Science.gov

Sample records for plasma sheet electrons

  1. Dynamics of energetic plasma sheet electrons

    NASA Astrophysics Data System (ADS)

    Burin Des Roziers, Edward

    2009-06-01

    The dynamics of energetic plasma sheet electrons plays an important role in many geomagnetic processes. The intent of this thesis is to extend the current understanding of the relationship between the solar wind and energetic plasma sheet electrons (~> 40 keV ), as well as the variability of these electrons within the plasma sheet. The statistical relationship between tens of keV plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated, using plasma sheet measurements from Cluster (2001 - 2005) and Geotail (1998 - 2005), and concurrent solar wind measurements from ACE. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, IMF B z , and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) there is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity; (2) this correlation is valid throughout the plasma sheet and extends to distances of X GSM =-30 R E ; (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density; (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF); (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies; and (6) there is a strong correlation between energetic electrons in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. In addition, the variability of energetic electron fluxes within the plasma sheet is explored. Interesting events were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp

  2. Runaway electrons in plasma current sheets

    SciTech Connect

    Gurevich, A.V.; Sudan, R.N. )

    1994-01-31

    It is shown that a runaway electron population accelerates along the main magnetic field in a Sweet-Parker current sheet. After a characteristic distance the entire current is carried by runaways. The thickness of this runaway sheet is much smaller than the original Ohmic sheet. The influence of microinstabilities is discussed.

  3. Observations of Electron Vorticity in the Inner Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Gurgiolo, C.; Goldstein, M. L.; Vinas, A. F.; Matthaeus, W. H.; Fazakerley, A. N.

    2011-01-01

    From a limited number of observations it appears that vorticity is a common feature in the inner plasma sheet. With the four Cluster spacecraft and the four PEACE instruments positioned in a tetrahedral configuration, for the first time it is possible to directly estimate the electron fluid vorticity in a space plasma. We show examples of electron fluid vorticity from multiple plasma sheet crossings. These include three time periods when Cluster passed through a reconnection ion diffusion region. Enhancements in vorticity are seen in association with each crossing of the ion diffusion region.

  4. Strong electron heating in the near-Earth plasma sheet.

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena; Zelenyi, Lev; Kronberg, Elena; Daly, Patrick

    2016-07-01

    Strong perturbations of the Plasma Sheet (PS) magnetic field in the course of magnetic dipolarization are often followed by the generation of magnetic turbulence and plasma heating. Various plasma instabilities and waves can be excited during these processes, which may affect ion and electron velocity distributions in a different way. We have analyzed 70 crossings of the central PS by Cluster spacecraft (s/c) at -19 < X < -8 Re in 2001-2005. We have found that in 32 intervals the ratio of Tion/Tele dropped in the central PS down to <3.0, which denotes significant electron heating. The detailed analysis of these crossings showed that in majority of these events strong magnetic dipolarizations and magnetic turbulence were observed. In the present study we discuss possible mechanisms of such strong electron heating.

  5. Experimental investigation of a 1 kA/cm2 sheet beam plasma cathode electron gun

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Narayan Pal, Udit; Kumar Pal, Dharmendra; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ˜1 kA/cm2 from pseudospark based argon plasma for pulse length of ˜200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  6. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field. PMID:25638082

  7. Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  8. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    NASA Astrophysics Data System (ADS)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (<3) values of the PVI index. We observed a distinct population of high PVI (>3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  9. Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, Thomas E.

    1998-01-01

    Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the entire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function, and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8)eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

  10. Inner Magnetospheric Superthermal Electron Transport: Photoelectron and Plasma Sheet Electron Sources

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Kozyra, J. U.; Moore, T. E.

    1998-01-01

    Two time-dependent kinetic models of superthermal electron transport are combined to conduct global calculations of the nonthermal electron distribution function throughout the inner magnetosphere. It is shown that the energy range of validity for this combined model extends down to the superthermal-thermal intersection at a few eV, allowing for the calculation of the en- tire distribution function and thus an accurate heating rate to the thermal plasma. Because of the linearity of the formulas, the source terms are separated to calculate the distributions from the various populations, namely photoelectrons (PEs) and plasma sheet electrons (PSEs). These distributions are discussed in detail, examining the processes responsible for their formation in the various regions of the inner magnetosphere. It is shown that convection, corotation, and Coulomb collisions are the dominant processes in the formation of the PE distribution function and that PSEs are dominated by the interplay between the drift terms. Of note is that the PEs propagate around the nightside in a narrow channel at the edge of the plasmasphere as Coulomb collisions reduce the fluxes inside of this and convection compresses the flux tubes inward. These distributions are then recombined to show the development of the total superthermal electron distribution function in the inner magnetosphere and their influence on the thermal plasma. PEs usually dominate the dayside heating, with integral energy fluxes to the ionosphere reaching 10(exp 10) eV/sq cm/s in the plasmasphere, while heating from the PSEs typically does not exceed 10(exp 8) eV/sq cm/s. On the nightside, the inner plasmasphere is usually unheated by superthermal electrons. A feature of these combined spectra is that the distribution often has upward slopes with energy, particularly at the crossover from PE to PSE dominance, indicating that instabilities are possible.

  11. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  12. Inner edge of the electron plasma sheet: Empirical models of boundary location

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Thomsen, M. F.; Borovsky, J. E.; McComas, D. J.

    1999-10-01

    This study uses geosynchronous plasma observations and the inferred midnight equatorward edge of the diffuse aurora (based on DMSP data) to obtain hundreds of two-point locations of the inner edge of the electron plasma sheet. We reconfirm that the local time at L=6.6 of the boundary separating the plasmasphere/electron trough (where cold ion densities can be high and the density of hot electrons is low) and the electron plasma sheet (where hot electron densities increase) varies with activity level. We also demonstrate a good correlation between the midnight boundary index (MBI) from DMSP and the local time of the geosynchronous electron plasma sheet inner edge. Models of the size and shape of the inner edge of the electron plasma sheet may be constructed using the equatorial mapping of the MBI values and the geosynchronous boundary crossing locations in local time. The model form used is an improved version of the zero-energy drift boundary approximation of Southwood and Kaye [1979] the improved form is an analytic approximation to the exact solution for a shielded cross-tail electric field. Model parameters such as radial distance of the stagnation point range from 5 to well over 7RE depending on activity; the degree of shielding also appears to be greater for low activity than for high, with shielding parameter values of greater than 5 for low activity. When the boundary model is allowed to rotate freely, the inferred stagnation point appears to move tailward, not sunward, with increasing activity, but this result is poorly constrained.

  13. Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun

    SciTech Connect

    Kumar, Niraj Narayan Pal, Udit; Prajesh, Rahul; Prakash, Ram; Kumar Pal, Dharmendra

    2015-01-15

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  14. Electron distributions observed with Langmuir waves in the plasma sheet boundary layer

    SciTech Connect

    Hwang, Junga; Rha, Kicheol; Seough, Jungjoon; Yoon, Peter H.

    2014-09-15

    The present paper investigates the Langmuir turbulence driven by counter-streaming electron beams and its plausible association with observed features in the Earth's plasma sheet boundary layer region. A one-dimensional electrostatic particle-in-cell simulation code is employed in order to simulate broadband electrostatic waves with characteristic frequency in the vicinity of the electron plasma frequency ω/ω{sub pe}≃1.0. The present simulation confirms that the broadband electrostatic waves may indeed be generated by the counter-streaming electron beams. It is also found that the observed feature associated with low energy electrons, namely quasi-symmetric velocity space plateaus, are replicated according to the present simulation. However, the present investigation only partially succeeds in generating the suprathermal tails such that the origin of observed quasi power-law energetic population formation remains outstanding.

  15. Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions

    SciTech Connect

    Christon, S.P.; Williams, D.J.; Mitchell, D.G. ); Frank, L.A.; Huang, C.Y. )

    1989-10-01

    The authors analyze 127 one-hour average samples of central plasma sheet ions and electrons in order to determine spectral characteristics of thee magnetotail particle populations during periods of low geomagnetic activity (AE<100nT). Particle data from the low energy proton and electron differential energy analyzer (LEPEDEA) and medium energy particle instrument (MEPI) on ISEE 1 were combined to obtain differential energy spectra in the plasma sheet at geocentric radial distances R > 12 R{sub E}. They find that, for even the longest periods sampled, the nearly isotropic central plasma sheet total ion and electron populations were measured to be continuous particle distributions from the lowest energy of tens of eV/e to a few hundred keV. The kappa distribution most often reproduces the observed differential energy spectra. Spectra dominated by a single kappa functional form are observed during 83 (99) hours for ions (electrons). Spectra which are not dominated by a single kappa functional form can usually be closely approximated by superposed kappa functional forms. For both ions and electrons {kappa} is typically in the range 4-8, with a most probable value between 5 and 6, so that the spectral shape is distinctly non-Maxwellian. E{sub oi} and E{sub oe} are highly correlated, whereas {kappa}{sub i} and {kappa}{sub e} are not correlated; {kappa}{sub i} is roughly proportional to E{sub oi}{sup 1/2}, whereas {kappa}{sub e} is not correlated with E{sub oe}. They statistically investigate the importance of flux and energy contributions from extramagnetospheric sources by separately analyzing intervals when simultaneously measured interplanetary particle fluxes are either enhanced or at low levels.

  16. Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions

    SciTech Connect

    Christon, S.P., Williams, D.J.; Mitchell, D.G. ); Huang, C.Y.; Frank, L.A. )

    1991-01-01

    The authors have determined the spectral characteristics of central plasma sheet ions and electrons observed during 71 hours when geomagnetic activity was at moderate to high levels (AE {ge} 100nT). Particle data from the low-energy proton and electron differential energy analyzer and the medium energy particle instrument on ISEE 1 are combined to obtain differential energy spectra (measured in units of particles/cm{sup 2} s sr keV) in the kinetic energy range {approximately}30 eV/e to {approximately}1 MeV at geocentric radial distances >12R{sub e}. Nearly isotropic central plasma sheet total ion and electron populations were chosen for analysis and were measured to be continuous particle distributions from the lowest to highest energies. During these high AE periods the >24 keV particle fluxes and the temperature of the entire particle distribution kT are significantly higher than during low AE periods (AE < 100 nT). The temperatures kT{sub i} and kT{sub e} are highly correlated during both quiet and disturbed periods. The active period spectral shape appears softer for ions and somewhat harder for electrons than during quiet periods. They find that the observed active period spectrum typically is complex and cannot be represented in general by a single functional form, as during quiet periods when it can be represented by the kappa distribution function. In a limited energy range near the knee of the ion spectra, the spectral shape can often be fit with a Maxwellian form, thus rolling over faster than the typical quiet time spectrum. Electron spectra also display this spectral characteristic, although at a lower occurence frequency than for ions. The electron spectra are predominantly kappalike at energies near and above the knee. The authors conclude that both ions and electrons participate in at least two separate accerlation mechanisms as geomagnetic activity evolves from low AE to high AE values.

  17. The relationship between diffuse auroral and plasma sheet electron distributions near local midnight

    SciTech Connect

    Schumaker, T.L. ); Gussenhoven, M.S. ); Hardy, D.A.; Carovillano, R.L.

    1989-08-01

    A study of the relationship between diffuse auroral and plasma sheet electron distributions in the energy range from 50 eV to 20 keV in the midnight region was conducted using data from the P78-1 and SCATHA satellites. From 1 1/2 years of data, 14 events were found where the polar-orbiting P78-1 satellite and the near-geosynchronous SCATHA satellite were approximately on the same magnetic field line simultaneously, with SCATHA in the plasma sheet and P78-1 in the diffuse auroral region. For all cases the spectra from the two satellites are in good quantitative agreement. For 13 of the 14 events the pitch angle distribution measured at P78-1 was isotropic for angles mapping into the loss cone at the SCATHA orbit. For one event the P78-1 electron flux decreased with pitch angle toward the field line direction. At SCATHA the distributions outside the loss cone were most commonly butterfly or pancake, although distributions peaked toward the field line were sometimes observed at energies below 1 keV. Electron distributions, as measured where there is isotropy within the loss cone but anisotropy outside the loss cone, are inconsistent with current theories for the scattering of cone for the distribution measured at SCATHA, the electron precipitation lifetimes were calculated for the 14 events. Because the distributions are anisotropic at pitch angles away from the loss cone, the calculated lifetimes significantly exceed the lifetimes in the limit when the flu is isotropic at all pitch angles. The computed precipitation lifetimes are found to be weakly dependent on magnetic activity. The average lifetimes exceed those for the case of isotropy at all pitch angles by a factor between 2 and 3 for {ital Kp}{le}2 and approximately 1.5 for {ital Kp}{gt}2. {copyright} American Geophysical Union 1989

  18. Observations of correlated broadband electrostatic noise and electron-cyclotron emissions in the plasma sheet. Technical report

    SciTech Connect

    Roeder, J.L.; Angelopoulos, V.; Baumjohann, W.; Anderson, R.R.

    1991-11-15

    Electric field wave observations in the central plasma sheet of the earth's magnetosphere show the correlated occurrence of broadband electrostatic noise and electrostatic electron cyclotron harmonic emissions. A model is proposed in which the broadband emissions are electron acoustic waves generated by an observed low energy electron beam, and the cyclotron emissions are generated by the hot electron loss cone instability. The high degree of correlation between the two emissions is provided in the model by the presence of the cold electron beam population, which allows both of the plasma instabilities to grow.

  19. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    NASA Astrophysics Data System (ADS)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field

  20. Sheet electron beam tester

    NASA Astrophysics Data System (ADS)

    Spear, Alexander Grenbeaux

    The DARPA HiFIVE project uses a pulsed electron sheet beam gun to power a traveling wave tube amplifier operating at 220 GHz. Presented is a method for characterizing the high current density 0.1 mm by 1 mm sheet electron beam. A tungsten tipped probe was scanned through the cross section of the sheet electron beam inside of a vacuum vessel. The probe was controlled with sub-micron precision using stepper motors and LabView computer control while boxcar averaging hardware sampled the pulsed beam. Matlab algorithms were used to interpret the data, calculate beam dimensions and current density, and create 2-dimensional cross section images. Full characterization of two separate HiFIVE sheet electron guns was accomplished and is also presented.

  1. Energetic ion and electron observations of the geomagnetic plasma sheet boundary layer - Three-dimensional results from ISEE 1

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    A description of energetic ion and electron behavior in the geomagnetic plasma sheet boundary layer is presented based on observations made by the medium-energy particle experiment on board ISEE 1. Three-dimensional observations of ions of energies 24-2081 keV and electrons of energies 22.5-1200 keV were obtained by the NOAA/WAPS instrument near the center of the magnetotail at a distance of approximately 15 earth radii. Large-scale motions of plasma sheet energetic particles are observed as an apparent result of a series of magnetospheric disturbances (substorms), which are characterized by substantial contractions and expansions. Ion flow velocity in a distinct boundary layer in energetic ions has been found to be in the earthward direction in each of the five ISEE 1 boundary crossings. Boundary layer motion during one of these crossings is interpreted as large-amplitude boundary waves with periodicities of a few minutes superimposed on the general plasma sheet behavior associated with the substorm process.

  2. Simulation of electrostatic turbulence in the plasma sheet boundary layer with electron currents and bean-shaped ion beams

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Frank, L. A.; Huang, C. Y.

    1988-01-01

    Plasma data from ISEE-1 show the presence of electron currents as well as energetic ion beams in the plasma sheet boundary layer. Broadband electrostatic noise and low-frequency electromagnetic bursts are detected in the plasma sheet boundary layer, especially in the presence of strong ion flows, currents, and steep spacial gradients in the fluxes of few-keV electrons and ions. Particle simulations have been performed to investigate electrostatic turbulence driven by a cold electron beam and/or ion beams with a bean-shaped velocity distribution. The simulation results show that the counterstreaming ion beams as well as the counterstreaming of the cold electron beam and the ion beam excite ion acoustic waves with a given Doppler-shifted real frequency. However, the effect of the bean-shaped ion velocity distributions reduces the growth rates of ion acoustic instability. The simulation results also show that the slowing down of the ion bean is larger at the larger perpendicular velocity. The wave spectra of the electric fields at some points of the simulations show turbulence generated by growing waves.

  3. Correlation of Alfvén wave Poynting flux in the plasma sheet at 4-7 RE with ionospheric electron energy flux

    NASA Astrophysics Data System (ADS)

    Keiling, A.; Wygant, J. R.; Cattell, C.; Peria, W.; Parks, G.; Temerin, M.; Mozer, F. S.; Russell, C. T.; Kletzing, C. A.

    2002-07-01

    A comparison of Poynting flux in the plasma sheet at geocentric distances of 4-7 RE to the energy flux of magnetically conjugate precipitating electrons at 100-km altitude is presented. We have investigated 40 plasma sheet crossings by the Polar satellite, including both cases with large in situ values of Poynting flux (~1 ergs cm-2 s-1) and cases with low values (<=0.1 ergs cm-2 s-1). The values correspond to ~125 and ~12 ergs cm-2 s-1, respectively, when mapped along converging magnetic field lines to 100 km. The north-south component of the electric field and the east-west component of the magnetic field were the primary source of the Poynting flux. On the basis of the phase relationship and ratio of E and B, the majority of Poynting flux events were identified as Alfvén waves. The Poynting flux measured at high altitudes by Polar was correlated with the intensity of the conjugate auroral emission in the ultraviolet frequency range, which can be used to estimate energy deposition due to precipitating electron beams. The electron energy flux during times of intense Poynting flux in the plasma sheet exceeded 20 ergs cm-2 s-1. In the absence of strong Poynting flux in the plasma sheet, electron precipitation was small (<=5 ergs cm-2 s-1). The mapped Poynting flux was in almost all events larger by a factor of 1-10 than the ionospheric electron energy flux. These results show that Alfvénic Poynting flux in the midtail region is associated with and capable of powering localized regions of magnetically conjugate auroral emissions. Furthermore, the large Poynting flux events observed at the outer edge of the plasma sheet were conjugate to the poleward border of the active auroral regions, giving further evidence that at least some of the discrete aurora connects to the plasma sheet boundary layer.

  4. Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: A multicase study

    NASA Astrophysics Data System (ADS)

    Tang, C. L.; Zhou, M.; Yao, Z. H.; Shi, F.

    2016-05-01

    Using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we study electron acceleration (<30 keV) in the magnetic flux pileup regions (FPRs) in the near-Earth plasma sheet (X ~ -10 RE). We present three cases of FRPs associated with dipolarization fronts and substorm dipolarization. Based on the characteristics of the magnetic field, we defined the magnetic field enhancement region (MFER) as the magnetic field with significant ramp that is usually observed near the dipolarization front boundary layer. On the other side, the increased magnetic field without a significant ramp is the rest of a FPR. Our results show that betatron acceleration dominates for 10-30 keV electrons inside the MFER, whereas Fermi acceleration dominates for 10-30 keV electrons inside the rest of the FPR. Betatron acceleration is caused by the enhancement of the local magnetic field, whereas Fermi acceleration is related to the shrinking length of magnetic field line. These accelerated electrons inside the FPRs in the near-Earth tail play a potentially important role in the evolution of the Earth's electron radiation belt and substorms.

  5. The plasma sheet boundary and Kp

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.

    1975-01-01

    The paper studies data obtained by the suprathermal ion detector aboard the ATS-1 geostationary satellite in order to establish a relation between the local time occurrence of the plasma sheet at the geostationary orbit (6.6 earth radii) and the Kp index. This relation is then used along with Alfven and Falthammer's (1963) equation for the drift path of an electron moving under the combined influence of a homogeneous electric field and a dipole magnetic field to derive an expression that shows the manner in which the inner boundary of the plasma sheet can be expected to vary radially with Kp along the midnight meridian for Kp less than about 4.

  6. Electric fields associated with small-scale magnetic holes in the plasma sheet: Evidence for electron currents

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Stawarz, Julia E.

    2016-06-01

    We report observations of magnetic holes (MHs) in the near-Earth (8 RE to 12 RE) plasma sheet that have physical sizes perpendicular to the magnetic field (B) on the order of the ion Larmor radius (ρi) and, more importantly, have current layers less than ρi in thickness. Small-scale MHs can have >90% depletion in |B| and are commonly associated with the braking of bursty bulk flow events. The generation of MHs is often attributed to magnetohydrodynamic (MHD) instabilities, which requires a size greater than ρi; the depletion in |B| is from an ion current consistent with a pressure gradient. Electric field (E) observations indicate a negative potential inside of small-scale MHs that creates an outward E at the boundary, which drives an E × B electron current in a thin layer. These observations indicate that a Hall electron current is primarily responsible for the depletion of |B| in small-scale magnetic holes, rather than the ion pressure gradient.

  7. MHD Ballooning Instability in the Plasma Sheet

    SciTech Connect

    C.Z. Cheng; S. Zaharia

    2003-10-20

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.

  8. Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Yu, J.; Cao, J. B.

    During the interval 07:45:36- 07:54:24 UT on 24 August 2005, Cluster satellites (C1 and C3) observed an obvious loss of energetic electrons (3.2- 95keV) associated with the growth of whistler mode waves inside some bursty bulk flows (BBFs) in the midtail plasma sheet (X _{GSM}= -17.25 R _{E}). However, the fluxes of the higher-energy electrons (>128keV) and energetic ions (10- 160 keV) were relatively stable in the BBF-impacted regions. The energy-dependent electron loss inside the BBFs is mainly due to the energy-selective pitch angle scatterings by whistler mode waves within the time scales from several seconds to several minutes, and the electron scatterings in different pitch angle distributions are different in the wave growth regions. The plasma sheet energetic electrons have mainly a quasi-perpendicular pitch angle distribution (30(°) electrons, the low-energy electrons (0.073- 2.1keV) have initially a field-aligned pitch angle distribution (0(°) electrons inside the BBFs is not obvious in the presence of their large background fluxes. These observations indicate that the resonant electrons in an anisotropic pitch angle distribution mainly undergo the rapid pitch angle scattering loss during the wave-particle resonances.

  9. The Effects of Non-adiabatic Processes on Near-Earth Plasma Sheet Electrons for Different Substorm-Related Magnetotail Conditions

    NASA Astrophysics Data System (ADS)

    Liang, H.; Ashour-Abdalla, M.; Richard, R. L.; Schriver, D.; El-Alaoui, M.; Walker, R. J.

    2013-12-01

    We investigate the spatial evolution of energetic electron distribution functions in the near-Earth plasma sheet associated with earthward propagating dipolarization fronts by using in situ observations as well as magnetohydrodynamic (MHD) and large scale kinetic (LSK) simulations. We have investigated two substorms, one on February 15, 2008 and the other on August 15, 2001. The February 15 event was observed by one of the THEMIS spacecraft at X_{GSM} -10RE, while the August 15 event was observed by Cluster at X -18RE. Both the MHD and LSK simulation results are compared to these spacecraft observations. Earthward propagating dipolarization fronts are found in both the observations and the MHD simulations, which exhibit very different magnetotail configurations, with contrasting flows, magnetic reconnection configuration, and plasma sheet structure. Electron LSK simulations were performed by using the time-varying magnetic and electric fields from the global MHD simulations. For the February 15, 2008 event, the electrons were launched near X = -20 RE with a thermal energy of 1 keV and for August 15, 2001 event, they were launched at 4 keV near X = -22 RE. These electrons undergo both non-adiabatic acceleration near the magnetotail reconnection region and adiabatic acceleration as they propagate earthward from the launch region. We compute the electron distribution functions parallel and perpendicular to the magnetic field at different locations between X = -18 RE and X = -10 RE in the plasma sheet. We find that for the February 15, 2008 event, reconnection is localized with a narrow region of high-speed flows ( 300 km/s). For this event the distribution functions show mainly f(v_perp) > f(v_par) ("par" and "perp" correspond to parallel and perpendicular to magnetic field). On August 15, 2001, there is a neutral line extending across the tail with relatively low-speed flows ( 100 km/s). For this event the distribution functions show mainly f(v_par) > f(v_perp). The

  10. Magnetic field at geosynchronous orbit during high-speed stream-driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Denton, Michael H.

    2010-08-01

    Superposed-epoch analysis is performed on magnetic field measurements from five GOES spacecraft in geosynchronous orbit during 63 high-speed stream-driven storms in 1995-2005. The field strength and the field stretching angle are examined as functions of time and local time, and these quantities are compared with the properties of the solar wind, the plasma sheet, and the outer electron radiation belt. Compression of the dayside magnetosphere coincides with an increased solar wind ram pressure commencing before the arrival of the corotating interaction region (CIR). Stretching of the nightside magnetosphere occurs in two phases: a strong-stretching phase early in the storm followed by a modest-stretching phase lasting for days. The strong-stretching phase coincides with the occurrence of the superdense plasma sheet, implying that ion pressure causes the strong stretching. This nightside strong-stretching perturbation corresponds to a ˜25% contribution to Dst*. The relativistic electron flux at geosynchronous orbit has a dropout recovery temporal profile that matches the strong-stretching temporal profile; however, the number density dropout and recovery of the electron radiation belt has a profile that leads the stretching profile. A comparison of geosynchronous field strengths and magnetopause field strengths indicates that magnetopause shadowing plays a role in the radiation belt dropout. Temporal fluctuations of the geosynchronous magnetic field are examined via 1 min changes of the GOES magnetic field vectors. Fluctuation amplitudes increase at all local times at storm onset and then slowly decay during the storms. The amplitude is linearly related to the Kp, PCI, and MBI indices, except during the strong-stretching phase of the storms.

  11. The Transition from Plasma Torus to Plasma Sheet at Jupiter

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; Frank, L. A.

    2003-04-01

    We review observations from the Galileo plasma analyzer (PLS) of thermal ions and suprathermal electrons in the Jovian magnetosphere for the range of radial distance approximately 10 - 40 RJ. Remote observations of the aurora have shown that the main ring of emission is conjugate to the equatorial plane at locations beyond the orbit of Ganymede at 15 RJ, and thus connects within this region of the magnetosphere. Intense field-aligned beams of hot electrons are observed beyond ˜17 RJ. These beams are direct evidence of auroral processes and their observation in the equatorial plane places constraints on possible driving mechanisms. This part of the magnetosphere also features the transition from torus to plasma sheet which is characterized by decreasing ion densities and increasing temperatures as functions of radial distance. Subcorotation of the plasma is observed, as are radial components of flow. The radial motion is outward in the evening sectors, but instances of inward flow occur between noon and dusk. On the dayside, it is confirmed that field-aligned motions of protons and heavy ions play an important role in the balance of stresses, a fact that was previously inferred on the basis of Voyager observations. The spacecraft samples the symmetry plane of the magnetosphere at just two diametrically opposed planetary longitudes due to the tilt of the magnetic dipole. However, systematic differences in the densities and temperatures of the thermal ions and in the intensities of the electron beams at those two longitudes are indications of System III periodicities.

  12. A statistical study of plasma sheet electrons carrying auroral upward field-aligned currents measured by Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Astrophysics Data System (ADS)

    Lee, S.; Shiokawa, K.; McFadden, J. P.; Nishimura, Y.

    2011-12-01

    We have statistically investigated the electron density ne,M and temperature Te,M in the near-Earth plasma sheet in terms of the magnetosphere-ionosphere coupling process, as measured by the electrostatic analyzer (ESA) on board the Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) satellite from November 2007 to January 2010. To find out when and where an aurora can occur, either with or without electron acceleration, the thermal current j∥th and the conductivity K along the magnetic field line were also estimated from observations of the magnetospheric electrons with pitch angle information inside 12 RE. The thermal current, j∥th(∝ ne,M Te,M1/2), represents the upper limit of the field-aligned current that can be carried by magnetospheric electrons without a field-aligned potential difference. The conductivity, K(∝ ne,M Te,M-1/2), relates the upward field-aligned current, j∥, to the field-aligned potential difference, V∥, assuming adiabatic electron transport. The thermal current is estimated by two methods: (1) from the relation by using ne,M and Te,M and (2) from the total downward electron number flux. We find that in the dawnside inner magnetosphere, the thermal currents estimated by both methods are sufficient to carry typical region 2 upward field-aligned current. On the other hand, in the duskside outer magnetosphere, a field-aligned potential difference is necessary on the region 1 current since the estimated thermal current is smaller than the typical region 1 current. By using the relationship, j∥ = KV∥, where K is the conductivity estimated from Knight's relation and j∥ is the typical auroral current, we conclude that a field-aligned potential difference of V∥ = 2-5 kV is necessary on the duskside region 1 upward field-aligned current.

  13. Systematic study of plasma flow during plasma sheet thinnings

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Frank, L. A.; Ackerson, K. L.; Meng, C.-I.; Akasofu, S.-I.

    1977-01-01

    On the basis of a study of Imp 6 measurements of plasma flow, it is concluded that there is no clear indication of a predominance of tailward plasma flow beyond about X = -15 R sub E in the midnight sector of the plasma sheet during the expansive phase of a substorm. In fact, it is shown statistically that sunward plasma flow is more frequently observed in the midnight sector within about 30 R sub E from the earth than in any other direction during plasma sheet thinning at the substorm expansion. This result supports the conclusion that there is no definite evidence for the formation of a reconnection neutral line in the near-earth plasma sheet during most substorms.

  14. Plasma sheet turbulence observed by Cluster II

    NASA Technical Reports Server (NTRS)

    Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.

    2005-01-01

    Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.

  15. Plasma sheet ion energization during dipolarization events

    SciTech Connect

    Delcourt, D.C. ); Sauvaud, J.A. )

    1994-01-01

    This paper presents simulation results for acceleration processes for ions during what are referred to as dipolarization events associated with storm activity. Time variations of magnetic fields over cyclotron periods, and generation of electric fields parallel to the geomagnetic field, both contribute to ion acceleration in the plasma sheet. Calculations support the observation of earthward injection of ions during such events.

  16. Particle and field characteristics of the high-latitude plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Mccarthy, M.; Fitzenreiter, R. J.; Ogilvie, K. W.; Etcheto, J.; Anderson, K. A.; Lin, R. P.; Anderson, R. R.; Eastman, T. E.; Frank, L. A.

    1984-01-01

    Particle and field data obtained by eight ISEE spacecraft experiments are used to define more precisely the characteristics of the high-latitude boundary region of the plasma sheet. A region immediately adjacent to the high-latitude plasma sheet boundary has particle and field characteristics distinctly different from those observed in the lobe and deeper in the central plasma sheet. Electrons over a broad energy interval are 'field-aligned' and bidirectional, whereas in the plasma sheet the distributions are more isotropic. The region supports intense ion flows, large-amplitude electric fields, and enhanced broad-band electrostatic noise.

  17. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  18. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    SciTech Connect

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.

  19. Birkeland currents in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Tsyganenko, Nikolai A.; Stern, David P.; Kaymaz, Zerefsan

    1993-01-01

    A search was conducted for the signatures of Birkeland currents in the Earth's magnetic tail, using observed values of B(sub x) and B(sub y) from large sets of spacecraft data. The data were binned by x and y for -10 greater than x(sub GSM) greater than -35 and absolute value of y(sub GSM) less than or equal to 20 R(sub E) (less than or equal to 30 R(sub E) for x(sub GSM) less than or equal to -25 R(sub E)) and in each bin their distribution in the (B(sub x), B(sub y)) plane was fitted by least squares to a piecewise linear function. That gave average x-y distributions of the flaring angle between B(sub xy) and the x direction, as well as that angle's variation across the thickness of the plasma sheet. Angles obtained in the central plasma sheet differed from those derived near the lobe boundary. That is the expected signature if earthward or tailward Birkeland current sheets are embedded in the plasma sheet, and from this dfiference we derived the dawn-dusk profiles of the tail Birkeland currents for several x(sub GSM) intervals. It was found that (1) the Birkeland currents have the sense of region 1 currents, when mapped to the ionosphere; (2) both the linear current density (kiloamperes/R(sub E)) and the net magnitude of the field-aligned currents decrease rapidly down the tail; (3) the total Birkeland current at x approximately equals -10 R(sub E) equals approximately equals 500-700 kA, which is approx. 30% of the net region 1 current observed at ionospheric altitudes, in agreement with model mapping results; and (4) the B(sub z) and B(sub y) components of the interplanetary magnetic field influence the distribution of Birkeland currents in the tail.

  20. The State of the Plasma Sheet and Atmosphere at Europa

    NASA Astrophysics Data System (ADS)

    Shemansky, D. E.; Yung, Y. L.; Liu, X.; Yoshii, J.; Hansen, C. J.; Hendrix, A.; Esposito, L. W.

    2014-12-01

    The Hall et al. (1995) report announcing the discovery of atomic oxygen FUV emission from Europa included a conclusion that the atmosphere was dominated by O2. Over the following 20 years publications referencing the atmosphere accepted this conclusion, and calculations of rates, particularly mass loading of the magnetosphere depended on a composition that was of order 90% O2. Analysis of the Europa emission spectrum in the present work, leads to the conclusion that the O I emission properties were misinterpreted. The interpretation of the source process depends on the ratio of the O I 1356 and 1304 A multiplet emissions (R(4:5) = (I(1356)/I(1304)). The value of R(4:5) never reaches the lower limit for electron impact dissociation of O2 for any of the 7 recorded disk averaged measurements between 1994 and 2013. Analysis of the Cassini UVIS exposures show the 1304 A multiplet to be optically thick, and the emissions are modeled as direct electron and solar photon excitation of O I. The result is a model atmosphere dominated by O I and O II, with neutral density a factor of 100 below the original O2 model. Other considerations show incompatibility with an O2 atmosphere. Deep exposures using the Cassini UVIS EUV spectrograph provide the state of the plasma sheet at Europa. The ion species are identified as mainly outwardly diffused mass from the Io plasma torus with a minor contribution from Europa. Plasma time-constants are of the order of 200 days. Neutral species in the plasma sheet are not measureable. The energy flux in the magnetosphere L-shells are mainly responsible for energy deposition maintaining the plasma sheet. The energy content in the Io and Europa L-shells, as measured, is similar, but the mean radiative cooling rate in the Io plasma torus at the time of the Cassini encounter was 565 femtoergs cm-3 s-1, compared to 7.3 at Europa, reflecting the difference between an active and inactive planetary satellite, particularly considering the fact that most

  1. A pincer-shaped plasma sheet at Uranus

    SciTech Connect

    Hammond, C.M.; Walker, R.J.; Kivelson, M.G. )

    1990-09-01

    A model from Voigt et al. (1987) and an MHD simulation from Walker et al. (1989) both show that the curvature of the plasma sheet at Uranus changes as the dipole tilt varies between 38{degree} and 22{degree}. The models suggest that one of the two partial traversals of the uranian plasma sheet made during the outbound trajectory of Voyager 2 can be explained as an entry into the highly curved plasma sheet that develops when Uranus is near the maximum dipole tilt value of 38{degree}; previously both partial traversals have been explained as anomalous. The spacecraft would have reversed its motion relative to the plasma sheet as the continued rotation diminished the dipole tilt and the retreating plasma sheet uncurled. As the dipole tilt approached its minimum value, spacecraft motion towards the neutral sheet resumed and the traversal of the plasma sheet was completed. Evidence from the PWS plasma wave detector suggests that the spacecraft trajectory skimmed the plasma sheet boundary layer for several hours prior to the partial immersion. The plasma sheet of the Voigt et al. model was not located near the spacecraft during this time interval. On the other hand, the MHD simulation reveals a plasma sheet that is more curved than in the Boigt et al. model; near maximum dipole tilt, the plasma sheet is pincer-shaped. The unusual geometry implies that Voyager 2 remained near the plasma sheet boundary layer during the period suggested by the PWS data. Thus the simulation accounts easily for the first of the plasma sheet encounters previously called anomalous. The second partial immersion remains anomalous, having previously been related to substorm activity, and thus is not discussed here. The stagnation distances of the earth and Uranus at the nose of the magnetopause were used to scale the Walker et al. (1989) simulation of the terrestrial magnetosphere to represent the uranian magnetosphere.

  2. Observations of the Earth{close_quote}s Plasma Sheet at Geosynchronous Orbit

    SciTech Connect

    Thomsen, M.F.; Borovsky, J.E.; McComas, D.J.; Moldwin, M.B.

    1996-07-01

    Geosynchronous orbit typically lies within the near-Earth portion of the plasma sheet and its dayside extension. Los Alamos magnetospheric plasma analyzers (MPA) on three geosynchronous satellites routinely observe the plasma-sheet ion and electron distributions over the energy range of {approximately}1 eV to {approximately}40 keV. Based on these observations, we describe the typical appearance of the plasma sheet at synchronous altitude under both fairly steady and fairly active conditions. We also present a statistical analysis of the bulk properties (density temperature, and anisotropy) of the plasma sheet ion and electron populations, and we illustrate the dependence of these average properties on local time. {copyright} {ital 1996 American Institute of Physics.}

  3. Determination of the polytropic index in the plasma sheet

    SciTech Connect

    Baumjohann, W.; Paschmann, G.

    1989-04-01

    Using eight months of magnetotail plasma data, we have done a statistical survey on the relation between ion density and pressure in the Earth's plasmasheet. More than 270,000 spin averaged (4.5s) samples of ion density and thermal pressure obtained in the central plasma sheet and the plasma sheet boundary layer were cross-correlated in order to obtain typical values of the polytropic index ..gamma.. for different tail regions and disturbance conditions. The plasma sheet ion population behaves, on average, adiabatically both in the central plasma sheet and the plasma sheet boundary layer. However, a polytropic index of about 1.4 for the quiet plamsa sheet indicates that the latter behaves like a poorly insulated vessel. Hence, there seems to be no quiet time magnetotail equilibrium (''ground state''), but rather continuous cooling until new enegy is entering from the outside. copyright American Geophysical Union 1989

  4. Electric fields and current sheet structure in magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Cully, C. M.

    The electric currents of the central plasma sheet play a pivotal role in the dynamics of the Earth's magnetosphere. I describe new instrumentation developed for measuring its properties, and analyze data from existing instruments. The analysis shows the structure and physical current-carrying mechanisms of the quiescent central plasma sheet in new detail. Electric field observations are critical for this work. I discuss two aspects of space-based double-probe electric field experiments: the probe design and the signal processing. I develop a numerical model that self-consistently solves for the interaction between the probes and the nearby plasma environment, including the effects of the spacecraft and its attendant photoelectrons. I also describe the signal processing hardware developed for the 5-satellite THEMIS mission, known as the Digital Fields Boards (DFB). THEMIS was launched in February 2007, and all 5 DFBs are working as intended. Since THEMIS is only recently launched, I analyze data from the 4-satellite Cluster mission, which has similar instrumentation. With Cluster data, the position of the current sheet relative to the satellite can be determined, allowing direct comparisons between observations and models. To encompass the wide variety of possible current-carrying mechanisms, I develop a kinetic model based on the quasi-isotropic formalism of Schindler and Birn [2002]. The model fits many of the observed sheets well. The observations reveal a wide variety of current-carrying mechanisms. Some of the thinnest currents consist entirely of a pair of electron Hall currents which together form a bifurcated current sheet driven by strong inward-pointing electric fields.

  5. Plasma in the Jovian current sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Van Allen, J. A.; Parish, J. L.; Schardt, A. W.

    1979-01-01

    A large body of spectral data for protons with energies greater than 200 keV has been analyzed. It is concluded that the main body of plasma in the Jovian current sheet observed by Pioneer 10 on its outbound pass probably has an energy well below the lowest threshold of the Pioneer 10 detectors. This premise is examined using a semiempirical model of the magnetic field in the magnetodisk and simple magnetohydrodynamic theory. Results indicate that the dominant contribution to the plasma pressure in the region from 25 to 65 Jovian radii is from as yet unobserved protons (ions) with energies of the order of 0.1 to 10 keV.

  6. Origins of the plasma in the distant plasma sheet

    SciTech Connect

    Sharp, R.D.; Lennartsson, W.; Peterson, W.K.; Shelley, E.G.

    1982-12-01

    A statistical study of the composition of the plasma sheet at geocentric radial distances between 10 and 23 R/sub E/ has been conducted utilizing data from the energetic ion mass spectrometer experiment on ISEE 1. The composition of the ions in the energy per charge range 0.1< or =Elq< or =16 keV/e was found to be dependent on substorm activity. The O/sup +//H/sup +/ and He/sup +//H/sup +/ ratios of the ions increased and the He/sup + +//H/sup +/ ratio decreased with increasing AE. O/sup +//H/sup +/ exhibited the largest changes, varying from about 2% during periods of extended quiet to about 40% shortly after a major substorm. H/sup +/ was typically the major constituent, but on some occasions O/sup +/ was dominant. Assuming that the composition of the ionospheric and solar wind supplied ions to the plasma sheet does not vary systematically from quiet to active times, inferences are drawn as to the relative importance of the ionosphere and solar wind as sources of the plasma sheet ions. The results suggest that during quiet times the plasma sheet is almost entirely of solar wind origin while during active times the ionosphere is of comparable importance to the solar wind. The average energies of the ions of solar wind origin appear to be significantly increased in association with substorm activity, while the average energies of the ions of ionospheric origin show little or no effect. The solar H/sup +/ component appears to be more strongly energized than does He/sup + +/.

  7. Plasma Sheet Source and Loss Processes

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    2000-01-01

    Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the plasma sheet-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central plasma sheet proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial plasma source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central plasma sheet particles along reconfigured ("dipolarized") magnetic field lines.

  8. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    SciTech Connect

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A.

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle acceleration in

  9. Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet.

    PubMed

    Ma, W J; Bin, J H; Wang, H Y; Yeung, M; Kreuzer, C; Streeter, M; Foster, P S; Cousens, S; Kiefer, D; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-12-01

    Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations. PMID:25526132

  10. Slow electrostatic solitary waves in Earth's plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Kakad, Amar; Kakad, Bharati; Anekallu, Chandrasekhar; Lakhina, Gurbax; Omura, Yoshiharu; Fazakerley, Andrew

    2016-05-01

    We modeled Cluster spacecraft observations of slow electrostatic solitary waves (SESWs) in the Earth's northern plasma sheet boundary layer (PSBL) region on the basis of nonlinear fluid theory and fluid simulation. Various plasma parameters observed by the Cluster satellite at the time of the SESWs were examined to investigate the generation process of the SESWs. The nonlinear fluid model shows the coexistence of slow and fast ion acoustic waves and the presence of electron acoustic waves in the PSBL region. The fluid simulations, performed to examine the evolution of these waves in the PSBL region, showed the presence of an extra mode along with the waves supported by the nonlinear fluid theory. This extra mode is identified as the Buneman mode, which is generated by relative drifts of ions and electrons. A detailed investigation of the characteristics of the SESWs reveals that the SESWs are slow ion acoustic solitary waves.

