradient in <span class="hlt">electron</span> temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the <span class="hlt">plasma</span> to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in <span class="hlt">plasma</span> regions with different characteristics, including a <span class="hlt">plasma</span> region free from energetic <span class="hlt">electrons</span>, suitable for the study of ETG turbulence. Specifically, we report that localized structures of <span class="hlt">plasma</span> density, potential, <span class="hlt">electron</span> temperature, and <span class="hlt">plasma</span> turbulence are excited in the EEF <span class="hlt">plasma</span>. It is shown that structures of <span class="hlt">electron</span> temperature and potential are created due to energy dependence of the <span class="hlt">electron</span> transport in the filter region. On the other hand, although structure of <span class="hlt">plasma</span> density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22218323"> <span id="translatedtitle"><span class="hlt">Plasma</span> response to <span class="hlt">electron</span> energy filter in large volume <span class="hlt">plasma</span> device</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An <span class="hlt">electron</span> energy filter (EEF) is embedded in the Large Volume <span class="hlt">Plasma</span> Device <span class="hlt">plasma</span> for carrying out studies on excitation of <span class="hlt">plasma</span> turbulence by a gradient in <span class="hlt">electron</span> temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the <span class="hlt">plasma</span> to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in <span class="hlt">plasma</span> regions with different characteristics, including a <span class="hlt">plasma</span> region free from energetic <span class="hlt">electrons</span>, suitable for the study of ETG turbulence. Specifically, we report that localized structures of <span class="hlt">plasma</span> density, potential, <span class="hlt">electron</span> temperature, and <span class="hlt">plasma</span> turbulence are excited in the EEF <span class="hlt">plasma</span>. It is shown that structures of <span class="hlt">electron</span> temperature and potential are created due to energy dependence of the <span class="hlt">electron</span> transport in the filter region. On the other hand, although structure of <span class="hlt">plasma</span> density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF <span class="hlt">plasma</span>.</p> <div class="credits"> <p class="dwt_author">Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K. [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)] [Institute for Plasma Research, Gandhinagar, 382 428 Gujarat (India)</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JPhCS.365a2051P"> <span id="translatedtitle">Comparative simulation studies of <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> (PCE) gun</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pseudospark discharge based <span class="hlt">plasma</span> cathode has capability to provide high current density <span class="hlt">electron</span> beam during discharge process. In this paper an effort has been made to simulate the breakdown processes in the pseudospark discharge based <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun. The two-dimensional <span class="hlt">plasma</span> simulation codes VORPAL and OOPIC-Pro have been used and results are compared. The peak discharge current in the <span class="hlt">plasma</span> cathode <span class="hlt">electron</span> gun is found to be dependent on aperture size, hollow cathode dimensions, anode voltage and seed <span class="hlt">electrons</span> energy. The effect of these design parameters on the peak anode current has been analysed by both the codes and results matches well within 10% variation. For the seed <span class="hlt">electron</span> generation an <span class="hlt">electron</span> beam trigger source is used to control the discharge process in the hollow cathode cavity. The time span of trigger source has been varied from 1-100 ns to analyze the effect on the peak anode current.