  11. Observations of Double Layers in Earth's Plasma Sheet

    SciTech Connect

    Ergun, R. E.; Tao, J.; Andersson, L.; Eriksson, S.; Johansson, T.; Angelopoulos, V.; Bonnell, J.; McFadden, J. P.; Larson, D. E.; Cully, C. M.; Newman, D. N.; Goldman, M. V.; Roux, A.; LeContel, O.; Glassmeier, K.-H.; Baumjohann, W.

    2009-04-17

    We report the first direct observations of parallel electric fields (E{sub parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E{sub parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet.

  12. Observations of double layers in earth's plasma sheet.

    PubMed

    Ergun, R E; Andersson, L; Tao, J; Angelopoulos, V; Bonnell, J; McFadden, J P; Larson, D E; Eriksson, S; Johansson, T; Cully, C M; Newman, D N; Goldman, M V; Roux, A; LeContel, O; Glassmeier, K-H; Baumjohann, W

    2009-04-17

    We report the first direct observations of parallel electric fields (E_{ parallel}) carried by double layers (DLs) in the plasma sheet of Earth's magnetosphere. The DL observations, made by the THEMIS spacecraft, have E_{ parallel} signals that are analogous to those reported in the auroral region. DLs are observed during bursty bulk flow events, in the current sheet, and in plasma sheet boundary layer, all during periods of strong magnetic fluctuations. These observations imply that DLs are a universal process and that strongly nonlinear and kinetic behavior is intrinsic to Earth's plasma sheet. PMID:19518640

  13. A statistical survey of the central plasma sheet

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Frank, L. A.

    1994-01-01

    We present a statistical analysis of the ion plasma properties and magnetic field of the central plasma sheet at distances from 10 to 23 R(sub E) from the Earth. This study incorporates International Sun-Earth Explorer (ISEE) 1 plasma sheet samples accumulated with the University of Iowa Lepedea plasma analyzer during 1979. Our study of the bulk properties of the ion plasma shows that there is relatively little change as a result of increasing geomagnetic activity. The main macroscopic effect is an increase in plasma temperature. When the transverse profile of the plasma sheet is examined, it is clear that this increase in temperature occurs preferentially at high latitudes. The magnetic field shows an increase in magnitude in the vicinity of the neutral sheet periods of high geomagnetic activity. The radial profiles of the density, temperature, plasma, and magnetic pressures show a gradient in total energy density in the plasma sheet. The convective velocities are systematically directed earthward, and there is a bias toward positive V(sub y) on the duskside of the magnetotail. We infer that particle motion can be attributed to a pressure gradient, combined with steady state convective electric fields. We compute the convective electric fields from our measured bulk velocities, arriving at a pattern similar to that observed at low altitudes. The cross-tail electric field E(sub y) is dominant near the neutral sheet region, but at high latitudes E(sub z) is a major component. Our results suggest that the plasma sheet boundary layer, rather than the central plasma sheet, is a region of diverging electric fields. The picture of the plasma sheet that emerges from our study is that of a stable reservoir of hot plasma in which thermodynamic, rather than dynamic, processes is important.

  14. A pincer-shaped plasma sheet at Uranus

    NASA Astrophysics Data System (ADS)

    Hammond, C. Max; Walker, Raymond J.; Kivelson, Margaret G.

    1990-09-01

    An MHD simulation of the terrestrial magnetosphere, rescaled to represent the Uranian magnetotail, is carried out. The 3p immersion can be explained in terms of possible extreme departures from average plasma sheet shapes in the Uranian magnetosphere. The orientation of the Uranian dipole and rotation axes produce a dynamically curved plasma sheet which is an unusual feature of the Uranian magnetosphere.

  15. A pincer-shaped plasma sheet at Uranus

    NASA Technical Reports Server (NTRS)

    Hammond, C. Max; Walker, Raymond J.; Kivelson, Margaret G.

    1990-01-01

    An MHD simulation of the terrestrial magnetosphere, rescaled to represent the Uranian magnetotail, is carried out. The 3p immersion can be explained in terms of possible extreme departures from average plasma sheet shapes in the Uranian magnetosphere. The orientation of the Uranian dipole and rotation axes produce a dynamically curved plasma sheet which is an unusual feature of the Uranian magnetosphere.

  16. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  17. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2016-08-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.

  18. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    SciTech Connect

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-15

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  19. Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection

    NASA Astrophysics Data System (ADS)

    Gillman, Eric D.; Amatucci, W. E.

    2014-06-01

    These experiments utilize a linear hollow cathode to create a dense, rectangular plasma sheet to simulate the plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Injection of fine dielectric microparticles significantly reduces the electron density and therefore lowers the electron plasma frequency by binding a significant portion of the bulk free electrons to the relatively massive microparticles. Measurements show that microwave transmission through this previously overly dense, impenetrable plasma layer increases with the injection of alumina microparticles approximately 60 μm in diameter. This method of electron depletion is a potential means of mitigating the radio communications blackout experienced by hypersonic vehicles.

  20. Development of cesium-free negative hydrogen ion source by using sheet plasma

    NASA Astrophysics Data System (ADS)

    Hase, Takuya; Iijima, Takaaki; Tanaka, Yuta; Takimoto, Tosikio; Tonegawa, Akira; Sato, Kohnosuke; Kawamura, Kazutaka

    2015-09-01

    We demonstrated the production of hydrogen negative ions in cesium-free discharge by using the magnetized sheet plasma. Plasma crossed with a vertical gas flow system and extracting H- beams from the sheet plasma. Under a secondary hydrogen gas entering the hydrogen plasma, the peak position of the hydrogen plasma is localized in the periphery of the sheet plasma. The maximum negative ion beam is successfully extracted using grids located in the periphery of the sheet plasma. The extraction current density is about 8 mA/cm2 at extraction voltage is 2 kV and discharge current of 30 A. The extraction negative ion current density is saturated at the extraction voltage is 2 kV for the limit of the negative ion density in the periphery region of the sheet plasma. On the other hand, the extraction current is saturated (3 mA/cm2) with increasing extraction voltage and the negative ions are not detected without the secondary gas flow (0 sccm). This curve depends on the electrons present. Therefore, it is considered that the negative ion current against the extraction current is around 60% from the ratio of the extraction current and the extraction electron current.

  1. A two satellite study of nightside flux transfer events in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Elphic, R. C.; Mozer, F. S.; Saint-Marc, A.; Sauvaud, J. A.

    1992-01-01

    The short-term (about 1 min) events during two consecutive substorms on March 23 1979 have been studied using high time resolution measurements of magnetic and electric fields and of the kiloelectronvolt electron flux at X about -21 R(e). Data obtained make it possible to describe the localized magnetic structures transported or propagated within the plasma sheet and to identify these events as plasma sheet nightside magnetic flux transfer events (NFTEs). The best examples of the NFTEs found so far are all observed in a thin portion of plasma sheet where the contraction of the reconnected field lines dominates over the oppositely directed pressure gradient force. Systematic differences in the magnetic variations observed at ISEE-1 and 2 indicate current concentration at the outer plasma sheet boundary during the passage of a NFTE.

  2. Boltzmann H function and entropy in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Kaufmann, Richard L.; Paterson, William R.

    2009-09-01

    Boltzmann's H function was evaluated using 10 years of 1-min distribution functions. These results were used to study the long-term averaged spatial distributions of four entropy parameters. The average entropy density sa(x), where a = i for ions and a = e for electrons, increased when moving Earthward or toward the flanks. The magnitudes of these entropy changes were similar for ions and electrons. The entropy per unit flux tube Sf,a(x) decreased when moving Earthward or toward midnight. The spatial changes of sa(x) and of Sf,a(x) were attributed primarily to variations of the particle density na(x) and of the particle content of each unit flux tube Nf(x), respectively. A dimensionless parameter (S/Ncv)H,i that is proportional to the average entropy per ion increased when moving Earthward or toward midnight near the neutral sheet. The dimensionless parameter proportional to the entropy per ion that would exist in a plasma with the measured pressure and density but with a Maxwellian distribution function (S/Ncv)P,i was also calculated. Differences between (S/Ncv)P,i and (S/Ncv)H,i showed that the plasma was closer to equilibrium near the neutral sheet at x = -10 RE than at x = -28 RE. These gradients of the entropy per ion and of the deviations from equilibrium suggest that nonadiabatic processes and particle scattering are significant throughout the region studied.

  3. Electric fields in the plasma sheet and plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Pedersen, A.; Knott, K.; Cattell, C. A.; Mozer, F. S.; Falthammar, C.-G.; Lindqvist, P.-A.; Manka, R. H.

    1985-01-01

    Results obtained by Forbes et al. (1981) on the basis of time delay measurements between ISEE 1 and ISEE 2 imply that the plasma flow and the boundary contracting velocity were nearly the same, whereas the expanding boundary velocity was not accompanied by any significant plasma sheet plasma motion. In the present study, this observation is discussed in conjunction with electric field data. The study is based on electric field data from the spherical double probe experiment on ISEE 1. Electric field data from GEOS 2 are used to some extent to monitor the electric fields near the geostationary orbit during the considered eve nts. Electric field data during CDAW 6 events are discussed, taking into account positions of ISEE 1/ISEE 2 and GEOS 2; March 22, 0600-1300 UT; and March 22, UT; and March 31, 1400-2400 UT.

  4. Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M. J.; Chen, S.; Hampton, D. L.; Bristow, W. A.; Ruohoniemi, J. M.; Nishitani, N.; Donovan, E. F.; Angelopoulos, V.

    2015-06-01

    We have combined radar observations and auroral images obtained during the Poker Flat Incoherent Scatter Radar Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the subauroral polarization stream (SAPS) region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west, and those within the dawn cell being turned toward the east. The possibility that the SAPS region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

  5. Cold ions in the hot plasma sheet of Earth's magnetotail.

    PubMed

    Seki, Kanako; Hirahara, Masafumi; Hoshino, Masahiro; Terasawa, Toshio; Elphic, Richard C; Saito, Yoshifumi; Mukai, Toshifumi; Hayakawa, Hajime; Kojima, Hirotsugu; Matsumoto, Hiroshi

    2003-04-10

    Most visible matter in the Universe exists as plasma. How this plasma is heated, and especially how the initial non-equilibrium plasma distributions relax to thermal equilibrium (as predicted by Maxwell-Boltzman statistics), is a fundamental question in studies of astrophysical and laboratory plasmas. Astrophysical plasmas are often so tenuous that binary collisions can be ignored, and it is not clear how thermal equilibrium develops for these 'collisionless' plasmas. One example of a collisionless plasma is the Earth's plasma sheet, where thermalized hot plasma with ion temperatures of about 5 x 10(7) K has been observed. Here we report direct observations of a plasma distribution function during a solar eclipse, revealing cold ions in the Earth's plasma sheet in coexistence with thermalized hot ions. This cold component cannot be detected by plasma sensors on satellites that are positively charged in sunlight, but our observations in the Earth's shadow show that the density of the cold ions is comparable to that of hot ions. This high density is difficult to explain within existing theories, as it requires a mechanism that permits half of the source plasma to remain cold upon entry into the hot turbulent plasma sheet. PMID:12686993

  6. The dynamic expansion and contraction of the Jovian plasma sheet

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Mcnutt, R. L., Jr.

    1980-01-01

    Observations suggesting the sequential expansion and compression of the Jovian plasma sheet are reported. Plasma flow in the vicinity of Jupiter was monitored by the four modulated-grid Faraday cups on board each of the Voyager spacecraft at times of closest Jupiter approach. Sensor measurements reveal the flow of magnetospheric plasma to be directed away from the equatorial current sheet near local noon and to be directed towards the sheet in the dusk to midnight sector. The observed flow patterns are interpreted in terms of short-time-scale perturbations of magnetic flux tubes due to the compression of the dayside magnetosphere by the solar wind. It is noted that such a dynamic motion is quite different from what would be expected of slower, quasi-static equilibrium plasma sheet expansion and contraction.

  7. Escape of O+ through the distant tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Galvin, A. B.; Popecki, M. A.; Simunac, K. D. C.; Farrugia, C.; Moebius, E.; Lee, M. A.; Blush, L. M.; Bochsler, P.; Wurz, P.; Klecker, B.; Wimmer-Schweingruber, R. F.; Opitz, A.; Sauvaud, J.-A.; Thompson, B.; Russell, C. T.

    2010-11-01

    In February 2007, the STEREO-B spacecraft encountered the magnetosheath, plasma sheet and plasma sheet boundary layer from about 200 RE to 300 RE downtail. This time period was during solar minimum, and there was no storm activity during this month. Using data from the PLASTIC instrument, we find that even during quiet times, O+ is a constant feature of the deep magnetotail, with an O+ density of about 15% of the O+ density in the near-earth plasma sheet for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The total outflow rate of the O+ down the plasma sheet is 1.1 × 1024 ions/s, which is 10% of the total outflow rate of 1 × 1025 ions/s, and of the same order as the estimated loss from dayside transport.

  8. Thinning and expansion of the substorm plasma sheet

    SciTech Connect

    Baumjohann, W.; Paschmann, G.; Nagai, T.

    1992-11-01

    The authors present a large statistical study of satellite crossings of the plasma sheet, taken during 39 major magnetic storms. They find that for distances between 10 and 19 R{sub E} that they observe a thinning of the plasma sheet in the 30 to 45 minutes before the onset of the storm, followed by a steady increase in thickness which does not recover the previous thickness until the recovery phase of the storm begins.

  9. Escape of O+ Through the Distant Tail Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.; Galvin, A. B.; Popecki, M.; Simunac, K. D.; Farrugia, C. J.; Moebius, E.; Lee, M. A.; Blush, L. M.; Bochsler, P. A.; Wurz, P.; Klecker, B.; Wimmer-Schweingruber, R. F.; Opitz, A.; Sauvaud, J.; Russell, C. T.

    2010-12-01

    During the early orbit phase of the STEREO mission, in February, 2007, the STEREO-B spacecraft went down the deep magnetotail, and encountered the magnetosheath, plasma sheet and plasma sheet boundary layer from about 200 Re to 300 Re downtail, before finally exiting to the solar wind. This time period was during solar minimum, and there was no storm activity during this month. We have used the ion composition data from the PLASTIC instrument to determine how much ionospheric O+ is in the deep tail plasma sheet, and to calculate the loss rate through this path. Surprisingly, we find that during this solar and geomagnetically quiet time, O+ is a constant feature of the deep magnetotail. We find that the O+ density is about 15% of the density in the near-earth plasma sheet for similar conditions. The tailward flux of the O+ is similar to the flux of O+ beams that have been observed in the lobe/mantle region of the deep tail. The observations provide a consistent picture that some O+ is transported into the distant tail in the lobe/mantle region, and then enters the plasma sheet tailward of the distant neutral line. The total outflow of the O+ down the plasma sheet is a rate of 1.1x1024 ions/s, which is 10% of the total outflow rate of 1x 1025 ions/s, and of the same order as the estimated loss from dayside transport.

  10. Convection-driven delivery of plasma sheet material to the inner magnetosphere.

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Thomsen, M. F.; Lavraud, B.; Skoug, R. M.; Henderson, M. G.; Funsten, H. O.; Jahn, J.; Pollock, C. J.; Weygand, J.

    2005-12-01

    We present data from the MENA instrument onboard the IMAGE satellite taken during a period of enhanced convection on 26 June 2001. During the interval, MENA observes energetic neutral atoms (ENAs) in the magnetotail and an Earthwards-propagating enhancement in their flux, at the same time as the convection strength increases (as measured by the Kp and MBI indices). Data from the magnetospheric plasma analyser (MPA) instrument onboard satellites in geosynchronous orbit indicate that enhanced ion and electron fluxes at plasma sheet energies (~1-45 keV) are detected at the same time as enhanced ENA flux are observed at the satellite location. We interpret the results as a convection-driven delivery of plasma sheet material, the ENA signature of which we observe with IMAGE/MENA. We use the rate of the propagation of the ENA enhancement to infer the speed of the plasma sheet delivery to the inner magnetosphere.

  11. Design principles for a sheet-beam electron gun for a quasi-optical gyrotron

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace M.; Fliflet, Arne W.; Lee, Robert

    1990-03-01

    The design considerations for a magnetized sheet beam for which the electrons have energy both perpendicular and parallel to the magnetic field are examined, including the basic design principles and scaling laws, the issue of orbit crossing and electrode synthesis in a sheet beam configuration, limiting currents both in the guide tube and across the resonator, and the edge effects and their reduction or elimination by the use of edge focusing electrodes. The application envisioned for the sheet beam is the driving of a quasi-optical gyrotron for electron cyclotron resonance heating and current drive in fusion plasmas.

  12. Features of the Active Evening Plasma Sheet from MMS

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; Chandler, M. O.; Avanov, L. A.; Burch, J. L.; Coffey, V. N.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Lavraud, B.; MacDonald, E.; Mauk, B.; Mukai, T.; Nakamura, R.; Pollock, C. J.; Russell, C. T.; Saito, Y.; Sauvaud, J. A.; Torbert, R. B.; Yokota, S.

    2015-12-01

    The Magnetospheric Multiscale (MMS) mission, consisting of four identical plasmas and fields observatories, was launched into a 12 RE elliptical equatorial orbit in March 2015 and was in the process of being commissioned through August 2015. During commissioning, the orbit apogee rotated from near midnight through the evening toward the dusk sector and occasionally captured new observations of the plasma sheet, its boundary layers, and the magnetospheric tail lobes. On 22-23 June, an especially active plasma sheet was involved in a major geospace storm that developed a ring current with 200 nT DST. We report on the ion kinetic and flow features of this active plasma sheet, comparing them with familiar observations from earlier missions, as an exercise in validating the MMS observations and assessing their capabilities to provide higher time resolution in multi-point views of thin, fast-moving structures. The observed features include but are not limited to cold lobal wind streams in the lobes, tailward flowing auroral beams and conics, hot earthward field-aligned flows and counter-flows, fast cross-field convection of some flows toward the neutral sheet, and the hot isotropic plasma sheet proper. Relationships between these features, the ionosphere, and the reconnecting magnetotail will be explored and discussed, seeking preliminary conclusions.

  13. Dawn-dusk asymmetry in the northward IMF plasma sheet

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.; Newell, P. T.; Meng, C.

    2005-05-01

    During periods of northward IMF, as a result of large influx of the magnetosheath ions, the plasma sheet becomes cold and dense. During these periods, a large number of the plasma sheet ions have two components: hot (magnetospheric origin) and cold (magnetosheath origin). Based on their spectral distributions: one-component Maxwellian, two-component Maxwellian, and kappa (k), the characteristics of the plasma sheet ions were studied with DMSP satellites and a method of inferring plasma sheet ion properties from the ionospheric observations. The cold-component constituent of the two-component ions is hotter in the dawn than the dusk sector, consistent with the in situ studies that suggest that the magnetosheath ion is heated upon its entry along the plasma sheet dawn flank. This temperature asymmetry leads to a dawn-dusk asymmetry in the ion spectral distribution. The cold and hot components are closer together in temperature space, which increases the proportion of ions having (apparent) one-component distribution in the dawn flank while, in the dusk flank, the influx of the magnetosheath ions increase the density of the two-component ions. The dawn-dusk asymmetry in the cold magnetosheath ion profile should help determine the roles of various proposed magnetosheath entry mechanisms.

  14. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  15. Microwave plasmas applied for the synthesis of free standing graphene sheets

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Dias, A.; Henriques, J.; Botelho do Rego, A. M.; Ferraria, A. M.; Abrashev, M. V.; Luhrs, C. C.; Phillips, J.; Dias, F. M.; Ferreira, C. M.

    2014-09-01

    Self-standing graphene sheets were synthesized using microwave plasmas driven by surface waves at 2.45 GHz stimulating frequency and atmospheric pressure. The method is based on injecting ethanol molecules through a microwave argon plasma environment, where decomposition of ethanol molecules takes place. The evolution of the ethanol decomposition was studied in situ by plasma emission spectroscopy. Free gas-phase carbon atoms created in the plasma diffuse into colder zones, both in radial and axial directions, and aggregate into solid carbon nuclei. The main part of the solid carbon is gradually withdrawn from the hot region of the plasma in the outlet plasma stream where nanostructures assemble and grow. Externally forced heating in the assembly zone of the plasma reactor has been applied to engineer the structural qualities of the assembled nanostructures. The synthesized graphene sheets have been analysed by Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy and x-ray photoelectron spectroscopy. The presence of sp3 carbons is reduced by increasing the gas temperature in the assembly zone of the plasma reactor. As a general trend, the number of mono-layers decreases when the wall temperature increases from 60 to 100 °C. The synthesized graphene sheets are stable and highly ordered.

  16. The solar wind plasma entry and its effects on plasma sheet entropy

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.

    2008-05-01

    The solar wind enters the plasma sheet during northward and southward IMF. The connection between solar wind ions and plasma sheet cold-component ions has been demonstrated with in situ Geotail and inferred DMSP observations. The cold dense ions that originate from the solar wind are expected to decrease the entropies in the plasma sheet. Order of magnitude calculations of plasma sheet filling rate from reconnection and diffusion (either by K-H instabilities or kinetic Alfven waves) suggest that both entry mechanisms could result in roughly comparable filling rates, which are found consistent with DMSP observations. Previous studies have shown the presence of the dawn-dusk asymmetries in the plasma sheet temperatures and densities, which may be key in distinguishing various proposed entry mechanisms. This is investigated further with the entropy profiles and their dawn-dusk asymmetries during northward and southward IMF.

  17. Nature and location of the source of plasma sheet boundary layer ion beams

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.

    1995-02-01

    Onsager et al. (1991) have put forward a model of the formation of the plasma sheet boundary layer (PSBL) which relies on a steady source of plasma from a spatially extended plasma sheet, together with steady equatorward and earthward ExB convection of field lines due to reconnection at a downtail neutral line. This model is a synthesis of earlier proposals and it explains such features as an electron layer exterior to the ion boundary layer, ion velocity dispersion, counter streaming beams, low-speed cutoffs in the beams. It also explains the apparent evolution of the ion beams through 'kidney bean' shaped velocity-space distributions toward quasi-isotropic shells without invoking pitch angle scattering or energy diffusion. In this paper we explore two ramifications of the model. In principle we can map, as a function of time, the downtail neutral line distance and establish whether or not it is retreating during substorm recovery. We can also reconstruct the plasma distribution function near the neutral line to see if it is most consistent with mantle or plasma sheet plasma. We perform this analysis using International Sun Earth Explorer (ISEE) Fast Plasma Experiment (FPE) data for two plasma sheet recovery events, one on March 1, 1978, and the other on April 18, 1978. On March 1, 1978, we find evidence for an initial retreat from around 110 to 160 R(sub E) in the first 15 min; little further retreat occurs thereafter. On April 18, 1978, the neutral line location ranges from as little as 40 R(sub E) tailward of the satellite to as much as 200 R(sub E), but there is no evidence for a systematic retreat. The reconstructed ion distributions for these events are most consistent with a plasma sheet origin for the March 1 case and possibly plasma mantle or low-latitude boundary layer for the April 18 case.

  18. Plasma sheet flow damping by oscillatory flow braking

    NASA Astrophysics Data System (ADS)

    Panov, Evgeny V.; Leontyeva, Olga S.; Baumjohann, Wolfgang; Nakamura, Rumi; Amm, Olaf; Angelopoulos, Vassilis; Glassmeier, Karl-Heinz; Kubyshkina, Marina V.; Petrukovich, Anatoli A.; Sergeev, Victor A.; Weygand, James M.

    2015-04-01

    Using simultaneous observations in the near-Earth plasma sheet by five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes, conjugate ground all-sky camera observations from Canada, and magnetometer networks over North America, we show that auroral bulge dynamics is modulated by a recently discovered process known as oscillatory flow braking, which occurs at about 10 Earth radii down the Earth's magnetotail. In oscillatory flow breaking, plasma sheet flows oscillating with different periods at various distances collide, producing pressure forces that exert shear stresses on the magnetic field, transiently amplifying the vertical magnetic field component. Sporadic fast relief of these stresses through significant particle precipitations causes damping of plasma sheet fast flows.

  19. Simultaneous measurements of energetic ion (50 keV and above) and electron (220 keV and above) activity upstream of earth's bow shock and inside the plasma sheet - Magnetospheric source for the November 3 and December 3, 1977 upstream events

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Anagnostopoulos, G. C.; Krimigis, S. M.

    1987-01-01

    Simultaneous observations of energetic ions and electrons by the IMP 7 and 8 spacecraft are used here to separate temporal variations from spatial variations during the upstream ion events observed on December 3, 1977 and November 2-3, 1977, in order to determine the source of these particles. Analysis of the observations and comparison with theory shows that: (1) for each of the observed upstream enhancements, energetic ions and electrons were simultaneously present inside the plasma sheet; (2) the low-energy ion intensity profile inside the plasma sheet was relatively flat, while at higher energies there was considrable variability; (3) relativistic electron bursts were seen inside the plasma sheet and also upstream of the shock but at substantially reduced intensities; (4) the ion energy spectrum for the December 3 event, extended to energies of about 2 MeV, was identical in form with the plasma sheet and upstream of the shock; (5) ion anisotropies exhibited typically large dawn-dusk or dusk-dawn gradients and large field-aligned streaming away from the bow shock.

  20. Cold plasma heating in the plasma sheet boundary layer - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1990-01-01

    Satellite observations in recent years have confirmed that the plasma sheet boundary layer is a permanent feature of the earth's magnetotail located between the lobe and central plasma sheet during both quiet and active magnetic periods. Distinct features of the boundary layer include field aligned ion beams and intense electrostatic emissions known as broadband electrostatic noise. Since the plasma sheet boundary layer is a spatial feature of the magnetotail, within it will occur thermal mixing of the resident warm boundary layer plasma with inflowing (convecting) cold ionospheric plasma. A theoretical study involving linear theory and nonlinear numerical particle simulations is presented which examines ion beam instabilities in the presence of a thermally mixed hot and cold background plasma. It is found that the free energy in the ion beams can heat the cool ionospheric plasma to ambient plasma sheet boundary layer temperatures via broadband electrostatic noise. These results, along with recent observational reports that ionospheric outflow can account for measured plasma sheet densities, suggest that the ionospheric role in plasma sheet dynamics and content may be as large as the solar wind.

  1. Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet

    NASA Astrophysics Data System (ADS)

    Sundberg, T.; Burgess, D.; Haynes, C. T.

    2015-04-01

    Electron-scale magnetic depressions in the terrestrial plasma sheet are studied using Cluster multispacecraft data. The structures, which have an observed duration of ~5-10 s, are approximately 200-300 km wide in the direction of propagation, and they show an average reduction in the background magnetic field of 10-20%. A majority of the events are also associated with an increase in the high-energy high pitch angle electron flux, which indicates that the depressions are presumably generated by electrons with relatively high velocity perpendicular to the background magnetic field. Differences in the recorded electron spectra in the four spacecraft indicates a possible nongyrotropic structure. Multispacecraft measurements show that a subset of events are cylindrical, elongated along the magnetic field, and with a field-parallel scale size of at a minimum 500 km. Other events seem to be better described as electron-scale sheets, about 200-300 km thick. We find that no single formation mechanism can explain this variety of events observed. Instead, several processes may be operating in the plasma sheet, giving rise to similar magnetic field structures in the single-spacecraft data, but with different 3-D structuring. The cylindrical structures have several traits that are in agreement with the electron vortex magnetic holes observed in 2-D particle-in-cell simulations of turbulent relaxation, whereas the sheets, which show nearly identical signatures in the multispacecraft data, are better explained by propagating electron solitary waves.

  2. Thin current sheet embedded within a thicker plasma sheet: Self-consistent kinetic theory

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Zelenyi, L. M.; Malova, H. V.; Sharma, A. S.

    2000-06-01

    A self-consistent theory of thin current sheets, where the magnetic field line tension is balanced by the ion inertia rather than by the pressure gradient, is presented. Assuming that ions are the main current carriers and their dynamics is quasi-adiabatic, the Maxwell-Vlasov equations are reduced to the nonlocal analogue of the Grad-Shafranov equation using a new set of integrals of motion, namely, the particle energy and the sheet invariant of the quasi-adiabatic motion. It is shown that for a drifting Maxwellian distribution of ions outside the sheet the equilibrium equation can be reduced in the limits of strong and weak anisotropy to universal equations that determine families of equilibria with similar profiles of the magnetic field. In the region Bn/B0sheet and close to its central plane, the ion drift velocity outside the sheet, and the ion thermal velocity, respectively) the thickness of such similar profiles is of the order of (vT/vD)1/3ρ0, where ρ0 is the thermal ion gyroradius outside the sheet. In the limit of weak anisotropy (vT/vD>>1) the self-consistent current sheet equilibrium may also exist with no indications of the catastrophe reported earlier by Burkhart et al. [1992a]. On the contrary, it is found that in this limit the magnetic field profiles again become similar to each other with the characteristic thickness ~ρ0. The profiles of plasma and current densities as well as the components of the pressure tensor are calculated for arbitrary ion anisotropy outside the sheet. It is shown that the thin current sheet for the equilibrium considered here is usually embedded into a much thicker plasma sheet. Moreover, in the case of weak anisotropy the perturbation of the plasma density inside the sheet is shown to be proportional to the parameter vD/vT, and as a result the electrostatic effects should be small, consistent with observations. This model of the thin current sheet

  3. Plasma Sheet Velocity Measurement Techniques for the Pulsed Plasma Thruster SIMP-LEX

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Lau, Matthew

    2011-01-01

    The velocity of the first plasma sheet was determined between the electrodes of a pulsed plasma thruster using three measurement techniques: time of flight probe, high speed camera and magnetic field probe. Further, for time of flight probe and magnetic field probe, it was possible to determine the velocity distribution along the electrodes, as the plasma sheet is accelerated. The results from all three techniques are shown, and are compared for one thruster geometry.

  4. Pressure, volume, density relationships in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Kaufmann, Richard L.; Paterson, W. R.; Frank, L. A.

    2004-08-01

    Long-term-averaged three-dimensional data-based models of the plasma sheet were used to study relationships between the density n, pressure P, and temperature T of the plasma and between the volume V and particle content N of a tube that contains 1 Wb of magnetic flux. Near midnight a typical unit flux tube located at x0 = -11.5 RE was found to contain only 30% as many particles as a typical unit flux tube located at x0 = -29.5 RE. The average value of the adiabatic compression parameter PV5/3 was only 20% and 15% as large at x0 = -11.5 RE for ions and electrons, respectively, as at x0 = -29.5 RE. A decrease of the average N and PV5/3 can be caused by the ejection of plasmoids during reconnection. Such ejections are likely to be important beyond 20 RE. Fast flows, flux tube interchange, drift effects, and a heat flux are likely to be more important at lower altitudes. The entropy parameter Pn-5/3 was found to be relatively uniform throughout the region studied. The energy parameter TV2/3 decreased by 40% for ions and 10% for electrons near midnight between -29.5 and -11.5 RE. These energy parameter changes suggest that the most energetic ions and electrons are either being deenergized or preferentially lost, processes that may be associated with gradient and curvature drifts through the sides of the convecting flux tubes or by wave instabilities and a parallel heat flux.

  5. Preliminary characterization of a laser-generated plasma sheet

    NASA Astrophysics Data System (ADS)

    Keiter, P. A.; Malamud, G.; Trantham, M.; Fein, J.; Davis, J.; Klein, S. R.; Drake, R. P.

    2015-12-01

    We present the results from recent experiments to create a flowing plasma sheet. Two groups of three laser beams with nominally 1.5 kJ of energy per group were focused to separate pointing locations, driving a shock into a wedge target. As the shock breaks out of the wedge, the plasma is focused on center, creating a sheet of plasma. Measurements at 60 ns indicate the plasma sheet has propagated 2825 microns with an average velocity of 49 microns/ns. These experiments follow previous experiments [Krauland et al. 2013], which are aimed at studying similar physics as that found in the hot spot region of cataclysmic variables. Krauland et al. created a flowing plasma, which represents the flowing plasma from the secondary star. This flow interacted with a stationary object, which represented the disk around the white dwarf. A reverse shock is a shock formed when a freely expanding plasma encounters an obstacle. Reverse shocks can be generated by a blast wave propagating through a medium. They can also be found in binary star systems where the flowing gas from a companion star interacts with the accretion disk of the primary star.

  6. The inner edge of the plasma sheet and the diffuse aurora

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Vinas, A. F.

    1983-01-01

    Three dimensional measurements from the ISEE-1 low energy electron spectrometer are used to map the location of the inner edge of the plasma sheet and study the anisotropies in the electron distribution function associated with this boundary. Lower energy plasma sheet electrons have inner edges closer to the Earth than higher energies with the separations at different energies being larger near dawn and after dusk than at midnight. Lowest energy inner edges are frequently located adjacent to the plasmapause in the dawn hemisphere but are often separated from it in the dusk hemisphere by a gap of at least several Re. The energy dispersion is minimal in the afternoon quadrant where the inner edge is near the magnetopause and frequently oscillating on a time scale of minutes. The location of the inner edge is probably determined primarily by the motion of electrons in the existing electric and magnetic fields rather than by strong diffusion as has sometimes been supposed.

  7. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    SciTech Connect

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J. )

    1994-05-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mm[times]2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler ([lambda][sub [ital w

  8. ADBD plasma surface treatment of PES fabric sheets

    NASA Astrophysics Data System (ADS)

    Píchal, J.; Klenko, Y.

    2009-08-01

    Plasma treatment of textile fabrics is investigated as an alternative to the environmentally hazardous wet chemical fabric treatment and pretreatment processes. Plasma treatment usually results in modification of the uppermost atomic layers of a material surface and leaves the bulk characteristics unaffected. It may result in desirable surface modifications, e.g. surface etching, surface activation, cross-linking, chain scission and oxidation. Presented paper contains results of the applicability study of the atmospheric pressure dielectric discharge (ADBD), i.e. dielectric barrier discharge sustaining in air at atmospheric pressure and ambient temperature for synchronous treatment of several sheets of fabric. For tests sheets of polyester fabric were used. Effectivity of the modification process was determined with hydrophilicity measurements evaluated by means of the drop test. Hydrophilicity of individual sheets of fabric has distinctly increased after plasma treatment. Plasma induced surface changes of textiles were also proven by identification of new functional groups at the modified polyester fabric surface. Existence of new functional groups was detected by ESCA scans. For verification of surface changes we also applied high-resolution microphotography. It has shown distinct variation of the textile surface after plasma treatment. Important aspect for practical application of the plasma treatment is the modification effect time-stability, i.e. time stability of acquired surface changes of the fabric. The recovery of hydrophobicity was fastest in first days after treatment, later gradually diminished until reached almost original untreated state.

  9. Wave generation and particle transport in the plasma sheet and boundary layer

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.

    1987-01-01

    The one and two ion beam instability was considered as a possible explanation for the observations of broadband electrostatic noise in the plasma sheet region of the geomagnetic tail. When only hot streaming plasma sheet boundary layer ions were present, no broadband waves were excited. Cold, streaming ionospheric ions can generate electrostatic broadband waves propagating in the slow beam-acoustic mode, but the growth rates of the waves were significantly enhanced when warm boundary layer ions were presented. (Both the slow and fast beam-acoustic modes can be excited, depending on the relative ion drift.) This mode predicted that the wave intensity of the broadband noise should peak in the plasma sheet boundary layer (PSBL). Observations of less intense electrostatic waves in the lobes and plasma sheet were likely a result of the absence of warm ion beams or large ion temperatures, respectively, which resulted in smaller growth rates. The model dependence of the ion beam instability has also been studied. For cold and warm ions streaming in the same direction, researchers found wave growth peaked for wave normal angles theta = 0 deg. and wave frequencies approx. 0.1 x the electron plasma frequency. However, for anti-parallel streaming cold and warm ions, wave growth peaks near theta = 90 deg. and wave frequencies were an order of magnitude smaller.

  10. Electronic Rotator For Sheet Of Laser Light

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Rhodes, David B.; Leighty, Bradley D.; Jones, Stephen B.

    1989-01-01

    Primary flow-visualization system in Basic Aerodynamic Research Tunnel (BART) at NASA Langley Research Center is sheet of laser light generated by 5-W argon-ion laser and two-axis mirror galvanometer scanner. Generates single and multiple sheets of light, which remain stationary or driven to sweep out volume. Sine/cosine potentiometer used to orient two galvanometer/mirror devices simultaneously and yields desired result at reasonable cost and incorporated into prototype in 1 day.

  11. Substorm Evolution in the Near-Earth Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    2004-01-01

    This grant represented one-year, phase-out funding for the project of the same name (NAG5-9110 to Boston University) to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. We report here on two accomplishments: (1) Completion of an examination of plasma velocity signature at times of local onsets in the current disruption (CD) region. (2) Initial investigation into quantification of near-Earth flux-tube contents of injected plasma at times of substorm injections.

  12. Excitation of an electrostatic wave by a cold electron current sheet of finite thickness

    NASA Technical Reports Server (NTRS)

    Hwang, K. S.; Fontheim, E. G.; Ong, R. S. B.

    1983-01-01

    Calculations for the threshold of current-driven instabilities and the growth rates of ion acoustic and electrostatic ion cyclotron instabilities in a magnetized plasma driven a current sheet with a finite width are presented. Maxwellian equations are employed to model the velocity distributions of electrons and ions in a direction perpendicular to the sheet. A dispersion relation is defined for the regions of instability, and boundary conditions are characterized in order to obtain a set of eigenvalue equations. Thresholds are delineated for various regions, including ducted mode solutions where only ion-acoustic waves are excited in areas where the frequency range significantly exceeds the ion cyclotron frequency. When a constant electron drift velocity is present, a thick current sheet is more unstable than a thin one. Fewer modes become unstable with a thinner sheet.

  13. Analyzing low frequency waves associated with plasma sheet flow channels

    NASA Astrophysics Data System (ADS)

    Xing, X.; Liang, J.; Wang, C. P.; Lyons, L. R.; Angelopoulos, V.

    2014-12-01

    Low frequency (0.006~0.02 Hz) magnetic oscillations are frequently observed to be associated with the substorm-related dipolarization in the near-Earth plasma sheet. It has been suggested that these oscillations are possibly triggered by ballooning instability in the transition region. However, our multi-point observations using THEMIS spacecraft have shown that similar oscillations are observed to be associated with the earthward moving flow channels as they penetrate from middle tail to the transition region. Linear MHD wave analysis suggested that these oscillations ahead of the dipolarization front are magnetosonic waves. For most of the cases, the thermal pressure and magnetic pressures variations are anti-phase, indicating slow mode waves. However, by taking advantage of the spacecraft located very close in X-Y plane and slightly away from the central plasma sheet, we found that for many events the phase relation between the thermal and magnetic pressure variations is Z-dependent, which suggests that the observational evidence for slow mode may not be applicable. In order to further examine these waves, we performed a MHD analysis in inhomogeneous plasma sheet. The calculation shows that for Harris Sheet configuration, the thermal and magnetic pressures variations can be anti-phase for any wave other than slow mode waves where the vertical velocity disturbance reaches its maximum, thus this phase relation may not be used as an identifier of magnetosonic wave modes. We will show the dispersion relation and wave generated disturbances obtained from the numerical calculations.

  14. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  15. Earthward and tailward flows in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Wang, J. Y.; Baumjohann, W.; Rème, H.; Dunlop, M. W.

    2015-06-01

    Utilizing C3/Cluster satellite observations from the year of 2001 to 2006, we investigated the earthward flow (EF) and tailward flow (TF) at Bz > 0 in the plasma sheet. We found that the EF and the TF have similar spatial distributions. Both characteristics are independent of the distance beyond 14 RE. Both flows are deflected while closer to the Earth. Statistical results further showed that the EF/TF occur in the central plasma sheet as well as the plasma sheet boundary layer and can be observed during quiet times and periods of geomagnetic activity. A typical event reveals that the EF and the TF have different plasma population. A transition region (TR) can be formed at the interface between the EF and TF. Very significant duskward components appeared in bulk velocities for both populations. It appears that the vortical-like structure can be formed near the TR. The magnetic field within the TR is twisted and strongly fluctuates. No clear magnetic flux pileups are observed inside the TR.

  16. Investigation of solar wind dependence of the plasma sheet based on long-term Geotail/LEP data evaluation

    NASA Astrophysics Data System (ADS)

    Saeki, R.; Seki, K.; Saito, Y.; Shinohara, I.; Miyashita, Y.; Imada, S.; Machida, S.

    2014-12-01

    It is observationally known that the plasma density and temperature in plasma sheet are significantly changed by solar wind conditions [e.g., Terasawa et al., 1997]. Thus it is considered that the plasma sheet plasma is originated from the solar wind, and several entry mechanisms have been suggested. When the interplanetary magnetic field (IMF) is southward, the solar wind plasma enters the plasma sheet mainly through magnetic reconnection at the dayside magnetopause. In contrast, for the northward IMF, the double-lobe reconnection [Song et al., 1999], abnormal diffusion [Johnson and Cheng., 1997], and plasma mixing through the Kelvin-Helmholtz instability caused by viscous interaction [Hasegawa et al., 2004] have been proposed. Relative contribution of each process is, however, far from understood. In the present study, we use magnetotail observations by the Geotail spacecraft at radial distances of 10-32 Re during 12-year period from 1995 to 2006 to investigate properties of the plasma sheet. We conducted a statistical analysis with calibrated LEP-EA [Mukai et al., 1994] ion and electron data. We selected central plasma sheet observations and derived electron and ion temperature and density using the same method and criteria as Terasawa et al. [1997]. In addition, OMNI solar-wind data are used. The results show that the plasma sheet density (both ion and electron temperatures) has a good correlation with the solar wind density (kinetic energy) over the whole solar cycle. We find clear dawn-dusk asymmetry in the temperature ratio Ti/Te, i.e., the average Ti/Te is higher on the duskside than the dawn. The density also shows the dawn-dusk asymmetry and higher on the duskside than on the dawnside. A previous study by Wang et al. [2012] showed that Ti/Te is high (typically 5-10) in the magnetosheath. The statistical results, therefore, suggest that the shocked solar wind plasma can easily enter the duskside plasma sheet rather than the dawnside. We will discuss the

  17. Current sheet in plasma as a system with a controlling parameter

    SciTech Connect

    Fridman, Yu. A. Chukbar, K. V.