</p> <div class="credits"> <p class="dwt_author">Prajapati, Jitendra; Pal, U. N.; Kumar, Niraj; Verma, D. K.; Prakash, Ram; Srivastava, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010JGRA..115.8205C"> <span id="translatedtitle">Geomagnetic signatures of current wedge produced by fast flows in a <span class="hlt">plasma</span> <span class="hlt">sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper uses the <span class="hlt">plasma</span> data from Cluster and TC-1 and geomagnetic data to study the geomagnetic signatures of the current wedge produced by fast-flow braking in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The three fast flows studied here occurred in a very quiet background and were accompanied by no (or weak) particle injections, thus avoiding the influences from other disturbances. All the geomagnetic signatures of a substorm current wedge can be found in the geomagnetic signatures of a current system produced by the braking of fast flows, indicating that the fast flows can produce a complete current wedge which contains postmidnight downward and premidnight upward field-aligned currents, as well as a westward electrojet. The Pi2 precursors exist not only at high latitudes but also at midlatitudes. The starting times of midlatitude Pi2 precursors can be identified more precisely than those of high-latitude Pi2 precursors, providing a possible method to determine the starting time of fast flows in their source regions. The AL drop that a bursty bulk flow produces is proportional to its velocity and duration. In three cases, the AL drops are <100 nT. Because the AE increase of a typical substorm is >200 nT, whether a substorm can be triggered depends mainly on the conditions of the braking regions before fast flows. The observations of solar wind before the three fast flows suggest that it is difficult for the fast flows to trigger a substorm when the interplanetary magnetic field Bz of solar wind is weakly southward.</p> <div class="credits"> <p class="dwt_author">Cao, Jin-Bin; Yan, Chunxiao; Dunlop, Malcolm; Reme, Henri; Dandouras, Iannis; Zhang, Tielong; Yang, Dongmei; Moiseyev, Alexey; Solovyev, Stepan I.; Wang, Z. Q.; Leonoviche, A.; Zolotukhina, N.; Mishin, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20060013116&hterms=self+organized+criticality&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522self%2Borganized%2Bcriticality%2522"> <span id="translatedtitle">Modeling the Self-organized Critical Behavior of the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Reconnection Dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic <span class="hlt">plasma</span> physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.</p> <div class="credits"> <p class="dwt_author">Klimas, Alex; Uritsky, Vadim; Baker, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20070017485&hterms=self+organized+criticality&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522self%2Borganized%2Bcriticality%2522"> <span id="translatedtitle">Modeling the Self-organized Critical Behavior of Earth's <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Reconnection Dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span>. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic <span class="hlt">plasma</span> physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.</p> <div class="credits"> <p class="dwt_author">Klimas, Alexander J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012APS..DPPNP8005A"> <span id="translatedtitle"><span class="hlt">Electron</span> Acoustic Waves in Pure Ion <span class="hlt">Plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Electron</span> Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (<span class="hlt">plasma</span>) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.</p> <div class="credits"> <p class="dwt_author">Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SoPh..281..423S"> <span id="translatedtitle">The Heliospheric <span class="hlt">Plasma</span> <span class="hlt">Sheet</span> Observed in situ by Three Spacecraft over Four Solar Rotations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this paper we present in situ observations of the heliospheric <span class="hlt">plasma</span> <span class="hlt">sheet</span> (HPS) from STEREO-A, Wind, and STEREO-B over four solar rotations in the declining phase of Solar Cycle 23, covering late March through late June 2007. During this time period the three spacecraft were located in the ecliptic plane, and were gradually separating in heliographic longitude from about 3 degrees to 14 degrees. Crossings of the HPS were identified using the following criteria: reversal of the interplanetary magnetic field sector, enhanced proton density, and local minima in both the proton specific entropy argument and in the alpha particle-to-proton number density ratio ( N a/ N p). Two interplanetary coronal mass ejections (ICMEs) were observed during the third solar rotation of our study period, which disrupted the HPS from its quasi-stationary state. We find differences in the in situ proton parameters at the HPS between the three spacecraft despite temporal separations of less than one day. We attribute these differences to both small separations in heliographic latitude and radial evolution of the solar wind leading to the development of compression regions associated with stream interaction regions (SIRs). We also observed a modest enhancement in the density of iron ions at the HPS.</p> <div class="credits"> <p class="dwt_author">Simunac, K. D. C.; Galvin, A. B.; Farrugia, C. J.; Kistler, L. M.; Kucharek, H.; Lavraud, B.; Liu, Y. C.-M.; Luhmann, J. G.; Ogilvie, K. W.; Opitz, A.; Popecki, M. A.; Sauvaud, J.-A.; Wang, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMSM51B1298P"> <span id="translatedtitle">Theory and Simulations of Auroral Undulations Associated with Instabilities in the Dusk Sector <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ion drift wave theory and simulations of large-scale auroral undulations are presented for the observations in Lewis et al (2005). These undulations are identified as a nonlinear stage of the drift balloning-interchange mode in the presence of a sheared EB flow for high Richardson's number in the dusk sector of the <span class="hlt">plasma</span> <span class="hlt">sheet</span>. The system is ideal MHD stable. Theoretical density, temperature and pressure profiles are constructed and constrained from data and used as input for a 2-1/2 D nonlinear Chebyshev-Fourier-tau pseudospectral code which reproduces the undulation structure to a good degree. Undulations were observed on February 6, 2002 along the equatorward edge of the auroral oval with the Far-Ultraviolet Wideband Imaging Camera on NASA's IMAGE satellite during the recovery phase of a moderate magnetic storm. The undulations occurred in the 18.5-14.5 magnetic local time sector between 63 and 71 magnetic latitude. Their wavelength and crest-to-base length averaged 292~km and 224~km, respectively; and they propagated westward with an average speed of 0.900.06~km/s. Such undulations are a relatively uncommon auroral phenomenon, and the mechanism that produce them and the magnetospheric conditions under which they occur are not well understood. Work supported by the National Science Foundation. [1] W.~S. Lewis, J.~L. Burch, J. Goldstein, W. Horton, J.~C. Perez, H.~U. Frey and P.~C. Anderson, submitted to GRL (2005).</p> <div class="credits"> <p class="dwt_author">Perez, J. C.; Horton, W.; Lewis, W. S.; Burch, J.; Goldstein, J.; Frey, H.; Anderson, P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AGUFMSM11B2111Z"> <span id="translatedtitle">Two different types of plasmoids in the <span class="hlt">plasma</span> <span class="hlt">sheet</span>:Cluster multi-satellite analysis application</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The fine magnetic field structure of two successive plasmoids previously reported are investigated by magnetic rotation analysis (MRA) using four Cluster satellite data. Between these two plasmoids, opposite trends of curvature radius (Rc) variations of the magnetic field lines from the boundary to the inner part are found. The different variations of Rc reflect that the two plasmoids have different magnetic configurations. The electric current density distributions for both plasmoids are found distinct. The By increase and abundant field-aligned currents in the narrow core region of first plasmoid indicate that a possible magnetic flux rope (MFR) core exists inside. The results allow to identify that the first observed plasmoid is of magnetic loop (ML) type (with possible MFR core) and the second plasmoid is of magnetic flux rope (MFR) type. The coexistence of ML and MFR in the near-Earth <span class="hlt">plasma</span> <span class="hlt">sheet</span> may imply that multiple X-line reconnection (MXR) can occur by either anti-parallel or component-parallel way.</p> <div class="credits"> <p class="dwt_author">Zhang, Y.; Shen, C.; Liu, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=20120007917&hterms=plasma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplasma"> <span id="translatedtitle">Energetic O+ and H+ Ions in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span>: Implications for the Transport of Ionospheric Ions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">The present study statistically examines the characteristics of energetic ions in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.</p> <div class="credits"> <p class="dwt_author">Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ntrs.nasa.gov/search.jsp?R=19990089282&hterms=self+organized+criticality&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3D%2522self%2Borganized%2Bcriticality%2522"> <span id="translatedtitle">The Role of Self-Organized Criticality in the Substorm Phenomenon and its Relation to Localized Reconnection in the <span class="hlt">Plasma</span> <span class="hlt">Sheet</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p class="result-summary">Recent observations of the magnetotail <span class="hlt">plasma</span> <span class="hlt">sheet</span> have shown it to be a dynamic and turbulent region. Research has found strong turbulence in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> at approximately 20 Earth's Radius