    2015-08-15

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein−Greene−Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  18. Current sheet in plasma as a system with a controlling parameter

    NASA Astrophysics Data System (ADS)

    Fridman, Yu. A.; Chukbar, K. V.

    2015-08-01

    A simple kinetic model describing stationary solutions with bifurcated and single-peaked current density profiles of a plane electron beam or current sheet in plasma is presented. A connection is established between the two-dimensional constructions arising in terms of the model and the one-dimensional considerations by Bernstein-Greene-Kruskal facilitating the reconstruction of the distribution function of trapped particles when both the profile of the electric potential and the free particles distribution function are known.

  19. Analysis of radiation performances of plasma sheet antenna

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  20. On the plasma-based growth of ‘flowing’ graphene sheets at atmospheric pressure conditions

    NASA Astrophysics Data System (ADS)

    Tsyganov, D.; Bundaleska, N.; Tatarova, E.; Dias, A.; Henriques, J.; Rego, A.; Ferraria, A.; Abrashev, M. V.; Dias, F. M.; Luhrs, C. C.; Phillips, J.

    2016-02-01

    A theoretical and experimental study on atmospheric pressure microwave plasma-based assembly of free standing graphene sheets is presented. The synthesis method is based on introducing a carbon-containing precursor (C2H5OH) through a microwave (2.45 GHz) argon plasma environment, where decomposition of ethanol molecules takes place and carbon atoms and molecules are created and then converted into solid carbon nuclei in the ‘colder’ nucleation zones. A theoretical model previously developed has been further updated and refined to map the particle and thermal fluxes in the plasma reactor. Considering the nucleation process as a delicate interplay between thermodynamic and kinetic factors, the model is based on a set of non-linear differential equations describing plasma thermodynamics and chemical kinetics. The model predictions were validated by experimental results. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the ‘hot’ plasma zone. Raman spectroscopy, scanning electron microscopy (SEM), and x-ray photoelectron spectroscopy (XPS) techniques have been applied to analyze the synthesized nanostructures. The microstructural features of the solid carbon nuclei collected from the colder zones of plasma reactor vary according to their location. A part of the solid carbon was deposited on the discharge tube wall. The solid assembled from the main stream, which was gradually withdrawn from the hot plasma region in the outlet plasma stream directed to a filter, was composed by ‘flowing’ graphene sheets. The influence of additional hydrogen, Ar flow rate and microwave power on the concentration of obtained stable species and carbon-dicarbon was evaluated. The ratio of sp3/sp2 carbons in graphene sheets is presented. A correlation between changes in C2 and C number densities and sp3/sp2 ratio was found.

  1. Development of a volume production type hydrogen negative ion source by using sheet plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoki; Iijima, Takaaki; Tonegawa, Akira; Sato, Kohnosuke; Kawamura, Kazutaka

    2014-10-01

    Stationary production of negative ions are important to play an essential role in Neutral beam injection (NBI). Cesium seeded Surface-production of negative ion sources are used for NBI. However, Cesium seeded surface- production of negative ion sources are not desirable from the point of view of operating steady state ion sources. We carried out the development of negative ion sources by volume-production in hydrogen sheet plasma. Production of hydrogen negative ions through volume processes needs both high energy electron region and low energy electron region. The sheet plasma is suitable for the production of negative ions, because the electron temperature in the central region of the plasma as high as 10-15 eV, whereas in the periphery of the plasma, a low temperature of a few eV of obtained. The hydrogen negative ions density were detected using an omegatron mass analyzer, while the electron density and temperature were measured using a Langmuir probe. Negative ions current extracted from the grid are measured by Faraday-cup.

  2. Statistical study of plasma sheet dynamics using ISEE 1 and 2 energetic particle flux data

    SciTech Connect

    Dandouras, J.; Re-grave-accentme, H.; Saint-Marc, A.; Sauvaud, J.A.; Parks, G.K.; Anderson, K.A.; Lin, R.P.

    1986-06-01

    During magnetospheric substorms, satellites embedded in the plasma sheet often detect transient dropouts of plasma and energetic particle fluxes, a phenomemon generally interpreted as indicating the exit of the satellite into the magnetospheric lobe due to a plasma sheet thinning. In order to determine the large-scale dynamics of the near-earth plasma sheet during substorms, three satellite years of ISEE 1 and 2 energetic particle flux data (1.5 and 6 keV), corresponding to 461 particle flux dropouts, have been analyzed. The principal results show that flux dropouts can be observed anywhere in the nightside plasma sheet, independent of the satellite's geocentric distance (for R>12R/sub E/), magnetic local time (except near the magnetospheric flanks) and estimated distance to the neutral sheet. Furthermore, flux dropouts can be observed for any combination of the AE index value and the satellite's distance to the neutral sheet, which shows that the plasma sheet is dynamic even during weak magnetospheric disturbances. Substorms during which the satellites, though situated in the plasma sheet, did not detect any flux dropout, have also been examined, and it is found that the plasma sheet thickness can locally remain unaffected by substorm development for AE index values up to at least 1000 nT. The predictions of the two major plasma sheet thinning models, i.e., the near-tail X-type magnetic neutral line formation model and the MHD rarefaction wave propagation model, are compared to the experimental results, and it is concluded that neither model can account for all of the observations; plasma sheet dynamics are more complex. Phenomenologically, this study suggests that multiple pinching of the plasma sheet and/or large-amplitude three-dimensional plasma sheet oscillations are important in plasma sheet dynamics.

  3. Survey of Galileo plasma observations in Jupiter's plasma sheet

    NASA Astrophysics Data System (ADS)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-05-01

    The plasma science (PLS) instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between ~5 and 30 Jupiter radii (RJ) in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from ~2 to 3000 cm-3 at 6 RJ to ~0.05 cm-3 at 30 RJ. The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where Ti ~ 60-80 eV) at ~6 RJ to a few keV at 30 RJ. There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System III variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 RJ.

  4. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  5. Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas

    NASA Astrophysics Data System (ADS)

    Schindler, Karl; Hesse, Michael

    2010-08-01

    This paper addresses the formation of nongyrotropic current sheets resulting from slow external driving. The medium is a collisionless plasma with one spatial dimension and a three-dimensional velocity space. The study is based on particle simulation and an analytical approach. Earlier results that apply to compression of an initial Harris sheet are generalized in several ways. In a first step a general sufficient criterion for the presence of extra ion and electron currents due to nongyrotropic plasma conditions is derived. Then cases with antisymmetric magnetic and electric fields are considered. After establishing consistency of the criterion with the earlier case, the usefulness of this concept is illustrated in detail by two further particle simulations. The results indicate that the formation of nongyrotropic current sheets is a ubiquitous phenomenon for plasmas with antisymmetric fields that have evolved slowly from initial gyrotropic states. A fourth case concerns a plasma with a unidirectional magnetic field. Consistent with the general criterion, the observed final state is fluidlike in that it is approximately gyrotropic. Momentum balance is shown to include a contribution that results from accumulation of an off-diagonal pressure tensor component during the evolution. Heat flux also plays an important role.

  6. Plasma convection and ion beam generation in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.

    1991-01-01

    Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.

  7. Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere

    NASA Astrophysics Data System (ADS)

    Frank, L. A.; Paterson, W. R.; Kurth, W. S.; Ashour-Abdalla, M.; Schriver, D.

    1989-06-01

    An electron beam was injected into earth's ionosphere on August 1, 1985, during the flight of the Space Shuttle Challenger as part of the objectives of the Spacelab 2 mission. In the wake of the Space Shuttle a magnetically aligned sheet of electrons returning from the direction of propagation of the beam was detected with the free-flying Plasma Diagnostics Package. The thickness of this sheet of returning electrons was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this sheet of electrons. A numerical simulation of the interaction of the electron beam with the ambient ionospheric plasmas is employed to show that the electron beam excites electron plasma oscillations and that it is possible for the ion acoustic instability to provide a returning flux of hot electrons by means of quasi-linear diffusion.

  8. Interaction of an interplanetary shock with the heliospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Odstrčil, D.; Dryer, M.; Smith, Z.

    1996-07-01

    The interaction of an interplanetary shock with the heliospheric plasma sheet (HPS) is simulated using the 2 12D MHD model in the meridional plane. The shock structure is generated by a velocity pulse and consists of a strong broad forward shock (FS) with a concave shape and a much weaker and narrower reverse shock (RS) with a convex shape. The flat equatorial HPS, with its larger mass density and slower flow velocity, modifies this shock structure. A dimple is formed at the FS and a reverse dimple is formed at the RS. A large distortion of the heliospheric current sheet (HCS) occurs when the velocity pulse is introduced outside the HPS. The interaction of a shock with the HPS leads to very large southward values of the interplanetary magnetic field due to an effect of shock compression, field-line draping, and deflection of the HCS.

  9. The Uranian corona as a charge exchange cascade of plasma sheet protons

    NASA Astrophysics Data System (ADS)

    Herbert, F.

    1993-03-01

    The paper uses models of magnetic convection and interparticle interactions to examine the collisional interactions between atmospheric neutral hydrogen and magnetospheric charged particles observed by Voyager to be convecting through the Uranian magnetosphere. The e(-)-H collisional ionization process, continually reenergized by compressional heating of the electrons as they drift toward Uranus, produces a cascade of new plasma. This process has been suggested elsewhere as the source of the warm (10 eV at L = 5) plasma and is found in the present study to continue in a cascade to even cooler and more abundant plasma. This newly created plasma consists almost entirely of electrons and protons because He and H2 are nearly absent from the uppermost layers of the atmosphere. If this plasma crosses the dayside magnetopause and mixes with magnetopause boundary layers such as the plasma mantle, there to be swept back along the magnetotail, reincorporated into the magnetotail by the same processes postulated for solar wind plasma entry, and reenergized in the magnetotail current sheet, it would constitute an important source for the hot plasma observed by Voyager.

  10. A new stationary analytical model of the heliospheric current sheet and the plasma sheet

    NASA Astrophysics Data System (ADS)

    Kislov, Roman A.; Khabarova, Olga V.; Malova, Helmi V.

    2015-10-01

    We develop a single-fluid 2-D analytical model of the axially symmetric thin heliospheric current sheet (HCS) embedded into the heliospheric plasma sheet (HPS). A HCS-HPS system has a shape of a relatively thin plasma disk limited by separatrices that also represent current sheets, which is in agreement with Ulysses observations in the aphelion, when it crossed the HCS perpendicular to its plane. Our model employs a differential rotation of the solar photosphere that leads to unipolar induction in the corona. Three components of the interplanetary magnetic field (IMF), the solar wind speed, and the thermal pressure are taken into account. Solar corona conditions and a HCS-HPS system state are tied by boundary conditions and the "frozen-in" equation. The model allows finding spatial distributions of the magnetic field, the speed within the HPS, and electric currents within the HCS. An angular plasma speed is low within the HPS due to the angular momentum conservation (there is no significant corotation with the Sun), which is consistent with observations. We found that the HPS thickness L decreases with distance r, becoming a constant far from the Sun (L ~2.5 solar radii (R0) at 1 AU). Above the separatrices and at large heliocentric distances, the solar wind behavior obeys Parker's model, but the magnetic field spiral form may be different from Parker's one inside the HPS. At r ≤ 245 R0, the IMF spiral may undergo a turn simultaneously with a change of the poloidal current direction (from sunward to antisunward).

  11. Propagation of small size magnetic holes in the magnetospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Yao, S. T.; Shi, Q. Q.; Li, Z. Y.; Wang, X. G.; Tian, A. M.; Sun, W. J.; Hamrin, M.; Wang, M. M.; Pitkänen, T.; Bai, S. C.; Shen, X. C.; Ji, X. F.; Pokhotelov, D.; Yao, Z. H.; Xiao, T.; Pu, Z. Y.; Fu, S. Y.; Zong, Q. G.; De Spiegeleer, A.; Liu, W.; Zhang, H.; Rème, H.

    2016-06-01

    Magnetic holes (MHs), characteristic structures where the magnetic field magnitude decreases significantly, have been frequently observed in space plasmas. Particularly, small size magnetic holes (SSMHs) which the scale is less than or close to the proton gyroradius are recently detected in the magnetospheric plasma sheet. In this study of Cluster observations, by the timing method, the minimum directional difference (MDD) method, and the spatiotemporal difference (STD) method, we obtain the propagation velocity of SSMHs in the plasma flow frame. Furthermore, based on electron magnetohydrodynamics (EMHD) theory we calculate the velocity, width, and depth of the electron solitary wave and compare it to SSMH observations. The result shows a good accord between the theory and the observation.

  12. Role of Plasma Sheet Source Population in Ring Current Dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Yu, Y.; Reeves, G. D.; Kletzing, C.; Spence, H.; Sazykin, S. Y.

    2013-12-01

    Understanding the dynamics of ring current particles during disturbed conditions remains a long-standing challenge, moreover these particles represent a seed population for the hazardous radiation belts. The formation of the storm-time ring current depends on two main factors: 1) the plasma sheet as a reservoir supplying particles that are transported earthward, and 2) the electric field as a mechanism that energizes them. To investigate ring current development on a global scale, we use our four-dimensional (4-D) ring current-atmosphere interactions model (RAM-SCB) [Jordanova et al., 2010; Zaharia et al., 2010] which solves the kinetic equation for H+, O+, and He+ ions and electrons using a self-consistently calculated magnetic field in force balance with the anisotropic ring current plasma pressure. The model boundary was recently expanded from geosynchronous orbit to 9 RE, where the plasma boundary conditions are specified from the empirical plasma sheet model TM03 [Tsyganenko and Mukai, 2003] based on Geotail data. We simulate the transport, acceleration, and loss of energetic particles from the magnetotail to the inner magnetosphere during several geomagnetic storms that occurred since the launch of the Van Allen Probes in August 2012. We compare our results with simultaneous plasma and field observations from the Energetic particle, Composition, and Thermal plasma (ECT) [Spence et al., 2013] and the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) [Kletzing et al., 2013] investigations on the Van Allen Probes. We investigate the role of the plasma sheet source population in global ring current simulations considering various boundary conditions and electric field formulations. An improved understanding of the highly coupled inner magnetosphere system is provided.

  13. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    PubMed Central

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  14. Survey of the plasma electron environment of Jupiter: A view from Voyager

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Sittler, E. C., Jr.; Bridge, H. S.

    1980-01-01

    The plasma environment within Jupiter's bow shock is considered in terms of the in situ, calibrated electron plasma measurements made between 10 eV and 5.95 keV by the Voyager plasma science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local electron density and temperature. It is tentatively concluded that the radial temperature profile within the plasma sheet is caused by the intermixing of two different electron populations that probably have different temporal histories and spatial paths to their local observation. The cool plasma source of the plasma sheet and spikes is probably the Io plasma torus and arrives in the plasma sheet as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the plasma from the centrifugal equator. The hot suprathermal populations in the plasma sheet have most recently come from the sparse, hot mid-latitude "bath" of electrons which were directly observed juxtaposed to the plasma sheet.

  15. Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere

    SciTech Connect

    Frank, L. A.; Paterson, W. R.; Ashour-Abdalla, M.; Schriver, D.; Kurth, W. S.; Gurnett, D. A.

    1989-06-01

    An electron beam was injected into Earth's ionosphere on August 1, 1985, the flight of the space shuttle /ital Challenger/ as part of the objectives of the Spacelab 2 mission. In the wake of the space shuttle a magnetically aligned sheet of electrons returning from the direction of propagation of the beam was detected with the free-flying plasma Diagnostics Package. The thickness of this sheet of returning electrons was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this sheet of electrons. A numerical simulation of the interaction of the electron beam with the ambient ionospheric plasmas is employed to show that the electron beam excites electron plasma oscillations and that it is possible for the ion ascoustic instability to provide a returning flux of hot electorns by means of quasi-linear diffusion. /copyright/ American Geophysical Union 1989

  16. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-06-15

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with the thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.

  17. The origins of the plasma in the distant plasma sheet

    NASA Technical Reports Server (NTRS)

    Sharp, R. D.; Lennartsson, W.; Peterson, W. K.; Shelley, E. G.

    1982-01-01

    It is pointed out that ion mass spectrometers operating in the keV range have recently begun to provide a new class of information on magnetospheric processes. One of the principal motivations for the development of energetic ion mass spectrometers has been to investigate the origins of the hot plasma populations of the magnetosphere. Peterson et al. (1981) were able to estimate the fractional ion density of ionospheric origin in five intervals by intercomparing the He(++) and H(+) spectra and assuming the excess low-energy H(+) ions were from the ionosphere. They obtained values in the range from 0.1 to 0.65. The present investigation is concerned with an expansion of the previous study. A substantially larger data base is utilized, and a different set of assumptions is considered to infer the relative fractions of solar and ionospheric H(+) and to look for systematic changes in the relative source strengths with magnetic activity.

  18. Association of plasma sheet variations with auroral changes during substorms

    SciTech Connect

    Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Parks, G.K.

    1988-01-01

    Images of the southern auroral oval taken by the University of Iowa auroral imaging instrumentation on the Dynamics Explorer 1 satellite during an isolated substorm are correlated with plasma measurements made concurrently by the ISEE 1 satellite in the magnetotail. Qualitative magnetic field configuration changes necessary to relate the plasma sheet boundary location to the latitude of the auroras are discussed. Evidence is presented that the longitudinal advances of the auroras after expansive phase onset are mappings of a neutral line lengthening across the near-tail. We observe a rapid poleward auroral surge, occurring about 1 hour after expansive phase onset, to coincide with the peak of the AL index and argue that the total set of observations at that time is consistent with the picture of a /open quotes/poleward leap/close quotes/ of the electrojet marking the beginning of the substorm's recovery. 9 refs. 3 figs.

  19. A Gridded Electron Gun for a Sheet Beam Klystron

    SciTech Connect

    Read, M.E.; Miram, G.; Ives, R.L.; Ivanov, V.; Krasnykh, A.; /SLAC

    2008-04-25

    This paper describes the development of an electron gun for a sheet beam klystron. Initially intended for accelerator applications, the gun can operate at a higher perveance than one with a cylindrically symmetric beam. Results of 2D and 3D simulations are discussed.

  20. Sources and Transport of Plasma Sheet Ions During Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Raeder, J.; Walker, R. J.; Frank, L. A.; Paterson, W. R.

    1998-01-01

    This study investigates the sources and transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that took place on November 24, 1996. The sources and acceleration mechanisms of ions observed at Geotail were determined by calculating the trajectories of thousands of ions backward in time. We found that during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and were already in the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase more plasma mantle ions reached the Geotail location. Indeed, during the expansion phase more than 90% of the ions were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the energy gained was achieved by non-adiabatic acceleration during the ions' crossing of the equatorial current sheet just prior to the detection of the ions.

  1. Casimir effects for a flat plasma sheet: I. Energies

    NASA Astrophysics Data System (ADS)

    Barton, G.

    2005-04-01

    We study a fluid model of an infinitesimally thin plasma sheet occupying the xy plane, loosely imitating a single base plane from graphite. In terms of the fluid charge e/a2 and mass m/a2 per unit area, the crucial parameters are q ⋡ 2πe2/mc2a2, a Debye-type cutoff K\\equiv \\sqrt{4\\pi }/a on surface-parallel normal-mode wavenumbers k, and X ⋡ K/q. The cohesive energy β per unit area is determined from the zero-point energies of the exact normal modes of the plasma coupled to the Maxwell field, namely TE and TM photon modes, plus bound modes decaying exponentially with |z|. Odd-parity modes (with Ex,y(z = 0) = 0) are unaffected by the sheet except for their overall phases, and are irrelevant to β, although the following paper shows that they are essential to the fields (e.g. to their vacuum expectation values), and to the stresses on the sheet. Realistically one has X Gt 1, the result β ~ planckcq1/2K5/2 is nonrelativistic, and it comes from the surface modes. By contrast, X Lt 1 (nearing the limit of perfect reflection) would entail β ~ -planckcqK2log(1/X): contrary to folklore, the surface energy of perfect reflectors is divergent rather than zero. An appendix spells out the relation, for given k, between bound modes and photon phase-shifts. It is very different from Levinson's theorem for 1D potential theory: cursory analogies between TM and potential scattering are apt to mislead.

  2. Kinetic electron bounce instability in a 2D current sheet - Implication for substorm dynamics

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Tur, A.; Louarn, P.

    2013-12-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic ballooning-type instabilities in resonant interaction with trapped bouncing electrons in a 2D current sheet. Tur et al. 2010 and Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Here, we generalize the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly stretched current sheet (Bz > 0.1 Blobes) undamped and stable modes oscillate at typical electron bounce frequency with wavelength (in y) of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in epsilon=Bz/Blobes < 0.05 typically, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few tens of seconds. The free energy contained in the electron bouncing motion could thus trigger and drive an electromagnetic instability able to disrupt the cross-tail current in a few seconds. The role of the temperature ratio Te/Ti is also evaluated.

  3. Dense attosecond electron sheets from laser wakefields using an up-ramp density transition.

    PubMed

    Li, F Y; Sheng, Z M; Liu, Y; Meyer-ter-Vehn, J; Mori, W B; Lu, W; Zhang, J

    2013-03-29

    Controlled electron injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense plasma target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic electron sheet that is injected and accelerated in the wakefield. A peaked electron energy spectrum and high charge (∼nC) distinguish the final sheet. PMID:23581329

  4. Sub-Proton Scale Magnetic Holes: Turbulence Simulations, Theory and Cluster Observations in the Earth's Plasma Sheet.

    NASA Astrophysics Data System (ADS)

    Haynes, C. T.; Burgess, D.; Camporeale, E.; Sundberg, T.

    2014-12-01

    We investigate the properties of a new type of nonlinear coherent structure, called electron vortex magnetic holes (EVMHs) discovered during 2-D full particle realistic mass ratio simulations of turbulence. These structures form via the interaction of magnetic depletions and the local electron population in the plasma. They are characterised by local depressions in the magnetic field strength with circular cross-sections. We use PIC and test particle simulations to show that the magnetic structure is maintained by a current carried by an electron vortex which is due to a population of electrons with pitch angles close to 90 degrees in trapped, or quasi-trapped, non-adiabatic orbits. We then compare these results to Cluster observations of electron-scale magnetic holes (MH) in the Earth's plasma sheet. MHs in the solar wind are often explained in terms of the mirror mode instability. Here, in the plasma sheet, we show MH events in mirror stable environments, with high electron perpendicular temperature anisotropy, which cannot be explained in terms of a standard mirror mode growth. We show that EVMHs may provide a theoretical explanation for a majority of the MHs observed in the plasma sheet at scales less than the proton thermal gyroradius.

  5. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; Strangeway, R. J.; Leinweber, H. K.; Le, G.; Bromund, K. R.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.; Paterson, W.; Avanov, L. A.; Fuselier, S. A.; Genestreti, K.; Burch, J. L.; Torbert, R. B.; Chutter, M.; Argall, M. R.; Anderson, B. J.; Lindqvist, P.-A.; Marklund, G. T.; Khotyaintsev, Y. V.; Mauk, B. H.; Cohen, I. J.; Baker, D. N.; Jaynes, A. N.; Ergun, R. E.; Singer, H. J.; Slavin, J. A.; Kepko, E. L.; Moore, T. E.; Lavraud, B.; Coffey, V.; Saito, Y.

    2016-05-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  6. Electron acceleration in the turbulent reconnecting current sheets in solar flares

    NASA Astrophysics Data System (ADS)

    Wu, G. P.; Huang, G. L.

    2009-07-01

    Context: We investigate the nonlinear evolution of the electron distribution in the presence of the strong inductive electric field in the reconnecting current sheets (RCS) of solar flares. Aims: We aim to study the characteristics of nonthermal electron-beam plasma instability and its influence on electron acceleration in RCS. Methods: Including the external inductive field, the one-dimensional Vlasov simulation is performed with a realistic mass ratio for the first time. Results: Our principal findings are as follows: 1) the Buneman instability can be quickly excited on the timescale of 10-7 s for the typical parameters of solar flares. After saturation, the beam-plasma instabilities are excited due to the non-Maxwellian electron distribution; 2) the final velocity of the electrons trapped by these waves is of the same order as the phase speed of the waves, while the untrapped electrons continue to be accelerated; 3) the inferred anomalous resistance of the current sheet and the energy conversion rate are basically of the same order as those previously estimated, e.g., “the analysis of Martens”. Conclusions: The Buneman instability is excited on the timescale of 10-7 s and the wave-particle resonant interaction limits the low-energy electrons to be further accelerated in RCS.

  7. On the average shape and position of the geomagnetic neutral sheet and its influence on plasma sheet statistical studies

    SciTech Connect

    Dandouras, J. )

    1988-07-01

    A geometric model of the average geomagnetic neutral sheet is presented. The average neutral sheet is best fitted by a smooth warped surface that crosses the solar magnetospheric equatorial plane near the tail flanks and that has no slope discontinuities. The geometry is defined to fit a magnetohydrostatic equilibrium model of the magnetotail, and the values of the parameters are determined by minimizing the Rms deviation from zero of the satellite distance to the model position of the neutral sheet when B{sub X} polarity reversals are observed. The average neutral sheet position given here is optimized for geocentric distances of the order of 20 - 22 R{sub E} (ISEE orbit). Comparison with the Fairfield neutral sheet model, which is optimum for R 30 - 40 R{sub E}, shows the overall geometric stability of the average neutral sheet and its alignment parallel to the solar wind flow. A small flattening that is observed as a function of the increasing geocentric distance is due to the greater magnetopause radius and the reduced influence of the tilted geomagnetic dipole. The model presented here is used to examine the spatial distribution of the particle flux dropouts observed in the plasma sheet, and it is confirmed that in the central magnetotail ({vert bar} Y {vert bar} < 10 R{sub E}) the plasma sheet can be completely pinched during substorms.

  8. Fermi I electron acceleration by magnetic reconnection exhausts on closely stacked current sheets near the heliopause

    NASA Astrophysics Data System (ADS)

    Czechowski, A.; Grzedzielski, S.; Strumik, M.

    2010-03-01

    Recent observations (up to 32 AU) of solar wind reconnection exhausts suggest fairly frequent occurrence of such events on current sheets associated with the ICME fronts and on the heliospheric current sheet (HCS). Comparison of relevant plasma β values and magnetic field strengths with conditions in the heliosheath indicates that reconnection may also take place in the heliosheath, especially towards the heliopause where the folds of HCS are expected to be pressed together by the slowing of solar plasma flow. We propose a Fermi I type acceleration mechanism in which particles gain energy by random collisions reconnection exhausts expanding typically with local Alfven speed. The most probable place for this process is a (several wide) region of tightly folded HCS near the nose of heliopause. The process may in particular provide the mechanism of accelerating the electrons needed for generation of 2-3 kHz heliospheric emissions.

  9. Plasma convection and ion beam generation in the plasma sheet boundary layer

    SciTech Connect

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A. )

    1991-02-01

    Because of the dawn-dusk ekectric field E{sub dd}, plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V{sup {minus}2/3}g(v{sup 2}V{sup 2/3}), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from {beta} > 1 in the CPS to {beta} {much lt} 1 in the lobe, the authors study evolution of the ion distribution function considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E{sub dd} {times} B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that during the early stages after launching the KAWs a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS. They also discuss the effects on the polytropic index {gamma} by simultaneous convection and wave-induced diffusion, both in the PSBL and CPS. They find that {gamma} is less than the adiabatic value ({gamma}{sub ad} = 5/3) in the OCPS but approaches the adiabatic value in the CPS and in the PSBL.

  10. SOIS Support for Onboard Device Virtualisation and the Use of Electronic Data Sheets

    NASA Astrophysics Data System (ADS)

    Fowell, Stuart D.; Melvin, Richard; Mendham, Peter; Torelli, Felice; Taylor, Chris

    2014-08-01

    This paper describes the motivation for, current status of prototyping, and planned standardisation of SOIS Electronic Data Sheets. This is based upon the recent "Adoption of Electronic Data Sheets for Device Virtualisation for Onboard Devices" TRP project for ESA.

  11. Particle energization and current sheets in Alfvenic plasma turbulence

    NASA Astrophysics Data System (ADS)

    Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto

    2015-11-01

    Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.

  12. The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?

    SciTech Connect

    Borovsky, J.E.; Thomsen, M.F.; McComas, D.J.

    1997-10-01

    A few times per month, the density of the plasma sheet is several times higher than its usual density. Such superdense plasma sheet intervals are observed both in the midtail region and at geosynchronous orbit. Typically at geosynchronous orbit, a superdense plasma sheet occurs on the first day of a geomagnetic storm and lasts about 12{endash}18 hours. The occurrences of superdense plasma sheets are found to be related to a distinct pattern of Kp: Kp rising after it has been low for an extended period. The occurrences are also associated with high-density solar wind. Three sources for the material of the superdense plasma sheet are explored: (1) the outer plasmasphere, which is stripped away and drawn into the dayside neutral line when Kp increases, wherein it joins the lobe and eventually joins the plasma sheet; (2) high-density solar-wind, which may have its entry into the plasma sheet controlled by the solar-wind magnetic field; and (3) ionospheric outflow, which is known to be Kp dependent. The occurrence of a superdense plasma sheet has several consequences: it adds to the intensity of the ring current, it may alter the dynamics of the magnetotail and the nature of substorms, and it may provide an enhanced source population for storm-time energetic particles. {copyright} 1997 American Geophysical Union

  13. Propagation of an interplanetary shock along the heliospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Odstrčil, D.; Dryer, M.; Smith, Z.

    1996-09-01

    Propagation of an interplanetary shock along the heliospheric plasma sheet (HPS) is simulated using a high-resolution numerical MHD model in the meridional plane. The ambient solar wind contains two opposite orientations of the interplanetary magnetic field above and below the equatorial plane. These regions are separated by a thin transition layer that represents the heliospheric current sheet contained within the HPS. A pulse is introduced at the inner boundary (0.1 AU) into this steady state to initiate the interplanetary shock. The HPS with its weaker intensity of the magnetic field, larger mass density, and slower flow velocity modifies the global shock structure. A dimple is formed at the forward shock front, a reverse dimple is formed at the reverse shock, and the contact discontinuity is significantly distorted. Weak compression of the HPS occurs beyond the forward shock front due to the postshock increase of the azimuthal magnetic pressure. Although slight collimation of mass flow takes place toward the axis of the HPS, an antisunward protrusion (``pimple'') within the shock front's dimple did not form in our simulation.

  14. Particle boundary structures at the magnetopause and the plasma sheet

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Lin, C. S.; Anderson, K. A.; Lin, R. P.; Reme, H.; Coroniti, F.; Meng, C.; Pellat, R.

    1979-01-01

    There are three classes of particle events in the vicinity of the magnetopause: a layer of particles right at the magnetopause which we identify with the boundary layer particles; spikes of particles just ahead of the magnetopause; and, sometimes, magnetosheath-like ions appearing inside the magnetosphere, the inclusion events. The energy spectra of these three classes of events are very similar, indicating a common particle source. The presence of a particle layer at the outer boundary of the plasma sheet is shown. This layer has typical dimensions of a few thousand km at 20 Earth radii. A typical velocity is a few tens of km/sec. These velocities and dimensions projected to ionospheric heights resemble those of visual auroras and suggest that aurorally associated particle phenomena are being detected.

  15. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    SciTech Connect

    Catapano, F. Zimbardo, G.; Artemyev, A. V. Vasko, I. Y.

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  16. Observation of the plasma boundary layer at lunar distances - Direct injection of plasma into the plasma sheet

    NASA Technical Reports Server (NTRS)

    Sanders, G. D.; Maher, L. J.; Freeman, J. W.

    1980-01-01

    The paper presents observational evidence from the Apollo suprathermal ion detector experiments that the injection of magnetosheath particles at the low-latitude magnetopause operates at lunar distances as well. An interface between the magnetosheath and the plasma sheet, termed the plasma sheet boundary layer (PSBL), is identified and believed to be the extension of the magnetospheric boundary layer (also called the plasma boundary layer) observed on the dayside. Using measurements of the PSBL's thickness, magnetic field, and plasma velocity the average electric potential drop across the PSBL is estimated at 4.2 kV and compared with the potential drop which is needed to insure that the magnetopause is an equipotential for a closed magnetosphere. It was concluded though that the magnetosphere is open since this drop is much larger than 4.2 kV.

  17. Preliminary empirical model of inner boundary of ion plasma sheet

    NASA Astrophysics Data System (ADS)

    Cao, J. B.; Zhang, D.; Reme, H.; Dandouras, I.; Sauvaud, J. A.; Fu, H. S.; Wei, X. H.

    2015-09-01

    The penetration of the plasma sheet into the inner magnetosphere is important to both ring current formation and spacecraft charging at geosynchronous orbit. This paper, using hot ion data recorded by HIA of TC-1/DSP, establishes an empirical model of the inner boundary of ion plasma sheet (IBIPS) on the near equatorial plane. All IBIPS are located inside geocentric radial distance of 9 RE. We divided local times (LT) into eight local time bins and found that during quiet times (Kp ⩽ 2-), the IBIPS is closest to the Earth on the pre-midnight side (LT = 1930-2130) and farthest on the dawn side (LT = 0430-0730), which differs from previous spiral models. The geocentric radius of IBIPS in each local time bin can be described by a linear fitting function: Rps = A + Bkp · Kp. The changing rate Bkp of the radius of IBIPS relative to Kp index on the midnight side (LT = 2230-0130) and post-night side (LT = 0130-0430) are the two largest (0.66 and 0.67), indicating that the IBIPS on the night side (LT = 2230-0430) moves fastest when Kp changes. Since the IBIPSs in different local times bins have different changing rates, both the size and shape of IBIPS change when Kp varies. The correlation coefficients between the radius of IBIPS and the instantaneous Kp increase with the increase of ΔT (the time difference between IBIPS crossing time and preceding Kp interval), which suggests that with the increase of ΔT, the radius of IBIPS is more and more controlled by instantaneous Kp, and the influence of preceding Kp becomes weaker. The response time of IBIPS to Kp is between 80 and 95 min. When ΔT > 95 min, the correlation coefficient basically keeps unchanged and only has a weak increase, suggesting that the IBIPS is mainly determined by the convection electric field represented by instantaneous Kp.

  18. Restructured graphene sheets embedded carbon film by oxygen plasma etching and its tribological properties

    NASA Astrophysics Data System (ADS)

    Guo, Meiling; Diao, Dongfeng; Yang, Lei; Fan, Xue

    2015-12-01

    An oxygen plasma etching technique was introduced for improving the tribological properties of the graphene sheets embedded carbon (GSEC) film in electron cyclotron resonance plasma processing system. The nanostructural changing in the film caused by oxygen plasma etching was examined by transmission electron microscope, Raman spectroscopy and X-ray photoelectron spectroscopy, showing that the 3 nm thick top surface layer was restructured with smaller graphene nanocrystallite size as well as higher sp3 bond fraction. The surface roughness, mechanical behavior and tribological properties of the original GSEC and oxygen plasma treated GSEC films were compared. The results indicated that after the oxygen plasma treatment, the average roughness decreased from 20.8 ± 1.1 nm to 1.9 ± 0.1 nm, the hardness increased from 2.3 ± 0.1 GPa to 2.9 ± 0.1 GPa, the nanoscratch depth decreased from 64.5 ± 5.4 nm to 9.9 ± 0.9 nm, and the wear life increased from 930 ± 390 cycles to more than 15,000 frictional cycles. The origin of the improved tribological behavior was ascribed to the 3 nm thick graphene nanocrystallite film. This finding can be expected for wide applications in nanoscale surface engineering.

  19. Magnetic reconnection at the solar wind current sheets as a possible cause of strahl electrons acceleration and SEP dropouts

    NASA Astrophysics Data System (ADS)

    Khabarova, O.; Zharkova, V. V.

    2014-12-01

    According to the shape of the electron velocity distribution function, there are two populations of suprathermal electrons: halo and strahls (beams). The halo electrons are omni-directional, and strahls are magnetic field aligned beams of electrons that predominantly move in the anti-sunward direction. Properties of strahls represent a great interest, because this population is most energetic, but its origination is still unclear. Usually, it is supposed that strahls is a focused part of halo electrons, non-scattered during their propagation from the Sun. We demonstrate a possibility to better understand nature of strahls if to suggest their acceleration directly in the solar wind due to a magnetic reconnection, occurring at current sheets. We use results of our PIC-simulation of particles behaviour at reconnecting current sheets (Zharkova, Khabarova, ApJ, 2012) in order to explain such effects as:- mismatches between a position of suprathermal electrons pitch-angle changes and real crossing of the heliospheric current sheet,- correlation between heat flux/solar energetic particles dropouts and high plasma beta,- occurrence of counterstreaming electrons at the ICME front and at corotating shocks at r > 2 AU,- radial evolution of strahls/halo density.Multi-spacecraft observations (STEREO, ACE, Ulysses) of properties of suprathermal electrons attributed to crossings of the heliospheric current sheet as well as smaller-scale current sheets during SEP events and CME-CIR interactions will be discussed.

  20. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  1. Interaction of an interplanetary shock with the heliospheric plasma sheet

    NASA Technical Reports Server (NTRS)

    Odstrcil, D.; Dryer, M.; Smith, Z.

    1995-01-01

    Interplanetary shocks often propagate along the heliospheric plasma sheet (HPS) where the interplanetary magnetic field (IMF) changes its polarity. This problem is investigated by the time-dependent 2.5-D MHD numerical model in the meridional plane. An example of computation is shown in the figure using density (log) contours and IMF vectors. Values of plasma parameters along the HPS fluctuate in time due to the Kelvin-Helmholtz instability. The HPS with its decreased intensity of the IMF as well as with its increased mass density causes a dimple in the shock structure (relatively weak for the forward shock, significant for the reverse shock, and very large for the contact discontinuity). Beyond the forward shock, the HPS is slightly compressed due to the post-shock increase of the azimuthal IMF component. Then follows expansion of the HPS surrounded by the highly-deformed contact discontinuity. A significant draping of IMF lines occurs around this structure that increases the meridional component of the IMF. This can cause a favorable condition for initiation of a geomagnetic storm.

  2. Bursty bulk flows in the inner central plasma sheet

    NASA Technical Reports Server (NTRS)

    Angelopoulos, V.; Baumjohann, W.; Kennel, C. F.; Coronti, F. V.; Kivelson, M. G.; Pellat, R.; Walker, R. J.; Luehr, H.; Paschmann, G.

    1992-01-01

    High-speed flows in the inner central plasma sheet (first reported by Baumjohann et al. (1990) are studied, together with the concurrent behavior of the plasma and magnetic field, by using AMPTE/IRM data from about 9 to 19 R(E) in the earth magnetotail. The conclusions drawn from the detailed analysis of a representative event are reinforced by a superposed epoch analysis applied on two years of data. The high-speed flows organize themselves in 10-min time scale flow enhancements called here bursty-bulk flow (BBF) events. Both temporal and spatial effects are responsible for their bursty nature. The flow velocity exhibits peaks of very large amplitude with a characteristic time scale of the order of a minute, which are usually associated with magnetic field dipolarizations and ion temeperature increases. The BBFs represent intervals of enhanced earthward convection and energy transport per unit area in the y-z GSM direction of the order of 5 x 10 exp 19 ergs/R(E-squared).

  3. Interaction of an interplanetary shock with the heliospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Odstrcil, D.; Dryer, M.; Smith, Z.

    1995-06-01

    Interplanetary shocks often propagate along the heliospheric plasma sheet (HPS) where the interplanetary magnetic field (IMF) changes its polarity. This problem is investigated by the time-dependent 2.5-D MHD numerical model in the meridional plane. An example of computation is shown in the figure using density (log) contours and IMF vectors. Values of plasma parameters along the HPS fluctuate in time due to the Kelvin-Helmholtz instability. The HPS with its decreased intensity of the IMF as well as with its increased mass density causes a dimple in the shock structure (relatively weak for the forward shock, significant for the reverse shock, and very large for the contact discontinuity). Beyond the forward shock, the HPS is slightly compressed due to the post-shock increase of the azimuthal IMF component. Then follows expansion of the HPS surrounded by the highly-deformed contact discontinuity. A significant draping of IMF lines occurs around this structure that increases the meridional component of the IMF. This can cause a favorable condition for initiation of a geomagnetic storm.

  4. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1994-01-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  5. Communication through a plasma sheet around a fast moving vehicle

    NASA Astrophysics Data System (ADS)

    Sotnikov, V. I.; Mudaliar, S.; Genoni, T.; Rose, D.; Oliver, B. V.; Mehlhorn, T. A.

    2011-10-01

    Investigation of the complicated problem of scattering of electromagnetic waves on turbulent pulsations induced by a sheared flow inside a plasma sheath is important for many applications including communication with hypersonic and re-entry vehicles. Theoretical and computational work aimed at improving the understanding of electromagnetic wave scattering processes in such turbulent plasmas is presented. We analyze excitation of low frequency ion-acoustic type oscillations in a compressible plasma flow with flow velocity shear and influence of such turbulent pulsations on scattering of high frequency electromagnetic waves used for communication purposes. We have appropriately included in our analysis the presence of electron and ion collisions with neutrals as well as electron - ion collisions. Results of numerical solutions for plasma density and electric field perturbations for different velocity profiles have been used in the derived expressions for scattered wave energy and scattering cross section. Work supported by the Air Force Research Laboratory and Air Force Office Of Scientific Research Sandia is a multiprogram laboratory operated by Sandia Corporation, A Lockheed Martin Company, under contract DE-AC04-94AL85000.

  6. The Interaction of C-Band Microwaves with Large Plasma Sheets

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Huo, Wenqing; Yang, Xinjie; Xu, Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  7. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-01-01

    The auroral motions and geomagnetic changes the characterize the substorm's expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  8. Poleward leaping auroras, the substorm expansive and recovery phases and the recovery of the plasma sheet

    SciTech Connect

    Hones, E.W.

    1992-05-01

    The auroral motions and geomagnetic changes the characterize the substorm`s expansive phase, maximum epoch, and recovery phase are discussed in the context of their possible associations with the dropout and, especially, the recovery of the magnetotail plasma sheet. The evidence that there may be an inordinately sudden large poleward excursion or displacement (a poleward leap) of the electrojet and the auroras at the expansive phase-recovery phase transition is described. The close temporal association of these signatures with the recovery of the plasma sheet, observed on many occasions, suggests a causal relationship between substorm maximum epoch and recovery phase on the one hand and plasma sheet recovery on the other.

  9. Electron plasma orbits from competing diocotron drifts.

    PubMed

    Hurst, N C; Danielson, J R; Baker, C J; Surko, C M

    2014-07-11

    The perpendicular dynamics of a pure electron plasma column are investigated when the plasma spans two Penning-Malmberg traps with noncoinciding axes. The plasma executes noncircular orbits described by competing image-charge electric-field (diocotron) drifts from the two traps. A simple model is presented that predicts a set of nested orbits in agreement with observed plasma trajectories. PMID:25062198

  10. MMS observations of small-scale field-aligned currents in the plasma sheet boundary layer during storm-time substorms

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi

    2016-04-01

    During major substorms at 0315 and 0505 UT on June 23 2015, the four MMS spacecraft, located near the center of the current wedge, enabled us to resolve detailed properties of the field-aligned currents in the plasma sheet boundary layer during its thinning and expansion. In particular, during the expansion of the plasma sheet, transient small-scale field-aligned currents were detected near the large-scale separatrix region. In this study we analyze their temporal and spatial evolution based on multi-point measurements of fields and plasma. We found ion-scale downward field-aligned currents, which are well correlated with the field-aligned upward electron beams. These upward electrons are most likely accelerated between the ionosphere and the spacecraft, and are associated with the intensified reconnection jets that cause the expansion of the plasma sheet.

  11. Tearing instabilities driven by nonideal effects in the tail plasma sheet

    SciTech Connect

    Sundaram, A. K

    2008-05-15

    Using an extended magnetohydrodynamic description, the excitation of tearing modes is analytically investigated in the tail plasma sheet region that includes the magnetic field components B{sub 0x}(x,z) and B{sub 0z}(x,z). Taking electron inertia and the Hall effect into account, a generalized technique is displayed for obtaining the tearing solutions near the singular layer, where the B{sub 0x}(x,z) field reverses sign at z=0. In two-dimensional tail geometry for scale lengths of order c/{omega}{sub pe}, it is shown that a localized tearing mode as well as a mode with broad spatial extent ({delta}{sup '}-driven mode) is excited near the field reversal region and these modes are mainly driven by electron inertia. For appropriate current sheet parameters, it is found that the localized mode becomes unstable in a couple of minutes while the mode with broad spatial width grows faster in 10 s. For three-dimensional perturbations wherein k{sub x},k{sub y}{ne}0, the combined effects of the Hall term and the electron inertia are shown to excite new localized tearing modes with considerably enhanced growth rates ({gamma}>{omega}{sub ci})

  12. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  13. Ion beams in the plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.; Runov, A.; Zhou, X.-Z.

    2015-09-01

    We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent-shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near-tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population, which, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with "Time History of Events and Macroscale Interactions during Substorms" observations.

  14. Substorm Evolution in the Near-Earth Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Erickson, Gary M.

    2003-01-01

    The goal of this project is to determine precursors and signatures of local substorm onset and how they evolve in the plasma sheet using the Geotail near-Earth database. This project is part of an ongoing investigation involving this PI, Nelson Maynard (Mission Research Corporation), and William Burke (AFRL) toward an empirical understanding of the onset and evolution of substorms. The first year began with dissemination of our CRRES findings, which included an invited presentation and major publication. The Geotail investigation began with a partial survey of onset signature types at distances X less than 15 R(sub E) for the first five months (March-July 1995) of the Geotail near-Earth mission. During the second year, Geotail data from March 1995 to present were plotted. Various signatures at local onset were catalogued for the period through 1997. During this past year we performed a survey of current-disruption-like (CD-like) signatures at distances X less than or equal to 14 R(sub E) for the three years 1995-1997.

  15. Laser frequency modulation with electron plasma

    NASA Technical Reports Server (NTRS)

    Burgess, T. J.; Latorre, V. R.

    1972-01-01

    When laser beam passes through electron plasma its frequency shifts by amount proportional to plasma density. This density varies with modulating signal resulting in corresponding modulation of laser beam frequency. Necessary apparatus is relatively inexpensive since crystals are not required.

  16. Observations of magnetic merging and the formation of the plasma sheet in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Anderson, K. A.; Mccoy, J. E.; Russell, C. T.

    1977-01-01

    Particle and magnetic field observations of the field line merging process in the earth's magnetotail are presented. By analyzing the lunar shadow pattern of electron fluxes detected by the lunar-orbiting Apollo 16 subsatellite it has been possible to identify the topology and to measure the velocity of the magnetotail field lines. The observations reported here were made as the moon crossed the separatrix between premerging and merged field lines. The measured field line velocities toward the merging region were 30-60 km/s, and the thickness of the separatrix was estimated to be about 2000 km. Most of the magnetic energy released in the merging process appears to go into the energization of particles. The length and the thickness of the merging region are inferred to be of the order of about 10 earth radii and about 4000 km, respectively. The energized particles travel away from the merging region along the separatrix. Those headed earthward may form the plasma sheet by being trapped on closed field lines. The rate of energization and the energy spectrum of those particles are consistent with those required for formation of the plasma sheet.

  17. Relationship between wave-like auroral arcs and Pi2 pulsations in plasma sheet during substorms

    NASA Astrophysics Data System (ADS)

    Chang, T. F.; Cheng, C. Z.

    2014-12-01

    The observations of substorm onset phenomena in the magnetosphere and ionosphere are examined to investigate their correlation and to understand the substorm onset mechanism. In particular, we examine the Pi2 wave structure, propagation, frequency in the magnetosphere observed by the THEMIS satellites in the near-Earth plasma sheet and the structure and propagation of the substorm auroral onset arcs. The azimuthal mode number values of the wave-like substorm arcs are found to be in the range of ~ 100 - 260 and decrease with increasing geomagnetic latitude of the substorm auroral arc location. The wave-like arc brightness structures on the substorm auroral arcs tend to move azimuthally westward, but with a few exceptions of eastward movement, during tens of seconds prior to the substorm onset. The movement of the wave-like arc brightness structure is linearly correlated with the phase velocity of the Pi2 δBy pulsations in the near-Earth plasma sheet region. The result suggests that the Pi2 transverse δBy disturbances are related to the intensifying wave-like substorm onset arcs. One plausible explanation of the observations is the kinetic ballooning instability, which has high azimuthal mode number due to the ion gyro-radius effect and finite parallel electric field that accelerates electrons into the ionosphere to produce the wave-like arc structure.

  18. Measurement of the negative hydrogen ions temperature by using an omegatron mass analyzer in the sheet plasma

    NASA Astrophysics Data System (ADS)

    Takimoto, Toshikio; Iijima, Takaaki; Tanaka, Yuta; Hase, Takuya; Tonegawa, Akira; Sato, Kohnosuke; Kawamura, Kazutaka

    2015-09-01

    The production mechanisms of negative ions in hydrogen plasma are not easily understood because of the complex phenomena of atomic and molecular reactions. A mainstream measurement of H- is a laser photodetachment technique. We had measured negative ions using a laser photodetachment technique. Consequently, under a secondary hydrogen gas supply entering into the plasma, the H- is distributed in the periphery of the sheet plasma. In addition, it has been reported that the negative hydrogen ions transport velocity evaluated by the relaxation time of optically released electron current. Nevertheless, this technique a laser photodetachment cannot be used as a mass analyzer. In this paper, we have measured the temperature of the negative hydrogen ions TH- by using an omegatron mass analyzer in the sheet plasma. The TH- is determined by measuring the collection ion currents IH- as a function of the ion repeller voltage VG2 by using an omegatron mass analyzer. From the fitting an exponential region of the measured I-V characteristics curve, TH- is around 1.40 eV at the gas pressure of 0.23 Pa in the periphery region of the sheet plasma.

  19. Energetic particle beams in the plasma sheet boundary layer following substorm expansion - Simultaneous near-earth and distant tail observations

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Baker, D. N.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.; Klecker, B.; Terasawa, T.; Tsurutani, B. T.

    1986-01-01

    Simultaneous observations of ions and electron beams in the near-earth and deep magnetotail following the onset of substorm are analyzed in terms of the substorm neutral line model. The observations were collected on March 20, 1983 with ISSE 1 and 3. Energy fluxes and intensity-time profiles of protons and electrons are studied. The data reveal that the reconnection at the near-earth neutral line produces ions and electrons for the plasma sheet boundary layer. The maximum electric potential along the neutral line is evaluated.

  20. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  1. THEMIS observation of Kinetic Ballooning/Interchange Waves in the High Bz Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Panov, Evgeny V.; Nakamura, Rumi; Kubyshkina, Marina V.; Baumjohann, Wolfgang; A, Sergeev, Victor

    2015-04-01

    Using THEMIS observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures, we investigate the properties of the waves when a high background plasma sheet Bz is seen. We find that such waves are in a better agreement with the existing kinetic simulations. Using adapted Tsyganenko models, we also show conjugate all-sky camera observations in the course of the development of the waves.

  2. Creating standardized electronic data sheets for applications and devices

    NASA Astrophysics Data System (ADS)

    Hansen, L. J.; Lanza, D.

    The Air Force Research Laboratory (AFRL) continues to develop infrastructure to enable the modular construction of satellites using an open network architecture and off-the-shelf avionics for space systems. Recent efforts have included the refinement of an ontology to formalize a standard language for the exchange of data and commands between components, including hardware and software, which is still evolving. AFRL is also focusing effort on creating standard interfaces using electronic data sheets based on this recently defined ontology. This paper will describe the development of standard interfaces that are documented in terms of an electronic datasheet for a specific application. The datasheet will identify the standard interfaces between hardware devices and software applications that are needed for a specific satellite function, in this case, a spacecraft guidance, navigation, and control (GN& C) application for Sun pointing. Finally, the benefits of using standardized interfaces will be discussed.

  3. Electronic, phononic, and thermoelectric properties of graphyne sheets

    SciTech Connect

    Sevinçli, Hâldun; Sevik, Cem

    2014-12-01

    Electron, phonon, and thermoelectric transport properties of α-, β-, γ-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. α-, β-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. γ-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. γ-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT = 0.45, almost an order of magnitude higher than that of graphene.

  4. Electromagnetic ELF wave intensification associated with fast earthward flows in mid-tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Angelopoulos, V.

    2012-03-01

    In this study we perform a statistical survey of the extremely-low-frequency wave activities associated with fast earthward flows in the mid-tail central plasma sheet (CPS) based upon THEMIS measurements. We reveal clear trends of increasing wave intensity with flow enhancement over a broad frequency range, from below fLH (lower-hybrid resonant frequency) to above fce (electron gyrofrequency). We mainly investigate two electromagnetic wave modes, the lower-hybrid waves at frequencies below fLH, and the whistler-mode waves in the frequency range fLH < f < fce. The waves at f < fLH dramatically intensify during fast flow intervals, and tend to contain strong electromagnetic components in the high-plasma-beta CPS region, consistent with the theoretical expectation of the lower-hybrid drift instability in the center region of the tail current sheet. ULF waves with very large perpendicular wavenumber might be Doppler-shifted by the flows and also partly contribute to the observed waves in the lower-hybrid frequency range. The fast flow activity substantially increases the occurrence rate and peak magnitude of the electromagnetic waves in the frequency range fLH < f < fce, though they still tend to be short-lived and sporadic in occurrence. We also find that the electron pitch-angle distribution in the mid-tail CPS undergoes a variation from negative anisotropy (perpendicular temperature smaller than parallel temperature) during weak flow intervals, to more or less positive anisotropy (perpendicular temperature larger than parallel temperature) during fast flow intervals. The flow-related electromagnetic whistler-mode wave tends to occur in conjunction with positive electron anisotropy.

  5. Substorm-related plasma sheet motions as determined from differential timing of plasma changes at the ISEE satellites

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.

    1981-01-01

    From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.

  6. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  7. The effect of local magnetic fields on the lunar photoelectron layer while the moon is in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Reiff, P. H.; Reasoner, D. L.

    1975-01-01

    Data from the Charged Particle Lunar Environment Experiment (CPLEE), at the Apollo 14 site, are used to investigate the interactive properties of the plasma sheet and the lunar photoelectron layer. It is shown that the predictions of the Guernsey-Fu model are compatible with SIDE but not CPLEE observations. The apparent contradiction is resolved by fitting the remanent magnetic field to that of a dipole buried about 1.1 km beneath the surface. In this case a charge separation layer must form above the instrument due to the different rigidities of plasma sheet electrons and protons. The qualitative properties of the charge separation layer needed to reconcile CPLEE and SIDE observations are presented.

  8. Experiments on a reflex-type sheet plasma negative-ion source

    SciTech Connect

    Ando, A.; Kuroda, T.; Oka, Y.; Kaneko, O.; Karita, A.; Kawamoto, T. )

    1990-01-01

    Negative hydrogen ions are extracted from a reflex-type sheet plasma. Electron density and temperature profiles are measured with changing the filling gas pressure, and they are optimized to the H{sup {minus}} production at the optimum gas pressure. The optimum gas pressure is 5 mTorr for the discharge current {ital I}{sub {ital d}} =2 A. As the discharge current {ital I}{sub {ital d}} increases, H{sup {minus}} current increases linearly corresponding to the density increase in the center region, but saturates above {ital I}{sub {ital d}} =40 A. The maximum extracted H{sup {minus}} current density of 4 mA/cm{sup 2} is obtained at {ital I}{sub {ital d}}=100 A.

  9. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    NASA Astrophysics Data System (ADS)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  10. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    SciTech Connect

    Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  11. Nonlinear electron oscillations in a warm plasma

    SciTech Connect

    Sarkar, Anwesa; Maity, Chandan; Chakrabarti, Nikhil

    2013-12-15

    A class of nonstationary solutions for the nonlinear electron oscillations of a warm plasma are presented using a Lagrangian fluid description. The solution illustrates the nonlinear steepening of an initial Gaussian electron density disturbance and also shows collapse behavior in time. The obtained solution may indicate a class of nonlinear transient structures in an unmagnetized warm plasma.

  12. Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.

    1990-01-01

    Average patterns of plasma drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail plasma sheet made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the plasma sheet (convection jet); (2) the depleted plasma energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail plasma sheet. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the plasma flow in the flux tubes connected to the plasma sheet.

  13. Review of Solar Wind Entry into and Transport Within the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Wing, S.; Johnson, J. R.; Chaston, C. C.; Echim, M.; Escoubet, C. P.; Lavraud, B.; Lemon, C.; Nykyri, K.; Otto, A.; Raeder, J.; Wang, C.-P.

    2014-11-01

    The plasma sheet is populated in part by the solar wind plasma. Four solar entry mechanisms are examined: (1) double cusp or double lobe reconnection, (2) Kelvin-Helmholtz Instability (KHI), (3) Kinetic Alfvén waves (KAW), and (4) Impulsive Penetration. These mechanisms can efficiently fill the plasma sheet with cold dense ions during northward interplanetary magnetic field (IMF). The solar wind ions appear to have been heated upon entry along the plasma sheet dawn flank. The cold-component (solar wind origin) ion density is higher on the dawn flank than the dusk flank. The asymmetric evolution of the KAW and magnetic reconnection in association with the KHI at the dawn and dusk flank magnetopause may partly produce the dawn-dusk temperature and density asymmetries. Solar wind that crosses the magnetopause lowers the specific entropy ( s= p/ ρ γ ) of the plasma sheet along the flanks. Subsequent transport of the cold ions from the flanks to the midnight meridian increases s by a factor of 5. T i , T e , s i , and s e increase when the solar wind particles are transported across the magnetopause, but T i / T e is roughly conserved. Within the magnetotail, E× B and curvature and gradient drifts play important roles in the plasma transport and can explain the large features seen in the plasma sheet. Turbulence can also play a significant role, particularly in the cold plasma transport from the flanks to the midnight meridian. Total entropy ( S= pV γ ) conservation provides important constraints on the plasma sheet transport, e.g., fast flows.

  14. ATS-5 observations of plasma sheet particles before the expansion-phase onset, appendix C.. [plasma-particle interactions, magnetic storms and auroras

    NASA Technical Reports Server (NTRS)

    Fujii, K.; Nishida, A.; Sharp, R. D.; Shelley, E. G.

    1975-01-01

    Behavior of the plasma sheet around its earthward edge during substorms was studied by using high resolution (every 2.6 sec) measurements of proton and electron fluxes by ATS-5. In the injection region near midnight the flux increase at the expansion-phase onset is shown to lag behind the onset of the low-latitude positive bay by several minutes. Depending upon the case, before the above increase (1) the flux stays at a constant level, (2) it gradually increases for some tens of minutes, or (3) it briefly drops to a low level. Difference in the position of the satellite relative to the earthward edge and to the high-latitude boundary of the plasma sheet is suggested as a cause of the above difference in flux variations during the growth phase of substorms. Magnetograms and tables (data) are shown.

  15. Responses of different ion species to fast plasma flows and local dipolarization in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Nosé, M.; Miyashita, Y.; Lui, A. T. Y.

    2015-01-01

    investigate the responses of different ion species (H+, He+, He++, and O+) to fast plasma flows and local dipolarization in the plasma sheet in terms of energy density. We use energetic (9-210 keV) ion composition measurements made by the Geotail satellite at r = 10~31 RE. The results are summarized as follows: (1) whereas the O+-to-H+ ratio decreases with earthward flow velocity, it increases with tailward flow velocity with steeper Vx dependence for perpendicular flows than for parallel flows; (2) for fast earthward flows, the energy density of each ion species increases without any clear preference for heavy ions; (3) for fast tailward flows, the ion energy density initially increases, then it decreases to below the preceding levels except for O+; (4) the O+-to-H+ ratio does not increase through local dipolarization irrespective of dipolarization amplitude, background Bz, X distance, and Vx; (5) in general, the H+ and He++ ions behave similarly. Result (1) can be attributed to radial transport in the presence of the earthward gradient of the background O+-to-H+ ratio. Results (2) and (4) suggest that ion energization at local dipolarization is not mass dependent in the energy range of our interest because the ions are not magnetized irrespective of species. Result (3) can be attributed to the thinning of the plasma sheet and the preferable field-aligned escape of the H+ ions on the tailward side of the reconnection site. Result (5) suggests that the solar wind is the primary source of the high-energy H+ ions.

  16. Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology

    SciTech Connect

    Burke, Micheal Blake, Alan; Povey, Ian M.; Schmidt, Michael; Petkov, Nikolay; Carolan, Patrick; Quinn, Aidan J.

    2014-05-15

    A design of experiments methodology was used to optimize the sheet resistance of titanium nitride (TiN) films produced by plasma-enhanced atomic layer deposition (PE-ALD) using a tetrakis(dimethylamino)titanium precursor in a N{sub 2}/H{sub 2} plasma at low temperature (250 °C). At fixed chamber pressure (300 mTorr) and plasma power (300 W), the plasma duration and N{sub 2} flow rate were the most significant factors. The lowest sheet resistance values (163 Ω/sq. for a 20 nm TiN film) were obtained using plasma durations ∼40 s, N{sub 2} flow rates >60 standard cubic centimeters per minute, and purge times ∼60 s. Time of flight secondary ion mass spectroscopy data revealed reduced levels of carbon contaminants in the TiN films with lowest sheet resistance (163 Ω/sq.), compared to films with higher sheet resistance (400–600 Ω/sq.) while transmission electron microscopy data showed a higher density of nanocrystallites in the low-resistance films. Further significant reductions in sheet resistance, from 163 Ω/sq. to 70 Ω/sq. for a 20 nm TiN film (corresponding resistivity ∼145 μΩ·cm), were achieved by addition of a postcycle Ar/N{sub 2} plasma step in the PE-ALD process.

  17. Role of magnetic field fluctuations in the Evolution of the kappa Distribution Functions in the Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Espinoza, Cristobal; Antonova, Elizaveta; Stepanova, Marina; Valdivia, Juan Alejandro

    2016-07-01

    The evolution with the distance to Earth of ion and electron distribution functions in the plasma sheet, approximated by kappa distributions, was studied by Stepanova and Antonova (2015, JGRA 120). Using THEMIS data for 5 events of satellite alignments along the tail, covering between 5 and 30 Earth radii, they found that the kappa parameter increases tailwards, for both ions and electrons. In this work we analyse the magnetic fluctuations present in THEMIS data for the same 5 events. The aim is to explore the hypothesis proposed by Navarro et al. (2014, PRL 112), for solar wind plasmas, that the observed magnetic fluctuations could be closely related to spontaneous fluctuations in the plasma, if this can be described by stable distributions. Here we present our first results on the correlation between the spectral properties of the magnetic fluctuations and the observed parameters of the kappa distributions for different distances from Earth.

  18. Electron density and plasma dynamics of a colliding plasma experiment

    NASA Astrophysics Data System (ADS)

    Wiechula, J.; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J.

    2016-07-01

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH2 at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ṡ 1015 cm-3 for a single accelerated plasma and a maximum value of ≈2.6 ṡ 1016 cm-3 for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.

  19. Hierarchical regrowth of flowerlike nanographene sheets on oxygen-plasma-treated carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Shimoeda, Hironao; Kondo, Hiroki; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2014-04-01

    Cauliflorous nanographene sheets were hierarchically regrown on the spearlike structures of carbon nanowalls (CNWs) produced by O2-plasma etching. The spears on the CNWs acted as a stem for the growth of flowerlike flaky nanographene sheets, where the root of the nanoflower was located at a defect or disordered site. The defects on the graphitic structures were induced by irradiation with oxygen-related radicals and ions in the O2-based plasmas and acted as sites for the nucleation of flowerlike nanographene. The porous carbon nanostructures regrown after O2-plasma treatment have a relatively higher surface area and are thus promising materials for electrochemical applications.

  20. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-01

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.

  1. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE PAGESBeta

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping andmore » possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  2. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    SciTech Connect

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; McComas, D. J.; Ogasawara, K.; Petrinec, S. M.; Schwadron, N. A.; Valek, P.

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (RE) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flapping and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.

  3. Electronic and Magnetic Properties of Metal-Doped BN Sheet: A First-Principles Study

    SciTech Connect

    Zhou, Yungang; Xiao-Dong, J.; Wang, Zhiguo; Xiao, Haiyan Y.; Gao, Fei; Zu, Xiaotao T.

    2010-07-21

    Electronic and magnetic properties of BN sheet doped with 3d transition metals (Fe, Co and Ni) have been investigated using ab initio calculations. Our calculations show many interesting physical properties in metal-doped BN sheet. Fe-doped BN sheet is a half-metal with the magnetic moment of 2.0 μB, and Co-doped BN sheet becomes a narrow-gap semiconductor with the magnetic moment of 1.0 μB. However, no magnetic moment is induced on Ni-doped BN sheet, which has the same band gap as pristine BN sheet. Furthermore, Fe atom is easy to form isolated particle on BN sheet, while Ni and Co atoms are likely to form sheet-supported metal nanotemplate. These results are useful for spintronics application and could help in the development of magnetic nanotructures and metallic nanotemplate at room temperature.

  4. Structured plasma sheet thinning observed by Galileo and 1984-129

    SciTech Connect

    Reeves, G.D.; Belian, R.D.; Fritz, T.A.

    1993-12-01

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that is crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-Earth tail during the growth phase of substorms. This period is unique in that Galileo provided a rapid radial profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft the authors can distinguish between spatial structures and temporal changes. Their observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft`s magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours. 28 refs., 10 figs.

  5. Structured plasma sheet thinning observed by Galileo and 1984-129

    NASA Technical Reports Server (NTRS)

    Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.

    1993-01-01

    On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.

  6. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.

    PubMed

    Wu, Wenzhi; Guo, Wanlin; Zeng, Xiao Cheng

    2013-10-01

    Graphyne, a two-dimensional carbon allotrope like graphene but containing doubly and triply bonded carbon atoms, has been proven to possess amazing electronic properties as graphene. Although the electronic, optical, and mechanical properties of graphyne and graphyne nanoribbons (NRs) have been previously studied, their electron transport behaviors have not been understood. Here we report a comprehensive study of the intrinsic electronic and transport properties of four distinct polymorphs of graphyne (α, β, γ, and 6,6,12-graphynes) and their nanoribbons (GyNRs) using density functional theory coupled with the non-equilibrium Green's function (NEGF) method. Among the four graphyne sheets, 6,6,12-graphyne displays notable directional anisotropy in the transport properties. Among the GyNRs, those with armchair edges are nonmagnetic semiconductors whereas those with zigzag edges can be either antiferromagnetic or nonmagnetic semiconductors. Among the armchair GyNRs, the α-GyNRs and 6,6,12-GyNRs exhibit distinctive negative differential resistance (NDR) behavior. On the other hand, the zigzag α-GyNRs and zigzag 6,6,12-GyNRs exhibit symmetry-dependent transport properties, that is, asymmetric zigzag GyNRs behave as conductors with nearly linear current-voltage dependence, whereas symmetric GyNRs produce very weak currents due to the presence of a conductance gap around the Fermi level under finite bias voltages. Such symmetry-dependent behavior stems from different coupling between π* and π subbands. Unlike α- and 6,6,12-GyNRs, both zigzag β-GyNRs and zigzag γ-GyNRs exhibit NDR behavior regardless of the symmetry. PMID:23949158

  7. A Gridded Electron Gun for a Sheet Beam Klystron

    NASA Astrophysics Data System (ADS)

    Read, M. E.; Miram, G.; Ives, R. L.; Ivanov, V.; Krasnykh, A.

    2003-12-01

    Calabazas Creek Research, Inc.(CCR) is developing rectangular, gridded, thermionic, dispenser-cathode guns for sheet beam devices. The first application is expected to be klystrons for advanced particle accelerators and colliders. The current generation of accelerators typically use klystrons with a cylindrical beam generated by a Pierce-type electron gun. As RF power is pushed to higher levels, space charge forces in the electron beam limit the amount of current that can be transmitted at a given voltage. The options are to increase the beam voltage, leading to problems with X-Ray shielding and modulator and power supply design, or to develop new techniques for lowering the space charge forces in the electron beam. In this device, the beam has a rectangular cross section. The thickness is constrained as it would in a normal, cylindrically symmetric klystron with a Pierce gun. However, the width of the beam is many times the thickness, and the resulting cross sectional area is much larger than in the conventional device. This allows much higher current and/or a lower voltage before space charge forces become too high. The current program addresses issues related to beam formation at the emitter surface, design and implementation of shadow and control grids in a rectangular geometry. It is directed toward a robust, cost-effective, and reliable mechanical design. A prototype device will be developed that will operate at 415 kV, 250 A for an 80 MW, X-Band, sheet-beam klystron. The cathode will have 100 cm2 of cathode area with an average cathode current loading of 2.5 A/cm2. For short pulse formation, the use of a grid was chosen. The gun has been designed with a combination of 2-D and 3-D codes. 2-D codes were used to determine the starting point for the electrodes to produce the compression (which is in only 1 direction.) These results showed that a very high quality beam could be achieved even in the presence of the shadow grid. 3-D results have shown that the

  8. Plasma sheet instability related to the westward traveling surge

    SciTech Connect

    Roux, A.; Perraut, S.; Robert, P.; Morane, A. ); Pedersen, A. ); Korth, A.; Kremser, G. ); Aparicio, B. ); Rodgers, D. ); Pellinen, R. )

    1991-10-01

    The detailed analysis of an isolated dispersionless substorm is performed on the basis of field and particle data collected in situ by the geostationary satellite GEOS 2 and of data from ground-based instruments installed close to the GEOS 2 magnetic footprint. These data give evidence for (1) quasi-periodic variations of the magnetic field configuration, which is alternatively taillike and dipolelike, (2) in-phase oscillations of the flux of energetic electrons, which is high when the configuration is dipolelike and vice versa, (3) a gradient in the flux of energetic ions, which is, on the average, earthward but undergoes large fluctuations around this average direction, and (4) large transient fluctuations of the quasi-dc electric field, which reverses its direction from eastward to westward. It is shown that these results are consistent with the development of an instability which leads to a westward propagating wave. The source of the instability is the differential drift of energetic electrons and ions in a highly stressed magnetic field configuration (in a high {beta} plasma). Evidence is given for a system of localized field-aligned currents flowing alternately earthward and equatorward at the leading and trailing edges of the westward propagating wave. This current system resulting from the temporal development of the instability produces the so-called Pi 2 pulsations, at the ionospheric level. The closure of this current system in the equatorial region leads to a current antiparallel to the tail current, and therefore to its reduction or cancellation. This reduction/cancellation of the tail current restores the dipole magnetic field (dipolarization) and generates a large westward directed induced electric field (injection).

  9. Fast magnetic reconnection in thin current sheets: effects of different current profiles and electron inertia in Ohm's law.

    NASA Astrophysics Data System (ADS)

    Pucci, Fulvia; Del Sarto, Daniele; Tenerani, Anna; Velli, Marco

    2015-04-01

    By examining sheets with thicknesses scaling as different powers of the Lundquist number S, we previously showed (Pucci and Velli, 2014) that the growth rate of the tearing mode increases as current sheets thin and, once the inverse aspect ratio reaches a scaling a/L = S-1/3, the time-scale for the instability to develop becomes of the order of the Alfvén time. That means that a fast instability sets in well before Sweet-Parker type current sheets can form. In addition, such an instability produces many islands in the sheet, leading to fast nonlinear evolution and most probably a turbulent disruption of the sheet itself. This has fundamental implications for magnetically driven reconnection throughout the corona, and in particular for coronal heating and the triggering of coronal mass ejections. Here we extend the study of reconnection instabilities to magnetic fields of grater complexity, displaying different current structures such as, for example, multiple or asymmetric current layers. We also consider the possibility of a Δ' dependence on wave-number k-p for different values of p, studying analogies and variations of the trigger scaling relation a/L ~ S-1/3 with respect to the Harris current sheet equilibrium. At large Lundquist numbers in typical Heliospheric plasmas kinetic effects become more important in Ohm's law: we consider the effects of electron skin depth reconnection, showing that we can define a trigger relation similar to the resistive case. The results are important to the transition to fast reconnection in the solar corona, solar wind, magnetosphere as well as laboratory plasmas. F. Pucci and M. Velli, "Reconnection of quasi-singular current sheets: the 'ideal" tearing mode" ApJ 780:L19, 2014.

  10. A Theoretical Model of a Thinning Current Sheet in the Low-β Plasmas

    NASA Astrophysics Data System (ADS)

    Takeshige, Satoshi; Takasao, Shinsuke; Shibata, Kazunari

    2015-07-01

    Magnetic reconnection is an important physical process in various explosive phenomena in the universe. In previous studies, it was found that fast reconnection takes place when the thickness of a current sheet becomes on the order of a microscopic length such as the ion Larmor radius or the ion inertial length. In this study, we investigated the pinching process of a current sheet by the Lorentz force in a low-β plasma using one-dimensional magnetohydrodynamics (MHD) simulations. It is known that there is an exact self-similar solution for this problem that neglects gas pressure. We compared the non-linear MHD dynamics with the analytic self-similar solution. From the MHD simulations, we found that with the gas pressure included the implosion process deviates from the analytic self-similar solution as t\\to {t}0, where t0 is the explosion time when the thickness of a current sheet of the analytic solution becomes 0. We also found that a pair of MHD fast-mode shocks is generated and propagates after the formation of the pinched current sheet as t\\to {t}0. On the basis of the Rankine-Hugoniot relations, we derived the scaling law of the physical quantities with respect to the initial plasma beta in the pinched current sheet. Our study could help us estimate the physical quantities in the pinched current sheet formed in a low-β plasma.

  11. Ballooning instability of the earth's plasma sheet region in the presence of parallel flow

    NASA Technical Reports Server (NTRS)

    Lakhina, G. S.; Hameiri, E.; Mond, M.

    1990-01-01

    Stability of the plasma sheet and plasma sheet boundary layer against the ballooning mode instability is investigated. The equilibrium state of a two-dimensional plasma sheet configuration with parallel sheared flow is modeled. This equilibrium is shown to be ballooning unstable when delta-W is not positive definite, where delta-W is the potential energy. The eigenmode structure of the ballooning mode is found by imposing the boundary conditions that the waves are totally reflected from the ionosphere, and that no waves are coming in from infinity. The eigenmode structure of the unstable balloning modes is highly oscillatory, extending beyond about 100 R(E). The ballooning modes are thus a possible candidate for explaining the MHD waves and other dynamical events observed in the magnetotail by ISEE 3 and other spacecraft.

  12. The motion and magnetic structure of the plasma sheet near 30 earth radii

    NASA Technical Reports Server (NTRS)

    Bowling, S. B.; Wolf, R. A.

    1974-01-01

    Data taken by the NASA-GSFC magnetometer aboard the Explorer 34 satellite are analyzed in an effort to ascertain the average motion and magnetic field structure of the plasma sheet near 30 earth radii. It is found that the flapping motion of the plasma sheet in the solar ecliptic Z-coordinate is characterized by a typical speed of 90 km/sec and an amplitude of plus or minus 2 earth radii. Results suggest that there exists a layer of nearly uniform cross-tail current density in the central region of the plasma sheet approximately 2.3-2.6 earth radii thick within which the solar-magnetospheric X-component of the magnetic field changes from 10 gamma to -10 gamma.

  13. Energetic (>100 keV) 0/sup +/ ions in the plasma sheet

    SciTech Connect

    Ipavich, F.M.; Galvin, A.B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1984-05-01

    We present the first measurements of very energetic (112-157 keV) 0/sup +/ ions in the earth's magnetosphere. The observations were made with the UMd/MPE ULECA sensor on ISEE-1 on 5 March 1981 at geocentric distances approx.20 R/sub E/ in the earth's magnetotail. During this time period an Energetic Storm Particle event was observed by our nearly identical sensor on the ISEE-3 space-craft, located approx.250 R/sub E/ upstream of the earth's magnetosphere. The ISEE-1 sensor observed a similar temporal profile except for several sharp intensity enhancements, corresponding to substorm recoveries during which the plasma sheet engulfed the spacecraft. During these plasma sheet encounters we observe 0/sup +//H/sup +/ abundance ratios, at approx.130 keV, as large as 0.35. In between plasma sheet encounters with 0/sup +//H/sup +/ ratio at this energy is consistent with zero.

  14. Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis

    NASA Astrophysics Data System (ADS)

    Denton, R. E.; Engebretson, M. J.; Keiling, A.; Walsh, A. P.; Gary, S. P.; DéCréAu, P. M. E.; Cattell, C. A.; RèMe, H.

    2010-12-01

    Multiple-harmonic electromagnetic waves in the ULF band have occasionally been observed in Earth's magnetosphere, both near the magnetic equator in the outer plasmasphere and in the plasma sheet boundary layer (PSBL) in Earth's magnetotail. Observations by the Cluster spacecraft of multiple-harmonic electromagnetic waves with fundamental frequency near the local proton cyclotron frequency, Ωcp, were recently reported in the plasma sheet boundary layer by Broughton et al. (2008). A companion paper surveys the entire magnetotail passage of Cluster during 2003, and reports 35 such events, all in the PSBL, and all associated with elevated fluxes of counterstreaming ions and electrons. In this study we use observed pitch angle distributions of ions and electrons during a wave event observed by Cluster on 9 September 2003 to perform an instability analysis. We use a semiautomatic procedure for developing model distributions composed of bi-Maxwellian components that minimizes the difference between modeled and observed distribution functions. Analysis of wave instability using the WHAMP electromagnetic plasma wave dispersion code and these model distributions reveals an instability near Ωcp and its harmonics. The observed and model ion distributions exhibit both beam-like and ring-like features which might lead to instability. Further instability analysis with simple beam-like and ring-like model distribution functions indicates that the instability is due to the ring-like feature. Our analysis indicates that this instability persists over an enormous range in the effective ion beta (based on a best fit for the observed distribution function using a single Maxwellian distribution), β', but that the character of the instability changes with β'. For β' of order unity (for instance, the observed case with β' ˜ 0.4), the instability is predominantly electromagnetic; the fluctuating magnetic field has components in both the perpendicular and parallel directions, but the

  15. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  16. Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays.

    PubMed

    Ye, Dexian; Moussa, Sherif; Ferguson, Josephus D; Baski, Alison A; El-Shall, M Samy

    2012-03-14

    Electron field emission is a quantum tunneling phenomenon whereby electrons are emitted from a solid surface due to a strong electric field. Graphene and its derivatives are expected to be efficient field emitters due to their unique geometry and electrical properties. So far, electron field emission has only been achieved from the edges of graphene and graphene oxide sheets. We have supported graphene oxide sheets on nickel nanotip arrays to produce a high density of sharp protrusions within the sheets and then applied electric fields perpendicular to the sheets. Highly efficient and stable field emission with low turn-on fields was observed for these graphene oxide sheets, because the protrusions appear to locally enhance the electric field and dramatically increase field emission. Our simple and robust approach provides prospects for the development of practical electron sources and advanced devices based on graphene and graphene oxide field emitters. PMID:22288579

  17. Electron density measurements in highly electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we present experimental measurements of the electron density in very electronegative ‘ion–ion’ Ar–SF6 plasmas where previous investigations using Langmuir probes have observed electronegativities of up to 5000. The electron density is measured using a short matched dipole probe technique that provides a tolerance better than  ±2 · 1013 m‑3. The results demonstrate that the electron density in the low pressure plasma source (which contains a magnetic filter) can be reduced to around 2.7 · 1013 m‑3 with a corresponding plasma electronegativity of about 4000; close to that from fluid simulation predictions. The highest electronegativity, and lowest electron density, is achieved with a pure SF6 plasma, while adding only 6% SF6 to Ar allows the electronegativity to be increased from 0 to a few hundred with a corresponding decrease in the electron density by more than a thousand. The impedance probe based on a short matched dipole appears to be a practical diagnostic that can be used for independent measurements of the electron density in very electronegative plasmas, and opens up the possibility to further investigate and optimize electronegative plasma sources.

  18. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  19. Structural and electronic properties of a single layered α-tetragonal B50 sheet

    NASA Astrophysics Data System (ADS)

    Kah, Cherno; Yu, Ming; Jayanthi, Chakram S.; Wu, Shiyu

    Ultrathin single-crystalline boron nanosheets with α-tetragonal B50 symmetry (α-t-B50) have recently been synthesized. In this presentation, the relaxed structure of this new type of boron sheet is determined using a robust self-consistent and environment-dependent semi-empirical Hamiltonian developed within the LCAO framework that includes MD and power quenching schemes. Upon relaxation, the sheet symmetry is broken and the icosahedral B12 units in the sheet are found to be distorted. This stability of the sheet was investigated through a calculation of the vibrational frequencies. The sheet electronic density of states exhibits no energy gap at the Fermi level, suggesting a metallic character similar to that of the bulk α-t-B50. Finally, the cohesive energy of the α-t-B50 sheet is found to be higher than that of the recently reported icosahedral B12-δ6 sheet.

  20. An Evaluation of Motions Found in Multiple Supra-Arcade Plasma Sheets with Local Correlation Tracking

    NASA Astrophysics Data System (ADS)

    Freed, Michael; McKenzie, David Eugene

    2016-05-01

    Plasma sheets can be seen in the corona above arcade loops that form shortly after the eruption phase of a solar flare. These structures are considered to be the location where current sheets can form, which are a key component for magnetic reconnection to take place. The objective of this study is to quantify the motion seen in these plasma sheets and to determine how these characteristics might vary over multiple length scales. We use contrast-enhanced EUV observations of five different plasma sheets to construct velocity maps of plasma motion — in the plane of the sky — via a Fourier local correlation tracking program. These derived velocities were then used to calculate angle-integrated power spectral density of intensity, kinetic energy, and enstrophy to determine if any self-similarity exists. The derived velocity fields also allowed for measurements of the kinetic energy density, enstrophy density, and magnetic diffusivity. We will also present the first reported observational evidence of Kelvin-Helmholtz instabilities forming at the interface of supra-arcade downflows (SADs) and the surrounding supra-arcade plasma.

  1. Electron heating in capacitively coupled plasmas revisited

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Chabert, P.; Booth, J. P.

    2014-06-01

    We revisit the problem of electron heating in capacitively coupled plasmas (CCPs), and propose a method for quantifying the level of collisionless and collisional heating in plasma simulations. The proposed procedure, based on the electron mechanical energy conservation equation, is demonstrated with particle-in-cell simulations of a number of single and multi-frequency CCPs operated in regimes of research and industrial interest. In almost all cases tested, the total electron heating is comprised of collisional (ohmic) and pressure heating parts. This latter collisionless component is in qualitative agreement with the mechanism of electron heating predicted from the recent re-evaluation of theoretical models. Finally, in very electrically asymmetric plasmas produced in multi-frequency discharges, we observe an additional collisionless heating mechanism associated with electron inertia.

  2. Lunar dayside plasma sheet depletion - Inference from magnetic observations. [lunar immersion in geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Lichtenstein, B. R.; Russell, C. T.; Coleman, P. J., Jr.; Smith, B. F.; Colburn, D. S.; Sonett, C. P.

    1974-01-01

    The existence of a day-side lunar cavity in the plasma sheet, showing some depletion of plasma, has been inferred from cavity-associated magnetic characteristics observed by orbital and surface lunar magnetometers. These characteristics include a day-side enhancement in the mean magnetic field and day-side levels of amplification of eddy current induced magnetic field fluctuations typical of cavity confinement.

  3. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas.

    PubMed

    Srivastava, Anurag; Bhat, Chetan; Jain, Sumit Kumar; Mishra, Pankaj Kumar; Brajpuriya, Ranjeet

    2015-03-01

    We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet. PMID:25666919

  4. Confinement of pure ion plasma in a cylindrical current sheet

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K.

    1999-12-01

    A novel method for containing a pure ion plasma at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma of about 5×1011cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107cm-3 trapped deuterium plasma at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j×B forces from this induced current, additional ions are injected into the plasma along the axis to increase the density (and mutual electrostatic repulsion) of the target plasma. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4×1014cm-3.

  5. Electron temperature measurement in an ultracold plasma

    NASA Astrophysics Data System (ADS)

    Afrousheh, K.; Bohlouli, P. Z.; Fedorov, M.; Mugford, A.; Martin, J. D. D.

    2004-05-01

    There has been growing interest in recent years in studying ultracold plasmas. These cold plasmas are produced by photoionizing a sample of cold atoms in a MOT. Of interest is the evolution of electron temperature in these plasmas. Strong correlation due to low initial temperature, as well as lack of correlation due to rapid heating are two possible scenarios. We will present a unique experimental method for measuring electron temperature in a cold plasma, as well as our calculation of the feasibility of the proposed method. In this process, which we call stimulated photoattachment, we stimulate the transition of free electrons from the continuum to bound states of nearby atoms by a laser beam. The negative ions produced can be observed with a microchannel plate detector. For electrons with well-defined energy this is a resonant process. The width of the resonance indicates the electron temperature. This technique has advantage of high temporal resolution of the evolution of electron temperature after the plasma is formed.