tailward of Earth; the turbulence is observed at all activity levels. The existence of strong turbulence in the <span class="hlt">plasma</span> <span class="hlt">sheet</span> in the region associated with substorm onset might be thought difficult to reconcile with the coherence and repeatability of the substorm cycle. We review a variety of evidence that strongly suggests the magnetotail is driven, through magnetic flux transfer, into a state of "self-organized criticality" (SOC). It is an important property of physical systems that evolve into SOC that they self-organize into a unique, global dynamic state. This global state is inevitable, and repeatable. In this state, however, small-spatiotemporal-scale system fluctuations are unpredictable and can be only described statistically. This is the basis, we think, for the global coherence and repeatability of the substorm phenomenon in the turbulent <span class="hlt">plasma</span> <span class="hlt">sheet</span>. At, or near, substorm onset the <span class="hlt">plasma</span> <span class="hlt">sheet</span> can be described by a global SOC state containing significant small scale turbulence. In several recent studies, "sandpile" models were driven into SOC and then shown to reproduce various measures of substorm activity. We discuss the <span class="hlt">plasma</span> physical foundation of these sandpile models. The evolution of simple continuum <span class="hlt">plasma</span> <span class="hlt">sheet</span> models into SOC-like states of many small reconnection events in the turbulent <span class="hlt">plasma</span> <span class="hlt">sheet</span> under the will be demonstrated. We view the substorm phenomenon as an avalanche assumption that the <span class="hlt">plasma</span> <span class="hlt">sheet</span> is in a SOC state.</p> <div class="credits"> <p class="dwt_author">Klimas, A. J.; Vassiliadis, D.; Valdivia, J. A.; Baker, D. N.; Hesse, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006JGRA..111.1302D"> <span id="translatedtitle"><span class="hlt">Electron</span> holes, ion waves, and anomalous resistivity in space <span class="hlt">plasmas</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Phase-space <span class="hlt">electron</span> holes are seen in simulations, laboratory <span class="hlt">plasmas</span>, and many regions of the Earth's space environment. We present simulations of beam <span class="hlt">plasmas</span> showing that the generation and decay of <span class="hlt">electron</span> holes results in a reduction of <span class="hlt">electron</span> current, implying a parallel resistivity. We show that resistivity occurs in simulations where a cold <span class="hlt">electron</span> beam is coincident with a warmer background <span class="hlt">plasma</span> and appears to be mediated by the generation of ion acoustic waves propagating obliquely to the magnetic field. Initially, <span class="hlt">electron</span> holes scatter <span class="hlt">electrons</span> in the beam direction, steepening the <span class="hlt">electron</span> beam distribution, eventually launching ion acoustic waves that cause resistivity and strong ion heating perpendicular to ?. These effects occur in both strongly and weakly magnetized <span class="hlt">plasmas</span>. Given that <span class="hlt">electron</span> holes are observed in many space <span class="hlt">plasmas</span>, these results have important implications for a number of magnetospheric and auroral ionospheric processes. For auroral <span class="hlt">plasmas</span>, <span class="hlt">electron</span> hole resistivity could support parallel electric fields on the order of several mV/m, accounting for parallel potential drops from tens to hundreds of eV. For the magnetopause, simulations show effective collision rates of 0.00015 ?pe, which could enhance dissipation and diffusion across the boundary.</p> <div class="credits"> <p class="dwt_author">Dyrud, Lars P.; Oppenheim, Meers M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985jayc.reptQ....H"> <span id="translatedtitle">Explosive emission cathode <span class="hlt">plasmas</span> in intense relativistic <span class="hlt">electron</span> beam diodes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An experimental study of cathode <span class="hlt">plasmas</span> in planar diodes driven by a Sandia Nereus accelerator (270 kV, 60 kA, 70 ns), with particular attention devoted to <span class="hlt">plasma</span> uniformity and expansion velocity, has been carried out. This diode current density was varied over a factor of ten and the rate of rise of the applied field dE/dt was varied over a factor of six. Different cathode materials, coatings, and surface roughnesses were used and the effects of glow discharge cleaning and in situ heating of the cathode were examined. Framing photography, <span