  6. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  7. RICHTMYER-MESHKOV-TYPE INSTABILITY OF A CURRENT SHEET IN A RELATIVISTICALLY MAGNETIZED PLASMA

    SciTech Connect

    Inoue, Tsuyoshi

    2012-11-20

    The linear stability of a current sheet that is subject to an impulsive acceleration due to shock passage with the effect of a guide magnetic field is studied. We find that a current sheet embedded in relativistically magnetized plasma always shows a Richtmyer-Meshkov-type instability, while the stability depends on the density structure in the Newtonian limit. The growth of the instability is expected to generate turbulence around the current sheet, which can induce the so-called turbulent reconnection, the rate of which is essentially free from plasma resistivity. Thus, the instability can be applied as a triggering mechanism for rapid magnetic energy release in a variety of high-energy astrophysical phenomena such as pulsar wind nebulae, gamma-ray bursts, and active galactic nuclei, where the shock wave is thought to play a crucial role.

  8. Tearing mode in a neutral current sheet in a plasma flow

    NASA Astrophysics Data System (ADS)

    Gubchenko, V. M.

    1982-09-01

    The linear stage of the tearing mode is analyzed for a diffuse neutral current sheet in a plasma flow along the magnetic field. It follows from the dispersion characteristics derived that the flow tends to stabilize the tearing mode and gives rise to a drift phase velocity.

  9. Penetration of the Interplanetary Magnetic Field B(sub y) into Earth's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Erickson, G. M.

    1995-01-01

    There has been considerable recent interest in the relationship between the cross-tail magnetic field component B(sub y) and tail dynamics. The purpose of this paper is to give an overall description of the penetration of the interplanetary magnetic field (IMF) B(sub y) into the near-Earth plasma sheet. We show that plasma sheet B(sub y) may be generated by the differential shear motion of field lines and enhanced by flux tube compression. The latter mechanism leads to a B(sub y) analogue of the pressure-balance inconsistency as flux tubes move from the far tail toward the Earth. The growth of B(sub y), however, may be limited by the dawn-dusk asymmetry in the shear velocity as a result of plasma sheet tilting. B(sub y) penetration into the plasma sheet implies field-aligned currents flowing between hemispheres. These currents together with the IMF B(sub y) related mantle field-aligned currents effectively shield the lobe from the IMF B(sub y).

  10. Estimated north-south conponent of the electric field in the geomagnetotail plasma sheet

    SciTech Connect

    Lui, A.T.Y.; Akasofu, S.

    1980-11-01

    It is shown that the north-south component of electric fields in the plasma sheet can be estimated uniquely from simultaneous measurements of plasma flow components (v/sub x/, v/sub y/) and the magnetic field components (B/sub x/, B/sub y/) in the equatorial plane. The estimated field strength ranges from 0.3 to 7.8 mv/m during substorms at geocentric distances beyond approx.15 R/sub e/. During the magnetospheric substorm expansion phase, the north-south component of the electric fields is almost oppositely directed from what one would expect on the basis of projection of the general pattern of the ionospheric electric field to the plasma sheet along geomagnetic field lines (assumed to be equipotential). It is only during the recovery phase when both electric field patterns become similar. The result also suggests that strong fields occur preferentially near the plasma sheet boundary rather than near the neutral sheet region.

  11. Thermal and suprathermal protons and alpha particles in the earth's plasma sheet

    SciTech Connect

    Ipavich, F.M.; Scholer, M.

    1983-01-01

    We have investigated thermal and suprathermal protons (from approx.13 keV to approx.1 MeV) and alpha particles (from approx.30 keV/Q to 130 keV/Q) in the quasi-stable plasma sheet near local midnight at geocentric distances of approx.12--20 R/sub E/. The data, obtained during five different plasma sheet penetrations with the Max-Planck-Institut/University of Maryland sensor system on ISEE 1, represent the first measurements of plasma sheet ion composition in this energy range. Below approx.16 keV the proton spectra can be represented by a Maxwellian distribution. Above approx.16 keV we find a suprathermal tail which cannot be represented by a single power law. In some cases the suprathermal population consists of two distinct components: a low-energy component falling off sharply at approx.100 keV and a high-energy component extending up to approx.1 MeV. The high-energy component often decays with time during expansion of the plasma sheet. Alpha particle to proton ratios average approx.3% and are observed to be constant at either equal energy per nucleon or energy per charge.

  12. Investigation of the Neutral Sheet Profile during Magnetic Reconnection in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    1999-11-01

    Recent detailed data from laboratory plasma experiments, satellite observations, theoretical analyses, and computer simulations have contributed significantly to the understanding of magnetic reconnection both in space and laboratory plasmas. As magnetic field lines break and reconnect around the neutral region, a neutral sheet current is generated. This current then heats the plasma, and the opposing magnetic fields form a stationary equilibrium with the plasma thermal pressure. This region is a focal point of reconnection since it requires proper treatment of local non-MHD effects in a plasma which is highly conductive globally (with large Lundquist number S). Particularly, the profile of the neutral sheet current is a very good indicator of the nature of reconnection. In this talk, we focus on the diverse and very intriguing features of the neutral sheet in driven magnetic reconnection experiments on MRX(M. Yamada et al., Phys. Rev. Lett. 78), 3117 (1997); M. Yamada et al., Phys. Plasmas 4, 1936 (1997)., which was built to investigate the fundamental physics of magnetic reconnection. The MHD approximation (S >> 1, ρi << L, v_A<< c) is satisfied globally in MRX plasmas. In recent MRX experiments, the magnetic field profile of the neutral sheet was measured precisely by magnetic probes with a spatial resolution of 0.25-0.5ρ_i, and B(x) data fit excellently to the Harris profile(E. G. Harris, Il Nuovo Cimento 23), 115 (1962); S. M. Mahajan, Phys. Fluids B 1, 43 (1989). B(x) ~ tanh[(x-x_0)/δ], indicating the formation of a stable, axisymmetric neutral sheet. The sheet thickness δ is found to be equal to the ion skin depth c/ω_pi, which is in very good agreement with recent numerical simulations(J. F. Drake et al., Geophys. Res. Lett. 24), 2921 (1997); D. Biskamp et al., Phys. Rev. Lett. 75, 3850 (1995); R. Horiuchi and T. Sato, Phys. Plasmas 4, 277 (1997).. These data are also consistent with space observations both in the geotail region and the magnetopause

  13. Ballooning Instability Induced Plasmoid Formation in Near-Earth Plasma Sheet*

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Raeder, J.

    2013-12-01

    The formation of plasmoids in the near-Earth magnetotail is believed to be a key element of the substorm onset process. The physical mechanism of plasmoid formation in the plasma sheet has remained a subject of considerable interests and investigations. Previous work has identified a new scenario in MHD simulations where the nonlinear evolution of a ballooning instability is able to induce the formation of plasmoids in a generalized Harris sheet with finite normal magnetic component [1]. In present work, we further examine this novel mechanism for plasmoid formation and explore its implications in the context of substorm onset trigger problem. For that purpose, we adopt the generalized Harris sheet as a model proxy to the near-Earth region of magnetotail during the substorm growth phase. In this region the magnetic component normal to the neutral sheet Bn is weak but nonzero. The magnetic field lines are closed and there are no X-lines. Simulation results indicate that in the higher Lundquist number regime, the linear axial tail mode, which is also known as ``two-dimensional resistive tearing mode'', is stabilized by the finite Bn, hence cannot give rise to the formation of X-lines or plasmoids by itself. On the other hand, the linear ballooning mode is unstable in the same regime, and in its nonlinear stage, the tailward stretching of the plasma sheet in the closed field line region due to the growing ballooning finger structures tends to accelerate the thinning of the near-Earth current sheet. This eventually leads to the formation of a series of plasmoid structures in the near-Earth and middle magnetotail regions of plasma sheet. This new scenario of plasmoid formation suggests a critical role of ballooning instability in the near-Earth plasma sheet in triggering the onset of a substorm expansion. [1] P. Zhu and J. Raeder, Plasmoid formation in current sheet with finite normal magnetic component, Phys. Rev. Lett. 110, 235005 (2013). *Supported by NSF grants AGS

  14. Relativistic Electron-Electron Bremsstrahlung in Fusion Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jia; Kawai, Norio; Kawamura, Takaichi; Maegauchi, Tetsuo; Narumi, Hajime

    1982-05-01

    Transition matrices and differential cross sections for electron-electron bremsstrahlung in relativistic energy region are calculated by the lowest-order perturbation theory of quantum electrodynamics. The bremsstrahlung spectra and emission rates are evaluated for relativistic Maxwellian plasma. The results are discussed in comparison with those obtained by non-relativistic and extreme-relativistic approximations and it is noted that the relativistic effect becomes appreciable above the order of 10 keV for the electron temperature.

  15. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  16. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    SciTech Connect

    Moghaddam-Taaheri, E.; Goertz, C.K.; Smith, R.A. )

    1989-08-01

    The kinetic Alfven wave, an Alfven wave with a perpendicular wavelength comparable to the ion gyroradius, can diffuse ions both in velocity and coordinate spaces with comparable transport rates. This may lead to the generation of ion beams in the plasma sheet boundary layer (PSBL). To investigate the ion beam generation process numerically, a two-dimensional quasi-linear code was constructed. Assuming that the plasma {beta} (the ratio of plasma pressure to the magnetic pressure) varies from {beta} = 1 to {beta} << 1 across the magnetic field, the dynamics of the ion beam generation in the PSBL was studied. It was found that if your start with an ion distribution function which monotonically decreases with velocity along the magnetic field and a density gradient across the magnetic field, ions diffuse in velocity-coordinate space until nearly a plateau is established along the diffusion path. Depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., open or closed field lines, the ion distribution function may or may not reach a steady state. If the field lines are open there, i.e., if the diffusion extends into the lobe, the double diffusion process may provide a mechanism for continuously transferring the ions from the central plasma sheet to the lobe. The authors comment on the effect of the particle loss on the establishment of the pressure balance in the plasma sheet.

  17. Thermal catastrophe in the plasma sheet boundary layer. [in substorm models

    NASA Technical Reports Server (NTRS)

    Smith, Robert A.; Goertz, Christoph K.; Grossmann, William

    1986-01-01

    This letter presents a first step towards a substorm model including particle heating and transport in the plasma sheet boundary layer (PSBL). The heating mechanism discussed is resonant absorption of Alfven waves. For some assumed MHD perturbation incident from the tail lobes onto the plasma sheet, the local heating rate in the PSBL has the form of a resonance function of the one-fluid plasma temperature. Balancing the local heating by convective transport of the heated plasma toward the central plasma sheet, an 'equation of state" is found for the steady-state PSBL whose solution has the form of a mathematical catastrophe: at a critical value of a parameter containing the incident power flux, the local density, and the convection velocity, the equilibrium temperature jumps discontinuously. Associating this temperature increase with the abrupt onset of the substorm expansion phase, the catastrophe model indicates at least three ways in which the onset may be triggered. Several other consequences related to substorm dynamics are suggested by the simple catastrophe model.

  18. Electronic and magnetic properties of substituted BN sheets: A density functional theory study

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Wang, Zhiguo; Zu, Xiaotao T.; Xiao, Hai Yan; Sun, Xin; Khaleel, Mohammad A.; Gao, Fei

    2011-04-15

    Using density functional calculations, we investigate the geometries, electronic structures and magnetic properties of hexagonal BN sheets with 3d transition metal (TM) and nonmetal atoms embedded in three types of vacancies: VB, VN, and VB+N. We show that some embedded configurations, except TM atoms in VN vacancy, are stable in BN sheet and yield interesting phenomena. For instance, the band gaps and magnetic moments of BN sheet can be tuned depending on the embedded dopant species and vacancy type. In particular, embedment such as Cr in VB+N, Co in VB, and Ni in VB leads to half-metallic BN sheets interesting for spin filter applications. From the investigation of Mn-chain (CMn) embedments, a regular 1D structure can be formed in BN sheet as an electron waveguide, a metal nanometer wire with a single atom thickness.

  19. A new model for the ion beams in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Whelan, T.; Goertz, C. K.

    1987-01-01

    A new model is proposed for the ion beams frequently observed in the plasma sheet boundary layer. The model assumes injection of magnetosheath plasma onto closed tail field lines. The plasma then expands along the field lines and is convected towards the earth. Particle simulations of the expansion process are used to calculate properties of these beams. The expansion produces beams of ions at energies of up to a few tens of k(B)T(e), which are consistent with the observed energies of the beams.

  20. The structure of the plasma sheet-lobe boundary in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Candidi, M.; Formisano, V.; Balsiger, H.; Ghielmetti, A.; Ogilvie, K. W.

    1982-01-01

    The structure of the magnetotail plasma sheet-plasma lobe boundary was studied by observing the properties of tailward flowing O+ ion beams, detected by the ISEE 2 plasma experiment inside the boundary during three time periods. The computed value of the north-south electric field component as well as the O+ parameters are shown to change at the boundary. The results are related to other observations made in this region. The O+ parameters and the Ez component behavior are shown to be consistent with that expected from the topology of the electric field lines in the tail as mapped from the ionosphere.

  1. Compressible turbulence with slow-mode waves observed in the bursty bulk flow of plasma sheet

    NASA Astrophysics Data System (ADS)

    Wang, Tieyan; Cao, Jinbin; Fu, Huishan; Meng, Xuejie; Dunlop, M.

    2016-03-01

    In this paper, we report the evidence of compressible turbulence with slow-mode waves in a bursty bulk flow of plasma sheet. This compressible turbulence is characterized by a multiscale (1-60 s) anticorrelation between plasma density and magnetic field strength. Besides, the magnetic compressibility spectrum stays nearly constant at all the measured frequencies. Furthermore, the turbulence energy distributions are anisotropic with k⊥ > k//, and the dispersion relation is consistent with slow-mode prediction. The fluctuations of density and magnetic field have similar double slope spectrum and kurtosis. These results suggest that the slow waves are involved in the intermittent turbulence cascade from MHD to ion kinetic scales, which may have significant implications for the energy transfer in the plasma sheet.

  2. Electron Bernstein waves in spherical torus plasmas

    SciTech Connect

    Saveliev, A. N.

    2006-11-30

    Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasma interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.

  3. Self-organization in space plasma: formation of magnetic shear in current sheets

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Delcourt, Dominique; Mingalev, Oleg; Malova, Helmi; Popov, Victor; Grigorenko, Elena; Petrukovich, Anatoli

    2016-07-01

    Thin current sheets are plasma structures that usually appear near reconnection regions. The presence of the shear magnetic field is characteristic for these structures. Self-consistent kinetic model of magnetotail thin current sheet (TCS) is used to understand the mechanisms of self-organization of sheared thin current sheets in a space plasma. It is shown that these configurations appear as a result of self-consistent evolution of some initial magnetic perturbation at current sheet center. Two general shapes of shear TCS components are found as a function of the transverse coordinate: symmetric and antisymmetric. We show that TCS formation goes together with the emergence of field-aligned currents in the center of the current sheet, as a result of north-south asymmetry of quasi-adiabatic ion motions. Ion drift currents can also contribute to the magnetic shear evolution, but their role is much less significant, their contribution depending upon the normal component Bz and the amplitude of the initial perturbation in TCS. Parametric maps illustrating different types of TCS equilibria are presented.

  4. Multifluid MHD simulation of Saturn's magnetosphere: Dynamics of mass- and momentum-loading, and seasonal variation of the plasma sheet

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.

    2013-12-01

    Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically

  5. 30-cm electron cyclotron plasma generator

    NASA Technical Reports Server (NTRS)

    Goede, Hank

    1987-01-01

    Experimental results on the development of a 30-cm-diam electron cyclotron resonance plasma generator are presented. This plasma source utilizes samarium-cobalt magnets and microwave power at a frequency of 4.9 GHz to produce a uniform plasma with densities of up to 3 x 10 to the 11th/cu cm in a continuous fashion. The plasma generator contains no internal structures, and is thus inherently simple in construction and operation and inherently durable. The generator was operated with two different magnetic geometries. One used the rare-earth magnets arranged in an axial line cusp configuration, which directly showed plasma production taking place near the walls of the generator where the electron temperature was highest but with the plasma density peaking in the central low B-field regions. The second configuration had magnets arranged to form azimuthal line cusps with approximately closed electron drift surfaces; this configuration showed an improved electrical efficiency of about 135 eV/ion.

  6. Collisionless Plasma Shocks in Striated Electron Temperatures

    SciTech Connect

    Guio, P.; Pecseli, H. L.

    2010-02-26

    The existence of low frequency waveguide modes of ion acoustic waves is demonstrated in magnetized plasmas for electron temperatures striated along the magnetic field lines. At higher frequencies, in a band between the ion cyclotron and the ion plasma frequency, radiative modes develop and propagate obliquely to the field away from the striation. Arguments for the subsequent formation and propagation of electrostatic shock are presented and demonstrated numerically. For such plasma conditions, the dissipation mechanism is the 'leakage' of the harmonics generated by the wave steepening.

  7. Ballooning Instabilities in the Plasma Sheet in Conjunction with Auroral Wave Structures

    NASA Astrophysics Data System (ADS)

    Xing, X.; Liang, J.; Spanswick, E.; Lyons, L. R.; Angelopoulos, V.

    2014-12-01

    Ballooning instability in the near-Earth plasma sheet transition region has been suggested to be a plausible trigger leading to azimuthally-aligned auroral wave structures (auroral beading) and subsequent substorm onset expansion. Previous observational studies on ballooning instability have been focused on the subsequent particle and field oscillations. However, the initiation of the instability has never been validated, and its connection to the auroral beading is also to be evaluated observationally. We take advantage of the THEMIS multi-spacecraft and ground All-Sky-Imager and Multi-Spectrum-Imager observation conjunctions to examine whether the plasma and field conditions in the transition region prior to the substorm/pseudo-breakup onset is unstable against ballooning mode within MHD regime. The instability criterion is calculated using observations from radially aligned THEMIS probes in the near-Earth plasma sheet. We found that the ballooning instability criterion is violated locally in the transition region about one Alfvenic transit time prior to the auroral beading initiation. The instability is associated with enhanced field-aligned currents (FAC) on top of the background currents, which provides energy source for the auroral brightening. These observations support the idea that the ballooning instability in the near-Earth plasma sheet is a plausible trigger for the auroral beading. We also found evidence in some cases that earthward moving flow channels from middle tail to the near-Earth region precedes the instability, indicating that the earthward penetrating plasma may lead to the violation of the instability criterion. The observed magnetic field profile prior to the instability initiation provides an initial condition for the numerical simulations, which may assist further understanding of the plasma sheet conditions leading to instability for every event.

  8. Survey of low energy plasma electrons in Saturn's magnetosphere: Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ogilvie, K. W.; Scudder, J. D.

    1983-01-01

    The low energy plasma electron environment within Saturn's magnetosphere was surveyed by the Plasma Science Experiment (PLS) during the Voyager encounters with Saturn. Over the full energy range of the PLS instrument (10 eV to 6 keV) the electron distribution functions are clearly non-Maxwellian in character; they are composed of a cold (thermal) component with Maxwellian shape and a hot (suprathermal) non-Maxwellian component. A large scale positive radial gradient in electron temperature is observed, increasing from less than 1 eV in the inner magnetosphere to as high as 800 eV in the outer magnetosphere. Three fundamentally different plasma regimes were identified from the measurements: (1) the hot outer magnetosphere, (2) the extended plasma sheet, and (3) the inner plasma torus.

  9. The Self-Consistent Generation of Current Sheets in Astrophysical Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Howes, Gregory

    2014-10-01

    In space and astrophysical plasma turbulence, it has long been recognized that dissipation occurs predominantly in intermittent current sheets, with vigorous activity in the past few years focused on obtaining observational evidence for such localized dissipation in the near-Earth solar wind. The nature of these magnetic discontinuities and their associated current sheets measured in the solar wind remains unclear--are these discontinuities due to filamentary magnetic structure in the solar wind, or do they arise dynamically from turbulent interactions? Recent analytical solution, numerical validation, and experimental verification of the nonlinear energy transfer in Alfven wave collisions, the nonlinear interactions between counterpropagating Alfven waves, has established this interaction as the fundamental building block of astrophysical plasma turbulence. Here I will present first-principles analytical calculations and supporting numerical simulations that Alfven wave collisions in the strong turbulence limit naturally produce current sheets, providing the first theoretical unification of models of plasma turbulence mediated by Alfven waves with ideas on localized dissipation in current sheets. Supported by NSF CAREER Award AGS-1054061, NSF Grant PHY-10033446, and NASA Grant NNX10AC91G.

  10. Current-sheet velocity oscillation and radiation emission in plasma focus discharges

    SciTech Connect

    Melzacki, K.; Nardi, V.

    1995-12-31

    A phenomenon of current sheet velocity oscillation during the compression phase in plasma focus discharge has been found with a Schlieren photography technique. The oscillation period has been determined as about 17 ns and coincided with the period of the simultaneously measured time derivative of the current. The same velocity behavior has been observed with magnetic probes. A microwave emission burst (in 3 cm and 10 cm bands) consisting of a sequence of very narrow (FWHM < 1 ns) peaks, 17 ns apart one another, has also been observed before, during, and after the pinch. The microwave was polarized with the electric field parallel to the electrode axis. All these effects have been recorded on the same PF device (6 kJ). The origin of these oscillations can be interpreted in a few ways, e.g. as related to the electrode-plasma sheath RLC circuit, or to the j{sub s}xB of the plasma current sheet, where j{sub s} is the current density component perpendicular to the current sheet surface. The j{sub s} is related to the current sheet velocity. These results provide the basis of the analysis.

  11. Plasma heating with crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, Naren; Sircombe, Nathan; Ceurvorst, Luke; Kasim, Muhammad; Sadler, James; Bingham, Robert; Trines, Raoul; Norreys, Peter

    2015-11-01

    Plasma heating by relativistic electron beams is a powerful tool with applications including the heating of inertial confinement fusion targets and the study of matter in extreme conditions. We discuss the use of two relativistic electron beams to efficiently heat the plasma ions where the beams cross by using beam-plasma instabilities and non-linear wave coupling between Langmuir and ion-acoustic waves. Energy from the electron beams is coupled to the plasma ions as the beams become unstable and drive Langmuir waves which couple non-linearly to ion-acoustic waves which are then damped . Results of linear growth rate calculations are presented for the system of two crossing electron beams demonstrating a broad spectrum of unstable modes. Relativistic Vlasov-Maxwell simulations in two space and two momentum dimensions have been performed which demonstrate the non-linear coupling of the electron beam energy into ion-acoustic waves and the energy cascade to the background ions. Time-frequency analysis is applied to analyze the non-linear coupling between Langmuir and ion-acoustic waves in wave phase space. Structural properties of the strong turbulence produced at late times are analyzed.

  12. Pure electron plasmas in asymmetric traps*

    NASA Astrophysics Data System (ADS)

    Chu, R.; Wurtele, J. S.; Notte, J.; Peurrung, A. J.; Fajans, J.

    1993-07-01

    Pure electron plasmas are routinely confined within cylindrically symmetric Penning traps. In this paper the static and dynamic properties of plasmas confined in traps with applied electric field asymmetries are investigated. Simple analytical theories are derived and used to predict the shapes of the stable noncircular plasma equilibria observed in experiments. Both analytical and experimental results agree with those of a vortex-in-cell simulation. For an l=1 diocotron mode in a cylindrically symmetric trap, the plasma rotates as a rigid column in a circular orbit. In contrast, plasmas in systems with electric field asymmetries are shown to have an analog to the l=1 mode in which the shape of the plasma changes as it rotates in a noncircular orbit. These bulk plasma features are studied with a Hamiltonian model. It is seen that, for a small plasma, the area enclosed by the orbit of the center of charge is an invariant when electric field perturbations are applied adiabatically. This invariant has been observed experimentally. The breaking of the invariant is also studied. The dynamic Hamiltonian model is also used to predict the shape and frequency of the large amplitude l=1 and l=2 diocotron modes in symmetric traps.

  13. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  14. On the contribution of plasma sheet bubbles to the storm time ring current

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Toffoletto, Frank R.; Wolf, Richard A.; Sazykin, Stanislav

    2015-09-01

    Particle injections occur frequently inside 10 Re during geomagnetic storms. They are commonly associated with bursty bulk flows or plasma sheet bubbles transported from the tail to the inner magnetosphere. Although observations and theoretical arguments have suggested that they may have an important role in storm time dynamics, this assertion has not been addressed quantitatively. In this paper, we investigate which process is dominant for the storm time ring current buildup: large-scale enhanced convection or localized bubble injections. We use the Rice Convection Model-Equilibrium (RCM-E) to model a series of idealized storm main phases. The boundary conditions at 14-15 Re on the nightside are adjusted to randomly inject bubbles to a degree roughly consistent with observed statistical properties. A test particle tracing technique is then used to identify the source of the ring current plasma. We find that the contribution of plasma sheet bubbles to the ring current energy increases from ~20% for weak storms to ~50% for moderate storms and levels off at ~61% for intense storms, while the contribution of trapped particles decreases from ~60% for weak storms to ~30% for moderate and ~21% for intense storms. The contribution of nonbubble plasma sheet flux tubes remains ~20% on average regardless of the storm intensity. Consistent with previous RCM and RCM-E simulations, our results show that the mechanisms for plasma sheet bubbles enhancing the ring current energy are (1) the deep penetration of bubbles and (2) the bulk plasma pushed ahead of bubbles. Both the bubbles and the plasma pushed ahead typically contain larger distribution functions than those in the inner magnetosphere at quiet times. An integrated effect of those individual bubble injections is the gradual enhancement of the storm time ring current. We also make two predictions testable against observations. First, fluctuations over a time scale of 5-20 min in the plasma distributions and electric field

  15. Controlling electron energy distributions for plasma technologies

    NASA Astrophysics Data System (ADS)

    Kushner, Mark

    2009-10-01

    The basic function of low temperature plasmas in society benefiting technologies is to channel power into specific modes of atoms and molecules to excite desired states or produce specified radicals. This functionality ultimately depends on the ability to craft an electron energy distribution (EED) to match cross sections. Given electric fields, frequencies, gas mixtures and pressures, predicting EEDs and excitation rates can in large part be reliably done. The inverse problem, specifying the conditions that produce a given EED, is less well understood. Early strategies to craft EEDs include adjusting gas mixtures, such as the rare gas-Hg mixtures in fluorescent lamps, and externally sustained discharges, such as electron-beam sustained plasmas for molecular lasers. More recent strategies include spiker-sustainer circuitry which produces desired EEDs in non-self-sustained plasmas; and adjusting frequency in capacitively coupled plasmas. In this talk, past strategies for customizing EEDs in low pressure plasmas will be reviewed and prospects for improved control of plasma kinetics will be discussed using results from 2-dimensional computer models.

  16. Nonquasineutral electron vortices in nonuniform plasmas

    SciTech Connect

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W.; Ottinger, P. F.

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  17. Nature of Axial Tail Instability and Bubble-Blob Formation in Near-Earth Plasma Sheet*

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Raeder, J.; Hegna, C. C.; Sovinec, C. R.

    2011-12-01

    Previous global MHD simulations of substorm events have identified the dynamic presence of an axial tail instability with dawn-dusk symmetry in the near-Earth plasma sheet as a major cause of the initial loss of MHD equilibrium on closed field lines prior to the subsequent magnetic reconnection and substorm expansion onset processes [Raeder et al. 2010; Siscoe et al. 2009]. In this work, energy principle analysis indicates that a two-dimensional thin current sheet configuration in the magnetotail is typically stable to the axial mode within the framework of ideal MHD model. Linear resistive MHD calculations find axial tail instabilities on closed field lines in the generalized Harris sheet configurations. The properties of these instabilities are similar to the axial tail modes observed in the global MHD simulations. The axial tail mode is unstable in regimes of low Lundquist number and regions with small normal component of magnetic field. Mode growth and structure show both similarities and differences in comparison to the linear resistive tearing mode of a one-dimensional Harris sheet. Unlike the conventional tearing mode of Harris sheet, the linear axial tail instability does not involve any reconnection process. Instead, the nature of the mode is dominantly an interchange or slippage process among neighboring flux tubes as facilitated by dissipations such as resistivity. The formation of bubble-blob pairs in pressure and entropy distributions in the near-Earth plasma sheet is shown to be a natural component as well as consequence of this axial instability process. *Supported by NSF grants AGS-0902360 and PHY-0821899. REFERENCES: Raeder, J., P. Zhu, Y. Ge, and G. Siscoe (2010), Open Geospace General Circulation Model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset, J. Geophys. Res., 115, A00I16, doi:10.1029/2010JA015876. Siscoe, G. L., M. M. Kuznetsova, and J. Raeder (2009), Search for an onset mechanism that

  18. Using PEACE Data from the four CLUSTER Spacecraft to Measure Compressibility, Vorticity, and the Taylor Microscale in the Magnetosheath and Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Parks, George; Gurgiolo, C.; Fazakerley, Andrew N.

    2008-01-01

    We present determinations of compressibility and vorticity in the magnetosheath and plasma sheet using moments from the four PEACE thermal electron instruments on CLUSTER. The methodology used assumes a linear variation of the moments throughout the volume defined by the four satellites, which allows spatially independent estimates of the divergence, curl, and gradient. Once the vorticity has been computed, it is possible to estimate directly the Taylor microscale. We have shown previously that the technique works well in the solar wind. Because the background flow speed in the magnetosheath and plasma sheet is usually less than the Alfven speed, the Taylor frozen-in-flow approximation cannot be used. Consequently, this four spacecraft approach is the only viable method for obtaining the wave number properties of the ambient fluctuations. Our results using electron velocity moments will be compared with previous work using magnetometer data from the FGM experiment on Cluster.

  19. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  20. Plasma and energetic electron flux variations in the Mercury 1 C event - Evidence for a magnetospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Christon, S. P.

    1989-01-01

    Charge-particle and magnetic-field data obtained during the first encounter (on March 29, 1974) of Mariner 10 with the planet Mercury are reexamined, and a new interpretation of the Mariner 10 energetic electron, plasma electron, and magnetic field data near the outbound magnetopause at Mercury is presented. It is shown that Mariner 10 sampled the hot substorm energized magnetospheric plasma sheet for the first 36 sec of the C event and, for the next 48 sec, alternatively sampled hot (plasma sheet) and cold (boundary-layer magnetosheathlike) plasma regions. It is argued that the counting rate of the ID1 event (i.e., a particle event triggering detector D1 but not the D2, D3, or D7 detectors) throughout the C event most probably represents a pulse pileup response to about 35-175 keV electrons, rather than the nominal above-175 keV electrons presumed in the earlier interpretations.

  1. High conductivity magnetic tearing instability. [of neutral plasma sheets

    NASA Technical Reports Server (NTRS)

    Cross, M. A.; Van Hoven, G.

    1976-01-01

    Linearized equations of magnetohydrodynamics are used to investigate the tearing mode, for arbitrary values of the conductivity, through a consideration of the additional effect of the electron-inertia contribution to Ohm's law. A description is provided of the equilibrium and subsequent instability in the magnetohydrodynamic approximation. A method for solving the perturbation equations in the linear approximation is discussed and attention is given to the results in the high conductivity limit.

  2. Understanding Turbulence in the Plasma Sheet and Its Role in Transport

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Ashour-Abdalla, M.; Lapenta, G.; Richard, R. L.

    2014-12-01

    In this study the nature and implications of turbulence in the plasma sheet is explored with emphasis on large scale and meso-scale processes. The relationship between turbulence and reconnection, and its contribution to magnetospheric transport and dynamics will be evaluated. Observational studies to date have shown that the magnetotail rarely exhibits simple steady convection; instead, flows in the magnetotail have a high level of fluctuations. Flows driven on the scale of the entire system are well described by MHD and break up into structures that cascade to smaller scales. MHD simulation studies have shown the presence of realistic fluctuation spectra both in case studies where direct comparisons to observations have been made and in idealized test cases which have been compared to the statistical studies of observed events. The simulations do a good job of representing the effects of dissipation and yield dissipative scale lengths that are comparable to those inferred from observations. At intermediate, meso-scales, which receive energy from both large and small scales, turbulent processes are important in the plasma sheet, in particular around dipolarization fronts. We will explore the interaction between large-scale and smaller-scale fluctuations and their contributions to the magnetotail current sheet structure. We will use a global MHD simulation and a two dimensional version of the iPIC3Dimplicit particle in cell simulation separately to examine how turbulence is related to global and local processes involved in the current sheet.

  3. Observations of plasma sheet expansion at substorm onset, R = 15 to 22 Re

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Huang, C. Y.

    1992-01-01

    We have used a large number of auroral magnetograms to identify four isolated substorms and estimate their onset times. At the onsets, ISEE-1 was in the vicinity of magnetic midnight at radial distances of 15.6 to 21.8 Re and very near the outer boundary of the plasma sheet. We find that, for each event, the plasma sheet expanded, and the magnetic field dipolarized at the inferred onset time. Our most definitive event occurred while ISEE was at a geocentric radial distance of 21.8 Re. This result conflicts with previous understanding, though further verification of the result is required. Our observations show very similar characteristics to those observed at synchronous orbit, and they are consistent with an extension of a portion of the substorm current wedge to the radial distance of the satellite. If this explanation is correct, ISEE must have been within the longitude range of the substorm current wedge at the onsets.

  4. Ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.

    1989-01-01

    A two-dimensional quasi-linear numerical code was developed for studying ion beam generation at the plasma sheet boundary layer by kinetic Alfven waves. The model assumes that the central plasma sheet is the particle source, and that the last magnetic field lines on which kinetic Alfven waves exist and diffusion occurs can be either open or closed. As the possible source for the excitement of the kinetic Alfven waves responsible for ion diffusion, the resonant mode conversion of the surface waves to kinetic Alfven waves is considered. It is shown that, depending on the topology of the magnetic field at the lobe side of the simulation system, i.e., on whether field lines are open or closed, the ion distribution function may or may not reach a steady state.

  5. Electric and magnetic components of ballooning perturbations in the magnetotail plasma sheet before breakup

    NASA Astrophysics Data System (ADS)

    Kogai, T. G.; Golovchanskaya, I. V.; Kornilov, I. A.; Kornilova, T. A.; Fedorenko, Y. V.

    2016-01-01

    Using data from THEMIS spacecraft we investigated transverse to the magnetic field mutually perpendicular electric and magnetic components of ballooning type perturbations with periods 60-240 s, which are observed in the magnetospheric plasma sheet during the period preceding substorm onset. With applying Hilbert transform, we analyzed the phase relations between them. It is shown that the perturbations are dominated by radial electric and azimuthal magnetic (that is, toroidal) components which are usually in phase or out-of-phase. Along with them, approximately 2.5 times less intense azimuthal electric and radial magnetic components are present, which are more often phase-shifted by π/2. It is concluded that the observed perturbations are not a simple consequence of the development of plasma sheet ballooning instability, leading to the growth of strongly elongated along the magnetotail ballooning structures. It is pointed out that this conclusion is confirmed by simultaneous ground-based observations of magnetically conjugate auroral structures.

  6. Free electron laser with small period wiggler and sheet electron beam: A study of the feasibility of operation at 300 GHz with 1 MW CW output power

    SciTech Connect

    Booske, J.H.; Granatstein, V.L.; Antonsen, T.M. Jr.; Destler, W.W.; Finn, J.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Radack, D.; Rodgers, J.

    1988-01-01

    The use of a small period wiggler (/ell//sub ..omega../ < 1 cm) together with a sheet electron beam has been proposed as a low cost source of power for electron cyclotron resonance heating (ECRH) in magnetic fusion plasmas. Other potential applications include space-based radar systems. We have experimentally demonstrated stable propagation of a sheet beam (18 A. 1 mm /times/ 20 mm) through a ten-period wiggler electromagnet with peak field of 1.2 kG. Calculation of microwave wall heating and pressurized water cooling have also been carried out, and indicate the feasibility of operating a near-millimeter, sheet beam FEL with an output power of 1 MW CW (corresponding to power density into the walls of 2 kW/cm/sup 2/). Based on these encouraging results, a proof-of-principle experiment is being assembled, and is aimed at demonstrating FEL operating at 120 GHz with 300 kW output power in 1 ..mu..s pulses: electron energy would be 410 keV. Preliminary design of a 300 GHz 1 MW FEL with an untapered wiggler is also presented. 10 refs., 5 figs., 3 tabs.

  7. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    NASA Astrophysics Data System (ADS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-06-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  8. Polytropic index of central plasma sheet ions based on MHD Bernoulli integral

    NASA Astrophysics Data System (ADS)

    Pang, Xuexia; Cao, Jinbin; Liu, Wenlong; Ma, Yuduan; Lu, Haoyu; Yang, Junying; Li, Liuyuan; Liu, Xu; Wang, Jing; Wang, Tieyan; Yu, Jiang

    2015-06-01

    This paper uses the data of Cluster from 2001 to 2009 to study the polytropic processes of central plasma sheet (CPS) ions. We first adopt the approach of MHD Bernoulli integral (MBI) to identify homogeneous streamflow tubes (quasi-invariant MBI regions) and then calculate the polytropic index of ions for those streamflow tubes whose outward electromagnetic energy ratios δ < 0.05. The central plasma sheet is actually a complicated system, which comprises many streamflow tubes with different polytropic relations and the transition layers in between. The polytropic indexes of the CPS ions range from 0.1 to 1.8 and have a quasi-Gaussian distribution. The median polytropic index is 0.93 for AE < 200 nT and 0.91 for AE ≥ 200 nT. Thus, there is no obvious difference between the polytropic indexes of the quiet time and the substorm time CPS ions, which suggests that the thinning and thickening processes of plasma sheet during substorm times do not change obviously the polytropic relation of the CPS ions. The statistical analysis using different δ (δ < 0.05, 0.025, and 0.01) shows that the outward emission of electromagnetic energy is an effective cooling mechanism and can make the polytropic index to decrease and shift toward isobaric. It is inferred that the CPS ions as a whole much likely behave in a way between isobaric and isothermal.

  9. Formation and evolution of flapping and ballooning waves in magnetospheric plasma sheet

    NASA Astrophysics Data System (ADS)

    Ma, J. Z. G.; Hirose, A.

    2016-05-01

    By adopting Lembége & Pellat's 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor-Goldstein equation of magnetic perturbations. Fourier spectral method and Runge-Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, the flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1-7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.

  10. Hinode/XRT Measurements of Turbulent Velocities in Flare Plasma Sheets

    NASA Astrophysics Data System (ADS)

    McKenzie, David; Freed, Michael

    2015-04-01

    The turbulent, dynamic motions that we observe in the hot plasma surrounding current sheets very likely distort the embedded magnetic fields, resulting in reduced length scales and locally augmented resistivities. These conditions may help to accelerate and/or prolong the reconnection in solar flares. Although we cannot as yet measure directly the magnetic fields in the corona, the velocity fields within the flare plasma sheets provide a means to study the conditions that control the spatial and temporal scales of reconnection, in the locations and at the times that are relevant to structuring the magnetic fields.The plasma sheets are observable in many flares in soft X-ray and EUV wavelengths, due to their high temperatures. For two recent flares observed with the Hinode X-Ray Telescope (XRT), we have analyzed the velocity fields with a local correlation tracking technique, and compared to measurements from the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA).This work is supported by NASA under contract NNM07AB07C with the Smithsonian Astrophysical Observatory, and by grant NNX14AD43G.

  11. Cluster observation of magnetohydrodynamic turbulence in the plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    2016-04-01

    Measurement of turbulent magnetic field is presented from the Earth magnetotail crossing of the Cluster spacecraft on August 25, 2006, as an ideal case study of magnetohydrodynamic turbulence in the plasma sheet boundary layer on a spatial scale of about 10,000 km. The fluctuation energy of the magnetic field is evaluated in both the frequency and wavevector domains. The observed plasma sheet turbulence event shows anisotropy in the wavevector domain with a spectral extension perpendicular to the mean magnetic field. The analyses of the dispersion relation and phase speed diagrams indicate that the coherent wave components should be regarded as a set of the linear-mode waves and the other fluctuation components in magnetohydrodynamics. Although the magnetic field fluctuation amplitudes are sufficiently small compared to the large-scale field strength, there is no clear indication of the linear-mode dominance in the plasma sheet. As a lesson, magnetohydrodynamic turbulence must be modeled by including both linear-mode waves and nonlinear wave components such as sideband waves.

  12. Electron Scattering in Hot/Warm Plasmas

    SciTech Connect

    Rozsnyai, B F

    2008-01-18

    Electrical and thermal conductivities are presented for aluminum, iron and copper plasmas at various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based on the continuum wave functions computed in the potential of the temperature and density dependent self-consistent 'average atom' (AA) model of the plasma. The cross sections are calculated by using the phase shifts of the continuum electron wave functions and also in the Born approximation. We show the combined effect of the thermal and radiative transport on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV. Comparisons with low temperature experimental data are also presented.

  13. Plasma exudation in the skin measured by external detection of conversion electrons.

    PubMed

    Karambatsakidou, A; Bergh, G; Ahlgren, L; Strand, S E; Olsson, O; Greiff, L; Wollmer, P

    1996-03-01

    A novel technique for measurement of plasma exudation in the skin is described. Transferrin labelled in vivo with indium-113m is used as a plasma tracer. The conversion electrons from 113mIn are detected with a polystyrene crystal mounted on a photomultiplier tube. Owing to the short range of the electrons in tissue, background radiation from tracer circulating in underlying tissue will be very small, allowing plasma exudation in the skin to be detected with a high signal to noise ratio. The characteristics of the detector system are described in model experiments using sheets of mylar to simulate soft tissue. The acute inflammatory response to histamine provocation was studied in guinea pig skin. A dose-related increase in count rate representing vasodilatation and plasma exudation was detected over the skin after histamine provocation. The electron radiation system appears suitable for detection of low levels of superficial radioactivity and for pathophysiological studies of the skin. PMID:8599960

  14. The Role of Plasma Sheet Conditions in Ring Current Formation and Energetic Neutral Atom Emissions: TWINS Results and CRCM Comparison

    NASA Astrophysics Data System (ADS)

    Fok, M.; Buzulukova, N.; McComas, D.; Brandt, P.; Goldstein, J.; Valek, P.; Alquiza, J.