class="hlt">electron</span> beam dosimetry, perveance measurements, optical interferometry, and (spatially and temporally resolved) spectroscopy were used to diagnose the <span class="hlt">plasma</span> uniformity, <span class="hlt">electron</span> beam uniformity, <span class="hlt">plasma</span> front motion, <span class="hlt">electron</span> density, <span class="hlt">plasma</span> composition, motion of distinct species, <span class="hlt">electron</span> temperature, and ion (and neutral) densities. <span class="hlt">Electron</span> beam uniformity is seen to be related to cathode <span class="hlt">plasma</span> uniformity; this uniformity is enhanced by a high value of (the microscopic) dE/dt, which is determined both by the rise time of the applied field and by the cathode surface roughness. The significance of dE/dt is believed to be related to the screening effect of emitted <span class="hlt">electrons</span>. A simple cathode <span class="hlt">plasma</span> model, which explains the similarity of <span class="hlt">plasmas</span> in diodes with greatly differing parameters, is proposed. The relevance of these results to inductively driven diodes, repetitively pulsed diodes, and magnetically insulated transmission lines is also discussed.</p> <div class="credits"> <p class="dwt_author">Hinshelwood, D. D.</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55028857"> <span id="translatedtitle">Formation of silicon hydride using hyperthermal negative hydrogen ions (H-) extracted from an argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span> source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An E B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H-) from a premixed 10% argon-seeded hydrogen <span class="hlt">sheet</span> <span class="hlt">plasma</span>. With a vacuum background of 1.0 10-6 Torr, H- extraction ensues at a total gas feed of 1.8 mTorr,</p> <div class="credits"> <p class="dwt_author">Marcedon S. Fernandez; Gene Q. Blantocas; Henry J. Ramos</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JGRA..118.6166Y"> <span id="translatedtitle">Empirical modeling of <span class="hlt">plasma</span> <span class="hlt">sheet</span> pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 2. Modeling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">magnetic field configuration is crucial to <span class="hlt">plasma</span> <span class="hlt">sheet</span> dynamics and magnetosphere-ionosphere coupling. In this study we established 3-D force-balanced magnetic fields and investigated configuration changes with Kp and solar wind dynamic pressure (PSW). Pressure distributions from the empirical model developed in Wang et al. (2013) were used for obtaining the force-balanced field. Based on our model results, we found that (1) higher PSW mainly enhances pressure in the tail <span class="hlt">plasma</span> <span class="hlt">sheet</span>, while larger convection during higher Kp drives <span class="hlt">plasma</span> <span class="hlt">sheet</span> further earthward, resulting in a pressure increase closer to the Earth; (2) comparing with the magnetic field changes due to increasing PSW, the Kp associated pressure enhancement causes the azimuthal current density (J?) peak and field-aligned currents (FACs) to move deeper earthward, the magnetic field to decrease further near Earth but increase more in the tail, and field lines to stretch more significantly; (3) as Kp and PSW change, the whole <span class="hlt">plasma</span> <span class="hlt">sheet</span> remains stable to interchange instability but may be ballooning unstable in the midnight region at X between -15 and -10 RE; (4) the force-balanced configurations are characteristically different from the non-force-balanced Tsyganenko 89 (T89) magnetic field. A region of positive dBz/dz in the near-Earth region, which has been observed, is seen in our field but not in T89. On the other hand, a local equatorial Bz minimum is predicted by T89 but not by our model. J? bifurcation appears in the near-Earth region as a result of our J? configuration being approximately aligned with field lines, while the T89 J? everywhere decreases monotonically with increasing Z by construction.