    2009-05-01

    The dynamics of the ring current is sensitive to plasma sheet density and temperature. The situation is further complicated by ionospheric feedback and the existence of electric shielding at low latitudes. Most of the ring current pressure is carried by ions with energies of ~5-50 keV. In this energy range, H-H+ charge exchange cross section falls sharply with increasing energy. As a result, the intensity of energetic neutral atoms (ENA) emitted from the ring current is very sensitive to the ion energy distribution, which, in turn, is controlled by the plasma sheet temperature. Using the Comprehensive Ring Current Model (CRCM) with different plasma sheet models, we calculate ENA emissions during several moderate storms in years 2008 and 2009. We compare the simulated images with those from the TWINS imagers and study the effects of plasma sheet conditions on the ring current and the associated ENA emissions.

  15. All-sky imager observations near footprints of plasma sheet waves with kinetic ballooning-interchange signatures

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Kubyshkina, M. V.

    2015-12-01

    We collected several THEMIS observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Using an adapted model to find the location of THEMIS footprints, we identified all-sky imager (ASI) observations that may be associated with the waves. The ASI observations reveal a reach activity often being diffuse patchy aurora. We investigate the brightness and motion of the auroral patches and compare them with the BICI activity in the plasma sheet.

  16. Stable transport and side-focusing of sheet electron beams in periodically cusped magnetic field configurations

    SciTech Connect

    Anderson, J.; Basten, M.A.; Rauth, L.; Booske, J.H.; Joe, J.; Scharer, J.E.

    1995-12-31

    Sheet electron beams and configurations with multiple electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using sheet electron beams include sheet-beam klystrons, grating TWT`s, and planar FELs. Historically, implementation of sheet beams in microwave devices has been discouraged by their susceptibility to the diocotron instability in solenoidal focusing systems. However, recent theoretical and numerical studies have shown that stable transport of sheet beams is possible in periodically cusped magnetic (PCM) fields. The use of an offset-pole PCM configuration has been shown analytically to provide side-fields for 2-D focusing of the beam, and this has been recently verified with PIC code simulations. The authors present further theoretical studies of sheet and multi-beam transport and discuss experimental measurements of an offset-pole PCM array which is currently being constructed.

  17. Silicone Coating on Polyimide Sheet

    NASA Technical Reports Server (NTRS)

    Park, J. J.

    1985-01-01

    Silicone coatings applied to polyimide sheeting for variety of space-related applications. Coatings intended to protect flexible substrates of solar-cell blankets from degradation by oxygen atoms, electrons, plasmas, and ultraviolet light in low Earth orbit and outer space. Since coatings are flexible, generally useful in forming flexible laminates or protective layers on polyimide-sheet products.

  18. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  19. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  20. Electron kinetics in a cooling plasma

    SciTech Connect

    Helander, P.; Smith, H.; Fueloep, T.; Eriksson, L.-G.

    2004-12-01

    The distribution function of suprathermal electrons in a slowly cooling plasma is calculated by an asymptotic expansion in the cooling rate divided by the collision frequency. Since the collision frequency decreases with increasing velocity, a high-energy tail forms in the electron distribution function as the bulk population cools down. Under certain simplifying assumptions (slow cooling, constant density, Born approximation of cross sections), the distribution function evolves to a self-similar state where the tail is inversely proportional to the cube of the velocity. Its practical consequences are discussed briefly.

  1. Magnetic quadrupole formation of low-voltage sheet electron beams for high-power microwave devices

    SciTech Connect

    Basten, M.A.; Booske, J.H.; Anderson, J.; Joe, J.; Scharer, J.E.

    1995-12-31

    Sheet electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. Possible microwave device applications using sheet electron beams include sheet-beam klystrons, grating TWT`s, and planar FELs. One difficulty with the experimental investigation and implementation of sheet beams is the lack of a satisfactory source for large aspect-ratio beams. An attractive solution is the use of magnetic quadrupoles to transform an initially round beam from a conventional Pierce gun into a highly eccentric elliptical beam. Both 2-D envelope simulations and 3-D envelope and PIC code simulations indicate that this is a viable method of sheet beam formation, particularly for experimental investigations where flexibility and low-cost fabrication is desired. The authors are currently constructing a system to experimentally test this method. Features of the experiment include a low-cost commercially available Pierce gun, a four quadrupole sheet beam-forming system, and a highly elliptical output beam. Results of the 3-D PIC simulations of the beam and 3-D magnetostatic finite-element simulations of the quadrupole fringe fields will be discussed. Details of the experimental design and initial experimental measurements are presented.

  2. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  3. Unzipped Nanotube Sheet Films Converted from Spun Multi-Walled Carbon Nanotubes by O2 Plasma.

    PubMed

    Jangr, Hoon-Sik; Jeon, Sang Koo; Shim, Dae Seob; Lee, Nam Hee; Nahm, Seung Hoon

    2015-11-01

    Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance. PMID:26726645

  4. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  5. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGESBeta

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  6. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  7. Electron plasma oscillations at arbitrary Debye lengths

    NASA Astrophysics Data System (ADS)

    Lehnert, B.

    1991-06-01

    A solution is presented for electron plasma oscillations in a thermalized plasma, at arbitrary ratios of the Debye length AλD and the perturbation wavelength λ. The limit λDλ corresponds to the conventional fluid-like theory of small particle excursions, whereas λDλ corresponds to the free-streaming limit of strong kinetic phase mixing due to large particle excursions. A strong large-Debye-distance (LDD) effect already appears when λD λ. The initial amplitude of the fluid-like contribution to the macroscopic density perturbation then becomes small compared with the contribution from the free-streaming part. As a consequence, only a small fraction of the density perturbation remains after a limited number of kinetic damping times of the free-streaming part. The present analysis can be considered as a first exercise in an attempt to tackle the far more difficult problem of large-Larmor-radius (LLR) effects in a magnetized plasma. The analysis further shows that a representation in terms of normal modes of the form exp (— iωt) leads to amplitude factors of these modes that are related to each other and that depend on the combined free-streaming and fluid behaviour of the plasma. Consequently, these modes are coupled and cannot be treated as independent of each other.

  8. Substorms with multiple intensifications: Post-onset plasma sheet thinnings in the morning sector observed by Prognoz-8

    SciTech Connect

    Popielawska, B.; Koperski, P.; Grygorczuk, J.; Oberc, P.

    1996-03-15

    The authors present satellite observations of plasma sheet thinning made in the magnetotail between 8 and 11 R{sub E} from crossings made by Prognoz-8. The authors describe measurements of plasma properties, wave activity, and magnetic fields signatures recorded during these events. This data is correlated with other satellite observations and ground based auroral activity.

  9. Ionospheric signatures of a plasma sheet rebound flow during a substorm onset

    NASA Astrophysics Data System (ADS)

    Juusola, L.; Kubyshkina, M.; Nakamura, R.; PitkäNen, T.; Amm, O.; Kauristie, K.; Partamies, N.; RèMe, H.; Snekvik, K.; Whiter, D.

    2013-01-01

    Magnetic reconnection in Earth's magnetotail produces fast earthward flows in the plasma sheet. Tailward flows are often observed associated with the earthward flows. Both return flow vortices at the flanks of an earthward flow channel and rebound of the earthward flow from the intense dipolar magnetic field of the inner magnetosphere have been shown to explain tailward flows observed near Earth. We combine plasma sheet measurements from Cluster with conjugate ground-based magnetic and auroral data to examine the development of earthward and tailward flow signatures during a substorm onset. We show for the first time observations of ionospheric signatures that appear to be associated with rebound flows. Because of the highly dynamic magnetotail configuration, special care is taken with the satellite footprint mapping. The ionospheric footprints produced by the event oriented AM02 model drift equatorward and poleward in response to tail magnetic field stretching and dipolarization, respectively. The footprint motion matches that of the ambient ionospheric structures, and the plasma flow measured by Cluster agrees with that inferred from the conjugate ionospheric observations, confirming the validity of the AM02 mapping. The ionospheric signatures of fast earthward flows during a substorm onset are shown to resemble the known signatures of quiet-time flows, including equatorward propagating auroral streamers inside a channel of enhanced poleward equivalent current. However, the large-scale dipolarization results in additional poleward expansion of the signatures, as has been predicted by simulations.

  10. A research of W-band folded waveguide traveling wave tube with elliptical sheet electron beam

    SciTech Connect

    Guo Guo; Wei Yanyu; Yue Lingna; Gong Yubin; Zhao Guoqing; Huang Minzhi; Tang Tao; Wang Wenxiang

    2012-09-15

    Folded waveguide (FWG) traveling wave tube (TWT), which shows advantages in high power capacity, moderate bandwidth, and low-cost fabrication, has become the focus of vacuum electronics recently. Sheet electron beam devices are better suited for producing radiation sources with large power in millimeter wave spectrum due to their characteristics of relatively low space charge fields and large transport current. A FWG TWT with elliptical sheet beam working in W-band is presented in this paper, with the analysis of its dispersion characteristics, coupling impedance, transmission properties, and interaction characteristics. A comparison is also made with the traditional FWG TWT. Simulation results lead to the conclusion that the FWG TWT with elliptical sheet beam investigated in this paper can make full use of relatively large electric fields and thus generate large output power with the same electric current density.

  11. Electron-helium scattering in Debye plasmas

    SciTech Connect

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-11-15

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a{sub 0}). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  12. Plasma treatment for producing electron emitters

    DOEpatents

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  13. Dynamics of runaway electrons in magnetized plasmas

    SciTech Connect

    Moghaddam-Taaheri, E.

    1986-01-01

    The evolution of a runaway electron tail driven by a subcritical dc electric field in a magnetized plasma is studied numerically using a quasi-linear numerical code (2-D in v- and k-space) based on the Ritz-Galerkin method and finite elements. Three different regimes in the evolution of the runaway tail depending on the strength of the dc electric field and the ratio of plasma to gyrofrequency, were found. The tail can be (a) stable and the electrons are accelerated to large parallel velocities, (b) unstable to the Cerenkov resonance due to the formation of a positive slope on the runaway tail, (c) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution resulting in less acceleration. The synchrotron emission of the runaway electrons shows large enhancement in the radiation level at the high-frequency end of the spectrum during the pitch-angle scattering of the fast particles. The results are relevant to recent experimental data from the Princeton Large Torus (PLT) during current-drive experiments and to the microwave bursts observed during solar flares.

  14. Whistler-mode phenomena in electron MHD plasmas

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.

    2003-12-01

    low-frequency whistlers in high-beta plasmas. Pressure-gradient driven instabilities near the lower hybrid frequency produce coupled density and magnetic perturbations that propagate at the sound speed nearly across the field, forming a new whistler-sound mode. The net magnetic field is modified when the whistler magnetic field exceeds the background magnetic field. A field-reversed configuration (FRC) with two 3-D null points is produced. This EMHD structure does not propagate in the whistler mode. It elongates and precesses, which are manifestations of magnetic fields frozen into the electron fluid flow. The free magnetic energy is converted into electron heat by field line annihilation in the toroidal current sheet. No reconnection is seen at the 3-D spiral nulls. The energy dissipation is anomalously fast due to current-driven ion sound turbulence. In contrast to linear vortices, two FRCs do interact and merge into a single one. These basic properties of EMHD fields will be applied to cases of interest in space plasmas such as reconnection, strong turbulence, and possible active experiments. Work performed in collaboration with J.~M. Urrutia, M.~C. Griskey, and K.~D. Strohmaier with support from NSF PHY.

  15. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.

    PubMed

    Miller, Sandi G; Williams, Tiffany S; Baker, James S; Solá, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S; Wilmoth, Nathan G; Gaier, James; Chen, Michelle; Meador, Michael A

    2014-05-14

    The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn. PMID:24720450

  16. Fact Sheet for KM200 Front-end Electronics

    SciTech Connect

    Ianakiev, Kiril Dimitrov; Iliev, Metodi; Swinhoe, Martyn Thomas

    2015-07-08

    The KM200 device is a versatile, configurable front-end electronics boards that can be used as a functional replacement for Canberra’s JAB-01 boards based on the Amptek A-111 hybrid chip, which continues to be the preferred choice of electronics for large number of the boards in junction boxes of multiplicity counters that process the signal from an array of 3He detectors. Unlike the A-111 chip’s fixed time constants and sensitivity range, the shaping time and sensitivity of the new KM200 can be optimized for demanding applications such as spent fuel, and thus could improve the safeguards measurements of existing systems where the A-111 or PDT electronics does not perform well.

  17. Interactions of the plasma sheet with the lunar surface at the Apollo 14 site

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Burke, W. J.

    1976-01-01

    Calculations of the magnetic shadow zones of lunar-based particle detectors are extended to include the effects of local remanent magnetic fields. At the Apollo 14 site, the local magnetic field is approximated as that of a dipole. Numerically calculated open and shadowed zones are shown to be in agreement with quiet-time plasma-sheet observations of the charged-particle lunar-environment experiment. An analysis of three storm-time observations indicates that magnetic shadowing can significantly alter the near-lunar-surface electrostatic potential distribution.

  18. Electron microscopy methods for studying plasma membranes.

    PubMed

    Beckett, Alison J; Prior, Ian A

    2015-01-01

    Electron microscopy allows direct visualization of the underlying organization of cell surface components on a nano-scale. Immuno-gold labelling of isolated plasma membranes generates point patterns that enable mapping of protein and lipid distributions. 2D spatial statistics reveals the extent to which these distributions are clustered or dispersed and allows the extent of co-localization between different cell surface components to be precisely determined. This approach has been successfully applied to the study of signalling network organization and the consequences of physiological changes in modulating cell surface function. PMID:25331134

  19. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  20. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets

    PubMed Central

    Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli

    2015-01-01

    We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176

  1. Energy Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neal; Auerbach, David; Berry, Melissa; Blumenfeld, Ian; Clayton, Christopher E.; Decer, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Johnson, Devon; Joshi, Chadrashekhar; Katsouleas, Thomas; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-01-03

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC indicate trapping of plasma electrons. More charge came out of than went into the plasma. Most of this extra charge had energies at or below the 10 MeV level. In addition, there were trapped electron streaks that extended from a few GeV to tens of GeV, and there were mono-energetic trapped electron bunches with tens of GeV in energy.

  2. Status of Plasma Electron Hose Instability Studies in FACET

    SciTech Connect

    Adli, Erik; England, Robert Joel; Frederico, Joel; Hogan, Mark; Li, Selina Zhao; Litos, Michael Dennis; Nosochkov, Yuri; An, Weiming; Mori, Warren; /UCLA

    2011-12-13

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electron hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.

  3. Observations of a nonthermal ion layer at the plasma sheet boundary during substorm recovery

    NASA Technical Reports Server (NTRS)

    Moebius, E.; Scholer, M.; Hovestadt, D.; Klecker, B.; Ipavich, F. M.; Gloeckler, G.

    1980-01-01

    Measurements of the energy and angular distributions of energetic protons and alpha particles (not less than 30 keV/charge) in the geomagnetic tail are presented. The measurements were made during the recovery phase of a geomagnetic substorm on Apr. 19, 1978, with the Max-Planck-Institut/University of Maryland sensor system on the Isee 1 satellite. The measurements were also correlated with plasma observations made by the LASL/MPE instrument on Isee 1. The data reveal the presence of a thin nonthermal layer of protons and alpha particles at the plasma sheet boundary. The particles have their maximum flux at 60 keV/charge and are streaming highly collimated in the earthward direction. The alpha particle layer is confined within the proton layer. Many aspects of the observations are in agreement with an acceleration model near the neutral line proposed by Jaeger and Speiser (1974)

  4. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    SciTech Connect

    Allanson, O. Neukirch, T. Wilson, F. Troscheit, S.

    2015-10-15

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  5. Laboratory Observation of Resistive Electron Tearing in a Two-Fluid Reconnecting Current Sheet.

    PubMed

    Jara-Almonte, Jonathan; Ji, Hantao; Yamada, Masaaki; Yoo, Jongsoo; Fox, William

    2016-08-26

    The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number. The reconnection electric field increases when plasmoids are formed, leading to an enhanced reconnection rate. PMID:27610861

  6. Flute-interchange stability in a hot electron plasma

    SciTech Connect

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects.

  7. Formation of silicon hydride using hyperthermal negative hydrogen ions (H -) extracted from an argon-seeded hydrogen sheet plasma source

    NASA Astrophysics Data System (ADS)

    Fernandez, Marcedon S.; Blantocas, Gene Q.; Ramos, Henry J.

    2008-12-01

    An E × B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H -) from a premixed 10% argon-seeded hydrogen sheet plasma. With a vacuum background of 1.0 × 10 -6 Torr, H - extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A plasma discharge. The EXBII is positioned 3 cm distance from the sheet core as this is the region densely populated by cold electrons ( Te ˜ 2 eV, Ne ˜ 3.4 × 10 11 cm -3) best suited for H - formation. The extracted H - ions of flux density ˜0.26 A/m 2 are segregated, accelerated to hyperthermal range (<100 eV) and subsequently deposited into a palladium-coated 1.1 × 1.1 cm 2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H - ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH 2. Absorbance peaks between 900-970 cm -1 (bending modes) and 2050-2260 cm -1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH 2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm -1 which are hydrides of nano-crystalline silicon.

  8. Relationship between wave-like auroral arcs and Pi2 disturbances in plasma sheet prior to substorm onset

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Fang; Cheng, Chio-Zong

    2015-10-01

    Wave-like substorm arc features in the aurora and Pi2 magnetic disturbances observed in the near-Earth plasma sheet are frequently, and sometimes simultaneously, observed around the substorm onset time. We perform statistical analyses of the THEMIS ASI auroral observations that show wave-like bright spot structure along the arc prior to substorm onset. The azimuthal mode number values of the wave-like substorm arcs are found to be in the range of ~100-240 and decrease with increasing geomagnetic latitude of the substorm auroral arc location. We suggest that the azimuthal mode number is likely related to the ion gyroradius and azimuthal wave number. We also perform correlation study of the pre-onset wave-like substorm arc features and Pi2 magnetic disturbances for substorm dipolarization events observed by THEMIS satellites during 2008-2009. The wave-like arc brightness structures on the substorm auroral arcs tend to move azimuthally westward, but with a few exceptions of eastward movement, during tens of seconds prior to the substorm onset. The movement of the wave-like arc brightness structure is linearly correlated with the phase velocity of the Pi2 δ B y disturbances in the near-Earth plasma sheet region. The result suggests that the Pi2 transverse δ B y disturbances are related to the intensifying wave-like substorm onset arcs. One plausible explanation of the observations is the kinetic ballooning instability, which has high azimuthal mode number due to the ion gyroradius effect and finite parallel electric field that accelerates electrons into the ionosphere to produce the wave-like arc structure.

  9. Multiscale Auroral Emission Statistics as Evidence of Turbulent Reconnection in Earth's Midtail Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Uritsky, Vadim; Donovan, Eric

    2010-01-01

    We provide indirect evidence for turbulent reconnection in Earth's midtail plasma sheet by reexamining the statistical properties of bright, nightside auroral emission events as observed by the UVI experiment on the Polar spacecraft and discussed previously by Uritsky et al. The events are divided into two groups: (1) those that map to absolute value of (X(sub GSM)) < 12 R(sub E) in the magnetotail and do not show scale-free statistics and (2) those that map to absolute value of (X(sub GSM)) > 12 R(sub E) and do show scale-free statistics. The absolute value of (X(sub GSM)) dependence is shown to most effectively organize the events into these two groups. Power law exponents obtained for group 2 are shown to validate the conclusions of Uritsky et al. concerning the existence of critical dynamics in the auroral emissions. It is suggested that the auroral dynamics is a reflection of a critical state in the magnetotail that is based on the dynamics of turbulent reconnection in the midtail plasma sheet.

  10. Observations of plasma sheet expansion at substorm onset, R = 15 to 22 R[sub e

    SciTech Connect

    Lyons, L.R.; Huang, C.Y.

    1992-09-23

    The authors have used a large number of auroral magnetograms to identify four isolated substorms and estimate their onset times. At the onsets, ISEE-1 was in the vicinity of magnetic midnight at radial distances of 15.6 to 21.8 R[sub e] and very near the outer boundary of the plasma sheet. They find that, for each event, the plasma sheet expanded, and the magnetic field dipolarized at the inferred onset time. Their most definitive event occurred while ISEE was at a geocentric radial distance of 21.8 R[sub e]. This result conflicts with previous understanding, though further verification of the result is required. The observations show very similar characteristics to those observed at synchronous orbit, and they are consistent with an extension of a portion of the substorm current wedge to the radial distance of the satellite. If this explanation is correct, ISEE must have been within the longitude range of the substorm current wedge at the onsets. 13 refs., 8 figs.

  11. Nonlinear stability of the near-Earth plasma sheet during substorms: 9 February 1995 event

    NASA Astrophysics Data System (ADS)

    Dobias, P.; Wanliss, J. A.; Samson, J. C.

    2006-12-01

    It has been previously demonstrated that several minutes prior to an onset of a magnetospheric substorm the near-Earth plasma sheet becomes unstable to resonance-type perturbations. The next logical step, examined here, is an assumption that the velocity shear in the resonance would lead to a development of a Kelvin-Helmholtz (KH) instability. Using a Grad-Shafranov equilibrium constrained by CANOPUS data, we analyze the stability properties of the near-Earth plasma sheet in the presence of a field-line resonance-generated KH instability at around 10 Earth radii. The results of the analysis are in general agreement with observations and computer modeling of substorms. As a part of the analysis, we discuss the importance of the proper distinction between the stability properties of the magnetotail, and the trigger mechanism responsible for the instability. While these two aspects of a substorm may be (and likely are) related, it is possible that they involve different types of processes that work in a complementary fashion.

  12. Theoretical study of the adsorption of CHO radicals on hexagonal boron nitride sheet: Structural and electronic changes

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Pan, Xiao-fan; Liu, Yue-jie; Zhao, Jing-xiang

    2014-03-01

    It is well known that pristine hexagonal boron nitride sheet (h-BN sheet) exhibits large insulating band gap, thus hindering its application to some extent. In this regard, surface chemisorption of certain groups on h-BN sheet is shown to be the most popular method to tune its band gap and thus modify its electronic properties. In the present work, we performed density functional theory (DFT) calculations to study the adsorption of CHO radicals with different coverages on h-BN sheet. Particular attention is paid to explore the effects of CHO adsorption on the geometrical structures and electronic properties of h-BN sheet. The results indicate that the adsorption of a single CHO radical on pristine h-BN sheet is very weak with a negligible adsorption energy (-0.09 eV). In contrast, upon adsorption of more CHO radicals on h-BN sheet, these adsorbates prefer to adsorb in pairs on the B and the nearest N atoms from both sides of h-BN sheet. An energy diagram of the average adsorption energy of CHO radicals on h-BN sheet as a function of its coverage indicates that up to 20 CHO radicals (40%) can be attached to h-BN sheet with the adsorption energy of -0.29 eV. More importantly, the adsorption of CHO radicals can induce certain impurity states within the band gap of h-BN sheet, thus reducing the band gap and enhancing its electrical conductivity.

  13. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    SciTech Connect

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.

    2015-12-15

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.

  14. THEMIS two-point measurements of the cross-tail current density: A thick bifurcated current sheet in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Saito, Miho

    2015-08-01

    The basic properties of the near-Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail-like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets.

  15. High and low frequency instabilities driven by counter-streaming electron beams in space plasmas

    SciTech Connect

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.

    2014-05-15

    A four-component plasma composed of a drifting (parallel to ambient magnetic field) population of warm electrons, drifting (anti-parallel to ambient magnetic field) cool electrons, stationary hot electrons, and thermal ions is studied in an attempt to further our understanding of the excitation mechanisms of broadband electrostatic noise (BEN) in the Earth's magnetospheric regions such as the magnetosheath, plasmasphere, and plasma sheet boundary layer (PSBL). Using kinetic theory, beam-driven electrostatic instabilities such as the ion-acoustic, electron-acoustic instabilities are found to be supported in our multi-component model. The dependence of the instability growth rates and real frequencies on various plasma parameters such as beam speed, number density, temperature, and temperature anisotropy of the counter-streaming (relative to ambient magnetic field) cool electron beam are investigated. It is found that the number density of the anti-field aligned cool electron beam and drift speed play a central role in determining which instability is excited. Using plasma parameters which are closely correlated with the measurements made by the Cluster satellites in the PSBL region, we find that the electron-acoustic and ion-acoustic instabilities could account for the generation of BEN in this region.

  16. The Relationship of Ion Beams and Fast Flows in the Plasma Sheet Boundary Layer

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Reme, H.; Lin, R. P.; Sanderson, T.; Germany, G. A.; Spann, James F., Jr.; Brittnacher, M. J.; McCarthy, M.; Chen, L. J.; Larsen, D.; Phan, T. D.

    1998-01-01

    We report new findings on the behavior of plasmas in the vicinity of the plasma sheet boundary layer (PSBL). A large geometrical factor detector on WIND (3D plasma experiment) has discovered a unidirectional ion beam streaming in the tailward direction missed by previous observations. This tailward beam is as intense as the earthward streaming beam and it is found just inside the outer edge of the PSBL where earthward streaming beams are observed. The region where this tailward beam is observed includes an isotropic plasma component which is absent in the outer edge where earthward streaming beams are found. When these different distributions are convolved to calculate the velocity moments, fast flows (greater than 400 km/s) result in the earthward direction and much slower flows (less than 200 km/s) in the tailward direction. These new findings are substantially different from previous observations. Thus, the interpretation of fast flows and earthward and counterstreaming ion beams in terms of a neutral line model must be reexamined.

  17. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    SciTech Connect

    Baker, C. J. Danielson, J. R. Hurst, N. C. Surko, C. M.

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  18. Electron energy distribution in a dusty plasma: analytical approach.

    PubMed

    Denysenko, I B; Kersten, H; Azarenkov, N A

    2015-09-01

    Analytical expressions describing the electron energy distribution function (EEDF) in a dusty plasma are obtained from the homogeneous Boltzmann equation for electrons. The expressions are derived neglecting electron-electron collisions, as well as transformation of high-energy electrons into low-energy electrons at inelastic electron-atom collisions. At large electron energies, the quasiclassical approach for calculation of the EEDF is applied. For the moderate energies, we account for inelastic electron-atom collisions in the dust-free case and both inelastic electron-atom and electron-dust collisions in the dusty plasma case. Using these analytical expressions and the balance equation for dust charging, the electron energy distribution function, the effective electron temperature, the dust charge, and the dust surface potential are obtained for different dust radii and densities, as well as for different electron densities and radio-frequency (rf) field amplitudes and frequencies. The dusty plasma parameters are compared with those calculated numerically by a finite-difference method taking into account electron-electron collisions and the transformation of high-energy electrons at inelastic electron-neutral collisions. It is shown that the analytical expressions can be used for calculation of the EEDF and dusty plasma parameters at typical experimental conditions, in particular, in the positive column of a direct-current glow discharge and in the case of an rf plasma maintained by an electric field with frequency f=13.56MHz. PMID:26465570

  19. Picosecond imaging of low-density plasmas by electron deflectometry.

    PubMed

    Centurion, M; Reckenthaeler, P; Krausz, F; Fill, E E

    2009-02-15

    We have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons. PMID:19373367

  20. Effects of emitted electron temperature on the plasma sheath

    SciTech Connect

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-06-15

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T{sub e}/e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux.

  1. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  2. Plasma Cleaning and Its Applications for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Isabell, Thomas C.; Fischione, Paul E.; O'Keefe, Catherine; Guruz, Murat U.; Dravid, Vinayak P.

    1999-03-01

    The effectiveness of applying a high-frequency, low-energy, reactive gas plasma for the removal of hydrocarbon contamination from specimens and components for electron microscopy has been investigated with a variety of analytical techniques. Transmission electron microscopy (TEM) analysis of specimens that have been plasma cleaned shows an elimination of the carbonaceous contamination from the specimen. With extended cleaning times the removal of existing carbon contamination debris due to previously conducted microanalysis is shown. Following plasma cleaning, specimens may be examined in the electron microscope for several hours without exhibiting evidence of recontamination. The effectiveness of plasma cleaning is not limited to applications for TEM specimens. Scanning electron microscopy (SEM) specimens that have been plasma cleaned likewise show an elimination of carbonaceous contamination. Furthermore, other electron microscopy parts and accessories, such as aperture strips, specimen clamping rings, and Wehnelts, among others, can benefit from plasma cleaning.

  3. Observations at the planet Mercury by the plasma electron experiment, Mariner 10

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Scudder, J. D.; Vasyliunas, V. M.; Hartle, R. E.; Siscoe, G. L.

    1976-01-01

    Plasma electron observations made onboard Mariner 10 are reported. Three encounters with the planet Mercury show that the planet interacts with the solar wind to form a bow shock and a permanent magnetosphere. The observations provide a determination of the dimensions and properties of the magnetosphere, independently of and in general agreement with magnetometer observations. The magnetosphere of Mercury appears to be similar in shape to that of the Earth but much smaller in relation to the size of the planet. Electron populations similar to those found in the Earth's magnetotail, within the plasma sheet and adjacent regions, were observed at Mercury; both their spatial location and the electron energy spectra within them bear qualitative and quantitative resemblance to corresponding observations at the Earth. The magnetosphere of Mercury resembles to a marked degree a reduced version of that of the Earth, with no significant differences of structure.

  4. Heat treatment effect on the electronic and magnetic structures of nanographene sheets investigated through electron spectroscopy and conductance measurements.

    PubMed

    Takashiro, Jun-ichi; Kudo, Yasuhiko; Kaneko, Satoshi; Takai, Kazuyuki; Ishii, Takafumi; Kyotani, Takashi; Enoki, Toshiaki; Kiguchi, Manabu

    2014-04-28

    The heat treatment effect on the electronic and magnetic structures of a disordered network of nanographene sheets has been investigated by in situ measurements of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance, together with temperature-programmed desorption measurements. Oxygen-containing functional groups bonded to nanographene edges in the pristine sample are almost completely decomposed under heat treatment up to 1300-1500 K, resulting in the formation of edges primarily terminated by hydrogen. The removal of the oxygen-containing groups enhances the conductance owing to the decrease in the electron transport barriers between nanographene sheets. Heat treatment above 1500 K removes also the hydrogen atoms from the edges, promoting the successive fusion of nanographene sheets at the expense of edges. The decrease in the π* peak width in NEXAFS indicates the progress of the fusion reaction, that is, the extension of the π-conjugation, which agrees with the increase in the orbital susceptibility previously reported. The fusion leads to the formation of local π/sp(2) bridges between nanographene sheets and brings about an insulator-to-metal transition at 1500-1600 K, at which the bridge network becomes infinite. As for the magnetism, the intensity of the edge state peak in NEXAFS, which corresponds to the number of the spin-polarized edge states, decreases above 1500 K, though the effective edge-state spin density per edge state starts decreasing at approximately 200 K lower than the temperature of the edge state peak change. This disagreement indicates the development of antiferromagnetic short range ordering as a precursor of a spin glass state near the insulator-metal transition, at which the random network of inter-nanographene-sheet exchange interactions strengthened with the formation of the π/sp(2) bridges becomes infinite. PMID:24618730

  5. Nonnuclear Nearly Free Electron Conduction Channels Induced by Doping Charge in Nanotube–Molecular Sheet Composites

    SciTech Connect

    Zhao, Jin; Zheng, Qijing; Petek, Hrvoje; Yang, Jinlong

    2014-09-04

    Nearly free electron (NFE) states with density maxima in nonnuclear (NN) voids may have remarkable electron transport properties ranging from suppressed electron–phonon interaction to Wigner crystallization. Such NFE states, however, usually exist near the vacuum level, which makes them unsuitable for transport. Through first principles calculations on nanocomposites consisting of carbon nanotube (CNT) arrays sandwiched between boron nitride (BN) sheets, we describe a stratagem for stabilizing the NN-NFE states to below the Fermi level. By doping the CNTs with negative charge, we establish Coulomb barriers at CNTs walls that, together with the insulating BN sheets, define the transverse potentials of one-dimensional (1D) transport channels, which support the NN-NFE states.

  6. First-principles study of electronic and magnetic properties of transition metal adsorbed h-BNC2 sheets.

    PubMed

    Srivastava, Pooja; Deshpande, Mrinalini; Sen, Prasenjit

    2011-12-28

    Adsorption of Fe, Co and Ni atoms on a hybrid hexagonal sheet of graphene and boron nitride is studied using density functional methods. Most favorable adsorption sites for these adatoms are identified for different widths of the graphene and boron nitride regions. Electronic structure and magnetic properties of the TM-adsorbed sheets are then studied in detail. The TM atoms change the electronic structure of the sheet significantly, and the resulting system can be a magnetic semiconductor, semi-metal, or a non-magnetic semiconductor depending on the TM chosen. This gives tunability of properties which can be useful in novel electronics applications. Finally, barriers for diffusion of the adatoms on the sheet are calculated, and their tendency to agglomerate on the sheet is estimated. PMID:22068843

  7. Magnetic quadrupole formation of elliptical sheet electron beams for high-power microwave devices

    SciTech Connect

    Basten, M.A.; Booske, J.H.; Anderson, J. . Electrical and Computer Engineering Dept.)

    1994-10-01

    Sheet electron beams are attractive for high-power microwave sources due to their ability to transport high current, at reduced current density, through thin clearance apertures and in close proximity to walls or RF structures. This paper reports on the theoretical investigation of magnetic quadrupole formation of elliptical sheet electron beams for use in high-power microwave devices. The beam envelope equations for an initially round beam passing through a physical non-symmetric quadrupole pair in the presence of space-charge, finite beam emittance, and under the effects of third-order field components and longitudinal velocity variations are presented. The presence of space-charge compensates for over-focusing in the thin beam-dimension and allows for the formation of highly elliptic sheet electron beams. As an example, the results of the study were applied to an existing Pierce gun source with a beam radius of 0.6 cm, beam energy of 10 keV and current density of 2.0 A/cm[sup 2]. The authors find that an elliptical beam with major radius r[sub a] = 3.61 cm, minor radius r[sub b] = 0.16 cm and ellipticity (r[sub a]/r[sub b]) of 22.5 can be produced with only modest quadrupole gradients of 64 G/cm and 18 G/cm. Quadrupole formation of elliptical sheet-beams may be particularly suited for experimental research applications since existing round-beam electron guns may be used and changes in beam ellipticity may be made without breaking the vacuum system.

  8. Electron-acoustic solitary waves in a nonextensive plasma

    SciTech Connect

    Tribeche, Mouloud; Djebarni, Lyes

    2010-12-15

    The problem of arbitrary amplitude electron-acoustic solitary waves (EASWs) in a plasma having cold fluid electrons, hot nonextensive electrons, and stationary ions is addressed. It is found that the 'Maxwellianization' process of the hot nonextensive component does not favor the propagation of the EASWs. In contrast to superthermality, nonextensivity makes the electron-acoustic solitary structure less spiky. Our theoretical analysis brings a possibility to develop more refined theories of nonlinear solitary structures in astrophysical plasmas.

  9. Formation and transport of sheet electron beams and multi-beam configurations for high-power microwave devices

    SciTech Connect

    Basten, M.A.; Booske, J.H.; Anderson, J.; Scharer, J.E.

    1995-11-01

    Sheet electron beams and configurations with multiple electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single RF interaction circuit. Possible microwave device applications using sheet electron beams include sheet-beam klystrons, rectangular grating circuits, and planar FELS. Historically, implementation of sheet beams in microwave devices has been discouraged by their susceptibility to the diocotron instability in solenoidal focusing systems. However, recent theoretical and numerical studies have shown that stable transport of sheet beams is possible, in periodically cusped magnetic (PCM) fields. The use of an offset-pole PCM configuration has been shown analytically to provide side-fields for 2-D focusing of the beam, and this has been recently verified with PIC code simulations. The authors will present further theoretical studies of sheet and multi-beam transport and discuss results from an experimental investigation of the formation, stability and transport of PCM-focused sheet electron beams. This includes a laboratory method of forming an elliptical sheet beam using a magnetic quadrupole pair and a round-beam Pierce gun.

  10. Geometric and Electronic Structure of New Carbon-Network Materials: Nanotube Array on Graphite Sheet

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takanori; Saito, Susumu

    2002-11-01

    We design a new class of carbon-network materials with a periodically modified graphite sheet. The modified part corresponds to (6,6) carbon-nanotube geometry. Their tube parts form triangular lattice on graphite sheet. On these systems each tube has six heptagons at the bottom, giving rise to a seamless sp2-C network with a negative curvature. We consider these nanotube arrays on graphite sheet with three kinds of tube-end geometries and various sizes for both graphite and tube parts. We report their electronic structures obtained by using a realistic tight-binding model, and for selected systems the density-functional theory. Interestingly, results show that most of them are semiconductors although both (6,6) tube and graphite are metallic. The difference in their tube-end geometries and the sizes of graphite and tube parts affect their electronic structures. Some have nearly flat band states around the Fermi level, showing a possibility of ferromagnetic behavior if hole or electron is doped. Some are direct-gap semiconductors whose interband transition is optically allowed. Their typical gap energies are about 1 eV. Therefore they should emit infrared light.

  11. The 3 DLE instrument on ATS-5. [plasma electron counter

    NASA Technical Reports Server (NTRS)

    Deforest, S. E.

    1973-01-01

    The performance and operation of the DLE plasma electron counter on board the ATS 5 are described. Two methods of data presentation, microfilm line plots and spectrograms, are discussed along with plasma dynamics, plasma flow velocity, electrostatic charging, and wave-particle interactions.

  12. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  13. Vortices, Reconnection and Turbulence in High Electron-Beta Plasmas

    SciTech Connect

    Stenzel, R. L.

    2004-08-31

    Plasmas in which the kinetic energy exceeds the magnetic energy by a significant factor are common in space and in the laboratory. Such plasmas can convect magnetic fields and create null points in whose vicinity first the ions become unmagnetized, then the electrons. This project focuses on the detailed study of the transition regime of these plasmas.

  14. A relativistic solitary wave in electron-positron ion plasma

    SciTech Connect

    Berezhiani, V.I.; Mahajan, S.M. |

    1994-03-01

    The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves with relativistically strong amplitude in an unmagnetized cold electron-positron ion plasma is investigated. The possibility of finding soliton solutions in such a plasma is explored. In one- and two-dimensions it is shown that the presence of a small fraction of massive ions in the plasma leads to stable localized solutions.

  15. Dynamical features of the plasma-sheet ion composition, density, and energy

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1987-01-01

    The effects of changes in solar and geomagnetic activity on the major plasma-sheet ions are investigated on the basis of a statistical analysis of 1500 h of data obtained at distances 10-23 earth radii and energy/charge ratios 0.1-16 keV/e by the ISEE-1 energetic-ion mass spectrometer. The results are presented in extensive graphs and discussed in detail. It is found that substorm activity is accompanied by a significant decrease in the density of solar-origin H(+) ions, a sharp increase in the energy per nucleon of both H(+) and He(+) ions, and an increase in the density of terrestrial O(+) ions. A factor-of-three increase in the overall O(+) density over the observation period is attributed to an increase in the solar EUV flux.

  16. Data-Model Comparisons of Plasma Sheet Ion Temperatures during Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Ilie, R.; Liemohn, M. W.; Trigo, B.; Robison, G.; Carr, J., Jr.

    2014-12-01

    Ion heating occurs during geomagnetic storms as a result of many physical processes, including magnetic reconnection and adiabatic heating. Ion temperatures calculated from TWINS energetic neutral atom (ENA) data provide a global view of regions of heated ions in the plasma sheet. Two storms of similar, moderate magnitude are analyzed, a coronal mass ejection (CME)-driven storm that occurred on 26 September 2011 and a high speed stream (HSS)-driven storm on 13 October 2012. We present a comparison of the ion temperatures during the storms to patterns observed in a superposed epoch analysis of ion temperatures [Keesee et al., 2013] and compare the October storm to a previously analyzed HSS-driven storm [Keesee et al., 2012]. We also present a comparison of observed ion temperatures to those calculated from a simulation of each storm using the Space Weather Modeling Framework, including the BATS-R-US MHD model coupled with the HEIDI inner magnetosphere model.

  17. Simulation of sheet-shaped lithium beam probe performance for two-dimensional edge plasma measurement

    SciTech Connect

    Tsuchiya, H.; Morisaki, T.; Komori, A.; Motojima, O.

    2006-10-15

    A sheet-shaped thermal lithium beam probe has been developed for two-dimensional density measurements in the edge region of the torus plasma. A numerical simulation was carried out to confirm the validity of the diagnostics for fast and transient phenomena such as edge localized modes or blobs, etc., where the velocity of blobs is faster than that of the probe beam. It was found in the simulation that the density of the blob itself is reconstructed to be low and unexpected ghosts appear in the reconstructed density profile near the blob, if the conventional reconstruction method is employed. These results invite our attention to the numerical errors in the density reconstruction process. On the other hand, the errors can be corrected by using the simulation results.

  18. Effects of nonthermal electrons on plasma expansion into vacuum

    SciTech Connect

    Bennaceur-Doumaz, D. Bara, D.; Benkhelifa, E.; Djebli, M.

    2015-01-28

    The expansion of semi-infinite plasma into vacuum is analyzed with a hydrodynamic model for cold ions assuming electrons modelled by a kappa-type distribution. Similarly to Mora study of a plasma expansion into vacuum [P. Mora, Phys. Rev. Lett. 90, 185002 (2003)], we formulated empirical expressions for the electric field strength, velocity, and position of the ion front in one-dimensional nonrelativistic, collisionless isothermally expanding plasma. Analytic expressions for the maximum ion energy and the spectrum of the accelerated ions in the plasma were derived and discussed to highlight the electron nonthermal effects on enhancing the ion acceleration in plasma expansion into vacuum.

  19. Three separate ion populations observed simultaneously in the plasma sheet boundary layer in the distant geomagnetic tail

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Mukai, Toshifumi; Terasawa, Toshio; Machida, Shinobu

    2004-04-01

    The detailed structure of ion velocity space distributions in the plasma sheet boundary layer (PSBL) in the distant geomagnetic tail has been investigated. Three separate, tailward-streaming ion populations have been observed simultaneously in PSBL crossings in which the inner edge of the PSBL was identified as a slow mode shock: cold, low-energy, ions presumably of ionospheric origin that fill much of the tail lobes, and two more energetic populations. The more energetic of these latter populations, which was concentrated in the outer (lobe) layers of the PSBL, had a ``kidney bean'' shape. The less energetic population had a well-defined low-energy cutoff that decreased with increasing penetration into the PSBL from the lobe. The sources of these two populations may be cold lobe ions accelerated in the current sheet near the distant neutral line and plasma sheet ions that leak across the shock, respectively.

  20. Pulse propagation and electron acceleration in a corrugated plasma channel.

    PubMed

    Palastro, J P; Antonsen, T M; Morshed, S; York, A G; Milchberg, H M

    2008-03-01

    A preformed plasma channel provides a guiding structure for laser pulses unbound by the intensity thresholds of standard waveguides. The recently realized corrugated plasma channel [Layer, Phys. Rev. Lett. 99, 035001 (2007)] allows for the guiding of laser pulses with subluminal spatial harmonics. These spatial harmonics can be phase matched to high energy electrons, making the corrugated plasma channel ideal for the acceleration of electrons. We present a simple analytic model of pulse propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. PMID:18517531

  1. Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    1999-01-01

    The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.

  2. Solitary waves in asymmetric electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2015-10-01

    > By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron-positron plasma and/or electron-positron-ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions' mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron-positron plasmas and decrease also with ion concentration.

  3. Long-term variations in the plasma sheet ion composition and substorm occurrence over 23 years

    NASA Astrophysics Data System (ADS)

    Nosé, Masahito

    2016-12-01

    The Geotail satellite has been operating for almost two solar cycles (~23 years) since its launch in July 1992. The satellite carries the energetic particle and ion composition (EPIC) instrument that measures the energetic ion flux (9.4-212 keV/e) and enables the investigation of long-term variations of the ion composition in the plasma sheet for solar cycles 22-24. From the statistical analysis of the EPIC data, we find that (1) the plasma ion mass ( M) is approximately 1.1 amu during the solar minimum, whereas it increases to 1.5-2.7 amu during the solar maximum; (2) the increases in M seem to have two components: a raising of the baseline levels (~1.5 amu) and a large transient enhancement (~1.8-2.7 amu); (3) the baseline level change of M correlates well with the Mg II index, which is a good proxy for the solar extreme ultraviolet (EUV) or far ultraviolet (FUV) irradiance; and (4) the large transient enhancement of M is caused by strong magnetic storms. We also study the long-term variations of substorm occurrences in 1992-2015 that are evaluated with the number of Pi2 pulsations detected at the Kakioka observatory. The results suggest no clear correlation between the substorm occurrence and the Mg II index. Instead, when the substorms are classified into externally triggered events and non-triggered events, the number of the non-triggered events and the Mg II index are negatively correlated. We interpret these results that the increase in the solar EUV/FUV radiation enhances the supply of ionospheric ions (He+ and O+ ions) into the plasma sheet to increase M, and the large M may suppress spontaneous plasma instabilities initiating substorms and decrease the number of the non-triggered substorms. The present analysis using the unprecedentedly long-term dataset covering ~23 years provides additional observational evidence that heavy ions work to prevent the occurrence of substorms.

  4. Terahertz rectification by periodic two-dimensional electron plasma

    SciTech Connect

    Popov, V. V.

    2013-06-24

    The physics of terahertz rectification by periodic two-dimensional electron plasma is discussed. Two different effects yielding terahertz rectification are studied: the plasmonic drag and plasmonic ratchet. Ultrahigh responsivity of terahertz rectification by periodic two-dimensional electron plasma in semiconductor heterostructures and graphene is predicted.

  5. Electron acceleration by a laser pulse in a plasma

    SciTech Connect

    McKinstrie, C.J.; Startsev, E.A.

    1996-08-01

    The acceleration of an electron by a circularly polarized laser pulse in a plasma is studied. It appears possible to increase significantly the energy of a preaccelerated electron. Although the pulse tends to generate a plasma wake, to which it loses energy, one can eliminate the wake by choosing the duration of the pulse judiciously. {copyright} {ital 1996 The American Physical Society.}

  6. ISEE-1 and 2 observations of magnetic flux ropes in the magnetotail - FTE's in the plasma sheet?

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.; Cattell, C. A.; Takahasi, K.; Bame, S. J.

    1986-01-01

    Magnetic field observations on ISEE-1 and 2 in and near the neutral sheet about 20 Re down the near-earth magnetotail reveal the occurrence of structures resembling magnetic flux ropes. Both electric field and fast plasma data show that these structures convect across the spacecraft at speeds of 200 - 600 km/s, and that they have scale sizes of roughly 3 5 Re. The rope axis orientation is across the tail, approximately in the -Y GSM direction. Their magnetic structure is strikingly similar to magnetic flux ropes observed in the Venus ionosphere, and to flux transfer events observed at the dayside magnetopause. The total field-aligned current within these ropes may approach a million amps. These structures may arise because of patchy reconnection within the plasma sheet, or may be tearing islands formed when the plasma sheet magnetic field has a cross-tail component. Plasma sheet flux ropes are not a common feature at ISEE orbital altitudes; this suggests that near-earth neutral line formation within ISEE apogee (22 Re) may be equally rare.

  7. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  8. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  9. Plasma response to electron energy filter in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  10. Novel spin-electronic properties of BC{sub 7} sheets induced by strain

    SciTech Connect

    Xu, Lei; Dai, ZhenHong Sui, PengFei; Sun, YuMing; Wang, WeiTian

    2014-11-01

    Based on first-principles calculations, the authors have investigated the electronic and magnetic properties of BC{sub 7} sheets with different planar strains. It is found that metal–semiconductor transition appears at the biaxial strain of 15.5%, and the sheets are characteristic of spin-polarized semiconductor with a zero band-gap. The band-gap rapidly increases with strain, and reaches a maximum value of 0.60 eV at the strain of 20%. Subsequently, the band-gap decreases until the strain reaches up to 22% and shows a semiconductor-half metal transformation. It will further present metal properties until the strain is up to the maximum value of 35%. The magnetic moments also have some changes induced by biaxial strain. The numerical analysis shows that the two-dimensional distortions have great influences on the magnetic moments. The novel spin-electronic properties make BC{sub 7} sheets have potential applications in future spintronic nanodevices.

  11. Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source

    NASA Astrophysics Data System (ADS)

    Christy, Larry

    Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.

  12. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  13. Longitudinal and local time asymmetries of magnetospheric turbulence in Saturn's plasma sheet

    NASA Astrophysics Data System (ADS)

    Papen, Michael; Saur, Joachim

    2016-05-01

    Based on earlier studies that have shown Saturn's middle magnetosphere to contain turbulent magnetic field fluctuations, we analyze the spatial and temporal variations of the magnetic fluctuations and turbulent heating rate as a function of local time and magnetic phase. The region of study is Saturn's plasma sheet at a distance of 6-20 Rs, where Rs is Saturn's equatorial radius. The data set consists of magnetic field data measured during 92 orbits (revolutions) from the equatorial phases of Cassini covering 9 years from 2004 to 2012. We find asymmetries in the magnetosphere with enhanced fluctuations around noon. With respect to longitude we find increased fluctuations at 65° southern and 250° northern magnetic phase. This leads to an increased turbulent heating rate in these regions and is consistent with regions of increased plasma density and maximum downward field-aligned currents according to the quasi-dipolar perturbation fields. Analysis of single orbits reveals that the heating rate of 79% of all analyzed inbound and outbound legs is significantly (statistical error less than 1%) sinusoidally modulated. The modulation of the turbulent heating rate is predominantly observed during times when Cassini is located between dusk and midnight and additionally at dawn.

  14. Dry etch damage in GaAs metal-semiconductor field-effect transistors exposed to inductively coupled plasma and electron cyclotron resonance Ar plasmas

    SciTech Connect

    Ren, F.; Lee, J.W.; Abernathy, C.R.; Pearton, S.J.; Constantine, C.; Barratt, C.; Shul, R.J.

    1997-07-01

    The effects of Ar plasma exposure on transconductance, channel sheet resistance, output resistance, and gate contact ideality factor of GaAs metal-semiconductor field-effect transistors (MESFETs) were investigated using two different high-density plasma sources, namely inductively coupled plasma and electron resonance plasma. Ion-induced damage is found to be reduced at moderate source powers ({approximately}200W) because of the reduction in cathode dc self-bias and hence ion energy, but at higher source powers the increase in ion flux produces significant deterioration of the device performance. Careful attention must be paid to both ion flux and ion energy in order to minimize ion-induced damage. Due to their relatively low channel doping levels, MESFETs are found to be more sensitive to plasma damage than devices with very heavily doped component layers such as heterojunction bipolar transistors. {copyright} {ital 1997 American Vacuum Society.}

  15. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    SciTech Connect

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  16. Cold streams of ionospheric oxygen in the plasma sheet during the CDAW-6 event of March 22, 1979

    NASA Technical Reports Server (NTRS)

    Orsini, S.; Amata, E.; Candidi, M.; Balsiger, H.; Stokholm, M.; Huang, C. Y.; Lennartsson, W.; Lindqvist, P. A.

    1983-01-01

    During magnetospheric substorm events, the plasma and ion composition experiments in the ISEE-1 and 2 satellites detected cold ionospheric O+ streams, moving tailwards in the near Earth magnetotail. Flow is parallel to the magnetic field lines, with drift velocity in agreement with the electric field topology obtained by mapping the model ionospheric field along the magnetic field lines. Fluctuations of the flow velocity of the streams can be related to magnetotail movements. Oscillations of the flow direction and speed with periods ranging from 5 to 10 min that suggest the presence of waves are observed. The streams are observed at all distances between 15 and 6 Re from the Earth. When averaged over 360 deg, the streams show up as a low energy peak, superimposed on the distribution of isotropic plasma sheet ions. This double-peak structure of the energy spectrum seems typical of the disturbed plasma sheet.

  17. Determination of Plasma Electron Density from Optical Measurements

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian; Matlis, Eric; Corke, Thomas

    2009-11-01

    Plasma has been shown to be effective in many flow control applications, but now may also find use in adaptive optics. Plasma's index of refraction is coupled with it's electron density which may be adjusted for adaptive control. An experimental setup to verify the relation between plasma electron density, pressure, and voltage is presented. A non-thermal DBD plasma cell is created by evacuating air and applying a voltage potential between two conducting glass slides. Plasma forms in the chamber between the glass and the applied voltage potential controls the electron density. A HeNe laser is passed through the plasma cell and then focused onto a duo-lateral position sensing device (PSD). The plasma cell is oriented at an angle to the laser's beam and so changes in the plasma's index of refraction produce lateral translations in the beam position. Differences in the PSD output with and without plasma provides for the calculation of the electron density averaged over the beam spot area. The data from this experiment will be used to further develop an adaptive plasma lens for wavefront aberration corrections.

  18. Instability of Interaction of a Coherent Electron Beam and Plasma

    NASA Astrophysics Data System (ADS)

    Matveev, A. I.

    2015-12-01

    Nonlinear interaction of a beam with finite density of electrons, whose velocity is greater than the phase velocity of a plasma wave, with homogeneous collisionless plasma is described. It is shown that a positive feedback arises between plasma oscillations and the wave of longitudinal electron density of the beam if the phase of this wave is 90° ahead of the phase of plasma oscillations. An increase in the energies of plasma and beam oscillations is accompanied by a decrease in the kinetic beam energy until the moment when the beam velocity becomes equal to the plasma wave phase velocity. Since the beam velocity can be greater than the plasma wave phase velocity, such energy conversion is very efficient.

  19. Electron acceleration in long scale laser - plasma interactions

    NASA Astrophysics Data System (ADS)

    Kamperidis, Christos; Mangles, Stuart P. D.; Nagel, Sabrina R.; Bellei, Claudio; Krushelnick, Karl; Najmudin, Zulfikar; Bourgeois, Nicola; Marques, Jean Raphael; Kaluza, Malte C.

    2006-10-01

    Broad energy electron bunches are produced through the Self-Modulated Laser Wakefield Acceleration scheme at the 30J, 300 fsec laser, LULI, France, with long scale underdense plasmas, created in a He filled gas cell and in He gas jet nozzles of various lengths. With c.τlaser>>λplasma, electrons reached Emax ˜ 200MeV. By carefully controlling the dynamics of the interaction and by simultaneous observations of the electron energy spectra and the forward emitted optical spectrum, we found that a plasma density threshold (˜5.10^18 cm-3) exists for quasi-monoenergetic (˜30MeV) features to appear. The overall plasma channel size was inferred from the collected Thomson scattered light. 2D PIC simulations indicate that the main long laser pulse breaks up into small pulselets that eventually get compressed and tightly focused inside the first few plasma periods, leading to a bubble like acceleration of electron bunches.

  20. Public Data Set: Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup

    DOE Data Explorer

    Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609)

    2016-05-31

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in E.T. Hinson et al., 'Impedance of an Intense Plasma-Cathode Electron Source for Tokamak Plasma Startup,' Physics of Plasmas 23, 052515 (2016).

  1. Dawn-dusk asymmetry in ion pitch-angle anisotropy in the near-Earth magnetosphere and tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zaharia, S. G.; Lyons, L. R.; Angelopoulos, V.

    2012-12-01

    We found a strong dawn-dusk asymmetry in ion pitch-angle anisotropy from spatial distributions statistically determined using THEMIS observations. The asymmetry varies significantly with ion energies and is a result of different processes. The anisotropy of ions below several hundreds eV in the tail plasma sheet (beyond X = 10 Re) and the near-Earth magnetosphere (inside r = 10 Re) is dominantly negative (relatively higher particle fluxes near 0 and 180 degree pitch-angle) and is more strongly negative in the post-midnight sector than the pre-midnight sector. The negative anisotropy is likely caused by field-aligned ionosphere outflow and the post-midnight enhancement is correlated with stronger electron precipitation energy fluxes that create stronger outflow. For ions between 1 to 10 keV in the near-Earth magnetosphere, anisotropy is found to be strongly positive (relatively higher fluxes near 90 degree pitch-angle) in the morning sector while near isotropic in the evening sector. Comparing the fluxes within the region of the positive anisotropy with other MLTs suggests that the positive anisotropy is caused by field-aligned ions not being able to drift as earthward as 90 degree ions. For ions of 10 keV and above, magnetic drift shell splitting results in strongly positive anisotropy on the dayside, while additional magnetopause shadowing causes strongly negative anisotropy in the post-midnight sector.

  2. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  3. Progress toward positron-electron pair plasma experiments

    SciTech Connect

    Stenson, E. V.; Stanja, J.; Hergenhahn, U.; Saitoh, H.; Niemann, H.; Pedersen, T. Sunn; Marx, G. H.; Schweikhard, L.; Danielson, J. R.; Surko, C. M.; Hugenschmidt, C.

    2015-06-29

    Electron-positron plasmas have been of theoretical interest for decades, due to the unique plasma physics that arises from all charged particles having precisely identical mass. It is only recently, though, that developments in non-neutral plasma physics (both in linear and toroidal geometries) and in the flux of sources for cold positrons have brought the goal of conducting electron-positron pair plasma experiments within reach. The APEX/PAX collaboration is working on a number of projects in parallel toward that goal; this paper provides an overview of recent, current, and upcoming activities.

  4. The Role of Bubbles in the Transport of Particles From the Plasma Sheet to the Inner Magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Wolf, R.; Yang, J.; Toffoletto, F.; Sazykin, S. Y.

    2013-12-01

    Essentially the whole closed-field-line region of the magnetosphere is stratified, with layers of highest PV5/3 on field lines that stretch far into the tail and lowest PV5/3 deep in the inner magnetosphere. (Here V is the volume of a flux tube containing a unit of magnetic flux.) The magnetosphere is like an atmosphere with heavy gases on the bottom and lighter ones on the top. The entropy parameter PV5/3 is strictly conserved in ideal MHD. Transport nevertheless occurs between layers, because a non-ideal process like a patch of reconnection can create a bubble of low PV5/3 that propagates rapidly earthward, forming a bursty bulk flow. During that rapid earthward motion, the earthward boundary of the bubble forms a dipolarization front, where the magnetic field switches from the background stretched configuration to a more dipolar shape inside the bubble. A thin layer of high-PV5/3 flux tubes gets pushed earthward ahead of the bubble (known feature of dipolarization fronts). The bubble slows after it reaches the region where the PV5/3 of the surrounding medium matches its own, and it is sometimes observed to oscillate about an equilibrium position. While bubbles have obvious effects in the plasma sheet, their effects on the inner magnetosphere are much less obvious. Gradient/curvature drift, which is strong in the inner magnetosphere, causes higher-energy ions in the bubble to drift west compared to the bubble center and lower-energy ions and electrons to drift east. Thus the bubble blends into its surroundings. This picture of transport by bubbles has become well established for the plasma sheet, but conventional ring current models do not consider it, envisaging injection as a result of an increase in global convection. The key question is: do bubbles have any observable signatures in the storm-time ring current? Results will be presented from RCM-E runs designed to answer this question.

  5. Solitary and shock waves in magnetized electron-positron plasma

    SciTech Connect

    Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song

    2014-02-15

    An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

  6. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    SciTech Connect

    Jain, Neeraj; Büchner, Jörg

    2014-07-15

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.

  7. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  8. Thermoemission (dust-electron) plasmas: theory of neutralizing charges.

    PubMed

    Vishnyakov, V I; Dragan, G S

    2006-09-01

    Thermoemission plasma--i.e., a system consisting of dust grains and electrons--is studied. In the proposed model, it is assumed that the major part of the electronic gas is uniformly distributed in space and the spatial inhomogeneities of electronic density exist only near the dust grains. The experimental data, well described by the proposed theory, are given. PMID:17025751

  9. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-07-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future.

  10. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    PubMed Central

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  11. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations.

    PubMed

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  12. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  13. Energy exchange in strongly coupled plasmas with electron drift

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  14. Association of an auroral surge with plasma sheet recovery and the retreat of the substorm neutral line

    SciTech Connect

    Hones, E.W. ); Elphinstone, R.; Murphree, J.S. . Dept. of Physics); Galvin, A.B. . Dept. of Space Physics); Heinemann, N.C. . Dept. of Physics); Parks, G.K. ); Rich, F.J. (Air Force Geophysics Lab., Hanscom AFB, MA

    1990-01-01

    One of the periods being studied in the PROMIS CDAW (CDAW-9) workshops is the interval 0000-1200 UT on May 3, 1986, designated Event 9C.'' A well-defined substorm, starting at 0919 UT, was imaged by both DE 1 over the southern hemisphere and Viking over the northern hemisphere. The images from Viking, at 80-second time resolution, showed a surge-like feature forming at about 0952 UT at the poleward edge of the late evening sector of the oval. The feature remained relatively stationary until about 1000 UT when it seemed to start advancing westward. ISEE 1 and 2 were closely conjugate to the surge as mapped from both the DMSP and Viking images. We conclude that the plasma sheet recovery was occasioned by the arrival at ISEE 1,2 of a westward traveling wave of plasma sheet thickening, the wave itself being formed by westward progression of the substorm neutral line's tailward retreat. The westward traveling surge was the auroral manifestation of this nonuniform retreat of the neutral line. We suggest that the upward field aligned current measured by DMSP F7 above the surge head was driven by plasma velocity shear in the plasma sheet at the duskward kink'' in the retreating neutral line. By analogy with this observation we propose that the westward traveling surges and the current wedge field aligned currents that characterize the expanding auroral bulge during substorm expansive phase are manifestations of (and are driven by) velocity shear in the plasma sheet near the ends of the extending substorm neutral line.

  15. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas

    NASA Astrophysics Data System (ADS)

    Culfa, O.; Tallents, G. J.; Rossall, A. K.; Wagenaars, E.; Ridgers, C. P.; Murphy, C. D.; Dance, R. J.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.; Woolsey, N. C.

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (1020W cm-2 ) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μ m ).

  16. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  17. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    2016-08-01

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness and shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.

  18. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-08-15

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.

  19. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  20. Annular vortex merging processes in non-neutral electron plasmas

    SciTech Connect

    Kaga, Chikato Ito, Kiyokazu; Higaki, Hiroyuki; Okamoto, Hiromi

    2015-06-29

    Non-neutral electron plasmas in a uniform magnetic field are investigated experimentally as a two dimensional (2D) fluid. Previously, it was reported that 2D phase space volume increases during a vortex merging process with viscosity. However, the measurement was restricted to a plasma with a high density. Here, an alternative method is introduced to evaluate a similar process for a plasma with a low density.

  1. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  2. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    SciTech Connect

    V. I. Geyko; Fraiman, G. M.; Dodin, I. Y.; Fisch, N. J.

    2009-02-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 1017 cm-3. Assuming a/Υg << 1, which prevents net acceleration of the cold plasma, it is also shown that the normalized energy Υ of hot electrons accelerated from the initial energy Υo < , Γ does not exceed Γ ~ aΥg, where a is the normalized laser field, and Υg is the group velocity Lorentz factor. Yet Υ ~ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted.

  3. Controlling electron injection in laser plasma accelerators using multiple pulses

    SciTech Connect

    Matlis, N. H.; Geddes, C. G. R.; Plateau, G. R.; Esarey, E.; Schroeder, C.; Bruhwiler, D.; Cormier-Michel, E.; Chen, M.; Yu, L.; Leemans, W. P.

    2012-12-21

    Use of counter-propagating pulses to control electron injection in laser-plasma accelerators promises to be an important ingredient in the development of stable devices. We discuss the colliding pulse scheme and associated diagnostics.

  4. Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Uritsky, Vadim; Baker, Daniel

    2006-01-01

    Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  5. Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    2006-01-01

    Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  6. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  7. Electron transport in a collisional plasma with multiple ion species

    SciTech Connect

    Simakov, Andrei N. Molvig, Kim

    2014-02-15

    A generalization of the Braginskii electron fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. A description of the plasma ions with disparate masses is also discussed.

  8. Alfvenic Solitons in Ultrarelativistic Electron-Position Plasmas

    NASA Technical Reports Server (NTRS)

    Verheest, G. S. Lakhina F.

    1997-01-01

    In electron-positron plasmas some of the plasma modes are decoupled due to the equal charge-to-mass ratio of both species. We derive the dispersion law for a low-frequency, generalized X-mode, which exists at all angles of propagation with respect to the static magnetic field.

  9. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    NASA Astrophysics Data System (ADS)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  10. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  11. Vacuum polarization and electron-positron plasma oscillations

    SciTech Connect

    Ruffini, R.; Vereshchagin, G. V.; Xue, S.-S.

    2008-01-03

    We study plasma oscillations of electrons-positron pairs created by the vacuum polarization in an uniform electric field. Our treatment, encompassing also the case of E>E{sub c}, shows the existence in both cases of a maximum Lorentz factor acquired by electrons and positrons and allows determination of the a maximal length of oscillation. We quantitatively estimate how plasma oscillations reduce the rate of pair creation and increase the time scale of the pair production.

  12. Effect of Time Dependent Bending of Current Sheets in Response to Generation of Plasma Jets and Reverse Currents

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse

  13. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  14. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  15. Field-aligned current signatures in the near-tail region. I - ISEE observations in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Kokubun, S.; Elphic, R. C.; Russell, C. T.

    1988-01-01

    Field-aligned currents in the near-tail region are examined using ISEE magnetometer data. Two substorms (the 1054 UT and the 1436 UT substorms on March 22, 1979) were examined, demonstrating the consistency of the current polarity and intensity with observations at lower altitudes, which suggests that field-aligned currents in the plasma sheet boundary layer are parts of the large-scale current system, the region-1 system. An examination of the steplike changes of the magnetic field direction, which correspond to the spacecraft crossing of a net field-aligned current, showed that the field-aligned currents in the plasma sheet boundary layer have the same polarity as the region-1 system.

  16. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  17. Oscillating plasma bubbles. III. Internal electron sources and sinks

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  18. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  19. Electron backscatter diffraction applied to lithium sheets prepared by broad ion beam milling.

    PubMed

    Brodusch, Nicolas; Zaghib, Karim; Gauvin, Raynald

    2015-01-01

    Due to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis. Based on EDS results the impurities could be characterized and EBSD revealed the microsctructure and microtexture of this material with accuracy. The beam damage and oxidation/hydration resulting from the intensive use of IM and the transfer of the sample into the microscope chamber was estimated to be <50 nm. Despite the fact that the IM process generates an increase of temperature at the specimen surface, it was assumed that the milling parameters were sufficient to minimize the heating effect on the surface temperature. However, a cryo-stage should be used if available during milling to guaranty a heating artefact free surface after the milling process. PMID:25280344

  20. Solar Wind Electron Energization by Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.

    2015-09-01

    The solar wind electrons are made of the low-energy Maxwellian core, intermediate-energy halo, field-aligned strahl, and the highly-energetic super-halo electrons. The present paper discusses a model in which the halo electrons interact with the whistler fluctuation via cyclotron wave-particle resonance, and the super-halo electrons interact through Landau resonance with the Langmuir fluctuation, thus maintaining a local steady state.

  1. Cryo-electron microscopy of extracellular vesicles in fresh plasma

    PubMed Central

    Yuana, Yuana; Koning, Roman I.; Kuil, Maxim E.; Rensen, Patrick C. N.; Koster, Abraham J.; Bertina, Rogier M; Osanto, Susanne

    2013-01-01

    Introduction Extracellular vesicles (EV) are phospholipid bilayer-enclosed vesicles recognized as new mediators in intercellular communication and potential biomarkers of disease. They are found in many body fluids and mainly studied in fractions isolated from blood plasma in view of their potential in medicine. Due to the limitations of available analytical methods, morphological information on EV in fresh plasma is still rather limited. Objectives To image EV and determine the morphology, structure and size distribution in fresh plasma by cryo-electron microscopy (cryo-EM). Methods Fresh citrate- and ethylenediaminetetraacetic acid (EDTA)-anticoagulated plasma or EV isolated from these plasmas were rapidly cryo-immobilized by vitrification and visualized by cryo-EM. Results EV isolated from fresh plasma were highly heterogeneous in morphology and size and mostly contain a discernible lipid bilayer (lipid vesicles). In fresh plasma there were 2 types of particles with a median diameter of 30 nm (25–260 nm). The majority of these particles are electron dense particles which most likely represent lipoproteins. The minority are lipid vesicles, either electron dense or electron lucent, which most likely represent EV. Lipid vesicles were occasionally observed in close proximity of platelets in citrate and EDTA-anticoagulated platelet-rich plasma. Cryo-electron tomography (cryo-ET) was employed to determine the 3D structure of platelet secretory granules. Conclusions Cryo-EM is a powerful technique that enables the characterization of EV in fresh plasma revealing structural details and considerable morphological heterogeneity. Only a small proportion of the submicron structures in fresh plasma are lipid vesicles representing EV. PMID:24455109

  2. Hybrid Simulation of Laser-Plasma Interactions and Fast Electron Transport in Inhomogeneous Plasma

    SciTech Connect

    Cohen, B I; Kemp, A; Divol, L

    2009-05-27

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogenous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  3. Simulation of laser-plasma interactions and fast-electron transport in inhomogeneous plasma

    SciTech Connect

    Cohen, B.I. Kemp, A.J.; Divol, L.

    2010-06-20

    A new framework is introduced for kinetic simulation of laser-plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell's equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell's equations are solved using an Ohm's law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere's law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.

  4. Modeling of a planar FEL amplifier with a sheet relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Rozental, R. M.; Peskov, N. Yu.; Arzhannikov, A. V.; Sinitsky, S. L.

    2002-05-01

    The paper is devoted to the modeling of a 75 GHz planar FEL-amplifier. This amplifier is driven by a sheet electron beam (1 MeV, 2 kA) produced by the U-3 accelerator (BINP). Different approaches based on non-averaged self-consistent system of equations as well as the averaged equations were used for the description of interaction between the electron beam and the TEM-mode of the planar waveguide. Both methods demonstrated similar results with maximum gains 24-25 db, corresponding to an output power of about 250-300 MW and an efficiency of 14-17%. The 2-D version of the PIC-code KARAT was used for additional modeling. KARAT-based simulations demonstrated a maximum gain up to 22 db, output power 160-170 MW and an efficiency of 9%. The reduction of gain can be explained by the space-charge effects.

  5. Transition of electron kinetics in weakly magnetized inductively coupled plasmas

    SciTech Connect

    Kim, Jin-Yong; Lee, Hyo-Chang; Kim, Young-Do; Chung, Chin-Wook; Kim, Young-Cheol

    2013-10-15

    Transition of the electron kinetics from nonlocal to local regime was studied in weakly magnetized solenoidal inductively coupled plasma from the measurement of the electron energy probability function (EEPF). Without DC magnetic field, the discharge property was governed by nonlocal electron kinetics at low gas pressure. The electron temperatures were almost same in radial position, and the EEPFs in total electron energy scale were radially coincided. However, when the DC magnetic field was applied, radial non-coincidence of the EEPFs in total electron energy scale was observed. The electrons were cooled at the discharge center where the electron heating is absent, while the electron temperature was rarely changed at the discharge boundary with the magnetic field. These changes show the transition from nonlocal to local electron kinetics and the transition is occurred when the electron gyration diameter was smaller than the skin depth. The nonlocal to local transition point almost coincided with the calculation results by using nonlocal parameter and collision parameter.

  6. Nonlocal collisionless and collisional electron transport in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Kaganovich, Igor

    2009-10-01

    The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and

  7. Structural Stability and Electronic Structures of a Curved Graphene Sheet on Stepped SiC(0001) Surface

    NASA Astrophysics Data System (ADS)

    Ono, Youky; Nara, Jun; Ohno, Takahisa

    2016-03-01

    The structural stabilities and electronic structures of graphene sheets laid on stepped SiC(0001) surfaces are theoretically investigated by density functional theory calculations. To precisely estimate the van der Waals (vdW) binding energy between graphene sheets and SiC surfaces, the vdW density functional (vdW-DF) was used. We have found that a graphene sheet put over a stepped SiC surface has a curved structure bridging the upper and lower terraces without making any bonds to the atoms of the step. This bridging curved structure of the graphene sheet is mainly stabilized by the vdW attraction force. With respect to the electronic structure, the original sp2 network is maintained in the curved graphene sheet. By comparing the local density of states (LDOS) of carbon atoms in the curved graphene sheet, we also found that the electronic structure of each carbon atom largely depends on the distance between the carbon atom and the surface.

  8. Electron plasma oscillations upstream of the solar wind termination shock.

    PubMed

    Gurnett, D A; Kurth, W S

    2005-09-23

    Electron plasma oscillations have been detected upstream of the solar wind termination shock by the plasma wave instrument on the Voyager 1 spacecraft. These waves were first observed on 11 February 2004, at a heliocentric radial distance of 91.0 astronomical units, and continued sporadically with a gradually increasing occurrence rate for nearly a year. The last event occurred on 15 December 2004, at 94.1 astronomical units, just before the spacecraft crossed the termination shock. Since then, no further electron plasma oscillations have been observed, consistent with the spacecraft having crossed the termination shock into the heliosheath. PMID:16179470

  9. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  10. Secondary-electrons-induced cathode plasma in a relativistic magnetron

    SciTech Connect

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E.

    2012-11-19

    Results of time- and space-resolved spectroscopic studies of cathode plasma during a S-band relativistic magnetron operation and a magnetically insulated diode having an identical interelectrode gap are presented. It was shown that in the case of the magnetron operation, one obtains an earlier, more uniform plasma formation due to energetic electrons' interaction with the cathode surface and ionization of desorbed surface monolayers. No differences were detected in the cathode's plasma temperature between the magnetron and the magnetically insulated diode operation, and no anomalous fast cathode plasma expansion was observed in the magnetron at rf power up to 350 MW.

  11. Electron inertia effects on the planar plasma sheath problem

    SciTech Connect

    Duarte, V. N.; Clemente, R. A.

    2011-04-15

    The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.

  12. Measurements of beat wave accelerated electrons in a toroidal plasma

    SciTech Connect

    Rogers, J.H.; Hwang, D.W. |

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v{sub e} < v{sub ph} < 7v{sub e} (v{sub ph} was varied 2v{sub e} < v{sub ph} < 10v{sub e}), where v{sub e} is the electron thermal velocity, (kT{sub e}/m{sub e}){sup {1/2}}. As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted.

  13. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  14. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Vignale, Giovanni; Carrega, Matteo; Polini, Marco

    2016-03-01

    Hydrodynamic flow occurs in an electron liquid when the mean free path for electron-electron collisions is the shortest length scale in the problem. In this regime, transport is described by the Navier-Stokes equation, which contains two fundamental parameters, the bulk and shear viscosities. In this paper, we present extensive results for these transport coefficients in the case of the two-dimensional massless Dirac fermion liquid in a doped graphene sheet. Our approach relies on microscopic calculations of the viscosities up to second order in the strength of electron-electron interactions and in the high-frequency limit, where perturbation theory is applicable. We then use simple interpolation formulas that allow to reach the low-frequency hydrodynamic regime where perturbation theory is no longer directly applicable. The key ingredient for the interpolation formulas is the "viscosity transport time" τv, which we calculate in this paper. The transverse nature of the excitations contributing to τv leads to the suppression of scattering events with small momentum transfer, which are inherently longitudinal. Therefore, contrary to the quasiparticle lifetime, which goes as -1 /[T2ln(T /TF) ] , in the low-temperature limit we find τv˜1 /T2 .

  15. Three-wave coupling in electron-positron-ion plasmas

    SciTech Connect

    Tinakiche, N.; Annou, R.; Tripathi, V. K.

    2012-07-15

    The three-wave coupling processes in electron-positron-ion plasmas are investigated. The non-linear dispersion relation is derived along with the non-linear growth rate in both resonant and non resonant processes. It is shown that the inclusion of positron affects the dielectric properties of the plasma as well as the nonlinear growth rates of parametric processes. As one increases the positron density to electron density ratio from 0 to 1, maintaining quasi neutrality of the plasma, the growth rates of stimulated Raman, Brillouin, and Compton scattering processes in an isothermal plasma tend to zero due to the ponderomotive forces acting on electrons and positrons due the pump and scattered waves being equal.

  16. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  17. Effect of secondary electron emission on the plasma sheath

    SciTech Connect

    Langendorf, S. Walker, M.

    2015-03-15

    In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 10{sup 12} m{sup −3} at a pressure of 10{sup −4} Torr-Ar, with a 1%–16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (∼1 T{sub e}), and in four out of six cases deviate less than the measurement uncertainty of 1 V.

  18. Electron energy distributions in a magnetized inductively coupled plasma

    SciTech Connect

    Song, Sang-Heon E-mail: Sang-Heon.Song@us.tel.com; Yang, Yang; Kushner, Mark J.

    2014-09-15

    Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

  19. Effect of secondary electron emission on the plasma sheath

    NASA Astrophysics Data System (ADS)

    Langendorf, S.; Walker, M.

    2015-03-01

    In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 1012 m-3 at a pressure of 10-4 Torr-Ar, with a 1%-16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (˜1 Te), and in four out of six cases deviate less than the measurement uncertainty of 1 V.

  20. Formation and evolution of high-plasma-pressure region in the near-Earth plasma sheet: Precursor and postcursor of substorm expansion onset

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Ebihara, Y.; Tanaka, T.

    2015-08-01

    Cause of substorm expansion onset is one of the major problems in the magnetospheric study. On the basis of a global magnetohydrodynamic (MHD) simulation, Tanaka et al. (2010) suggested that formation and evolution of a high-pressure region (HPR) in the near-Earth plasma sheet could result in sudden intensification of the Region 1 field-aligned current and the westward auroral electrojet. In this sense, the formation and evolution of the HPR are a key in understanding the cause of the onset. On 5 April 2009, three probes of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) were located at XGSM~-11 Re around the equator, which provide unique opportunity to investigate the spatial-temporal evolution of the HPR near the substorm expansion onset. Just before the onset, a positive excursion of the plasma pressure appeared at the outermost probe first, followed by the inner ones. Just after the onset, the opposite sequence took place. A positive excursion of the Y component of the current density was observed near the onset by the THEMIS probes and followed by a decrease trend. A similar variation was also found in the MHD simulation. All these features are consistent with the simulation result that a squeeze of the plasma from the plasma sheet results in the formation of the HPR before the onset and that the accumulated plasma spreads outward after the onset. The HPR is shown to be important for the dynamics of the magnetosphere during a substorm.

  1. Multi electron species and shielding potentials in plasmas

    SciTech Connect

    Khan, Arroj A.; Murtaza, G.; Rasheed, A.; Jamil, M.

    2012-11-15

    The phenomenon of Debye shielding is investigated in electron ion plasmas using the approach of two temperature electrons. We get different profiles of potential for different parameters and observe that the potentials fall very slowly than the standard Coulomb and Debye potentials. The importance of work is pointed out in the introduction.

  2. Numerical model of the plasma formation at electron beam welding

    SciTech Connect

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  3. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    SciTech Connect

    Shrivastava, G. Ahirwar, G.; Shrivastava, J.

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  4. Microwave radiation measurements near the electron plasma frequency of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1978-01-01

    Microwave emission near the electron plasma frequency was observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50 omega miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 10 million/cu cm to 8 hundred million/cu cm. A linear relation was observed betweeen the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.

  5. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  6. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  7. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    SciTech Connect

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K.

    2012-09-15

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing plasma measurements to be done with ion saturation current of the order of hundreds of {mu}A. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering {<=}50 kHz.

  8. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  9. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  10. PEACE: A Plasma Electron and Current Experiment

    NASA Astrophysics Data System (ADS)

    Johnstone, A. D.; Alsop, C.; Carter, P. J.; Coates, A. J.; Coker, A. J.; Gowen, R. A.; Hancock, B. K.; Kennedy, T. E.; Sheather, P. H.; Woodliffe, R. D.

    1993-03-01

    An electron analyzer to measure the three dimensional velocity distribution of electrons on the multispacecraft Cluster mission is described, and the steps taken to meet the special requirements imposed by the novel character of the mission are explained. The onboard data processing unit is described and the telemetry outputs are addressed. The mass, power consumption, and calibration of the equipment is addressed.

  11. Experimental evidence of warm electron populations in magnetron sputtering plasmas

    SciTech Connect

    Sahu, B. B. Han, Jeon G.; Kim, Hye R.; Ishikawa, K.; Hori, M.

    2015-01-21

    This work report on the results obtained using the Langmuir probe (LP) measurements in high-power dc magnetron sputtering discharges. Data show clear evidence of two electron components, such as warm and bulk electrons, in the sputtering plasma in a magnetic trap. We have also used optical emission spectroscopy diagnostic method along with LP to investigate the plasma production. Data show that there is a presence of low-frequency oscillations in the 2–3 MHz range, which are expected to be generated by high-frequency waves. Analysis also suggests that the warm electrons, in the plasmas, can be formed due to the collisionless Landau damping of the bulk electrons.

  12. Electron trapping and acceleration across a parabolic plasma density profile.

    PubMed

    Kim, J U; Hafz, N; Suk, H

    2004-02-01

    It is known that as a laser wakefield passes through a downward density transition in a plasma some portion of the background electrons are trapped in the laser wakefield and the trapped electrons are accelerated to relativistic high energies over a very short distance. In this study, by using a two-dimensional (2D) particle-in-cell (PIC) simulation, we suggest an experimental scheme that can manipulate electron trapping and acceleration across a parabolic plasma density channel, which is easier to produce and more feasible to apply to the laser wakefield acceleration experiments. In this study, 2D PIC simulation results for the physical characteristics of the electron bunches that are emitted from the parabolic density plasma channel are reported in great detail. PMID:14995568

  13. Electron temperature and density measurements of laser induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U.; Nadeem, Ali

    2016-05-01

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9-33 GW/cm2) and with ambient pressure (8-250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  14. Electron-vibration relaxation in oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Heritier, K. L.; Panesi, M.

    2016-06-01

    An ideal chemical reactor model is used to study the vibrational relaxation of oxygen molecules in their ground electronic state, X3 Σg-, in presence of free electrons. The model accounts for vibrational non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The vibrational levels of the molecules are treated as separate species, allowing for non-Boltzmann distributions of their population. The electron and vibrational temperatures are varied in the range [0-20,000] K. Numerical results show a fast energy transfer between oxygen molecules and free electron, which causes strong deviation of the vibrational distribution function from Boltzmann distribution, both in heating and cooling conditions. Comparison with Landau-Teller model is considered showing a good agreement for electron temperature range [2000-12,000] K. Finally analytical fit of the vibrational relaxation time is given.

  15. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    SciTech Connect

    Lunov, O. Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  16. Nonlinear electron-acoustic waves in quantum plasma

    SciTech Connect

    Sah, O. P.; Manta, J.

    2009-03-15

    The nonlinear wave structure of electron-acoustic waves (EAWs) is investigated in a three component unmagnetized dense quantum plasma consisting of two distinct groups of electrons (one inertial cold electron, and other inertialess hot electrons) and immobile ions. By employing one dimensional quantum hydrodynamic model and standard reductive perturbation technique, a Korteweg-de-Vries equation governing the dynamics of EAWs is derived. Both compressive and rarefactive solitons along with periodical potential structures are found to exist for various ranges of dimensionless quantum parameter H. The quantum mechanical effects are also examined numerically on the profiles of the amplitude and the width of electron-acoustic solitary waves. It is observed that both the amplitude and the width of electron-acoustic solitary waves are significantly affected by the parameter H. The relevance of the present investigation to the astrophysical ultradense plasmas is also discussed.

  17. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    NASA Astrophysics Data System (ADS)

    Weikum, M. K.; Li, F. Y.; Assmann, R. W.; Sheng, Z. M.; Jaroszynski, D.

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented.

  18. Formation and transport of low-voltage, space-charge dominated sheet electron beams for high-power microwave devices

    SciTech Connect

    Basten, M.A.; Booske, J.H.; Louis, L.J.; Joe, J.; Scharer, J.E.

    1996-12-31

    Sheet electron beams have the potential to make possible higher power sources of microwave radiation due to their ability to transport high currents, at reduced current densities, through a single narrow RF interaction circuit. The authors will discuss experimental investigations of the formation of an elliptical sheet beam using magnet quadrupoles and a round-beam electron gun. Features of this configuration include a low-cost, commercially available Pierce gun and a lens system consisting of four tunable magnetic quadrupoles with modest field gradients. Three-dimensional envelope and particle-in-cell simulations indicate that this method can generate highly elliptic output beams, with variability in final beam size, for laboratory experiments on sheet beam transport. They also will present the results of particle-in-cell simulations of the transport of sheet beams in long-period offset-pole periodic magnet arrays. While the stability of sheet beams in short-period arrays has previously been established, the extension to longer magnet periods indicate that side-focusing of space-charge dominated sheet beams is more problematic than beam stability. However, long-term (> 20 periods) stable transport is demonstrated for {lambda}{sub m} = 1 cm for a 2 A, 10 kV elliptical beam with a = 2.7 cm and b = 0.05 cm.