</p> <div class="credits"> <p class="dwt_author">Yue, Chao; Wang, Chih-Ping; Zaharia, Sorin G.; Xing, Xiaoyan; Lyons, Larry</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/962209"> <span id="translatedtitle">Gyrokinetic <span class="hlt">Electron</span> and Fully Kinetic Ion Particle Simulation of Collisionless <span class="hlt">Plasma</span> Dynamics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental <span class="hlt">plasma</span> processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between <span class="hlt">electrons</span> and ions, existing fully kinetic-particle codes have to employ either unrealistically high <span class="hlt">electron</span>-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the <span class="hlt">electrons</span> are treated as a massless fluid. The <span class="hlt">electron</span> kinetic effects, e.g., wave-particle resonances and finite <span class="hlt">electron</span> Larmor radius effects, are completely missing. Important physics, such as the <span class="hlt">electron</span> transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless <span class="hlt">plasmas</span> is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the <span class="hlt">electron</span> gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) <span class="hlt">electrons</span> and fully kinetic (FK) ions. In the GK-<span class="hlt">electron</span> and FK-ion (GKe/FKi) particle simulation model, the rapid <span class="hlt">electron</span> cyclotron motion is removed, while keeping finite <span class="hlt">electron</span> Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of <span class="hlt">electron</span> pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-<span class="hlt">electron</span> and FK-ion scheme, finished its benchmark for a uniform <span class="hlt">plasma</span> in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test and benchmark for a 2-D Harris current <span class="hlt">sheet</span> against tearing mode and other instabilities in linear theories/models. More importantly, we have, for the first time, carried out simulation of linear instabilities in a 2-D Harris current <span class="hlt">sheet</span> with a broad range of guide field BG and the realistic mi/me, and obtained important new results of current <span class="hlt">sheet</span> instabilities in the presence of a finite BG. Indeed the code has accurately reproduced waves of interest here, such as kinetic Alfven waves, compressional Alfven/whistler wave, and lower-hybrid/modified two-stream waves. Moreover, this simulation scheme is capable of investigating collisionless kinetic physics relevant to magnetic reconnection in the fusion <span class="hlt">plasmas</span>, in a global scale system for a long-time evolution and, thereby, produce significant new physics compared with both full-particle and hybrid codes. The results, with mi/me=1836 and moderate to large BG as in the real laboratory devices, have not been obtained in previous theory and simulations. The new simulation model will contribute significantly not only to the understanding of fundamental fusion (and space) <span class="hlt">plasma</span> physics but also to DOE's SciDAC initiative by further pushing the frontiers of simulating realistic fusion <span class="hlt">plasmas</span>.</p> <div class="credits"> <p class="dwt_author">Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-11</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55710510"> <span id="translatedtitle">Mechanistic studies of <span class="hlt">plasma</span>-surface interactions during nanoscale patterning of advanced <span class="hlt">electronic</span> materials using <span class="hlt">plasma</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Photolithographic patterning of photoresist materials and transfer of these images into <span class="hlt">electronic</span> materials using directional <span class="hlt">plasma</span> etching techniques plays a critical role in the fabrication of integrated circuits. As critical device dimensions are reduced below 100 nm, precise control of the interactions of process <span class="hlt">plasmas</span> with materials is required for successful integration. This requires a scientific understanding of <span class="hlt">plasma</span>-surface interaction</p> <div class="credits"> <p class="dwt_author">Xuefeng Hua</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003LPB....21..139B"> <span id="translatedtitle">Current status of <span class="hlt">plasma</span> emission <span class="hlt">electronics</span>: II. Hardware</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper is devoted to the engineering embodiment of the modern methods for producing charged ion and <span class="hlt">electron</span> beams by extracting them from the <span class="hlt">plasma</span> of a discharge. <span class="hlt">Electron</span> beams use to execute <span class="hlt">electron</span>-beam welding, annealing, and surface heating of materials and to realize plasmochemical reactions stimulated by fast <span class="hlt">electrons</span>. Ion beams allow realization of technologies of ion implantation or ion-assisted deposition of coatings thereby opening new prospects for the creation of compounds and alloys by the method that makes it possible to obtain desired parameters and functional properties of the surface. A detailed description is given to the performance and design of devices producing beams of this type: the ion and <span class="hlt">electron</span> sources being developed at the laboratory of <span class="hlt">plasma</span> sources of the Institute of High-Current <span class="hlt">Electronics</span> of the Russian Academy of Sciences and the laboratory of <span class="hlt">plasma</span> <span class="hlt">electronics</span> of Tomsk State University of Control Systems and Radioelectronics.