  19. dc-plasma-sprayed electronic-tube device

    DOEpatents

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  20. Cluster observations of the plasma sheet at very high latitudes: The in situ signature of a transpolar arc

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Milan, S. E.; Maggiolo, R.

    2013-12-01

    Transpolar arcs are auroral features which extend into the polar cap, which is the dim region poleward of the main auroral oval. Several case and statistical studies have shown that they are formed by the closure of lobe magnetic flux by magnetotail reconnection, and that the transpolar arc forms at the footprints of the newly-closed field lines which are embedded within the open flux of the polar cap. Therefore, when transpolar arcs occur, the magnetotail should contain closed magnetic field lines even at high latitudes (but in a localised sector), embedded within the open lobe flux. We present in situ observations of this phenomenon, taken by the Cluster spacecraft on 15th September 2005. Cluster was located at high latitudes in the southern hemisphere lobe (far from the typical location of the plasma sheet), and a transpolar arc was observed by the FUV cameras on the IMAGE satellite. An initial analysis reveals that Cluster periodically observed plasma similar to a typical plasma sheet distribution, but at much higher latitudes - indicative of closed flux embedded within the high latitude lobe. Each time that this plasma distribution was observed, the footprint of the spacecraft mapped to the transpolar arc (significantly poleward of the main auroral oval). These observations are consistent with closed flux being trapped in the magnetotail and embedded within the lobe, and provide further evidence for transpolar arcs being formed by magnetotail reconnection.

  1. Two-dimensional-spatial distribution measurement of electron temperature and plasma density in low temperature plasmas

    SciTech Connect

    Kim, Young-Cheol; Jang, Sung-Ho; Oh, Se-Jin; Lee, Hyo-Chang; Chung, Chin-Wook

    2013-05-15

    A real-time measurement method for two-dimensional (2D) spatial distribution of the electron temperature and plasma density was developed. The method is based on the floating harmonic method and the real time measurement is achieved with little plasma perturbation. 2D arrays of the sensors on a 300 mm diameter wafer-shaped printed circuit board with a high speed multiplexer circuit were used. Experiments were performed in an inductive discharge under various external conditions, such as powers, gas pressures, and different gas mixing ratios. The results are consistent with theoretical prediction. Our method can measure the 2D spatial distribution of plasma parameters on a wafer-level in real-time. This method can be applied to plasma diagnostics to improve the plasma uniformity of plasma reactors for plasma processing.

  2. Laboratory plasma with cold electron temperature of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Robertson, Scott

    2009-10-01

    For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.

  3. Fluid echoes in a pure electron plasma.

    PubMed

    Yu, J H; O'Neil, T M; Driscoll, C F

    2005-01-21

    Experimental observations of diocotron wave echoes on a magnetized electron column are reported, representing Kelvin wave echoes on a rotating near-ideal fluid. The echoes occur by reversal of an inviscid wave damping process, and the phase-space mixing and unmixing are directly imaged. The basic echo characteristics agree with a simple nonlinear ballistic theory. At late times, the echo is degraded, and the maximal observed echo times agree with a theory of electron-electron collisions acting on separately evolving velocity classes. PMID:15698185

  4. Plasma-wall interaction in an electrostatic sheath of plasma containing a monoenergetic electron beam

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Zhao, Xiaoyun; Gan, Chunyun

    2016-04-01

    The plasma-wall interaction in the presence of a monoenergetic electron beam has been studied by taking into account the self-consistency among plasma transport in a collisionless electrostatic sheath, deposited energy flux at the wall and material thermal response for carbon and tungsten as wall materials. The variations of the potential drop across the sheath, ion velocity at the sheath edge, and surface temperature of material as a function of electron beam flux are explored in the presence of the electron emission. It is found that when electron beam does not dominate the sheath, potential drop across the sheath depends strongly on the material properties due to the impact of electron emission while the surface temperature of material shows monotonic variation. In the case of carbon wall, the electron beam may dominate the sheath at a certain electron beam concentration or energy. Under this circumstance, both the potential drop across the sheath and surface temperature of material demonstrate the sharp increasing transition. The development of local hot spot on the plasma facing material is caused by the enhanced ion energy flux instead of the electron beam energy flux. If the electron emission is not taken into account, as a smaller electron beam flux, both the potential drop across the sheath and surface temperature of material display the significant change and then it may be easier to develop for the local hot spot on the plasma facing material.

  5. Optical Diagnostics of Electron Energy Distributions in Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Wendt, Amy

    2011-05-01

    Passive, non-invasive optical emission measurements provide a means of probing important plasma parameters without introducing contaminants into plasma systems. We investigate the electron energy distribution function (EEDF) in argon containing inductively-coupled plasmas due to dominant role in rates of gas-phase reactions for processing plasmas. EEDFs are determined using measurements of 3p5 4 p --> 3p5 4 s emissions in the 650-1150 nm wavelength range and measured metastable and resonant level concentrations, in conjunction with a radiation model that includes contributions from often neglected but critical processes such as radiation trapping and electron-impact excitation from metastable and resonant levels. Measurements over a wide range of operating conditions (pressure, RF power, Ar/Ne/N2 gas mixtures) show a depletion of the EEDF relative to the Maxwell- Boltzmann form at higher electron energy, in good agreement with measurements made with Langmuir probes and predictions of a global discharge model. This result is consistent with predictions of electron kinetics and can be explained in terms of reduced life times for energetic electrons due to wall losses and inelastic collisions. This example highlights the potential utility of this method as a tool for probing kinetics of many types of low-temperature plasma systems, which are typically characterized by non-Maxwellian EEDFs. This work was supported by the Wisconsin Alumni Research Foundation (WARF) and by NSF Grant CBET 0714600.

  6. Easy-to-Use Preservation and Application of Platelet-Rich Plasma in Combination Wound Therapy With a Gelatin Sheet and Freeze-Dried Platelet-Rich Plasma: A Case Report

    PubMed Central

    Kakudo, Natsuko; Ogura, Tsunekata; Hara, Tomoya; Matsui, Makoto; Yamamoto, Masaya; Tabata, Yasuhiko; Kusumoto, Kenji

    2016-01-01

    Objective: Platelet-rich plasma is blood plasma enriched with platelets and contains various growth factors. Two major issues remain to be resolved in the use of platelet-rich plasma: the short biological activity after application, and the need to prepare platelet-rich plasma at each application instance. To overcome these problems, we developed a drug delivery system using gelatin hydrogel and preserved the excess platelet-rich plasma as freeze-dried platelet-rich plasma. We then applied combination treatment with a gelatin sheet and platelet-rich plasma at the first instance and freeze-dried platelet-rich plasma at the second instance in the treatment of a nonhealing wound. Methods: A 68-year-old woman had suffered open fracture of her right tibia 2 years prior, and a split-thickness skin graft had been applied to repair the skin defect on the right tibia. She had multiple relapse of ulcers, and the present ulcer had not healed for 2 months. After debridement, 2 mL of activated platelet-rich plasma was applied to the ulcer, and the gelatin sheet was laid to impregnate with the platelet-rich plasma, after which the sheet was covered with a polyurethane film. Thirty-three days after the first platelet-rich plasma application, the freeze-dried platelet-rich plasma was reconstituted and 2 mL of the reconstituted platelet-rich plasma was applied with a gelatin sheet. Results: At 14 days after the freeze-dried platelet-rich plasma application, the wound was mostly epithelized, with the rest of the wound covered with granulation tissue. Conclusions: These findings suggest that combination wound therapy with a gelatin sheet and freeze-dried platelet-rich plasma is a promising method for resolving issues with conventional platelet-rich plasma treatment. PMID:27555889

  7. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  8. Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral-zone activity

    NASA Technical Reports Server (NTRS)

    Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.

    1977-01-01

    Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion.

  9. Self-effect in expanding electron beam plasma

    SciTech Connect

    Garcia, M

    1999-05-07

    An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

  10. Thinning of current sheets and magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Singh, N.; Deverapalli, C.

    Using three-dimensional particle-in-cell (3DPIC) simulations, we study the formation of a thin current sheet. The processes associated with thin current sheets reported here include its thinning, associated potential well in its central part, ion acceleration into the well, current-driven ion mode instabilities, electron and ion heating, current sheet re- broadening, current disruption in the central part of the current sheet and magnetic reconnection. It is shown that current driven instabilities become explosive when the preferential heating of electrons by the ions make electron temperature higher than that of the ions. This explosive stage is associated with high plasma resistivity, current disruption and bifurcated current sheets. The current disruption is linked to the magnetic reconnection.

  11. Collisionless Reconnection in an Electron-Positron Plasma

    SciTech Connect

    Bessho, N.; Bhattacharjee, A.

    2005-12-09

    Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity.

  12. Collisionless reconnection in an electron-positron plasma.

    PubMed

    Bessho, N; Bhattacharjee, A

    2005-12-01

    Electromagnetic particle-in-cell simulations of fast collisionless reconnection in a two-dimensional electron-positron plasma (without an equilibrium guide field) are presented. A generalized Ohm's law in which the Hall current cancels out exactly is given. It is suggested that the key to fast reconnection in this plasma is the localization caused by the off-diagonal components of the pressure tensors, which produce an effect analogous to a spatially localized resistivity. PMID:16384388

  13. The functionalization of graphene using electron-beam generated plasmas

    SciTech Connect

    Baraket, M.; Walton, S. G.; Lock, E. H.; Robinson, J. T.; Perkins, F. K.

    2010-06-07

    A plasmas-based, reversible functionalization of graphene is discussed. Using electron-beam produced plasmas, oxygen and fluorine functionalities have been added by changing the processing gas mixtures from Ar/O{sub 2} to Ar/SF{sub 6}, respectively. The reversibility of the functionalization was investigated by annealing the samples. The chemical composition and structural changes were studied by x-ray photoelectron spectroscopy and Raman spectroscopy.

  14. Direct Acceleration of Electrons in a Corrugated Plasma Channel

    SciTech Connect

    Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.

    2009-01-22

    Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.

  15. Decays of electron Bernstein waves near plasma edge

    SciTech Connect

    Xiang Nong; Cary, John R.

    2011-12-15

    Nonlinear wave-wave couplings near the upper hybrid resonance are studied via particle-in-cell simulations. It is found that the decay of an electron Bernstein wave (EBW) depends on the ratio of the incident frequency and electron cyclotron frequency. For ratios less than two, parametric decay into a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency is observed. For ratios larger than two, the daughter waves could be an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. For sufficiently high incident power, the former process may dominate. Because of the electron cyclotron quasi-mode, electrons can be strongly heated by nonlinear Landau damping. As a result, the bulk of the incident power can be absorbed near plasma edge at high power. The increase in number of decay channels with frequency implies that the allowable power into the plasma must decrease with frequency.

  16. Plasma properties in electron-bombardment ion thrusters

    NASA Technical Reports Server (NTRS)

    Matossian, J. N.; Beattie, J. R.

    1987-01-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.

  17. Plasma properties in electron-bombardment ion thrusters

    SciTech Connect

    Matossian, J.N.; Beattie, J.R.

    1987-05-01

    The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model. 20 references.

  18. Particle Simulations for Electron Beam-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-cheng; G, Zhou C.; Li, Yang; Cao, Jin-bin; J, Cao B.; Wang, Xue-yi; X, Wang Y.

    1998-12-01

    The computer simulations of high-frequency instabilities excited by the high density electron beam and their nonlinear effect are presented. One-dimensional electromagnetic particle simulations are performed with different values of the electron beam-to-plasma density ratio. The results show that for the high electron beam-to-background plasma density ratio, all the Langmuir waves and two electromagnetic waves with left-hand and right-hand circular polarizations (i.e., the "L-O mode" and the "R-X mode") propagating parallel to the magnetic field can be generated and the maximum values of wave electric fields are nearly the same. The electron beam and background plasma are diffused and a part of energetic background electrons are obviously accelerated by the wave-particle interactions. The heating of the beam and background plasma is mainly due to the electrostatic (Langmuir) wave-particle interactions, but the accelerations of a part of energetic background electrons may be mainly due to the electromagnetic wave-particle interactions.

  19. Anomalous electron mobility in a coaxial Hall discharge plasma.

    PubMed

    Meezan, N B; Hargus, W A; Cappelli, M A

    2001-02-01

    A comprehensive analysis of measurements supporting the presence of anomalous cross-field electron mobility in Hall plasma accelerators is presented. Nonintrusive laser-induced fluorescence measurements of neutral xenon and ionized xenon velocities, and various electrostatic probe diagnostic measurements are used to locally determine the effective electron Hall parameter inside the accelerator channel. These values are then compared to the classical (collision-driven) Hall parameters expected for a quiescent magnetized plasma. The results indicate that in the vicinity of the anode, where there are fewer plasma instabilities, the electron-transport mechanism is likely elastic collisions with the background neutral xenon. However, we find that in the vicinity of the discharge channel exit, where the magnetic field is the strongest and where there are intense fluctuations in the plasma properties, the inferred Hall parameter departs from the classical value, and is close to the Bohm value of (omega(ce)tau)(eff) approximately 16. These results are used to support a simple model for the Hall parameter that is based on the scalar addition of the electron collision frequencies (elastic collision induced plus fluctuation induced), as proposed by Boeuf and Garrigues [J. Appl. Phys. 84, 3541 (1998)]. The results also draw attention to the possible role of fluctuations in enhancing electron transport in regions where the electrons are highly magnetized. PMID:11308588

  20. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Abbas, G.; Sarfraz, M.; Shah, H. A.

    2014-09-01

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  1. Anomalous skin effects in a weakly magnetized degenerate electron plasma

    SciTech Connect

    Abbas, G. Sarfraz, M.; Shah, H. A.

    2014-09-15

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].

  2. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2015-11-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω0) scale. At such small scale lengths channelization of currents is also observed in simulation.

  3. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    SciTech Connect

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  4. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  5. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  6. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  7. Thermally excited modes in a pure electron plasma.

    PubMed

    Anderegg, F; Shiga, N; Danielson, J R; Dubin, D H E; Driscoll, C F; Gould, R W

    2003-03-21

    Thermally excited plasma modes are observed in near-thermal-equilibrium pure electron plasmas over a temperature range of 0.05plasma-antenna coupling calibration uniquely determine the temperature. This calibration is obtained from the spectra themselves when absorption of the receiver-generated noise is significant, or from kinetic theory. This nondestructive temperature diagnostic agrees well with standard diagnostics and may be useful for expensive species such as antimatter. PMID:12688935

  8. On thermalization of electron-positron-photon plasma

    SciTech Connect

    Siutsou, I. A.; Aksenov, A. G.

    2015-12-17

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  9. On thermalization of electron-positron-photon plasma

    NASA Astrophysics Data System (ADS)

    Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.

    2015-12-01

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  10. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed. PMID:17931024

  11. Nonlinear Interactions between Electromagnetic Waves and Electron Plasma Oscillations in Quantum Plasmas

    SciTech Connect

    Shukla, P. K.; Eliasson, B.

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schroedinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  12. Effect of electron extraction from a grid plasma cathode on the generation of emission plasma

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2014-11-01

    The paper describes the operating mode of a plasma electron source based on a low- pressure arc discharge with grid stabilization of the plasma emission boundary which provides a considerable (up to twofold) increase in discharge and beam currents at an Ar pressure in the vacuum chamber p = 0.02-0.05 Pa, accelerating voltages of up to U = 10 kV, and longitudinal magnetic field of up to Bz = 0.1 T. The discharge and beam currents are increased on electron extraction from the emission plasma through meshes of a fine metal grid due to the energy of a high-voltage power supply which ensures electron emission and acceleration. The electron emission from the plasma cathode and arrival of ions from the acceleration gap in the discharge changes the discharge plasma parameters near the emission grid, thus changing the potential of the emission grid electrode with respect to the discharge cathode. The load is not typical and changes the voltage polarity of the electrode gap connected to the discharge power supply, which is to be taken into account in its calculation and design. The effect of electron emission from the plasma cathode on the discharge system can not only change the discharge and beam current pulse shapes but can also lead to a breakdown of the acceleration gap and failure of semiconductor elements in the discharge power supply unit.

  13. Plasma effects on the free-electron laser gain with a plasma wave undulator

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Jafari, S.; Batebi, S.

    2015-08-01

    Employing a magnetized plasma medium in the interaction region of a free-electron laser (FEL) offers the possibility of generating short wavelengths using moderate energy beams. Plasma in the presence of static magnetic field supports right and left circularly polarized electromagnetic modes. By superposition of these two modes, a linearly polarized electromagnetic mode is generated which can be employed as a plasma undulator in a FEL. This configuration has a higher tunability by controlling the plasma density on top of the γ -tubability of the conventional FELs. The roles of the axial magnetic field and plasma on the laser gain and the electron trajectories of an e-beam propagating through the plasma medium have been studied and new orbits of group (I, II, and III) have been found. Moreover, the stability of these orbits for different values of plasma frequencies has been investigated. It is shown that by increasing the axial guide magnetic field strength, the gain for orbits of group I trivially increase, while a decrease in gain has been obtained for orbits of group II and group III. In addition, it is found that with increasing the plasma frequency (or plasma density) the gain for orbits of group I and group II trivially decreases and shift to the lower cyclotron frequencies, while an increase in gain has been obtained for orbits of group III.

  14. Boltzmann equation and Monte Carlo analysis of electron-electron interactions on electron distributions in nonthermal cold plasmas

    SciTech Connect

    Yousfi, M.; Himoudi, A.; Gaouar, A. )

    1992-12-15

    Electron distribution functions in nonthermal cold plasmas generated by classical electrical discharges have been calculated from a powerful Boltzmann equation solution and an original Monte Carlo simulation. In these two methods both classical (i.e., elastic, inelastic, and superelastic) electron-atom (or molecule) collisions and electron-electron interactions are taken into account. The approximations considered to include long-range (electron-electron) and short-range (electron-atom) interactions in the same Monte Carlo algorithm are first validated by comparing with Boltzmann equation results. Then, the influence of electron-electron interactions on electron distribution functions, swarm parameters, and reaction rates under nonthermal cold plasma conditions are analyzed and discussed as a function of reduced electric field [ital E]/[ital N] and ionization degree [ital n][sub [ital e

  15. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.; El Fiki, S. A.; Nouh, S. A.; El Disoki, T. M.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions

  16. Magnetic insulation of secondary electrons in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Wood, B.P.; Faehl, R.J.; Fleischmann, H.H.

    1993-09-01

    The uncontrolled loss of accelerated secondary electrons in plasma source ion implantation (PSII) can significantly reduce system efficiency and poses a potential x-ray hazard. This loss might be reduced by a magnetic field applied near the workpiece. The concept of magnetically-insulated PSII is proposed, in which secondary electrons are trapped to form a virtual cathode layer near the workpiece surface where the local electric field is essentially eliminated. Subsequent electrons that are emitted can then be reabsorbed by the workpiece. Estimates of anomalous electron transport from microinstabilities are made. Insight into the process is gained with multi-dimensional particle-in-cell simulations.

  17. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  18. Influence of electron evaporative cooling on ultracold plasma expansion

    SciTech Connect

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-07-15

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10{sup 8}/cm{sup 3}). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  19. Characterization of Secondary Electron Emission Properties of Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Capece, Angela M.; Raitses, Yevgeny; Koel, Bruce E.

    2015-11-01

    The behavior of wall-bounded plasmas is significantly affected by the plasma-wall interactions, including the emission of secondary electrons (SEE) from the wall materials due to bombardment by primary electrons. The importance of SEE has prompted previous investigations of SEE properties of materials especially with applications to magnetic fusion, plasma thrusters, and high power microwave devices. In this work, we present results of measurements of SEE properties of graphite and lithium materials relevant for the divertor region of magnetic fusion devices. Measurements of total SEE yield (defined as the number of emitted secondary electrons per incident primary electron) for lithium are extended up to 5 keV primary electron energy, and the energy distributions of secondary electrons are provided for graphite and lithium. Additionally, the effect of contamination on the total SEE yield of lithium was explored by exposing the material to water vapor. Auger electron spectroscopy (AES) was used to determine surface composition and temperature programmed desorption (TPD) was used to determine lithium film thickness. Results show an order of magnitude increase in total SEE yield for lithium exposed to water vapor. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, and AF9550-09-1-0695; and DOE Office of Science Graduate Student Research Program.

  20. Time evolution of nonplanar electron acoustic shock waves in a plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Pakzad, Hamid Reza; Javidan, Kurosh; Tribeche, Mouloud

    2014-07-01

    The propagation of cylindrical and spherical electron acoustic (EA) shock waves in unmagnetized plasmas consisting of cold fluid electrons, hot electrons obeying a superthermal distribution and stationary ions, has been investigated. The standard reductive perturbation method (RPM) has been employed to derive the cylindrical/spherical Korteweg-de-Vries-Burger (KdVB) equation which governs the dynamics of the EA shock structures. The effects of nonplanar geometry, plasma kinematic viscosity and electron suprathermality on the temporal evolution of the cylindrical and spherical EA shock waves are numerically examined.

  1. Nonlocal electron transport in magnetized plasmas with arbitrary atomic number

    SciTech Connect

    Bennaceur-Doumaz, D.; Bendib, A.

    2006-09-15

    The numerical solution of the steady-state electron Fokker-Planck equation perturbed with respect to a global equilibrium is presented in magnetized plasmas with arbitrary atomic number Z. The magnetic field is assumed to be constant and the electron-electron collisions are described by the Landau collision operator. The solution is derived in the Fourier space and in the framework of the diffusive approximation which captures the spatial nonlocal effects. The transport coefficients are deduced and used to close a complete set of nonlocal electron fluid equations. This work improves the results of A. Bendib et al. [Phys. Plasmas 9, 1555 (2002)] and of A. V. Brantov et al. [Phys. Plasmas 10, 4633 (2003)] restricted to the local and nonlocal high-Z plasma approximations, respectively. The influence of the magnetic field on the nonlocal effects is discussed. We propose also accurate numerical fits of the relevant transport coefficients with respect to the collisionality parameter {lambda}{sub ei}/L and the atomic number Z, where L is the typical scale length and {lambda}{sub ei} is the electron-ion mean-free-path.

  2. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    SciTech Connect

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that n/sub e/< or approx. =3 x 10/sup 11/ cm/sup -3/ and T/sub e/< or approx. =40 eV, with a diameter roughly-equal14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  3. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that ne≲3×1011 cm-3 and Te≲40 eV, with a diameter ≊14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  4. Electron series resonance plasma discharges: Unmagnetized and magnetized

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguang

    2001-08-01

    This thesis explores high frequency electron series resonance in unmagnetized and magnetized bounded plasmas. Special interest is focused on low temperature plasmas in planar systems as such are useful for material processing and fusion devices. Chapter 1, Chapter 2 and Chapter 3 describe simulation studies of unmagnetized electron series resonance (ESR) sustained discharges with comparisons to theory and experiment. These plasmas have many desirable characteristics. The input resistance is small and the drive voltage and current are in phase. The drive voltage is small (˜Te) and the time average plasma potential is low (˜10Te). A strong kinetic phase space bunching process is shown to provide electrons of sufficient energy for ionization, which allows discharge operation at low neutral pressure and low electron temperatures. At low pressure, the ion flux to the wall has a narrow angular spread about the normal and the ion bombarding energy distribution has a sharp peak at the plasma potential. Scaling laws at fixed pressure nr∝w3RF ,s¯∝w -1RF are shown to hold when RF frequency is varied smoothly ("chirping") demonstrating continuous density control. Research on magnetized electron series resonance (MESR) discharges is described in Chapter 4, Chapter 5 and Chapter 6. The resonant frequency is derived from cold plasma theory and shows two resonant modes. Simulations verify these modes to be the natural oscillatory frequencies of weakly magnetized plasmas in a planar plasma diode. A global model is established for magnetized resonant discharges. The interrelations among the plasma parameters and the drive terms are formulated for both resonant modes. The initiation of a MESR discharge and its steady state properties are discussed and compared to the unmagnetized case. Weak lock-on of MESR frequency to the drive frequency is observed in simulation. Similar V - I characteristics as those in ESR are found both in theory and in simulation. Different from the ESR

  5. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV. PMID:20192326

  6. Glow plasma trigger for electron cyclotron resonance ion sources

    SciTech Connect

    Vodopianov, A. V.; Golubev, S. V.; Izotov, I. V.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.

    2010-02-15

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 {mu}s and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10{sup 12} cm{sup -3}, required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T{sub e}{approx_equal}20 eV.

  7. Runaway electron dynamics in tokamak plasmas with high impurity content

    SciTech Connect

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-15

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  8. Runaway electron dynamics in tokamak plasmas with high impurity content

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  9. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Bezi Javan, Masoud

    2016-03-01

    We theoretically studied the electronic and magnetic properties of the monolayer SiC sheet doped by 3d transition-metal (TM) atoms. The structural properties, induced strain, electronic and magnetic properties were studied for cases that a carbon or silicon of the SiC sheet replaced with TM atoms. We found that the mount of induced strain to the lattice structure of the SiC sheet with substituting TM atoms is different for Si (TMSi) and C (TMC) sites as the TMSi structures have lower value of the strain. Also the TM atoms can be substituted in the lattice of the SiC sheet with different binding energy values for TMSi and TMC structures as the TMSi structures have higher value of the binding energies. Dependent to the structural properties, the TM doped SiC sheets show magnetic or nonmagnetic properties. We found that some structures such as MnSi, CuSi and CoC configurations have significant total magnetic moment about 3 μB.

  10. Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenni; Wu, Zhengwei; Li, Chunhua; Yang, Weihong

    2014-11-01

    A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.

  11. Analytical theory of a current sheet formed between the magnetized and nonmagnetized plasmas with arbitrary energy distribution of particles

    NASA Astrophysics Data System (ADS)

    Martyanov, Vladimir; Kocharovsky, Vladimir; Kocharovsky, Vitaly

    We present analytical description of a self-consistent stationary boundary layer formed between the magnetized and nonmagnetized collisionless plasmas with arbitrary energy distribution of particles. Various spatial profiles of the current and respective particle distributions in the neutral current sheets are found on the basis of the self-consistency equation of the Grad-Shafranov type, which takes into account a homogeneous external magnetic field. The solutions are obtained due to development of the method of invariants of particle motion (Astron. Lett. 36, 396 (2010)) and provide, for the first time, a detailed description of various transition domains in the magnetospheres of stars and planets, in particular, boundary regions formed by an interaction of a solar wind with an interstellar medium or Earth magnetosphere. We restrict ourselves to the shearless magnetic field configurations and consider four special dependencies of particle distribution function on momentum parallel to current direction, which make it possible to detail the relations between the magnetic field profile, plasma density, and particle anisotropy gradient, including both thin and thick (with respect to a particle gyroradius) layers. Special attention is paid to the cases of an utmost sharp boundary between the magnetized and nonmagnetized plasmas and to the cases where there are sections of a boundary current sheet with magnetic field energy density exceeding kinetic energy density of plasma particles. The kinetic instabilities and reconnection phenomena are also discussed, especially the ones related to the Weibel instability in the weakly magnetized parts of the boundary layer. These analytical results are applied to the analysis of the spacecraft observations of the magnetized-nonmagnetized boundaries in cosmic plasma.

  12. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging

    PubMed Central

    Garcia, A.; Raya, A.M.; Mariscal, M.M.; Esparza, R.; Herrera, M.; Molina, S.I.; Scavello, G.; Galindo, P.L.; Jose-Yacaman, M.; Ponce, A.

    2014-01-01

    In this work we examined MoS2 sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS2 sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron-matter. The threshold energy for the MoS2 material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS2 layers. PMID:24929924

  13. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    SciTech Connect

    Agueda, N.; Sanahuja, B.; Vainio, R.; Dalla, S.; Lario, D.

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  14. Experimental study of hot electrons in LECR2M plasma

    SciTech Connect

    Zhao, H. Y.; Zhao, H. W.; Ma, X. W.; Wang, H.; Zhang, X. Z.; Sun, L. T.; Ma, B. H.; Li, X. X.; Sha, S.; Zhu, Y. H.; Lu, W.; Shang, Y.

    2008-02-15

    In order to investigate the hot electron component in electron cyclotron resonance (ECR) plasmas, the volume bremsstrahlung spectra in the x-ray photon energy range were measured with a high-purity germanium detector on Lanzhou ECR Ion Source No. 2 Modified (LECR2M). A collimation system similar to Bernhardi's was used to focus at the central part of the plasma. The ion source was operated under various source conditions with argon; sometimes oxygen was added to enhance high charge state ion beam intensities. The spectral temperature of hot electrons T{sub spe} was derived from the measured bremsstrahlung spectra. The evolution of the deduced temperature of hot electrons T{sub spe} with the ion source parameters, such as the rf frequency, power, and the magnetic confinement configuration, was investigated.

  15. Thin current sheets in the deep geomagnetic tail

    SciTech Connect

    Pulkkinen, T.I. ); Baker, D.N.; Owen, C.J. ); Gosling, J.T. ); Murphy, N. )

    1993-11-19

    The ISEE-3 magnetic field and plasma electron data from Jan-March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45R[sub E], and in 24 cases the current sheet was thinner than 3.0R[sub E]; 6 very thin current sheets (thickness [lambda] < 0.5R[sub E]) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was [approximately]17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude. 21 refs., 5 figs.

  16. Thin current sheets in the deep geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Owen, C. J.; Gosling, J. T.; Murphy, N.

    1993-01-01

    The International Sun-Earth Explorer 3 (ISEE-3) magnetic field and plasma electron data from Jan - March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45 R(sub E), and in 24 cases the current sheet was thinner than 3.0 R(sub E); 6 very thin current sheets (thickness lambda less than 0.5 R(sub E) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was about 17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude.

  17. Modulational instability in a plasma with suprathermal electrons

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Smith, R. A.; Papadopoulos, K.; Palmadesso, P.

    1981-01-01

    The consequences of the presence of suprathermal electrons on the linear stage of modulational instabilities are investigated for a range of parameters appropriate to both laboratory and astrophysical plasmas. Substantial modification to the growth rate and secondary spectrum are found to occur for instabilities driven by large amplitude Langmuir waves in the dipole limit due to the kinetic effects of the suprathermal electrons. In particular, for reasonable choices of pump amplitude and suprathermal energy density, additional modes become unstable.

  18. Photon and electron Landau damping in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Serbeto, A.

    2016-09-01

    Using a quantum kinetic description, we establish a general expression for the dispersion relation of electron plasma waves in the presence of an arbitrary spectrum of electromagnetic waves. This includes both electron and photon Landau damping. The quantum kinetic description allows us to compare directly these two distinct processes, and to show that they are indeed quite similar. The present work also extends previous results on photon Landau damping onto the quantum domain.

  19. Beltrami–Bernoulli equilibria in plasmas with degenerate electrons

    SciTech Connect

    Berezhiani, V. I.; Shatashvili, N. L.; Mahajan, S. M.

    2015-02-15

    A new class of Double Beltrami–Bernoulli equilibria, sustained by electron degeneracy pressure, is investigated. It is shown that due to electron degeneracy, a nontrivial Beltrami–Bernoulli equilibrium state is possible even for a zero temperature plasma. These states are, conceptually, studied to show the existence of new energy transformation pathways converting, for instance, the degeneracy energy into fluid kinetic energy. Such states may be of relevance to compact astrophysical objects like white dwarfs, neutron stars, etc.

  20. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  1. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B. B.; Davis, P.; Divol, L.; Glenzer, S. H.; Palastro, J. P.; Price, D.; Froula, D. H.; Tynan, G. R.

    2009-01-22

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5x10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  2. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B B; Froula, D H; Tynan, G R; Divol, L; Davis, P; Palastro, J P; Price, D; Glenzer, S H

    2008-08-28

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5 x 10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  3. Ponderomotive acceleration of hot electrons in tenuous plasmas.

    PubMed

    Geyko, V I; Fraiman, G M; Dodin, I Y; Fisch, N J

    2009-09-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated by collisions with ions under an intense laser drive, multiple regimes of ponderomotive acceleration are identified, and the laser dispersion is shown to affect the process at plasma densities down to 10(17) cm-3. We consider the regime when the cold plasma is not accelerated, requiring a/gammag<1, where a is the laser parameter, proportional to the field amplitude, and gammag is the group-velocity Lorentz factor. In this case, the Lorentz factor gamma of hot electrons does not exceed Gamma [triple bond] alpha gammag after acceleration, assuming its initial value also satisfies gamma0 electron distribution is predicted. PMID:19905227

  4. Electron impact excitation coefficients for laboratory and astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Davis, J.; Kepple, P. C.; Blaha, M.

    1976-01-01

    Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.

  5. Electrostatic screening in nanostructures with multicomponent electron plasma

    NASA Astrophysics Data System (ADS)

    Kovalev, V. M.; Chaplik, A. V.

    2008-10-01

    Screening of the Coulumb interaction accounting for the Friedel oscillations in the structures with multicomponent low-dimensional electron plasma is considered. Calculations are made for nanotubes, double quantum wells (DQW) and superlattices. The binding energy of a donor in DQW is found as a function of the subbands occupation numbers.

  6. Experimental Studies of Self Organization with Electron Plasmas

    SciTech Connect

    Matthaeus, William H.

    2011-04-11

    During the period of this grant we had a very active research effort in our group on the topic of 2D electron plasmas, relaxation, 2D Navier Stokes turbulence, and related issues. The project also motivated other studies we carried out such as a study of 2D turbulence with two-species vorticity.

  7. Low radio frequency biased electron cyclotron resonance plasma etching

    NASA Astrophysics Data System (ADS)

    Samukawa, Seiji; Toyosato, Tomohiko; Wani, Etsuo

    1991-03-01

    A radio frequency (rf) biased electron cyclotron resonance (ECR) plasma etching technology has been developed to realize an efficient ion acceleration in high density and uniform ECR plasma for accurate Al-Si-Cu alloy film etching. In this technology, the substrate is located at the ECR position (875 G position) and the etching is carried out with a 400 kHz rf bias power. This Al-Si-Cu etching technology achieves a high etching rate (more than 5000 A/min), excellent etching uniformity (within ±5%), highly anisotropic etching, and Cu residue-free etching in only Cl2 gas plasma. These etching characteristics are accomplished by the combination of the dense and uniform ECR plasma generation at the ECR position with the efficient accelerated ion flux at the ECR position by using 400 kHz rf bias.

  8. New Electron Temperature Diagnostic for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Loch, Stuart

    2004-11-01

    A new line ratio diagnostic design to measure electron temperature in plasma is presented. Unlike previous diagnostics, this new technique features emission lines originating from levels with different principal quantum numbers. A significant advantage of this approach is that the line ratio varies considerably with temperature in the 1 to 20 eV range. Another advantage is that both transitions are optically thin even for plasma density up to 1 E 14 cm-3. The drawbacks are: a large difference in the line intensities and the significant difference in wavelength. The event of high sensitivity CCD camera combine with precise calibration can to a large extent minimize these latest two issues. The diagnostic is tested on the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source. ASTRAL is a 2.3 m long helicon source designed to investigate basic plasma and space plasma processes. The device produces plasmas with the following typical parameters ne = 1 E9 to 1 E13 cm-3, Te = 2 to 20 eV and Ti = 0.03 to 0.3 eV. A series of 8 large coils produce an axial magnetic field up to 1.2 kGauss. Operating pressure varies from 0.1 to 100 mTorr. A water cooled fractional helix antenna is used to introduce RF power up to 2 kwatt through a standard matching circuit. The line ratio temperatures are measured by means of a 0.33 m McPherson Criss-Cross Scanning monochromator instrumented with a SPH5 Apogee CCD camera. The line ratio temperatures are compared to electron temperatures measured by a rf compensated Langmuir Probe. To validate the diagnostic, a new collisional radiative model that makes use of the latest excitation cross-section values is presented. The model is also used to predict the potential range of this new diagnostic both in terms of electron temperature and plasma density.

  9. Characterization of electron kinetics regime with electron energy probability functions in inductively coupled hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-02-01

    Electron kinetics regime is characterized with the evolution of electron energy probability functions (EEPFs) in inductively coupled hydrogen plasmas. Measurements on EEPFs are carried out with a radio-frequency-compensated single Langmuir probe at the center of a planar-type hydrogen plasma driven by 13.56 MHz wave frequency. Measured EEPFs deviate considerably from the Maxwellian distribution only at relatively high pressures (15-40 mTorr), and the effective electron temperature steeply decreases as the gas pressure increases. Such evolution of the EEPF shapes with pressures is discussed in the consideration of the electron energy relaxation length and various characteristic frequencies. It is found that the EEPFs show locally depleted electron energy distribution where the electron-molecule vibrational collision frequency exceeds the electron-electron collision frequency at the local kinetics regime, while the measured EEPF is not dependent on the vibrational collision frequency at the non-local kinetics regime. Variation of the EEPF shape with distance from the heating region at the local kinetics regime is also well explained in the context of the energy relaxation length and electron-molecule collision frequencies. This study indicates that the control of electron energy distribution should be carried out in the consideration of electron kinetic regime depending on the energy relaxation length for various hydrogen plasma sources.

  10. Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaan-1/Sub-keV Atom Reflecting Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Harada, Yuki; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Bhardwaj, Anil; Asamura, Kazushi; Saito, Yoshifumi; Yokota, Shoichiro; Tsunakawa, Hideo; Machida, Shinobu

    2014-05-01

    We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ˜100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <˜0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ˜50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.

  11. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  12. Measuring the electron density, temperature, and electronegativity in electron beam-generated plasmas produced in argon/SF6 mixtures

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Fernsler, R. F.; Walton, S. G.

    2015-04-01

    This paper presents measurements of electron density (ne0), electron temperature (Te), and electronegativity (α) in electron beam-generated plasmas produced in mixtures of argon and SF6 using Langmuir probes and plasma resonance spectroscopy. Langmuir probe measurements are analyzed using a model capable of handling multi-component plasmas with both positive and negative ions. Verification of the model is provided through plasma frequency resonance measurements of ne0. The results suggest a simple approach to ascertaining α in negative-ion-containing plasmas using Langmuir probes alone. In addition, modest amounts of SF6 are shown to produce sharp increases in both Te and α in electron beam generated plasmas.

  13. The solvation of electrons by an atmospheric-pressure plasma

    PubMed Central

    Rumbach, Paul; Bartels, David M.; Sankaran, R. Mohan; Go, David B.

    2015-01-01

    Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution. The electrons are measured by their optical absorbance using a total internal reflection geometry. The measured absorption spectrum is unexpectedly blue shifted, which is potentially due to the intense electric field in the interfacial Debye layer. We estimate an average penetration depth of 2.5±1.0 nm, indicating that the electrons fully solvate before reacting through second-order recombination. Reactions with various electron scavengers including H+, NO2−, NO3− and H2O2 show that the kinetics are similar, but not identical, to those for solvated electrons formed in bulk water by radiolysis. PMID:26088017

  14. Self-Consistent Current Sheets and Filaments in Relativistic Collisionless Plasma with Arbitrary Energy Distribution of Particles

    SciTech Connect

    Kocharovsky, V. V.; Kocharovsky, Vl. V.; Martyanov, V. Ju.

    2010-05-28

    A new class of self-consistent planar current sheets and cylindrical current filaments with a functional freedom for the resultant spatial profiles is found analytically for collisionless plasma. Invariants of particle motion are employed to obtain exact stationary solutions of Vlasov-Maxwell equations for arbitrary energy distribution of particles. This method automatically takes into account complicated particle motion in a self-consistent magnetic field, can be equally well applied to relativistic and nonrelativistic plasma, and yields a much wider class of solutions as compared to models of the Harris-Bennett type and their known generalizations. We discuss typical analytical solutions and general properties of magnetostatic neutral structures: spatial scales, magnitudes of current and magnetic field, degree of anisotropy of particle distributions, and possible equipartition of magnetic and particle energies.

  15. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  16. Effects of the fast plasma sheet flow on the geosynchronous magnetic configuration: Geotail and GOES coordinated study

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Singer, H. J.; Mukai, T.

    2006-01-01

    The present study statistically examines how (or if) the geosynchronous (GOES) magnetic field responds to fast earthward flow observed by the Geotail satellite in the plasma sheet. The change of the GOES H (north-south) component within 15 min of the detection of fast flows, ΔH, is used as a primary measure of the geosynchronous response. It is found that following the detection of fast flows, the geosynchronous magnetic field rarely dipolarizes, but it often becomes more stretched, which is manifested by negative ΔH. This H decrease is not accompanied by any correlated variation of the D (azimuthal) component, suggesting that the associated stretching is not an edge effect of the substorm current wedge formation, but it can be attributed to the intensification of the local tail current. No systematic dependence of ΔH on the satellite separation can be found. On the other hand, the geosynchronous magnetic field tends to dipolarize if it is already stretched significantly, although the associated changes in the H and V (radial) components are not much larger than those in events that are not preconditioned. The flow intensity does not seem to be a controlling factor, either. However, caution needs to be exercised because the present study is not able to address the azimuthal structure of the fast flow. It is concluded that in most events the fast plasma flow does not reach geosynchronous orbit and that the generation of the fast plasma flow in the plasma sheet is not sufficient for causing geosynchronous dipolarization.

  17. Electron beam generated whistler emissions in a laboratory plasma

    SciTech Connect

    Van Compernolle, B. Pribyl, P.; Gekelman, W.; An, X.; Bortnik, J.; Thorne, R. M.

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  18. Turbulence and Proton–Electron Heating in Kinetic Plasma

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Parashar, Tulasi N.; Wan, Minping; Wu, P.

    2016-08-01

    Analysis of particle-in-cell simulations of kinetic plasma turbulence reveals a connection between the strength of cascade, the total heating rate, and the partitioning of dissipated energy into proton heating and electron heating. A von Karman scaling of the cascade rate explains the total heating across several families of simulations. The proton to electron heating ratio increases in proportion to total heating. We argue that the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales controls the ratio of proton and electron heating. The proposed scaling is consistent with simulations.

  19. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  20. Fast collisionless reconnection and electron heating in strongly magnetized plasmas.

    PubMed

    Loureiro, N F; Schekochihin, A A; Zocco, A

    2013-07-12

    Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated by using a novel fluid-kinetic model [Zocco and Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains nonisothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is cE(∥)(max) ≈ 0.2v(A)B(y,0), where v(A) is the Alfvén speed based on the reconnecting field B(y,0). The island saturation width is the same as in magnetohydrodynamics models except for small systems, when it becomes comparable to the kinetic scales. PMID:23889411