</p> <div class="credits"> <p class="dwt_author">Bugaev, A. S.; Vizir, A. V.; Gushenets, V. I.; Nikolaev, A. G.; Oks, E. M.; Yushkov, G. Yu.; Burachevsky, Yu. A.; Burdovitsin, V. A.; Osipov, I. V.; Rempe, N. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/284304"> <span id="translatedtitle">Forced magnetic reconnection and the persistence of current <span class="hlt">sheets</span> in static and rotating <span class="hlt">plasmas</span> due to a sinusoidal boundary perturbation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The problem of forced reconnection in static and rotating <span class="hlt">plasmas</span> due to a sinusoidal boundary perturbation is revisited. The primary focus of this paper is on inner region dynamics, including the effects of resistivity as well as viscosity. It is shown that for high-Lundquist-number <span class="hlt">plasmas</span>, the use of the {open_quote}{open_quote}constant-{psi}{close_quote}{close_quote} approximation in the linear and nonlinear regimes of forced reconnection is not justified. The linear and nonlinear dynamics in the inner region are characterized by the persistence of current <span class="hlt">sheets</span>. Explicit analytical solutions for the time dependence of the reconnected flux and current <span class="hlt">sheet</span> density are given, and tested by numerical simulations. These results differ qualitatively from earlier analytical results on forced reconnection in static <span class="hlt">plasmas</span> [T. S. Hahm and R. M. Kulsrud, Phys. Fluids {bold 28}, 2412 (1985)] (except in a very restricted range of parameters) as well as rotating <span class="hlt">plasmas</span> [R. Fitzpatrick and T. C. Hender, Phys. Fluids B {bold 3}, 644 (1991)]. Some qualitative implications for laboratory and space <span class="hlt">plasmas</span> are discussed. {copyright} {ital 1996 American Institute of Physics.}</p> <div class="credits"> <p class="dwt_author">Ma, Z.W.; Wang, X.; Bhattacharjee, A. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States)] [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADP014937"> <span id="translatedtitle"><span class="hlt">Plasma</span> Phase Transition in Dense Hydrogen and <span class="hlt">Electron</span>-Hole <span class="hlt">Plasmas</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Plasma</span> phase transitions (PPT) in dense hydrogen and <span class="hlt">electron</span>-hole <span class="hlt">plasma</span> are investigated by direct path integral Monte Carlo methods (DPIMC). The phase boundary of the <span class="hlt">electron</span>-hole liquid in Germanium is calculated and is found to agree reasonably well...</p> <div class="credits"> <p class="dwt_author">M. Bonitz P. Levashov V. E. Fortov V. S. Filinov W. Ebeling</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20982723"> <span id="translatedtitle">Linear theory of the <span class="hlt">electron</span> beam-wave-<span class="hlt">plasma</span> interactions in a magnetized <span class="hlt">plasma</span> waveguide</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The theoretical study on the <span class="hlt">electron</span> beam-wave interactions in a <span class="hlt">plasma</span> waveguide immersed in a finite magnetic field is given in the article, in which both the <span class="hlt">plasma</span> and the <span class="hlt">electron</span> beam are considered as special media. Making use of the constitutive transformation and the Lorentz transformation in the four-dimensional space, the permittivity tensor of the stationary magnetized <span class="hlt">plasma</span>, the permittivity tensor, the permeability tensor, and the chiral tensor of the <span class="hlt">electron</span> beam in the rest (laboratory) frame are acquired. Therefore, two coupled wave equations for the magnetized <span class="hlt">plasma</span> and <span class="hlt">electron</span> beam have been obtained and the dispersion relations are then achieved by solving these coupled equations together with the boundary conditions including the surface current density due to the ripple of the <span class="hlt">plasma</span>/beam. As an example of the applications of this approach, the beam-wave interactions in a practical <span class="hlt">plasma</span> Cherenkov maser have been studied and the numerical calculations have been carried out in detail. It has been found that the present approach is more accurate and can provide clearer mode information for the <span